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1. Introduction 

1.1. Statement of result. T h e  m o s t  s t r ik ing  a c h i e v e m e n t  o f  R. N e v a n l i n n a ' s  t h e o r y  o f  

m e r o m o r p h i c  func t i ons  is the  D e f i c i e n c y  Re la t ion :  if  f is a n o n - c o n s t a n t  m e r o m o r p h i c  

func t ion  de f ined  in the  c o m p l e x  p l ane ,  t hen  its (Nevan l inna )  de f i c i enc ies  6(a)=6(a,f) 

(a E C * = C U  {oo}) sa t i s fy  0~<6(a,f)~<l  and  

6(a)~<2 (1.1) 
C* 

(for def in i t ions  o f  t h e s e  t e r m s  and  ge ne ra l  i n f o r m a t i o n  see  [18], [17], [22], [23]). T h o s e  

( ex tended)  c o m p l e x  n u m b e r s  fo r  w h i c h  6 ( a ) > 0  a re  ca l l ed  deficient values. 

In  1929, F r i t h i o f  N e v a n l i n n a  [21] p r o p o s e d  the  fo l lowing  c o n j e c t u r e  c o n c e r n i n g  

func t ions  e x t r e m a l  for  th is  r e la t ion :  
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CONJECTURE. Let f(z)  be meromorphic in the plane and suppose the order 2 o f f  

satisfies (T(r)= T(r , f )  ) 

2 - lim sup log T(r) < ~.  (1.2) 
r-,= log r 

Then if  

Z 6 ( a ) = 2  (1.3) 

we have 

22 is an integer >-2; 

if a is a deficient value, then 

6(a) = 2-1p(a) where p(a) is a positive integer; 

each deficient value is an asymptotic value. 

The central result of this article is the 

(1.4) 

(1.5) 

(1.6) 

Tt-IEOREr, I. F. Nevanlinna' s conjecture is correct. 

Significant partial results have been obtained by A. Weitsman [26] and this writer 

[4]. Weitsman proved that hypotheses (1.2) and (1.3) imply that the number of deficient 

values is ~<22, and I established a weak form of (1.5): each non-zero 6(a) may be 

written as 6(a)=(2*)-lp(a) where 2*~<;t, and both 22* and p(a) are integers. The 

theorem here implies that 2* =2. 

In the special case that f is entire (or, somewhat more generally, that 6(oo,f)= 1) 

the theorem has been known for many years [10], [11], [24]; the only change is that (1.4) 

becomes: ). is a positive integer. 

The deficiency relation (1.1) is a special case of the more general inequality 

Z {6(a)+O(a)} <~ 2, (1.7) 

where O(a) is a non-negative term which measures the branching "over"  w=a 

(w=f(z)). It is interesting that equality in (1.7) is considerably "easier" to achieve than 

in (1.3). For example, (1.7) holds for solutions to a large class of ordinary differential 

equations [30, Chapter 5], and if f is any polynomial of degree n, then 
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Z {6(a)+O(a)}=2-n -1, although all deficiencies 6(a) (a4=00) are zero. It is also possi- 

ble to find functions of any order ;t for which (1.7) holds, with no algebraic relations 

between 2 and the numbers 6(a), O(a). 
The ideas of [4] and [5] play an important role here, but an effort has been made to 

make this paper reasonably self-contained. 

1.2 Outline of proof. The most familiar functions which satisfy (1.2) and (1.3) are 

the exponential functions fp(z)=exp(zP). The behaviour of these functions is very 

simple. Of course, 6(0)=6(00)= 1. Further, the plane divides into 2p congruent sectors 

Dj (l~<j~<2p); in the odd Dj, fp tends to 0, and fp---)00 inside the even Dj. The remaining 

values are assumed regularly near the boundaries of the Dj. 

Now let f be the function of our theorem. Our goal is to construct a quasi- 
conformal modification off(z2), for z sufficiently large, such that 

to(f(q)(~)2)) ~fp(~) (l l > g )  

with p =22, for certain quasi-conformal maps w and r Quasi-conformal modifications 

played an essential role in [4], and in Chapter 4 we give a self-contained introduction to 

them. Almost all work in this paper is to show that f o r  a MObius transformation o f f  

(which may be chosen locally) shares the value-distribution properties offp(z). 
Until w 7.8, we work locally in the P61ya peak annuli of the z-plane. Recall that the 

P61ya peaks (of order 2) of T(r) are real-intervals on which 

T(r)<~ {l+o(1)} T(O.) (l(A')-~ on <r<  4A'on) (1.8) 

where 0n and A',~00; cf. [18, p. 101]. Corresponding to (1.8) are the annuli 

I t - - |  r 92' = 21 n = {(An) p, < Izl < A, ~),}, (1.9) 

in which we work. Only in Lemma 7.7 of w we are able to obtain formulae which 

describe the behavior of f i n  the subannuli 92n of 92',, where 

92 = 92n = {A~"O~ < Izl <A~Qn}; (1.10) 

although An-~00 , the r a t i o  An(A'n) -1 tends rapidly to zero. Yet to pass from this to the 

global result takes little more space. 

A key result from Chapter 7 is needed to go from knowledge of f i n  the 92's to 

global information. This is Lemma 7.5 (w 7.4) which asserts that (1.3) and (1.8) imply 
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that 22 is an integer greater than one. Since (cf. [7]) the set of  2 for which (1.8) is 

possible forms an interval, it follows from Lemma 7.5 that not only (1.4) holds, but a 

weak form of (1.8) is satisfied for all large r: given e>0, there exist C=C(e), ro=ro(e) 

such that 

CT(o) r >. O > ro 
T(r) <<. ~_~ (1.11) 

C T ( Q ) ( ~ )  Q > r > r  0. 

While we are not permitted to use (1.11) until after w 7.4, we note that it is weaker 

than (1.8) when Q=Qn and , - 1  (An) 9n<r<(An) 0n" Until Lemma 7.4 has been established, 

we shall mention, when using (1.8), that a similar inequality holds if (I .8) is replaced by 

(1.11). This means that once (1.11) is known, the arguments which have been applied to 

the 9~' n may be transferred to any sequence of annuli {A~ 1 tn<lzl<A n tn} where A n and 

tn--->~. It is this fact which leads us so quickly to the global result. In this paper, we will 

use e=~ in (1.11). 

Since the A' n of (1.8) will be diminished in our work until they become the A n in 

(1.10) and since any subsequence of the {Qn, A'n} satisfies (1.8), we make the inessential 

a priori condition 

A, ~ 1/2 n ~ 0n �9 (1.12) 

It is now possible to outline Chapters 2-6, in w h i c h f i s  studied only in the 9A' n. The 

reader should keep the behavior offp(z)=exp (z v) in mind when reading this. Choose a 

complex number a with ~(a)>0 and consider the subsets of  ~'n (cf. (1.9)) for which 

I f ( z ) -  al < en (1.13) 

for a sequence en which slowly approaches zero. The definition of  deficiency 

6(a) = lim inf m(r, a) (1.14) 
,- . |  T ( r )  

implies that these subsets meet each circle {Izl--r} ((m') -I Pn<r<A'0n). In Chapter 2 we 

say considerably more. First (Lemma 2.1): the sets D=D(a) which contribute to 6(a) in 

(1.14) may be thought as being simply-connected, whose f-images cover the punctured 

discs (O<lw-a l<e  }. Standard potential theory (Lemma 2.3) then shows that if A n is 
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chosen so that A,/A' n is sufficiently small (but still A--~oo) then at most 22=Q(2) of 

these sets D(a) (as a varies) contribute to (1.14) relative to the 9~ of (I. 10). By 

Q(2) (1.15) 

we mean any numerical expression which is bounded, with bound depending only on 

the order ;t of f .  This role for Q(2) will be convenient throughout this paper. 

These Q(2) components are the basis of all further analysis. In Chapter 3, we 

remove a union B* of Q(;t) small logarithmic rectangles from 21n, and in the Decomposi- 

tion Lemma (Lemma 3.2) show that ~n-B*  divides into Q(2) subsets F, in each of 

wh ich fhas  two near-Picard values: there exist a=a(F), b=b(F) among the full set of 

deficient values such that the counting-functions satisfy 

n(a, F)+ n(b, F) < C(A'n) -2h T(p,,) (1.16) 

where h is some positive constant which depends only on f. 

Inequality (1.16) is a natural re-interpretation of hypothesis (1.3). The advantage of 

a condition such as (1.16), is that it suggests the possibility of modifying f so that the 

"omitted" values a and b are always 0 and oo. 

The theory of these modifications is the subject of Chapter 4, although in Chapter 4 

they are only constructed in "admissible" logarithmic rectangles. Much of this infor- 

mation is needed for later work, and Lemma 4.13 is needed in Chapter 7 to show that 

the behavior of f in any union of Q(2) small logarithmic rectangles (such as B* in 

Lemma 3.2) is negligible. Unfortunately, it is not possible to make a single modification 

of f which is defined in all of 92~; rather, we consider f ( z  2) and construct Q(;t) 

modifications Gm, n(Z), each valid in a specific subannular region Mm, ~ of 9~; cf. (5.1) 

and (5.28). These Gin, ~ depend on m, but we find that 

( G~/Gm)2-( G'~+ I/Gm+ I) 2 (1.17) 

is an error term in Mm, nnMm+l, ~. Since 0 and oo are near-Picard values for the G's, we 

may "divide them" from G and make little change in the growth of G. Thus, for each m 

we let K(z)=G(z)P(z) (P an error term), so that K4=0, c~ (cf. (5.31)) and then expand 

each (K~/K,,) 2 in a Laurent series (cf. (6.21)). The key result in this paper is Lemma 

6.3, which uses (1.16) and (1.17) to show that these Laurent coefficients are essentially 

independent of m. Once this is known, the parallels to the classical entire function case 

(cf. [10, 11]) become very clear. For example, Lemma 7.5, which implies (1.4), reflects 

the tension between (1.8) and the usual convexity of means of analytic functions. 
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It is natural that these methods depend on the invariance of some differential 

operator as in (1.17). F. Nevanlinna was led to his conjecture by studying the Schwar- 

zian derivative { f , z }=( f" / f ' ) ' - �89  2, under the special assumption that f has no 

multiple values; then {f, z} is a polynomial, and so f may be analysed by asymptotic 

integration [19, w167 D.3, 7.4]. While {f, z} is invariant under all Mrbius transformations, 

(1.17) is only invariant under the transformation Z--->Z -1 as well as Z--->tZ (tEC), but 

this is all that is needed here. 

There is a fundamental reason why this problem is more complicated for mero- 

morphic functions than entire functions. If an entire function f ( z )  satisfies (1.3), then 

6(0,f ')=c~(oo,f ')=l, so we may study g=f'(P(z)) - l  in place of f ' ,  where P is a 

canonical product taken over the zeros o f f ' .  This g is a globally-defined function, and 

always satisfies (1.16) with a=0  and b = ~ ,  and the idea of [10], [11] is to study the 

Taylor coefficients of log g. 

Nothing so straightforward will work for meromorphic functions, since multiplica- 

tive terms are certain to introduce non-zero residues at the poles off .  However, when 

functions G(z) are constructed in Chapter 5 so that they have few zeros and poles, 

these singularities may be removed very simply. But to construct the G's requires most 

of this paper. 

1.3. Quasi-conformal modifications. The idea of using compositions by quasi- 

conformal mappings to study meromorphic functions goes back to Teichmiiller and is 

the theme of [17, Chapter 7]..1 learned of this method with Weitsman, and [8] is our first 

use of these ideas. A full exposition, with more history, is in [6, Chapter 2]. 

The method depends on having a large collection of functions co. The next result is 

essentially Lemma 8 of [6] and adequate for our purpose. 

LEblblA 1.1. Let complex numbers 7 and o be given with o4:0. Then for each r l, 

0<~/<(50) -1 and M'>~I we may construct a quasi-conformal homeomorphism co(W) o f  

the plane with 

ILu )l  Ilco )l  < 3r/ (I.18) 
cow 

such that 

co(W) = ~,+aW (IW] ~> M) (1.19) 

co(W) = W (IWI~<M ') (1.20) 
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so long as M is chosen with 

r/log (M/M') > C m a x  (1~1, Ilog lall +m 

orlog (M/M') > Cmax (l~l, Ilog Icyll+~), 
(1.21) 

where C is an absolute constant. 

Finally, we may choose co E C ~ with 

I~o~(w)l ~ ClW1-1 I~o(W)l. (1.22) 

Proof. All but the last assertion are in [4]. Let S=[WI, and construct smooth 

functions a(S) and b(S) with [Sa'(S)I+Ib'(S)I<~ min (o, r/), with the boundary conditions 

a(S)=O (S<~M'), a (S)=logo  (S>AD, 

b(S)=0 (S<.M'), b(S)=7 (S>M);  

conditions (1.21) ensure that this is possible. Now consider 

w(W) = e a(s) W+b(S) 

(this is a simpler formula than in [4]). Elementary manipulations, such as in [4], give 

(1.18)-(1.20) and (1.22). For example, we find that [to(W)l>-fSe ar and I~ow(W)l<<.Cea(S); 

thus (1.22) holds. 

Lemma 1.1 will be used in the following manner. Let a; and aj be two of the 

deficient values, choose o=(ai-aj) - l ,  7 = - o ,  and T,j be the M6bius transformation 

To(w)= W=(w-aj) / (w-ai) .  Then the composition wo(W)=w Tij(w)=w((w-aj)/(w-ai) ) 
satisfies (1.18) as well as 

~%(w)- w - a j  
w - a  i 

I 
coo(W ) - 

w - a  i 

w - - a j  (wa,~ 
w - a j  M )  
w _ a i  >1 . 

(1.23) 

1.4. The hierarchy o f  perameters. Several families of parameters will be used, 

which depend on the growth of the numbers T(0,), and the rate at which the limits 

implicit in (1.3) are attained. We have already introduced A, and A' n in (1.9) and (1.10), 

and have suggested that A, is small compared to A' n. In general, if a n and ft, tend to 

zero, we write a,<fl,  to mean that for each fixed k> l ,  an=o(1)ff  n as n ~ .  A chain of 
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such relations means that each adjacent pair satisfies them. Using this notation, we 

shall require 

(log T(0n)) -1 < 0 n < en < (A'n) -1 < qn < ~ < ~ < A n  1' (1.24) 

and will freely impose further restrictions on these sequences if they are consistent with 

(1.24). 

In our various constructions, it will sometimes be necessary to limit the rates at 

which any other than the left-hand sequence in (1.24) tends to zero. What (1.24) 

controls are the relative rates at which these can happen, but, for example, (1.24) is 

consistent with any of the 6's . . . . .  (An)-l 's  tending to zero arbitrarily slowly. 

1.5. Acknowledgments. I learned of this problem in the late 1960's from my 

colleague A. Weitsman who in [26] obtained the first non-trivial conclusions from 

hypotheses (1.2) and (1.3), and I have had many useful conversations through the years 

with him. 

The note [16] of W. H. J. Fuchs plays an important role in this work, and the germ 

of Lemma 7.5 is there. Estimates for means of logarithmic derivatives are basic here 

(cf. Chapter 6), and the techniques used go back to Fuchs's articles [13] and [14]. 

I have profited from several suggestions from A. Baernstein and very thorough, 

patient and helpful comments from W. H. J. Fuchs and W. K. Hayman. I especially 

thank Walter Hayman for giving so generously of his time. It was Professor Hayman 

who saw the need for Lemma 4.8, and both he and Professor Fuchs tightened several 

arguments. Judy Snider and Jane Brown have patiently produced more versions of this 

than any of us had expected. 

Finally, the friendly encouragement shown by my family and many mathemati- 

cians has helped maintain my spirits during the mostly frustrating efforts to prove this 

theorem. 

2. First consequences of (1.3); Significant components 

2.1. Preliminary observations. The second fundamental theorem is a consequence of 

R. Nevanlinna's inequality that for any finite set a~ . . . . .  aq E C*, 

~ N(r, ai) >I {q-2-~(r)} T(r), (2.1) 
i=l 

N(r, ai) >I { 1-t~(ai)-t~(r)) T(r) (i = 1 . . . . .  q) (2.2) 
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where here and throughout this section 6(r) is a function for which 

6(r)-->O (r--> oo). (2.3) 

Since (1.2) is assumed, (2.1) holds for all large r; in general an exceptional set E of finite 

r-measure must be excluded. Now (1.3) implies that if we choose al . . . . .  aq properly, 

we also have 

~aN(r, a i) <~ {q-2+O(r)} T(r) (r- .  oo), (2.4) 
1 

where (2.3) holds again. Also, we have that q~<22 [26]. If q=2,  our results are well- 

known ([24], [10], [11]); the methods given here work when q=2,  but some construc- 

tions are vacuous (for example we may always take a and b in (1.16) to be the two 

deficient values) and thus we usually imagine that q>2. 

By considering To f, T a Mrbius transformation, we may assume that w= oo is a 

normal value in the sense that 

f has no multiple poles, 

m(r, oo) < 6(r) T(r) 

for some 6(0 as in (2.3). The function 6(r) tends to zero so slowly that 

N(r, O, ~7, ) <6(r)T(r) .  

(2.5) 

(2.6) 

(2.7) 

Throughout this article we must control error terms. Since f has at least two 

deficient values, there exists a positive constant h=h(f) with 

dlogT(r)>. 1 0 h > 0  (r>r0) ,  (2.8) 
dlog r 

and we suppose that h<10 -~ (this is proved in [27]). Inequality (2.8) implies that 

2~>10h (2 is defined in (1.2)); however Weitsman in [26] already has proved that ;t~>l. 

By restricting the rate at which A'--->oo in the P61ya peak inequality (1.8), we may 

assume that if 6(r) is any of the functions (2.1), (2.2), (2.4), (2.6) and (2.7), then 

sup {6(r) T(r)} < 62 , T(O.), 
(A~) - 10n<r<4A~ On 

where 6n is from (1.24). Since [22, p. 25] if g is meromorphic, we always have 

(2.9) 
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f 
r 

r -1 log + M(s, g) ds <<- C(k) T(kg) 

we may adjust A' slightly so that 

~log + 1 
/=1 if(z)_a~ I ~-log + tf(z)t <<- CT(2A'~ On) 

~log + 1 
i=l if(z)_ai I t-log + If(z)[ ~ CT(2(A'n) -l On) 

( k > l )  

(Iz I = A'n 0n), 

(tZl = (A'n) -l 0n)" 

(2.1o) 

Moreover, all components D of f-~{lw-ail<e} which meet {[zI=�89 and {IzI=A'0} 
belong to {D}i. 

and 

q 

n(r, ai, I..J {D)j)+n(r, oo, LJ (D}j) <Cc$ n T(0) ((A')-I 0 < r<A'o) .  
i=1 j = l  

(2.13) 

Similarly, an appeal to [13, Lemma 1] shows that we may assume that 

fz f '(z) I ldzl< CT(2(a,n)-, Qn). (2.1 1) 

In (2.10), (2.1 1) and throughout, C is a constant which depends only on the function f ,  

at least when n is large in (1.8)-(1.10). 

Since we will usually be in the P61ya peak annulus (1.8), the dependence on n will 

be suppressed in general, save in a few cases when we use it to avoid ambiguity. 

Choose a sequence e= G which approaches zero sufficiently slowly and consider 

the sets (If(z)-ail<e) N ~' ,  l<~i<<_q, where 91' has been introduced in (1.9). Obviously, 

< ' m(r, a~) (asymptotically) is obtained by integrating when (A'n) -1Qn r<An Qn' 

--log If(rei~ over these sets, and the purpose of this and the next section is to show 

that only Q(2) components of  (If(z)-ail<en} relative to 92' need be considered (the 

convention concerning Q(2) has been described in (1.15)). 

LEMMA 2.1. Let {0n} be the P6lya peaks of  order 2 of  T(r). Then if c$ n, e n and 

(A'n) -l tend to zero sufficiently slowly, consistent with (1.24), we may find unions of 

disjoint simply-connected components {D}i relative to { IzI<A'0} such that if D E {D}i, 

then 

If(z)-ail = en �9 (z E (aD) n 92') (2.12) 
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Remarks (1) In (2.13) we are modifying the definition of counting-function by 

letting n(r, a, J) be the number of solutions to f(z)=a in J N {Izl<r}. We also define 

N(r,a,J)= (n(t,a,J)-n(O,a,J))t-l dt+n(O,a,J)logr. 

(2) Estimate (2.13) is more cumbersome than the corresponding conclusion in [51, 

where it is written simply as o(T(Q)). At this stage we cannot replace the right side of 

(2.13) by o(T((A') -1 0)) since it is consistent with the Pdlya peak inequalities (1.8) that 

the ratios T((A') -1 O)[(A') -~ T(Q)] -1 tend to zero arbitrarily rapidly. 

Proof. Choose a (small) positive number eo, so that the balls {[w-ai[<2eo} 
(l~<i~<q) are disjoint. For a fixed e<eo and l<<.i<<-q let Ai= {[w-ai[<e} and, for r>0, let 

Di (=Di(r)) be the components o f f - l (A ,  .) relative to {[z[<r}. 

We now follow the ideas introduced by Ahlfors in his study of covering surfaces 

([18, Chapter 5], [23, Chapter 13]). Thus each D,. is an island or tongue (relative to 

{[z[<r}), according to whether Di is compactly contained in {[z[<r} or not. 

We start with a simple consequence of (1.3) and Ahlfors's theory. Let S(r) be the 

area of the Riemann image on C* of {[zl<r} under fand  L(r) be the length, on C*, of the 

image of {[z[=r}. In geometric language, S is the mean-covering number (over C*) and 

L the length of the relative boundary. Then (cf. [18, p. 148]) there is a positive constant 

h which dependS only on the {ag} and e such that 

s E (n(Di)-nl(Di)) >>" (q-2)  S(r)-hL(r). (2.14) 
i=1 D i 

This sum is over all islands Di which are compactly contained in {Izl<r}, and n(Di) is 

the multiplicity of D; (i.e., the cardinality of f -~(w)  for wEA~). Also, if o(Di) is the 

Euler characteristic of Di, then nl=(n-1)+(o+l), is non-negative, and called the 

excess of the island [18, p. 147]. In particular, each term n(Di)-nl(Di) which corre- 

sponds to an island of multiplicity m> I satisfies 

n(Di)-nl(Di) <~ �89 (2.15) 

(We would like to record two observations concerning (2.14) which influence our 

approach. First, (2.14) is a general result, which holds for general exhaustions as long 

as we measure length and area with the spherical metric [23, pp. 324, 325,341]. Also, 

the "error term" L(r) in (2.14) may be replaced by the length of the relative boundary 

which lies outside the tongues relative to {Izl<r}.) 
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In the next inequality as well as in (2.18) and (2.19), Es refers to summation over 

simple islands (i.e. islands having n(Di)= 1) and E,,, over multiple islands. Then (2.14) 

and (2.15) yield that (cf. [18, p. 147]) 

(q-2)S(r)-hL(r)<~E E n(Di)+E E {n(Di)-n'(Di)} 
i s i m 

E E ) (2.16) 
i s i rn 

<- E n(r, ai)-�89 E Z n(r'ai'Di)" 
i i m 

This inequality is to be integrated with respect to r -1 dr. Since T(r)=frS(t)t -l dt+o(1) 
[18, p. I3], and,J20] for each h>0  

fl rL(t) t -l dt < T(r) m§ (2.17) (r> ro) ,  

the fundamental hypothesis (1.3) (cf. (2.4)) lets us conclude that 

~m n(t'ai'Di)t-l dt= ~ T(r) (2.18) 

from (2.16). 

