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Introduction 

In Connes' fundamental work "Classification of injective factors" [7], it is proved that 

injective factors of type III,t, 2 . 1  on a separable Hilbert space are completely classified 

by their "smooth flow of weights". Since the flow of weights of factors of type III1 is 

trivial, one would expect that there is only one isomorphism class of injective factors of 

type IIIt. During the years 1976-78, Connes spent much effort to prove that there is 

only one injective factor of type III1, and found a number of conditions for an injective 

factor of type III1 to be isomorphic to the Araki-Woods' factor R~o. One of these 

conditions is the following: 

Let q0 be a normal faithful state on a yon Neumann algebra M, and let the 

bicentralizer of q0 be the set B.  of operators a in M for which 

xna-axn---~O (o-strongly) 

whenever (x~) is a bounded sequence in M satisfying lim~_.| {[x~q0-q0x~[=0. Connes 

proved that if an injective factor of type IIIt with separable predual has a normal 

faithful state q0 for which B . = C l ,  then M is isomorphic to the Araki-Woods factor R| 

In particular, if M has a normal faithful state 9, such that M~NM=Cl,  then M=R| 

In this paper we provide the last step in the proof of uniqueness of the injective 

factor of type IIIl by proving that every injective factor of type IIIl has a normal 

faithful state 9, such that B . = C l .  

The starting point in our proof is the Connes-Takesaki relative commutant theorem 

for dominant weights (cf. [13, Section 2]): For every dominant weight ~p on a IIIrfactor  

with separable predual 
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M~0 NM= C1. 

If M is an injective factor of type III~, then the centralizer M ,  is the hyperfinite 

II| In particular, M ,  has Schwartz' property P, so in this case M~0flM=C1 

implies that for every x E M: 

conv {uxu*lu 6. U(Mv, ) } N C1 * (*) 

where the closure is taken in the e-weak topology. Let now ~p be a normal faithful state 

on M, and let Yl be an infinite dimensional separable Hilbert space. By approximating 

the weight 9 |  on M ~ B  (YO with dominant weights, we obtain from (*) that for every 

x E M',,,{0} with ~0(x)=0 and for every 6>0, there exists a sequence (ai)i% 1 of operators 

in M such that 

(i) spo~ (a i) ~ [ - 6 ,  6] for all 

(ii) ~_~ a* a i = 1 
i=1 

(iii) ~ I la ix-xa , l l  2 >~ �89 
i = l  

iEN 

(cf. Lemma 2.7). These three conditions imply intuitively that "xCB~o", because the 

ai's almost commute with q0, while some of the ai's must be far from commuting with x. 

However, we have only little control over the operator norm of the ai's relative to the 

size of Ilaix-xailko, and it is actually necessary to make a very long detour in order to 

prove that x~B~o. This detour occupies the main part of Section 2 and it is strongly 

inspired by the techniques in Connes' and StCrmer's proof of the homogeneity of the 

state space of IIIl-factors (cf. [12]). Once we know that (9(x)=0 and x*0)=~x~B, ,  it 

follows immediately that B,=C1.  The details in Connes' proof of 

[M injective IIIrfactor and B~0 = e l i  =~ IMp-R| 

has appeared very recently in [10]. We have checked independently that the above 

implication can also be proved using the ideas of [16, Sections 3, 4 and 5]. Our proof is 

quite long and will be presented elsewhere. 

In the last section (Section 3) of this paper we prove that for a general IIIrfactor  M 

with separable predual, the following three conditions are equivalent: 

(1) For every (faithful) dominant weight ~p on M and every x E M  
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conv (uxu*lu~ U(Mv) } fl C1:4=@ 

(e-weak closure). 

(2) For every normal faithful state 9 on M, Br = C 1. 

(3) The set of normal faithful states 9 on M, for which M~ nM =C1 is norm dense 

in the set of normal states on M. 

We have not been able to decide whether these conditions are fulfilled for all I I I r  

factors with separable predual. 

The rest of the paper is organized in the following way: 

w 1. Preliminaries of Connes' bicentralizer problem . . . . . . . . . . . . . . . .  97 

w Uniqueness of the injective factor of type III~ . . . . . . . . . . . . . . . .  103 

w Characterization of IIIt-factors for which Be=C1 . . . . . . . . . . . . . .  130 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

1. Preliminaries on Connes' bicentralizer problem 

The material presented in this section has been known to Connes since 1976--78. I 

learned about it during a number of conversations with Connes in May 1978 and 

November 1978. As mentioned in the introduction, Connes defined the bicentra!izer of 

a normal faithful state 9 on avon  Neumann algebra M to be the set of operators a E M 

for which 

x~a-axn-o  0 (e-strongly) 

whenever (Xn)n~ N is a bounded sequence in M for which lim,_,| Ilxn 9-gx~]l=0. Connes 

proved that i fM is a IIIFfactor, and Be=C1 for one n.f. (normal faithful) state q0 on M, 

then B~0=C1 for all normal faithful states on M. From this it follows that B~0=C1 for all 

n.f. states on the Araki-Woods factor R| (cf. Corollary 1.5 and Example 1.6 below). 

He conjectured that Be=C1 for some (and hence for every) n.f. state 9 on any III1- 

factor M. Connes' interest in this problem lies in the fact that he was able to prove: 

THEOREM 1.1 (Connes [8], [10]). Let M be an injectioe IIIl-factor with separable 

predual. I f  M admits a normal faithful state 9 for  which Br then M is isomorphic 

to the Araki-Woods factor Roo. 

The above theorem was announced in the end of Connes' survey paper [9] in a 

slightly different formulation. A detailed proof appeared very recently in [10]. In the 

7-878288 Acta Mathematica 158. Imprim6 le 10 avril 1987 
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rest of this section we present some basic properties of the bicentralizer Be, which will 

be needed in the following sections. 

For any unital C*-algebra we let U(A) denote the unitary group of A. 

LEMMA 1.2. Let M be a yon Neumann algebra with a normal faithful state cp. For 
A E M, put 

C~o(a, 6) =conv  {u*au I u E U(M), Ilu - ull ~ 6} 

where conv {. } is the closure o f  the conoex hull in the o-weak topology. Then 

a E B~ r t'l C~(a, 6) = {a}. 
6>0 

Proof. For x E M ,  put Ilxll~=cp(x*x)l/2. Then II II~0 is a norm on M and it generates 

the o-strong topology on bounded sets of M. Put 

~t-- {(xn)E I~(N,M)I lim IIx.  0- 0xnll = 0}. 
n ....~ oo 

Then ~t is a unital C*-algebra. Therefore ~t is spanned by UGd). Note that U(~ 1) 

consists of those sequences (Un)n eN of unitaries in M for which Ilun~--~unll--'0 for 
n.....> oo. 

Thus 

B~= { a E M  I lim Ilu.a-au~ll~o= o for all (u~)E U(s~)}. 

Equivalently 

B~ = {a EMI lim Ila-u*~ au.ll~- 0 for all (u.)E U(~)}. (*) 

The last equality (*) follows, because the tp-norm is invariant under multiplication from 

left with unitary operators from M. For a E M, and 6>0 put 

e(a, 6) = sup{llu*au-all~lu ~ U(M), Ilu~-qgull ~ 6). 

Since Ilxll~--sup{cp(y*x)lyEM, Ilyll~ ~< 1}, the q0-norm is lower semi continuous in the 

o-weak topology on M. Therefore 

IIx-all~<~e(a, 6) for every xECr 6). 
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a E B ~  ~ l ime(a,  6 ) = 0  
6-*0 

Hence t'lo>oC~o(a, 6 )={a )  for all a EB~o. 

that 

while 
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Conversely,  if a ~ B~, then we can choose a sequence (un) of unitaries in M such 

l im I lu .~-~0 u.II = o 
n - ~ a o  

lim sup Ilu* au,-a]l~> O. 
n.-~oo 

By passing to a subsequence,  we can even obtain that there exists an e>0,  such that 

Ilu.* au,,-a[l~ >~ e for all n. 

Let  b be a cluster point for the sequence (u* au,,[n E N} in the o-weak topology. Clearly 

b E t'16>o C~(a, 6). We will prove that b:~a. Note  first that 

lim * 2 []u, au,][~ = lim cp(u* a* au,) = cp(a*a) = Ilall~ 
?l ---~ oo n -..> oo 

because IlUn ~U*--~0[I ~ 0  for n--->oo. Using 

2 Re cp(a* u* a u . )  z , 2 , 2 = Ilall~+llu. a u . l l ~ - I f a - u ,  au.ll~ 

we get in the limit n -~  

fp(a*b) <~ Ilal[~ ~2  = q~(a,a)_�89 

Hence br  This completes the proof  of  Lemma 1.2. 

PROPOSITION 1.3 [8]. Let  M be a yon Neumann algebra with a normal faithful 

state q~. Then 

(I) Br is a oon Neumann subalgebra o f  M. 

(2) The following two conditions are equivalent: 

(a) B~ = C 1 

(b) For every a E M  and every 6 >0  
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conv {u*auluE U(M), Ilu~0-gull ~<~} N Cl=l=~ 

(closure in e-weak topology). 

Proof. (1) It is clear that B~ is a unital subalgebra of M. Moreover, by Lemma 1.2, 

aEB, r t'l C~(a,6)= {a} ~ Iq C,(a*,6)= {a*} <=:, a'EBb. 
6 > 0  ' 6 > 0  

It remains to be proved that B~ is e-strongly closed. Let a E/~-s, and let u n be a se- 

quence of unitaries in M, such that 

Ilu.~0-~u,ll--,0 for n--->oo. 

For every e>0, we can choose b E B~, such that I[a-b[[~ < e. Then 

Ilu* (a-b)u. 112 = ~(u*(a-b)* (a-b) u.)--'lla-bll~ for n-->oo 

because Ilu.~0u*-~ll--->0 for n-->oo. Using 

Ilu~* au,,-all~ <~ Ilu* (a-b)  u. II~+llUn* bu.-bll~ +llb-all~ 

we get 

lim sup Ilu~* au,-allq~ <~ 211a-bll, < 2e. 
n . . . . ~  oo 

Since e was arbitrary, it follows that a EB,.  

(2) (a)=~(b): Let aEM. The set 

C~(a) = t3 C~(a, 6) 
6 > O  

is a e-weakly compact convex subset of M, and it is non-empty because it contains a. 

Let ~0 be the completion of M with respect to the r Then C~o (a) is a norm 

closed convex subset of ~ , .  Since ~ is a Hilbert space, there exists b E C,  (a), such 

that 

Ilxll~>llbll~ for all xEC~(a)\{b}.  

