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1. Introduction 

Harmonic analysis on a free group F has attracted considerable attention in the last ten 

years or so. There seem to be two reasons for that: one is the discovery of a deep 

analogy of certain aspects of harmonic analysis on a free group and harmonic analysis 

on SL(2, R), cf. e.g. fundamental works of P. Cartier [4], A. Figh-Talamanca and M. A. 

Picardello [8], the other being the interest in the C*-algebra generated by the regular 

representation o f F ,  cf. A. Connes [5], J. Cuntz [6], U. Haagerup [I0], M. Pimsner and 

D. Voiculescu [14]. 

In most of this work Hilbert space representations of F play an essential role. 

Clearly F has a lot of  unitary representations since any collection of unitary operators 

corresponding to the free generators of F gives rise to a unitary representation of F. On 

the other hand, it is by no means as trivial to construct a representation ~r of F on a 

Hilbert space ~ such that supxeFl[Zr(x)ll<+ oo and ~r cannot be made unitary by 

introducing another equivalent inner product in ~.  Various series of such representa- 

tions have been already constructed and used in harmonic analysis on F, cf. e.g. [12], 

[91. 
This paper is devoted to the study of a new series of such bounded Hilbert space 

representations of F together with some applications of them. 

For every complex number z, Iz]< 1, we are going to construct a representation :r z 

of F on C2(F) in such a way that: 

(i) sup IIrcz(x)ll ~< 2 II-z21 
xef 1--1Z [ " 
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(ii) ~ ( x )  = :q(x-b. 

(iii) I fL  is the left regular representation o fF ,  then ~rz(x)-Lx is a finite dimension- 

al operator for every x in F. 

(iv) The map z--~vrz(x) is holomorphic. 

Moreover, ~r0=L and vr~=limz__,~ Srz= 109/~, where 1 is the trivial representation of 

F and L is a representation weakly equivalent to L. 

One of the features of these representations is that the properties above do not 

depend on the number of the free generators of F and, in fact, :rz have even nicer 

properties if the number of the free generators is infinite. For instance, for every z=~0, 

vr z leaves no non-trivial closed subspace invariant and for z~z'  representations ~r z and 

vrz, are topologically inequivalent. 

The formula ~z =ff/7~ -1 implies that for real z vrz is unitary and so [0, 1] 9 t---~t is a 

continuous, even analytic, path of unitary representations each of which differs from 

the regular representation by operators of finite rank. Construction of such a path is an 

essential step in the proof of  the theorem that the regular C*-algebra of  a free group on 

two generators has no non-trivial projections, cf. [5], [6], [14]. 

Other applications of the representations vr z we consider are towards the identifi- 

cation of the functions on F which are matrix coefficients of bounded Hilbert space 

representations. It is easy to check that if Ixl is the length of the word x in F, then 

(~'z(x) (~e, (~e~ = zlXl" 

This is a generalization of a result of Haagerup [10] stating that x-or H, rE(0, I) is 

positive definite. 

However, many more functions turn out to be the matrix coefficients of bounded 

Hilbert space representations of F, if instead of :rz we look at the representations 

= e  zldzl, 

where y is a closed path in {z: Izl<l}. Cf. chapter 3 for the details. 

Finally let us mention that for the free group with infinitely many free generators 

the representations defined in Theorem 4 seem to be of special importance at least as 

far as the matrix coefficients are concerned. 

The authors would like to thank the referee for a simplification of the proof of 

Theorem 4 and remarks concerning the presentation. 
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2. The analytic family of representations 

2.1. Notation. Let  F be a free group with fixed set E of  generators (not necessarily 

finite). Each element x of  F may be uniquely expressed as a finite sequence of  elements 

of EU E -1 with no adjacent factors like aa -1 or a-la. It is called a reduced word. The 

number of  letters in this word is called the length of  x and is denoted Ixl. Put  le I=0 for 

the identity element  e of  F.  When x=t=e, denote by $ the word obtained from x by 

deleting the last letter. 

Define ~(F)  to be the space of  all complex functions on F with finite support.  This 

space consists of  all linear combinations of  Ox (characteristic function of  the one point 

set {x)), x E F  

Introduce the linear operator  P: Y~(F)~ Y~F) setting P6x=6 ~ when x=l=e and P6e=O. 

f f  a EF write L~ for the translation operator  defined by Laf(x)=f(a-lx) where  

x E F and f is any complex function on F. 

When a E F  denote  by Fa the finite set of  the elements (a, a, h, ..., e} (a word x in F 

belongs to F~ if and only if lxl=n with n<<.la I and x consists of  the first n letters of  a). Le t  

YC(F~) be the space of  all complex functions on F supported by Fa. The space ~f(Fa) 

may be identified with the finite dimensional space C lal+l via the natural mapping: 

C lal+l 3 (a 0, a i . . . . .  alal) --+ ~ akpkba E ~r(Fa). 
k=O 

One may introduce the standard unilateral shift S and its conjugate S* into ~(Fa) with 

respect to above identification. Recall that when the operators S and S* act o n  C lal+l 

they are given by 

S(a 0, a I . . . . .  ala I) = (0, a 0 , a I . . . . .  alal_ t ) 

S*(a 0, al ,  ..., alal) = (a I , a 2 . . . . .  ala I, 0). 

2.2. A series o f  representations on e p. Start with a lemma. 

LEMMA 1. When a q F  the space ~(Fa) is invariant under both operators P and 

LaPL~ t. The restrictions o f  these operators to 3~(Fa) coincide with S and S* respec- 

tively. For any function f E  ~r(F) which is zero on Fa its images P f  and LaPL~lf  are 

equal. 