The integrand in (2.18) is an increasing function ofr.  It is then no loss of generality 

to retard the rate at which the 6n--~0 in (1.24) and (2.9) so that 

E E n(2A'o, ai' Di) < 6z~ T(O). (2.19) 
i m 

We use (2.18) and re-examine the standard proof of (2.14) (cf. [18, pp. 146--7]; our 

aim is to get a bit more information than is contained in (5.27) thereof). We consider the 

covering of (Izl<r) over the Riemann sphere C* for a fixed r>0. We first remove all 

tongues D whose image u n d e r f  "lies over" the various Ai (l~<i~<q). What remain are 

certain simply-connected regions G'. Next, remove all islands D which are over the Ai 

from the G'; what remain are certain domains G which are mapped by w=f(z) to the 

region C', where C' is C* with the q discs A,.={Iw-ail<e}, (l~<i~<q) deleted. 

We divide the G' into q+ 1 classes. G' is a G~ if it is not compactly contained in 

(Izl<r}, and G' is placed in G~ (l~<i~<q) if it is compactly contained in (Izl<r) with 
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[f(z)--ail=e o n  aG'. Those components G which are contained in a G~ (O<~i<~q) are 

denoted by Gi, and we let ~q0 be the union of all t~ 0 and ~1 the union of the Gi (l~<i~<q). 

Recall that each t~ is mapped b y f o n t o  a covering of C', and [18, p. 136] C' has 

Euler characteristic equal to (q-2). Hence [18, p. 146] 

max (0((~), 0) I> (q-2)  Sd(C')-hLd(C') (2.20) 

where, if I(C') is the area of  C' on C*, we have 

= {I(C') } -~ l [If' 1(1 + [f[2)-112 dx dy S~(C') 
J~ 

(-- mean covering) and L is the length of the portion of the relative boundary which 

projects onto C'. Since always Q(G)~>-l, we have that max (0(G), 0)~<0(G)+ l, and so 

(2.20) implies that 

E (Q(O0)+ 1)/> (q-2)  S%(C')-h 2 L%(r) >>- (q-2)  S%(C')-hL(r). 
% 

(2.21) 

Next, if t~ is a (~i with i~>I, then Ld,(C')=O and since q>2, (2.20) implies that 

O((~i)>0. Each inner boundary of a t~ i separates t~,. from an island D, and each island 

inside G; is on an inner boundary of exactly one (~i- Now 0((~i)+1 is precisely the 

number of inner boundary components of (~i [18, p. 136] so now instead of (2.21) we 

have that 

E ( Q ( a i ) [ - l )  = number of islands D c ~d I 
i= 1 t~ i 

>I E n(D)- E n(D) 
D c  @ I D c @ I 

n(D)>l 

>! E n(D)-62T(o) 
D c  ~I 

(2.22) 

in view of (2.19). 

Since Lc;(C')=O (l~i~<q), f a s sumes  every value in [w-ail>e (including oo) with 

the same multiplicity in each Gi, which is S(uc)i(C'), where S(ue),(C'), is the mean 
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covering over C' from the G which are contained in a G;. In particular, we may take 

C' D=Dj for any of the ( q - I )  choices ofj:l:i and deduce that n(Dj)=S(u6)i( ). Thus the 

last expression in (2.22) is equal to 

E n(Di)+(q-1)S~I(C')-t~2T(p)" 
i=1 DicUG ~ 

We now sum (2.21) and (2.22) and recall [18, p. 133] that S(r, C')>S(r)-hL(r); thus 

E (Q((~)+I)~>~ E n(Di)+(q-2)S%(r'C') 
G_={lzl<r} i= l  DicOG [ 

+ ( q -  I) S~t(r, C')-62n T(o)-hL(r) (2.23) 

= ~ n'(r, ai)+(q-2) S(r, C')+S~I(r, C')--62n T(Q)-hL(r), 
i=l 

where n'(r, a i) is the number of solutions to f(z)=a i in each G~. 

According to [18, p, 147], the left side of (2.23) is precisely E [n(D)-nl(D)], where 

the summation is over all islands in {Izl<r} and the non-negative term nl(D) has been 

introduced in (2.15). 

Thus, if n"(r, ai) is the number of solutions tof(z)=aj which are assumed in tongues 

relative to {Iz[<r}, we obtain from (2.23) that 

~n(r, ai)=~n"(r'ai)+~ ~ E n(Dj) 
i=1 i=1 i=I j = l  DjcUG; 

>'~n"(r, ai)+~ ~ E {n(Dj)-n,(Dj)} 
i=1 i=1 j = l  DjcUG; 

>- ~ n"(r, ai)+ E ([9((~)+ 1) 
i=1 ~; 

(2.24) 

E n"(r, ai)+ E n'(r, ai)+(q-2)S(r, C')+S~,(r, C')-62. T(p)-hL(r). 

This inequality is integrated from (A') -! Q to 4A'(~ with respect to dlogr. Thus (1.24), 

(2.1), (2.4), (2.9) (2.17) and [18, p. 13] the equivalence of the Ahlfors-Shimizu and 

Nevanlinna characteristics yield that 
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f(A 4A'p drq_~i I4A'Q ,, ,)-me S~(r, C') r -l . .](/')-t e [n'(t, ai)+n (t, ai)] t -1 dt 

<.{~i N(4A'Q,ai ) - (q-2)T(4A'Q)}-{~i  N((A')-IQ, ai)-(q-2)T((A')-IP)}  

+ 2 T(4A'o)2/3 + 362 (log A') T(~) (2.25) 

~<C(62{ 1 +log (A')} T(O) < 6T(o). 

For l<.i<.q, let {D}i be the union of tongues D i in {Izl<4A'p} which also meet 

{IzI=-~A'Q} and whose outer boundary is mapped to OA i by f,  together with all compact 

components of their complement relative to {IzI<A'Q}. These {D}i are thus disjoint 

unions of simply-connected sets relative to {Izl<A'r Then 

Z n(2A'o, a i, {D}j) <~ Z n'(2A'o' ai)+n"(2A'o' ai)+S~ (2A'O' C'), 
i,j 

so (2.25) shoWs that Eij n(r, a i, {D}s.) satisfies (2.13). By Rouchr's theorem, 

n(a'o, o% {O)i) = ( q -  1)-' Z n(A'o, aj, {D}i), 
j,t=i 

so a similar bound holds for the poles. 

Finally, all this was done for a fixed e>0, and so holds if e=e,--->O sufficiently 

slowly, subject of course to (1.24). For example, for each fixed, e, 0<e<e 0, the mean- 

coverings ~(r)  over any of {Iw--ail=e}, {Iw-ail<-e} satisfy 

f rs~(t) t -l dt ~ T(r) (2.26) 

(Cartan's identity); then by retarding the rate at which en--->0 we may arrange that 

f0 rt-I 1 f02= dt-T(r) n(t, ai+e . e i~ dO < (A ,)-Sh T(e) 
(2.27) 

(I ~< i ~< q, r I> (A',) -1 p, n---> oo), 

with a similar asymptotic equality for coverings over the solid disks {Iw-ail<~en}. 

2.2. Significant components. In principle, each set {D}i of Lemma 2. I may have a 

large number of components. We now use some elementary potential theory and show 
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that if A/A' is sufficiently small (compare (1.9), (I.10) and (1.24)) then only Q(2) 

components are significant in 2l, where Q(2) is described by (1.15). This result is similar 

to that of Lemmas 3 and 5 of [4], but the methods are important here, since we will be 

considering several different exhaustions, in this chapter, and in chapters 4 and 7. 

We begin with a simple estimate on Green functions. 

LEMMA 2.2. Let D be a region in {[zl<R}, and let g(z, Zo) be the Green function of 
D with pole at Zo, IZol=ro<R. Then 

fo g(r e i~ dO ~< 2z~ rain (2.28) Z0) {log (R/r), log (R/ro) } . 
n {Izl=r} 

Proof. By the maximum principle, 

R2-zo z 
g(z, z o) <- log ~ -= hR(z, Zo). 

Thus 

f g(z, zo) dO ~ fo2'~hR(r eiO, zo) dO, 

and f hR dO can be explicitly computed, and gives (2.28) with equality. 

C O R O L L A R Y .  Under the same hypothesis, let I <.p<oo. Then there exists a function 
Qp(s), l~<s<oo such that 

( fo  g(rei~176 '/p<'f~p(min(R/r'R/r~ (2.29) 
n {Izl=r} 

and Qp is uniformly bounded in each region 1 <~s<.M. 

Proof. It suffices to take R = I ,  z0=r0>0 and compute with the function 

hi(z, Zo)=log[(1-~oZ)/(z-zo)[. The resulting integral in (2.29) is a continuous function 

of r and ro in this range, so (2.29) follows. 

Remark. More refined estimates may be found, for example, in [28] and [29]. 

We now produce a subset of Q(2) tongues contained in Oi {D}i which will be the 

basis of all our constructions. 

2-878288 Acta Mathematica 158. Imprim~ le 10 avril 1987 
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LEMMA 2.3. Let  92' be the annulus (1.9) centered at the P6lya peak  ofT(r) .  Le t  the 

unions o f  components  {D}i be constructed as in L e m m a  2.1. Then we may choose a 

subset o f  s components  LI ~i o f  (LI {D}i)fl 92' with 

s ~< 2).+6 = Q().), (2.30) 

such that: each component  D o f  ~i reaches {Izl=A' Q)in 92'; 

m(r, a i, D) > re(r, a i ) -C(A ' )  -Sh T(O) (1 <~ i ~<q, (10A) -1 ~ < r < 10A~)); (2.31) 
De~ i 

i f  DE ~i, then DO {(10a)-~ e<lzl<lOae} is simply-connected in {Izl~<a'e}. 

Remarks.  (I) The s components D of U ~i are called the significant components  of 

f ( in  92' relative to 92). 

(2) In (2.31) and for the rest of this article, we write 

1 fr l~ 1 dO m(r, a, J) = ~ e i ~  if(reiO)_a I 

where J is any open set; this complements the notation used in Remark 1 following the 

statement of Lemma 2.1, concerning n(r, a, J). 

Proof. Let ~ be any subregion of 92' and suppose I f (z ) -a i l<e for some z E Q. Then 

z is in some component D off-~(A/),  as in Lemma 2.1, and according to potential 

1 = l o g , - ' + Z  g (z, zv)- g (z, w,) 
log i f ( z )_ai  I (2.32) 

+ fD log 1 0Q, D n f2), na~ i f(~)_ai  [ dwz(~, D fl 

where go ~ is the Green function of D fig), the zv and w, are the zeros and poles of 

f ( z ) - a  i in f~flD, and dco z is harmonic measure at z. If D is one of the tongues D i 

selected in Lemma 2.1, enlarge D = D  i in (2.32) to be the corresponding component of 

{D}i; this means we may be adding some compact components of its complement, and 

thus D now may have poles o f f ,  although (2.13) shows that their number is an error 

term. 

Hypotheses (1.2) and (1.3) with the extremely elementary bound (2.28) will always 

show that means of Green functions are negligible: if A<(20)-~A ', then 

theory 
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~O {zv,~% fo2~gQo(rei~ fo2~g~(rei~ <~C(A')-ShT(Q) 
(2.33) 

((10A-I9 < r <  10AQ), 

where we set g = 0  outside D n Q. For  D ' s  contained in LI {D}i of Lemma 2.1 this is clear 

from (2.13) and (1.24), but (2.33) holds for all D's. 
To obtain (2.33) in general, divide the z and w into classes (I) and (II). To simplify 

notation, let t=zv or w~,. Then the pair (t,D) is in class (I) if {Izl=t} A D * ~  and Dnf~  is 

contained in {Izl<.(l+(A') -~-l-6h) [rl}; the other pairs are in class (II). Since (1.8) [or 

(1.1 I) with e=  I] implies that n(r, ai)<~C(A') ~+~ T(Q) for r~<2A'p, we obtain from (2.28) 

that 

f0 s gaD(rei~ t) dO <~ C(A') ~+1 T(0 ) log (1 +(A')  -z-~-~) ~ C(A') -6h T(Q) 
(I) (2.34) 

((10A) -I p < r < 10Ap). 

We use (2.24) and (2.25) to show that the number of  terms in class (II) is small. 

Indeed each pair (r,D) of class (II) contributes to n"(r, ai) in (2.24) on an r-interval of  

logarithmic length at least C(A') -a-~-6h. Let Z(A'Q) be the total number of  pairs 

(r,D) of class (II), where Irl<A'O. Then (2.25) yields that 

f2A, / CZ(A'Q) (A') -;t-l-6h < ~ /  n"(t, a i) t -I dt < 6T(p); 

since ff~=9~', (1.8), (1.24) and (2.28) now give that 

g~(re i~ t) dO <~ Z(A'p) log <<. C(A')3(~+ l)d log T(O) ~ C(A')-Sh T(O) 
(it) 

((10A) -1Q < r < 10Ap), 

and this and (2.34) establish (2.33). 

Now we choose f2 = 9~' in (2.32). It is necessary to estimate the boundary integrals. 

On (Izl=(m') e) we use the uniform bound (2.10), (2.8), (1.24) and the obvious fact 

that to(z,D n (Izl=(m') -1 ~), D n ~')~<1. On (Izl=m'e), we have (2.10) and the classical 

estimate [15, p. 102] 

to(Z, ia,o,Dfl~)<~4expl_et~ a'e dt ~, 
t S20Ae tO(t)J (2.35) 
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where IA,Q=Dn{IzI=A'o}, and 0(t) is the angular measure of Dn{lzl=t}. Thus we 

obtain using (1.8) [or (I.11) with e=l ]  that 

SD l~ 
nan IJ-al (2.36) 

~< C[(A')  ~+' [ exp t - : t  J20ao t - ~ S  ~A'edt]+(A')-Sh]T(Q). 

Thus suppose D meets {Izl=A'e}. Lemma 2.1 ensures that if D also meets 

{Izl~<10Ap}, then DcLI {D}i. Thus the harmonic means inequality [15, p. 108] and 

(1.24) show that if Izl~<10Ae, then 

tO(Z, I a, o, D A 92') <<- C(A ' /A ) -(~+3) ~ (A')-~-2 (2.37) 

for all but at most 2~+6=Q(2) components D of LI {D}i O 92'. We use (2.37) and (2.35) in 

(2.36), and then (2.36) and (2.33) in (2.32). Thus, if ID(r)l is the angular measure of 

D A {Izl--r}, we find using (1.24) and (2.32) that in the components D for which (2.37) 

holds [and in particular for all D's which do not meet (Izl=A'o}] we have 

X X m(r, a i, D) <~ log e- '  X ID(r)l + C(A')-' T(q) ~ ID(r)l + C(A')-Sh T(e) < C(A')-Sh T(~) 
i D D D 

((10A) -l O < r <  10A0), 

since h<l~ in (2.8). This proves (2.31). 

Each circle {[zl=r} with large r must meet D's from at least two @i, since q~>2. Let 

D be a significant component, so in particular D is a component of 92' O U {D}i. We 

have constructed the {D}i in Lemma 2.1 to be simply-connected in {Izl<A'o}. Suppose 

now that a component of D O of D A {(10A) -~ o<lzl<10Ao} were not simply-connected. 

Choosej#:i, and let ~ be the components of ~j which meet {[z[=(10A) -l 0}. Then for 

large r, (2.31), (2.8) and (1.24) show that 

m((lOA)-' O, aj, ~j) >I ~(aj) T((IOA) -1 Q ) - C ( A  ') -5h T(Q) 

>t C{A-I~ -Sh] T(O) 

>>- CA-lOb T(p). 

However, D O prevents any D of ~ from reaching {Izl=A'o}, so the right side of (2.35) 

vanishes, and this simplifies (2.36). Thus the analysis of (2.32) leads to 
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m((10A) -~ 0, aj, ~j) <~ C(A') -sh T(Q) (j * i). 

By combining these last two inequalities, we would have a contradiction to the 

understanding of (1.24) that (A')-I<(A) -~. This contradiction completes the proof of 

Lemma 2.3. 

COROLLARY 1. For l<~i<~q, let ~i be the union of  the QQ.) significant tongues D of  
2[' described in Lemmas 2.1 and 2.3, and let 

l fO 2:t S~i(r) = -~n n~(r, ai+ e e i~ dO, (2.38) 

where nei(r , ai+ e e i~ counts those solutions to f(z)= ai+ e e ~~ which arise from points of  

ON r Then 

r 

Se,(t)t-~dt-6(ai) <C(A')-4hT(Q) ((10A)-~Q<r<IOAo). (2.39) 

Proof. Let ~in{IZl-----r}----U(am(r),Bm(r)). Since If(z)--uil=e on 09,., the Cau- 

chy-Riemann equations and the argument principle give (cf. [4, L e m m a  1]) 

2:trdm(r ,  a i ,~ i )=loge- lEr{ f l ' -a ' }+ZAa, (r ) .# , , ( r ) (arg f l -~ i  ) 
dr m 

= log e - 1 Z  r{fl ' -a'}+S~,(r)+n(r,  oo, @i)-n(r, ai, ~i) (2.40) 

-EAa,.((a,)-,o),~,.((A,)-,o)(argfl_-~i) �9 

Now 

f A dr O~-a'.,) <~ 4zt, -1~ 

e tends slowly to zero as n---~, and we also have (2.11) and (2.13). Thus we deduce 

(2.39) on integrating (2.40) from (A')-lO to r and recalling (1.24), (2.8), (2.13) and 
(2.31). 

Remark. Note that (2.40) may be applied to any collection of components D such 

that If(z)-aA=e on each aD. Thus for l<i<~q, let S~i(t) be the residual covering of 

{Iw-a;l=e}. This refers to the contribution to the total covering S~ (cf. (2.27)) which 
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is not included in S~,(t) in (2.39)nor in S~(t), the contribution from simple islands in 

{Izl<t} (this is estimated from below in (2.14) and above in (2A)). Thus (1.8) [or (1.11) 

with e= 1] and (1.24) give the 

COROLLARY 2. The residual coverings S~i satisfy 

8ao ~ S~i(t) t -1 dt <. C(A ') -3h T(Q), 
�9 ~ i=1 

faao Z n(t, ai, ~i) t-m dt <- C(A') -3h T(~). 
i 

(2.41) 

(2.42) 

Proof. The previous paragraph justifies the following lines: 

fsao S~(t) r I d, = f8Ao [S~ t -1 dt 

<-CT(8AQ) [q+(A')-Sh +(A ')-4h-- Z 6(ai)-(q-2)+6] 

<~CAZ+I(A ') -4h T(Q) < C ( A ' )  -3h T(Q) ,  

which is (2.41). 

Inequality (2.42) is a consequence of (1.24), (2.13) and (2.19). Thus, let ns(t, ai) be 

the number of solutions to f(z)=ai in simple islands in {Izl<t}. Then 

Z [n(t, ai)-n~(t, ai) ] t -l dt <<. N(8AQ, ai)-(q-2) T(8AQ)+6T(Q) 
Jl 

~< 26T(~) < C(A')-3h T(Q). 

Remark. Because of estimates such as (2.41) and (2.42), we let k(r) be a generic 

non-negative function such that 

f aae k ( t ) d t  < T(p). (2.43) t - I  c ( m  ') -3h 
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3. The Decomposition Lemma 

3.1. A negligible grid. Lemma 2.3 will be combined with Lemma 3.1 below to study 

value-distribution by means of  the argument principle. I f f  # is the spherical derivative 

o f f ,  (2.17) becomes  

f f~(z) dr dO < T(r) 1/2+h (3.1) 

for large r. An immediate consequence of (3.1) and (1.24) is 

LEMMA 3.1. Let r be a positive number. Then for n sufficiently large, the P61ya 
peak annulus 91' (cf. (1.9)) may be sliced by a grid 

<g=[{r~},{O,}] ( l~<a~<a, ,<oo,  l<~fl<.fl  <r (3.2) 

with 

such that 

r <  IOa+l-Oal < 2r  (1 ~<fl <~fl,-1) (3.3) 

r < 1(01+2:r)-Oa,] < 2r, (3.4) 

ra+l  
< log < 2r, (3.5) 

r e 

- r  < log rl < 0, 0 < log re" < r (3.6) 
(A')-I • A' e 

~ f o  IfC~(raei~ a"[f#(rei~ z~ dr <~ T(Q)2/3. 
# r 

(3.7) 

In fact, Lemma  3.1 holds so long as rn>(A',) -~ in (1.24). 

These sets {Izl--ra} n 91', {arg z=O~} n 91' comprise what we call a negligible loga- 

rithmic grid. Note  that if E is any subset  of  91', then E may be surrounded by a set E~, 

such that 

8E~ c ~, (3.8) 

and (d=non-euclidean distance with respect  to the metric r-~ldzl) 

d(SE~, BE) <. Cr. (3.9) 
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Although the (logarithmic) separation of the sides of the grid approaches zero as r ~  oo, 

there are limitations to the rapidity. For example, iff(z)=e z, no 0a can be too near 

___:r/2, since the spherical length of {Izl=r} n {argz=+~r/2} is proportional to r. 

Lemma 3. I will be used with the particular choice 

r = o 5, (3.10) 

and for this choice of r, we study our function f relative to a special network of 

(logarithmic) rectangles. A logarithmic rectangle centered at Zo of (logarithmic) side- 
length 20 is defined by 

{ log z~[  arg(-Z~] } 

where Zo E 9~, 

Io ' -al+lo"-ol  < 3O5 (3.12) 

and z~ is chosen so that (for some branch of logarithm) 

log (z~)  [ < 2 o  5 (3.13) 

and, with ~ the grid of Lemma 3. I, 

0Bo c ~. (3.14) 

If B is a logarithmic rectangle in the sense (3.11)-(3.14) and k>0, then kB is a 

rectangle similarly defined, except that (3.12) is modified to 

Io ' -kol+ld ' -kol  < 3O5. (3.15) 

The slight inaccuracy of thinking of z0 as the center and of 20 (resp. 2ko) as the side- 

length of B (resp. kB) when only (3.11)-(3.15) are true is compensated by (3.14). 