We will show that b E B~. If u, v are two unitary operators in M, then 

II(uv)~-~(uv)ll <-II(u~0-~0u) oll+llu(v~-~o)ll 
--Ilu~-q~ull+llo~-~vll. 
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From this it follows easily that if a' E C~(a, 6) then 

Cw(a', 6) ~_ Cw(a, 26), 6 < O. 

Since b E n~>0 C~o(a, 6) it follows that for all 6>0 

C~(b) = n C~(b, 6) =_ n C~(a, 26) = C~(a). 
6>0 6>0 

If u E U(M), and Ilu~0-~ull --<6, then 

Ilu* bull~ = ~o(u* b* bu) 

= cp(b*b)+(ucpu*-cp) (b'b) 

<~ Ilbll~+llu~u*-~oll lib II 2 

~< Ilbll~+61lbll 2. 

Using the lower semi continuity of II I1~ in the a-weak topology we get 

IJxll 2 <~ Ilbll2 +6llbll 2 for all xE C~(b, 6) 

and consequently 
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Ilxll~ <~ Ilbll~0 for all x ~ C~(b). 

Since C~(b)~_C~(a), this inequality implies that x=b. Hence C~(b)= {b} so by Lemma 

1.2, b EBb0. Therefore (a) implies that 

bECk(a, 6) NC1 

for all 6>0. Thus (a)=~(b). 

(b)=~(a): Assume (b) and let a EM. Since the sets 

C~(a, 6) n Cl 

form a decreasing family of non-empty o-weakly compact sets, they have a non-empty 

intersection. Hence there exists 2 E C, such that 

z l  ~ n C~(a, 6). 
6>0 

ff u E U(M), and IJutp-tpull ~< 6, then 
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I~(u*au)-~(a)l ~ II"~u*-~ll Ilall 

~<6llall. 

Hence I~(x)-q~(a)l<<.611all for all x E C~(a, 6) and all 6>0. Therefore 2=tp(a), i.e. 

q0(a) 1 Econv {u*au[u E U(M), Ilu~-~0ull ~< 6} 

for all 6>0. Equivalently 

a-q0(a)l E conv{a-u*aulu E U(M), Ilu~-~0ull ~< 6). 

Using that the II II~-norm is lower semi continuous in the o-weak topology, we get 

Ila-~0(a) 111~ ~< sup(lla-u*aulMu E U(M), Ilu~0-~0ull ~< 6). 

If  a EB~o, the supremum goes to zero for 6--->0. Hence a=q0(a)1. This proves (a). 

Remark 1.4. By the proof of  (b) =~ (a) it follows that B~=C1 is also equivalent to 

(c) For  all a E M 

q0(a)l E n conv{u*au[uE U(M), Ilu~-~0ull <~6} 
8>0 

(closure in o-weak topology). Moreover, a simple duality argument shows that this 

condition is again equivalent to 

(d) For all ~p E M. ,  

~/,(1)q0 E n conv {mpu*[u E U(M), Ilu~0-~ull ~ 6) 
6>0 

(closure in norm topology). 

COROLLARY 1.5 [8]. Let M be a o-finite factor of  type IIIl. IfB~o=C1 for some n.f. 

state q~ on M, then Bo,=C1 for all n.f. states to on M. 

Proof. Assume that B~o=CI, for some n.f. state ~ on M. Then, by the Connes- 

StCrmer transitivity theorem [12], the set of n.f. states to on M for which Bo~=C1 is 

norm dense in the set of normal states on M. Let  to be a n.f. state on M, and let 6>0.  

Choose a normal state to~ on M, such that B,o~=C1 and Ilto-to~ll--<6. By Proposition 

1.3 (2) we have 

Co~(a, 8) flC1 =~ 
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for all aEM. However, for uEU(M), Iluto~-~ooull~6 implies that Ilu~o-toull~36, 
Therefore Co(a, 36)fl C I * ~ .  Using again Proposition 1.3 (2) we get B,o=CI. 

Example 1.6 [8]. In [2] Araki and Woods proved that there is up to isomorphism 

only one ITPFI-factor with asymptotic ratio set r| equal to [0, ~[. This factor is 

called the Araki-Woods factor and is denoted R| We shall see that B~=C1 for all n.f. 

states on M, but that Mo,=C1 (and hence M',oNM=M) for some state to on M. 

Note first that R| can be written as the tensor product 

R= =Ra,~R~2 

of two Powers factors R~, and Ra2 where log 21/1og A2 is irrational, because M= 
Ra, ~ R~2 is clearly an ITPFI-factor and both 21 and 22 are contained in r~(M), so that 

r| ~[  (r~(M)AR+ is always a closed subgroup of  R+). Let tpl and q92 be the 

usual tensor product states on R~ 1 and R~ 2 (cf. [20]). Then by [5, section 4] 

M~ A R,t = C I ,  i=1,2. 

Therefore tp=tpl | tp2 satisfies 

M~ AM=C1. 

In particular B~0=C1. Since R| is of type 1111 we have Bo,=C1 for all n.f. states w on 

Roo by Corollary 1.5. 

On the other hand Hermann and Takesaki gave in [17] an example of a n.f. state w 

on a factor M, such that Mo,=C1. The factor in question is of type III1, because if M 

was not of type III1, then by [5, Section 3-4] M,o would contain a maximal abelian 

subalgebra of M. The factor in [17] comes from the G.N.S.-representation of the CAR- 

algebra given by a quasi free state. By [20] quasi free states on the CAR-algebra induce 

ITPFI-factor representations, and by [5, Section 3] R| is the only ITPFI-factor of type 

IIIl. Therefore the factor M in Hermann and Takesaki's example is isomorphic to R~. 

2. Uniqueness of the injective factor of type III l 

In [13], Connes and Takesaki introduced the notion of dominant weights on a factor of 

type III. The weights considered in [13] are not necessarily faithful, but for simplicity 

we shall here only consider faithful weights. 

Let M be a v o n  Neumann algebra with separable predual. A normal faithful 

semifinite (n.f.s.) weight ~p on M is called dominant if 
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and 

(i) ~p has infinite multiplicity 

(ii) ~,~p-~p for all ~. E R+. 

The first condition means that the centralizer M w of ~p is properly infinite, and 3.~p-~p 

means that 3.~p=~p (u. u*) for some unitary operator u E M. Connes and Takesaki proved 

that every properly infinite von Neumann algebra has a dominant weight, and that two 

dominant weights are unitarily equivalent ([13, pp. 496-497]). 

By [24], every properly infinite yon Neumann algebra M can be written as a 

crossed product 

M =  N>~oR 

where N is a von Neumann algebra with a n.f.s, trace r, and (0,)sER is a continuous 

one parameter group of automorphisms for which 

rO0s = e-St, sER.  

By [13, p. 497] the dual weight ~p of r is a dominant weight on M--N>4oR, and the 

centralizer My, of ~p is equal to ~o(N) (the usual imbedding of N in the crossed product 

N)~oR [24]). If M is a factor of type III1, then N is a factor of type II| [24, Corollary 

9.7]. Since dominant weights are unitarily equivalent, it follows that M w is a IIoo-factor 

for every dominant weight ~p on a factor M of type III~ (with separable predual). 

By Connes' and Takesaki's relative commutant theorem [13, p. 513], 

M~ n M = Z(M~) 

for every integrable (in particular for every dominant) weight on M. Hence 

THEOREM 2.1 (Connes, Takesaki [13]). Let M be a factor o f  type IIIl with 

separable predual, and let ~p be a dominant weight on M. Then 

n M = C l .  

COROLLARY 2.2. Let M be an injectioe factor o f  type IIIl with separable predual, 

and let ~p be a dominant weight on M. Then for every x E M, 

conv {uxu*]uE U(M,)) nC1 * 

where the closure is in the o-weak topology on M. 



THE INJECTIVE FACTOR OF TYPE HI 1 105 

Proof. Let m be an invariant mean on R. Then 

x-o l ~ of  (x) din(t) 
J-| 

defines a projection of norm I from M to My,. Hence, when M is injective, so is M e. In 

particular M~, satisfies property P of Schwartz (cf. [7]). Hence, for all x E M, 

c o n v  (uxu*lu v(Mr)) n 

This proves Corollary 2.2 because the above intersection is clearly contained in 

MNM~o=C1. 

We are now able to state the main results of this section: 

THEOREM 2.3. Let M be a factor o f  type 1111 with separable predual. I f  M satisfies 
the property: 

(1) For every (faithful) dominant weight ~0 on M and every xEM,  

(o-weak closure), 

then 

cony {uxu*lu E U(Mv,) } N C1 ar 

(2) For every normal faithful state cp on M, B~0=C1. 

Particularly, B~=C1 for any normal faithful state cp on an injective factor o f  type Illl 

with separable predual. 

The above theorem combined with Connes' result cited in section 1 (Theorem 1.1) 

gives immediately: 

COROLLARY 2.4. Every injective factor o f  type IIIi on a separable Hilbert space is 

isomorphic to the Araki-Woods factor R~. 

In Section 3 we will prove that the two conditions (1) and (2) in Theorem 2.3 are 

actually equivalent icf. Theorem 3.1). The rest of this section will be used to prove 

Theorem 2.3, i.e. to prove that (I) =~ (2). We shall need some definitions from the 

spectral theory of automorphism groups (cf. [1] and [5, Section 3]): Let (at)t e R be a o- 

weakly continuous one-parameter group of automorphisms on a yon Neumann algebra 

M. For f6L2(R)  and x E M ,  one puts 
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as(x)=f~Y(t)a,(x)dt .  

The a-spectrum spa (x) of an operator x E M is the set of characters 7 E (i, for which 

f(7)=0 for all fELl(R)  satisfying af(x)=0. We will identify 1~ with R in the usual way, 

such that 

flf(x)eiyXdx, f0') = V E R, fE  L l (R). 

LEMMA 2.5. Let M and ctt be as above. Let x E M  and let 6>0. I f  the function 

s---~as(x) can be extended to an entire (analytic) M-valued function, such that 

Ilas(x) II ~< KeOl'm'l, s E C 

for some constant K>0, then spa (x)~[-6 ,  6]. 

Proof. For every ~p E M,, there exists a constant K'>0,  such that 

Iw(a~(x))l ~< K' e 01Ira sl, s E C.  

Hence, by the Paley-Wiener theorem the function t-*q~(at(x)), t E R  is the Fourier 

transformed of a tempered distribution with support in the interval [ -6 ,  6]. Thus, if f is 

any Schwartz function, such t h a t f h a s  support in R \ [ - 6 ,  6], then 

~_| q~(a~(x) ) f(x) dx = O. 