Proof. If  x E F - F a  then aa-~x =aa-~2=2. Thus LaPL~6x=P6x, which proves the 

second part of  the lemma. Suppose now xEF~. It is obvious that P6x=S6x.TO see that 
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LaPLaltSx=S*C~x assume that the word a has the reduced form a=ala2. . .a  n. Then 

x=alaE.. .a k for some k<~n. If k=n then x=a so LaPL~I6x=S*6x=O. If k<n then 

La PLal6x=~al a2"" ~k+, =S'6~. This concludes the proof. 

For any complex number z the operator I - z P  is invertible on ~(F). For i f fE ~(F), 

then Pnf=o for n sufficiently large. Thus the series E~  0 z"I~f has only finitely many 

non-zero terms. 

For z E C define the representation ~z of F on the space 5~r(F) by 

~z(a)=(I -zP)- lLa(I -zP) ,  aEF.  

It means a~z is the conjugation of the left regular representation by the operator l - z P .  

LEMMA 2. Let [z[<l and l~<p<oo. Then ~ extends uniquely to a uniformly 

bounded representation o f F  on @(F) with 

1+lzl II~(a)IIp'P~< l-[zl '  aEF.  (1) 

The family o f  representations ~z is analytic on {z E C: Izl<l}. Moreover the operator 

~z(a)-La has finite rank for  arbitrary a in F. 

Proof. To prove (1) fix a EF  and express the operator ~(a)L~ l in the form 

~z(a) L~ l = ( l - zP)- lL~( l -zP)  L~ 1 
oo 

= I+ Z Zn+lPn(P-La PL~l). 
n = O  

By Lemma 1 the operator P - L a P L ~  ~ has finite rank and maps the space ~9~(F) into 

5~(Fa). Pointing out the relation between this operator and S - S *  one has 

IIW-LoPL~b flip ~< 21If lip 

for any p~>l and any fE  Y((F). Since the function (P-LaPLal ) f l i e s  in Yf(Fa) and the 

operator P is a contraction on ~(Fa) in each @-norm so 

0o 

II~(a) t~lfllp <<-Ilfllp+2 ~]  Izl "+1 [If lip. 
nffi0 

If Izl<l then each ~z(a), a EF, extends uniquely to a bounded operator on eP(F) and 
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0o 

II~(a)llp, p = It~(a)L~lllp,~ <~ I+2~ Izln+~ = 1+)z[  
n-0 1-1zl" 

The last inequality guarantees also that the series 

co 

I+ ~ Zn+lPn(P-La PL~ l) 
n = 0  

is absolutely convergent in the operator norm and so it represents an analytic function. 

Finally the operator ~ ( a ) - L a  maps the entire space CP(F) into the finite dimen- 

sional space ~(Fo) for each p~>l. 

2.3. The main result. From now on we restrict our attention to the case p = 2  only. 

We improve the representations ~r z to get a new class of  representations with better 

properties. 

Let  T denote the orthogonal projection onto the one-dimensional subspace C6e in 

r For [z[<l let Tz stand for the bounded invertible operator on ~(F) defined by 

r z = / -  r +  ~ q - z  ~ L 

where X/T2--z 2 denotes the principal branch of  the square root. 

For a complex number z with Iz]<l let us define the representation ~r z by 

~rz(a)= T~l~z(a) Tz, aEF. (2) 

THEOREM 1. Let F be a free group on arbitrary many generators. The representa- 

tions ~rz, z E D = {z E C: [z]< 1 }, form an analytic family o f  uniformly bounded represen- 

tations of  F on the Hilbert space ~(F). Moreover: 

II-z21 
(i) [[z~(a)ll ~< 2 1 - l z l  " 

(ii) ~z(a) = z~(a-l). 

(iii) z~z(a)-Lo is a finite rank operator. 

(ivi I f  the group F has infinitely many generators then any representation zz z, zW-O, 

has no nontrivial closed invariant subspace. Any two different zcz's are topologically 

inequivalent. 

Proof. The first part of the theorem as well as point (iii) are obvious consequences 

of Lemma 2. 
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To get (i) and (ii) observe first that each ~=t~(Fa) ,  a EF, is a reducing subspace 

for each operator Tz, [z]<l. Also ~(a )  maps ~ ~_ ,  onto ~:a and coincides with La on 

~a-" Therefore ~:a is a reducing subspace for both operators vrz(a)L-~ 1 and La~rz(a-1). 

Let us examine these two operators more closely. We need to see only how they act on 

the space ~ because on the orthogonal complement ~ of ~:a they coincide with the 

identity operator. 

The operator vr~(a)L-~ I and L,,vrz(a -l) are constructed by using operators 

P, LaPLa l, T z and L~ TzLa I defined earlier. The subspace ~:a is invariant for all of them 

and their restrictions to ~ can be expressed in terms of S and S*. Namely 

PI~o= S 

L~ PLal]~, = S* 

arzl~, = s * s + V T Z ~ ( t - s * s )  

Lo rzL~'l~ ~ = ss*+ IVT:-Z-z~(I-SS*). 

Therefore 

~z(a) L a l [ ~  a = IS*S-} .2(I-S*S)] (I-zS)- '  (I-zS*) [SS* + V'-~-z 2 (I-SS*)]. 
V l - z  2 J 

Using the identities S*SS*=S* and (I-zS*)=(I-z2SS*)-z(I-zS)S* we can write 

:rz(a)L2~ls, = [1N/-J~-z2 S*S+(I-S*S)] ( l-zS) -I[ lx/-i~-zE SS*+(I-SS*)]-zS *. (3) 

A l s o  

La~(a-~)l~o = [ I~/T~-z2 SS*+(I-SS*)] (I-zS*)-'  [V~I-z2 S*S+(I-S*S)]-zS.  (4) 

It is easy to check now that 

L a ~ZZ(O)I~a = ($'fZ(a) Lall$~a )* = L a ~(a-~)]~. 

which proves (ii). 

