Connes' bicentralizer problem and uniqueness of the injective factor of type III_{1}

by
UFFE HAAGERUP

Odense Universitet, Odense M, Denmark

Introduction

In Connes' fundamental work "Classification of injective factors' [7], it is proved that injective factors of type $\mathrm{III}_{\lambda}, \lambda \neq 1$ on a separable Hilbert space are completely classified by their "smooth flow of weights". Since the flow of weights of factors of type III_{1} is trivial, one would expect that there is only one isomorphism class of injective factors of type III_{1}. During the years $1976-78$, Connes spent much effort to prove that there is only one injective factor of type III_{1}, and found a number of conditions for an injective factor of type III $_{1}$ to be isomorphic to the Araki-Woods' factor R_{∞}. One of these conditions is the following:

Let φ be a normal faithful state on a von Neumann algebra M, and let the bicentralizer of φ be the set B_{φ} of operators a in M for which

$$
x_{n} a-a x_{n} \rightarrow 0 \quad(\sigma \text {-strongly })
$$

whenever $\left(x_{n}\right)$ is a bounded sequence in M satisfying $\lim _{n \rightarrow \infty}\left\|x_{n} \varphi-\varphi x_{n}\right\|=0$. Connes proved that if an injective factor of type III_{1} with separable predual has a normal faithful state φ for which $B_{\varphi}=\mathrm{C} 1$, then M is isomorphic to the Araki-Woods factor R_{∞}. In particular, if M has a normal faithful state φ, such that $M_{\varphi}^{\prime} \cap M=\mathbf{C}$, then $M \cong R_{\infty}$.

In this paper we provide the last step in the proof of uniqueness of the injective factor of type III_{1} by proving that every injective factor of type III_{1} has a normal faithful state φ, such that $\boldsymbol{B}_{\varphi}=\mathbf{C} 1$.

The starting point in our proof is the Connes-Takesaki relative commutant theorem for dominant weights (cf. [13, Section 2]): For every dominant weight ψ on a $\mathbf{I I I}_{1}$-factor with separable predual

$$
M_{\psi}^{\prime} \cap M=\mathbf{C} 1
$$

If M is an injective factor of type III_{1}, then the centralizer M_{ψ} is the hyperfinite II_{∞}-factor. In particular, M_{ψ} has Schwartz' property P, so in this case $M_{\psi}^{\prime} \cap M=\mathbf{C} 1$ implies that for every $x \in M$:

$$
\begin{equation*}
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathbf{C} 1 \neq \varnothing \tag{}
\end{equation*}
$$

where the closure is taken in the σ-weak topology. Let now φ be a normal faithful state on M, and let \mathscr{K} be an infinite dimensional separable Hilbert space. By approximating the weight $\varphi \otimes \operatorname{Tr}$ on $M \widehat{\otimes} B(\mathscr{O})$ with dominant weights, we obtain from (${ }^{*}$) that for every $x \in M \backslash\{0\}$ with $\varphi(x)=0$ and for every $\delta>0$, there exists a sequence ($\left.a_{i}\right)_{i=1}^{\infty}$ of operators in M such that
(i) $\mathrm{sp}_{\text {o }^{\mathrm{p}}}\left(a_{i}\right) \cong[-\delta, \delta]$ for all $i \in \mathbf{N}$
(ii) $\sum_{i=1}^{\infty} a_{i}^{*} a_{i}=1$
(iii) $\sum_{i=1}^{\infty}\left\|a_{i} x-x a_{i}\right\|_{\varphi}^{2} \geqslant \frac{1}{2}\|x\|_{\varphi}^{2}$
(cf. Lemma 2.7). These three conditions imply intuitively that " $x \notin B_{\varphi}$ ", because the a_{i} 's almost commute with φ, while some of the a_{i} 's must be far from commuting with x. However, we have only little control over the operator norm of the a_{i} 's relative to the size of $\left\|a_{i} x-x a_{i}\right\|_{\varphi}$, and it is actually necessary to make a very long detour in order to prove that $x \notin B_{\varphi}$. This detour occupies the main part of Section 2 and it is strongly inspired by the techniques in Connes' and Størmer's proof of the homogeneity of the state space of IH_{1}-factors (cf. [12]). Once we know that ($\varphi(x)=0$ and $\left.x \neq 0\right) \Rightarrow x \notin B_{\varphi}$, it follows immediately that $B_{\varphi}=\mathrm{C} 1$. The details in Connes' proof of

$$
\text { [} \left.M \text { injective } \mathrm{III}_{1} \text {-factor and } B_{\varphi}=\mathrm{C} 1\right] \Rightarrow\left[M \cong R_{\infty}\right]
$$

has appeared very recently in [10]. We have checked independently that the above implication can also be proved using the ideas of [16, Sections 3, 4 and 5]. Our proof is quite long and will be presented elsewhere.