Hence af(x)=0 for every Schwartz function f for which s u p p ( f ) ~ R \ [ - 6 ,  6]. This 

proves Lemma 2.5. 

LEMMA 2.6. Let M be a factor of  type 1111 with separable predual, and let v2 be a 

weight on M of  infinite multiplicity (i.e. Mv~ is properly infinite). I f  M satisfies (1) in 

Theorem 2.3, then for all x E M  and all 6>0, 

conv {uxu*lu E U(M), SPot(U) ~ [ -6 ,  6] } N C1 * 

(o-weak closure). 

Proof. Let 6>0 and put a=6/2. By [13, Chapter II, Theorem 4.7 and Corollary 

3.2], there exists a dominant weight ~p' on M, such that 
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e-~p ' ~< ~p ~< e~p ' (~). (*) 

By definition of the ordering "~< (oo)" (*) is equivalent to that the cocycle Radon 

Nikodym derivative t---~(Ov2:Dv2')t can be extended to an entire M-valued function 

satisfying 

II (O~: Ow,),ll ~ e allmsl, S E C, 

(cf. [13, pp. 508-509]). If xEM,p, then for tER, 

o~t(x) = (Dw: Dw,) t ot~'(x) (D~0: Dw,) * 

= (Dw. Dw,)tx(D w. Dw,) t .  

Hence t ~  a~t(x) can be extended to an entire M-valued function, namely 

a n d  

Thus, by Lemma 2.5 

Therefore, 

s---~(Dw: D~,)sx((D~: D~,)~*, s E C 

[Io~r ~ e 2allm Stllxll, s ~ c .  

spo~ (x) ~ [ -2a ,  2a] = [ -6 ,  6]. 

U(Mw,) ~= {u E U(M)Ispo~ (u) ~ [-6,  61}. 

This, together with the assumption (1) in Theorem 2.3, proves Lemma 2.6. 

LEMMA 2.7. A s s u m e  that  M satisfies (1) in Theorem 2.3. L e t  q~ be a normal  

fa i th fu l  s tate on M,  and  let x be an operator  in M for  which  q0(x)=0. Then f o r  every 6>0 

there exists a sequence  (ai)i ~ N o f  operators  in M,  such that  

(i) spo~(ai) ~ [ -6 ,  6] for a l l  iEN 

( i i )  r,i~:l a* a i -= 1 

(iii) ~ 2 2 E xa a x  >1! x , i~lll i -  , II~ 211 II~ 

where as usual  Ilxll~=~(x*x)l/~. 
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Proof. We can assume that M acts on a Hilbert space ~, such that 9 is the vector 

state given by a vector ~o E ~. 
co 

Let ~ be an infinite dimensional Hilbert space with orthonormal basis (ei)i= ~, and 

let ~p be the weight on M~B(~)  given by ~=9 |  where Tr is the trace on B(3~). 

Then ~v has infinite multiplicity. Since M~B(Y{) is isomorphic to M we get by Lemma 

2,6 that there exists ;!, E C1, such that 

2(1 | 1) E conv {u(x | 1)u*lu E U(M ~ B(ffO), sp~(u) ~ [ -6 ,  6]}. 

He nee, 

(x-21) | 1 E conv {x | 1 -u (x |  1)u*l u E U(M ~ B(X)), spw (u) ~ [ -6 ,  6]}. 

Since convex sets in M~B(Y[') has the same closure in o-weak and o-strong topology, 

we have for every ~ E ~r|  that 

II((x-A1) @ 1) r -< sup{ll(x | 1-u(x | 1) u*) ~ll I u fi U(M ~ n(Yo), spo~ (u) ~ [ -6 ,  61} 

= sup{ll(u*(x | 1)-(x | I) u*)~[I I u E U(M ~ B(YO), Spot(U) E [ -6 ,  6]). 

By applying the above inequality to the vector r162174 e~, we find that there exists 

uEU(M~B(YO), such that Spo~(U)~_[-6, 6] and 

II(x-,~l) ~011-< ~ II(u*(x | 1)-(x | 1) u*) (~0 | e0[I. (*) 

The operator u* can be represented as an infinite matrix (a0.)/~,j=~ with 

elements in M where a o is characterized by 

(u*~,ri)=(ao.~| rl| ~,rlE~. 

Since spo~(u)~[-6, 6] also spo,o(u*)~[-6, 6], and since ot~=ot~t | ida(zo, we have 

Spot(a0.)___[-6,6] for all i,jEN. 

The inequality (*) can now be expressed as 

II(x-;tl) ~0112 -< 2 ~ I[(ailx-xail) ~011 ~ 
i = 1  

because the set of vectors (ailx-xaa) (~o | e0  are pairwise orthogonal. Since 

(x~o, ;~o) = ~o(x) = o 



we have 

Hencealso 
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II(x-&l) ~0112 = IIx~0112+lAI ~ ~ IIx~011 ~ 

IIx~0112 ~ 2 ~ II(a,, x-xa,,) ~0112 
i=1 
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Since u* is unitary, we have Ei~=~ a~ ain=l. 
This proves Lemma 2.7. 

The remaining part of the proof of Theorem 2.3 is strongly inspired by the techniques 

from Connes' and StCrmer's paper [12]. As in [12] we shall consider M in its standard 

representation (cf. [1], [6], [15]). Following the notation of [15], we can to every von 

Neumann algebra M associate a unique quadruple (M, ~,  J, P), where ~ is a Hilbert 

space on which M acts, J is an isometric involution in ~ ,  such that 

(i) JMJ = M', 

(ii) JcJ =c*, c EZ(M), 

and P~ is a selfdual cone in ~ ,  such that 

(iii) J~ = ~, ~ E P  ~, 
(iv) xJxJ(P ~) ~= P~, x EM. 

We put 

~s.a. = {~ ~ ~1 J~ = ~}. 

Moreover, we will consider ~ as a two-sided M-module, where the right multiplication 

is given by 

rlx= Jx*Jr I, xEM,  r lE~.  

Recall that every positive normal functional cp on M is implemented by a unique vector 

~ E P  ~. By Araki's generalization of the Powers-StCrmer inequality, one has for q0, 

eM+: 

II~-~wll 2 ~< I1~0-~11 ~ II~-~wll I1~+~11 
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(cf. [1, Theorem 4(8)], [15, Lemma 2.9], [21]). Note that in the above notation the 

quantity I(q0, x) used in [12] is simply given b y  

ICcp, x) = +llx~-~+xll 2, xfi  M, cp E M: .  

For later reference we prove: 

LEMMA 2.8. Let  M be avon  Neumann algebra with standard form (M, ~ ,  J, P~) 

and let cp be a normal faithful state on M. Then: 

(a) For every unitary operator u in M 

Ilu++-+,+ull 2 ~< Ilu~-+oull ~211u+~-++ull. 

(b) For every bounded sequence (x+), ~ N in M, 

limllx.qo-q0x.II = 0 + limllx. ++-++x.II = o. 

Proof. (a) It is elementary to check that u~+o u* EP ~, and that the vector functional 

on M given by u~+o u* is equal to ucpu*. Hence by the Araki-Powers-StCrmer unequality 

cited above 

Ilu+~ u * - + +  II 2 ~< Ilu~u*-~ll ~ 2[lu++o u*-++ll  

which is equivalent to the stated inequality. 

(b) Let M (resp. ~) denote the set of bounded sequences in M for which limn_++o 

IIx. +o-+ox. II--0 (resp. lim._+| ++-++x.ll--0). Then M and ~ are unital C*-subalgebras 

of/++ (N, M). Moreover, by (a) their unitary groups U(M) and U(~) coincide. Since any 

unital C*-algebra is the linear span of its unitaries, we have M= ~.  

Throughout the rest of this section, M is a IIIrfactor with separable predual, and 

with standard form (M, Y(, J, Pro). 

LEMMA 2.9. Assume that M satisfies (I) in Theorem 2.3. Let  ~ E P  ~ be a cyclic 

and separating unit vector, and let rl E ~t~s.a. (i.e. J+? =rl) be a unit vector orthogonal to 

~. For every 6>0, there exists a EM, a~=O, such that 

lla~ll+'-+-lla~ll" < 811a+-,Tall + 

and 

Ila~-~all 2 < al lan-nai l  2. 
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Proof. We may assume that 0<6<1. Define normal states qo, ~0 on M by tp=(. ~, 0 

and ~p=(.q, r/). We treat first the case where ~p is dominated by some scalar multiple of 

qo; i.e. ~0~<Ktp for some K E R+. Then the operator x~---~xr I, x E M extends by continuity 

to a bounded operator x' EM',  such that ]lx'll~<Kl/2 and r/=x'~. Put x=Jx 'J~M.  Since 

J~=~ and J~/=r/, we have ~/=x~. Note that q0(x)=0 because r/• Put 

/ 6 \ 1/2 
6, =min  {~-~-) ,(27K)-1/2}. 

By Lemma 2.8 we can choose (aj)~= 1 in M, such that 

Spo~(ai) ~ [-61, 61], iEN, 

~ a* a i = I,  
i=l 

II(aix-xa,) > �89 IIx ll 2 
i=l 

=�89 
Let A~ be the modular operator associated with ~ via Tomita-Takesaki theory [22]. For 

every fE  LI(R) for which the Fourier transformed f vanishes on [-61, 61] we have for 
every j E N 

f_~ f(t)  A it ~ -  f(log A~o)a J ~ = ~o aj r at 

f/| (a) dt 

=0 

because Spo~(a~)~[-61, 61]. Hence aj~ is contained in the spectral subspace of logA~ 

corresponding to the interval [-61, 61]. 

S i n c e ~ E P  ~, the isometry J in the quadruple (M, Y(, J, P~) coincides with the 

isometry J~ obtained in the polar decomposition of the modular conjugation S~ 

associated with ~, i.e. 

_ 1/2 = jA~2, S~ - J~o A 

(cf. [6], [15, Lemma 2.9]). Since S~(x~)=x*~, xEM,  we have 

~a i = Ja* J~ = Ja* ~ = A 1/2 ai~. --qj 
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Clearly 

Therefore, 

sup {[1-eS/2l is ~ [-6.61]  ) = e61/2-- | .  