The desired estimates for the norm of ~z(a) follows from formula (3). In fact: 

IIx~(a)ll = IIx~(a)L~'ll = max {1, Ilxz(a)La'ls, oll}, 
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Vrz(a) L2ll~a = A +B+C 

A = (1 - z  2) S * S ( I - z S ) - I S S  *, 

B = ~/-i-Z--z 2 ( I - S ' S )  ( I - zS) -~SS  * + VTZ'-z 2 S*S( I - zS )  -~ ( I -SS*) ,  

C = ( I - S ' S )  ( l - z S )  -~ ( I - S S * ) - z S * .  

Since S*S and SS* both are orthogonal projections thus 

ll-z21 
Ilall ~< II-z2111(I-zS)-lll <- 1-1zl " 

Note that for ~EC lal+l 

and 

where 

Ul=(0, z lal-1 . . . . .  z, 1), 

B(~) = V q - z 2 [ ( ~ ,  u,) o~+(~, 02) u2] 

c(~) -- z'~l( ~, o2) Vl-ZS*(~), 

u2=(1,z  . . . . .  zlal- l ,  0 ) ,  Ol = ( 0 , 0  . . . . .  0 , ] ) ,  

293 

o 2 = ( 1 , o  . . . . .  o , o ) .  

This yields 

II-z21 Ilnll = I V l - z 2 1  m a x  {tludl Ilodl, Ilu21] 110211} ~ l _ l z l  2 , 

IIcII = max {Izl la1110111110211, Izl} ---Izl 

and consequently 

II-zZ[ 
[l:r~(a)Z~l~a[I < < - ~ +  +lzl ~< 2 

~ / ~ S - I z l  2 1-1zl  " 1 i~. I 

To prove the first part of (iv) we show first that any Z~z is a cyclic representation of 

F with a cyclic vector 6e. Next, under the assumption that the group F has infinitely 

many generators we show that the projection T belongs to the von Neumann algebra 

generated by ~z(F). This will imply that every closed invariant and nonzero subspace 

for :r z contains 6e, so it must be the whole of t~(F). 
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and 

thus 

Let x E F  and x4=e. Then 

~z(x) ~ = z~ld~+ zk l~/-I~--z2 p k ~  
k=O 

[ x - I  

z~z(s be = z~l~e+ ~ zkl~i~--z2pk~,  
k=l 

(5) 

and Sz, ~ &x---~O for x4=e. We have 

Sz.n ~e = Z~e'~ - -  

n lV%7-z  
/~ k=l 

o r  

which tends to z6~ when n---> + ~. Now for x ~ e ,  according to the case whether the first 

letter o fx  is one of x~ -1, say -1 xk0, or not, Sz, ~ 6xhas one of the forms 

' n k=l 
k.% 

Sz,.ax =I  ~ 6.,,,,~. 
n k=l 

However in both cases it tends to zero. 

Let ~0 be a nonzero closed subspace in ~(F), invariant under ~z. Iff(e)4:0 for a 

function f i n  ~o then Sn, z f b e l o n g s  to ~o for all n. But Sn, z f t e n d s  to z f ( e ) ~ e  and so 

be E ~0. Observe that we can always find a function fE  ~o for which f ( e )~O.  In fact, 

7[z(X ) (}e--Z$'[z(X) b e ---- l~/'-l~--Z2 (}x" 

This implies that be is a cyclic vector for ~z. 

Assume now that the set E of free generators of the group F is infinite. Fix a 

sequence xl, Xz ... .  in E and for a natural number n define the operator Sz, n on ~(F) by 

S n = 1 ~ :rz(Xk). (6) 
z, n k=l 

Then the sequence Sz, 1, Sz,2 . . . .  is strongly convergent to zT. Indeed, the sequence 

Sz, n is bounded in the operator norm, thus we have to show only that Sz, n be---~Z~e 
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Take any nonzero function f i n  ~o and let a denote a shortest word in the support o f f .  

Write f i n  the formf=f (a )6a+g.  Then gE~Z(F-F~) and so 

In particular 

:tz(a-l) f = f (a)  :tz(a -1) 6 a + L 2l g. 

(:tz(a-1) f )  (e) = l%/-i~-z2 f(a)  * O. 

Consider two representations :tz and :tz' with z, z'4=0. If a bounded operator A 

intertwines them then A-1Sz, nA=Sz,,n for each n, hence also A-1TA=(z' /z)T.  But 

since both T and A-~TA are projections, z=z '. Thus :tz and :tz' are not similar for 

Z ~ Z ' .  

This finishes the proof of the theorem. 

2.4. Remarks.  (1) All the representations are cyclic with a cyclic vector 6e. The 

representation :to is just  the left regular representation of F. If the group F has only 

finitely many generators (say k) then P is a bounded operator on t'2(F) and 

HPnll=~/Ek(Ek-1) "-1 , n =  1 ,2 , . . . .  

Thus ( l - zP )  -1 is also bounded for tzl<(2k-1) -u2. It means that representations :tz 

for all such z are similar to the left regular representation. 

(2) By (ii) for real t the representations :tt are unitary. Thus the function 

F~x--> (:tt(x)6e, 6e) = t p~I (7) 

is positive definite. It gives an alternative proof of a result of Haagerup [10]. 

In connexion with Remark 1, if the number of  generators in F is k then, comparing 

formula (7) with [10], Theorem 2.1, no representation :tt, Itl>(2k - 1) -1/2 is weakly, and 

so strongly, contained in the regular representation. 

