Holomorphic families of injections

by

LIPMAN BERS(1) and H. L. ROYDEN(2)

Columbia University	Stanford University
New York, NY, U.S.A.	Stanford, CA, U.S.A.

§ 1. Introduction and statement of results

This paper contains new proofs and extensions of some recent results by Mañé, Sad and Sullivan [11] and by Sullivan and Thurston [15]. It is convenient to begin with the following definition.

Let E be a subset of the Riemann sphere $\hat{C} = C \cup \{\infty\}$ containing at least 4 points. Let Δ_r denote the open disc |z| < r in C. A map

$$f: \Delta_r \times E \to \hat{\mathbf{C}}$$

will be called *admissible* if f(0, z)=z for all $z \in E$, for every fixed $\lambda \in \Delta_r$ the map $f(\lambda, \cdot): E \to \hat{\mathbb{C}}$ is an injection, and for every fixed $z \in E$ the map $f(\cdot, z): \Delta_r \to \hat{\mathbb{C}}$ is holomorphic (i.e., a meromorphic function of λ).

In other words, an admissible map is a family of injections $E \rightarrow \hat{C}$ holomorphically parametrized by a complex parameter λ , $|\lambda| < r$, which reduces to the identity for $\lambda = 0$.

We shall often assume that the admissible map considered is *normalized*, that is, that $\{0, 1, \infty\} \subset E$ and $f(\lambda, \zeta) = \zeta$ for $\zeta = 0, 1, \infty$ and $\lambda \in \Delta_r$. This involves no serious loss of generality. Indeed, given an admissible map $f: \Delta_r \times E \rightarrow \hat{C}$ and 3 distinct points $\zeta_1, \zeta_2, \zeta_3$ in E, let α be the Möbius transformation which takes $0, 1, \infty$ into $\zeta_1, \zeta_2, \zeta_3$ and β_{λ} be the Möbius transformation which takes $f(\lambda, \zeta_1), f(\lambda, \zeta_2), f(\lambda, \zeta_3)$ into $0, 1, \infty$. Then $f: \Delta_r \times \alpha^{-1}(E) \rightarrow C$, where

$$\hat{f}(\lambda, \hat{z}) = \beta_{\lambda} \circ f(\lambda, \alpha(\hat{z}))$$

is admissible and normalized. (If $f: \Delta_r \times E \rightarrow \hat{C}$ is normalized and admissible, then, for every fixed $z \in E - \{\infty\}$, the function $f(\cdot, z)$ is holomorphic.)

^{(&}lt;sup>1</sup>) This material is based upon work partially supported by the National Science Foundation under Grant No. NSF MCS-78-27119.

^{(&}lt;sup>2</sup>) This material is based upon work partially supported by the National Science Foundation under Grant No. NSF MCS-83-01379.

The " λ -lemma" by Mañé, Sad and Sullivan [11] asserts that an admissible map $f(\lambda, z)$ is, for every fixed λ , uniformly continuous in z (with respect to the spherical metric) and that the continuous extension of $f(\lambda, \cdot)$ to the closure of E (in \hat{C}) has the Pesin property.

By the *Pesin property* we mean the following. Denote the spherical distance in \hat{C} by δ . Let $A \subset \hat{C}$ be a set, and let $w: A \to \hat{C}$ be a map. For $z \in A$ and $\varepsilon > 0$ let $m(z, \varepsilon)$ and $M(z, \varepsilon)$ denote the infinum and the supremum of $\delta(w(z), w(\zeta))$ for $\zeta \in A$ and $\delta(z, \zeta) = \varepsilon$, if there are such ζ , and set $m(z, \varepsilon) = M(z, \varepsilon) = 1$ if there are none. The function w has the Pesin property if the function

$$P(z) = \lim_{\varepsilon \to 0} \frac{M(z,\varepsilon)}{m(z,\varepsilon)}$$

is uniformly bounded.

It is known (cf. [10]) that a homeomorphism w of a plane domain is quasiconformal if and only if w has the Pesin property, and that if w is K-quasiconformal, then $P(z) \leq K$ for almost all (but not necessarily all) z in A.

THEOREM 1. If $f: \Delta_1 \times E \rightarrow \hat{\mathbb{C}}$ is admissible, then every $f(\lambda, \cdot)$ is the restriction to E of a quasiconformal self-map F_{λ} of $\hat{\mathbb{C}}$, of dilatation not exceeding.

$$K = \frac{1+|\lambda|}{1-|\lambda|}.\tag{1.1}$$

It is easy to see that the bound (1.1) cannot be improved. From Theorem 1 we derive the following Corollaries:

COROLLARY 1 (Mañé-Sad-Sullivan). If $f: \Delta_1 \times \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is admissible, then, for each $\lambda \in \Delta_1$, the map $f(\lambda, \cdot)$ is a quasiconformal homeomorphism of $\hat{\mathbb{C}}$ onto itself.

COROLLARY 2. For each r<1 there are constants A, α , and B, depending only on r, such that, if f is a normalized-admissible map on $\Delta_1 \times E$, we have

$$\delta[f(\lambda, z), f(\lambda', z')] \leq A\delta(z, z')^{\alpha} + B|\lambda - \lambda'|$$

for $z, z' \in E$ and $|\lambda|, |\lambda'| \leq r$. Here δ is the spherical metric.

COROLLARY 3. Let $\{E_n\}$ be an increasing sequence of subsets of $\hat{\mathbf{C}}, E = \bigcup E_n$, and $\{f_n\}$ a sequence of normalized admissible map on $\Delta_1 \times E_n$. Then there is an admissible map f on $\Delta_1 \times \hat{E}$ and a subsequence $\{f_{n_k}\}$ which converges to f, uniformly on $\Delta_r \times E_n$ for each n and each r < 1. Here \hat{E} is the closure of E.

260

THEOREM 2. If $f: \Delta_1 \times E \to \hat{\mathbb{C}}$ is admissible and E has a nonempty interior ω , then for each $\lambda \in \Delta_1$ the map $f(\lambda, \cdot)|\omega$ is a K-quasiconformal homeomorphism of ω into $\hat{\mathbb{C}}$ with $K=(1+|\lambda|)/(1-|\lambda|)$. The Beltrami coefficient of $f(\lambda, \cdot)|\omega$ given by

$$\mu(\lambda, z) = \frac{\partial f(\lambda, z) |\omega|}{\partial \bar{z}} / \frac{\partial f(\lambda, z) |\omega|}{\partial z},$$

is a holomorphic function of $\lambda \in \Delta_1$, qua element of the Banach space $L_{\infty}(\omega)$.

Given an admissible map $f: \Delta_1 \times E \to \hat{\mathbf{C}}$ we may want to find an admissible map $\tilde{f}: \Delta_1 \times \hat{\mathbf{C}} \to \hat{\mathbf{C}}$ which extends f. This *extension problem* first posed by Mañé and Sullivan, seems difficult. We can state only partial results.

PROPOSITION 1. If for every finite set $E_0 \subset \hat{\mathbb{C}}$ (containing at least three points) and for every point $y \notin E_0$ every admissible map of $\Delta_1 \times E_0$ extends to an admissible map of $\Delta_1 \times (E_0 \cup \{y\})$, then the extension problem is solvable for any set E and any admissible map of $\Delta_1 \times E$.

By means of examples we shall establish, among other things, the following

PROPOSITION 2. There are admissible maps $f: \Delta_1 \times E \rightarrow \hat{C}$ with a unique admissible extension to $\Delta_1 \times \hat{C}$. There are admissible maps of $\Delta_1 \times E$ which have several admissible extensions to $\Delta_1 \times \hat{C}$ and such that all extensions coincide on some but not all components of $\hat{C} - \hat{E}$.

If E is a set consisting of three points, then every admissible map f on $\Delta_1 \times E$ trivially extends to an admissible map \hat{f} on $\Delta_1 \times \hat{C}$, for we may assume f normalized and take $\hat{f}(\lambda, z) = z$. The corresponding result for a set of four points is given by Proposition 3 below which is implied by a result of Earle and Kra [6]. For a set E with n points, n > 4, we do not know whether every admissible map on $\Delta_1 \times E$ extends to an admissible map on $\Delta_1 \times (E \cup \{y\})$, for a point $y \in C - E$.

PROPOSITION 3. Let $E = \{0, 1, \infty, \alpha\}$ be a set consisting of four points and $f: \Delta_1 \times E \rightarrow \hat{\mathbb{C}}$ an admissible map. Then there is an admissible map $\hat{f}: \Delta_1 \times \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ which extends f.

The "improved λ -lemma" by Sullivan and Thurston [14] asserts that there is an r>0, which they cannot estimate, such that for every admissible map f on $\Delta_1 \times E$ there is an admissible map on $\Delta_r \times \hat{\mathbf{C}}$ which extends $f | \Delta_r \times E$.

THEOREM 3. If $f: \Delta_1 \times E \to \hat{\mathbf{C}}$ is an admissible map, then $f|\Delta_{1/3} \times E$ has a canonical admissible extension $\hat{f}: \Delta_{1/3} \times \hat{\mathbf{C}} \to \hat{\mathbf{C}}$.

This extension is characterized by the following property. Let $\mu(\lambda, z)$ be the Beltrami coefficient of $z \mapsto \hat{f}(\lambda, z)$ and S any component of $\hat{C} - \hat{E}$, where \hat{E} is the closure of E in \hat{C} . Then

$$\mu(\lambda, z) = \varrho_{S}(z)^{-2} \overline{\psi(\lambda, z)} \quad \text{for } z \in S, \ \lambda \in \Delta_{1/3}$$

where $\varrho_S(z)|dz|$ is the Poincaré line element in S and the function $\psi(\lambda, z)$ is holomorphic in $z \in S$, antiholomorphic in $\lambda \in \Delta_{1/3}$.

The uniqueness statement in Theorem 3 is based on a result which may be of interest in other connections, too (Lemma II in § 5). It gives a sufficient condition for a quasiconformal self-map of a plane domain which is homotopic to the identity modulo the set-theoretical boundary to be so modulo the ideal boundary.