Ila,~-~aill = II (1-A~/2)  a,~ll 
~< (e 6'/2-1) Ila,~ll 

~<6111ai~ll. 

oo ~ For the last inequality we have used that 61~<(t$/8)1/2<1. Using E/= i a i ai=l we have 

2 I lai ~-~a, II 2 <~ 6~ E I lai ~112 = a~ ~< a/8. 
i = l  i=1  

Clearly, 

air I -  17a i = (arc-xai) ~+ x(ai ~-  ~ai). 
Using the triangle inequality in the Hilbert space | ~ we get 

( i=~l Hairl-lTaiH 2 ) l/2 ~ ( i=~l H(arc-xai) 'll2) l/2-llxll ( i=~l llai~-~ail'2) '/2 
>>. 1 _Ki/2.t)l 

1> 1 _2_7/2 

7 

8V-2"" 

Hence 8 E~ 1 Ila~rl-rlaiH2>~49/16>3, while 

(lla,r 1 + 1 + 1  = 3 .  
i = l  

Hence, for at least one iEN, 

8lla;r/-r/aill 2 > Ila,~l12+llair/l12-',-86-'llai~-~a~ll 2. 

In particular, ai:~O and 
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Ilair +llairlll 2 < Ilairl-rlaill z 

Ila,r162 2 < ~ l la i f f -  r/aill 2. 
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Therefore,  

8-878288 Acta Mathematica 158. Imprim~ le 10 avril 1987 

H e n c e ,  

and 

Then 

~,(p)  > - - ~ , r ( p ) .  

Moreover, since the reduced algebra pMp has no minimal projections,  we can choose a 

projection q E M, O<~q<~p such that 

~P(q) = -~6 ~P(P)" 

Note  that q*O and p - q * O .  Since M is of  type III, any two non zero projections in M 

are equivalent, so we can choose v E M, such that 

v*v = p - q  and vv* = q. 

15 
1107112 = W ( p - q )  -- - ~  W(p) 

II~vll 2 --- IIJ(v*,7)ll 2 = 11o*,7112 --- W(q) = ~ w(p). 

4 

IIv~ll2+llv~ll 2 ~ q)(p)+~(p) 

< 2~, (e)  < 811o~-~ull  ~ 

This proves the lemma in the case ~<Kq~ for some K. 

Assume next  that ~ is not dominated by a multiple of  ~p. In this case we can choose 

a non zero projection p E M, such that 
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and by the parallelogram identity 

IIv~- ~vll 2 ~< 2(llv~ll~+ II~vll ~) 

_- 2(llv~ll~+llv,~ll ~) 

~<4~o(p) 

<-~-6~0(p) 

~<allo~-~vll 2. 

This finishes the proof of Lemma 2.9. 

LEMMA 2.10. Let M, ~, ~1 be as in Lemma 2.9, and let 6>0. There exists b EMs.a., 

b~=O such that 

IIb~ll2+llbrlll 2 < 3211br/-r/bll 2 

IIb~-~bll 2 < 611b,7-~bll 2. 

Proof. It is sufficient to consider 0<6<1.  By Lemma 2.9 we can choose aEM, 

such that 

Ila~ll2+lla~ll 2 < 811a~-~al l  ~ 

I la~-~al l  2 < 611a~-~a l12 .  

Put bt=(a+a*)/2 and b2=(a-a*)/2i. We will show that either bl or b2 satisfies the 

conditions of the lemma. If b~ =0 then b2 = - i a  clearly satisfies the conditions. Also if 

b2=0 then bl=a satisfies the conditions. Hence we can assume that b~4:0 and b2=~0. 

First, note that 

Ila*~ll = IlJ(~a)ll = II~all ~< Ila~ll+lla~-~all 
<~(81'2+(-~)'/2)[[ar]--r]a[[ 

< 41lar/-~/all 

and 

[la*r/l[ = lit/all ~ Ilarlll+llari-~al[ 
(8"2+ 1)Ilar/-r/al[  

< 4[[ar/-r/al[.  



Moreover, since JS=~, 

and similarly 

Hence, 

Clearly, 

Hence, 
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[ l a * ~ - ~ a * l l  = [Id(~a-aOl[ = I l a ~ - ~ a [ I  

Ila*~-~a*l[ = Ilar/-~all. 

Ila*~ll2+ Ila*r/l12+32~ -Illa*~-~a*ll2< (2" 16+~" 32)Ila~-,all 2 
-- 401lar/-r/all 2. 

Ila~H2+llar/l12+32~-llla~-~al12< (8+--~. 32)Ilar/-r/all 2 

~< 2411ar/-r/all 2. 

(lla~l12 + lla* ~l12) + (lla~l12 + lla*ql12) + 32o -I (lla~- ~allZ + lla* ~ -  ~a*[I) 2 

< 6411a~/-r/al]  z 

= 32(11mT--rlal12+lla*~l-rla*112). 
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Using a=bl+ib2 and a*=bl- ib2 we get now by the parallelogram identity that 

lib1 ~[12+ IIb2 ~JJ 2+ lib, r/IJ2+ lib2 r/ll2+ 32~-'(11b, ~-~b,  IJ2+llb2 ~-~b2lJ 2) 

< 32(11b I r]- r/blll2+llb2 r]- ~/b2112). 

Hence, for either b=bl Or b=b 2 we have 

Ilb~llz+llbrll12+32<)-~llb~-~bl[ 2 < 321[br/- ~bll 2. 

Thus, b satisfies the conditions of the lemma. 

The following lemma is very similar to  [7, Proposition I. 1]. 

LEMMA 2.1 1. Let ~E ~,  and let b E M  be selfadjoint. Then there exists a positioe 

bounded measure v on R 2 with support in sp(b)xsp(b), such that for any two bounded 

Borel functions f ,  g on R 

r162 II 2 -- JRfJf(s)-g(t)12dr(s, t). IIf(b) 
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Proof. Since left and right multiplication with b on ~ commute, there exists a 

representation ~ of the abelian C*-algebra C(sp (b)• (b)) on ~ such that 

zt(f | g) ~ = f(b) ~g(b) 

for ~ E ~ a n d f ,  g E C(sp (b)). Let v be the positive measure v on sp (b) • sp (b) defined by 

{v, h) = (~r(h)~, ~), hEC(sp(b)• 

For f, g E C(sp (b)), 

(f(b) ~g(b), ~) = (a~(f | g) ~, ~) 

f f~ f(s)g(t)dv(s,t). 
p(b)• 

By standard arguments the above equality can be extended to all bounded Borel 

functions f ,g on sp (b). Hence, for any pair of bounded Boret functions f ,g  on sp (b) 

IIf(b) r162 2 = [If(b) r Re (f(b) ~,~g(b)) 
= (~2(b)r 0+(;;Igl2(b), ~)-2  Re (f(b)r ~) 

= f s (Oq2(s)+lgl 2(t)-2Re(f(s) ~ )  ))dvfs,t) 
p(b)xsp(b) 

= f s  Lf(s)-g(t)[ 2dv(s,t). 
p (b) x sp (b) 

We can extend v to a measure on R 2 by putting 

v(R2~ sp (b)x sp (b)) = 0. 

This finishes the proof of Lemma 2.11. 

LEMMA 2.12. Let ~ E ~, and let b E M be selfadjoint. If 

b = f |  2 de~ 
J_. 

is the spectral resolution of b (i.e. ea=zj_| (b)), then 

(a) Ilea r  112l,qdA-< IIbr Ilbr162 



and 

Then 
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(b) I]e~-~ea[Iz141d4>.. - I[b~-~bll 2. 
oo 

Proof. Let  v be as in Lemma 2.11. Put 

{~ s<~4<tor t<~4<s 
h(s, t, 4) = otherwise. 

By Fubini 's  theorem, 

If s~t,  

][ea~-~eall 2= f ~l_|174 

ff ff (f  ) Ilea r162 -- h(s, t, 4)141d4 dr(s, t). 
2 oo 

h(s, t, 4)]4]d4 = [41d4 = �89 2 sign t - s  2 sign s). 

Using h(s,t,4)=h(t,s,4), we get for all s,tE R, 

f ~ h ( s ,  t, 4) 141d4 �89 t2 sign sign s[. t - - S  2 

A simple computat ion shows that for s-t~>0 

It 2 sign t - s  2 sign s I = ]s-tl(lsl+lt D 

and for s - t < 0  

so in all cases 

It 2 sign t - s  2 sign s I = s2+t 2 ~< Is-tl (Isl+]tl) 

fSoo h(S, t, ~)141d2 ~ �89 

117 



118 

Therefore, 
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f :~, llex r162 112lAIdA = �89 f fr lt-sl(Isl+ltl) dv(s, t) 

<.�89 f, l,-s,2avcs, t))'/2 (f f. (isl+ltl)2dv(s, ,)),:2 

Hence 

II~bll = IIJb~ll = IIbr 

Hence,  

Therefore, 

f fre (Isl+ltl)Zdv(s' t) <~ 411b~ll 2. 

This proves (a). To prove (b), observe that for s. t~>0, 

It 2 sign t - s  2 sign s 1 I> ( t - s )  2. 

Moreover, for s - t < 0  

It 2 sign - s  2 sign s I = t 2 + s  2 I> 1 (t--s) 2. 

f :| h(s, t, ,~ ) I,~ld~ I> ~ (t-s) 2. 

f :~ Ile~ ~-r >~ f fn2lt-sl2dv(s, t) 
= ~ IIbr 2. 

But since J~=~, 

By Lemma 2.11, 

IfRlt-sl2dv(s,t)=llb~-~b,12. 
_~ 2 

Since (Isl + Itl)2~<21s12+ 21tl 2, we get by Lemma 2.11 

I fR (Isl+ltl)2dv(s, t)<<- 2(llb~ll 2+11~b112). 
,~ 2 
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LEMMA 2.13. Let M, ~, r l be as in Lemma 2.9. For any c~>0 there exists a 
projection p4=O in M, such that 

Iho~ll2+[ipr/l[ 2 < 2711p~-~/pll 2 

Iho~-  ~p l l2<~lho ,7- ,wl l  2 . 

Proof. Let 6>0, and put ~1=(2-7"~) 2. Assume that b6Ms.a, satisfies the condi- 

tions of Lemma 2.10 with respect to ~ .  Let 

= f;| 2dea b 

be the spectral resolution of b. Put 

~ ea, - 0 o < 2 < 0  
fa = Ll-ea ,  0~<j.< o~. 

Using that ea=O for 2<-Ilbll, and ea= 1 for 2>lib H we get by partial integration 

f]| lira ~5112'21 di2= -f]| ~, ~) d(--~) 

and 

Thus 

Similarly 

s174163174 

=s174 

Ilfa ~112121 d2  = 1 22d(ex ~, ~) = �89 iib~ll ~. 