3.2. The Decomposition Lemma (Lemma 3.2). We now use the s=Q(2) significant 

components DE t J@; (of Lemma 2.3) to partition almost all of the annulus W. The 

purpose of this is to show that the ~i's divide a large family of regions f2 into 

subregions, in each of w h i c h f h a s  two near-Picard values in the sense (1.16). Lemma 

2.1 shows that all ai and ~ are near-Picard in the ~;, but the analysis in W - U  ~; is 

more subtle and depends on properties of plane sets. 
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DECOMPOSITION LEMMA 3.2. There exists a union of  Q(2) rectangles Bo so that if  

B* = U Bo, (3.16) 

then the subset 91" of 9/defined by 

91" = 9 1 - B *  (3.17) 

has the following property. Let Q be any region in 9/*, whose boundary relative to 

9/*0 aB* consists o f  Q(2) closed Jordan curves with 

af2 c ~. (3.1 8) 

Then ~ - Q - U  ~i may be partitioned into sets J~(i,j) (=..if(/,j)(f2)) (i~=j, l<~i,j<-q) and 

~-~*=~-~*(f2) so that the relative boundary o f  each FE ~ is contained in ~ and U c3~i, 

and 

n(ai, ~(i, j  ))+n(aj, ~(i,j)) < C(A')  -2h T(O ). (3.19) 

In ~*, all values ai are near-Picard in the sense that 

~ n(ai, ~*) < C(A ')-Eh T(0). (3.20) 
i=l 

Remarks. (1) Inequalities (3.19) and (3.20) complement the bounds (2.13) for value 

distribution in U ~i. 

(2) The description of the sets ~(i,j)  and ~ is quite explicit. Thus a component F 

of ~ is assigned to ~ff(i,j) if Q n OF includes portions of a~i, a@j (i~=j) and subsets of 

while aFn 0 ~ k = ~  (k~:i,j). All other components F are assigned to ~-4,. More precise- 

ly, we place F in ~(~)  or ff(i I . . . . .  ip) if (if2 N a F ) -  ~q meets a subset of a~i, . . . . .  a~ip. 

The Decomposition Lemma, is motivated by many examples. For instance, if 

f(z)=e z and Dl={If(z)l<e }, OE---(If(z)l>e-l}, then D 1 and O 2 a r e  half-planes bounded 

by vertical lines. In the region F between D~ and D2, f assumes all values w with 

Ilog Iwll<e but, independent of e, 0 and ~ are Picard values in F. This suggests that the 

Picard values a i correspond to the indices i k such that aFc(Uka~)ik), and "usually" 

there are two such i k, at least in R 2. This is not the case in R" (n>~3), and this difference 

is crucial in the construction of quasi-regular mappings in R" which have a large (albeit 

finite) Picard set [25]. 

We now begin the proof of the Decomposition Lemma. Choose tr>0 and let D be a 
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fixed component of Ll ~i. For each r E aD N 9~', consider a rectangle Bo(~) as described 

in (3.11)-(3.15). 

Definition. A component D' ELI ~i (D'*D) is called adjacent to D (at ~, through 

Bo) if D may be joined to D' by a continuum contained in Bo which (other than 

endpoints) is disjoint from Ll ~i. 

The next lemma is proved by an elementary connectedness argument. 

LEMMA 3.3. Let D' be adjacent to D at ~1 and ~2, and let F(~I, ~1) be that portion 

of  OD N {[zl<A'0) with ~1 and ~2 as endpoints. Let ~ E F(~I, ~2) with 

Bo(~) N [Bo(~l) UBo(~2)] = ~ .  

Then no Dj (Dj~=D') can be adjacent to D at ~. 

Proof. For j =  1,2 let zj be a point of D' which may be joined to Cj by an arc Y1 in 

B(r ~i). Since D' belongs to exactly one component of {Izl<A'e}-D, it follows 

that z~ and z~ are endpoints of a unique arc F' of aD' N {]zl<A'e}.. 
Now F(r r F', Yl and )'2 form the boundary of a Jordan region J whose 

boundary (other than the arcs F, F') is disjoint from LI 9/. Let r and B(r be as in the 

hypotheses the Lemma. I fDj  (=I=D') were adjacent at ~ through B(r then there would 

be a continuum in B(r which connects r to D s. without otherwise encountering D or D'.  

Thus D s. would meet the interior of J. Since we saw in Lemma 2.3 that Dj must also 

meet {Izl=A'o), it follows that D s. must meet a J, and this is a contradiction. 

3.3. Removing rectangles. Choose DELl ~i, and for each D'~=D, D' ELl @g, we 

construct boxes Bo(~'), B,,(~") with r ~" E 9/N aD subject to two conditions: 

D' is adjacent to D at ~', ~" through B(r (3.21) 

further, if F(r r is the arc ofOD N {[z[<A'o} which contains ~' and r as endpoints (cf. 

statement of Lemma 3.3) then 

if  D' is adjacent to D at some r E aD n 91', 

then either ~ E F(~', ~") or Bo(~) fl [Bo(~') U Bo(~")] :4= ~ .  
(3.22) 

This may be achieved in the following manner. We consider all components D' which 

are adjacent through (at least) two distinct rectangles B(r B(r with r and r in 
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U 0D. Now each D of U ~i is a component of 92' which meets {[zl=A'~}, and thus ~1 

and ~z are always in the same component of OD n {Izl<A'o}. 
Under the ol~vious ordering of points on 0Dn {[zl<A'Q}, we may assume that 

r By choosing ~' close to inf~l and ~" close to sup ~2, we obtain (3.21) and (3.22). 

To each ordered pair D, D' thus corresponds at most 2(Q(;t)-l) such rectangles, and 

thus Q(2) as D and D' vary. We replace each of these Bo by the similar n30, and let B* 

be the union of these. Finally, B* is the union of B~' with compact components of 92-B~' 

and those noncompact components of 92-B* whose closure meets only one component 

of 092. Then B* is also a union of Q0-) rectangles whose (noneuclidean) area is 0(02). 

The set 92", defined by (3.17), is connected. 

3.4. The Decomposition Lemma in an ideal case. 

LEMt, IA 3.4. Let F be a union of  regions in {~-~e<lzl<2Ae}-[n* u (U ~i)], each 

component o f  which is bounded by portions of  O~iUa~ j (where i:#j) and a subset F o f  

~. We assume that F consists o f  Jordan curves or Jordan arcs, each o f  whose 

endpoints lies on a~iUO~ J. Then as A'---~oo, we have independent o f F  that 

~ n(r, a k, F) >- (q-2)  S(r, F)+n(r, ai, F)+n(r, aj, F)-C(A')  -3h T(Q)-Ce -1L(r)-k(r) 
1 

(3.23) 
(-~A-I(~ < r < 2A•) 

where L(r) is the length on C* o f  the image of  {Iz[=r}, and k(r) satisfies (2.43). 

Remark. For each pair (i,j), the set F so described may consist of many compo- 

nents. 

Proof. Estimate (3.23) follows from the argument principle applied to the function 

(f(z)-ak) - l  (where k:#i,j) in the region F(r)=Fn {[z[~<r}. 

Choose ak:4=ai, aj and consider 

1 
Aoe(r ) arg f-a-----~' 

with ~-zA-~<r<2Ao. The key estimate is that 

I ' Ase(~)argf_--~ < C[(A') -3h T(o)+e-lL(r)+k(r)] (-~A-1LO < r <  2Ap). (3.24) 
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On the level:sets {If-ail=e}, {If-ail=e}, we find, using the notation suggested by 

(2.26), that the change in arg(w-ai) and arg(w-aj)  is at most S~(4A~) or S~(4AQ). 

Thus since ak~a~, aj, this means that on these level-sets larg (f-ak) I changes by at most 

Ce[Si(4AQ)+Sj(4AQ)] <~ CeT(8Ap) <~ CeA~+IT(Q) = o(1) ( A t )  - 3 h  T (0  ) (3.25) 

since we have (1.24). 

It is next necessary to obtain a bound similar to (3.25) for the change of [arg ( f -ak)  [ 

on al(r ) (where we set a~(r)=aF(r)-(O~iUS~j) ). Let (Oak} (=Oak(r)) , (tJa~'} 

(=LI a~(r)) be those subarcs of01(r ) on which, respectively, If-akl<e or [f-akl>e -1, 

and let {fl} (=fl(r)) be the complement of the a 's  relative to al(r). The length of the 

image of al(r ) is at most L(r)+CT(o) 2/3, since Ol(r)c~gU {{zt=r} and (3.7) holds. In 

particular, this gives that 

Z IAt~arg(f--ak)[ < Ct-I(L(r)+T(g) 2/3) (r>-~A-'g). (3.26) 

We next show why 

2 IA~karg (f--ak)[+2 IA~I arg (f-ak)l ~< C(A') -3h T(o)+k(r) (r >-~A-IQ), (3.27) 

2 1A arg ( f -  ak) [ <~ Ce - l(L(r) + T(p) ~3) (r > ~ -  t•). (3.28) 
I* 

Next, if n* is the number of arcs I in U ak which are not in I*, then the image of 

each I has spherical length If(I)l at least Ce, so (2.17) and (3.7) give that 

by considering the first sum of (3.27) and leaving the analogous estimate of the a~ to 

the reader (this latter discussion is a bit simpler, since by hypothesis 6(00)=0). Since 

Fcg~ ' - t2  ~i and the components of aF  are closed Jordan curves, or Jordan arcs with 

endpoints in a~it ja~j ,  it follows that the a k are cross-cuts I of preimages D of 

{Iw-akl<e) which are not among the significant components of ~k. (It is to ensure that 

the a k be cross-cuts that we require that F consist of Jordan curves or Jordan arcs, 

whose endpoints are in U 0~i.) 

There are two possibilities. First, let I*=I* be those arcs I such that If(z)-akl>�89 ct k 

for all zEI.  Then exactly as in (3.26) we have 
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en* ~ C ~ If(I)l ~ C(L(r)+ T(0)2/3). 

Now if I is also contained in a simple island Ds o v e r  {Iw--ak]<e}, the argument 

principle shows that ]Alarg(w-ak)[~<2~, so the total contribution from these I 's  

satisfies 

A I larg ( f -ak)  t ~ Ct-l(L(r)+ T(0)2/3). 
I ~ O D  s 

(3.29) 

Another idea is needed to estimate the contribution to (3.24) which comes from the 

[ 's of {ak}--I* which are not cross-cuts of Ds's. Instead, these l ' s  are cross-cuts of 

residual coverings ~k which were introduced at the end of Chapter 2 and satisfy (2.41) 

and (2.42). Thus (2.41), (2.42) and the argument principle show that 

A I [arg (f--ak) [ ~ C(A') -ah T(Q)+k(r), (3.30) 
I E ~  k 

where k(r) satisfies (2.43), and (3.27) follows from (3.28), (3.29) and (3.30). Finally, 

(3.24) follows from (3.25), (3.26), (3.27) and (1.24). Since there are (q-2)  choices of 

ak4:ai, aj, (3.24) yields that 

n(r, ak, F) >- (q-2)  n(r, oo, F)-C(A')  -3h T(o)-Ce-lL(r)-k(r).  (3.31) 
k * i , j  

This is (3.23) once we derive the general result: if a F - ~ c { a ~ i ,  . . . . .  Q/k }, then 

In(r, a, F)-S(r ,  F) I <. C(A') -3h T(p)+Ce-lL(r)+k(r) 

in particular, since here OF-~cONitJONj, (3.32) holds for a = ~ ,  and we use (3.32) 

(with a = ~ )  in (3.31) to get (3.23). 

We now prove (3.32). To compute S(r, F), let C # be the sphere with the discs 

Iw-ail<2e~/2 deleted (l<~i~q). It is not hard to see that we may replace a k by a (a E C #) 

in the analysis of (3.24) and deduce 

(3.33) 

(a E C #, ~,A -10 < r < 2AQ); 
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the only modification is that here e is to be replaced by e 1/2, but (1.24) implies that this 

makes no difference in the final bound. Next,  if a ~ C #, the first fundamental theorem 

implies that n(r, a, F)<.CT(A'Q)<.C(A') ~+1 T(Q). The spherical area of such a ' s  is O(e), 

so the contribution to S(r,F) from the complement of C ~* is at most e(A') ~+1T(Q) 

This, (3.33) and (1.24) give (3.32). 

COROLLARY 1. Let F be as in Lemma 3.4, except that aFc[a~iU ~ .  Then 

~ n(r, ak, F) >I ( q -  1) S(r, F)+n(r ,  a i, F)-C(A')  -3h T(Q)-Ce-lL(r)-k(r) 
1 (3.34) 

(-~A-lQ < r <  2AQ). 

Proof. All that need be observed is, since there are (q-1)  choices of ak~ai, the 

sum (3.31) becomes 

Z n(r, ak, F) >I (q -  1) S(r, F ) - C ( A ' )  -3h T(g)-ce-lL(r)-k(r)  
k * i  

and (3.34) follows as did (3.22). 

C O R O L L A R Y  2. Let F be as in Lemma 3.4, except that we suppose aFc  ~. Then 

~ n(r, ak, F) >I qS(r, F ) - C ( A  ') -3h T(Q )-Ce-lL(r)-k(r)  (-~,A-19 < r < 2AQ). (3.35) 
1 

3.5. Regions F which meet several ~i. We have observed in Remark 2, w 3.2, that 

the set 92" - t9~ i  is a union of components F, where each F is put in a class 

off(i) . . . . .  ff(il . . . . .  it), or ~(~) .  Classes ~(i , j ) ,  ~(i) and ff(~) have already been ana- 

lysed in Lemma 3.4 and its two corollaries. Our next result uses properties (3.21) and 

(3.22) of our construction to reduce the analysis of classes ff(il . . . . .  i~) (with r~>3) to 

these simpler situations. 

LEMMA 3.5. Let ~=o~( i l , i2  . . . . .  ir) for a given r-tuple with r~3. Then J~* may be 

divided into at most r+ ! classes o f  type ~(i), ~(~),  by means o f  curves and arcs from 

the logarithmic grid ~. These curves may be chosen to be Jordan arcs, each of  whose 

endpoints is in LI a~i. 

Proof. Choose F E  , ~ ( i  I . . . . .  it) with r~>3, and suppose aD N 0F:I:~, with D E ~i. 

According to (3.8)-(3.10) and (3.14), each component of aD n a F  may be enclosed in a 
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Jordan domain J whose boundary in 92' is contained in cg and such that (d=noneucli- 

dean distance) 

d(OJ, OD N 8F) <. C~ = Co 5. (3.36) 

Let 92* be the set described in (3.17), and suppose that the closure of F NJ relative 

to 92* meets a significant component D" for some D"*D, with D"E U ~j. According to 

(3.36), D" and D may be joined within some Bo(~), with ~ E OD N F. Thus some D':rD, 

D' E U ~j, is adjacent to D (in the sense of w 3.2) through some Bo(~0), with ~0 E 8D n F. 

Properties (3.21) and (3.22) guarantee that Bo(~') and Bo(~") satisfy (3.21) and (3.22), 

and so are in the set B* of (3.16). Thus, the portion o f f  inside J is either in ~(i , j )  (if 

J~0  or in ~ 0  (if j=/) .  

This argument may be applied to each D which meets 8F. Thus we obtain Q(;0 

unions of these Jordan domains J which may be divided into r classes ~r which 

correspond to il . . . . .  ir. For example, aCk consists of those J for which the closure of 

F n J  relative to 92* meets only a component DE ~k- The complementary set F - J  is, 

relative to 92", a union of regions whose closure does not meet 8(U @i) and whose 

boundary is contained in ~; this set is an ~(~).  This proves Lemma 3.5. 

3.6. Completion o f  proof  o f  the Decomposition Lemma. (Recall the statement of 

this Lemma as Lemma 3.2 in w 3.2). 

Let f~ be as in the statement of Lemma 3.2. According to (3.5) and (3.10), we may 

choose a sequence r i, l<~i<.M=M(n, g)) with ~A-1Q<.r~<r2<...<ru<~lOAQ, such that 

each circle {Izl=ri}=~, and that each region 

(ri < Izl < ri+l}-s is simply-connected. (3.37) 

Note from (1.24), (3.5), (3.6), (3.10) and (3.14) that we always have M<A2r-I<o -12. 
Since af~c~3U(LlaD~), (3.37) may readily be arranged. We also let r0=(A') -~ Q, and let 

Bp be the annulus (rp-l<lzl<rp}. 

As we observed in the discussion of (2.14), property (3.37) allows Ahlfors's 

estimate (2.14) to be applied in each B p - f L  Thus (2.14) and (3.7) give that 

E n(r, ai, Bp-g2) >>- (q-2) S(r, Bp-ff2)-hL(r)-L(O(Bp-Q)) 

>t (q-2)  S(r, Bp -~ ) -hL( r ) -CT(o )  213. 
(3.38) 
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Consider next the value distribution in f2p=-Bp N g2. Each f2p-{13 ~i) becomes a union 

of :~(~)'s, ,~(i)'s, and i~(i,j)'s, perhaps, as in Lemma 3.5, by introducing additional 

cross-cuts from qd. Using (3.23), (3.34) and (3.35), we find that 

X n ( r ,  ai, Q p ) ~ X n ( r ,  a i , ~ ) + X n ( r ,  ai,jUk~ ) 

>~ qS(r, ~(~))+ X n(r, a i, ~*(i)) 

j J j * i  i4=j / 

-C(A ') -3h T(o)-Ce-l L(r)-k(r). 

For {[zl<ro} and in the set B* of (3.16) we use (2.14) and (3.7): 

X n(r, a i) >I (q-2)  S(r)-hL(r) (r ~< r 0 = (A') -10), (3.40) 

X n(r, ai, B*) >~ (q-2)S(r,B*)-hL(r)-CT(o) 2/3 ((A') -10 < r<A'o). (3.41) 

We combine (3.38)-(3.41) and integrate with respect to logr from RI=(A')-Io to 

r, where 4Ao<r<8A O. An appeal to (2.17) and (2.43) gives that 

f, E N ( r ,  ai)-XN(R,,ai)>~(q-2) S(t)t-l dt 
! 

+2 S(t, N~))  t -~ dt+ S(t, U Ni)) t -~ dt 
1 1 

J: f. + ~  n(t, a i, ..~(i)) t -1 dt+l 2 X [n(t, a i, o~(i, j )  
I i4=j 1 

+ n(t, aj, ~.(i, j))] t- l d t -  Co-12[(A')-Shn T(O) + T(~o) 213] log A' 

since there are at most a-12 annuli Bp. All terms on the right (other than the last) are 

increasing functions of r. Thus (1.24), (2.1), (2.4), (2.8) and (2.9) imply that 
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~< ~ T(Q) + Ca- n[(A')-sh/2 T(O) + T(Q) ~3] log A' < (A')-2h T(0). 

(3.42) 

Inequality (3.19) is an immediate consequence of this. In order to obtain (3.20), we see 

from (3.42) that we need only show that 

2 n(AQ, a i, ~(~))+ s n(AQ, aj, ~(i)) < C(A') -2h T(Q), 
i j~-i 

but this follows from (3.42) and (3.32). This proves Lemma 3.2. 

COROLLARY. In addition to (3.19) and (3.20), we have 

S(AQ, ~ )  < C(A') -2h T(O). (3.43) 

Further, if S~,(F) is the mean-covering over Iw-ai[=e which comes from a~iOf~, then 

IS ,(F)-S j(F)I ~< C(A') -2h T(e) (FE ~(i, j)) (3.44) 

In(~176 f~)-�89 ~ S~,if~)l ~< C(A') -zh T(O). (3.45) 
i 

Proof. Conclusion (3.43) is immediate from (3.42) and Lemma 3.5. According to 

(2.13), it is only necessary to compute in the various F ' s ,  but i f F  is not an ~(i, j ) ,  then 

(3.20) (relative to Q) applies. Thus (3.44) and (3.45) need only be checked on the 

~r(i, j ) .  Let F E ~(i, j ) .  Then A0e (arg (f-- ak)) is small unless k= i or j and in that case 

the significant effect is from Sei(F) and S@F). Thus if FE ~(i,j),  we have by (3.32) 

(where L(r)=-O) and (3.19) that 

IS~,(F)-S~j(F) I ~< IAoF (arg (f-a;))l + last  (arg (f-aj))l + C(A')  -3h T(q)+k(r) 

~< In( ~,  F)-n(ai, F)I + In(~, F)-n(a i, F)[+n(ai, F) 

dt-n(aj, F) - I -C(A ') -3h T(Q)--l-k(r) 

<-~ c ( m ' )  -2h T(Q), 

and (3.44) follows on integrating from 4A0 to 8AQ. 
In order to obtain (3.45), we observe that estimates (3.25) and (3.26) apply when 

k=i or j,  and, from (3.24), that the only significant contribution to AaF arg ( f - a  i) comes 

3-878288 Acta Mathematica 158. Imprim6 le 10 avril 1987 
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from aFNa~i, where FE~,(i,j). Thus (3.19), (3.20), (3.24) and 

integrating that 

In(~,f~)-�89 ~ S~,(Q)l <<-�89 ~ I(n(~176 
FE ~r'(i, j)  

i~j ~(i,j) 

- } -C(A' )  -2h T (o )  ~ C (A  ') -2h T(0),  

which proves (3.45). 

(3.26) yield after 

4. Applications of local quasi-conformal modifications 

4.1. Introduction. In this chapter we make our first use of quasi-conformal modifica- 

tions. In the z-plane, rectangles Bo(z) (as in (3.11)-(3.14)) were the natural domains; 

now we will also use circular regions A(~o, h), A(~o, hi, h2) and C(~o, h) with 

A(~ 0, h) = (l~-~0l ~< hl~0l}, A(~0, h~, h 2) = A(~0, h2)-A(~ 0, hi), 

C(~ 0, h) = (1r = hl 01} (4.1) 

to simplify many later formulas. 

Let 9~* be as in (3.17) and 

92* = {z E 92", d(z, B*) >- 2tr} (4.2) 

where B* is from (3.16) and d is non-euclidean distance with metric Izl-' Idzl. We will 

study f in rectangles Bo(zo) with z0 E 92*. 

Definition. Let the ~i (l~<i~<q) be the Q(2) significant components off. A rectangle 

B=Bo(zo) (Zo 6 92~ is called admissible (with respect to quasi-conformal modification) if 

each component of B - t J  ~,. meets a~i for at most two indices i. 

I fB is not admissible, then for some i a point ~ ofB N a ~  would be adjacent in B to 

~j. for two different indices j (*i). The set B* in (3.16) has been chosen so that this 

cannot happen if Bc92" (see Lemma 3.3, (3.21) and (3.22)) or in particular if z0 6 92*. 