In the last section (Section 3) of this paper we prove that for a general III_{1}-factor M with separable predual, the following three conditions are equivalent:
(1) For every (faithful) dominant weight ψ on M and every $x \in M$

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathbf{C} 1 \neq \varnothing
$$

(σ-weak closure).
(2) For every normal faithful state φ on $M, B_{\varphi}=\mathrm{C} 1$.
(3) The set of normal faithful states φ on M, for which $M_{\varphi}^{\prime} \cap M=\mathrm{C} 1$ is norm dense in the set of normal states on M.

We have not been able to decide whether these conditions are fulfilled for all III_{1-} factors with separable predual.

The rest of the paper is organized in the following way:
§1. Preliminaries of Connes' bicentralizer problem 97
§2. Uniqueness of the injective factor of type III_{1}. 103
§3. Characterization of III $_{1}$-factors for which $\boldsymbol{B}_{\varphi}=\mathbf{C 1}$. 130
References . 147

1. Preliminaries on Connes' bicentralizer problem

The material presented in this section has been known to Connes since 1976-78. I learned about it during a number of conversations with Connes in May 1978 and November 1978. As mentioned in the introduction, Connes defined the bicentralizer of a normal faithful state φ on a von Neumann algebra M to be the set of operators $a \in M$ for which

$$
x_{n} a-a x_{n} \rightarrow 0 \quad \text { (} \sigma \text {-strongly) }
$$

whenever $\left(x_{n}\right)_{n \in \mathrm{~N}}$ is a bounded sequence in M for which $\lim _{n \rightarrow \infty}\left\|x_{n} \varphi-\varphi x_{n}\right\|=0$. Connes proved that if M is a III_{1}-factor, and $B_{\varphi}=\mathbf{C 1}$ for one n.f. (normal faithful) state φ on M, then $B_{\varphi}=\mathrm{C} 1$ for all normal faithful states on M. From this it follows that $B_{\varphi}=\mathrm{C} 1$ for all n.f. states on the Araki-Woods factor \boldsymbol{R}_{∞} (cf. Corollary 1.5 and Example 1.6 below). He conjectured that $B_{\varphi}=\mathbf{C 1}$ for some (and hence for every) n.f. state φ on any $\mathrm{III}_{1^{-}}$ factor M. Connes' interest in this problem lies in the fact that he was able to prove:

Theorem 1.1 (Connes [8], [10]). Let M be an injective III_{1}-factor with separable predual. If M admits a normal faithful state φ for which $B_{\varphi}=\mathbf{C 1}$, then M is isomorphic to the Araki-Woods factor \boldsymbol{R}_{∞}.

The above theorem was announced in the end of Connes' survey paper [9] in a slightly different formulation. A detailed proof appeared very recently in [10]. In the

[^0]rest of this section we present some basic properties of the bicentralizer B_{q}, which will be needed in the following sections.

For any unital C^{*}-algebra we let $U(A)$ denote the unitary group of A.
Lemma 1.2. Let M be a von Neumann algebra with a normal faithful state φ. For $A \in M, p u t$

$$
C_{\varphi}(a, \delta)=\overline{\operatorname{conv}}\left\{u^{*} a u \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

where $\overline{\operatorname{conv}}\{\cdot\}$ is the closure of the convex hull in the σ-weak topology. Then

$$
a \in B_{\varphi} \Leftrightarrow \bigcap_{\delta>0} C_{\varphi}(a, \delta)=\{a\}
$$

Proof. For $x \in M$, put $\|x\|_{\varphi}=\varphi\left(x^{*} x\right)^{1 / 2}$. Then $\left\|\|_{\varphi}\right.$ is a norm on M and it generates the σ-strong topology on bounded sets of M. Put

$$
\mathscr{A}=\left\{\left(x_{n}\right) \in l^{\infty}(\mathbf{N}, M) \mid \lim _{n \rightarrow \infty}\left\|x_{n} \varphi-\varphi x_{n}\right\|=\mathbf{0}\right\}
$$

Then \mathscr{A} is a unital C^{*}-algebra. Therefore \mathscr{A} is spanned by $U(\mathscr{A})$. Note that $U(\mathscr{A})$ consists of those sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ of unitaries in M for which $\left\|u_{n} \varphi-\varphi u_{n}\right\| \rightarrow 0$ for $n \rightarrow \infty$.