(3) Observe that it is possible to pass with z to the limit + 1 or - I in formula (3) and 

define two unitary representations :tl and : t - l .  It turns out that : t l= t r+~2f f  and 

: t _ l = t r - ~ 2 d  -, where tr + and t r -  are one-dimensional representations F 3 x ~ ( + l )  Ixl 

and 2d-, 2ff two representations acting on ~ ( F - { e } )  by 

{6,~ for x4= a -1 

2if(a) 6 x= +6 a f o r x = a  -1 

when x E F - { e }  and a is one of the free generators. 

20-868286 Acta Matheraatica 157. Imprim~ le 12 novembre 1986 
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The representation 2d- was considered by Cuntz [6] and earlier in less explicit 

form by Pimsner and Voiculescu [14]. 

A construction of a continuous path of unitary representations connecting the 

regular representation to ~ ,  such that each representation in the path is congruent to 

the regular representation modulo compact operators was an essential step in the proof 

of the theorem (cf. [14], [5] and [6]) that the regular C*-algebra of a free group has no 

nontrivial projections. 

(4) Let us state also that 

sup II~(x) 6ell = I1 --z2l '/2 (1 -Iz12) -''z (8) 
x E F  

which follows directly from (5). This formula will be used later. 

3. Direct integrals of representations and multipliers 

3. I. Preliminaries. Starting with the family of representations {Zrz: Izl< 1} by inte- 

gration on closed paths we obtain many other uniformly bounded representations. This 

yields a wide class of coefficients. Identification of functions which are the coefficients 

of hilbertian representations is especially useful when we study multiplier algebras. In 

this context, for locally compact groups, mainly three algebras were investigated: the 

Fourier-Stieltjes algebra B(G) of all coefficients of unitary representations, the algebra 

M(A(G)) of multipliers of the Fourier algebra A(G) and the algebra B2(G) of Herz 

multipliers. 

A function 9 in L| is called a Herz multiplier if for any bounded operator A on 

L2(G) with kernel A(x,y),  x, yE G, the function q~(y-lx)A(x,y) is again a kernel of a 

bounded operator on L2(G). The set B2(G) of all Herz multipliers, equipped with the 

multiplier norm is a Banach algebra under pointwise addition and multiplication. 

PROPOSITION 1 (Schur). Let re be a uniformly bounded representation o f  G on a 

Hilbert space ~ .  Then for  any ~, ~1 E ~ the coefficient 

~o(x)= (:~(x)~,,l), x6G, 

of  the representation ar belongs to Bz(G). Moreover 

[[~o[[s2 ~ sup [[~(x) ~[[ xeGSup ][zl*(x) r/[[. 
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We always have B(G)cB2(G)aM(A(G)) with continuous inclusions. For amenable 

groups these algebras coincide. On the other hand both inclusions are proper for free 

groups (cf., [10], [11], [1], [7], [13]). 

Remark. It has been shown in [2] that for any locally compact group G the algebra 

B2(G) coincides with the algebra Mo(A(G)) of all completely bounded multipliers of the 

algebra A(G). This algebra was introduced and studied in [3]. 

Two uniformly bounded representations ~ and Jr2 of a locally compact group G on 

Hilbert spaces ~ and ~2 are called similar or topologically equivalent if there exists a 

bounded invertible operator A: ~ ~g2 such that Az~l(x)=:t2(x)A for any x E G. Repre- 

sentations ~1 and ~t2 are called weakly similar if they have the same closure in B2(G) of 

sets of their coefficients. 

Note that for an amenable group G every uniformly bounded representation of G 

on a Hilbert space is similar to a unitary representation and if two unitary representa- 

tions are weakly similar they are weakly equivalent. 

3.2. Integration on paths. Let ~ be a piecewise smooth curve contained in the unit 

disc Izl<l. Consider a representation of F 

= @~ ~zldzl zy 

space ~=ef~e2(F)ldzl. Clearly ~ry is a uniformly bounded acting on the Hilbert 

representation with 

sup [l:ry(x)ll ~ 2 max 1 " 
x E F  ze~ ,  - -  Z 

PROPOSITION 2. Let f be a holomorphic function in a neigbourhood ofF. Then the 

complex function q~ defined on F by 

~(x) = f z~lf(z) dz 

is a coefficient o f  the representation zt e and 

~< f If(z)l ~ Idzl. II~IIB2 J~ l-lzl 2 

Proof. Take two functions g and h on 7 so that Ig(z)l=lh(z)l and g(z) h(z) =f(z)x(z), 

where Z(z) denotes the Radon-Nikodym derivative dz/Idzl. Define two vectors G and H 

in ~g~ by 
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Then for x E F, 

G= ~ g(z)~eldzl, H= ~ h(z)~eldzl. (9) 

( ~tr(x) G, H) = fy ( ~tz(x) 6 e, 6 e) g(z) h(z) Idz[ 

= fy z~tf(z) x(z) ldzl = fy z~lf(z) dz = q~(x'. 

By Proposit ion 1, using the formula  (8) and the fact that L~(z)[ = 1, z E y, we get an 

estimate for the norm II~IIB2: 

II~IIB~< sup [[~rr(x) GII sup II~(x)/~1 
xEF xEF 

(f ,g(z)[2~ ,1/2[~ ,1/2 
<- i z,) ,,z,) 

l - lZl  1-1zl 
: 

= Jr If(z)l l_lzl 2 Idz[. 