In w167 and 4.3, we show that quasi-conformal modifications may always be 

constructed in admissible rectangles. This development has two purposes. First, it 
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displays in a simpler setting the main ideas which are needed in Chapter 5 to construct 

modifications of a more global nature. In addition, two results which are important for 

later work will come from our local study. 

The most compelling conclusion is obtained in w 4.7 (Lemma 4. I 1): the set ~ of 

components of 92"-(U ~i) (i.e. those that are not in ~(i, j )  where i*j)  cannot meet 92*. 

This information makes it possible to construct our main quasi-conformal modifications 

(w 5.2) in a simple way, since we will need only consider regions F whose closure meets 

aD i for exactly two indices i. 

In the final section, w 4.8, we will obtain Lemma 4.13 which is needed in Lemma 

7.2 to show that integrals over certain B~,'s are negligible. 

The principle of this chapter is that we may treat logf(z) (after quasi-conformal 

modification) as an analytic function in its own right (see (4.44)). 

4.2. First encounter with quasi-conformal modifications. The importance of ad- 

missibility (introduced in w 4.1) is seen in the proof of 

LEMMA 4.1. Let B=Bo(zo) be a rectangle contained in 92o* where 92* is defined in 

(4.2). 

Then if n is sufficiently 

modification 

such that (for l<~i<.q) 

and 

large in (1.9), we may construct a quasi-conformal 

H(z)= w(f(z)) (zEB) (4.3) 

H(z) = (f(z)-ai)  +-l (zEBN~i) (4.4) 

[un(z) I -- -~z(Z) < r/ (z E B). (4.5) 

Proof. Choose a fixed component Do of Bf~ (LI ~i} with, say D0c~i ,  and let, for 

I 
H ( z ) = ~  (zEDonB). (4.6) 

f ( z ) - a  i 

example, 

Formula (4.6) thus determines H on zero-stage D's. 

Let {F} be the components of B-LI  ~i. First-stage F's  are those whose closure in 
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B meets 01:)o. If  F 1 is any first-stage F, the condition that B is admissible ensures that 

there is at most one j:~i ( j=j (F0)  such that the closure of FI meets a~j in B. In an 

analogous manner, components of B N {t.I ~i} (other than Do) whose closures meet 

first-stage F 's  are called first-stage D's. In turn, their closures determine second-stage 

F's,  and by continuing this process we assign a stage to each F and each D of 

Bn {u 
We next extend (4.6) to first-stage F's.  Let F~ be such a region, thus 

{OF~ N B} c {O~i O 0~j} where j=j(FO~-i (we are assured that such j exists, although it 

will not be unique when F1 E ~(i)) .  Then F1 is divided into (F0| and (FP0 by 

(F , ) |  ! f -aj  > 1 }  
f _ a i  

In order to apply Lemma 1.1, take M ' = I  and M=M~k so large that all ~ojk (l<~j,k~q) 

may be constructed as in Lemma 1.1 with I~uo,jkll| such that (1.23) holds for allj  

and k. 

We then choose n in 0.9) so large that the e, of (1.24) satisfy e<M~ 1 for allj and k 

(this is consistent with the condition e<r / in  (1.24); note from (1.21) that ~ logM~C). 

Once this is done, we can and do define 

 o r (z 
H(z) = [[wii(f(z))]_ 1 (z E (F00)" (4.7) 

A check of (1.23) ensures that H is continuous in the Fl'S, and on ODoNaF~, and, 

further, 
~f ( z ) -a  i (z E OF~ n a~j) 

H(z) = I. [ f ( z ) - -a i ]  -1 (Z ~ OF l N O@i)" (4.8) 

Formula (4.8) makes it clear how to extend H to first-stage regions: H(z)=[f(z)-ai] -1 

(z E D ~-~i) or H(z)=f(z) -a  s (if z E D c ~j,j4=0. This places us exactly in the situation we 

confronted when attempting to extend (4.6) to first-stage F's,  and so 'now H may be 

extended to second-stage F 's  so that formulas such as (4.8) hold at points in the closure 

of second-stage D's. By continuing this process, H becomes defined in all of B. 

It is clear that H is of the form (4.3), where we take w(w)=w-a i  or (w-ai)  -1 

when w=f(z) with zELI~ i f lB  , and to=too((w-aj)/(w-ai))(w=f(z),zE(Fl)~) or 

tO = {WO,((w--ai)/(w--aj)) } -  1 (w=f(z), Z E (Fl)o). 
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Assertions (4.4) and (4.5) may be readily verified. For example, (4.4) follows from 

formulas of the nature (4.6) and (4.8). Also, (4.6) and (4.8) show that /tH=0 for 

zE {t.I ~i) nB. I fz  is in an F, then since (4.5) follows from (1.18). 

Remarks .  If BN{td~i}=~,  we take H to be any of the functions (f(z)-ai)/  

(f(z)-aj), for any distinct i andj .  Note that once a component Do is chosen, and H is 

defined as in (4.6), then H is uniquely defined on all of B if ~ n B = ~ .  By this we mean 

that there is no subdomain of B - t J  ~i whose boundary consists of portions of ~ and 

arcs of 09; for r~=2 indices i [see Remark 2 of w 3.2 which follows the statement of 

Lemma 3.2]. 

4.3. A nearly-equivalent meromorphic function. Standard methods allow the func- 

tion H of Lemma 4.4 to be replaced by a nearly equivalent (genuinely) meromorphic 

function; this depends on solving a Beltrami equation. 

LEMMA 4.2. Let H and B be as in Lemma 4.1. Then there exists a homeomorphism 

of  the plane z=~(~), such that i f  ~'=qo(z), then the composition 

G(~) = H(q0(r (~ E ~p-~(B)) (4,9) 

is meromorphic in ~p-I(B). Further, by choosing An and 7 appropriately (consistent 

with (1.24)) we may arrange that 

I~P__~_I] ~<),1o ((30A)-IO<IzI<3OA~). (4.10) 

G has 0 and oo as near-Picard values in ~p-l(B) in the sense that 

n(0, G, ~p-~(B))+n(o~, G, ~p-1(B)) <~ C(A') -2h T(O). (4.11) 

Each set ~p-l(Bo(zo)) contains the disc A(z0,~r). 

Proof. Define v in B by 

H~(Z) to w f '  ) 
- ( f ( z ) ) ~  (z E B) 

v(z) = Hz(z) tow J (z) 

(the right equality used (4.3)) and extend v to the full plane by taking 

v(z) - 0 (z I~ B). 

(4.12) 

(4.13) 

Thus Ilvll| < ~1. 
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Consider the Beltrami equation 

~p~(z) = v(z)~z(z) (Iz I < ~) (4.14) 

where ~ is to fix 0, Q and ~.  Then [2, Chapter 5] there is a unique solution, ~=~(z), 

which is a homeomorphism. The function tp(~), which is our real interest, is the inverse 

function to ~. Our assumptions ensure that both ~ and ~v are (l+t/)/(1-~/) quasi- 

conformal mappings of the plane. 

If G is defined by (4.9), a computation [2, p. 9] using the chain rule shows that 

G ( - 0  a.e. and so G is meromorphic. 

We achieve (4.10) in an elementary manner. Consider the family of functions 

�9 (~)=@-ltp(~) as B and v vary, subject to B meeting the hypotheses of Lemma 4.1 and 

[Iv[[| Then if the r/n---~0 sufficiently rapidly, and 7,---~0 and A,---*~ sufficiently 

slowly (cf. (1.24)) we may apply normal family considerations to the family {qa}, and 

deduce (4.10) since the ~ ' s  tend to the identity map. 

Formula (4.9) shows that (4.11) depends on a similar bound for the zeros and poles 

of H in B itself. However in the components of BN {U ~i), H(z)=[f(z)-ai] +-l, so the 

zeros and poles of H for such z are controlled by (2.13). Since B is admissible and 

satisfies (3.18) (with f~=B), the components F of B - U  ~i may be apportioned to 

classes :~(~), a~(0, ~(i , j )  relative to B, much as described after the statement of 

Lemma 3.2, depending on the indices j such that the closure of FNB meets a~j. If, in 

this classification, FE ~v(i,j) (with i . j )  then (4.7) shows that the zeros and poles of H 

in F are among the ai and aFvalues of f i n  F: thus (3.19) gives the bound (4.11) in this 

case. If, however, F E ~ r  {~g(~), U ~(i)} then (3.20) applies and so does (4. I 1). 

That A(z0, ~r)ccP-l(Bo(zo)) follows from (4.10). 

4.4. Local logarithmic means. For each z0 E 9~*, Lemmas 4.1 and 4.2 produce a 

modification G(~) in each disc A(zo, ~r). We now consider of the functions log Ia(~)l on 

circles C(zo, t), where o 3 < t < ~ .  

We begin by making some calculations concerning the behaviour of f i n  the various 

~i, where the ~i are from Lemma 2.3. These computations play an essential role in our 

work but the reader may pass over this section to w 4.5, and refer back to results here 

when needed, as this section is very technical. Our analysis uses a (non-euclidean) 

proximity function 

1 ~ loglf~(z)ldarg(z-Zo) (4.15) mz~ = T~ Jc(zo, t) 
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<<.CAa+IT(Q) 

sup ~o(z, I R) 
zEDnC(zo, t) 

(zEDNC(zo, t),o3 < t < 1), 

and (4.17) follows on summing over all Q(2) D's of ~ i .  

LEMraA 4.4. Let Zo E 91", and let G(~) be the function of Lemma 4.2, which is 

therefore meromorphic in A(z0, t) for all t<<.~o. Then 

Ilog IG(~)II U - l  du do - 2  mzo(t,f,') t-I dt 
(z0,s,s 2) ~s~ (4.20) 

1" S "l 1/2 <-CA~+'T(o)~Iog-~ {(A')-3h+~2+C(t])} (o3<sl~S2~CSl~�89 

{fl(z) (z E ~i) f/(z) (Z ~ ~ i )  ( 4 . 1 6 )  

In these calculations we use the local polar coordinates 

Z-Zo-- tlz01 ei~~ ~ - - ~ 0  = ul~0l eiv. 

LEMMA 4.3. Let zoEgA. Then for l<~i<~q 

mzo(t,fii) <<. CAa+IT(Q) (�89 3 < t <  1). (4.17) 

Proof. Let zEDNC(zo, t) with D a component of {If(z)-ail<e} and DE~i. We 

study f,. in D by the formula (2.32), with f~ the annulus {(A') -10<lzl<R} and R chosen 

with 20AQ<R<3OAQ and such that (cf. (2.10)) 

sup 2 [log [f(z)--ail [ <~ CT(4OAQ) <<. CAa+IT(Q) (Izl -- R). (4.18) 
z I 

Then (Ao)(o3lzol)-l<~CA2a -3, so (1.24), (2.13), (2.28), (2.36) and (4.18) (with R in 

place of A'Q and the trivial bound to-- < 1) give for z E Dc~i  that 

fc dv <~ 1 + ,)-5h log (CAEa -3) log If (z)l log C(A T(O) 
(z 0, t) e 

+CA'+IT(o) (4.19) 
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where in (4.20) and below, CO1) is a generic function with 

C(rl) <<. Cr[ ~ (4.21) 

for some eo>O. 

Proof. Inequality (4.20) follows from two similar inequalities which use the func- 

tion H(z) of (4.3). We first prove the stronger assertion that for each t, 2~<r3<t<~r, 

Ifc(z o, t) 'l~176 ~C(A')-3hT(Q) (l~~ (4.22) 

In the various ~i this is immediate by, for example, (4.6), for log ]HI= +log ~l in the ~i. 

Consider now a region 5~(~), ~(i) or 5~(i,j) of Bo(r in such a region, H is defined by 

formulae such as (4.7) (where always jaci). In these frO's, we have that either 

~<ln(z)l<~-' or that log lH(z)]=+log + {1/If(z)-ail } or +log + {1/If(z)-ajl }. The inte- 

grals over the sets where [loglHll<loge -~ may readily be absorbed into (4.22), since 

(1.24) shows that (log T(O,))-I <e <(A ') -l. Otherwise we have that z is in a component 

D ~ U ~i, and so (2.31) allows these contributions to .[ log I/-/] to be absorbed into (4.22).' 

More interesting is that if o3<s]<~s2<<.Cs~<<.~r, then 

Ira Ilogln(z)llt-' dtdcp- f Ilog IG(r u-' dudv 
(r sl, s2) JA(~o, sl, s2) 

( S )1 /2  
~< C/log-~2 ~ {y2+C(rl)}a~+lT(e) 

(4.23) 

where now, unlike in (4.22), we need an area integral. In order to prove (4.23), we need 

further information about ~p than we have used to obtain Lemma 4.2 (recall that 

~p=q0-=). The Jacobian of ~p is [2, pp. 33, 27]. 

J = Iv, z l2-1~l  2 = (1  + C(r/))i~ozl 2 (4.24) 

where we are using (4.14), and C(r/) is as in (4.21). According to [2, p. 92], the function 

h(z) --- q'z- 1 (4.25) 

is in Lp(C) and 

Ilh(z)llp ~ < A p e ~  ~/2 ( I  < p <  oo) (4.26) 
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where A v is a constant which depends only on p (this is because the theory of [2] 
applies to the normalized function Q-I~(Q-~z)). 

When changing local variables, we have that 

u du dv = Jt dt dq9 

where J is as in (4.24). Now (4.10) implies that 

zE A(~r3,�89 so we find using (4.10) and (1.24) that 

(4.27) 

Iw(z)-W(Zo)l>>.�89 Zol>~o~IZol if 

z-zo 
W(z)-W(Zo) zl,  lzo{ 

1 
~< I(1+ e~(z))-(l + ~2(z))l (Izl + Izol) 

I~(z)-,/,(zo)l 

~<Co-3y 1~ = Cy 7 (z E A(Z o, �89 3, 1)) 

(4.28) 

where el and e 2 are functions which are of order ylo. Since tlZol=lZ-Zol and 

ullp(Zo)l = I~p(z)- ~P(zo)l, we h a v e  

f(~) Ilog IH(z)ll ~ ig~(z)_ ~(Zo) [tl~O(z~ t-2jt dt dq~ 

I z_zo 
(A) I Z0 [ ~O(ZS--~(Zo) Jt-ldtdcp" 

According to (1.24), (4. I0), (4.24)-(4.26), (4.28) and the convention (4.21), this means 

fall~162 dudO- I  II~ dtdcpl 
Sr (4.29) 

P P 

~< [Q,7+ C(r/)] J~a)Ilog In(z)ll t -1 dt d~o+C J~ta)(Ihl+lh21) Ilog In(z)ll t -1 dt d~. 

Thus, the discrepancy in (4.23) is due to two factors: 

(I) the right side of (4.29) is not zero 
and 

(II) qg(A) is different than A. 
We first show that if a>~o 3 and a<fl<Ca<~r, then 
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fa(zo, a,#) { ~ I1Og Ifi(z)ll + II~ IH(z)ll) { Cy7 +C(r])+C(Ihl+lh2[)} t-I dt dcp 
(4.30) 

<~ C(log f l  } l/2 {r7 +C(rl)) aa+'T(p ). 

There is no problem to obtain this bound for the terms Cy 7 and C(~/) since the means of 

Ilog IJSII and Ilog IHII satisfy (4.17) and (4.22). However, we do not have a uniform bound 

(p=oo) for the functions h and h 2 in (4.30), so we need Lp forms of (4.17) and (4.22) 

withp near 1; we then take p' near oo and use the fact from (1.24) that ~/in (4.26) will 

overwhelm all A's, ?'s and o's. 

We thus claim that there is a p0>l such that if l<-p<~po, 

i <<-CAX+'T(Q) 
(4.31) 

where C does not depend on p. To see this, we first observe that it is possible to bound 

H(z) by 

M 

Ilog In(z)ll-< Clog l  +CAa+ lT(e)+ ~ gn(z, z~) (4.32) 
e 

where g2--{(A')-IQ<IzI<R), R is from (4.18), and such that the number of Green 

functions which appear is M<~C(A')  -2h Z ( o ) ;  this bound on M follows from (4.11). For 

let zEA(zo, t) with zE~iU~(f3)U;~(i)U~(i,j) for some i and j, with i#=j. Then if 

Ilogln(z)H>loge -~, it follows that H(z)=(f(z)-ai) +-l or (f(z)-aj)+-k Thus we use 

(4.18) and find that 

M' 

Ilog In(z)ll-< log 1 +ca~+lT(o)+log+ if.l+log+ ifjl+ ~ g~(z, z~) 
e v=t (4.33) 

(z E A N [~i U ~(~)  U ,if(i) U ,if(i, j)]) 

where M'<~C(A') -2h T(Q). Since (2.32) and (4.18) give for each i that 

M" 

Ilog Ifi(z)ll <~ log 1 +CAX+IT(Q) + ~ gQ(z, zv) (4.34) 

with M"<~C(A') -2h T(Q), we deduce (4.32) from (4.33) and (4.34). 
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The Lp-nOrmS of the first two terms on the right side of (4.32) and (4.34) are clear. 

Since we may take r=t~o31zol>�89 9 and R = C A 9  in (2.29), we find from (2.29) and our 

bounds on M and M" in (4.32) and (4.34) that 

( / d <  t~< 1), 

(4.35) 

where the last inequality is a consequence of the understanding in (1.24) that (A') -1 

tends to zero as rapidly as desired compared to o and A-I  (one could avoid this by 

making estimates of Qp in (2.29), but this is not needed). 

The bound (4.31) follows from (4.32), (4.33), (4.34) and (4.35). 

Before we estimate the Lp-norm for h, where h is defined in (4.25), we relate local 

coordinates in the various Bo and A(z0, h) to those of a standard polar (r, 0)-system 

(centered at zero). Suppose o<�89 and I 01=s0 . For the moment, write z = r e  i~ Then our 

systems are related by: z-zo=tlr ei~=rote i~~ with Jacobian ro 2. Thus 

t -~ d td9  = t-2{tdt dq~} = t-2{ro 2 rdrdO} = (r/tro) 2 {r-' drdO}. (4.36) 

Now we consider the bounds on h. We first use (4.26), (4.36) and the assumption 

that a > ~  3 to deduce that 

fa(z0, a,~, ]h(z)lP' t-~ dt dq~ <<. Co-6ro2 f Ih(z)lP' t dt dcp 

= Co-6p2ro2f ]h(Z)] p' d X d Y  (Z = X + i Y =  p-lz  = Q-l(w+zo)) 
.I  

Co-6A 2(mp, 17 l/2)p', ( 4 . 3 7 )  

and a similar estimate will follow for h 2 since Ilh2llFllhll~p. (The penultimate term in 

(4.37) simply reduces h to the normalized form covered in [2].) 

Inequality (4.30) follows from (4.31) and (4.37). For example, we may choose 

l<po<2, l<p<p0 and p'=p/(p-1)<oo.  Then we obtain from (1.24) that 

'h"'t-'a'@ 
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CA' +IT(Q) {Iog- }I/P(a-6/p'A2/p'Ap, r] 1/2) (4.38) 

<<. C(rl) T(o) {log- } 1/2 (�89 <-- a < fl < Ca < �89 

This shows how we handle (I). To resolve the complications in (II), we note from 

(4.10) that ( tp (A) -A)0(A-9(A))  is contained in narrow annuli s'l<sl<s' ~, s~<s2<s ~, 

with 

S" S" 
log ~ +log ~m ~< cylO. (4.39) 

s6 

Thus we may use computations such as (4.29) above, with a=s I or s6 and fl=s'( or s~. 

Then a>�89189 3 and the factor {log(fl/a)} v2 in (4.30) is at most Cy 5, so this may be 

absorbed in (4.20). We omit the details. 

We record from (4.17) and (4.20) that 

fA ( /~ "~ I/2 (Zo, a,#) Ilog [G(~)[] u-I dudv<~ CAa+IT(p)/loga~ 

(4.40) 

4.5. Talcing logarithms. We next introduce an " impor tan t"  error term; it is an 

error term because of (4.43) below, but important since it allows us to take a logarithm 

in (4.44). 

Thus, let P(~) be a canonical product 

~r(1 -~/  b ,) 
e(~) = (4.41) 

~z(1- ~/a n ) 

whose poles include the zeros of G and whose zeros contain the poles of  G. We assume 

for all n that 

(20A)-I0 < la.I, Ib.I < 20ae  (4.42) 

and that 

n(O, p)+n(oo, p) <~ C(A') -h T(Q) (4.43) 

((4.1 l) shows this is possible). 
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LEMMA 4.5. Let P be as in (4.41)-(4.43) and let 

1 
L(~) -- T--~ (log G(~)P(~)), ~ E A = A(z0, 2~r) 

where the branch is chosen such that 

larg G(r + larg P(~*)[ ~< 4:t 

for some point r of A(z 0, 3!a). 

Then L is regular in A and 

fCr IT(e) (Re L(r IG(r dv <~ C(A')-h/2 T(O) 
U) 

In particular, 

45 

and 

(4.44) 

(4.45) 

(co 3 < u < ~<r). (4.46) 

IRe L(r ~< CA TM (~ E ~A = A(z0, ~cr)) (4.47) 

IL(r ~< CA TM (~E�89 = A(z0,41a)). (4.48) 

Although A--,oo, the convention (1.24) allows this to occur arbitrarily Remark. 

slowly; thus (4.48) will be good enough to let us treat the various L(~)--L(~, Zo), as Zo 

varies, as forming a normal family. 

Proof. According to (4.44), 

IT(0) Re L(r Ia(~)ll ~< Ilog Ie(r (~ ~ C(z0, �89 u ~(z0, ~o)). 

It is not hard to combine (1.24), (4.42) and (4.43) with Lemma 2.1 of [18] to show that 

fc 'l~176 ~C(A')-h~zT(e)' (C~ s ~< 1)" 
%, u) 

(4.49) 

Thus (4.46) follows from (4.44) and (4.49). Using also (4.40), we see that 

fCtzo, IRe L(~)] dv < CA ~+ 1 
it) 
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for some u such that 11/12<u< 1. This and the Poisson integral formula 

Jc ( ) 1 R e L ( u d  ~) ue '~  dv+ImL(zo) 
L(Z) = ~ %,,) u e '~  

(4.50) 

together with (4.45) lead to (4.48). 

4.6. Normal families. The next result is a simple consequence of the theory of 

normal families. We first need a definition which is modelled on the classical Boutroux- 

Cartan Lemma ([3], [23, w V.5]). 

Definition. A subset E of the plane has Cartan span h if 

h = inf Z ri 

where the inf is taken over all coverings of E by discs Ci (1~<i) of radius ri. 