Thus

$$
B_{\varphi}=\left\{a \in M \mid \lim _{n \rightarrow \infty}\left\|u_{n} a-a u_{n}\right\|_{\varphi}=0 \text { for all }\left(u_{n}\right) \in U(\mathscr{A})\right\}
$$

Equivalently

$$
\begin{equation*}
B_{\varphi}=\left\{a \in M \mid \lim _{n \rightarrow \infty}\left\|a-u_{n}^{*} a u_{n}\right\|_{\varphi}=0 \text { for all }\left(u_{n}\right) \in U(\mathscr{A})\right\} \tag{*}
\end{equation*}
$$

The last equality $\left({ }^{*}\right)$ follows, because the φ-norm is invariant under multiplication from left with unitary operators from M. For $a \in M$, and $\delta>0$ put

$$
\varepsilon(a, \delta)=\sup \left\{\left\|u^{*} a u-a\right\|_{\varphi} \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

Since $\|x\|_{\varphi}=\sup \left\{\varphi\left(y^{*} x\right) \mid y \in M,\|y\|_{\varphi} \leqslant 1\right\}$, the φ-norm is lower semi continuous in the σ-weak topology on M. Therefore

$$
\|x-a\|_{\varphi} \leqslant \varepsilon(a, \delta) \quad \text { for every } x \in C_{\varphi}(a, \delta)
$$

By (*) we have

$$
a \in B_{\varphi} \Leftrightarrow \lim _{\delta \rightarrow 0} \varepsilon(a, \delta)=0
$$

Hence $\cap_{\delta>0} C_{\varphi}(a, \delta)=\{a\}$ for all $a \in B_{\varphi}$.
Conversely, if $a \notin B_{\varphi}$, then we can choose a sequence $\left(u_{n}\right)$ of unitaries in M such that

$$
\lim _{n \rightarrow \infty}\left\|u_{n} \varphi-\varphi u_{n}\right\|=0
$$

while

$$
\limsup _{n \rightarrow \infty}\left\|u_{n}^{*} a u_{n}-a\right\|_{\varphi}>0
$$

By passing to a subsequence, we can even obtain that there exists an $\varepsilon>0$, such that

$$
\left\|u_{n}^{*} a u_{n}-a\right\|_{\varphi} \geqslant \varepsilon \quad \text { for all } n
$$

Let b be a cluster point for the sequence $\left\{u_{n}^{*} a u_{n} \mid n \in \mathbf{N}\right\}$ in the σ-weak topology. Clearly $b \in \cap_{\delta>0} C_{\varphi}(a, \delta)$. We will prove that $b \neq a$. Note first that

$$
\lim _{n \rightarrow \infty}\left\|u_{n}^{*} a u_{n}\right\|_{\varphi}^{2}=\lim _{n \rightarrow \infty} \varphi\left(u_{n}^{*} a^{*} a u_{n}\right)=\varphi\left(a^{*} a\right)=\|a\|_{\varphi}^{2}
$$

because $\left\|u_{n} \varphi u_{n}^{*}-\varphi\right\| \rightarrow 0$ for $n \rightarrow \infty$. Using

$$
2 \operatorname{Re} \varphi\left(a^{*} u_{n}^{*} a u_{n}\right)=\|a\|_{\varphi}^{2}+\left\|u_{n}^{*} a u_{n}\right\|_{\varphi}^{2}-\left\|a-u_{n}^{*} a u_{n}\right\|_{\varphi}^{2}
$$

we get in the limit $n \rightarrow \infty$

$$
\varphi\left(a^{*} b\right) \leqslant\|a\|_{\varphi}^{2} \frac{-1}{2} \varepsilon^{2}=\varphi\left(a^{*} a\right)-\frac{1}{2} \varepsilon^{2}
$$

Hence $b \neq a$. This completes the proof of Lemma 1.2.
Proposition 1.3 [8]. Let M be a von Neumann algebra with a normal faithful state φ. Then
(1) B_{φ} is a von Neumann subalgebra of M.
(2) The following two conditions are equivalent:
(a) $B_{\varphi}=\mathrm{C} 1$
(b) For every $a \in M$ and every $\delta>0$

$$
\overline{\operatorname{conv}}\left\{u^{*} a u \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\} \cap \mathbf{C} 1 \neq \varnothing
$$

(closure in σ-weak topology).
Proof. (1) It is clear that B_{φ} is a unital subalgebra of M. Moreover, by Lemma 1.2,

$$
a \in B_{\varphi} \Leftrightarrow \cap_{\delta>0} C_{\varphi}(a, \delta)=\{a\} \Leftrightarrow \cap_{\delta>0} C_{\varphi}\left(a^{*}, \delta\right)=\left\{a^{*}\right\} \Leftrightarrow a^{*} \in B_{\varphi}
$$