COROLLARY 1. For m = 0 ,  1,2 . . . .  let Zm denote the characteristic function o f  the 

set {xEF: Ixl=m}. Let ao, al, a2 .... be a sequence o f  complex numbers such that 

~ lain-am+21 (m+2)  < + oo. 
m=O 

Then the function 

( p - - - - ~ a m Z  m (10) 
m=0 

belongs to B2(F). 

Proof. For  m = 0 ,  1,2 . . . .  define a function ~,,, on F as Zo+Z2+...+Z,,, if m is even 

and ZI+Z3+. . .+Zm if m is odd. 

I f  y is a circle {z E C: [z[=r), 0 < r <  1, then each tpm is a coefficient of  the represen-  

tation zt r because  

1 f z~lfm(z) dz, x E F, qgm(X) = ~II 



UNIFORMLY BOUNDED REPRESENTATIONS OF FREE GROUPS 299 

where 

By Proposition 2 

1 
f r o ( z )  = 

zm+I(1 --Z2) " 

I d z l  _ 1 
-~__ Izlm+'(1-1zl 2) r~( l - r  2) II~mllB2 ~< 

i 

Taking r=(m/(m+2)) u2 we get II~mllB-<�89 
Express the function q~= Em= o OLm X m in the form ~O=Em= 0 (am--(Zm+2)~m" Then 

2 e ~ (m+2)[am_am+2[" I1~11,~-< m=0 [am-am+2l II~.IIB~ ~< T m = 0  

As a special case of Corollary 1 we get 

COROLLARY 2. Let ao, al .... be a decreasing sequence o f  positive numbers. I f  the 

series Z~,=0 am is convergent then the function E~= o ~ZmX m belongs to B2(F). 

3.3. Remarks. (1) If the group F has infinitely many generators then none of the 

functions ~O=~Nm=O CZm~ m belongs to the Fourier-Stieltjes algebra B(F), except cp=ao6e. 

Indeed, if the function q~ belongs to B(b0 then q~[rk belongs to B(Fk) for k= I, 2 ... . .  

where Fk is a subgroup in F generated by k among the free generators. Moreover 

(The last equality holds since ~VIF k has finite support.) On the other hand, it follows by 

[9], VIII.I.1 that for n = l , 2 ,  . . . ,N 

>_ I~.l Itz ~" ~r "-'  F k A(F k) :"" " ~  n F k 2 = " ~  

Comparing these two inequalities and letting k tend to infinity we get a , = 0  for 

n = l , 2  .. . . .  N. 

Even if the group F has only finite number of generators, the same argument 

shows that there exists a function in Bz(F)-B(F). 

(2) If the group F has no more than countably many generators then there exists a 

sequence of functions with finite supports on F which is an approximate unit for A(F) 

and is uniformly bounded in the B2(F) norm. This is a result of de Canniere and 
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Haagerup ([3], 3.9). It can be seen easily, applying Corollary 1, that the approximate 

unit in A(F) constructed by Haagerup in the earlier paper [10] has the desired property. 

3.4. Some estimates from below. A complex function q0 on F is called radial if the 

value tp(x), x E F, depends only on Ix I, the length of x. Any radial function has unique 

expression of the form (I0). 

Proposition 2 and the method presented in the proof of Corollary 1 give a tool to 

estimate from above the B2(F) norm of radial functions. The next theorem gives 

estimates from below. 

THEOREM 2. Let F be a free group on infinitely many generators. For any radial 

function qg=Em= 0 amZ m with only a finite number of  am'S different from zero we have 

fo ~ ~ s in(m+l)ss inss in(m+l) t  ds. (11) 
11 011 2  > II IIM A  )  sup 2 a .  sint 

t E (0, ~t) 7/" m = 0  

Proof. Fix a sequence x~,x2 .... of free generators in F and let Fk denote the 

subgroup in F generated by x~, x2 ..... xk. Let VN(Fk) denote the von Neumann algebra 

of operators on C2(F,) generated by the left regular representation. Denote also 

VN~(Fk) the subalgebra in VN(FD of these operators T for which T6~ is a radial 

function on Fk. 
For k , n = l , 2  ....  define X,,,* to be the characteristic function of the set 

(xEfk: Ixl=n} and ~,,,k the function on (0,z0 defined as 

Z~'k(S)=(2k--1)~/2( "sin(n+l)sslcns 2k-1 1 sin(n-1)S~sin___s / 

Zo, k(s) = 1. 

It follows from [15], Theorem 5.1 that the correspondence Xn.k--~n,,, 
n=0, 1,2 .. . . .  may be uniquely extended to an isometric isomorphism of VNr(Fk) onto 

L| :t). For a function f=Em=Oflm)Cm, k in VNr(Fk), the function f has the form 

sin (m+ 1) s 
f ( s )=  (2k-1)"vz(flm-flm+2) _ , 0 < s < n .  (12) 

m=0 sin S 

Let q~=X~=oamZ m be a radial function on F with only a finite number of a,,,'s 

different from zero. For any natural number k multiplication by tp defines a bounded 

operator on VNr(Fk) with norm not exceeding [[tpl[M~t(~ ). Thus 
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[IfpI]M(A(F)) ~ SUp {lt((~of)A]loo : f ~  VNr(Fk) , Ilfll = <~ 1}.  

Since by (12) we have 

2 f(s) sin s sin (m + 1) s ds = (2k-  1) "/2 (/3,,-fl,~§ 
2g 

thus 

and so 

m = 0 , 1 , 2  . . . . .  

tim = (2k- l )  -m/22 (s) sins sin(m+2r+l)s ds 
,=0 (2k-  1)' 

s i n  (m+ I) t (q~f)^(t) = )" (amflm-a,~+zflm+2) (2k-  1) "/2 
m=O sin t 

= - -  s) sins amsin(m+l)s 
dO m = O L k  

= ) t ] + E sin(m+ 2r+ l)s ds. 
r=l (2k-  l y  sint 

If  we put an arbitrary function g in L=(0,~t) with ]]gl]=~<l instead of f and pass to 

the limit with k tending to infinity we get 

s u p 2 f o ~ o S i n ( m + l ) s s i n s s i n ( m + l ) t d s  [If~IIM(A(F)) ~ g(s) a m 
tE (0,,0 Zt = s i n t  

This implies (11). 