Our proofs make essential use of the theory of quasiconformal maps and of Teichmüller spaces (see [5], [7], [10] and the references given there). For the convenience of the reader some of the necessary results are stated in § 2. In § 7 we describe the connection between the extension problem and a lifting problem in Tecihmüller space.

§ 2. Preliminaries

All results summarized in this section are known. A reader familiar with Teichmüller theory will scan it in order to note our notations.

(A) We assume the basic results on quasiconformal maps, cf., for instance, [2], [10]. A *Beltrami coefficient* μ in a domain $S \subset \hat{C}$ is an element of the open unit ball in the complex Banach space $L_{\infty}(S)$. A μ -conformal map F of S is a homeomorphic solution of the Beltrami equation

$$\frac{\partial F}{\partial \bar{z}} = \mu \frac{\partial F}{\partial z}$$

in S. Here the derivatives, taken in the sense of distribution theory, are required to be locally square integrable measurable functions. (One says that μ is the Beltrami coefficient of F.)

The smoothness of a μ -conformal map F depends on μ . In particular F is C_{∞} or

262

real analytic if μ is. Any μ -conformal map is differentiable a.e. If F_1 and F_2 are two μ conformal maps of S, then $F_2 \circ F_1^{-1}$ is conformal.

A map is quasiconformal if it is μ -conformal for some Beltrami coefficient μ . The *dilatation* of F is the number

$$K(F) = \frac{1 + \|\mu\|_{\infty}}{1 - \|\mu\|_{\infty}}$$

where $\|\mu\|_{\infty}$ is the essential supremum of $|\mu(z)|$ in S. If $K(F) \leq A, F$ is called Aquasiconformal.

Inverses and composites of quasiconformal maps are quasiconformal, and the dilatation obeys the rules: K(F)=1 if and only if F is conformal, $K(F^{-1})=K(F)$ and $K(F_1 \circ F_2) \leq K(F_1) K(F_2)$. The partial derivatives of F^{-1} and of $F_1 \circ F_2$ are computable (a.e.) by the classical formulas.

(B) Let μ be a Beltrami coefficient in C. There is a unique μ -conformal homeomorphism $z \mapsto w^{\mu}(z)$ of C onto itself which fixes 0, 1 (and, therefore, ∞). This w^{μ} has a Hölder modulus of continuity, with respect to the spherical metric, depending only on $||\mu||_{\infty}$. For every $z \in C$, the number $w^{\mu}(z)$ depends holomorphically on $\mu \in L_{\infty}(\mathbb{C})$.

If $||\mu_j||_{\infty} \le k < 1$, the sequence $\{w^{\mu_j}\}$ contains a uniformly convergent subsequence, the limit is of the form w^{μ} with $||\mu||_{\infty} \le k$. If the sequence $\{\mu_j\}$ has the limit μ_{∞} a.e., then $\mu = \mu_{\infty}$.

Let U denote, here and hereafter, the upper half-plane in C. Every quasiconformal self-map ω of U has a continuous extension to $U \cup \mathbb{R} \cup \{\infty\} = U \cup \hat{\mathbb{R}}$; this extension will be denoted by the same letter.

If μ is a Beltrami coefficient in U, then there is a unique μ -conformal homeomorphism $z \rightarrow w_{\mu}(z)$ of U onto itself which fixes $0, 1, \infty$. It has a Hölder modulus of continuity, with respect to the spherical metric, depending only on $||\mu||_{\infty}$. For every $z \in U \cup \mathbb{R}$, the number $w_{\mu}(z)$ depends real-analytically on $\mu \in L_{\infty}(U)$.

Convergence theorems similar to the ones stated above for w^{μ} hold for w_{μ} .

(C) The image of $\hat{\mathbf{R}}$ under a quasiconformal self-map of $\hat{\mathbf{C}}$ is called a *quasicircle*. A Jordan curve C passing through ∞ is a quasicircle if and only if it satisfies the *Ahlfors* condition: there is an M>0 such that for any three distinct finite points a, b, c on C, with b on the finite component of $C - \{a, c\}$,

If C does not pass through ∞ , this inequality must be satisfied whenever b lies on the component of $C - \{a, c\}$ with the smaller Euclidean diameter, cf. [10].

(D) We recall next some facts from the theory of the *Teichmüller space* T(S) of a Riemann surface S which is not conformal to a sphere, a punctured sphere, a twice punctured sphere or a torus. As a matter of fact, we shall need only the case when $S \subset \hat{C}$; we assume that S has at least 3 boundary points one of which is the point ∞ .

For such an S there always exists a holomorphic universal covering by the upper half-plane U,

$$\pi: U \to S; \tag{2.1}$$

the covering group G of π is a torsion-free Fuchsian group (discrete subgroup of $PSL(2, \mathbb{R})$). Note that π and G are uniquely determined by S, except that they may be replaced by $\pi \circ \alpha$ and $\alpha^{-1}G\alpha, \alpha \in PSL(2, \mathbb{R})$.

The *Poincaré line element* $\rho_{S}(\zeta)|d\zeta|, \zeta \in S$, is defined by the relation

$$\varrho_{S}(\pi(z))|\pi'(z)| = 2|z-\bar{z}|^{-1};$$

 $\varrho_{S}(z)|dz|$ is invariant under all conformal automorphisms of S.

The Poincaré metric on S can be also characterized as the *only* complete Riemannian metric on S which respects the conformal structure of S, i.e., is given by a line element $ds=\sigma(z)|dz|$, and has Gaussian curvature (-1), i.e., satisfies the partial differential equation $\Delta \log \sigma = \sigma^2$.

We note the monotonicity property:

$$\varrho_{S_{\alpha}}(z) \ge \varrho_{S}(z)$$
 if $z \in S_{0} \subset S$.

(E) The *limit set* Λ of G is the closure of the set of fixed points of parabolic and hyperbolic elements of G. If $\Lambda = \mathbb{R} \cup \{\infty\} = \hat{\mathbb{R}}$, S is said to have no ideal boundary curves. If $\Lambda = \mathbb{R}$, each component I of $\hat{\mathbb{R}} - \Lambda$ defines an *ideal boundary curve* C of S:

$$C = I/\operatorname{Stab}_G(I)$$

where the stabilizer of I in G consists either of the identity only or of all powers of a hyperbolic element γ in G which fixes the endpoints of I. For every $\alpha \in G, C$ is identified with $\alpha(I)/\text{Stab}_G(\alpha(I))$.

Let b(S) denote the union of the ideal boundary curves of S; then $S \cup b(S)$ has a natural topology in which S is open and dense.

264

Every quasiconformal map $F: S \rightarrow F(S) \subset \mathbb{C}$ extends by continuity to a homeomorphism of $S \cup b(S)$ onto $F(S) \cup b(F(S))$. The extension will be denoted by the same letter.

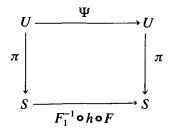
(F) The *Teichmüller space* T(S) is the set of equivalence classes [F] of quasiconformal mappings

$$F: S \rightarrow F(S)$$

where F(S) is another domain in $\hat{\mathbb{C}}$. (No generality would be gained by allowing F(S) to be any Riemann surface.) Two such maps, F and F_1 , are *equivalent* if there is a conformal map $h: F(S) \rightarrow F_1(S)$ such that the map

$$F_1^{-1} \circ h \circ F: S \to S$$

is homotopic to the identity modulo b(S). An equivalent condition is that there be a commutative diagram



such that the quasiconformal map Ψ fixes every point of **R**.

Note that the Beltrami coefficient of F determines [F], but not vice versa. The space T(S) is a complete metric space under the *Teichmüller distance function*

$$\langle [F_1], [F_2] \rangle = \inf \log K(F)$$

where F runs over all quasiconformal maps equivalent to $F_1 \circ F_2^{-1}$.

If $\hat{\mathbf{C}} - S$ consists of *m* points, T(S) is homeomorphic to \mathbf{C}^{m-3} .

(G) Let L denote the lower half-plane in C, and let B(L, G) be the complex Banach space of holomorphic functions $\varphi(\zeta), \zeta \in L$ with norm

$$\|\varphi\| = \sup \eta^2 |\varphi(\zeta)| < \infty$$

(where $\zeta = \xi + i\eta$) which satisfy the functional equation of quadratic differentials

$$\varphi(g(\zeta)) g'(\zeta)^2 = \varphi(\zeta), \quad g \in G.$$

There exists a canonical homeomorphic injection

$$T(S) \hookrightarrow B(L,G) \tag{2.2}$$

(onto a bounded domain) defined as follows. Let F be a μ -conformal map of S. Lift μ , via (2.1), to a Beltrami coefficient $\overline{\mu}(z)$ in U, by setting

$$\mu(\pi(\zeta)) \quad \overline{\pi'(\zeta)}, \ /\pi'(\zeta) = \tilde{\mu}(\zeta)$$

and set

$$\hat{\mu}(\zeta) = \begin{cases} \bar{\mu}(\zeta) & \text{for } \zeta \in U \\ 0 & \text{for } \zeta \in L \end{cases}$$

(We note that $\tilde{\mu}(\zeta) d\zeta/d\zeta$ and $\hat{\mu}(\zeta) d\zeta/d\zeta$ are G-invariant, and that $w^a|L$ is conformal.) It turns out that the Schwarzian derivative

$$\varphi^{\mu} = \{ w^{\mu} | L, z \},$$

i.e.,

$$\varphi^{\mu}(\zeta) = u'(\zeta) - \frac{1}{2}u(\zeta)^2, \quad u(\zeta) = \frac{d}{d\zeta}\log\frac{dw^{\mu}(\zeta)}{d(\zeta)}, \quad \zeta \in L,$$

is determined by and determines [F]. Also, $\varphi^{\mu} \in B(L, G)$ and

$$\|\varphi^{\mu}\| < \frac{3}{2}.$$

The map

$$[F] \mapsto \varphi^{\mu} \tag{2.3}$$

is the desired embedding. From now on we identify T(S) with its image.