It remains to be proved that B_{φ} is σ-strongly closed. Let $a \in \bar{B}_{\varphi}^{\sigma-s}$, and let u_{n} be a sequence of unitaries in M, such that

$$
\left\|u_{n} \varphi-\varphi u_{n}\right\| \rightarrow 0 \text { for } n \rightarrow \infty .
$$

For every $\varepsilon>0$, we can choose $b \in B_{\varphi}$, such that $\|a-b\|_{\varphi}<\varepsilon$. Then

$$
\left\|u_{n}^{*}(a-b) u_{n}\right\|_{\varphi}^{2}=\varphi\left(u_{n}^{*}(a-b)^{*}(a-b) u_{n}\right) \rightarrow\|a-b\|_{\varphi}^{2} \text { for } n \rightarrow \infty
$$

because $\left\|u_{n} \varphi u_{n}^{*}-\varphi\right\| \rightarrow 0 \quad$ for $n \rightarrow \infty$. Using

$$
\left\|u_{n}^{*} a u_{n}-a\right\|_{\varphi} \leqslant\left\|u_{n}^{*}(a-b) u_{n}\right\|_{\varphi}+\left\|u_{n}^{*} b u_{n}-b\right\|_{\varphi}+\|b-a\|_{\varphi}
$$

we get

$$
\limsup _{n \rightarrow \infty}\left\|u_{n}^{*} a u_{n}-a\right\|_{\varphi} \leqslant 2\|a-b\|_{\varphi}<2 \varepsilon
$$

Since ε was arbitrary, it follows that $a \in \boldsymbol{B}_{\boldsymbol{\varphi}}$.
(2) $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let $a \in M$. The set

$$
C_{\varphi}(a)=\bigcap_{\delta>0} C_{\varphi}(a, \delta)
$$

is a σ-weakly compact convex subset of M, and it is non-empty because it contains a. Let \mathscr{H}_{φ} be the completion of M with respect to the φ-norm. Then $C_{\varphi}(a)$ is a norm closed convex subset of \mathscr{H}_{φ}. Since \mathscr{H}_{φ} is a Hilbert space, there exists $b \in C_{\varphi}(a)$, such that

$$
\|x\|_{\varphi}>\|b\|_{\varphi} \quad \text { for all } x \in C_{\varphi}(a) \backslash\{b\}
$$

We will show that $b \in B_{\varphi}$. If u, v are two unitary operators in M, then

$$
\begin{aligned}
\|(u v) \varphi-\varphi(u v)\| & \leqslant\|(u \varphi-\varphi u) v\|+\|u(v \varphi-\varphi v)\| \\
& =\|u \varphi-\varphi u\|+\|v \varphi-\varphi v\| .
\end{aligned}
$$

From this it follows easily that if $a^{\prime} \in C_{\varphi}(a, \delta)$ then

$$
C_{\varphi}\left(a^{\prime}, \delta\right) \cong C_{\varphi}(a, 2 \delta), \quad \delta<0
$$

Since $b \in \cap_{\delta>0} C_{\varphi}(a, \delta)$ it follows that for all $\delta>0$

$$
C_{\varphi}(b)=\bigcap_{\delta>0} C_{\varphi}(b, \delta) \subseteq \bigcap_{\delta>0} C_{\varphi}(a, 2 \delta)=C_{\varphi}(a)
$$

If $u \in U(M)$, and $\|u \varphi-\varphi u\| \leqslant \delta$, then

$$
\begin{aligned}
\left\|u^{*} b u\right\|_{\varphi}^{2} & =\varphi\left(u^{*} b^{*} b u\right) \\
& =\varphi\left(b^{*} b\right)+\left(u \varphi u^{*}-\varphi\right)\left(b^{*} b\right) \\
& \leqslant\|b\|_{\varphi}^{2}+\left\|u \varphi u^{*}-\varphi\right\|\|b\|^{2} \\
& \leqslant\|b\|_{\varphi}^{2}+\delta\|b\|^{2}
\end{aligned}
$$

Using the lower semi continuity of $\left\|\|_{\varphi}\right.$ in the σ-weak topology we get

$$
\|x\|_{\varphi}^{2} \leqslant\|b\|_{\varphi}^{2}+\delta\|b\|^{2} \quad \text { for all } x \in C_{\varphi}(b, \delta)
$$

and consequently

$$
\|x\|_{\varphi} \leqslant\|b\|_{\varphi} \quad \text { for all } x \in C_{\varphi}(b)
$$