Consider the system Urn, m= 1,2 . . . .  of  the second type Tschebyshev polynomials 

Urn(x)= , / 2  sin ((m+ l) arc cos x) xE(--1,1) .  
' 

This system is an orthonormal basis in L2((-1,  1),/~), where dl~(x)=VTZ--~dx. 

COROLLARY 3. Let F be a free group on infinitely many generators. For a radial 

function q~=E~=oamZ m in B2(F) define an operator on Ll((--1, 1),/~) by 

(Tr (x) = fj~ Kr y) f(y) dl~(y), 

where 
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K~(x, y) = ~.~ a m Urn(x) Urn(y). 
m=O 

Then T~o is a bounded operator and 

IIZ~ll ~ II~011~(A(~)~< II~IIB~(~- (13) 

The correspondence q;---~ T~ is an algebra homomorphism. 

Proof. Changing variables x=cos s, y=cos t we get that the right hand side of (11) is 

equal to 

f' 
sup IKr x, Y)I d#(y). 

x E ( - t , l )  -1  

It means that T, is a bounded operator on LI ( ( - I ,  1),/~) and (13) holds. To see that 

T,~= T~0 T~ observe that Tx. Urn= Urn and Tz, " U,=0 for m*n.  

COROLLARY 4. Assume that the free group F has infinitely many generators. For a 

complex number z, [z[< 1, define cpz(x)=z Ixl for x ~ F. Then 

II-z~l. 
I ~zl lB~<~--II~l l~a(~)= IIZ~JI = l_ lz l  2 

Proof. The estimate II~zlIB~II--z21/(1--1zl 2) follows from (8) and Proposition 1. On 

the other side 

IIT~[I>~ 2 f0 ~ ~=o(m+l)zrnsin(m+l)ssins ds 

by Theorem 2. But 

Thus 

(m+l)zmsin(m+l)s= -~i eis (m+l)zmeim'-e-i" (m+l)zme-im" 
mffi0 rn=0 m=0 

1 (  e~ ~ - e -i" ~ =  (l-z2) sin s 
= 2i \ (1-ze i ' )  2 (1-ze-i~)2/ (1-zeiS)2(1-ze-i') 2" 

s sin 2 s 
E (m+l)zrnsin(m+l)ssin = II-z2l i(l_zei,)(l_ze_iS)12. 
m=0 
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Denote 

L(s) 

Then 

sin s 
(1-z  e is) (1 -z  e -is) 

( 1 I )=~zmsin(m+l)s. 
_ 1 1 -  1 - - z e  - i s  ~iZ -ze is m=0 

f0 ~ 
IlT, zll~>2ll-zZl fz(s) fz(s)ds=ll-z2l~lZl 2m=-j~-~ 

m=0 1--[Zl 2" 

3.5. Remarks. (1) The functions tpz, Izl<l, play a fundamental part in present 

theory. They are analogues of the spherical functions on SL(2, R). The function q0z is 

the unique, up to a constant multiple, radial coefficient of the representation :rz (cL 

Theorem 3). The explicit formula for the kernel Kr of the operator T~ is 

1 - z  2 
K% (cos s, cos t) = (1-2z cos (s+ t)+z 2) (1-2z cos ( s -  t)+ z2)" 

(2) Applying Proposition 2 and Theorem 2 to the function tp=:~m, m= 1,2 ..... we 

get the following estimate 

~ (m+ 1) ~< IL~mlIB2<~ ~< 4 e  (m+ 1). 
: r  

3.6. Characterization of  radial coefficients. As we have seen in Proposition 2, if we 

take two vectors G, H of the special form (9) in the representation space ~ for a path y 

then the corresponding coefficient of :r e is a radial function. Conversely, if q~ is a radial 

coefficient of the representation :ry then we can always find two vectors G, H in ~ge of 

the form (9) such that qg(x)= (:re(x)G, H).  We prove it only for circles, although the 

proof works generally. In this case we obtain especially simple characterization of 

radial coefficients. 

THEOREM 3. Let C(r) denote the circle {z E C: Izl--r}, 0<r< l .  Let F be a free group 

on infinitely many generators. A radial function q9 is a coefficient of  the representation 

:rC<r) if and only if there exists a function f i n  LI(TI), where T 1 is the unit circle, such 

that 

~(x) = r'*f(n), x E F, n = Ixl. 

Proof. Let G, HE ~C(r), i.e. 

G= ~ fc Gzldz" H =  O) fc Hzldz 1, 
(r) (r) 

(14) 
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where Gz, Hz E t'2(F). Suppose that the function 

q)fx) = {~C(r)(X) G, H) = ( (~z(x) G z, nz} Idzl 
dc (r) 

is radial. Write ~p=E~,=0am)fm. Choose a sequence x I, x 2 .... of free generators in F and 

let Sz., be the operator defined in (6). Let T be the orthogonal projection onto the one- 
dimensional subspace Cde. Then 

a.= fc (S'~.,Gz, H~}ldzl 
(r) 

for any k, n=1,2, .... Since the sequence of operators {Sz.,},~ I strongly converges on 

~(F) to the operator zT then by the Dominated Convergence Principle we get 

an= l zn{TGz, Hz} ldzl, n = l , 2  . . . . .  
3c (r) 

Define a function f on T 1 by 

f(z) = r< Zar. ar~> = r( TG.. TH.~>, Izl--- 1. 