(H) Now let $\varphi \in B(L, G)$ with $||\varphi|| < \frac{1}{2}$ be given, and set

$$\nu(\zeta) = -2\eta^2 \varphi(\zeta), \quad \zeta \in U.$$

Then $v(\zeta) d\bar{\zeta}/d\zeta$ is G-invariant and

$$=\tilde{\mu} \tag{2.4}$$

where

$$\mu(z) = \varrho_s^2(z) \,\overline{\psi(z)} \tag{2.5}$$

with $\psi(z), z \in S$, holomorphic; more precisely

$$\psi(\pi(\zeta))\,\pi'(\zeta)^2 = \,\varphi(\bar{\zeta})\,. \tag{2.6}$$

Finally, by the Ahlfors-Weill lemma [3]

$$\varphi^{\mu} = \varphi.$$

A Beltrami coefficient μ in S of the form (2.5) will be called *harmonic*. (The name is suggested by the Kodaira-Spencer deformation theory; in [4] these Beltrami coefficients were called canonical.) We note two consequences of what was said above.

(a) A point φ in $T(S) \subset B(L, G)$ with $\|\varphi\| < \frac{1}{2}$ can be represented as [F] with the Beltrami coefficient μ of F harmonic and given by (2.5), (2.6). Thus μ depends holomorphically on φ .

(b) If quasiconformal maps F_1 and F_2 have harmonic Beltrami coefficients μ_1, μ_2 , and are equivalent, i.e. if $[F_1]=[F_2]$, then $\mu_1=\mu_2$.

(I) A quasiconformal map F of S is called a Teichmüller map if either F is conformal or F has a Beltrami coefficient of the form

 $\mu = k |\varphi(z)| / \varphi(z)$

where $\varphi(z)$ is holomorphic in S and $\varphi \in L_1(S)$.

(c) If F_1 is a Teichmüller map of S and F_2 another map with $[F_2]=[F_1]$, then either $F_2=F_1$ or $K(F_2)>K(F_1)$.

This is a special case of *Teichmüller's uniqueness theorem*, as extended by Reich and Strebel [12] and by Strebel [14].

Teichmüller's existence theorem implies that if $[F] \in T(S)$ and dim $T(S) < \infty$ (in our case, if $\hat{C} - S$ is finite), then F is equivalent to a Teichmüller map.

(J) The modular group Mod(S) of T(S) is the group of holomorphic isometries of T(S) of the form

$$[F] \mapsto [F \circ \Phi^{-1}] = \Phi_{\star}([F])$$

where Φ is any quasiconformal self-map of S. If dim $T(S) < \infty$ (in our case, if $\hat{C} - S$ is finite), Mod (S) acts properly discontinously.

(K) In every complex manifold M one can define the Kobayashi pseudometric as

the largest pseudometric with the property: if z_1 and z_2 are two points in U, d the Poincaré distance between z_1 and z_2 , and Φ a holomorphic map of U into M, then the Kobayashi distance between $\Phi(z_1)$ and $\Phi(z_2)$ is less than or equal to d. The following results will be used later.

(d) A holomorphic map of one complex manifold into another does not increase the Kobavashi distance.

(e) If S=C-E where E is finite and contains at least 3 points, the Kobayashi distance in T(S) coincides with the Teichmüller distance.

Statement (d) follows from the definition, statement (e) by repeating the argument given in [13] for the case when S is a compact Riemann surface. (Cf. also [6].)

§ 3. The finite case

In this section we prove Theorem 1 and Theorem 3 for the case when the set E is finite (in this case Theorem 2 is vacuous). Without loss of generality we assume that

$$E = \{0, 1, \infty, \zeta_1, \dots, \zeta_n\}, n > 0,$$

and that the given admissible map $f: \Delta_1 \times E \rightarrow \hat{C}$ is normalized.

Let M_n denote the complex manifold of ordered *n*-tuples of distinct complex numbers $(z_1, ..., z_n)$ none of which equals 0 or 1.

LEMMA. There is a holomorphic universal covering

$$p: T(\hat{\mathbf{C}} - E) \to M_n.$$

(The map p is given by the relation (3.3) below.)

Proof. Every point τ of $T(\hat{\mathbf{C}}-E)$ is of the form [F] where F is a quasiconformal map of $\hat{\mathbf{C}}-E$ into $\hat{\mathbf{C}}$. Such an F is of the form $\alpha \circ w^{\mu}$ where $\mu \in L_{\infty}(\mathbf{C})$, $\|\mu\|_{\infty} < 1$, and $\alpha \in PSL(2, \mathbf{C})$, cf. § 2(A). Since $[\alpha \circ w^{\mu}] = [w^{\mu}]$, every τ is of the form $[w^{\mu}]$.

Now, $[w^{\mu_1}] = [w^{\mu_2}]$ if and only if there is a conformal map h of $w^{\mu_1}(\hat{\mathbf{C}}-E)$ onto $w^{\mu_2}(\hat{\mathbf{C}}-E)$ such that $(w^{\mu_2})^{-1} \circ h \circ w^{\mu_1}$ is homotopic to the identity in $\hat{\mathbf{C}}-E$. But such an h must be a Möbius transformation which fixes $0, 1, \infty$, hence the identity. Thus $[w^{\mu_1}] = [w^{\mu_2}]$ if and only if

$$(w^{\mu_2})^{-1} \circ w^{\mu_1} | \hat{\mathbf{C}} - E$$
 is homotopic to id,

which implies that

$$(w^{\mu_2})^{-1} \circ w^{\mu_1} | E = \mathrm{id}.$$

This shows that

$$(w^{\mu}(\zeta_1), \dots, w^{\mu}(\zeta_n)) \in M_n$$
 (3.2)

depends only on $[w^{\mu}]$ rather than on the particular choice of μ . It is clear that every point of M_n can be written in the form (3.2) for some $\mu \in L_{\infty}(\mathbb{C}), \|\mu\|_{\infty} < 1$, and we conclude that

$$[w^{\mu}] \mapsto p([w^{\mu}]) = ((w^{\mu}(\zeta_1), \dots, (w^{\mu}(\zeta_n)))$$
(3.3)

is a well defined surjection. We claim it is holomorphic.

Indeed, let $[w^{\nu}]$ be a point in $T(\hat{\mathbf{C}}-E)$ and let $\sigma_1, \ldots, \sigma_{n-3}$ be a basis of harmonic (in the sense of §2(G)) Beltrami coefficients on $w^{\nu}(\hat{\mathbf{C}}-E)$. By the results stated in §2(I) the map

$$(t_1,\ldots,t_n)\mapsto \left[w^{t_1\sigma_1+\ldots+t_{n-3}\sigma_{n-3}}\circ w^{\nu}\right]$$

is a biholomorphic homeomorphism of a neighborhood of the origin in C^{n-3} onto a neighborhood of $[w^{\nu}]$ in $T(\hat{C}-E)$. On the other hand,

$$w^{t_1\sigma_1+...+t_{n-3}\sigma_{n-3}} \circ w^{\nu} = w^{\mu}$$

with

$$\mu = \frac{t_1 \hat{\sigma}_1 + \ldots + t_{n-3} \hat{\sigma}_{n-3} + \nu}{1 + \bar{\nu} (t_1 \hat{\sigma}_1 + \ldots + t_{n-3} \hat{\sigma}_{n-3})}$$

where

$$\hat{\sigma}_{j}(z) = \sigma_{j}(w^{\nu}(z)) \left| \frac{\partial w^{\nu}(z)}{\partial z} \right|^{2} / \left(\frac{\partial w^{\nu}(z)}{\partial z} \right)^{2}$$

so that μ depends holomorphically on (t_1, \dots, t_{n-3}) and so does the right hand of (3.3). This proves the assertion.

Now let Γ be the subgroup of Mod $(\hat{\mathbf{C}}-E)$ (cf. § 2(J)) consisting of all self-maps $[w^{\mu}] \mapsto [w^{\mu} \circ \omega^{-1}]$ induced by quasiconformal self-maps ω of $\hat{\mathbf{C}}-E$ which fix each point of E. Then Γ acts properly discontinuously on $T(\hat{\mathbf{C}}-E)$. We claim that the action is also free. Indeed, assume that $\omega_*([w^{\mu}])=[w^{\mu}]$. This means that $(w^{\mu})^{-1} \circ w^{\mu} \circ \omega^{-1}$ is homotopic to the identity in $\hat{\mathbf{C}}-E$, i.e., that ω is homotopic to the identity, i.e., that $\omega_*=id$.

Now, $[w^{\mu}]$ and $[w^{\nu}]$ have the same image under p if and only if $(w^{\mu})^{-1} \circ w^{\nu}$ fixes every point of E, i.e., if and only if $[w^{\mu}]$ and $[w^{\nu}]$ are equivalent under Γ . We conclude that (3.3) is a Galois covering. Since $T(\mathbf{C}-E)$ is a cell, it is the universal covering. The lemma is proved.

The given admissible map $f: \Delta_1 \times E \to \hat{\mathbf{C}}$ may be identified with a holomorphic vector-valued map $f: \Delta_1 \to M_n$ which takes $\lambda \in \Delta_1$ into

$$\{f(\lambda, \zeta_1), \ldots, f(\lambda, \zeta_n)\} \in M_n.$$

This maps lifts, via (3.3), to a holomorphic map

$$\tilde{\mathbf{f}}: \Delta_1 \to T(\hat{\mathbf{C}} - E) \subset B(L, G)$$

(where G is a torsion-free Fuchsian group with $\hat{\mathbf{C}} - E$ conformal to U/G). The map $\tilde{\mathbf{f}}$ is uniquely determined by the requirement that $\tilde{\mathbf{f}}(0) = [\text{id}]$, i.e. the origin in B(L,G).