Since $C_{\varphi}(b) \cong C_{\varphi}(a)$, this inequality implies that $x=b$. Hence $C_{\varphi}(b)=\{b\}$ so by Lemma $1.2, b \in B_{\varphi}$. Therefore (a) implies that

$$
b \in C_{\varphi}(a, \delta) \cap \mathbf{C l}
$$

for all $\delta>0$. Thus $(\mathrm{a}) \Rightarrow(\mathrm{b})$.
(b) $\Rightarrow(\mathrm{a})$: Assume (b) and let $a \in M$. Since the sets

$$
C_{\varphi}(a, \delta) \cap \mathbf{C l}
$$

form a decreasing family of non-empty σ-weakly compact sets, they have a non-empty intersection. Hence there exists $\lambda \in \mathbf{C}$, such that

$$
\lambda 1 \in \cap_{\delta>0} C_{\varphi}(a, \delta)
$$

If $u \in U(M)$, and $\|u \varphi-\varphi u\| \leqslant \delta$, then

$$
\begin{aligned}
\left|\varphi\left(u^{*} a u\right)-\varphi(a)\right| & \leqslant\left\|u \varphi u^{*}-\varphi\right\|\|a\| \\
& \leqslant \delta\|a\| .
\end{aligned}
$$

Hence $|\varphi(x)-\varphi(a)| \leqslant \delta\|a\|$ for all $x \in C_{\varphi}(a, \delta)$ and all $\delta>0$. Therefore $\lambda=\varphi(a)$, i.e.

$$
\varphi(a) 1 \in \overline{\operatorname{conv}}\left\{u^{*} a u \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

for all $\delta>0$. Equivalently

$$
a-\varphi(a) 1 \in \overline{\operatorname{conv}}\left\{a-u^{*} a u \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

Using that the $\left\|\|_{\varphi}\right.$-norm is lower semi continuous in the σ-weak topology, we get

$$
\|a-\varphi(a) 1\|_{\varphi} \leqslant \sup \left\{\left\|a-u^{*} a u\right\|_{\varphi} \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

If $a \in B_{\varphi}$, the supremum goes to zero for $\delta \rightarrow 0$. Hence $a=\varphi(a) 1$. This proves (a).

Remark 1.4. By the proof of $(\mathrm{b}) \Rightarrow$ (a) it follows that $\boldsymbol{B}_{\varphi}=\mathbf{C} 1$ is also equivalent to (c) For all $a \in M$

$$
\varphi(a) 1 \in \bigcap_{\delta>0} \overline{\operatorname{conv}}\left\{u^{*} a u \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

(closure in σ-weak topology). Moreover, a simple duality argument shows that this condition is again equivalent to
(d) For all $\psi \in M_{*}$,

$$
\psi(1) \varphi \in \bigcap_{\delta>0} \overline{\operatorname{conv}}\left\{u \psi u^{*} \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta\right\}
$$

(closure in norm topology).
Corollary 1.5 [8]. Let M be a σ-finite factor of type III_{1}. If $\boldsymbol{B}_{\varphi}=\mathrm{C} 1$ for some n.f. state φ on M, then $B_{\omega}=\mathbf{C 1}$ for all n.f. states ω on M.

Proof. Assume that $B_{\varphi}=\mathbf{C 1}$, for some n.f. state φ on M. Then, by the ConnesStørmer transitivity theorem [12], the set of n.f. states ω on M for which $B_{\omega}=\mathbf{C 1}$ is norm dense in the set of normal states on M. Let ω be a n.f. state on M, and let $\delta>0$. Choose a normal state ω_{δ} on M, such that $\boldsymbol{B}_{\omega_{\delta}}=\mathbf{C} 1$ and $\left\|\omega-\omega_{\delta}\right\| \leqslant \delta$. By Proposition 1.3 (2) we have

$$
C_{\omega_{\mathrm{o}}}(a, \delta) \cap \mathrm{C} 1 \neq \varnothing
$$

for all $a \in M$. However, for $u \in U(M),\left\|u \omega_{\delta}-\omega_{\delta} u\right\| \leqslant \delta$ implies that $\|u \omega-\omega u\| \leqslant 3 \delta$. Therefore $C_{\omega}(a, 3 \delta) \cap \mathrm{C} 1 \neq \varnothing$. Using again Proposition 1.3 (2) we get $B_{\omega}=\mathrm{C} 1$.

Example 1.6 [8]. In [2] Araki and Woods proved that there is up to isomorphism only one ITPFI-factor with asymptotic ratio set $r_{\infty}(M)$ equal to [$0, \infty[$. This factor is called the Araki-Woods factor and is denoted R_{∞}. We shall see that $B_{\varphi}=\mathrm{Cl}$ for all n.f. states on M, but that $M_{\omega}=C 1$ (and hence $M_{\omega}^{\prime} \cap M=M$) for some state ω on M.