~ Ilfa ~1121~1d2 = �89 lib,7112. 
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Since for all r 6 ~.~.  we have 

we get from Lemma 2.12, that 

and 

fS~, IIf~,7-~ IlZl&ld,~ ~ ~ IIb'7-'Tbll 2 

j_+ iif~ + - ~  JI21~ld ~ ~ IIb+]l ]lb+-+bJ[. 

Using, Ilb+l12<3211brl-rlbll 2 and IIb+-+bll2<6dlbrl-rlbll 2, we have 

ffll  1121;tl d,~ < (32aOV2Hbrl-~7bl12 ~ - ~  

~< 6all/2 Ilbr/-r;bll 2. 

Hence 

f_~ (IIA ~II2+IIA ~l/2+al l~ II 2) I~ld~ IIA ~-~f~ 

< ~(llb~ll2+llbr;ll2)+611b~l-rlbll 2 

<~ ~ [Ibrl-ribll2 +6llbri-rlbll 2 

-< 3211b,7-,Tbll 2 fo 
27 IIA~-~II21AI~ �9 

o 0  

Thus for some 2 ER,  one has 

IIf~ +l12+llf~ r/ll2+a? t~ IIA +-+A II 2 < 2711f~ +-+All 2. 

In particular, for this 2, j~ae0 and 

IIA +l12+llf~ 711 < 2711A r/-r/AII 2 

IPA ~-~A//2 < 27a]~llf~ ~-,ff~ll 2 

= alia +-,/All 2. 
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This proves Lemma 2.13. 

LEMMA 2.14.  Assume that M satisfies (1) in Theorem 2.3, and let ~EP ~ be a 

cyclic and separating unit vector. Let r~ E ~s.a. be a unit vector, r/4=~, and r /* -~ ,  and 

let 0 be the angle between ~ and r/, i.e. 

0 = arc cos (~, r/). 

Then for every 6 > 0  there exists a projection p4=O in M, such that 

< ~ Ih ~ Ilp~ll2+llpr/[I 2 

Ilp~-~plt < 61~r/-r/pll z. 

Proof. Note  first that the angle 0 is well defined because ~~162 ~ l J ~ = ~ )  is a 

real Hilbertspace. Moreover,  0<0<zt .  It is sufficient to consider the case 6<1.  The 

vector r /can be written in the form 

r/= cos 0~+sin 0r/' 

where r/' E ~gs.a. is a unit vector orthogonal to ~. Put 6 ~ = ~  sin20. By Lemma 2.13 there 

exists a non-zero projection p EM, such that 

Ito~ll2+l~r/'ll 2 < 271~r/'-r/'pll 2 

Ilpr Cpll 2 < 6 d hot/'- r/'pll 2. 

Since 

we have 

Thus 

sin Or/' = r / -  cos 0~ 

sin Ollpr/'-r/'pll ~< I[pr/-r/pll+lho~-~pll 

Iho'z-r/pll+6[/z Ih~r/'-r/'pll. 

I~r/-r/pll ~> (sin 0-6[/2) I[pr/'-r/'pll 

= sin 0(1-�89 v2) Ihor/'-r/'pll 

I> �89 sin 0][pr/'-r/'1)11 
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which implies that 

Moreover, 

Thus 

2 461 2 
Ilp~-~pll < si-~-~ IIp~-~pll 

_- 6 1 L ~ - ~ p l l  ~. 

[lp~ll ~ cos 0llp~ll+sin 01[p~'ll 

(llp~ll ~+llm'l12)~/~. 

Ilp~ll2+llp~ll 2 ~ 21ho~ll~+211p~'ll 2 

< 2alLot/'-Epll 2 

2 l~ 2 

This proves Lemma 2.14. 

LEMMA 2.15.  Assume  that M satisfies (I) in Theorem 2.3. Let  ~ E P  ~ be a cyclic 

and separating unit vector, and let ~l E ~(~.a. be a unit vector such that ~• Then for  

every 6>0 there exists a family  (ei)iE 1 o f  orthogonal projections in M with sum 1, such 

that 

[ 1 ~ - ~  ei~eill 2 <~ 6 
iEl  

II'l-~ eiv]eil] 2 >~ 2-Is" 
iEl 

Proof. Let  ~ be the collection of  all sets of  projections (Pi}i~/in M for which 

(1) pi4:0 for all i and pi• for i4=j. 

(2) With p = 1 - X p  i, 
iEl  

II~-p~p[12 +l[~i-p~ipll 2 <~ 21411r/-pv/p-X p,~lpill 2 
iEl 

and 

iEI iEl  



TIlE INJEUI'IVE FACTOR OF TYPE m 1 123 

The collection ~: is'a partially ordered set with respect to inclusion. ~ is non empty, 

because ~ E ~. Moreover, it is easy to check that ~ is inductively ordered, i.e. every 

totally ordered subset of ~ h a s  a least upper bound in ~. Hence by Zorn's lemma ~ h a s  

a maximal element {qi}i61. Put q=l--EiElqi. We will show that the family of 

projections: 

{q i} ie tU(q}  

satisfies the inequalities stated in the lemma. Since {qi}ie i t-I {q} is a family of pairwise 

orthogonal projections, the family 

{ q i J q i J }  iE! U ( qJqJ}  

consists also of orthogonal projections. Therefore 

~< II,711 ~ . 

Thus since {qi}iEl~ ~;, we have  

I [ ~ - - q ~ q - - E  q,~q,II 2 <<- all~ll 2 --a 
iEI 

so to complete the proof of Lemma 2.15 we have to show that 

II r l - q ~ l q -  E qdlqill 2 >~ 2-'s" 
i6J 

Assume that ]1~]- q~lq-  y'i ~ i qi~]qill 2< 2 - Is. Then by the definition of ~;, 

II~-q~qll2 + l l ~ - q ~ q l l  ~ < 2 " ,  2 -'~ = ' -t-6 " 

Put ~ '=q~q and ~f =q~lq. Then 

I1~-~'11~ and II'l-n'll~. 

In particular q=~0, I1~'11~ and I1~'11~. Moreover, 

(~', rl') = (q~q, q~lq) = (q~q, rl) 

= (~, r i ) - ( ~ - q ~ q ,  ~1). 
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Thus 

I(~', 7')1 ~ 0+l l~-~' l l  I1,111 ~ A. 

Let 0 be the angle between ~' and r/'. Since 

[cos 0l = 1(~'' r/')] ~< 1 ( 4 ~2 < 1 
11~'1111,7'11 7 \ T /  ~- 

we have sin20>]. 

Let Jq denote the restriction of J to q~q. 
By [15, Lemma 2.6], (qMq, q~q, Jq, qP~q) is a standard form of the reduced 

algebra. It is clear that ~' E qP~q and r/' E (q~q)s.a. 
Since ~ is cyclic and separating for M, the face in P~ generated by ~ is dense in 

P~. Hence the face in qP~q generated by ~'=q~q is dense in qP~q, which by [6, 

Lemma 4.3] implies that ~' is cyclic and separating for qMq. Since M is of type III and 

q4=O, qMq is isomorphic to M. Therefore we can apply Lemma 2.14 to qMq and the 

vectors 

r  r and r/"=,f/lln'll. 

Hence, there exists a projection rEM, r<.q, r~-O, such that 

210 ,, ,, 2 
IIr~"11%11~"112~ < ~ IIr~ -'7 rll 

and 

Ilr~"-~"rl[ 2 ~ ~[Irr/"-r/"r[[ 2. 

Hence, using ~ll~' l [  ~ 1 and ~[[r/'l[~l, we get 

Ilr~'ll2+llr~'ll2~< (4f2'~ 

~<2'311~ '-r/'rll 2 
and 

4 2(~ P 'r 2 

~<,~llr~'-,l'rll ~. 
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We will show next that {qi}ielU {r} is contained in ~, i.e. we will check that 

I l l - (q - r )  ~(q-r)ll2 +llrl-(q-r) r/(q-r)ll 2 ~< 214Hrl-(q-r)rl(q-r)-rrlr- E qirlqi[I 2 
iEl 

and that 

I l l - ( q - r )  l ( q - r ) - r l r - ~  qi ~q;ll 2 ~< 6llr/-(q - r )  r l ( q - r ) - ~ r - ~  qi lq;ll 2. 
iEl iEl 

To prove (**), observe that 

1-(q-r)J(q-r)J-rJrJ-~_,qiJqiJ= ( 1 - q J q J - ~  qiJqiJ)+rJ(q-r)J+(q-r)JrJ), 
i61 iEl 

where the right side of the equality is 

Therefore 

I l l - (q - r )  l ( q - r ) - r l r - ~  qi lq,ll 2 = I l l -qlq-~,  qi ~qill 2+ Ilrl(q-r)ll 2+ II(q-r) lrll 2. 
iE l  iEl  

Since 

and since 

we have 

Thus 

the sum of three orthogonal projections. 

rJ(q- r) J1 (q- r) JrJ 

I l r l ' - l ' r l [  2 = Ilr~(q-r)ll2§ lrll 2. 

I l l - ( q - r )  ~(q--r)--r~r- ~,  qi~qi]l 2 = ]]~-q~q- ~ qi~qi]12 +]lrl ' -~ ' r l l  2. 
iEl  iEl 

Similarly, 

] ] r / - (q-r)  ~l(q-r)-rrir- E qdlq,]l 2 = []rl-qrlq- ~ q, ffq,ll2 +llr~'-ff' rll 2. 
iEl  iEl  

125 

(*) 

(**) 

r~'-~' r=r~q-q~r=r~(q-r)-(q-r) ~r 
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Since {ad}/ejE~ and since 

(*), we use that 

1-(q-r )J (q-r )J  = (1-qJqJ)+qJrJ+rJ(q-r)J 

where the right side is a sum of three orthogonal projections. Hence 

I l l - ( q - r )  ~(q-r)ll  2 -- I]~-q~qllZ+llq~rll2+llr~(q-r)]] 2 

<~ll~-q~qll2 +llq~rll2 +llr~qll 2. 

Since J~=~ we have IIq~rll2=llJ(r~q)ll2=llr~qll 2. 
Moreover, r~q=r~'. Therefore 

I l l - ( q - r )  ~(q-r)l] 2 ~< II~-q~qll2+2llr~'ll 2. 

Similarly 

Since {qi)iel is in ~: 
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IIr~'-~'rll2<~611r~'-,frll ~ we have proved (**). To prove 

]l~-q~qll2 +llrl-qrlql] 2 ~ 2 ' 4 l l r / - q r / q - ~  q,r/q,]] z. 
iEl 

Moreover we have proved that 

IIr~'ll2+llr~'ll 2 ~ 2~311r ~' -~ ' r l l  2 . 