In Δ_1 the Kobayashi distance (cf. §2(K)) between 0 and λ equals the Poincaré distance log K, where

$$K = \frac{1+|\lambda|}{1-|\lambda|}.$$
(3.4)

The holomorphic map $\tilde{\mathbf{f}}$ does not increase the Kobayashi distance so that the Teichmüller (=Kobayashi) distance between the points [id] and $\mathbf{f}(\lambda)$ in $T(\hat{\mathbf{C}}-E)$ is at most log K. This means that there exists, for each $\lambda \in \Delta_1$, a $\nu_{\lambda} \in L_{\infty}(\mathbf{C})$, with $K(w^{\nu_{\lambda}}) \leq K$, i.e. with $||\nu_{\lambda}|| \leq |\lambda|$ and such that

$$w^{\nu_{\lambda}}(\zeta_{j}) = f(\lambda, \zeta_{j}), \quad j = 1, ..., n.$$
 (3.5)

Theorem 1 follows (for E given by (3.1)).

(Note that we have no reason to assume that ν_{λ} depends holomorphically on λ . Whether it can be so chosen, for all $|\lambda| < 1$, is equivalent to the Mañé-Sullivan problem.)

Next we observe that \tilde{f} maps Δ_1 into the ball $\|\varphi\|| < \frac{3}{2}$ in the ((n-3)-dimensional) Banach space B(L, G) cf. §2(H). By the Schwarz lemma (which is valid for vectorvalued functions), \tilde{f} takes the disc $|\lambda| < \frac{1}{3}$ into the ball $\|\varphi\|| < \frac{1}{2}$. By §2(H)(a) there exists, for each $\lambda \in \Delta_{1/3}$, a harmonic Beltrami coefficient ν_{λ} in $\hat{C} - E$, which depends holomorphically on $\tilde{f}(\lambda) \in B(L, G)$, and hence on λ , and such that (3.5) holds. Since $w^{\nu_{\lambda}}(z)$ depends holomorphically on λ , the admissible map $\tilde{f}(\lambda, z) = w^{\nu_{\lambda}}(z)$, $|\lambda| < \frac{1}{3}$, $z \in \hat{C}$, is the extension of $f|\Delta_{1/3} \times E$ the existence of which is asserted by Theorem 3.

(The uniqueness of this extension follows from statement (b) in 2(H) and from Lemma II in 5 below.)

HOLOMORPHIC FAMILIES OF INJECTIONS

§4. Proof of Theorems 1 and 2 and of the corollaries

Let $f: \Delta_1 \times E \to \hat{\mathbb{C}}$ be a normalized admissible map, with E infinite. Choose a sequence of finite sets E_j , j=1,2,... such that $\{0,1,\infty\} \subset E_j \subset E$ for all j and $E_1 \cup E_2 \cup ...$ is dense in E. For a fixed $\lambda \in \Delta$, denote by F_j a K-quasiconformal self-map of $\hat{\mathbb{C}}$ such that $F_j|E_j = f(\lambda, \cdot)|E_j, K$ being given by (1.1). Such F_j exist, since Theorem 1 holds for finite E. Since all F_j fix 0, 1, ∞ and are K-quasiconformal, a subsequence converges uniformly (in the spherical metric) to a K-quasiconformal homeomorphism $F: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ with $F = f(\lambda, \cdot)$ on $\bigcup E_j$.

Had we assumed $f(\lambda, \cdot)$ to be continuous, we could have concluded that $F(z)=f(\lambda, z)$ for $z \in E$, but we made no such assumption. However, let c be a point in E. Replacing E_j by $E_j \cup \{c\}$ and repeating the previous construction we obtain a K-quasiconformal self-map F' of C which coincides with $f(\lambda, \cdot)$ on $\bigcup E_j \cup \{c\}$. But F and F' are continuous everywhere and coincide on $\bigcup E_j$, hence on E, hence $F(c)=F'(c)=f(\lambda, c)$. Since c is arbitrary, $F|E=f(\lambda, \cdot)$. Theorem 1 is proved.

Remark. Theorem 1 with a weaker estimate than (1.1) for the dilatation of F_{λ} could be derived from the part of Theorem 3 proved in §3. We omit the details.

Corollary 1 now follows by observing that, if f is an admissible map on $\Delta_1 \times C$, then $f(\lambda, \cdot)$ has an extension which is a quasiconformal homeomorphism of \hat{C} onto itself. But the only possible extension of $f(\lambda, \cdot)$ is $f(\lambda, \cdot)$, and so $f(\lambda, \cdot)$ is a quasiconformal homeomorphism of \hat{C} onto itself.

For the second corollary, let f be a normalized admissible map on $\Delta_1 \times E$. Then for each λ with $|\lambda| \le r < 1$, the map $f(\lambda, \cdot)$ has a K-quasiconformal extension with $K \le (1+r)/(1-r)$. Since (cf. §2(B)) this extension has a Hölder modulus of continuity depending only on K (and hence only on r), so does $f(\lambda, \cdot)$. Thus there are constants A and α , depending only on r such that

$$\delta[f(\lambda, z), f(\lambda, z')] \leq A\delta(z, z')^{\alpha}$$

for all $|\lambda| \le r$ and all $z, z' \in E$. For a fixed $z' \in E$ $(z' \ne 0, 1, \infty)$ the map $f(\cdot, z')$ is a holomorphic function on Δ , which omits the values 0 and 1. By Schottky's theorem (cf. for instance [8], p. 261) there is a constant *B* depending only on *r* so that

$$\delta[f(\lambda, z'), f(\lambda', z')] \leq B|\lambda - \lambda'|$$

for $|\lambda| \leq r$. Corollary 2 now follows by the triangle inequality.

To establish Corollary 3, we assume that f_n is a normalized admissible map on $\Delta_1 \times E_n$. It follows from the uniform equicontinuity expressed in Corollary 2 that a

18-868286 Acta Mathematica 157. Imprimé le 12 novembre 1986

subsequence $\{f_{n_k}\}$ converges uniformly on each $\Delta_r \times E_n$, r < 1, to a map $g: \Delta_1 \times E \to \hat{\mathbb{C}}$. Then for each $z \in E$ the function $g(\cdot, z)$ is holomorphic. To see that $g(\lambda, \cdot)$ is injective, we use Theorem 1 to find an extension F_k of $f_{n_k}(\lambda, \cdot)$ which is a normalized Kquasiconformal homeomorphism of $\hat{\mathbb{C}}$ onto $\hat{\mathbb{C}}$ with $K \leq (1+|\lambda|)/(1-|\lambda|)$. Since the normalized K-quasiconformal homeomorphisms form a normal family, there is a subsequence which converges to a K-quasiconformal homeomorphism F_{λ} of $\hat{\mathbb{C}}$ onto $\hat{\mathbb{C}}$. Since F_{λ} is an extension of $g(\lambda, \cdot)$, we must have $g(\lambda, \cdot)$ injective. Thus g is admissible on $\Delta_1 \times E$. Consequently, it is uniformly continuous on $\Delta_r \times E$ for each r < 1. From this it follows that g has a continuous extension f to $\Delta_1 \times \hat{E}$ such that $f(\cdot, z)$ is holomorphic for each $z \in \hat{E}$. For each $\lambda \in \Delta_1$ the map $f(\lambda, \cdot)$ is the restriction to \hat{E} of the homeomorphism F_{λ} . Thus f is admissible on $\Delta_1 \times \hat{E}$, establishing Corollary 3.

We proceed to prove Theorem 2 assuming that *E* has a non-empty interior ω . The first assertion follows from Theorem 1 (as in the proof of Corollary 1). We now establish the holomorphic dependence on μ_{λ} on λ .

Since $L_{\infty}(\omega)$ is the dual of $L_1(\omega)$, it suffices to show that, for every $a \in L_1(\omega)$,

$$\Psi(\lambda) = \iint_{\omega} \alpha(z) \,\mu_{\lambda}(z) \,dx \,dy$$

is holomorphic in Δ_1 . A standard argument shows that one may assume α to be of compact support in ω . In this case there is an $\varepsilon > 0$ such that for $z \in \omega, \alpha(z) \neq 0$ and $0 < h < \varepsilon$ the point z+h and z+ih lie in ω . Since quasiconformal maps are a.e. differentiable,

$$\Psi(\lambda) = \iint_{\omega} \alpha(z) \frac{f_x(\lambda, z) + if_y(\lambda, z)}{f_x(\lambda, z) - if_y(\lambda, z)} dx dy$$
$$= \iint_{\omega} \alpha(z) \lim_{h \downarrow 0} \frac{1 + i\sigma_\lambda(z, h)}{1 - i\sigma_\lambda(z, h)} dx dy$$

where

$$\sigma_{\lambda}(z,h) = \frac{f(\lambda,z+ih) - f(\lambda,z)}{f(\lambda,z+h) - f(\lambda,z)}.$$

For fixed $z \ (\pm 0, 1, \infty)$ and h, σ_{λ} is a holomorphic function of $\lambda \in \Delta_1$ which never equals 0 or 1 and equals *i* for $\lambda = 0$. One concludes easily, by Schottky's theorem, that there is a number r, 0 < r < 1, such that for $|\lambda| < r, |\sigma_{\lambda}(z, h) - i| \le 1/2$, and therefore

$$\left|\frac{1+i\sigma_{\lambda}(z,h)}{1-i\sigma_{\lambda}(z,h)}\right| \leq 9.$$

It follows, by the theorem on dominated convergence, that for $|\lambda| < r$ the sequence of holomorphic functions of λ

$$\Psi_n(\lambda) = \iint_{\omega} \alpha(z) \frac{1 + i\sigma_{\lambda}(z, 1/n)}{1 - i\sigma_{\lambda}(z, 1/n)} dx dy$$

converges boundedly to $\Psi(\lambda)$ as $n \to \infty$. Thus $\Psi(\lambda)$ is holomorphic in λ for $|\lambda| < r$ and so is $\mu_{\lambda} \in L_{\infty}(\omega)$.

Now let λ_0 be any point in Δ_1 and set $s=1-|\lambda_0|$, $E_0=f(\lambda_0, E)$, $\omega_0=f(\lambda_0, \omega)$ and

$$g(\tau, \zeta) = f(\lambda_0 + s\tau, z)$$
 where $\zeta = f(\lambda_0, z)$

Then ω_0 is the interior of E_0 (by Theorem 1) and $g: \Delta_1 \times E_0 \rightarrow \hat{\mathbf{C}}$ is admissible. By what was proved above, the Beltrami coefficient of $g(\tau, \cdot)|\omega_0$, which we shall denote by ν_{τ} , is a holomorphic function of τ for $|\tau| < r$, with values in $L_{\infty}(\omega_0)$.