This is related to one-dimensional Hausdorff measure, but we do not demand that 

the radii of the covering discs be uniformly small. 

LEMMA 4.6. Let A be the unit disc and let kA={lz[<k}. Let k<l ,  N<c~, e*>0 and 

6N>O be given. Then there exist 61,62 ..... ON-1 such that i f  g is holomorphic in A 

with Ilgll=<l, and i f  for any m (2~<m~<N) we have 

Ig(z)l<.Om_~ (zEkAny) (4.51) 

where y flkA has Cartan span greater than e*, then 

[g(z)l ~< 6 m (z E kA). (4.52) 

Proof. By taking 6N-I sufficiently small, we find that (4.51) implies (4.52) when 

m=N. For otherwise, there would be a sequence 6n (=6N-1,~) tending to zero, and 

g~ such that (4.51) holds for gn, 64 on a ~=),~. As n---~oo, a subsequence of the g~ tend 

to a bounded holomorphic function go, but (4.51) implies that go is zero on a sequence 

with an accumulation point, so go-=0. 

Now that 6N-1 is known, this argument may be repeated with 6s-~ in place of 

6N, and we obtain 6N-2 SO that (4.51) yields (4.52) with m = N - I .  By continuing this 

process, all 6's are produced. 

The particular normal family of interest here is {L(r = {L(~, Zo)), where L is as in 

(4.44) and based on the modification G(~) =H(z), with z E Bo(zo). Our next result shows 



P R O O F  OF A C O N J E C T U R E  OF F. N E V A N L I N N A  47 

that the polynomial factors P of  (4.44) can often play a negligible role in normal-family 

considerations. 

Let Al and A2 be disks with A=A(Zo, 5r0)cAl n A2, where 

ro > co 3. (4.53) 

Suppose we have modifications L~ and L2 in A1 and A 2 where cp(Ai)cBo(zi) 

(i= 1,2), with q0 from Lemma 4.2, and, as in (4.44), 

L;(~) T(O) = log (G;(~) P,(~)) (~ E m i, i = 1,2). 

Finally, we assume that 

{ Bo so(z 1) N Bo.so(Z2) } N ~a  = ~). 

(4.54) 

where ~~ is determined relative to Bo(zONBo(z2) in accord with Remark 2 which 

follows the statement of Lemma 3.2 in w Thus there is no subregion of 

[Bo.so(zO N Bo.8o(z2)]-t3 ~i whose boundary consists of portions of ~g and arcs of r 4 2 

of the @i- 

where 

LE~tMA 4.7. The functions Gi=Hi(q~,{~)) (cf. (4.9)) may be chosen so that 

G2(~) = G~(~(~)) (~EA) (4.56) 

qb(~) = q~-~(q02(~) ) = ~pl(q02(~)). (4.57) 

When (4.56) is known, then 

R(~) --= {log P2(r PI(~(~))) (T(o))-1 (4.58) 

is holomorphic in A and ( i f  ~o=~p(zo)) 

IR(O-Im (R(r ~< C(A') -hI2 (r E A(r 0, r0)). (4.59) 

Proof. Note from (4.55) and the remark at the end of w 4.2 that the only possible 

ambiguity in the construction of the Hi in Bo.so(z~)NBo.so(Z2) is that /4. may be 

replaced by its reciprocal, so we may arrange that 

Hz(z) = Hi(z) (z E Bo.8o(zO fl Bo.go(z2)). (4.60) 

(4.55) 



48 D. DRASIN 

Thus if ~0=q0i is as in (4.9) and ~ as in (4.57), we see from (4.60) that if ~ E A 1 fl A2, and 

m particular if r E A, then 

G2(~) = H2(92(~) ) = Hl(q92(~) ) = HI(qo I 0 qo~ -I 0 q02(~))= Gl (~ (0  ) (~ E A) 

which is (4.56). 

According to (4.54) and (4.56), for r E A, 

T(~)) L2(r = log { G2(r P2(r } 

= log {Gl((I)(O)P2(~)} 

= T(Q) L~(t~(O)+IogP2(~)-IogPI(~(O) 

= T(O) {L,((I)(O)+R(O}, 

(4.61) 

where R is defined by (4.58). 

Since (4.60) is known, we recall that equations (4.14) which determine ~31 and V:2 

(inverse to ~91 and tp2) agree on Bo.8o(z 0 flBo.so(z2). Thus the chain rule [2, p. 9] shows 

that (I)=~/.}l O ~2 is holomorphic in A, and so is R in (4.61). 

We obtain (4.59) from the Boutroux-Cartan Lemma ([3], [23, w and the 

bounds (4.10). According to the Boutroux-Cartan Lemma, if P is any product as in 

(4.41)-(4.43), then there exists a network of circles Cj of radius rj such that 

2 rJ <~ C(A')-2A-2Q' (4.62) 

and outside the Cj we have that 

IlogIP(OII<~C(A')-hT(p)log(CA3(A')2)<c(A')-h/2T(Q) (~.Cj) (4.63) 

(we are using (1.24) to obtain the last inequality; also we mention that this lemma gives 

lower bounds for - E  log l l-r  and upper bounds for - E  log l l - r  I in (4.41), but 

the corresponding upper and lower bounds are very elementary). 

We apply (4.62) and (4.63) to P2 and PI in (4.58); note that �9 is holomorphic and 

(4.10), (4.57), (1.24) and Cauchy's estimates give that 

1 
1 ( 0 ' ( 0 -  I)[ = - ~  fc (*(~)-~) 

d~l ~< Ca I~ (~ E A(z0, 2r0)), (4.64) 

so that ~ is uniformly Lipschitz. Thus, the image of the Caftan circles C2 of (4.62) for 



PROOF OF A CONJECTURE OF F. NEVANLINNA 4 9  

Pl, after composition by ~ ,  may still be enclosed in a similar network C~ such that 

(4.62) remains true. 

If C1 is the Caftan-network for P1, then (4.63) holds for t'1 and P2 outside C1 O C2, 

and thus by (1.24) and (4.53) there is a region f~, with 

A(z0, 2r0) c Q c A(z0, 3r0) 

such that (4.63) applies to both P1 and P 2  o n  a~'~. By the maximum principle for 

harmonic functions, IRe R(~)I<~C(A ') -hIE T(Q) in A(zo, 2to), and so (4.59) follows from 

the Borel-Carathrodory inequality. 

4.7 The set ~ disappears. The next two lemmas show that the bound (4.48) may 

be significantly improved when :T a N 1 Bo(zo)~=~, where 

Zo E 9.l* N {(3A)- 1 p < ]~[ < 3Ap}, 

and ~ is any region in 92"-{LI ~i} whose boundary consists of the grid ~3 and 

portions of O~i for r4:2 choices of i. (9~* is defined in (4.2).) 

LEMMA 4.8. Suppose Zo E 9.1" N {(3A)- 10<Ir with 

Bo(zo) N {LI ~;} = ~.  (4.65) 

Then if  H, G, P and L are constructed as in w167 we have that 

IL(OI ~< C~ '= (~ ~ ~A -- A(z0, &o)), (4.66) 

Proof. Since log IGI is harmonic in A(zo, ~o), estimate (4.66) is a consequence of 

(4,44), (4.45), (4.49), (4.50) and the estimate 

f~, Ia(01l u-I du do <~ C)'2T(e), Ilog 

where A'=A(z0, �88 �89 However, (4.20) and 0.24) imply that this estimate for Ilog IGII 

follows from 

I~ ' mz0(t,fi) t -l dt <~ C(A') -3h (1 <~ i <~ q), T(e) 

where the J~ are from (4.16). Assumption (4.65) ensures that mzo (t,J~)-0 for t~<~cr, so 

(4.66) follows. 

4-878288 Acta Mathematica 158. Imprirn6 le 10 avril 1987 
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The next results presents another situation in which we may obtain a conclusion 

much like (4.66). 

LEMblA 4.9. Let  zoEgA*N {(3A)-I0<I~I<3AQ} such that 

{ ~  [7 ([J ~ i ) }  nloBo(zo) =~= ~, (4.67) 

where ~ is as described at the beginning o f  this section. Then there is a set }1" in 

A(zo,0.8a) with Cartan span at least (2/3)olzol such that the function L o f  (4.44) 

satisfies 

IL(OI ~< C(A') -hI2 (~E),*) (4.68) 

in addition to (4.48). 

Proof. According to (4.67), there is a z~E~oBo(z o) with ZlEa~i. Let  

B=(99/lOO)Bo(zo). We refer to the four sides of B as the horizontal sides (on which Izl is 

constant but arg z varies) and vertical sides (on which arg z is constant and Izl varies). It 

follows that there is an arc), of 3~ ;N0~*  which joins zl to a point z2 of 3~iN 3B, and is 

contained in B otherwise. With no loss of  generality, we assume that z2 is on one of the 

vertical sides, so that argz varies by at least ~alz0[ on ),. 

On ),, I f (z ) -ai i=e,  and since ) , c a ~  "~*, (3.20) and (3.43) ensure that a r g ( f - a i )  is 

nearly constant on ?: there exists a complex number c with IRe c[--[log e I such that 

[ l o g ( f ( z ) - a i ) - c  I <~ C(A')  -2h T(e) (zE ),). 

Thus (4.4) implies that if H is as in Lemma 4.1, then 

[log H ( z ) - c '  I <. C(A ') -2h T(e) (zE),) (4.69) 

where, by (4.45), Ic'[~<[log el+En. 
Estimate (4.69) is almost what we need, but has the disadvantage that the branch 

of log H is taken on ),, and since there is no a priori regularity of ),, there is no obvious 

way to directly control a rgP  on all of ),, where P is from (4.41). 

We deduce a bound for [logP(z)l, similar to that of (4.69), on a substantial subset 71 

of y. We have assumed that )' " e n d s "  on one of the vertical sides of 31t. Let  ),* be one 

of the horizontal sides on aB, say the one on which Izl is smaller, and for each CE),*, let 

z(~) be the point of  y which may be " s e e n "  from ~: argz(r ~ and the segment 

F(~) = {teia; a = arg ~, Ir ~ t < Iz(r 
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is disjoint from y.This collection of these points z(r forms a subcomponent yl of 7, and 

also has Cartan span at least ~olz0[, since z(~) exists for r E an arc of aB which lies below 

zl and z2. Since ylcT,  (4.69) persists on 7. 

Finally, let {C/} be the Cartan.circles of (4.62) and (4.63) which correspond to the 

factor P in (4.44), and let y2=y~-{Ci}, so that (by 4.62)) 72 has Cartan span at least 

~oiz0[. Of course, (4.63) implies that [log IPl[ is uniformly small on 72. We claim, further, 

that if z=z(~) E 72, then 

largz-argzEl<~C(A') -h T(g) (zEy2). (4.70) 

This is proved by first constructing a path Fz< O from z2 to z=z(~), which consists of a 

portion of the vertical side of aB which contains z2, a portion of ~,* and F(~). There is 

another path which connects this pair of points: the portion of 7 (which we call ),(~)) 

between Z2 and z(r Then F-y(~)U Fz( O is a closed curve, so the argument principle 

and (4.43) yield that [ArargP(z)[<.C(A')-hT(o). Since Fz( O is composed of three 

noneuclidean line segments, we also have from (4.43) that [Arz~)argP(z)[ 

<-C(A') -h T(O), and these two estimates yield (4.70). 

Choose ~ E Y2. Then from definitions (4.44), (4.45) of L and (4.63), (4.69) and (4.70) 

(twice) we have 

IL(OI ~< T(~)) -1 {[log G(r Ie(Oll+large(OI} 
<~ C((A')-2h+(A')-hn+(A')-h) T(O) (~Ey 2) 

which is (4.68). 

We now use Lemmas 4.6-4.9 to show that if ~ N ~*=~@, then the functions L 

must be uniformly small on large subsets of ~. 

LEMMA 4.10. Suppose ~1=~(zl) with zl E 92* N {0a~ U (U a ~ / ) }  a s  in (4.67), with 

Bo(zOc92* N {(3A) -10<[zl<3Ag}. 

Let A 1 ... . .  A N be a chain o f  discs Ai=A(~i, (20)-ITS), ~i=IP(Zi), ~iE92", N<~Co -2, 

~i~�89 (i~> I). (4.71) 

Then i f  n is sufficiently large in (1.9), we may arrange that the functwns Li=L(~, ~i) o f  

(4.44) satisfy. 

IL(OI ~< c o  2 (~ ~ 0.9A,, 1 ~< i ~< N). (4.72) 
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Proof. Recall the terminology of Lemma 4.6 and choose 

6N=O2A -(~+i), k=0.9, e*=10 -3, 

and let 61 . . . . .  6N-1 be the constants obtained from Lemma 4.6. Now 

modifications o f f  in rectangles Bi=B,,(z~). 
Let 61 be determined from Lemma 4.6, and choose n so large that 

CA2+I(A ,)-h/2 +CA2,+Iy2 <~ 61, 

consider 

(4.73) 

(1.24) shows that this is possible. 

By hypothesis, Off* -# meets the "center"  of B1, so (4.67) and (4.68) hold relative to 

the rectangle B1. Thus [LI(Z)[<~C(A') -h o n  a subset of A1 which has Cartan span at 

least (2/3) -1 (10) -I tr[Zl[= 15-10"[Zl[; h e n c e  Lemma 4.6 and (4.48) yield for i=2 that 

ILl -l(z)] ~< (CA ~+1) 6i (~ E ~A~_I). (4.74) 

We claim that if (4.74) holds for some i<N, it holds for i+ 1. There are two cases. 

Suppose first that 

[0.8Bi_ I fl 0.8Bi] fl { aoi~} ::t: ~ ,  (4.75) 

and consider the various rectangles Bs contained in [0.8ni_llqO.8Bi] with, say 

s=2-6a. By (4.75), we see that some such Bs is contained in some ~i (and so satisfies 

(4.65)) or else meets some 0~i f l0~  "~*, so that (4.67) holds. It then follows that (4.74) 

holds with i+ 1 in place of i: if (4.65) holds, we see this at once by (4.66), and if (4.67) 

holds, we use (4.68) and Lemma 4.6, in fact (4.74) then holds with 61 in place of 61 

(since obviously 6i>6i-1>...>61 in Lemma 4.6). 

Next, suppose that (4.75) is not satisfied. Then hypothesis (4.55) holds. We now 

imagine L; as an "almost"  analytic continuation of Li-~, in the sense of Lemma 4.7. 

Choose a disc A=A(~*, 5r) such that 

At--(0.8Airl0.8Ai_ I and dPi(A)c(O.8AilqO.8Ai_ 1 

with ~i=q~:,_lloq~ i (Compare with (4.57)). Because of (4.10) and (4.71), we may take 

r=(10)-za. According to Lemma 4.7, we may arrange Li and Li_ 1 SO that (cf. (4.61)) 

T(O) Li(~) = log { Gi(~) Pi(~)} = log { G i_ l(~/(~)) Pi(~)} 
= T(o) {Li_l(f~i(~))WRi(~)} (~E A) 

(4.76) 
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where (4.59) holds. Choose f~ such that aQ is disjoint from the Cartan network for Pi 

and Pi_l(c~i) and A(r162 Then (1.24), (4.45) and (4.63) show that 

[Ri(~i)[<-C(A') -hI2 T(Q). Thus (4.76), (4.74) and (4.59) yield that 

ILi(r ~ (CA ~+l) c~i+ C(A') -hI2 <<. C(A ~+~) (~i (~ E A) (4.77) 

by (4.73). Relative to 0.9Ai, A has Cartan span at least 10-3al~il. Thus (4.77) and 

Lemma 4.6 yield (4.7) with i in place of i -  1, even when (4.75) fails. By repeating this 

process, we get [L(~)I<CA ~+ 16N for ~ E 13 0.9Ai, and by the original choice of 6N, this 

implies (4.72). 

It is now possible to prove 

LEMMA 4.11. Let 9.1" be as in (4.2). Then ~'aNg~*a=f~. 

Proof. Suppose the lemma false, and choose zl E ~*  N 9~*, with Zl E ~*. Let 

~l=~piz0. Since the set B* of (3.16) is a union of Q(2) small rectangles, we take 

~l=~p(z0 and construct a chain of discs A(~jl 2-~r) (I<~j<~N~Co -2) with ~jE 92", so that 

(4.71) holds. Further, we may arrange that each point ~ with (1-~)s0<lr +~a)So is 

,= i ~ . is some number with covered by the union of the annuli Aj A(~j,~o,~a), here So 

p<s0<2e. Lemma 4.9 implies that (4.72) holds in each of the Aj. 

We recall the family mr of (4.15) and first prove that for r162 

~__~f2~m~(t,f~)t-ldt-~f~,loglfi(z)lt-'dtdq~<Co3/2T(e). (4.78) 

Indeed, we find from (4.20), (4.46), (4.72) and the convention (1.24) that (r A' =Aj~ 

~i m~(t'fi)t-l dt<~ 'll~ d u d ~  mr dt 

+~, Ilog Ia(~)ll u -~ a n  d v  

Co~T(q)+ f^, Ilog Ia(r u-' du du 

<~ Co 2 T(O)+ T(q) f^, IRe L(r u I du dv 

+Jl, IT(e) (Re L(~))-log IG(r u - I  du dv 
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<~ Co 2 T(O) + Co 2 r(q) + C(A')-*/2 T(q) 

<~ Co2T(q). 

which is (4.78). We add (4.78) over the O(a -2) annuli Aj, and use (4.36) where now 

~a<t<41a, CA-lq<r<A9. Thus, using (1.24) 

fAloglf~(rei~ I" m~j(t, fi) t-l dt ~ Ca4T(Q) a -2, 

and so 

f So(I +~) �9 m(r, ai, ~i) r-' dr <~ Ca3/2T(Q). (4.79) 
i JSoO- ~) 

However, this contradicts (1.3) and (2.31), for since So>q and the annulus 

so(l-~o)<lzl<so(l+~o) has logarithmic length comparable to a, we find from (1.24L 

(2.31) and (4.79) that 

2 f~o('+~ ~ CaT(q) <<. CaT(so) <<_ m(r, ai) r -1 dr 
./ So( l -180) 

f 
<~ X I m(r, ai, ~i) r-I dr 

J [m(r, ai)-m(r, ai, ~/)] + X  r-1 dr 

<~ X f m(r, a i, ~i) r -I dr+Ca(A') -Sh T(Q) 

<<. Co2T(q). 

Since a-~0, we have a contradiction, and the lemma is proved. 

Remark. Lemma 4.10 clarifies one question raised at the end of Section 4.2: how 

unique is each G (or/-/)? There are two ambiguities in constructing H. In (4.6), we made 

the initial choice that H be large in Do 0B; we might as well have taken H(z)=f(z)-ai in 

Do nB. Also, in extending H from a component D Iq B to an F, the choice o f j  (cf. (4.7)) 

will not be unique unless FE ~,(i,j). However, we now know that all F 's  which meet 92* 

are in U o~(i,j). Thus the only ambiguity in the definition of G is whether we use H or 

H -1 and the particular choice of maps q0. This observation is the basis of (6.24). 
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4.8. Proof  o f  Lemmas  4.12 and 4.13. In this final section, we give a situation in 

which the bound (4.48) may be significantly improved. Inequality (4.89) will be needed 

in w to show that the removal of B* from ~ in (3.16) and (3.17) does not seriously 

affect our estimates. 

LEMMA 4.12. Let  ro<l be chosen, and suppose that B=Bo(Zl) is a rectangle with 

zl E 9A fl (a~i).  (4.80) 

Then, in the terminology o f  (4.15) and (4.16), we have 

m zl(t, fii) <- C~~ T(e) (I <<. i <<. q; ~e ~ t <<. iv). (4.81 ) 

Remark. In (4.80) it is not essential that ZlE~* of (4.2); in fact, the most 

convenient application of this lemma will be when z~ E B* (cf. (3.16)). 

Proof. We start with the first inequality of (4.19), and f~ as in the proof of Lemma 

4.3, but use the estimate in (2.35) for harmonic measure, where now O(t) is the angular 

measure ofD n C(Zl, t). Le t j  satisfy l<~j<<.q. Then assumption (4.80), the obvious bound 

Oj(t)<.2x and (1.24) give for l<.j<.q that 

mz,(t,f) <~ l o g l  +C(A,)-,h T(e) log ( CAe "~ +CA~§ { _ ~  (tOj(t)) -~ dt} 
E \ o%1 ] 

(4.82) 
<~ CA~+I(t/A) in I"(0) (03 <<. t<l) ,  

and we use this standard estimate for t=03 with (1.24) to obtain that 

mzt(03,f ) <. C03/2A~+I/2T(o) < CoT(e) (I ~<j~< q). (4.83) 

The trivial bound Oj(t)<~2x in (4.82) is not adequate, however, when t is near 0. 

However, according to (3.8)-(3.10) and (3.14), we may find a region f~ with a f ~ c ~  and 

A(zl, o)c[2cA(zl ,  20). For each j, l<.j<~q, define pj so that 

S~([2) = oP~T(o) (4.84) 

(and take pj=oo when 8~jf l f~=~).  Order the indices j so that p~<<-p2 << - . . . .  For this 

proof only, let 2r/= l - r e  and suppose that 

Pl ~-~ l - r / =  r0+7 ? (4.85) 
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(thus (4.85) also holds for all j~>l). Then (1.24), (2.13) and (2.40) (applied to discs 

centered at zl) yield from (4.84) and (4.85) that 

m(t,fj)-m(oP,fj) = u--~u m(u,fy) u-' du <<. Clog e-'  

+ S ~ j ( t ,  ~ )  t - 1 d t  + C 8  T(O) log 

<~ Ca ~~ log 1 T(O) < o :~ log T(O) 
G 

(4.86) 

(l <~j<~q, o3 <<.t<~ l). 

and thus (4.81) would follow from this and (4.83). Thus we need only show (4.84). 

Note that the situation p 1 ~< I - ~7 and p2 ~> 1-�89 impossible from (3.44), since there 

are only Q(2) classes ~(j',k) in f2. Indeed, (3.44) and (1.24) ensure that p2=Pl+O(1). 
We will prove that 

Pl +P2 >~ 2-o(1). (4.87) 

Let us grant (4.87) for the moment. Then (4.87) gives (4.85) and so (4.81). This would 

prove Lemma 4.11. 

We now prove (4.87). Once again, we use (1.24), (2.13) and (2.40) as in (4.86). 

Thus, since f~'-A(zl, 2a), 

S~j(f~) ~< S~(A(zl, 2a))~ < C f ?  S~j(t) t-I dt 

<<. C(A')-Sh T(O) + C[mz~ (4o,fj)_ mzt(2a,fj) ] +O(log 1 )  
E 

<~ C(A') -5h T(Q)+Cmz~(4a,fy ), 

and an upper bound for mz,(4a,fj) may be obtained from (1.24) and the first inequality 

of (4.82). Thus, for l<~j~q. 