Note first that R_{∞} can be written as the tensor product

$$
R_{\infty}=R_{\lambda_{1}} \widehat{\otimes} R_{\lambda_{2}}
$$

of two Powers factors $R_{\lambda_{1}}$ and $R_{\lambda_{2}}$ where $\log \lambda_{1} / \log \lambda_{2}$ is irrational, because $M=$ $R_{\lambda_{1}} \widehat{\otimes} R_{\lambda_{2}}$ is clearly an ITPFI-factor and both λ_{1} and λ_{2} are contained in $r_{\infty}(M)$, so that $r_{\infty}(M)=\left[0, \infty\left[\left(r_{\infty}(M) \cap \mathbf{R}_{+}\right.\right.\right.$is always a closed subgroup of $\left.\mathbf{R}_{+}\right)$. Let φ_{1} and φ_{2} be the usual tensor product states on $R_{\lambda_{1}}$ and $R_{\lambda_{2}}$ (cf. [20]). Then by [5, section 4]

$$
M_{\varphi_{i}}^{\prime} \cap R_{\lambda_{i}}=\mathrm{C} 1, \quad i=1,2
$$

Therefore $\varphi=\varphi_{1} \otimes \varphi_{2}$ satisfies

$$
M_{\varphi}^{\prime} \cap M=\mathrm{C} 1
$$

In particular $B_{\varphi}=\mathrm{C} 1$. Since R_{∞} is of type III_{1} we have $B_{\omega}=\mathbf{C 1}$ for all n.f. states ω on R_{∞} by Corollary 1.5.

On the other hand Hermann and Takesaki gave in [17] an example of a n.f. state ω on a factor M, such that $M_{\omega}=\mathbf{C}$. The factor in question is of type III_{1}, because if M was not of type III_{1}, then by [5, Section 3-4] M_{ω} would contain a maximal abelian subalgebra of M. The factor in [17] comes from the G.N.S.-representation of the CARalgebra given by a quasi free state. By [20] quasi free states on the CAR-algebra induce ITPFI-factor representations, and by [5, Section 3] R_{∞} is the only ITPFI-factor of type III_{1}. Therefore the factor M in Hermann and Takesaki's example is isomorphic to R_{∞}.

2. Uniqueness of the injective factor of type III $_{1}$

In [13], Connes and Takesaki introduced the notion of dominant weights on a factor of type III. The weights considered in [13] are not necessarily faithful, but for simplicity we shall here only consider faithful weights.

Let M be a von Neumann algebra with separable predual. A normal faithful semifinite (n.f.s.) weight ψ on M is called dominant if
(i) ψ has infinite multiplicity
and
(ii) $\lambda \psi \sim \psi$ for all $\lambda \in \mathbf{R}_{+}$.

The first condition means that the centralizer M_{ψ} of ψ is properly infinite, and $\lambda \psi \sim \psi$ means that $\lambda \psi=\psi\left(u \cdot u^{*}\right)$ for some unitary operator $u \in M$. Connes and Takesaki proved that every properly infinite von Neumann algebra has a dominant weight, and that two dominant weights are unitarily equivalent ([13, pp. 496-497]).

By [24], every properly infinite von Neumann algebra M can be written as a crossed product

$$
M=N \rtimes_{\theta} \mathbf{R}
$$

where N is a von Neumann algebra with a n.f.s. trace τ, and $\left(\theta_{s}\right)_{s \in \mathbf{R}}$ is a continuous one parameter group of automorphisms for which

$$
\tau \circ \theta_{s}=e^{-s} \tau, \quad s \in \mathbf{R}
$$

By [13, p. 497] the dual weight ψ of τ is a dominant weight on $M=N \rtimes_{\theta} \mathbf{R}$, and the centralizer M_{ψ} of ψ is equal to $\pi_{\theta}(N)$ (the usual imbedding of N in the crossed product $N \not \rtimes_{\theta} \mathbf{R}$ [24]). If M is a factor of type III_{1}, then N is a factor of type II_{∞} [24, Corollary 9.7]. Since dominant weights are unitarily equivalent, it follows that M_{ψ} is a II_{∞}-factor for every dominant weight ψ on a factor M of type III_{1} (with separable predual).

By Connes' and Takesaki's relative commutant theorem [13, p. 513],

$$
M_{\psi}^{\prime} \cap M=Z\left(M_{\psi}\right)
$$

for every integrable (in particular for every dominant) weight on M. Hence
Theorem 2.1 (Connes, Takesaki [13]). Let M be a factor of type III_{1} with separable predual, and let ψ be a dominant weight on M. Then

$$
M_{\psi}^{\prime} \cap M=\mathrm{Cl}
$$

Corollary 2.2. Let M be an injective factor of type III_{1} with separable predual, and let ψ be a dominant weight on M. Then for every $x \in M$,

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathrm{C} 1 \neq \varnothing
$$

where the closure is in the σ-weak topology on M.