Let μ_{λ_0} denote the Beltrami coefficient of $f(\lambda_0, \cdot)|\omega$ and μ_{λ} , as before, that of $f(\lambda, \cdot)|\omega$. Since

$$f(\lambda, \cdot)|\omega = (g(\tau, \cdot)|\omega_0) \circ f(\lambda_0, \cdot)|\omega, \quad \tau = (\lambda - \lambda_0)/s$$

we obtain

$$\mu_{\lambda} = \frac{\hat{\nu}_{\tau} + \mu_{\lambda_0}}{1 + \bar{\mu}_{\lambda_0} \bar{\nu}_{\tau}}$$

where

$$\bar{\nu}_{\tau}(z) = \nu_{\tau}(w(z)) \frac{|w_{z}(z)|^{2}}{w_{\tau}(z)^{2}}, \quad w = w^{\mu_{\lambda_{0}}}.$$

Since $\hat{\nu}_{\tau} \in L_{\infty}(\omega)$ is a holomorphic function of $\nu_{\tau} \in L_{\infty}(\omega_0)$ and ν_{τ} a holomorphic function of $t \in \Delta_r$, the element $\mu_{\lambda} \in L_{\infty}(\omega)$ depends holomorphically on λ for $|\lambda - \lambda_0| < sr$. This completes the proof.

§ 5. Proof of Theorem 3

Let $f: \Delta_1 \times E \to \hat{C}$ be a given admissible map which we may, and do, assume to be normalized. Let $E_1, E_2, ...$ be a sequence of finite sets such that

$$\{0, 1, \infty\} \subset E_1 \subset E_2 \subset \dots \tag{5.1}$$

and

$$E_1 \cup E_2 \cup \dots$$
 is dense in E (5.2)

Let f_j denote the extension of the admissible map $f|\Delta_{1/3} \times E_j$ to $\Delta_{1/3} \times \hat{C}$ constructed in §3.

By Corollary 2 we may assume (selecting if need be a subsequence) that $\{f_j\}$ converges to an admissible map \tilde{f} of $\Delta_{1/3} \times \mathbb{C}$. Since

$$f|\Delta_{1/3} \times (E_1 \cup E_2 \cup ...) = f|\Delta_{1/3} \times (E_1 \cup E_2 \cup ...),$$

f is an admissible extension of $f|\Delta_{1/3} \times E$.

Let \hat{E} denote the closure of E and let S denote, from now on, a component of $\hat{C} - \hat{E}$. Also, let $\varrho_j(z)|dz|$ denote the Poincaré metric in $\hat{C} - \hat{E}_j$, and $\varrho_S(z)|dz|$ the Poincaré metric on S. We claim that

$$\lim_{i \to \infty} \varrho_j(z) = \varrho_s(z), \quad z \in S$$
(5.3)

(uniformly on compact subsets).

Indeed, by the monotonicity property of the Poincaré metric, cf. §2(D),

$$\varrho_j | S \leq \varrho_{j+1} | S \leq \varrho_S$$

so that there is a limit

$$\lim_{j \to \infty} \varrho_j(z) = \varrho_{\infty}(z) \le \varrho_{\mathcal{S}}(z), \quad z \in \omega.$$
(5.4)

Since each ρ_j satisfies the partial differential equation

$$\frac{\partial^2 \log \varrho}{\partial x^2} + \frac{\partial^2 \log \varrho}{\partial y^2} = \varrho^2$$

(expressing the fact that the Gauss curvature of the Poincaré metric is (-1)), standard "elliptic" estimates show that (5.4) holds uniformly on compact subsets of S and that the second partials also converge. Hence ρ_{∞} satisfies the same equation, i.e. the metric $\rho_{\infty}(z)|dz|$ has Gaussian curvature (-1).

In order to show that

$$\varrho_{\infty} = \varrho_S \tag{5.5}$$

it suffices to show that the ρ_{∞} metric is complete, i.e. that for any rectifiable curve C in S, leading to a boundary point $\hat{\zeta}$ of S, we have

$$\int_C \varphi_{\infty}(z) |dz| = +\infty.$$
(5.6)

If $\hat{\xi} \neq 0, 1, \infty$, there is a sequence $\{\xi_i\}, \xi_i \in E_i$, with

$$\lim_{i\to\infty}\zeta_i=\xi.$$

Let $\tau(z,\zeta)|dz|$ be the Poincaré metric in $\hat{\mathbb{C}} - \{0, 1, \infty, \zeta\}$. Then

$$\int_C \tau(z,\,\hat{\zeta})|dz| = +\infty$$

and also

$$\lim_{i\to\infty}\int_C \tau(z,\zeta_i)|dz|=+\infty$$

since $\tau(z, \zeta)$ depends continuously on (z, ζ) . By monotonicity of the Poincaré metric, $\tau(z, \zeta_i) \leq \varrho_j(z)$ for j sufficiently large, so that $\varrho_\infty(z) \geq \tau(z, \zeta_i)$ and (5.6) follows. The proof of (5.6) for the cases $\hat{\zeta}=0, 1, \infty$ is left to the reader. Relation (5.3) is established.

Now we can show that the extension \hat{f} has the characteristic property asserted by Theorem 3, i.e., that the Beltrami coefficient of $\hat{f}|S$ is harmonic (for every component S of $\hat{C}-\hat{E}$).

Indeed, by the construction in §3 the Beltrami coefficient $\mu_j(\lambda, z)$ of $f_j(\lambda, z)$ is harmonic in $\hat{\mathbf{C}} - E_i$ and depends holomorphically on λ , i.e.,

$$\mu_i(\lambda, z) = \varrho_i(z)^{-2} \ \overline{\psi_i(\lambda, z)}$$

where $\psi_j(\lambda, z)$ is holomorphic in $z \in \hat{\mathbb{C}} - E_j$ and antiholomorphic in $\lambda \in \Delta_{1/3}$. Noting (5.3) and selecting if need be a subsequence we may assume that

$$\lim_{j\to\infty}\mu_j(\lambda,z)=\varrho_S(z)^{-2}\ \overline{\psi(\lambda,z)}\quad\text{for }z\in S,$$

uniformly on compact subsets of $\Delta_{1/3} \times S$. Hence $\rho_S(z)^{-2} \overline{\psi(\lambda, z)}$ is the restriction of the Beltrami coefficient of the map $z \mapsto \hat{f}(\lambda, z)$ to S, and $\psi(\lambda, z)$ is antiholomorphic in λ , holomorphic in z. The existence part of Theorem 3 is proved.

LEMMA I. Let W be a quasiconformal self-map of U and Γ a curve in U which converges to a point $x_0 \in \hat{R}$ in a Stolz sector. Then $W(\Gamma)$ converges to $W(x_0)$ in a Stolz sector. This is known and follows from the results by Agard and Gehring [1], as observed by the referee. We give a proof for the sake of completeness.

We assume that x_0 and $W(x_0)$ lie in R and leave the cases $x_0 = \infty$ to the reader. Let Γ be defined by the continuous function $t \mapsto x(t) + iy(t) \in U$, $\tau < t < 1$, with $x(t) \to x_0$, $y(t) \to 0$ for $t \to 1$. The hypothesis of Lemma I means that there is an m > 0 and $\varepsilon > 0$ such that

$$|y(t)| \ge m |x(t) - x_0|$$
 for $1 - \varepsilon < t < 1$.

To prove the assertion it suffices to show that if Γ_+ and Γ_- denote the lines $y=m(x-x_0)$ and $y=-m(x-x_0)$ in U, then $W(\Gamma_+)$ and $W(\Gamma_-)$ converge to $W(x_0)$ in a Stolz sector. It will suffice to treat $W(\Gamma_+)$.

Observe that W may be extended to a quasiconformal self-map of $\hat{\mathbf{C}}$ by setting $W(\bar{z}) = \overline{W(z)}$. Let R_+ and R_- denote the real rays $x \ge x_0$ and $x \le x_0$ respectively. The Jordan curves $\Gamma_+ \cup R_+ \cup \{\infty\}$ and $\Gamma_+ \cup R_- \cup \{\infty\}$ are both quasicircles and so are their W-images $W(\Gamma_+) \cup W(R_+) \cup \{\infty\}$ and $W(\Gamma_+) \cup W(R_-) \cup \{\infty\}$; note that $W(R_+)$ and $W(R_-)$ are the real rays $x \ge W(x_0)$ and $x \le W(x_0)$. For $\xi > 0$, set

$$c = W(x_0 + \xi + im\xi), \quad b = W(x_0), \quad a = \operatorname{Re} c$$

For ξ small enough the Ahlfors condition (cf. §2(C)) yields

$$|\operatorname{Re} c - W(x_0)| \leq M |\operatorname{Im} c|$$

(provided $\operatorname{Re} c \neq W(x_0)$, but if $\operatorname{Re} c = W(x_0)$ the above inequality is trivial). Hence the curve $W(\Gamma_+)$ converges to $W(x_0)$ in the Stolz sector

$$|y| \ge \frac{1}{M} |x - W(x_0)|.$$

LEMMA II. Let $S \subset \hat{C}$ be a domain whose (set theoretical) boundary ∂S contains at least 3 points. Let I be the interval $-A \leq t \leq A$. Let

$$w: I \times (S \cup \partial S) \to S \cup \partial S$$

be a continuous map such that

(i) w(0,z)=z for $z \in S \cup \partial S$,

(ii) w(t,z)=z for $t \in I, z \in \partial S$,

(iii) for $t \in I, w(t, \cdot)$ is a topological self-map of $S \cup \partial S$, which is

(iv) K-quasiconformal on S for some fixed K.

Then, for $t \in I$, the map $w(t, \cdot)|S$ is equivalent to the identity in the sense of Teichmüller space theory (cf. §2(F)).