Sej(ff~ ) <~ C(A') -4h T(o)+CA~§ { - ~  (tO~(t)) -1 dt}, 
,12o 

and so, in the notation of (4.84), we have from (1.24) that 

~2 a 
-p j logo~-p j log ( - -~ - )~{ l+o(1 )}~  (tOj(t))-'dt. 

o 
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Hence (4.87) follows from the inequality [15, p. 108] 

~ ( O ~  + O--~) >~ 4:r(O,(t)+O2(t)) -l >~ 2, 

since we may use this to give lower bounds for the pj of (4.84). 

COROLLARY. Let zo E ~* and suppose that 

d(zo, zl) <- C1 a (4.88) 

(d=noneuclidean distance) where Zl satisfies (4.80). Then 

~(~'mz0(t,f/) t -I dt <- Ca~~ (1 ~< i ~< q), (4.89) 

where C may depend on C1. 

Proof. Let Z-Zo=tlZol e i*, z - z l  =t ' lZl  I e iq~'. Then, as in (4.36), we have that 

t-' dtdcp= t-2tdtdq~= t-2lZol-21dz,2-_ (~)2  z_L 2(t,)-l dt, dc p, 
I Z01 

and in A(z0,~a, ~a), (4.88) ensures that C<.(t'[zl])/(tlzol)<~C where C depends only on 

Cl. Thus (4.89) follows from (4.81). 

LEMMA 4.13. Let Z' I<I  be given, and let B=Bo(zo) be a logarithmic rectangle with 
Zo E 91", and such that for some fixed C1>0 

BCIo(ZO) N (l.J a~i) . ~ .  (4.90) 

Then the function L(~) of  (4.44) satisfies 

IL(OI -< Call (~ E A(z0, ~{~)). (4.91) 

Proof. Hypothesis (4.90) allows (4.89) to be applied, where we take r l<zo<l .  
Choose sl=~o and SE=~e in (4.20). Then (4.20), (4.89) and (1.24) yield that 

fa(~o,~,~) IlOglG(~)llu-' dudv<~ X f xo mzo(t'fi)t-' dt+CA;t+'T(P) {(A') -3h+~ +C(r/)} 

<~ Can'T(q). 
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Since the correction term P in (4.44) always satisfies (4.49), (4.91) follows from these 

estimates for the harmonic function ReL(r and (4.45). 

5. Division of the annulus ~;  The main quasi-conformal modification 

5.1. Subdividing the annulus. In this section we use the set B* of (3.16) to divide the 

annulus ~ of (1.10) into Q(2) overlapping concentric annuli A O = A  ~ n as suggested in 

w 1.2. 

Let 

(5.1) 

be those numbers r such that r= 1r where ~ is the center of any of the Q(2) rectangles in 

B*. Arrange the numbers x of ~ O A - ~ o O A p  in increasing order so that 

A - l Q = x l < x 2 < . . . < x k = A Q ,  where k=Q(2). Set i1=1, and for m~>2, define im to be the 

first index such that im>im-I and 

x i > xi_ l exp (15o). (5.2) 

Then set M=sup m. Ifi<~im, l<~m<<.M, we take Sm to be so that {[Z[=Sm} is in the grid 

and 

x i exp ( -5o)  < s m < xiexp (-40).  (5.3) 

Also, we define a sequence s"  by taking i=im+~--I for l < . m < M  and i=k  for re=M,  

and then determining s"  with {Izl=s ") in the grid such that 

x i exp (40) < s" < x i exp (50). (5.4) 

LEraMA 5.1. For  l<-m<~M, consider the overlapping annuli 

o = = A m O A m O A m ,  (5.5) Am {Sm<-lzl<~s'~+l} * + - 

s o  thatAOflA~ 1 { S m + I ' ( I z I < S m + I }  - -  + = ' - A m = A - m + l  . T h e n  

I.J A~  ~ 9~. (5.6) 

Further, i f  ~ is as in (5.1) and i f  f o r  o>0 we let 

~o = {s; l o g S [  < 4 0 f o r  some  s 0 E ~  }, (5.7) 
so I 

then 

(5.8) 
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and, as n--->oo, 

S p 
sup log ~ < CQo (5.9) 

m Srn 

where Q=Q(2) is an upper bound for the number o f  rectangles in B*. 

Finally, we may arrange that 

S r 

log-re>Co, Iog_,S--~m > C o  (1 <.m<.M(n)) (5.10) 
Sm Sin- 1 

for all large n. 

The subannuli A * , A §  - are called respectively the kernel, upper and lower 

portions of A~176 The lemma asserts, in addition to (5.6), that none of these 

subannuli are too thin. Further, all circles {Izl=s}, with s E ~ are well inside the upper 

or lower portions of the A ~ 

Proof. Clearly M<<_k<<.Q(2) and (5.6) and (5.7) hold. It follows from (5.2)-(5.4) that 
for l<<.m<.M we have 

and 

s,,+l > s" exp (4o), s m < s m exp [15(k+2) o] 

s "  > s,, exp (8o), 

which yields (5.9) and (5. I0). This proves the lemma. 

The function f will be considered in regions Am modified from the A ~ Let 

B=Bo(r EB* be such that B NA~ and suppose for example that ~o EA + (cf. (5.5)). 

We now define 

then (5.9) and (5.10) imply that 

s 

# S m + l .  
0 # = a m = �89 l o g  

Sm + 1 

Co<<. o ~* < Co. (5.11) 

A rectangle Bo. will be deleted from A ~ where B e  is chosen so that 

A+=Bo.~Bo(~o), and so that two sides of Bo. lie in aA +. More exactly, Bo~ is a 

logarithmic rectangle composed of arcs from and rays 

0+(~o), 0-(~o) in {Sm+l<lzl<s'+r} which are also in ~, with 
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0 § 

Am~- 1 

Am=Am. , 

Fig. 1 

A m 

10 + -  [arg ~0 + o~*]l < 2r, 

10--[arg r < 2r 

where r satisfies (3.10) (see Fig. 1). If r  the only change is that aBo[r includes 
r arcs of Izl=s,. and Izl-sm as well as the corresponding segments of argz=0+(r and 

argz=0-(r Let 

B* = U Bo.[~0], (5.12) 

a union of Q(2) rectangles. Each rectangle Bo of B* (cf. (3.16)) is well inside B #. In 

particular, (5.7) and (5.8) ensure that 21-B # is in 21", where 21" has been introduced in 

(4.2). Thus any rectangle Bo(zo) with Zo E 21-B ~* is admissible and no set ~ may meet 

21-B ~*. However, we note from (5.11) that 

d(OB #, OB*) < Co, (5.13) 

where d is non-euclidean distance. 

We also record that if A=A,,, is defined by 

then A is doubly-connected, 

and if 21" is as in (4.2), then 

A = A ~  # (5.14) 

OA c  ~, 

[A~ ~ [A + UA-I, 
(5.15) 

A c 2l*. (5.16) 
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5.2. The main quasi-conformal modifications. We can now produce the functions 

Hm which were mentioned in w 1.2. The idea is not very different from that of w 4.2, but 

since each Am is doubly-connected rather than simply-connected, it will be necessary 

to make modifications of flz2). For this reason, we introduce sets S~m, n which are 

related to the Mm,, of Lemma 5.1 by 

Am, n = (~m, ,,)2. (5.17) 

Each point of Am,,  has two antipodal antecedents in ~ , , .  Let ~[m] and 5~[m] 

be the components of (U~i)NA,,,,, and Am, , - (U~i ) .  To limit notation, we will 

identify the ~[m] and 5~[m] with their images in ~ ,  ,, and freely write ~i, eT(i,j) in 

~m, ,,. However, T(r,f) will always refer to the characteristic o f f  relative to 92. 

LEMMA 5.2. Let r/>0 be given. Then i f  n is sufficiently large in (1.8), it is possible 

to define, for each (m, n), a quasi-conformal mapping to on the Riemannian image o f  

~ , ,  of(5.17) such that 

H(Z) = to(f(z2)) (z E .s~. ,) (5.18) 

has 

and (sO-- = sg~, .) 

(5.19) 

n(0, H, ~r + n( oo, H, M--) <<. C ( A  ') - 2h T(O ). (5.20) 

Proof. Most of the work has been done already. The components of ~[m] would 

normally be classified as 5~(~) [m] . . . . .  ~ ( i l  . . . . .  ip) [m], but it is now easy to see, using 

Lemma 4.11 and (5.16), that they are all ~(i,j~ [m], with i:l:j. For let 7 be a component 

of sO- N {Lla~i} with, say, 7ca~ i .  Then each Bo(~),oE a~i, is admissible since (5.16) 

holds; recall the definition of admissability from w 4.1. Thus, if F is the component of 

M---{Ua~i},  whose boundary contains 7, then (5.16) and Lemma 4.11 imply that 

Ff~Bo(~)Na~j~(~ for some j~ i .  If also Ff)Bo(~)f~a~kW-(~ for some k~i , j  and some 

E ~,, then according to the construction of w 3.3, there would be a rectangle Bo(~), with 

eel , ,  which belongs to the set B* of (3.16). Thus, ~, could not be connected relative 

to M--. 

Hence, M-- itself is admissible for quasi-conformal modification. Now choose 

some component D of LI ~[m], say D E ~i[m], which meets both components of 

aAm,,; this is possible from (2.31), since significant components of each ~,(l<~i<~q) 
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meet {IzI=A-1Q). Then D corresponds to two antipodal components Do and D~ 

in ~'~. 

We start with Do in ~ and slightly modify the ideas of Lemma 4.1. Let E(Do) be 

the union of Do with the components of ~r-_Do which do not contain D~. Then Do is a 

zero-stage component of E(Do) which bounds various first-stage F 's  of E(Do). (Accord- 

ing to Lemma 4.11, these F 's  are ~T'(i,jTs) .... Then H is defined in E(Do) by (4.6), (4.7), 

(4.8). 
Now ~t---D0 is connected and we move along ~ anti-clockwise from E(Do). We 

first encounter an FE ~(i,jg, and use (4.7) there. If E(F) is the union of F with 

components of ~ r - _ F  which do not contain D6, we may extend H to E(F) by reflecting 

from F. 

We continue in this manner anti-clockwise in ~r- until we encounter D~. If we are 

led to defining H(z)=(f(z)-ai) -~ in D~ we have that H(-z)=H(z)  in E(D~); if 

H(z)=(f(z)-ai) in D~, then H(-z)=H(z)  -1 for zEE(D~), and the relevant identity 

persists as H is continued from D~ to Do through ~t--. 

Note that no pair {z, -z} can be in an E(D) or E(F). For example, suppose this 

happened with {z, -z}  EE(D) with D*Do. Then z could be joined to - z  by a curve 7 

which would fail to meet one of Do or D~, and so 72 would correspond to a curve which 

surrounded the origin but failed to meet D. Since this is impossible, it shows that H is 

well-defined. 

5.3. Back to meromorphic functions. We have alreacly seen, in the proof of 

Lemma 4.2 in w 4.3, how to replace H by a nearly equivalent meromorphic function G. 

For each pair rn, n, define v=vm, n on ~-- by 

(Hm'n)~ (Z E ~").  (5.21) vm, n(Z)=/~(Hm,n(Z))= (nm,~) z 

We extend v to be zero outside ~ -  so that v is defined in the plane with 

Ilvll~ <7.  (5.22) 

With v now defined on all of C, we solve the associated Beltrami equation: 

v&=v(z)Vv(z), 
~3(0)__0,~.1(00)~, /ff(~l/2)___~Ql/2. 

(5.23) 

Again, as in w 4.3, there exists [2, Chapter 5] a unique homeomorphic solution r 
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to this equation. As in w 4.3, our interest is in the inverse function 

z = q0(O. (5.24) 

The notations A + , A - , A ~  * from Lemma 5.1 now translate to the ~p(z)-plane. 

Thus a/~ zg* are the largest annuli centered at the origin with 

( (p (~o) )2  C A ~ ( ~ 0 ( , ~ ) )  2 C: A*, (5.25) 

and we write 

~ o  = (S m ~ Izl <~ S;~+d, ~r = (S" ~ Izl ~< Sm+l), (5.26) 

as suggested by Lemma 5.1. Similarly, Q(;t) logarithmic rectangles B~[~] are removed 

from ~r176162 and are chosen so that they reach the boundary of sr ~ and are minimal 

with respect to the property that their image under tp 2 contains the union B # of (5.12). 

Finally, let 

~/= sr ~  U B,,.[~]. (5.27) 

It then follows from the chain rule that if 

G(0 = tof(~(~) 2) = H(q0(~)) (z E M) (5.28) 

then 

G is meromorphic in ~ .  (5.29) 

We may now make the choice of parameters r/=~n of (1.24) more precise; namely 

~/is taken so small that 

tp~_~) _ 1 ~< )/10 ((30A)-1/2 Ql/2< < (30A) 1/2 01(2)" (5.30) 

This may be ensured from normal family considerations, and on retarding the rate at 

which A--~oo in (1.10); compare with (4.10). 

Given G(z) as in (5.28), let 

K(O = G(O :rro~(~) = G(~) P(O (z E , ~  (5.31) 

where the canonical products are taken over zeros and poles of G in ~t (compare with 

definitions (4.41) and (4.44)). Unlike in (4.44), we hesitate to take a logarithm, since 

is not simply-connected, but K is free of zeros and poles in ~'). The logarithmic 

derivative of K will be intensively studied in w and afterwards. 
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Note from (5.20) that 

n(O, G, M)+n(oo, G, M) < C(A') -2h T(O), 

so the factor P in (5.31) will be an error term, as in Chapter 4. 

(5.32) 

6. The logarithmic derivative and quasi-conformal modification 

6.1. The logarithmic derivative. If g is meromorphic in the plane, the behaviour of its 

logarithmic derivative, g'/g, plays a central role in R. Nevanlinna's work. Indeed, the 

key step in his proof of the second fundamental theorem is the "lemma of the 

logarithmic derivative", which says that J" log + ]g'/g] dO-2~rm(r, g'/g) is an error term. 

Later, W. H. J. Fuchs [13] showed that Ig'/gl itself satisfies 

r (re i~ dO <~ CT(2r, g), (6.1) 

and he has used (6.1), and refinements thereof, several times (cf. [141, [161). (Inequality 

(6.1) fails on an exceptional set, but we will use area integrals in this work.) 

Our use of (6.1) is in this spirit but we will want to apply it to K(z) or, what is 

essentially the same, to G(z), where K and G are related by (5.3 I). If we apply the chain 

rule to definitions (5,28) and (5.3I), we find that derivatives of the mapping q) must be 

estimated, and this will require us to use the calculus of w 4.4. 

The first section of this Chapter is independent of all earlier work. We suppose g(z) 

is meromorphic in the plane, and will study means of g'/g over an annulus 

Y[= Y[(r,A) = {A- l r< Izl <Ar} (.4 >2). (6.2) 

The prototype result is 

LEMMA 6.1. Let g be meromorphic in the plane and Y( the annulus (6.2). Then for 

g'* 

Remarks. (1) Inequality (6.3) concerns an Lp-norm with respect to logarithmic 

measure. We write II'll~ for the Lp-norm with respect to this measure and let I1" lip be 

the norm with respect to planar measure. When the context makes confusion unlikely, 

the dependence on the set YC or r and A will be ignored. 
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(2) We have required p~<] so that all estimates in (6.3) are independent of p, but 

(6.3) holds for each fixed p E [1, 2). It cannot hold when p=2,  for near a zero or pole, 

Ig'/gl-clz-zo1-1 with c*0.  

(3) The powers of A in (6.3) and later formulas are not crucial, only that they are of  

polynomial growth as A---> o0. 

Proof of Lemma 6.1. According to the differentiated Poisson-Jensen formula, 

g ( z ) = - ~ -  x loglg(Rei~)[ 2Re'~dcP + + RZ-lalZ (Izl<g), (6.4) 
(Rei~ " z) 2 (R2-dz) (z-a) 

where the a 's  are the zeros and poles o f g  in {Izl<R}; a +sign is used when a is a zero 

of g, and a -s ign when g(a)=oo. Let zE~(and choose R=2Ar; then routine estimates 

give 

II fO2n 2Rei~dcP II* [l(Rr~-r)2 tl* <~ 4 iT(R, g)+O(1)] log Ig(Rei~~ (R eiq~--Z)2 y~,p y~,p 

<~ CIIAr-tT( R, g)ll~r,p (6.5) 

<. CT(4Ar, g) A VP+Ir vp-I. 

Also since R=2Ar, each term in the summation of the zeros and poles is O(Iz-al) -1. 
Now if lal~>(2A)-lr, we have 

f s Iz-~al pdtdO<<" 2--~- f f 1---~tdtdO= 
-af<~�89 lal J J, -oI< Jo, Iz-a[ p 

O,,a,,'-o(a/' 
f1�89 t I-p dt 4:r 

a dO 

(6.6) 

since l~<p~<]. On the rest of X, we have [z-al~X2lal, and in particular if lal<r/(2A) we 

have for z E X that Iz-al>~r/(4A). Hence 

II(z-a)-'ll~C,p ~ CA '+'/Pr '/p-', (6.7) 

and there are n(2Ar, O,g)+n(2Ar, oo, g)<CT(4Ar, g) terms in the sum. This, (6.5) and 

(6.6) give (6.3). 

5-878288 Acta Mathematica 158. Imprim~ Ir 10 avril 1987 
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COROLLARY 1. Under the hypotheses of Lemma 6.1, we have that 

II~l ~,p<~ Co2/a-'r'/p-tT(4Ar, g) 

when A = 1 +tr with tr<~. 

(6.8) 

Proof. We leave to the reader the task of adapting (6.5) to this context, and 

concern ourselves here only with the at most CT(4Ar, g) terms in the sums of zeros and 

poles in (6.4). 
Let a be one of the zeros or poles of g, and ~1,--~/" be the subset on which 

]z-al>4or. 
Then 

f~ l___~ dt dO <~ C(Ar-I) par; 
Iz-al p 

otherwise, we find that 

f~_ 1 ~, Iz -a l  p 
--dtdO<- ~al f lz-al-PtdtdO 

< CAr ~4o, t I-p dt = CAo2-Or 1-p. 

COROLLARY 2. Let ~ be a region lar<]z[<4r, 00<arg z<00+tI. Then 

[ f~t l~  lV dt do ] l/P <~ co2/p-lrl/p-l T(4Ar , g). (6.9) 

The proof is exactly that of Corollary 1. 

6.2. Lemma 6.1 after quasi-conformal modification. In this section we show that 

estimates of the nature (6.3) are preserved under quasiconformal modification. It is 

possible to do this in considerable generality, but we need this only for the situation 

described in w and trust that the interested reader will be able to adapt our 

arguments to more general situations if necessary. The principal simplification here is 

that all dilatations are uniformly small as in (5.22) rather than just having norm <1. 

Thus, in our situation, Neumann series such as in [2, p. 92, equation (5)] will converge 

for each fixed p~(1,oo) if Itutl| is sufficiently small; when we only assume that 

ILull| then p must be very near two [2, p. 91]. 
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Thus, suppose that g is meromorphic in the plane, Y/is the annulus {A-U2r<Jzl 

<AU2r}, there are quasi-conformal maps q~(O of the plane and to(w) (w=g(z),  z E YO 

with I[ur174 and ILuo, II~ s m ~ ,  and such that 

G(~) = o~ogoq~(~) = Hoq~(~) (~ E Y0 (6. I0) 

is meromorphic in Yr. In the notions of (5.18) and (5.28), we are taking g(z)=f(z2), so 

that T(r, g)=2T(rZ,f). The mapping q~ is inverse to % where ~0 satisfies (5.23) (with 

r=oUz), and q~ and ~o are rigid in the sense (5.30). Finally, we suppose that 

Itow(W) I ~< CIw1-1 [to(w)[ (6.11) 

(according to (1.22), (6.11) is satisfied in our application). 

L~MMA 6.2. Let  G be defined by (6.10). Then for  each p<~, we have 

II G' * ]]'-G- yt, p ~ ~r ) rl/p-I T(4A I/2r'g) <~ ~(A) rI /p-IT(4AQ'f)  (6.12) 

where ~ is a generic funct ion o f  at most  polynomial growth in A as A-->~. 

Proof. Since q~-i and H=toog satisfy the same Beltrami equation and g is 

meromorphic (gz-0), we find from (6.10) that 

G'(~) = (co o g)z cpr + (to o g)~ cp~ 

= COw gz ~r gz oPt+tow gs (~162 ~ cpr 

= tow(g o cp) g'(cp) cp~+toco(g o cp)g'(q~) r162 

so (5.22) and (6.11) imply that 

G' g (~v) ~+(o~(w)  g (q~) r162 G (~) = (to(w))-~ [tow(w) ' - r  

= {l+C(q)} to-%w g'~r = B(r g'  (~(r ~ 
g 

with COD as in (4.21), and B(~) in Lo~. 
We first show that if l~p<~,  then (~=ue ~ 

J x l g  [ 

(w = g o r  
(6.13) 

(6.14) 
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Let z=q0(~), and choose q > l  so that pq<�89 Then (4.24), (5.30), (6.10) and (6.11) give 

that (J=Jacobian, Yg'=q~(YO, ~P=q0 -1) 

(qo(~)) dudv  = (cp) 
~r,p 

= ~0(~)) 
U 

(6.15) 

t * 
~)2 * l/p _<c =11  

According to (4.25), (4.26), (5.30) and the conventions (4.21) and (1.24), 

IIv,~- 1 II~,, q, ~ x(A) r-"q'll~o~- l llq, 

<~ x ( A )  C(r])  r I/q' - -  C(r])  r 1/q' , 

so in particular 

(6.16) 

where [2, p. 9] 

q0~= v~(~) ~p~ (q~(0) = 0, q~(#v2) = 01/2, q~(oo) = ~) (6.18) 

v ~ ( ~ ) = - ~ _ z ) .  

2 , 
[[lPz[[~/", q' ~ [[(~/)z-- 1)211~ ', q' +[[2~Pz+ 1 ][~t', q' 

= {[[~Oz_ll[~t,,zq,}2+[[2~Oz+lll~c,,q,<<Crl/q," (6.17) 

Recall that l<q  and pq<<,~ We use (6.3) in our computation and obtain in (6.15) that 

(q)) ~ {x(A) rl/P~ g)} {Cr llpq' } 

~ ~(A) rl/P-lT(4AU2r, g). 