Proof. Let m be an invariant mean on \mathbf{R}. Then

$$
x \rightarrow \int_{-\infty}^{\infty} \sigma_{t}^{\psi}(x) d m(t)
$$

defines a projection of norm 1 from M to M_{ψ}. Hence, when M is injective, so is M_{ψ}. In particular M_{ψ} satisfies property P of Schwartz (cf. [7]). Hence, for all $x \in M$,

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap M_{\psi}^{\prime} \neq \varnothing .
$$

This proves Corollary 2.2 because the above intersection is clearly contained in $M \cap M_{\psi}^{\prime}=\mathrm{C} 1$.

We are now able to state the main results of this section:
Theorem 2.3. Let M be a factor of type III_{1} with separable predual. If M satisfies the property:
(1) For every (faithful) dominant weight ψ on M and every $x \in M$,

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathbf{C} 1 \neq \varnothing
$$

(o-weak closure),
then
(2) For every normal faithful state φ on $M, B_{\varphi}=\mathrm{C} 1$.

Particularly, $\boldsymbol{B}_{\varphi}=\mathbf{C 1}$ for any normal faithful state φ on an injective factor of type III_{1} with separable predual.

The above theorem combined with Connes' result cited in section 1 (Theorem 1.1) gives immediately:

Corollary 2.4. Every injective factor of type III_{1} on a separable Hilbert space is isomorphic to the Araki-Woods factor R_{∞}.

In Section 3 we will prove that the two conditions (1) and (2) in Theorem 2.3 are actually equivalent (cf. Theorem 3.1). The rest of this section will be used to prove Theorem 2.3 , i.e. to prove that $(1) \Rightarrow(2)$. We shall need some definitions from the spectral theory of automorphism groups (cf. [1] and [5, Section 3]): Let ($\left.\alpha_{t}\right)_{t \in \mathbf{R}}$ be a σ weakly continuous one-parameter group of automorphisms on a von Neumann algebra M. For $f \in L^{2}(\mathbf{R})$ and $x \in M$, one puts

$$
\alpha_{f}(x)=\int_{-\infty}^{\infty} f(t) \alpha_{t}(x) d t
$$

The α-spectrum $\operatorname{sp}_{\alpha}(x)$ of an operator $x \in M$ is the set of characters $\gamma \in \hat{\mathbf{R}}$, for which $\hat{f}(\gamma)=0$ for all $f \in L^{1}(\mathbf{R})$ satisfying $\alpha_{f}(x)=0$. We will identify $\hat{\mathbf{R}}$ with \mathbf{R} in the usual way, such that

$$
f(\gamma)=\int_{-\infty}^{\infty} f(x) e^{i \gamma x} d x, \quad \gamma \in \mathbf{R}, f \in L^{1}(\mathbf{R}) .
$$

Lemma 2.5. Let M and α_{t} be as above. Let $x \in M$ and let $\delta>0$. If the function $s \rightarrow \alpha_{s}(x)$ can be extended to an entire (analytic) M-valued function, such that

$$
\left\|\alpha_{s}(x)\right\| \leqslant K e^{\delta|I m s|}, \quad s \in \mathbf{C}
$$

for some constant $K>0$, then $\operatorname{sp}_{\alpha}(x) \subseteq[-\delta, \delta]$.
Proof. For every $\varphi \in M_{*}$, there exists a constant $K^{\prime}>0$, such that

$$
\left|\varphi\left(\alpha_{s}(x)\right)\right| \leqslant K^{\prime} e^{\delta|\mathrm{Im} s|}, \quad s \in \mathbf{C}
$$

Hence, by the Paley-Wiener theorem the function $t \rightarrow \varphi\left(\alpha_{t}(x)\right), t \in \mathbf{R}$ is the Fourier transformed of a tempered distribution with support in the interval $[-\delta, \delta]$. Thus, if f is any Schwartz function, such that \hat{f} has support in $\mathbf{R} \backslash[-\delta, \delta]$, then

$$
\int_{-\infty}^{\infty} \varphi\left(\alpha_{s}(x)\right) f(x) d x=0
$$

Hence $\alpha_{f}(x)=0$ for every Schwartz function f for which $\operatorname{supp}(\hat{f}) \subseteq \mathbf{R} \backslash[-\delta, \delta]$. This proves Lemma 2.5.