Hence 

I l l - ( q - r )  ~(q-r)l l2+llrl-(q-r)  r/(q-r)ll2 ~ 2 ' 4 ( l l r / - q r / q - ~  q,t/q~ll2+llrr/' -r/ ' r l l  2) 
iEl 

= 2 ' 4 l l r / - ( q - r ) r l ( q - r ) - r r l r -  Z q,rlq,][ 2. 
iEl 

This proves (*). Hence we have proved that {qi}i~tU (r} is contained in 4,  which 

contradicts the maximality of {qi}iEl. Therefore 

[Itl-q~lq - ~ qi~lqi][ 2 >~ 2 -18, 
iEl  

I l l - ( q - r )  ~(q-r)[I 2 ~< Ilr/-qr/qllZ+2II~'ll 2. 
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II~--q~q-- 2 q,~qill 2 <~ d. 
iEI 

Since {qi}iEiU{q} is a set of pairwise orthogonal projections with sum I we have 

proved Lemma 2.15. 

LEMMA 2.16. Assume that M satisfies (1) in Theorem 2.3. Let  ~ E P  ~ be a cyclic 

and separating unit vector, and let ~1 E ~ be a vector orthogonal to ~. For every 6>0, 

there exists a projection p E M, such that 

IIp~-~pl[2 ~< ~ 
Ihorz-~pll 2 ~ 2-2111rill2 

Proof. Assume first that 7/E ~~ By Lemma 2.15 there exists a set of pairwise 

orthogonal non-zero projections {ei}iE 1 with sum 1, such that 

and 

][~--2 ei~eil[ 2 <~ t~ 
iEl 

I1~-~ ei~leill 2 >I 2-'811,112. 
iEI 

Since M is a-finite, the index set I is countable. Let G be the compact abelian group 

G =  {-1,  1}'. 

For gEG,  g=(gi)iE! we put 

Ug ---- 2 gi ei" 
iEl 

Clearly Ug is a selfadjoint unitary operator for all g. Moreover 

g--> Ug 

is a strongly continuous representation of G on ~. Therefore 

g--> UgJUgJ 



128 UFFEHAAGERUP 

is also a strongly continuous unitary representation of G. Let  dg be the normalized 

Haar measure on G. Then 

fc"~(Juj)dg= ~j f g, gj(eiJeJ)dg �9 

Since dg=IIie I dgi, where dg i has mass �89 at both 1 and - 1, it is clear that 

I gigjdg= 0 i . j"  

Hence 

Therefore, 

In particular 

so for at least one g E G, 

Equivalently 

fG ug(J.gJ) dg = ~i eiJeiJ" 

fc(rl-ue rlu) dg = rl- x eirler 
iEl  

iEl  

~> 2-91]r/11, 

II~-u~ ~u~ll ~ 2-911~11. 

I iug r/-r/ugll 2 t> 2-laIlr/ll2. 

Put ~'=Eieiei~ei. Then Uh ~'=~'Uh for all h E G. Therefore 

~< 261/2. 

Let now p be the projection p=~(1 + u ) .  

Then clearly 
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Itp~-~pll2<~ and Iho~-~Pl12~>2-2~ 

Let finally r/E ~ be a general vector orthogonal to ~. Put 

1 
~]1 =)(r/+Jr/), ~2 ---~ ~(r l -Jr / ) .  

Then ~/~,/72 ~ ffLas.a., t/i/~, i=1, 2, r/=rll-t-ir]2 and Ilnll~=lln,ll2+llrhll 2. Therefore we can 

choose j E {1,2} such that 11~112~>�89 ~, By the above arguments, there exists a projec- 

tion p E M, such that 

Clearly 

and llprl~.-rjjPll 2 I> 2-2~ 

p~l -- tlp = (p~h - ~h p ) + i(p~12- tl2 p ) . 

Moreover, one checks easily that 

Therefore 

P~h-~h  P E i~s.a. 

i(p~12- t]2p) E o9~s.a.. 

IIp,7-~pll 2= Ilprh-~/, pl12§ Ilprh-rj2 pl[ 2 

2-2~ 

I> 2-2'11,1112. 

This proves Lemma 2.16. 

E n d  o f  p r o o f  o f  T h e o r e m  2.3. Assume that M satisfies (1) in Theorem 2.3, and let q~ 

be a normal faithful state on M. We shall show that B~=C1. Let a E B ~ ,  and put 

a' =a-q~(a)  1. 

Let ~ E P~ be the unique vector in P~ that implements ~0. Then ~ is a cyclic and 

separating unit vector. The vector ~ /=a '~  is orthogonal to ~ ,  because q~(a')=0. Thus 

by Lemma 2.16 we can choose a sequence (Pn)n e N of projections in M, such that for 
all nEN, 

I~n~-~pJl~< 1 and 1~:7-,7pJ1>~2-"11,711. 
n 

8?-878288 Acta Mathematica 158. Imprim~ le 10 avril 1987 
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By Lemma 2.8 (b) the first inequality implies that l i m n ~  I[pnq0-q0p.]]=0 and since 

a E B~o, it now follows that 

lim Ilp.a-ap,,l[~ = o. 
n ----> oo 

On the other hand 

Thus 

ILD. a-ap,, lko = I I (p .  a'-a'p,,) 

ILo . a' ~ -a '  ~p.H-Ila' ~q)p.-a' pn 

I> Iho.  -,Tp.ll-Ila'll lip. 

lim infl[p,,a-ap,,llq ) >I Iho. q-qp.II ~>2-"llqll. 
n----~ oo 

Therefore r/=0, which implies that a '=0.  This proves that B.=C1. 

3. Characterization of Illl-factors for which B~=C1 

In this section we will prove the following extension of Theorem 2.3: 

THEOREM 3.1. Let  M be a factor o f  type III1 with separable predual. Then the 

following three conditions are equivalent: 

(1) For every (faithful) dominant weight ~ on M and every xE  M 

cony {uxu*lu E U(M,/,)} N C1:4:@ 

(o-weak closure). 

(2) For every normal faithful state cp on M, Bw=C1. 

(3) The set o f  normal faithful states on M for which M~NM=C1 is norm dense in 

the set o f  all normal states on M. 

It is very likely that all IIIrfactors on a separable Hilbert space satisfy the above 

conditions (see Remark 3.9). The implication (I)=>(2) was proved in Section 2. It 

remains to be proved that (2)=*-(3) and (3)=>(1). The first three lemmas of this section is 

used to come from B~=C1 back to the situation we had in Lemma 2.16. The rest of the 

proof of (2)=~(3) is inspired by Popa's techniques from [19]. 

Throughout this section M is a factor of type III~ with separable predual and with 

standard form (M, ~(, J, P~). As usual we define right multiplication of M on ~ by 
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~a=Ja*Jr !, aEM,  r iE~.  

LEMMA 3.2. Assume that B~p=C1 for  all n.f. states on M. Let ~EP ~ be a cyclic 

and separating unit vector and let r 1E ~, be orthogonal to ~. For every 6>0, there exists 

a unitary operator u E M, such that 

Ilu~-~ul12~6 and Ilu,l-~ul12~>�89 

Proof. Let q9 be the vector state on M given by ~. By Lemma 2.8 

Ilu~-~ull 2 <~ Ilu~-~ull ,  u ~ U(M). (*) 

It is sufficient to consider the case r/~=0. Assume first that ~/can be written in the form 

~/=a~ for some aEM. Since n•  we have tp(a)=0. Let 6>0 and put 

61 = min {6, (11,711/811a11)2}. 

By Proposition 1.3(2), (a)=~(b), there exists AEC, such that 

a - A I  E conv { a - u *  auJ u E U(M), Ilu~0-~0ull ~< 6,). 

Since the norm II I1~ is o-weakly lower semi-continuous, we get 

Ila-Alll~ ~< sup {lla-u*aull~l u E U(M), Ilu~-~0ull ~< 6~} 

and since cp(a)=O, Ila-~,tll~=llall~ +l~,l~>>-Ilall~. 
Hence we can choose a unitary operator u EM, such that IJucp-cpulJ<~61 and 

Ila-u* aull~ >>- ~llall~ 

or equivalently 

Thus 

Ilua-aull~ ~> ]llall~. 

Ilu~-~ull = Ilua~-a~ull 

Jl(ua-au) ~11-Ilall Ilu~- ~ull 

~>~llall~-Ilall Ilu~-~ull. 

By the inequality (*) we get 

I l u ~ - ~  ull ~< 61 '2. 
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Since Itall~=ll~ll it follows that 

Hence 

and 

I l u ~ - ~  ull ~ ~ 6 

Ilu~-~ull 2 ~ (~)211~112 > �89 

Finally, let r/E ~ be an arbitrary vector orthogonal to ~. For every e>0, there exists 

~/' EM~, such that I]r/-r/'ll<e. Moreover, r/' can be chosen orthogonal to ~, because the 

projection of r/' onto the orthogonal complement of C~ also belongs to M~. It is clear 

that the distance between the two numbers, 

and 

sup ( l lu~-~ull  I u ~ U(M), Ilu~-~ull ~ ~< 6} 

sup {l lu~'-~'ull  I u ~ U(M), Ilu~-~ull 2 ~ 6} 

is at most 2e. Hence, by letting e--->0, we get by the first part of the proof that 

sup {l lu~-~ull  I u ~ u(M),  Ilu~-~ull 2 ~< ~} >/~,ll~ll. 

Since (~)2>�89 we have proved Lemma 3.2. 

LEMMA 3.3 Let u E M  be a unitary operator, and let for 0<0<~2~, Po denote the 

spectral projection o f  u corresponding to the semi circle {eitlO<.t<O+Jt}. For every 

and 

f0 2~ (ii) I~o ~-~Po]l 2dO ~ Ilu~- ~ull 2. 
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Proof. Let T be the unit circle in C. Arguing as in the proof of Lemma 2.11, one 

can find a positive measure/~ on T 2 such that 

IIf(u)~-~g(v)l,2=ffr21f(s)-g(t)lEd~(s,t) 
for all bounded Borel functions f, g on T. (See also [11, proof of Lemma 3.3].) Define a 

function h on TxT•  2~r] by 

! if O<.args<O+rtand O-:t<.argt<O 
h(s,t,O)= if O-zt~args<O and O<~argt<O+:t (*) 

otherwise. 

Then it follows that for all 0<0~<2:t 

I~~176 r162176 = f~2 h(s,t,O)dlz(s,t). 