The function q) in (6.10) is the inverse function to g~ as in (5.24), so that q~ solves the 
Beltrami equation 
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Thus Ilvdl =llv[l , so that (4.24)-(4.26) and (6.16) apply to q~ (except that in Chapter 4, 

q9 and ~p were to fix z=o, while now q0 and ~p fix z=01/2; see (5.23). Thus (6.13), (6.14) 

and (6.16) (using tp in place of ~p) give (6.12): 

C qg) ~oI~ pq, 
~ff , p Yf , pq 

~<C ]g' (~) [ l l + ( ~ -  1)ll~,pq, 
I - -  

I g ,~,pq 

<~ u(A) r~/P-lT(4A l/2r, g). 

o r  

COROLLARY. Let ~ be a logarithmic region 

~L~'= {~; ar< Ir <fir} 

< Ir < 3 r ,  Oo < arg < Oo+Y}, 

where 

Then 

logfl---<Co or y<Co. (6.19) 
Ct 

G-~G I * ~x(A)~ (6.20) 
~e,p 

Proof. This just requires the more refined estimates (6.8) and (6.9) in (6.15), and 

the proof is omitted. 

6.3. Almost-analytic continuation revisited. For l<~m~M(n), let the functions G 

and K be as in (5.28) and (5.31) (G=G,,,K=Km). Each function K'/Km is single- 

valued and regular in ~tm, and has a Laurent expansion in ~r*m (see (5.26)). We will 

prove in Lemma 7.1 that the coefficients of 

Km (~) = r. at(m ) E l (z E ~ )  (6.21) 

are nearly independent of m. In the simplest case, when f(z)=exp(zP), then 

(K'IK)E(~)=T2(o)O-~(~) 4p-2, so that a2p_2~T2(o)O -2p and all other a 's  are zero. 

Let us see why (6.21) is likely to be invariant. According to (5.27), (5.31) and 

(5.32), for each m, 
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K~, G' N. 
= m + ~ + 1 (Z E ~t m) (6.22) 

Km Gm jffil  r 

where the c's include all zeros and poles of G in. t= and 

N m <~ C(A ' )  -2h T(Q) (1 <. m <. M(n)). (6.23) 

Let ~0E~m. Then z*=q)(~o)2EAmflg~ * (of. (5.16) and (5.17)) so there exists a local 

quasi-conformal modification in Bo(z*) as described in w167 and 4.3, say 

G*(~)=H*(q0*(~)) in A(z*, �89 According to Lemma 4.11 (and the remark at the end of 

w any other local q.c. modification can only replace H* by (H*) -1. Thus the 

expressions 

(logH)2z = [ H ~  2 \ H I '  (l~ = ( - ~ - )  z (6.24) 

are invariant. This suggests that (G'/G) 2 is almost invariant, and (6.22) and (6.23) will 

transfer this invariance to K. This is the motivation for the following result. 

LEM~IA 6.3. Let ~t[m]=~t[m,n]=SCm,~NSCm+l,~ (thus ~r is what remains 

when Q(;t) rectangles Bo~[~] disconnect a narrow annulus). Then Km and Km+l are 

holomorphic in ~r with (~=ue ~) 

K~ n 2 K~i+ 1 2 i/2 

Proof. Since 

a n ~<Eaa~ (a ,>0 ,0~<a~<l ) ,  (6.26) 

we find that 

([l(f2-g2)ll~' v2)~/2 - L i f t - g 2 ]  u2 dr dO = (l]((g+(f-g))2-g2)[]~.. ~/2)~/2 

= (ll(2gty-g)+(f-g)2ll~,~/2)t/2 

~< (ll2g(f-g)ll~r. ~/2)1/2 + (ll(f-g)211~, ~/2)~/2 (6.27) 

ffi ([[2g(f -g)l[~t, !/2) v2 + [l(f-g)ll~. l 

<~ 21/2( ,, , ~v2 ( , )1/2+ f , ~r,,, IIf-gll~.~ II -glbr.~ 
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This formalism means that whenfand  g are close in 1-norms, they are close in ~-norms. 

To control notation, we will write G, H and ~0 in place of Gm(O=Hm(Cpm(O), and 

K in place of Kin; and G1, Hi and q0~ for Gm+l(O=Hm+l(q~m+l(O) and Kl for 

Km+l. 
Finally, much as in (4.57), we let 

w = ~ ( 0  = q~~ o ~ 0 ,  ~ = ~ ( w ) .  (6.28) 

Here are the key steps needed to obtain (6.25): 

f .I  ~' ~ m] K G du dv  <~ C(A')-2hT(o) (6.29) 

(with similar inequality for Kl and G1); 

(6.30) 

(6.31) 

and finally that 

G~ 2 (q01)w]2 I f.., 
1/2 

du do < ( ct~)+ c ~  7"(o) < Cr'T(u). 

(6.32) 

Note that (1.24) and (6.12), (6.29)-(6.32) give (6.25), since by (6.26) and (6.27), 

:~21,,~u~o<_ { :~,~2 :~2 ,vo 

+{I (~-)-(~,~,,-)I" )'~ II~- : "r'~ ,,~ ~ ~ , ~ )  ,o, 

,o,: I[ IIJ ,/2.J t \K,] \GI] 

I(l-~ ) (r ) "' ~ 
~ C G'  * m K '  G'  * I/2+ 

~f.I K G ~,~ K G l 

G' * m G'  G'  * m G'  * 
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G' 2 G'1 z ta 

+C((II~---~[ ; . ,) ' /2(I~-~(w)(qg~-l) ?,)t/2+ -~-(qoc-l) ;.1} 

((11 ~ ' ' * /1/2§ ] I y(, } + C  GI KI G'l K'l * 

~r.l/ G~ KI ~r.~/ G 1 K~ 

<- CT(4A o) {•(A) (a')-h+rg/2+r 9} < / T ( e )  

Proof of (6.29). This follows from (5.32), (6.7) (with A=2) and (6.22): 

Proof of (6.30). The functions �9 and W of (6.28) are holomorphic, and are 
compositions of maps each factor of which satisfies the estimate (6.16). Thus (1.24), 
(5.30) and Cauchy's estimates show that 

I((I)t (~) - 1)] < C~ 10 

[ (~ ' (w) -  1)1 < C~ ~~ 

(compare with (4.64)). 

((20A)-V2ev2 < [~[ < (20A)V2Qv2), 

((20A)-V2e t/2 < [wl < (20A)l/2el/2), 
(6.33) 

Let h=cp~-I and ht=((p0w-1, as suggested by (4.25). Estimate (6.16) applies to h 
and hi. Thus (5.30), (6.28), (6.33) and the chain rule give that 

I (~ , ) . -  11 = I(~o,)~ ~ ' ( w ) -  11 

~< I(q~,)~- l I+ [(~,)~ (u2'(w)- l)l (6.34) 

Ih,l+Cr'~ 

and we deduce using (1.8) [or (1.II) with e=l], (6.12) (with A bounded), (6.16) and 
(6.34) that 

f~m][ G-~"G (~)(1-(q)l)w)[ auav~ ~ ~,p {llhdl~,p' § C/~ 1 § 

{ Crl/p-IT(8Ae) } {rl/P' (C(tl)§176 } 
~(A) (C(y])--t-')/10) r ( e  ) = (C(y])§ '9) T(Q) 

~< CrgT(e) 
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by the conventions (1.24) and (4.21). 

Proof of(6.31). This is symmetric to that of (6.30), and is left to the reader. 

Proof of(6.32). We use the definitions (5.28) for G and G1 (where H and H1 have 
small maximal dilatation) and the invariance suggested by (6.24) in Mira] to obtain that 

G ' ( ~ )  = H z (p~+H~ q3r = { 1 +C(r/)} H z (pC 

and a similar formula for Gi; thus, on taking (6.28) into account we find that 

' 

G_G(02 = L H--~ J L ~-~i~; J 
[ (Hl)z (~9_i (1)) ]2 

-- {l+C(,1)} L HI((Pl (:I)) q9r (!) 

.={l+C(rl))[(Hl)z (fl)l(w))(qgi)w ~~ ] 2 
HI(cPl(w)) (q91)~ (w=dP(~)) 

~{l+C(r] ,} [ (HI---~ o(p1 (q~ qp~ ]2 

={l+C(r/))[~._~_~(w) ~o~ ]2 
L I (91)wJ " 

Thus, if ~E sC[rnl and w=r ~ r n ] ,  we have that 

G', \2 /G '  2 1/2 

and so (1.8) (or I.II) with t=l), (6.12), (6.16) and (6.34) give that 

f~mln~(~.|) [ G~ ~2 /G ,  . . ~2 1/2 I 5 ;II ,II: (6.35, 

<~ Cu(A) C(r 1) T(O) < C(ri) T(e). 

We next observe that s~[m] (3q~(~/[m]) is nearly all of s~[m]. According to (5.11), 
(5.14) and (5.17), s~[m] is a narrow annulus from which Q(;t) rectangles Bo. have been 
removed: 

s~[m] = {~; Sin+ 1 "( I~1 < S~+,, Oj+o # <-- arg ~ <. O j+ , -o  #}  (6.36) 

where, by (5.9), (5.10) and (5.11), log(s'+ffSm+O and o ~* are comparable to a. Thus 
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(5.30) and (6.28) ensure that there are numbers r ' < l < r "  and 01<0'~<...0j<0)'< 

0j+l<... 0']v<0~+2~ (N=Q(2)) such that 

log + 0".-0',~ C7 !~ (6.37) 
r 1 - J  - /  

(compare with (4.39)), and such that 

{,9~[ml-~(s~[m])} 0 {O(~[m])-~[m]} = {r'Sm+l < < rttSm+l} [j ( r 'S '+l  

<lr189162 (6.38) 
J 

Then (6.20) may be used to show that the contribution to (6.32) from the sets (6.38) is 

negligible. We choose p slightly larger than one in (6.20). For example, let 

.if= {r'Sm+ l<[r 1}. Then using (6.34), we find that 

<~ x(A) ~'lgnT(o) < ygT(o). 

Similarly, 

~ G; I du do < ~PT(o), 

and these manipulations may be applied on the remaining Q(2) choices of ~.  This 

proves that the contribution from (6.38) may be absorbed in the right side of (6.32), so 

(6.32) follows from this and (6.35). 

This proves the lemma. 

7. Completion of proof 

7.1. Maximum-modulus and H~/e-norms. We begin with an elementary consequence 

of Cauchy's inequality: 

L~MMA 7.1. Let y>O be fixed and for k>O, let kB=kB(zo) be the logarithmic 

rectangle 

(I ( otl t oo 
max log ,10-0 o ~<ky (Zo=ro e ,z = 
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I f  h is holomorphic in B with 

then 

fBl hlladrdO<p, 

max Ih(z)l ~< Cp2e2y y,~ (Z E~B). 

Proof. Since Ihl In  is a subharmonic function of w=logz,  we have 

f,. 1 ihl~aldw[2= ihl,,2 Ih(wOlU2<~ nt----2 -w,[~, 

= Xt 21 f ihll/2 drdO_r 

75 

(7.1) 

(7.2) 

so long as Iw-wd<t is contained in B. Let wl=logzl ,  with zl E~B. We may then take 

t=�89 and observe that r~roe -y. Thus 

from which (7.2) follows. 

Ih(wl)l u2 ~< CeYp 
y2ro ' 

7.2. Analysis of  Laurent coefficients. Recall the functions K=Km and the Lanrent 

expansions of (6.21), where at=at(m). The next result indicates that these coefficients 

are nearly independent of m. 

LEMMA 7.2. Let rl, 0 < t l <  1 be given. Then the Laurent coefficients at(m) of(6.21) 

satisfy. 

[at(m) - a~m + 1)[ 1 ~< C210s~. 0+ i) o,~O -i/2 T2(O) (7.3) 

where Sm is given in (5.26). 

Remark. In this chapter, we view the K's as the main object of study, and so write 

K(z) (z=re i~ in place of K(~). 

Proof. The modified annuli ~ ~  and ~=~m have been described in 

(5.25)-(5.27). The mappings ~0 (cf. (5.23)) are rigid in the sense (5.30). Thus there exist 

O(a-l) rectangles Bo(z~)(l~<i~<p) such that 
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/ 

Fig. 2 

Bo(z~) c Mm (1 ~< i <- p , p <. Co-l), (7.4) 

U i!6Bo(zi) is a continuum with winding number 1 about the origin (7.5) 

Bo(zi)c Sg*mn~t*~+l (ir ql) (7.6) 

where 0g is a set of at most Q(2) indices i. Let ~+(m) be the union of these rectangles 

Bo(zi). Similarly, we let ~ g ( m + l )  be rectangles as in (7.5) and (7.6), with 
0 BcY(Zi) C,.~m+ l. 

Next, let (for j=m,m+l)Tj  be a curve contained in ~+(m) or ~ ( m + l )  with 

n@,0)=l (winding number) such that if yjnBo(zi)4=f~, then yjflBo(zi) has length 

comparable to the side-length of Bo(z3. We can assume that ~m =~/m+l=~ for z in all 

but Q(2) rectangles of ~+(m) u ~ ( m +  1). (See Fig. 2.) The interior of 

Um[(V.,--~') u (~,.,+ ~-~,)1 

contains the Q(2) excluded rectangles B~  of (5.27). 

According to Cauchy's formula, 

1 fr (K"~2(Z)Z-O+|'dz' 
al(m) = ~ i  ,. \ K m / 

(7.7) 

with a similar formula for at(m+ 1). We will use (7.7) to get (7.3). 

Suppose (7.6) holds for Bo(z3. Let 

l , 

then (6.25) shows that Epi<<.Cy4T(o), and s o  XQgi)2<<-(~pl)2~C~8T2(o ) (summation only 

over all Bo(zi) which satisfy (7.6)). Because of (5.17), we have that the length of 

?jnBo(zi) is at most C(AO)I/20 and each B,, lies in [z[>~(A-lo) 1/2. When 

ir 9/, ym+l=F,,=F, and since o<1, (1.24), Lemma 7.1 and (7.5) give that 
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( m)2 I K m  K m + l  ' .~..J _4_ P i  ( ~ 1 7 6  ~ (pi)2 

i~ ql nBoiz(zi) iE od (Y Q 
(7.8) 

~< u(a)  (o~01n) -~ ~,ST2(o) = ~ (a ) /0 -~ /272 (0 ) ,  

where ~ is a function of polynomial growth. 

We now control the contributions from ?j n Bo(Bi) with i E o7/. 

Consider the rectangles Bo(z2i), where z~ E 9A*(cf. (4.2)). Then two modifications of 

f in A ( ~ , ~ )  are L(w) and (T(o))-llogK(w vz) (w6A(z~,~r))where L is given by 

(4.44), and K by (5.31) (it is now possible to take a logarithm since the A's are simply- 

connected). Thus we are in the precise situation (4.54) with (4.55), and obtain from 

Lemma 4.7 and (6.24) that (T(0)) -1 log K(wt/2)=+L(~(w)), W E A(z~, ~o), where �9 is 

rigid as in (4.57) and (6.33); i.e. that 

K' 
(z) = -+2zL'(~(z2)) ~ ' (z  2) T(0) (z E A(z;, ~o)). (7.9) 

The factor ~ '  is well-controlled by (6.33), and (4.48) gives a trivial upper bound for 

L', which is not adequate for our purposes. What saves us is that we are able to apply 

(4.89) with �89 In order to apply (4.89), it is necessary to check that (4.88) is 

satisfied, where Zo=Cp(z3 z and hence some history must be reviewed. The Bo(z~)(iE ~) 

are contained in the rectangles B # of (5.12) which have been removed as in (5.14). 

According to (5.11), (5.13) and (5.30), the noneuclidean distance from z~ to B* is 

comparable to o. Finally, our construction (3.21), (3.22) o fB *~ implies that each B of B* 

meets LJ (O~i). Thus (5.30) implies that 

d(qg(Zi) 2, (L,J O~i)) <~ CyS +d(z~, (LJ O~i)) <~ Ca 

and so we have from (4.91) and Cauchy's estimates that 

IL'(z=)l <~ CdOT(o) (olz~l)-' (z ~ B~(Zi)). 

This information is used in (7.9), and we conclude using (6.33) that 

fB~o K-~K]drdO~CT(o)~ [zL'(z2)' drdO 
�9 "JB~zi) 

tO 2 - 1 ~Clz,I o 7y~)(olz, I) dlz,I 

<~ CoI+'~ 
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According to Lemma 7.1, this gives the uniform bound 

K '  z ~< 2+2"OT2(0 ) ~< u(A)2~o_20 -l T2(e) (z s B~o(zi)). 
/ r  "~ o41z,12 

Finally, on summing over the Q(2) rectangles Bo(zi) of q/and recalling (7.5), we deduce 

that 

f._~, Km Zldz I ~< coz'~ (7.10) 
Km 

of course, (7.10) also holds when m is replaced by (m+l).  We choose r0 in (4.98) so 

that 2 r 0 - 1 > q ,  where q appears on the right side of (7.3). 

In order to obtain (7.3) from (7.8) and (7.10), we consider the integrand in (7.7) and 

estimate [z[ -~ on the contour by: Izl -~+'~ ~< 21tl+lsm(t+l)A, and use (1.24) to absorb the 

factor u(A) into o ~'. 

7.3. Analytic continuation of the Laurent expansions. There are only C=Q(2) 

modified subannuli . ~ ,  so if A=A,  in (1.10) is sufficiently large, we may find 
y#,yO, andy' with 

A1/2 O < (y,)2 < I~6A e 

40 < (yO)2 < IOOC 0 

16A-lo < (y#)2 < A-l/20, 

(7.11) 

such that 

~t' = {-Lv' ~< Izl ~< 4y'} c ~ *  

= [-Lv ~ <~ Iz l  ~< 4Y ~ c 

(7.12) 

(7.13) 

and 

(7.14) 

for some j,,jo and j# (perhaps not all distinct). 

We first record an 0(1) form of Lemma 7.2. 

LEMMA 7.3. The Laurent coefficients a~j'), at(j ~ and at(j #) satisfy for any fixed 
e>0 
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and  

Io,u')l~-c :<~) (~':/~+~-' 
CO \ - - -Q/  3-1tl(y') -' 

lat(j~ <~ C T2(co) 3-1ILco-I/2 
co 

I~,~O)l.< c : ~ )  (~":/~-'- '  CO \---0--: 3-Ill(y#) -/. 

(7.15) 

(7.16) 

(7.17) 

and 

Proof .  According to (1.8), (6.7), (6.22), (6.23), (6.12) and (7.11)-(7.14), 

K: 
/ t..*~2 \,~+E/2 6 CT((6y')X)+CA2(A ')-2hT(co) <--. C ik-W-~-- ) T(Q), 

f~(l~;12) 

f.~ ( I KK~lfi l 2) U2dr dO <~ CT((6y#)2)+C(A')-2h T(Q) 

<. C T ( CO ) . 
\ co / 

(7.18) 

These inequalities with Cauchy's estimates, (7.7) and (7.2) give (7.15)-(7.17). 

Lemma 7.3 may be used to estimate the terms of the Laurent series in (6.21) when 

I/I is large. Thus (7.11), (7.15) and the P61ya peak inequality (1.8) (or the weak form 
(1.11)) show that if t<y ' ,  then 

[aAJ )i t  = ~ lat(j')l (y,); t t 
L s 7 <-c e / - 7 -  e 

(7.19) 

where, if we use (1.11) instead of (1.8), it is possible that C = C , .  

Since we may pass from M' to ~r or sr ~ (cf. (7.12)-(7.14)) by passing through at 

most Q(2) of the ~j, we use (7.19), (7.3) and (7.11) to obtain for example that if 

IL-421<5 then 
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X I(xI(J~ (yO),~ ~ I~/(f,)[ 0,o)1+ X X* IO~l(Jm+l )-al( jm)l  (y~ 
L L L m 

~cT2(o)[ \\-~]' ~m" {21'1 (~)l}] 

~ C  T2(e) ((Yl)2]2~'i'lt--l--~L'~(Ti'l l i t  214 yO 1 

(7.20) 

where E* refers to a sum over Q(A) indices m which correspond to those s,,, with 

3y~ 1/2 (note (.7.13), which implies that ~i ~ is well disjoint from the circles 

{Izi=Sm}). Thus, if 2;t+e-l-�89 and (7.20) yield that 

~ i~,(j<>)l (yO), ~< c r"(e) [(A,,.>) ~+''-'-~ + Co"'], (7.21) 

and similarly 

la,(j#)l (yO), < c T:(e) [ (A"Z)U+~-'-~ +cd'] .  
L Q 

(7.22) 

This argument is symmetric in the sense that we may start with the a~ j  #) and 

work to the at(j'). Thus, start with (7.17) in place of (7.15), use (1.8) (or (1.11)), (1.24) 

and (7.11). Then, if t>y # we have 

Ela,(j.)ltl<~cT2(e) ((y#)2)~-~-, t ' 

0 L \  0 / 

Thus if 2~.-t-i- �89 but IM-4]1<5, we deduce from (7.3) and (7.11) that 

M 
I,:,,(.s<>)l C~:)' <~ c ~rz(e) [ (0,~) ~/~-~-' ( M(Y#)' 1 -w + o"'1 

_. ~o L \  ~o / \ G /  J 

~< C T2(~)) [(A-l/2) 2a-~- l - lM+d' ] ,  
Q 

M (y#)2 22-e-1 y# 2 

(7.23) 
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7.4. Proof that 22 is an integer. In this section we obtain the first part of the theorem. 

We first need a result which is a modification of Fuchs's lemma 3.2 of [16]. We consider 

K'/K (where K=K:) in the annulus ~ '  of (7.13), which is close to {Iz[=ol/2}. For c>0, 

let c~={(4c)-ly~176 with similar definitions of c~ '  and c ~  (these annuli 

were introduced in (7.12) and (7.14)). 

LEMMA 7.4. There is a constant c, which depends only on f, when n in (1.8) is 
large, such that 

Proof. Inequality (7.24) is a consequence of Schwarz's inequality and 

I~.K-~KdrdO>>-cT(o), (7.25) 

since f�89 O. We recall G from (5.28) and (6.22). According to (5.28) and 

formulae such as (4.6)-(4.8), each circle Izl--r must have a point re i~ such that 

Ilog [G(rei~ Also, since each circle Izl=r must meet ~ for at least two 

indices i, we may find O'(r) with Ilog IG(re;~ I. Choose r such that 

01/2 < r < 100(701/2, (7.26) 

where C= Q(;t) is the number of modified annuli ~ .  Then we have that 

cT(r 2) < r dO, (7.27) 
J0 

so, since T is increasing and (7.26) holds, 

c  o, LI 
This, (6.7) (with A=4), (6.22), (6.23) and (7.26) give (7.25), for 

f  drdO> f  drdO- f - drdO 
>1 cT(r)-C(A') -2h T(O) > cT(Q). 

This proves the lemma. 