Then fELI(T 1) with Ilflh<-Ilall~ec,.,ll~l~ec(., and f fulfills (14) for n = l ,  2 . . . . .  To get (14) 

also for n=0 take the functionf-f(O)+ao instead off .  

The converse implication is actually shown in the proof of Proposition 2. 

3.7. Inoariant subspaces for Ztc(~). Let X ~ denote the Hilbert space 

~= ~ fr e2(F) Idzl. 

This space may be realized also as one of the spaces L2(TIxF) or L2(TI)~e2(F), 

where the symbol t~ means the completion of L2(T1)| in the unique Hilbert 

space norm. For any r, 0<r<  1, the space ~C(r) is isometrically isomorphic to A ~ the 

isomorphism being ~gf'--~fr~.~c(~), where f~(z,x)=r-l/2f(r-lz, x), Izl=r, x~ f .  In 

this manner we may treat each :rC(r) acting on ~. We get the following formula for this 

action 

Otc(r)(a) f | g) (Z, x) =f(z) (~Uz(a) g) (x) 

with fE  L2(T1), g E f2(F), z E T l and a, x E F. 

(15) 
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Let  Xeo be the subspace H2~D(F)c~( ,  where H 2 is the Hardy space of analytic 

functions in LE(TI). Then since {atz: Izl< 1 } is an analytic family of  representations, the 

space X ~~ is invariant under each representation ztc(~), 0 < r <  1. Denote the restriction of 

Zrc(~) to ~ by zr~(r). 

LEMMA 3. Let F be a free group on infinitely many generators. Fix a number r, 
0 < r < l .  Then the representation :r~ is indecomposable, weakly similar to arC(r)and 

1| is a cyclic vector for :r~ 

Proof. It is clear by (15) that the multiplication by z commutes with ~Ctr). It 

follows that each of  the spaces zmX~~ m=0,  _+1, +2 . . . .  is invariant 

under ZtC{r). The restriction of Z~C(r) to any of  them is isometrically equivalent to zdC(r). 

To prove that JdC(r) is weakly similar to ~rC(r) it suffices to show that any coefficient of 

~Ctr) is a limit in B2(F) of a sequence of coefficients of ZdCCr). 

Let  f and g be two functions in ~ .  There exist two sequences f l ,  f2 . . . .  and gl,  

g2 . . . .  in ~ s u c h  that fm, gmEz-mX ~~ r e = l , 2  . . . . .  and 

l i m  Il f-fmll  = l i m  l ie-emil  = o. 
m - ~  m - - ~  

It follows that the coefficient 

cp(x) = (~C(r)(X)f,g), xEF, 

is a limit in B2(F) of coefficients 

q~m(X) = (~C(r)(X)fm, g,~), xEF.  

But q~m is acoeff ic ient  of the representation ZrC(r)lc, ~ and so of ~c(,) too. 

To see that ~C(r) is indecomposable let P be a projection in ~'~ which commutes 

with ~c(,). As we have seen in the proof of Theorem 3 the operator rz / |  T is a strong 

limit of a sequence ~frt  Srz.kldz I when k---~oo. Therefore z / |  belongs to the von 

Neumann algebra generated by Z~c(r) and so it commutes with P. This means that 

H2(.gCfe is an invariant subspace for P and P(H2@Cfe) reduces the operator 

zl@TIn2~c,L. But the multiplication by z is an irreducible operator on H 2 (cf. [16], 

Theorem 5.3), thus the restriction of P to H2(~C6~ must be 0 or I. In particular 

P(1 @6e) = 1 | or P(1 | =0. This implies that 

P~'~ ) (1 ~) fe )  = ~(r)(X) (1 (~fe )  
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for any x E F or 

PJr~ (1 (~re) = 0 

for any xEF. If  we prove that l ~ e  is a cyclic vector for ~C(r) we get then P=O or 

P=I. 
Let M denote the closed cyclic subspace in X e~ generated by 1 |  To prove that  

1 ( ~  e is cyclic for :r~(r) it suffices to show that f@6x EM for a n y f E H  2 and any xEF. 
Applying the operator z / |  to l| several times we get z" |  for 

n=0,  1,2 . . . . .  and thus also tha t f@t~eEM for any f E H  2. 

Let  now x E F. If  Ixl = 1 then for any f E  H 2 

~,c(,)(x ) ( f ( z )  2 | ~e) - rzf(z) | f~eWf(z) (~ f~x 

by (5) and (15). But since 

f(z) | di e and rzf(z) | be 
x/1-r z 2 

both are in M, we have f@bxEM.  For all other x E F  the proof is similar and goes by 

induction on the length of x. 

O Remark. The only non-trivial closed subspaces in ~ ,  invariant under 3rC(r) are 

zm- ln  2 ~ M + ZmH 2 (~ t~ 

where m = 1,2 . . . .  and M is a closed subspace in gZ(F) invariant under left translations. 

This can be shown in four steps as follows. If  for a non-zero function f in X ~~ ~ f  

denotes the closed subspace in X e~ generated by ~r~ a EF, then 

(i) ff(fflH2~Cre:~={O}, 
(ii) ~tNHz~Cre=ZmH2~Cre for some m, r e = l , 2  . . . . .  

(iii) ZmH 2 (~C2(F) c ~ccz  m- 1H2t~C2(F), 

(iv) restrictions of operators ~~ and I| aEF, to the space 

zm-lHZ~gZ(F) are equal modulo zmHz~C2(F), i.e. (:r~r)(a)f-l| 
Z"H2~Cz(PO for a n y  fEzm-ln2(~'2(F). 