276

Proof. Let U be the upper half plane and $\pi: U \rightarrow S$ a holomorphic universal covering with covering group G. For every $t \in I$, let $z \rightarrow W(t, z)$ be a topological self-map of U such that

$$\pi \circ W(t, \cdot) = w(t, \cdot) \circ \pi \tag{5.7}$$

and the point W(t, i) is a continuous function of t, with W(0, i)=i. Then $W(0, \cdot)=id$, the map $W(t, \cdot)$ is K-quasiconformal and, by known continuity properties of quasiconformal maps, it extends to a continuous self-map of $U \cup \hat{\mathbf{R}}$ (in the spherical metric); we denote this extension by the same letter W.

Now W(t, z) depends continuously on $(t, z) \in I \times U$. The maps $W(t, \cdot)$ have a modulus of continuity (in the spherical metric) depending only on the number K and the compact set W(I, i). We conclude that W(t, z) is continuous in t also for $z \in \hat{\mathbf{R}}$.

To prove the lemma we must show that

$$W(t, x) = x \quad \text{for } t \in I, x \in \mathbf{R}$$
(5.8)

Assume first that the group G is of the first kind, i.e., that the closure Λ of the set of attracting fixed points of elements of G coincides with $\hat{\mathbf{R}}$. From (5.7) we conclude that for $g \in G$

$$g_t = W(t, \cdot) \circ g \circ W(t, \cdot)^{-1} \in G.$$

Clearly, g_t depends continuously on t; since G is discrete, $g_t=g_0$. But $g_0=g$, so that $W(t, \cdot)$ commutes with g. Hence $W(t, \cdot)$ fixes the attracting fixed point of every $g \in G$. Since G is of the first kind, (5.8) follows.

Consider next the case when G is of the second kind, i.e., not of the first kind (this includes the case when S is simply connected, π is bijective and G=1). Now $\hat{\mathbf{R}}-\Lambda$ is open and dense in $\hat{\mathbf{R}}$. If x_0 is a (finite) point in $\hat{\mathbf{R}}-\Lambda$, there is an $\varepsilon>0$ such that in the intersection of the disc $|z-x_0|<\varepsilon$ with U the function $\pi(z)$ is injective. Hence, in the intersection of U with a disc $|z-x_0|<\varepsilon'<\varepsilon$, the function $\pi(z)$ is the quotient of two bounded holomorphic functions. This implies, in view of the classical theorem by Fatou and by F. and M. Riesz, that there is a subset $\theta \subset \hat{\mathbf{R}}-\Lambda$ of full measure such that at every $x \in \theta$ the function $\pi(z)$ has a sectorial limit $\pi(x)$, and $\pi(x)$ is not constant on any subset of θ of positive measure.

We claim that the map $W(t, \cdot)$ fixes θ , for each $t \in I$, and that

$$\pi(W(t,x)) = \pi(x) \quad \text{if } x \in \theta. \tag{5.9}$$

Indeed, let α be a curve in U which converges to $x \in \theta$ in a Stolz sector. Then the curve $W(t, \alpha)$ in U converges to W(t, x) in a Stolz sector, by Lemma I, and, by the relation (5.7), $\pi \circ W(t, \alpha) = w(t, \pi(\alpha))$. By continuity of $w(t, \cdot)$ on the closure on S we obtain that $W(t, x) \in \theta$ and

$$\pi(W(t,x)) = w(t,\pi(x));$$

since $w(t, \cdot)$ fixes every point on ∂S , and $\pi(x) \in \partial S$, (5.9) follows.

Now W(t, x) is, for x fixed, a continuous function of t which equals to x for t=0. Unless W(t, x)=x for $t \in I$, the set $W(I, x) \in \hat{\mathbf{R}}$ would contain an interval I_0 of positive length. By (5.9) the function $\pi(x)$ would be constant on the intersection $I_0 \cap \theta$. Since $I_0 \cap \theta$ could not be a null-set this is impossible. Hence W(t, x)=x for $x \in \theta$ and, since θ is dense in $\hat{\mathbf{R}}$, for all x. Relation (5.8) is proved and so is Lemma II.

We return to the proof of Theorem 3 and proceed to show that if \hat{f}_1 and \hat{f}_2 are two admissible extensions of $f|\Delta_{1/3} \times E$ to $\Delta_{1/3} \times \hat{C}$, both having harmonic Beltrami coefficients in each component S of $\hat{C} - \hat{E}$, then

$$\hat{f}_1 = \hat{f}_2. \tag{5.10}$$

We observe first that

$$\hat{f}_1(\lambda, S) = \hat{f}_2(\lambda, S) \tag{5.11}$$

for all $\lambda \in \Delta_{1/3}$.

Indeed, noting the continuity properties of admissible maps stated in Corollary 2, as well as the fact that $\hat{f}_1(0, \cdot) = \hat{f}_2(0, \cdot) = id$, we conclude first that (5.11) holds for sufficiently small $|\lambda|$. The same argument shows that the set Θ of those λ for which (5.11) holds is open. But if (5.11) is false, for some $\lambda = \lambda_1 \in \Delta_{1/3}$, then $\hat{f}_1(\lambda_1, S) = \hat{f}_2(\lambda_1, S_1)$ where S_1 is a component of $\hat{\mathbf{C}} - \hat{E}$ distinct from S. Hence the set $\Delta_{1/3} - \Theta$ is also open. Therefore, $\Theta = \Delta_{1/3}$. Q.E.D.

Now let $v_j(\lambda, z)$ be the Beltrami coefficients of $f_j(\lambda, z), j=1, 2$. By Theorem 2, $v_j(\lambda, \cdot)$ depends holomorphically on $\lambda \in \Delta_{1/3}$. In particular, $|v_j(\lambda, z)| \leq k = k(\varepsilon) < 1$ if $|\lambda| < \frac{1}{3} - \varepsilon$, for every sufficiently small $\varepsilon > 0$. We may assume that f is normalized (cf. § 1); in this case so are the maps f_j and

$$\hat{f}_j(\lambda, z) = w^{\nu_j}, \quad \nu_j = \nu_j(\lambda, \cdot), \quad j = 1, 2.$$

Set

$$W(\lambda, \cdot) = \hat{f}_2(\lambda, \cdot)^{-1} \circ \hat{f}_1(\lambda, \cdot).$$

This function is certainly not holomorphic in λ but is easily seen to be continuous in that variable. In every component S of $C-\hat{E}$ and for $A=\frac{1}{3}-\varepsilon, \varepsilon>0$ and small, and for every real α , the function

$$W(te^{i\alpha}, z), \quad -A \leq t \leq A, z \in S \cup \partial S$$

satisfies the hypotheses and hence the conclusion of Lemma II. Therefore $\hat{f}_1(\lambda, \cdot)|S$ and $\hat{f}_2(\lambda, \cdot)|S$ are equivalent in the sense of Teichmüller space theory. But by hypotheses $\hat{f}_1(\lambda, \cdot)|S$ and $\hat{f}_2(\lambda, \cdot)|S$ have harmonic Beltrami coefficients. Hence, by §2(H)(b), these coefficients coincide. Therefore the map

$$\hat{f}_2(\lambda,\cdot)^{-1} \circ \hat{f}_1(\lambda,\cdot) |S|$$

is holomorphic. Since it fixes every point of ∂S it is the identity. Thus (5.11) holds on S and therefore on $\hat{\mathbf{C}} - \hat{E}$. Since this relation holds on \hat{E} by hypothesis, it is valid everywhere. Theorem 3 is established.

§ 6. Proofs of Propositions 1, 2, and 3

We begin with the proof of Proposition 1. Assume, therefore, that for each finite set E_0 and each $y \notin E_0$ and every admissible f on $\Delta_1 \times E_0$ there is an admissible extension to $\Delta_1 \times (E_0 \cup \{y\})$. Let E be an infinite set (containing 0, 1, and ∞), $y \notin E$, and f an admissible map on $\Delta_1 \times E$. We proceed to show that f can be extended to an admissible map on $\Delta_1 \times (E \cup \{y\})$. It suffices to consider the case when f is normalized. Let $\{E_n\}$ be an increasing sequence of finite sets whose union D is dense in E. By assumption $f|\Delta_1 \times E_n$ has an admissible extension f_n to $\Delta_1 \times (E_n \cup \{y\})$. By Corollary 3 of Theorem 1 there is an admissible map \tilde{f} on $\Delta_1 \times (E \cup \{y\})$ and a subsequence of $\{f_n\}$ which converges to \tilde{f} pointwise on $\Delta_1 \times D$. For $m \ge n$ and $z \in F_n$ we have

$$f_m(\lambda, z) = f(\lambda, z),$$

and so for $z \in D$

$$\tilde{f}(\lambda, z) = f(\lambda, z).$$

Since \tilde{f} and f are continuous, we must have $f(\lambda, z) = f(\lambda, z)$ for all $z \in E$, whence \tilde{f} is an admissible extension of f to $\Delta_1 \times (E \cup \{y\})$.

We now suppose f is an admissible map on $\Delta_1 \times E$ and choose a countable set $D = \{y_n\}, y_n \notin E$, which is dense in $\hat{C} - E$. Set $E_0 = E$ and $E_n = E \cup \{y_1, \dots, y_n\}$. By the

preceding paragraph we may define admissible maps f_n on $\Delta_1 \times E_n$ recursively so that $f_0=f$ and f_n is an extension of f_{n-1} from $\Delta_1 \times E_{n-1}$ to $\Delta_1 \times E_n$. Since the closure of $\bigcup E_n$ is $\hat{\mathbf{C}}$, Corollary 3 asserts that there is an admissible map \hat{f} on $\Delta_1 \times \mathbf{C}$ and a subsequence of $\{f_n\}$ which converges to \hat{f} pointwise on $E_0=E$. But the restriction of f_n to $\Delta_1 \times E$ is f and hence the restriction of \hat{f} to $\Delta_1 \times E$ is f, i.e. \hat{f} is an admissible extension of f to $\Delta_1 \times \hat{\mathbf{C}}$. This establishes Proposition 1.

We now construct some examples.