6-878288 Acta Mathematica 158. Imprim(~ le 10 avril 1987 
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We now apply (7.24) to prove assertion (1.4): 

LEMMA 7.5. Under the hypotheses (1.2) and (1.3), it follows that 

22 is a positive integer. (7.28) 

Proof. The first goal is to show that 

42 is a positive integer, (7.29) 

by using (7.22) and (7.23). 

Choose integers M and L and eo>0 so that 

M ~< 2(22-1 - 2e0) ~< 2(22-1 + 2e0) <~ L. (7.30) 

If A=42-2  is an integer, take M = A - 1 , L = A + I ;  otherwise, choose eo so small that 

(7.30) is possible with L=M+I.  Then [L-42[<5 and IM-42[<5, so (7.22) and (7.23) 

hold in zr and thus (K=Kj~). 

~ --aAZ ~--IS(Z)I~Co ~' (ZE�89162 (7.31) 
0 

where we take aA=O if A is not an integer. Thus if aA=O in (7.31), we would have from 

(7.24) and (7.31) that (K=K~) 

C0-'/2T2(0) <~ ~. i x  ~ 2dr dO <<- Co'r'0-1/2T2(Q), 

which is a contradiction. This proves (7.29), and, moreover, aA cannot be too small: 

laAI I> cT2(o) 0-~-�89 (7.32) 

NOW we recall from (6.21) that the a 's  are coefficients of (K'/K) 2, where K'/K is 

single-valued in ~r It follows from (7.31) and (7.32) that (K'/K) is a non-vanishing in 

�89162 Choose the branch of square-root of K'/K so that 

in the intersection of �89  with the positive axis and continue this branch through ~ to 

the negative axis in the positive and negative directions of rotation. If �89 is not an 

integer, then (7.31) and (7.32) yield that 
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i~+ K '  I(K-~K)(re )-(---~-)(re~-)l>-2la~21tJA-ca~'T(o)O-'n 

>I cT(o) O-~n, 

which contradicts the fact that K'/K is single-valued. This proves the lemma. 

COROLLARY. Let f(z) satisfy (1.2) and (1.3). Then there is a fixed integer N>-2 such 
that all P61ya peaks of  T(r,f) have order A=�89 In particular, (1.11) holds for all large 

0 and r. 

Proof. Lemmas 7.4 and 7.5 show that all P61ya peaks must have order �89 with m 

an integer. But ~ =  {2; T(r) has P61ya peaks of order} is connected [7], and hence some 

m=N works for all peaks. 

Since Weitsman [26] has shown that (1.2) and (1.3) imply that 2 in (1.8) must 

always be at least one, it follows that N~>2. 

7.5. Growth of  the functions G. We apply the last results, in particular the 

corollary, to analyse the Gm(Z) which were constructed in Chapter 5 (cf. (5.28)). The 
next result is much like Lemma 4.4. 

LEMMA 7.6. Let rl<�89 2 be such that the annulus 

~(~r,, 4r2) ----- {~r, < Izl < 4r2} c ~m (7.33) 

for some Mm of  (5.27). Let G=Gm be associated to f by (5.28). Then if �89 

with 

t 2 > (1 +a) t I (7.34) 

we have 

1 f02~ f'2 2~ Ilog JG(rei~ r -I drdO <~ Clog h T((2t2)2). 
1 t l  

(7.35) 

Proof. Assumptions (5.30) and (7.34) guarantee that the image of the annulus 
{h<lzi<t2} under q0 is contained in {(1-o)h<lzL<(l+o)t2}. Let w=cp(z)Z=se it, so 

that z=~p(w~/2), let W=w ~/2 and s=lwl. Then (5.28), (4.24), (5.29), and (1.24) give that 
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f02'~r ft t2 f02"ax ft t2 [log [G(rei~ r -l dr dO = [log [~o(f(~0(z)2))[I r-2r dr dO 
1 I 

f0 2~ I ((1 +a) t2)2 
J((l-o) q) 2 

(7.36) 

f02~ I ((I +O) t2)2 ~< C Ilog I~o(f(w))ll I~0wl 2 s-' ds dt. 
J((I-o) tt) 2 

Let ((1-a)tO2<~s<~((l+a)t2)2. Nowfelog+ll/( f(seit)-a)[dt is small unless 

a E {ai}qand E is contained in the sets U ~,(m) of Lemma 5.2, and the construction of H 

in Lemma 5.2 has the precise effect that if E c ~ ( m )  13 {[zl=s} and E v2 is one of the two 

preimages of E in M ' ,  then 

 ,ollogln(re'~ ao = fE [l~ d,. (7.37) 

Thus (7.35) follows from (7.36) in a routine way, using (1.1 I) (compare with (4.38)). 

7.6. Asymptotic expansions of  the functions G. There are only Q(2) subannuli M~ 

in w 5.3 (see (5.25)) and I.J M~ has logarithmic length >c  logA. Thus there are subannuli 

~ '  whose logarithmic length is large. Such subannuli are not necessarily centered at 

0 v2 (where 0 is the P61ya peak), but now Lemma 7.5 (and its corollary) show that 

(1.11) holds, and this is good enough. 

Thus, let 

Al = logA. (7.38) 

It follows that we may choose pairs s~, t~, and s2, t2 with 

A-1/4OI/2 < S 1 <(AI)-3Q I/2, A~ ol/2 < s2 < A  ll4pl/2 , ti = A~ si, (7.39) 

and such that each annulus {(Al) -2 si<<.r<.~4 ~ ti} (i= 1,2) is contained in one of the annuli 

~,,, of (5.27). We choose the "center"  ui by 

Choose ~,>0 so that 

u~ -- s; ti (i= 1,2). (7.40) 

2Jr + ~ - -  (I -y)  (24+ l) < -�89 (7.41) 
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this is equivalent ff y<41(22+ I) -l. We then define 

~i-- (A(rui<lzl<A~ui} (i=1,2) 

and 

85 

(7.42) 

while 

I?*l < (Al) -zx-tt4 T(u2), 

[logK-9,* log (-~-)-),2~z241 < CAI l~ T(u 2) (zE ~i), 

I~'z~l > cu-=T(u2)  �9 (7.47) 

Proof. We first show (7.45). Now since K*0,  oo in ~i, we have that 

1 K' F - - -  f - - ( z ) d z  (A-~2. si<r<~A~t,), 
2~ri Jlzl=r K 

SO that, in the notation (6.3), lYI<.ClIK'/K[I;~, 1, where B is any annulus {So<lZl<2So} 
which is contained in C. By taking So close to A-~2si, we deduce from (1.11), (6.22), 

(6.23), (7.39), (7.40), (6.7)and (6.12)that 

G' * ~ <~CT((4A-[2 Si)2)q_C(A,)-h/'2 1,(0) I~,1-< c{ --b-- B,I + ~ II(z-c)-IIl~'l J 

(7.45) 

(7.46) 

and 

~i = (A~ -2 si ~< [Zl ~ A] ti} (i = 1,2). (7.43) 

Thus ~i is nested well inside %. 
We recall the definition (5.31) of K=Ki=GiPi(i=l,2) which is valid in each %. 

Each function K is holomorphic and zero-free in its ~ and has a "Laurent"  expansion. 

log K(Z) = ~ Ft zt+F * log (z E ~i); (7.44) 

since Re {log K} is single-valued, ~,* is real. We use weak estimates of these coefficients 

~ to get good asymptotic formulae in the Ni, 

LEMMA 7.7. In each expansion (7.44) (i=1 or 2) we have (u=ui) 
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= CT((4A~ 3 u)2)+C(A') -�89 T(O) 

= C(A~3) z~-~ T(u2), 

and this implies (7.45). 

The next goal is to bound IRe Igll locally; this is much like the situation in Lemma 

4,5, now that we know (7.45). In terms of the local coordinates in w and the 

definitions (4.1), we find that if ~A~ -1 s i ~< Iz01 ~< 4At ti, then 

= l log tK(z)I d~p. log IK(zo) l 
Jc (z o, t) 

so that (5.31) and (4.49) give 

Ilog [g(z0)ll ~< C l [log IK(z)ll dcp t -I dt 
3A 

~<C fA Ilog Iell t-I dtdcp+C ~ I1og IGII t-I dtdcp 

<~ C(A') -h T(o)+C f Ilog [GIIt -1 dtdcp. 

The local (t, tp) coordinate system is related to the standard system by 

(z=rei~ Z-Zo=tlzol e ir In A(zo, ~, ]), we have �89 and �89 o (r0--Iz01). Thus 

t -1 dtdcp = t-2tdtdcp = (tro)-2rdrdO ~ Cr -1 drdO, 

and we may rewrite our last step as 

fo n ~ Cr~ IRe log K(z0)l = Ilog Ig(z0)ll ~< C(A') -h T(e)+C Ilog IGII r-l drdO 
�9 J c r  0 

<~ CT(r2o) ( a l  2 si ~l 7"ol ~ A-( 2 ti)' 
(7.49) 

where we use (I.11), (1.24) and (7.35) to obtain the last line. According to the Borel- 

Carath6odory inequality, (7.49) implies that 

IlogK(z)-logK(zo)l <~ CT(~) (z ~. A(z0, 9) (7.50) 

so long as !r Iz01 ~<4A1 ti. 
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and 

We use (7.50) and (1.11) to prove that 

log K(z ) - y*  log-~- ~< C A (  2~ + i/4 T(u~) (Izl = ,is,,  i = 1 , 2 )  (7.51) 

\ ui / h \'--W~m/ " 
(Wra~ 21"+114 

<. c T(u~) 
\ u i /  

<~ CA~ § /lug), 

"~-I f , .  22+1/4 ~," 2". log K(z)-y* log <~u~t I l lu i )  (Izl=4ti, i = l , 2 ) .  (7.52) 

Because of (7.45), it suffices to prove (7.51) and (7.52) in the slit annuli 

{Isi<.lzl<.4ti, ]arg zl<zt}, and so we show that 

IlogK(z)l <~ CA-( 2x+1/4 T(u~) ([zt = ~ si, argzl < :t), (7.53) 

IlogK(z)l ~< C A ~  +'/4 T(u~) (Izl = 4ti, largzl < :t). (7.54) 

Choose a point Wo on Izl=is i, largw0l <: t ,  and choose largK(wo)l<.z. The circle 

{[Zl=4Si} may be covered by at most C discs A(w i, 14)(I~<i~<C) where wi+ l E A(w  i, }), so 

we may start with (7.49) [withro=}si] and obtain (7.53) by using (1.11) and (7.50) on 

each of these circles. 

The proof of (7.54) is similar, once we know that our branch of logK also satisfies 

22+114 .2x largg(wm) I ~ CA 1 T(uil ( 7 . 5 5 )  

for some Wm with [Wm]=4ti. We obtain (7.55) from (7.50) and (1.11), by moving from 

w0to w m by m<~Clog(t/si)discs A=A(wi,�88 and to do this efficiently, we arrange this 

so that ]wi]>~(ll/lO)[ wi_ll , i>~C. In this chain of discs, suppose that Wh . . . . .  Wm satisfy 

]wyl>>-ui. Then (1.11), (7.39) and (7.50) show that 

m-I  

[arg K(Wm)-arg K(Wh) I ~ E I arg K(wj+ O-argK(wj)l 
h 

. - ,  

C E T(lwJ 12) ~ CT(u~) E wj 22+ 1/4 

h h \U~/  
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and we control the contribution from the Iwil<u in an analogous manner. This proves 

(7.53) and (7.54), and thus (7.51) and (7.52). 

We now observe from (7.41), (7.45), (7.52) and Cauchy's estimates that (Izl=r) 

Yl zl <~ CA~ + 1/4 T(U 2) r l 
22+1 

<. CA~ +!/4 T(u~) ~ (A~-1) ' 
22+1 

< CA~t + 1/4-(1-r)(22+ 1) T(u~) 

<~ CA1 It2 T(u~) (A?Y ui < r<A~u i) 

and, similarly, using (7.51) with (7.41) and (7.45), we have that 

12~ yl Zd } <~ Ca l 1/2 T(u~) (a lY ui < r < a ~l ui). 
I---: I 

These estimates give (7.46). 

Finally, logK is holomorphic in A(zo, t) if t<�89 so that when �89 we have 

that 

1 f logK( )d } 

Thus (7.44)-(7.46) give that 

1--~-(z) I ~< 221~,221 rr;-'+CT(u~)r-I[A~l/2+A~22-1/4]. 

However, (7.27), (6.7) (with A=4), (6.22) and (6.23)now show that 

cT(u2) <" J�89 r dO drr 

f fl "r"O 
fly221 u~ + CA 7 lrz T(uff); 

since Ar--~oo, this is a contradiction unless (7.47) holds. 
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COROLLARY. For i= 1,2, define ~i as in (7.42). Then each Gi (i= 1,2) satisfies 

N 

where the c's are the zeros and poles o f  Gi in ~i (so that N ~ C ( A  ') -2h T(Q)) and 

IS(z)l ~< CA-( 1/2 T(r0) 2 (�89 Izl < 2r0). (7.57) 

The coefficient y2~ satisfies (7.47). 

Proof. This is just rewriting (7.44) using (7.45)-(7.47). 

7.7. Behaviour o f f  near the P6lya peak. Recall the ~ i ( i=1 ,2) f rom (7.42). Let 
be one of these annuli. Then  (7.47), (7.56), (7.37) and the explicit relation between 

G=Gj and f(z 2) (described above in w 5.3, centering on (5.28)), determine f(z) in each 

(~)2. Thus, each circle Izl--r (A-(eui<r<(m-( y ui, i= 1,2)) divides into 42 intervals/j,  in 

which Re(G(z)) is alternately small and large. According to the formulae in w 

(especially (4.6)-(4.8) where to{ai, aj}={0, ~}) the 42 intervals on which IloglG(z)ll is 
large correspond (after the map w=z 2) to 22 intervals lj on which f is near the various 

deficient values. Further, (1.24) with (7.47), (7.56) and (7.57) shows that 

IJ'~log IG(re'~ dO I is [within error CA-( 1~ T(u~)] independent of j .  In fact 

f~loglG(re,O)l_(22) l T ( r 2 ) l f 2  log+ 1 21j if(r2e,O)_aj I dO. (7.58) 

Thus, we may choose ~01 and ~P2 and define 0j, 1 (relative to (~02) and 0j,2 
(relative to (~2) 2) with 

0j. I = ,pl+~jA -I, 0j,2 = ip2+~j~ -I 

( 0 --<j --< 22 - I). For each r>0 let 

, , 2 2  ' 

where/j ,  1,/i, 2 are used in place of/i ,  1(0) and/j ,  2(0). We deduce that if r is fixed (but 

small) and n in (1.8) is large, then each/j,i(r) n ~,. is contained in some D E U fl~j, where 

the t.I Nj are the significant components of f from Lemma 2.3, say D=Dj( o. 

According to (7.39), ~ is well inside the bounded component of the complement 

of I~2. Let us correspond the integers k, 1~k~22 to components D=~l(k)  of 12 ~i by: 
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apl(k)=D if Ik, l(r)cD. Similarly, we may define ~2(k) by identifying the D 6 U~i with 

the integer k such that Ik, 2(z)cD. 

We call these D strongly significant in ~ or ~ .  

LEMMA 7.8. Let DE O ~i and suppose r Then there are r 
distinct integers k', 1<~k'<<.22 with aP2(k')=D. 

Proof. Suppose there were a component D* of D in {A~2Yu~<IzI<A'o} such that 

aD* c {]f-ai] = e} 0 {[z] = a l  2y u]} (7.59) 

(thus D* does not meet {Izl=A'o}). Choose r* with A~ -2y u]<r*<~2A12y u] and such that 

[22, p. 25] 

~ log* 1 , ]f(z)_ai ] <.CT(2A12yu~) (]zl=r*). (7.60) 

Let V~={r*<]z]<A'o)ND*, and consider the estimate (2.32). We estimate the 

Green functions by (2.33) and the boundary integral by (7.60). Thus (1.11), (1.24) and 

(7.59) yield that 

m(r, a i, D*) <~ C(A')  -Sh T(o)+CT(2A72r u]) <~ C(2A/2y) (~-~) T(u]). (7.61) 

If we take r close toA]ru] and compare (7.61) with (7.58) and use (1.11) once more, we 

are led to the contradiction that 

CA~ y(a-~ T(u~) <. C2-1T(A 2~ u~) <~ CA~ 2y(x-~) T(u]). (7.62) 

Thus if ~l(k)=D, then D may be joined to {]z]=A'o) from ~ fl Ik, I without entering the 

other/j, l(Z). 

Our argument gives a little more. Not only does each component D* of 

Of~ {Izl>~A-( 2~' u]} which is the range of "1 meet ]zl=A'o (and so pass through ~2) but 

when it enters ~2 it cannot be contained in the small sectors of ~2 defined by 

2at-O/~.2(z). For if D*N{[zI=r} were contained in 22 intervals of opening ~ where 

A~ 2~ u~<r<A~ y u~ then the useful "small arcs" Lemma of Edrei-Fuchs [12, p. 322] and 

(1.11) would show that 

m(r, a i, D*) <~ C~" log ~'-1T(A2r u~) 

<~ Crl/2T(Ao) <~ C~V2A 2(~+e)T(A-Io) 

<~ CA~ (~-0 T(u~) 

(7.63) 
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so long as, using the notions of (1.24), 

r~ < A~ 1 (7.64) 

(for example, we could choose r,=a~), and we would reach a contradiction just as in 

our analysis of (7.62)). 

Finally, suppose ~l(kO=...=~l(kp)=D. We claim that p distinct components D* 

of D n {Izl~>A~-e u,} meet ~ .  The simpler case is to assume that 

k l -k  r , 1 (mod22) (7.65) 

for any choice of l or I'. Then if our claim was false, then two D* would have to merge 

before encountering ~2. Hence some strongly significant component D**, of 

O ~ifl {Izl>~A-{ 2r u]} in ~ is " t rapped" by D*, so that D**n {A/2y u~'(IzI<A'Q} w o u l d  

have a component D # such that (7.59) holds with D # in place of D*. Thus (7.58) and 

(7.61) would both hold for D # n ~ ,  and this is a contradiction exactly as in (7.62). 

It remains to show that (7.65) always is satisfied. Suppose (7.65) were false. Then 

for some k,k'  with k - k ' - l ( m o d 2 2 )  we have Ik, l(r)=D, Ik,,l(Z)cD for some DE~i. 
Let f~ be the region ~n{10-00[~<l'}, where 00 is chosen so that ~2fl]k,l(r)*(~ and 

fllk,. 1(r)*~. According to (5.28), (7.47), (7.56) and (7.57), we have (l=k or k'): 

log [f(z)_ai I 1 =Tr~cos2(O_O, l)+S+~_j+log . 1 - z  (z~.It (7.71) 

where N<C(A') -h T(Q), ISI~CAV 1r2 T(0)and [71>cu-aT(u). Further, we may take y to 

be real, since the Ii, 1 are chosen so that the function Gi is small only near all. 1. 
It is easy to see from (7.71) that the change in arg(f(z)-ai) along largz-001=r(-@ 

is negative (positive), and the contribution from {larg z-00J= r} n {r<lzl<2r } in absolute 

value is comparable to T(r). Also, m(r, ai, ~) satisfies (7.63), and hence, by differentiat- 

ing the proximity function (cf. (2.40)), we may ensure that 

IA arg (f(z)-ai)l<.CA? (~-~) T(u~) 

on IzJ=h, with h nearly AI27u~. Thus, by (1.24) and the argument principle we have 

n(oo, Q)-n(ai, Q) >1 CT(u2)-CA ~ a-t) T(u~) 

Cr uD, 



92 D. DRASIN 

and similarly, n(aj, Q)-n(ai, Q) >I CT(u~) for all jeei. Thus 

2y 2 ~ 2 7 2 X n ( r ,  aj, Q)>>-(q-1)S(r,~) (~4j Ul.<r<~A l ul). 

Since (q -1)>(q-2) ,  this and (2.14) contradict (1.3). Thus (7.65) cannot hold, and we 

have proved Lemma 7.8. 

Remark. Lemma 7.8 and the representation (7.56) (subject to (7.57) and (7.47)) 

show that in the region {A~2Vu~<lzl<A~Tu~}, the only significant contribution to 

m(r, ai) come from components D of LI ~i which are in the range of Ot or "2, since 

(7.64) holds. We summarize our results in 

LEt, IMA 7.9. There is a I - 1  correspondence between strongly significant compo- 
nents in ~J~l and ~2, so that the set B* of(3.16) is disjoint from 

~* = (AI3 Qn <~ Izl  <A en} (7.71) 

where, as in (7.38), Al=logA. Thus (7.56), (7.57) and (7.47) hold for all zE~*.  In 
particular, the annulus {~On<lZl<36On} is divided into 22 disjoint sectors Ij= 

(10-ajl<~/22) such that 

loglf(rei0)_a2ll = (--~ cosg (O-a )+R+X+log  I - z  (Oel)  (7.72) 

for some ajE {ai) q where N<C(A') -h T(Q) and IRI<<.CA? ~ T(O). 

Let us check a few of these assertions. The bounds in (7.71) follow from (7.38) and 

(7.39). Next, consider the set B* of (3.16), which is a union of rectangles from w 3.3. 

Since the strongly significant components link ~ to ~2, it follows that B* N ~*=@. 

Thus in (7.39) we may take s I=A~ -1o t/2 and t~=A~01/2 , and observe that 

{A-(2sl<r<A~tl} is contained in some annulus Mm of (5.27). Since O=sltl the repre- 

sentation (7.56) subject to (7.57) and (7.47) applies and gives (7.72) (cf. (7.71)). 

7.8. Proof of  the theorem. We have already shown (1.4), and (1.5) follows from the 

asymptotic expansions (7.58). 

Finally, consider (1.6). Thus far, we have centered all attention on subannuli (1.10) 

of (1.9), where the {O,,} satisfy (1.8). 

Now that (1.11) is known for all e, we modify the original 0n by 
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0n = 2n, (7.73) 

and use (1.11) with e=).  Then the developments  of  Chapters  2-5 apply to slowly 

expanding annuli centered at the Qn, and for  each n, a sequence Gm, n may be 

constructed in the modified annuli Mm, n as in (5.25)-(5.29). Next ,  we obtain subannuli 

~l(n) ,  ~2(n) for  n, as in (7.42), which lie well on opposi te  sides of  {Izl=Qn}. L e m m a  7.4 

(w is a global s ta tement ,  and only it and ( l . l l )  are used after w Thus (7.56), 

subject to (7.57) and (7.47), (7.58) and L e m m a  7.9 apply,  and we deduce that (7,72) 

holds in each annulus 

< Izl < 36on}. 

Since now ~n satisfies (7.73), we see that these annuli overlap, and thus (1.6) follows at 

once. This comple tes  the proof.  
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