Hence, by Fubini's theorem 

foz~l~po~-@oll2do = f fT2( fo2~h(s, t, O) dO) d/~(s, t). 
Let fl E [0, ~]. Then 

h(1,e~,O)--{lo 

Similarly, for fl E [- : t ,  0], 

h(l,e~,O)={~ 

Hence, 

f0 ~ h(1, = 21#1 e/~ ' 0) dO 

0E]0,#] u ]~,#+~] 
otherwise. 

0 E ] ~+# ,  :t] u ] 2:r+#, 2~] 
otherwise. 

for - : t  <~fl ~<:~. 

Assume now that h(s, t, O) is extended to a function on T x T •  periodic in 0 with 

period 2:r. Then, for a, fl E R 

h(e ia, e i#, 0) = h(l, e itB-a), O-a). 

Therefore, ff la-/~l~<~, we get 
i 

9-878288 Acta Mathematica 158. Imprim~ le 10 avril 1987 
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fo h(e ia , e ~, O) dO = h( 1, e ;~-a), O) dO 

--21a-/~l. 

It is elementary to check that for la-fll~<:r one has 

2 la-/~l  ~< le;~-e~l ~< la-/~l .  
$[ 

Since, for every pair (s, t ) E T  z, one can choose a, flE R, such that e'~=s, 

la-~l~<~, it follows that 

f0 21s-tl  <- h(s, t, O) dO <- ~ls-tl 

for all (s, t) E T 2. Hence,  

ei/~ =t and 

and 

f0 f, Ikoor162 ~ a~ Is-tl dkt(s, t) 
2 

<--zc(fw2ls--tlZd/~(s't))'/z((\.]T 2 d~) 
= ~l lu~-~ul l  I1~11, 

s z~ Ilpo ~-~poll zdo >I 2 L2 Is-tl d~(s, t) 

L~ Is-tl2d/u(s' t) 

= Ilu~:-~-ull ~. 

This completes the proof  of  Lemma 3.3 

LEMMA 3.4. Assume that M satisifes (2) in Theorem 3.1. Let  ~ E P  ~ be a cyclic and 

separating unit vector and let ~] E ~,  ~]_k~. Then, for every d>0,  there exists a projec- 

tion p E M such that 

IIp,7-,Tpll ~ ~>~ 11,Tll ~. 
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Proof. We can assume that [[r/[ [ = 1. By Lemma 3.2 there exists u E U(M), such that 
P 

I l u # - ~ . l l  2 ~ (6 /16)  2 

Ilur/-r/ullZ ~ �89 

Let Po, 0<0~<2~ be as in Lemma 3.3. Then 

fo 2~ ~-~Poll2dO <~ 6/16 

and 

Therefore, 

fo 2'~ [lPo r/-r/pol[ 2dO ~ �89 

~ 2~( 1 + 16 {iPo~_~pollz)dO<~2 

<~ 4 I[Por/-r/Poll2dO. 

Hence, for some 0 E ]0, 2at] we must have 

1 +1_~__~ i[po~_~poll z <~4 Ilporl-r/poll 2. 2~ 

In particular, for this O, 

and 

This completes the proof. 

-~ (ILo o ~ll + ll~p oll) 2 

1 > 1 
I[P~176 8~ 32" 
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For any von Neumann subalgebra N of M we put 

~7~' N = {r/E ~7t'[ a t /=  r/a, a E N}, 

and We let QN be the projection of ~' onto ~N. It is clear that ~N is invariant under J. 

We let JN denote the restriction of J to ~N. 

LEMMA 3.5. Let N be a finite dimensional subfactor o f  M. Then 

(a) ~N is invariant under N'  n M, and 

(N' t) M, ~N, JN, P ~ n ~.lV) 

is a standard form for N'  tiM. 

(b) I f  ~EP ~ then QN(~)EP ~ fl ~N. If, moreover, ~ is cyclic and separating for M, 

then QN(~) is cyclic and separating for N'  n M on ~(N. 

Proof. (a) It is clear that ~N is N' fl M-invariant. Let (e0.)~,j~ l be a set of matrix units 

for N, and put e=e H. By [15, Lemma 2.6] 

(eMe, e~e,  Je, e P~e) 

is a standard form for eNe. (Je is the restriction of J to e~e.) We will establish an 

explicit isomorphism between this quadruple and (N' fl M, ~N, JN, P~ N ~N). 

Since N is a finite factor, M can be identified with (N' nM)|  From this it 

follows that the map 

x--->xe, x E N '  fl M 

is a -x--isomorphism of N' n M onto eMe. 

It is easy to check that the orthogonal projection QN of ~ into ~N is given by 

1 . j ~  
QN = n e~ 

Put 

PI 

1 ~ eiIJeilJ. 
W-~ ~ i=l 

Then w*w=eJeJ and ww*=QN. Thus w is an isometry of e~e  onto YgN. Since w 

commutes with every x E N' n M, we have for x E N' N M and ~ E e~e,  
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w*xw~ = xw*w~.= x~ = (xe) ~. 

Hence w implements a spatial isomorphism of (eMe, e~e) onto (N' NM, ~N). Since 

a.IaJ(P~)~P~ for all a E M, 

w(eP~e) ~= w(P~) ~=P ~ N ~N 

and 

Since also wJ=Jw, 

w*(P ~ N ~(N) ~= w*(P ~) ~-- eP ~e. 

one gets that w implements an isomorphism between (eNe, 

eY(e, Je, ePic) and (N'N M, ~N, JN, P~ N ~N). This proves (a). 

(b) It is clear from the computations above that 

QN(P ~) ~ e~ N ~(N. 

Let ~ E P~ be cyclic and separating. Put 

= W * ~  = e l i~e~i .  

Then ~Ee~e  and w(~)=Qu(~). By [6, Lemma 4.3], e~eEeP~e is cyclic and separating 

for eMe acting on e~e.  Since 

~ > ~ n n  e~e 

in ordering on e~e  given by the cone eP~e, ~ is also cyclic and separating for eMe. 

Therefore Qu(~)=w~ is cyclic and separating for N' NM on ~N. 

LEMMA 3.6. Assume that M satisfies (2) in Theorem 3.1, and let ~EP ~ be a cyclic 

and separating unit vector. Let rlE~(, q_k~. For every 6>0 there exists a finite 

dimensional subfactor N of M, such that 

and 

[l~-QN(~)II 2 ~< 6 

IIQu(~)l[ 2 ~< ~ [l~/[I 2. 

Proof. We may assume that 6<1. By Lemma 3.4 there exists a projection p EM, 

such that 



138 UFFE HAAGERUP 

and 

ILo#- ~pll 2 <~ 62/36 

iko~_epll 2 I> 1 11,7112. 

Clearly p:#O and (1-p)*O. Choose a rational number Q E]O, 1[, such that 

q - 6 1 6  < lho~ll 2 < o+a /6 .  

Write Q--k/d, where dEN,  and k is an integer, 0<k<d .  Put q~=wr on M and put 

cp'=pcpp+(l-p) q~(1-p). Let  u=2p-I.  Then u is a selfadjoint unitary, and 

9' = �89 

The state ucpu* is implemented by the vector u~u*E P~. A simple computation shows 

that any two vector states o~, and ~or one has Ilw~-wdl~<}lr/-r IIr/+r Hence 

II~'-~II = �89 ll~-u~u*ll 

-< �89 II~-u~u*ll  II~+u~u*ll 

-< l lu~-~u l l  

= 21Lv~-~pll 

~< 613. 

Choose next a normal faithful state ~p on M, such that the centralizer M~ of ~o contains 

a subfactor F isomorphic to the dxd-matrices -Aid. This is possible because M~M|  
and because the centralizer of q0| contains 1 | (tr is here the normalized trace on 

Md). Let q E F be a projection of dimension k (relative to F). Then ~p(q)=kid. Since M is 

of type III, we have p~q  and (1 -p)~(1-q)  as projections in M, so we can choose a 

unitary operator v E M, such that vqv*=p. Now, put 

~p' = v~pv* and F'  = vFv*. 

Then ~p' is a faithful normal state on M, and 

pEF'  ~=M,#,. 

Note that by the definition of q~' also p EM~,. Moreover, 

~ '~ , )  = ~00~) = Iho~ll 2. 
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Put 

1 1 p• f - -  l I _ _  

q~ - ~---7-~-Pq ~ , q~2 
q~ ~o'(p ~) 

~p'l=~-~)p~O ', ~P~-~o ,~ . )p iV J'. 

Then qo~, ~0~ are faithful states on pMp and q0~, ~p~ are faithful states on p• • Since 

pMp~-p•177 and since M is of  type 1111, we can by the Connes-StCrmer transitiv- 

ity theorem [12] find unitaries wl EpMp and w2 EpJMp • such that 

IIq~f-w, Wlw?ll~6/3, i= 1,2. 

Then/.o=/.o1+/o 2 is a unitary in M. 

Since q)'(p)=~p(q)=k/d we have 

~p, - k ~o , + d -  k ~o, 
- d  l d 2. 

Therefore 

Using 

~ t =  t t t 1 t qo (p)qol+~o (p)~o 2 

and that 

k__~ ~< ~o,(p) ~<k+_~ 
d 6 6 '  

we have 

d - k  6 < d - k + 6 _  
d 6 <~ cP'(P• d 6" 

Thus 

_ _<__6.3 

Since [[qg-qo'[[..<6/3 we have altogether 

lifo-w~o'w*ll ~< 6. 
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Put to=w~p'w*. Then w is a faithful state and Mo~ contains the finite dimensional factor 

N=wF'w*. Moreover, p EN because wpw*=p. Let ~,  be the unique vector in P~ that 

implements to. Then, by Araki's generalization of the Powers-Stermer inequality [1, 

Theorem 4(8)], 

I1~-~11 ~ ~< II~o-toll ~ 6. 

Since utou*=to for all uE U(N), we have u~o,u*=~,o for all uE U(N). Hence, 

Therefore, 

Put 

G E YtN= {~E Y([ a~= ~a, aEN}.  

II+-Q~<OII 2 = dist (+, ~N) 2 ~< II+-GII 2 ~ 6 

~/= {r/E Yt'] pr/= r/p}. 

Then Ydis a closed subspace of ~,  and the orthogonal projection Q of ~ o n t o  Ydis given 

by 

Q(r = pep+(1-p)  ~(1-p). 

Since p~p, ( 1 - p )  ~(1-p), pC(l-p) ,  ( l - p )~p  are orthogonal vectors in ~wi th  sum ~, we 

have for all r E YC, 

ii~ll 2 = I I Q ( ~ ) I I 2 + I ~ ( 1 - p ) - ( 1 - p )  ~pll 2 

--iiQ(~)ll2+lho~-~pll 2 

Using that ~N~Yf, and that ILor/-r/pllL%llr/ll 2, we get 

IIQ~(r/)ll 2 ~< IlQCr/)ll2- - Ilr/ll2-1hor/-r/pll 2 

-< ~ IIr/ll 2. 