Point (i) holds because zl| for a suitable a EF.  Point (ii) because the 

only non-trivial closed subspace in H 2 invariant under multiplication by z are ZmH 2, 
re= l ,  2 . . . .  (cf. [16], Theorem 5.3). Point (iii) because zm|  is a cyclic vector for the 
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restriction of ~C(r) t o  z"H2(~C2(F) and because ~fc(zI|174 Finally 

point (iv) follows directly from (5) (use the Taylor expansion of ~ r ~ ) .  

3.8. An unexpected realization of the representation ~C(r). 

THEOREM 4. Let F be a free group on infinitely many generators and let Y{(F) 

denote the set of  all complex functions on F with finite supports. Fix a number r, 

0<r<l ,  and for J, g in Y{(F) defin e 

(f '  g)r= ~ E f(x) g(y) r ~-'xl. (16) 
k=o [xl=tyl=k 

Then ( , ) r  is a non-degenerate hermitian form on X(F). 

Let ~,  be the Hilbert space produced from (Y{(F), (,)~) in the standard way. Then 

the left regular representation L of the group F on YC(bO extends to a uniformly bounded 

representation o f F  on ~ .  This representation is indecomposable, similar to ~c(~) and 

weakly similar to ~C(r). 

Proof. First we show that 

(f, f ) r  >>" (1 - r  2) Ilfll~ (17) 

for any fE Yf(F). This will prove the first part of the theorem. 

PUtfk=fZk for k=0, 1,2 .... (recall that Zk denotes the characteristic function of the 

set {xEF: Ixl=k). Then 

( f ' f > r =  ~ <fk'fk)," 
k=O 

We have (fo,fo)r=lf(e)] 2 and for k=l ,  2, ... by an elementary computation we get 

k-I  

( fk, fk)r = (1--r 2) E ?"llPYkll~ + r2kllP%ll~ >" ( I - ? )  IIAII~. 
n=0 

Therefore 

(f, f ) r  ~ (1-r~) ~ [[fk[[~ = (1-r2) [[fl[~, 
k~O 

which shows (17). 

Define a linear map Tr from ~(rO into ~ '  putting 
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• /  i ' r 2  ~c~r)(x)(1 | 
rr(Ox) = 

for x E F .  Since 1 ~  e is a cyclic vector for the representation ~ct~) (Lemma 3) and 

multiplication by the function (1-r2)~/2(1-r2z2)-l/2 is an invertible operator on 

hence T~(~(F)) is dense in ~f~ ~ Also 

~C(r)(X) Tr ~-" T r t x  (18) 

for any x E F. 

The set E of  free generators is infinite by the assumption. Fix a sequence Xl, xz . . . .  

of distinct elements in E and put x(j)---xj.., xj (j  factors). For j =  1,2 . . . .  define also a 

hermitian form hj on ~(F) by 

hi(f ,  g)  = ( ~C(r)(X(J?) Tr f ,  ~c(n(x(j)) I r e )  

= (Zr tx ( jg f ,  ZrZx(.l)g).  

Then 
( f  g)r = lim hj(f, g). (19) 

Of course it suffices to show (19) only for funct ionsf=da ,  g=db with arbitrary a and b 

in F. 

By (5) we have 

T~( O ~) = (1 - r 2) 1/2 ( 1 - r2 z 2)- i/z r~lz~[6 ~ + (1 - r 2) I/z ~ l  r* zk Pk 6 ~ 
k=O 

_ t t t  for any x ~ F. Write hj{6a, 6b)--hj(6a, 6D+h)(6. ,  6D where 

hj(6,, 6b) = (1 -- r 2) r ~"l+~xbl fr ' I1 -r2z21 -~ z~'al-lX~ 

and 

hj:(t~ a, t~b) ---- (1 _/.2) ~ r2k ( pkt~ xa ' p*~3xb ) 
k=0 

with x=x(j~ and n=min(]x(j~a], ]x(j~b]}-l.  Since ]x(j~a]=j+]a I and [x(j~ b]=j+[b I for 

large j ,  we get limj_,~hj(6a, 6b)----0. TO compute limj_~ h](6a, 6b) first consider the 

case lal*lbl. Then Ix(j3al*lxtjgbl for large j and so (ek6x(.Da,pk6x(.13b)=O for any 

k=0 ,1 ,2  . . . . .  Thus limj_,| in this case. Now let la[=lbl. Observe that 

(pk~x(j)a, pk~xo3b) takes only value 0 or 1 and it takes the value 1 exactly when 



UNIFORMLY BOUNDED REPRESENTATIONS OF FREE GROUPS 309 

2k~l(x(j9 b) -1 (x(j) a) I = [bl al. Thus hj:(r) a, r ?g+21al , and so 

Put 

!im hjt.(O a , Oh) = r Ib-'~l = ( 6 a, fib)," 
j--.-} ~ 

I+P 
C = sup [l~c~r)(x)l[ ~< sup max II z(x)ll ~< 2 - -  

x E F  xEF Izl=r 1--r 2 

and observe that hj(f , f)<_C2(T,f ,  T~f)  and (T , f ,  T, f)<,C2h~(f , f )  for any f i n  5t/(F) 

and a n y j = l ,  2 . . . . .  Together  with (19) it follows that T, extends to an i somorphism of  

~ ,  onto ~:~. Formula  (18) shows that L extends to a uniformly bounded representat ion 

of F on ~ , ,  similar the representat ion :r~(,). The rest  of  Theorem 4 follows now f rom 

L e m m a  3. 
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