Example 1. Let *E* be the unit circumference |z|=1, and let $f: \Delta_1 \times E \rightarrow \hat{\mathbb{C}}$ be given by

$$f(\lambda, z) = z + \lambda z^{-1}. \tag{6.1}$$

Then f maps E onto an ellipse with semi-axes $1+|\lambda|$ and $1-|\lambda|$. The map f defined by

$$\hat{f}(\lambda, z) = z + \lambda \bar{z}$$

is an admissible extension of f to $\Delta_1 \times (\Delta_1 \cup E)$. For each $\lambda \in \Delta_1$ the map $\hat{f}(\lambda, \cdot)$ is Kquasiconformal with $K = (1+|\lambda|)/(1-|\lambda|)$. Teichmüller's uniqueness theorem implies that $\hat{f}(\lambda, \cdot)$ is the only $(1+|\lambda|)/(1-|\lambda|)$ quasiconformal extension of $f(\lambda, \cdot)$. But the first assertion of Theorem 2 is that any admissible extension \tilde{f} of f to $\Delta_1 \times (\Delta_1 \cup E)$ must have the property that $\tilde{f}(\lambda, \cdot)$ is $(1+|\lambda|)/(1-|\lambda|)$ quasiconformal. Therefore $\tilde{f}(\lambda, \cdot) = \hat{f}(\lambda, \cdot)$, and so \hat{f} is the only admissible extension of f to $\Delta_1 \times (\Delta_1 \cup E)$.

For each real $\alpha, 0 \le \alpha \le 1$, the map \tilde{f}_{α} defined by

$$\tilde{f}(\lambda, z) = \hat{f}(\lambda, z) \quad \text{for } |z| \le 1$$
$$\tilde{f}_{\alpha}(\lambda, z) = z + \lambda(\alpha z^{-1} + (1 - \alpha)\bar{z}) \quad \text{for } |z| > 1$$

is an admissible extension of f to $\Delta \times \hat{\mathbf{C}}$.

On the other hand, if E is the set $|z| \ge 1$ and the map $f: \Delta_1 \cup E$ is defined by (6.1), then, by the reasoning above, f has a unique extension to $\Delta_1 \times \hat{C}$.

This example establishes the assertion of Proposition 2.

Example 2. Let $E = \{0, 1, \infty, \zeta_1, ..., \zeta_n\}$ and let φ be a holomorphic function in $L_1(\hat{C}-E)$, i.e. φ is a rational function regular on $\hat{C}-E$, having at most simple poles at the points $0, 1, \zeta_1, ..., \zeta_n$, and vanishing to at least third order at ∞ . Set

$$\mu_{\lambda} = \lambda |\varphi|/\varphi.$$

We define \hat{f} on $\Delta_1 \times \hat{C}$ by setting

$$\hat{f}(\lambda, z) = w^{\mu_{\lambda}}(z),$$

where $w^{\mu_{\lambda}}$ has the usual meaning, cf. §2(B). Then \hat{f} is an admissible map of $\Delta_1 \times \hat{C}$. Set

$$f = \hat{f} | \Delta_1 \times E.$$

Thus \hat{f} is an admissible extension of f. For each $\lambda \in \Delta_1$, Teichmüller's uniqueness theorem (cf. §2(I)) asserts that $\hat{f}(\lambda, \cdot)$ is the only $(1+|\lambda|)/(1-|\lambda|)$ quasiconformal extension of $f(\lambda, \cdot)$. Thus $\hat{f}(\lambda, \cdot)$ is the only admissible extension of $f(\lambda, \cdot)$ by Theorem 2. This establishes once more the first assertion of Proposition 2.

It should be noted that now $\hat{f}|_{\Delta_{1/3}} \times \hat{C}$ is not the canonical extension of f described by Theorem 3. Hence the canonical extension of f to $\Delta_{1/3} \times \hat{C}$ can not be extended to an admissible map of $\Delta_1 \times \hat{C}$ to \hat{C} .

The two preceding examples depend on Theorem 1 to obtain strong restrictions on the possible admissible extensions. The following curious example is of a somewhat different nature.

Example 3. Let E be the unit circumference |z|=1 and g the function on $\Delta_1 \times E$ defined by

$$g(\lambda, z) = z + \lambda^2 z^{-1}$$

Thus $g(\lambda, z) = f(\lambda^2, z)$, where f is the map used in Example 1. For each $\lambda \in \Delta_1$ the function $g(\lambda, \cdot)$ maps E onto an ellipse whose major axis is the segment from

$$-\frac{\lambda}{|\lambda|}(1+|\lambda|^2)$$

to

$$\frac{\lambda}{|\lambda|}(1+|\lambda|^2),$$

and whose minor axis has length $2(1-|\lambda|)^2$. If $z_0 \in \Delta_1$ and \hat{g} is any admissible extension of g to $\Delta_1 \times (E \cup \{z_0\})$, then

$$\operatorname{Im}\frac{\hat{g}(\lambda, z_0)}{\lambda} \to 0$$

as $|\lambda| \rightarrow 1$. Thus

$$\frac{\hat{g}(\lambda, z_0)}{\lambda} = A\lambda^{-1} + \bar{A}\lambda + B,$$

where B is real. Consequently,

$$\hat{g}(\lambda, z_0) = A + B\lambda + \bar{A}\lambda^2$$
.

Since $\hat{g}(0, z_0) = z_0$, we have

$$\hat{g}(\lambda, z_0) = z_0 + B\lambda + \lambda^2 \bar{z}_0.$$

From the fact that $|g(\lambda, z_0)| \leq 2$ for $\lambda \in \Delta_1$, we see that $|B| \leq 2(1-|z_0|)$.

If \hat{g} is an admissible extension of g to $\Delta_1 \times (\Delta_1 \cup E)$, then \hat{g} must have the form

$$\hat{g}(\lambda, z) = z + B(z)\lambda + \lambda^2 \bar{z}.$$
(6.1)

From the continuity and quasiconformality of $\hat{g}(\lambda, \cdot)$ it follows that B is continuous on $\Delta_1 \cup E$ and B(z)=0 for |z|=1. Differentiating (6.1), we obtain

$$\partial \hat{g} / \partial z = 1 + \beta_z \lambda,$$
 (6.2)
 $\partial \hat{g} / \partial \bar{z} = \lambda B_z + \lambda_2.$

Since B is real, $B_z = \overline{B_z}$, and the Beltrami coefficient μ of \hat{g} is given by

$$\mu = \lambda \frac{\lambda + B_{\bar{z}}}{1 + \lambda \overline{B_{\bar{z}}}}.$$
(6.3)

Because $|\mu| \leq |\lambda|$, we must have $|B_j| \leq 1$.

Conversely, if \hat{g} has the form (6.1) with B real, B(z)=0 for |z|=1, and $|B_{\hat{z}}| \le 1$, then (6.3) shows that $|\mu| \le |\lambda| < 1$. This together with (6.2) shows that $\hat{g}(\lambda, 0)$ is a local homeomorphism. Since \hat{g} is the identity on |z|=1, it is a homeomorphism of $|z| \le 1$ onto itself.

We conclude that a function \hat{g} on $\Delta \times \Delta$ is an admissible extension of g if and only if it has the form (6.1) with B(z) real, B(z)=0 for |z|=1 and $|B_{j}| \le 1$.

Observe that \hat{g} is strongly restricted in its dependence on λ but only mildly in its dependence on z.

Now we prove Proposition 3, essentially following Earle and Kra [6]. Let $E = \{0, 1, \infty, \alpha\}$ and set $\varphi(z) = [z(z-1)(z-\alpha)]^{-1}$. For each $\zeta \in \Delta_1$ let μ_{ζ} be the Beltrami differential

$$\mu_{\zeta} = \zeta |\varphi(z)|/\varphi(z)$$

on C-E. Define h on $\Delta_1 \times \hat{C}$ by

$$h(\zeta, z) = w^{\mu_{\zeta}}(z),$$

Then h is an admissible map on $\Delta_1 \times \hat{\mathbf{C}}$.

The map $\zeta \mapsto [w^{\mu_{\zeta}}]$ is a holomorphic map of Δ_1 into the Teichmüller space $T(\hat{\mathbf{C}}-E)$. Teichmüller's uniqueness theorem asserts it is injective, while Teichmüller's existence theorem asserts it is onto, since φ is (apart from a constant multiple) the only holomorphic function in $L_1(\mathbf{C}-E)$. Thus $T(\mathbf{C}-E)$ is biholomorphically equivalent to Δ_1 , and $\zeta \mapsto [w^{\mu_{\zeta}}]$ is trivially a covering map. Thus by the Lemma of Section 3 the map $h(\cdot, \alpha)$ is a covering map of $M_1 = \mathbf{C} - \{0, 1, \infty\}$.

Let $f: \Delta_1 \times E \to \hat{\mathbf{C}}$ by any normalized admissible map. Then the map $f(\cdot, \alpha): \Delta_1 \to M_1$ lifts to a holomorphic map $\mathbf{f}: \Lambda_1 \to \Lambda_1$ so that

$$h(\mathbf{f}(\lambda), \alpha) = f(\lambda, \alpha).$$

The map \hat{f} defined by

$$\hat{f}(\lambda, z) = h(\mathbf{f}(\lambda), z)$$

is thus an extension of f to $\Delta_1 \times \hat{\mathbf{C}}$. Since h is admissible and \mathbf{f} holomorphic, \hat{f} is an admissible extension of f to $\Delta_1 \times \hat{\mathbf{C}}$. This establishes Proposition 3.

Using elliptic functions, we can give a reasonably explicit representation of a function \hat{f} whose existence is asserted by Proposition 3: Let $P(\zeta)=P(\zeta,\omega)$ be the elliptic function with periods 1 and ω which has a double pole at $\zeta=0$ and is normalized by $P(\frac{1}{2}+\frac{1}{2}\omega)=0$ and $P(\frac{1}{2}\omega)=1$. This function is related to the Weirestrass \wp function by

$$P(\zeta) = \frac{\wp(\zeta) - e_3}{e_2 - e_3},$$

and satisfies the differential equation

$$4(P')^2 = (e_2 - e_3) P(P-1) (P-\alpha),$$

where

$$\alpha = \alpha(\omega) = P(\frac{1}{2}, \omega).$$

The function α maps the region $0 \le \operatorname{Re} \omega \le 1$, $|\omega - \frac{1}{2}| \ge 1$ univalently onto the upper halfplane, with 0, 1 and ∞ going into 0, 1, and ∞ , respectively. Thus α is the covering map of the upper half-plane onto $\mathbb{C} - \{0, 1\}$.