This completes the proof of Lemma 3.6. 

LEMMA 3.7. Assume that M satisfies (2) in Theorem 3.1. Let ~ E P~ be a cyclic and 

separating unit vector and let r~ E Y~. For every 6>0 and e>0 there exists a finite 

dimensional subfactor N of  M such that 
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where r/'• and dist (r/, c~)=ll~'ll. 

and 

Hence, 

First, let r=l. Put c=(rl, ~). Then 

and 

dist (QN(rl), CQN (~)) ~< (~),/2 dist (7, C~). (**) 

r/= c~+r/' 

By Lemma 3.6 there exists a finite dimensional subfactor N~ of M, such that 

IlaN,(~')ll 2 ~ ~ 11'7'112. 

dist (QN.OI), CQN(~))= dist (QN(r/'), CQN(~)) 

~ (}9 "211,(11 

= (}~)1/2 dist 0/, C~). 

This proves (*) and (**) for r= 1. Assume next that we have found Nr satisfying (*) and 

(**). We proceed to construct Nr+i. Put 

~' = QN,(~) and 

By Lemma 3.5, 

t/' = Qrr (r/). 

(N'rAM,~N,JN,P ~ N~N) 

II~-QN(~)II ~ 

dist (QN(r/), CQN(~)) ~< e. 

Proof. We prove by induction that for every r E N there exists a finite dimensional 

subfactor N, of M, such that 

II~-QN/~)II ~ (I--2-') 6 (*) 
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is a standard form for N', N M and N', N M is isomorphic to M. Moreover, ~' is cyclic and 

separating for N' r O M on ~N: Using the above argument for r= I to the two vectors 

and 7/' we can find a finite dimensional subfactor F of N'r nM, such that 

and 

lit'-Q~(~')ll ~< 2-r- l~ 

dist (Q~(r/'), CQ~(~')) ~< (~)1/2 dist (r/', C~') 

where Q~ is the projection of ~N, onto 

{r/E ~u,I a t /=  r/a, a E F}. 

Put Nr+l=span {abla E Nr, b E F}. Since Nr and F are commuting finite dimensional 

factors, Nr+l is also a finite dimensional factor. Moreover, 

gNr+l-~" {r/e gl ar/=r/a, a~ Ur+l} 

= (r/e XNr I b 0 --- rib, b e F}. 

Therefore Qu,+I=Q'v Qur" Hence, 

[[~-- Qz~r+l(~)[I ~ [[~-- Ql~r(~)It Jr-ITS'-- QtF(~F)lt 

~< (1-2- ' -1)6 

and 

dist (Qu,+,(r/), CQu,+,(~)) ~< (~)1/2 dist (r/', C~') 

~< (~)(,+ I)/2 dist (r/, C~), 

which proves (*) and (**) for r+ l .  Thus we can find Nr satisfying (*) and (**) for all r. 

Choose now r such that 

(~)r/2 dist (r/, C~) ~< e, 

then Lemma 3.7 holds with N=Nr. 

LEMMA 3.8. Assume that M satisfies (2) in Theorem 3.1, and let ~EP ~ be a cyclic 

and separating unit vector. Let 0<6<1. There exists an increasing sequence o f  finite 
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dimensional subfactors (N,)n~ N of  M, such that when N is the oon Neumann algebra 

generated by t.l ,~=l N,, then 

I I ~ - O ~ ) l l  ~< 

QN(~ ~) = CQN(~). 

Proof. Since M has separable predual, the Hilbert space ~ in the standard form of 

M is also separable. Let  (r/n),~ 1 be a dense sequence in ~ .  We will construct an 

increasing sequence (N,),e s of  finite dimensional subfactors of M, such that 

I[~-Q~o(~)II ~ (1 -2  ~" ) ~ (*) 

dist (QNn(r/,), CQNn(~) ) ~< 2-" (**) 

for all n E N. Lemma 3.7 shows that we can choose NI, such that (*) and (**) are 

fulfilled for n=  1. Assume next that we have found 

NI~_N2~-...~Nr 

satisfying the conditions up to n=r, and let us proceed to construct N,§ 

Put ~'=QN,(~) and r/'=QNr(r/r+l). By applying Lemma 3.7 to the standard form 

(N', n M, Z~Nr, J~ ,P ~ n ~N) 

and the two vectors ~"=~'/11~'11 and ~/', one can find a finite dimensional subfactor F of  

N" n M, such that 

dist (Q~07'), ca~(~ ' ) )  ~< 2- '  

where Q~ is the projection of  ~N~ onto the elements in ~Nr' that commutes  with F. 

As in the proof  of  Lemma 3.6, one sees that 

N~+I = span {ab I aENr, bEF} 

is a finite dimensional subfactor of  M, and that 

I1~-QN.,(~)II ~< ( l -2 - ' -b  

dist (QNr+,(rlr+~), CQN,+,(~) ) ~< 2- ' .  
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Moreover, N,~Nr+ p Hence N ~  . . .  ~ N r ~ = N r +  I satisfy the conditions (*) and (**) up to 

n=r+ 1. By induction we get an increasing sequence (N,), e N of subfactors satisfying (*) 

and (**). Put now N=tJ ,~  1N,. 

Since ~ N  is a decreasing sequence of Hilbert spaces, and since 

ov 

.=I 

we have QN=lim~_o| Q& (strongly). 

Therefore II~-Q~OII~<6. For each n E N we can choose Cn ~ C such that 

[IaNn(~.)-c, QN,(~)[I ~< 2-". 

Since QN QN.=QN it follows that 

IIQ~q,,)-c,,Q~OII<~2 -' ,  n6N. '  

Hence 

dist (Q~r/n), CQM~)) ~< 2 -n. 

For each n E N, the sequence (~m)m>~n is alSO dense in ~.  Therefore 

Hence 

dist ( Q ~ ,  CQ,v(~)) ~< 2 -n. 

QN(~9 ~ CQN(~) = CQN(~). 

This proves Lemma 3.8. 

End of proof of (2)=~(3). Assume that M satisfies condition (2) in Theorem 3.1, and 

let ~EP  ~ be a cyclic and separating unit vector. Let N,  and N be as in Lemma 3.8 with 

6=�89 and put ~'=Q~).  Then ~ '*0  and 

~N = C~'. 

Since ~'=lim,__,| , it follows from Lemma 3.5 that ~ ' E P  ~. Let eEM be the 

projection of the vector functional q~' on M given by ~'. Then e~' =~', and since J~'=~' 
also ~'e=~'. Hence ~' Ee~e .  By [15, Lemma 2.6] 

(eMe, e~e, Je, eP ~e) 
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is a standard form for eMe.  (Here Je is the restriction of J to e~~ Moreover, ~' is 

cyclic and separating for eMe acting on e~~ Since ~' E Q~t~  we have 

u ~ ' u * = ~ ' ,  u E U ( N ) .  

Hence also 

and 

ucp' u* = q~', u E U( N)  

ueu* = e, u E U(N). 

Thus e E N' N M. Let  ~ be the restriction of ~0'/11~0'11 to eMe.  Then ~p is a normal faithful 

state on eMe,  and 

e N  ~= M r. 

We will show that (eN)' N eMe=CIe ,  where I~=e is the identity in eMe.  Let  

x E (eN)'  N eMe 

regarded as an operator on ~ and 

Since e E N'  we have for all a E N that ax=xa.  Thus, for a E N, 

a~ = axe' = xa~' = x~'a = fla. 

Hence r/E ~N=C~' .  Since ~' is separating for eMe,  it follows that x=le .  Thus 

(eN)'  N eMe = CIe 

and since eNd_Mr we have also 

M~, N eMe = CIe. 

Since e M e = M ,  we have proved that M has at least one normal faithful state w, such 

that M ' N M = C I .  The density of such states in the set of  normal states follows now 

from the Connes-StOrmer transitivity theorem [12]. 

P r o o f  o f  (3)=~(1) in Theorem 3.1. Assume that M is a type IIIl-factor with 

separable predual, and that tp is a n.f. state on M, such that M ~ n M = C 1 .  By ([4] or 

[23]) there exists a normal faithful conditional expectation of M onto M~0. Since M~0 is a 
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finite factor, we get by Papa's result [19, Theorem 3.2] that M~0 contains a maximal 

abelian ~--subalgebra A of M. Let to be the n.f.s, weight on B(L2(R)) for which 

(Dto: D (Tr))/= ut 

where 

(utf)(s) =f(s-t), s, tER, fEL2(R), 

By [13, p. 497] ~0=tp| is a dominant weight on M~B(LZ(R)). It is clear that M,o 

contains a maximal abelian subalgebra of B(L2(R)), namely the van Neumann algebra B 

generated by {utl t E R}. Thus C=A~B is a maximal abelian van Neumann subalgebra 

of M~B(L2(R)). Moreover, C is contained in M, .  Since M~B(L2(R))=M it follows 

that M has a dominant weight ~0, such that M w contains a maximal abelian -x--sub- 

algebra C of M. 

Since the unitary group U(C) of C is abelian, it has an invariant mean m. For every 

x E M, the integral 

= l uxu*dm(u) Y 
.Jv~ 63 

defines an element in C' N M=C~=Mv,. Moreover, 

y E cony {uxu*lu E U(M~)}, (a-weak closure). (*) 

Since Mw is a factor, we get by "the Diximier averaging process" (cf. [14, Part III, 

Chapter 5, Lemma 4], that 

By (*) it now follows that 

conv {uyu*lu E U(Mr)} N C1 # ~.  

c o n v  {uxu*lu E U(Mv,) } N C1:4 = ~ .  

Since any two dominant weights on M are unitary equivalent, we have proved (I). 

Remark 3.9. The problem whether the conditions (1), (2) and (3) in Theorem 3.1 

holds in all IIIl-factors with separable predual is related to the following problem of 

Kadison (cf. [18], [19]): Let N be a subfactor of a factor M, such that N'  NM=C1. Does 

N contain a maximal abelian -x--subalgebra which is also maximal abelian in M? Indeed, 

if Kadison's problem has an affirmative solution for factors on a separable Hilbert 
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space, then for any dominant  weight ~p on a I I I l - fac tor  M with separable predual,  M v, 

contains a maximal  abelian -x--subalgebra C of  M, and hence by the above p roof  of  

(3)=,,(1) it follows that condition (1) in Theorem 3.1 holds. 
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