The function $P(\zeta)$ maps the triangle T_{ω} with vertices at 0, 1, and ω onto C and is

one-to-one in the interior and two-to-one on the edges. If we identify points on each edge which are symmetric about the midpoint of the edge, then T_{ω} becomes a tetrahedron with vertices corresponding to points congruent to $0, \frac{1}{2}, \frac{1}{2}\omega$ and $\frac{1}{2} + \frac{1}{2}\omega$. The function P maps this tetrahedron univalently onto C with the vertices going to $\infty, \alpha(\omega), 1, \text{ and } 0$.

Let $\zeta = \xi + i\eta$. Then the function

$$\zeta^* = \xi + \omega \eta$$

maps the tetrahedron T_i quasi-conformally and one-to-one onto the tetrahedron T_{ω} . The Beltrami coefficient of this map is

$$\mu = \frac{i-\omega}{i+\omega}.$$

Hence this map is the extremal quasiconformal map between T_i and T_{ω} taking corresponding vertices into corresponding vertices.

Thus the function

$$\Phi(\omega, \zeta) = P(\xi + \omega\eta, \omega)$$

is holomorphic with respect to ω for each $\zeta \in \tau_i$, and univalent in ζ for each ω in the upper half-plane.

Let f be a normalized admissible mapping on $\Delta_1 \times \{0, 1, \infty, \alpha\}$, where we denote $f(\lambda, \alpha)$ by $\theta(\lambda)$. Since the mapping $\alpha(\omega)$ is a covering mapping of the upper half-plane onto $\mathbb{C}-\{0, 1\}$ and θ maps Δ_1 into $\mathbb{C}-\{0, 1\}$, there is, by the monodromy lifting theorem, a holomorphic map $\omega = \psi(\lambda)$ from Δ_1 to the upper half plane such that

$$\theta(\lambda) = \alpha[\psi(\lambda)].$$

Set

$$\hat{f}(\lambda, z) = P(\xi + \psi(\lambda) \eta, \psi(\lambda)),$$

where ζ is chosen so that

$$P(\xi + \psi(0)\eta, \psi(0))z.$$

Then the univalence of \hat{f} for a fixed λ follows from the fact that for a fixed ω the map P is univalent from T_{ω} to C. The function \hat{f} is clearly holomorphic in λ , and hence admissible on $\Delta_1 \times C$. We also have $\hat{f}(0, z) \equiv z$, and $f(\lambda, \theta(0)) = \theta(\lambda)$. Thus \hat{f} is the desired admissible extension of f.

HOLOMORPHIC FAMILIES OF INJECTIONS

§ 7. Lifting problems in Teichmüller spaces

In the present section we give an interpretation of our results in terms of the possibility of lifting holomorphic maps of Δ_1 into the Teichmüller space $T_{0,n}$ of the *n*-punctured sphere. It will be convenient for our description to choose a suitable base point P_n in each $T_{0,n}$. Let $\{\zeta_n\}$ be a sequence of points in C with $\zeta_n \neq \zeta_m$ for $m \neq n$ and $\zeta_n \neq 0, 1, \infty$ and set $E_n = \{0, 1, \infty, \zeta_1, ..., \zeta_{n-3}\}, n \ge 4$. Recall (§2(E)) that the Teichmüller space $T_{0,n} = T(\hat{C} - E_n)$ can be realized as the set of equivalence classes $[w^{\mu}]$ of normalized quasiconformal maps of \hat{C} onto \hat{C} , the equivalence being defined by $w^{\mu} \sim w^{\nu}$ if $w^{\mu}|E_n = w^{\nu}|E_n$ and $(w^{\mu})^{-1} \circ w^{\nu}$ is homotopic to the identity in $C - E_n$.

Since there is a one-to-one correspondence between the normalized quasiconformal maps w^{μ} and their Beltrami coefficients, we may also consider $T_{0,n}$ to be the unit ball β of Beltrami coefficients in $\hat{C}-E$ module the equivalence $\mu \sim v$ if $w^{\mu} \sim w^{\nu}$. The unit ball β of Beltrami coefficients on $\hat{C}-E_n$ is also the unit ball of Beltrami coefficients in \hat{C} , the difference between $T_{0,n}$ and $T_{0,m}$ for m > n being that the equivalence relation for $T_{0,m}$ is more restrictive than that for $T_{0,n}$. Thus we have a natural projection $\pi_{n,m}$ of $T_{0,m}$ onto $T_{0,n}$. We have also the natural projections $\pi_n: \beta \to T_{0,n}$ which takes each μ into $[w^{\mu}]$. All these projections are holomorphic, and we have $\pi_{n,m} = \pi_{n,k} \circ \pi_{k,m}$ for $n \le k \le m$, and $\pi_n = \pi_{n,m} \pi_m$ for $m \ge n$. If we choose as base point p_n in $T_{0,n}$ the point $p_n = \pi_n(0)$, then $\pi_{n,m}(p_m) = p_n$.

As we saw in §3, each admissible map $f: \Delta_r \times E_n \to \hat{\mathbf{C}}$ corresponds to a unique holomorphic map $\mathbf{f}: \Delta_r \to T_{0,n}$ with $\mathbf{f}(0) = p_n$, and conversely. If $\mathbf{f}: \Delta_r \to T_{0,n}$ with $\mathbf{f}(0) = p_n$ and $\mathbf{g}: \Delta_r \to T_{0,m}$ with $p_m = \mathbf{g}(0)$, then the admissible map corresponding to \mathbf{g} will be an extension of the admissible map corresponding to \mathbf{f} if and only if $\mathbf{f} = \prod_{n,m} \circ \mathbf{g}$.

We say that a holomorphic map $\mathbf{f}: \Delta_1 \to T_{0,n}$ with $\mathbf{f}=p_n$ can be lifted to a map of Δ_1 into $T_{0,m}$ if there is a holomorphic map $\mathbf{g}: \Delta_1 \to T_{0,m}$ with $\mathbf{g}(0)=p_m$ and $\mathbf{f}=\pi_{n,m} \circ \mathbf{g}$. Since the sequence $\{\zeta_n\}$ can be chosen arbitrarily, we see that the hypothesis of Proposition 1 (the finite extension property) is equivalent to the statement that each holomorphic map $\Delta_1 \to T_{0,n}$ can be lifted to a map into $T_{0,m}$. This observation gives us the following proposition:

PROPOSITION 4. The hypothesis of Proposition 1 is true if and only if for each n every holomorphic map $\Delta_1 \rightarrow T_{0,n}$ can be lifted to a holomorphic map of Δ_1 into $T_{0,n+1}$.

This lifting problem for holomorphic maps of Δ_1 into $T_{0,n}$ is a difficult open problem. We note that lifting from $T_{0,n}$ to $T_{0,n+1}$ is not always possible for maps $\varphi: D \to T_{0,n}$ where D is a domain in \mathbb{C}^p . Indeed, let $D = T_{0,n}$ and φ the identity map. Hubbard [9] has shown that there is no lift of φ into $T_{0,n+1}$.

We also note that Proposition 1 and Theorem 2 imply that, if for each *n* every holomorphic map for Δ_1 to $T_{0,n}$ can be lifted to $T_{0,n+1}$, then every holomorphic map from Δ_1 to $T_{0,n}$ can be lifted to a holomorphic map from Δ_1 to the ball β of the (relevant) Beltrami differentials.

References

- AGARD, S. B. & GEHRING, F. W., Angles and quasiconformal mappings. Proc. London Math. Soc. (3), 14 (1965), 1-21.
- [2] AHLFORS, L. V. & BERS, L., Riemann's mapping theorem for variable metrices. Ann. of Math. (2), 72 (1960), 385-404.
- [3] AHLFORS, L. V. & WEILL, G., A uniqueness theorem for Beltrami equations. Proc. Amer. Math. Soc., 13 (1962), 975–978.
- [4] BERS, L., Extremal quasiconformal mappings. Advances in the Theory for Riemann Surfaces, Ann. of Math. Studies, 66 (1970), 27-52.
- [5] Finite dimensional Teichmüller spaces and generalizations. Bull. Amer. Math. Soc. (N.S.), 5 (1981), 131–172.
- [6] EARLE, C. J. & KRA, I., On holomorphic mappings between Teichmüller spaces. Contributions to Analysis, Academic Press, New York, (1974), 107–124.
- [7] HARVEY, W. J., (ED.), Discrete groups and automorphic functions. Academic Press, New York, 1977.
- [8] HILLE, E., Analytic Function Theory, Vol. II. Ginn and Co. (1962).
- [9] HUBBARD, J. H., Sur les sections analytique de la courbe universelle de Teichmüller. Mem. Amer. Math. Soc., 166 (1976), 1-137.
- [10] LEHTO, O. & VIRTANEN, K. I., Quasiconformal mappings in the plane. Springer-Verlag, Berlin, 1973.
- [11] MAÑÉ, R., SAD, P. & SULLIVAN, D., On the dynamics of rational maps. Ann. Sci. Ecole Norm. Sup., 16, (1983), 193–217.
- [12] REICH, E. & STREBEL, K., Extremal quasiconformal mappings with given boundary values. Contributions to Analysis, Academic Press, New York, (1974), 375–391.
- [13] ROYDEN, H. L., Automorphisms and isometries of Teichmüller space. Advances in the Theory of Riemann Surfaces, Ann. of Math. Studies, 66 (1971), 369–383.
- [14] STREBEL, K., On quasiconformal mappings of open Riemann surfaces. Comment. Math. Helv., 52 (1978), 301-321.
- [15] SULLIVAN, D. & THURSTON, W. P., Extending holomorphic motions. Acta Math., 157 (1986), 243–257.

Received August 20, 1984

Received in revised form May 8, 1985

286