Lemma 2.6. Let M be a factor of type III_{1} with separable predual, and let ψ be a weight on M of infinite multiplicity (i.e. M_{ψ} is properly infinite). If M satisfies (1) in Theorem 2.3, then for all $x \in M$ and all $\delta>0$,

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U(M), \mathrm{sp}_{\sigma^{*}}(u) \subseteq[-\delta, \delta]\right\} \cap \mathrm{C} 1 \neq \varnothing
$$

(σ-weak closure).
Proof. Let $\delta>0$ and put $\alpha=\delta / 2$. By [13, Chapter II, Theorem 4.7 and Corollary 3.2], there exists a dominant weight ψ^{\prime} on M, such that

$$
\begin{equation*}
e^{-\alpha} \psi^{\prime} \leqslant \psi \leqslant e^{\alpha} \psi^{\prime} \quad(\infty) \tag{*}
\end{equation*}
$$

By definition of the ordering " $\leqslant(\infty)$ " (*) is equivalent to that the cocycle Radon Nikodym derivative $t \rightarrow\left(D_{\psi}: D_{\psi}{ }^{\prime}\right)_{t}$ can be extended to an entire M-valued function satisfying

$$
\left\|\left(D_{\psi}: D_{\psi^{\prime}}\right)_{s}\right\| \leqslant e^{\alpha|\mathbf{m} s|}, \quad s \in \mathbf{C}
$$

(cf. [13, pp. 508-509]). If $x \in M_{\psi}$, then for $t \in \mathbf{R}$,

$$
\begin{aligned}
\sigma_{t}^{\psi}(x) & =\left(D_{\psi}: D_{\psi^{\prime}}\right)_{t} \sigma_{t}^{\psi^{\prime}}(x)\left(D_{\psi}: D_{\psi^{\prime}}\right)_{t}^{*} \\
& =\left(D_{\psi}: D_{\psi^{\prime}}\right)_{t} x\left(D_{\psi}: D_{\psi^{\prime}}\right)_{t}^{*}
\end{aligned}
$$

Hence $t \rightarrow \sigma_{t}^{\psi}(x)$ can be extended to an entire M-valued function, namely

$$
s \rightarrow\left(D_{\psi}: D_{\psi}\right)_{s} x\left(\left(D_{\psi}: D_{\psi^{\prime}}\right)_{s}^{*}, \quad s \in \mathbf{C}\right.
$$

and

$$
\left\|\sigma_{s}^{\psi}(x)\right\| \leqslant e^{2 a|\operatorname{lm} s|}\|x\|, \quad s \in \mathbf{C}
$$

Thus, by Lemma 2.5

$$
\operatorname{sp}_{\sigma^{\psi}}(x) \sqsubseteq[-2 \alpha, 2 \alpha]=[-\delta, \delta] .
$$

Therefore,

$$
U\left(M_{\psi^{\prime}}\right) \subseteq\left\{u \in U(M) \mid \operatorname{sp}_{\sigma^{\psi}}(u) \subseteq[-\delta, \delta]\right\}
$$

This, together with the assumption (1) in Theorem 2.3, proves Lemma 2.6.
Lemma 2.7. Assume that M satisfies (1) in Theorem 2.3. Let φ be a normal faithful state on M, and let x be an operator in M for which $\varphi(x)=0$. Then for every $\delta>0$ there exists a sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ of operators in M, such that
(i) $\mathrm{sp}_{\nsim}\left(a_{i}\right) \cong[-\delta, \delta]$ for all $i \in \mathrm{~N}$
(ii) $\Sigma_{i=1}^{\infty} a_{i}^{*} a_{i}=1$
(iii) $\Sigma_{i=1}^{\infty}\left\|x a_{i}-a_{i} x\right\|_{\varphi}^{2} \geqslant \frac{1}{2}\|x\|_{\varphi}^{2}$,
where as usual $\|x\|_{\varphi}=\varphi\left(x^{*} x\right)^{1 / 2}$.

Proof. We can assume that M acts on a Hilbert space \mathscr{H}, such that φ is the vector state given by a vector $\xi_{0} \in \mathscr{H}$.

Let \mathscr{K} be an infinite dimensional Hilbert space with orthonormal basis $\left(e_{i}\right)_{i=1}^{\infty}$, and let ψ be the weight on $M \widehat{\otimes} B(\mathscr{K})$ given by $\psi=\varphi \otimes \mathrm{Tr}$, where Tr is the trace on $B(\mathscr{K})$. Then ψ has infinite multiplicity. Since $M \widehat{\otimes} B(\mathscr{K})$ is isomorphic to M we get by Lemma 2.6 that there exists $\lambda \in \mathbf{C 1}$, such that

$$
\lambda(1 \otimes 1) \in \overline{\operatorname{conv}}\left\{u(x \otimes 1) u^{*} \mid u \in U(M \widehat{\otimes} B(\mathscr{K})), \operatorname{sp}_{\psi}(u) \subseteq[-\delta, \delta]\right\}
$$

Hence,

$$
(x-\lambda 1) \otimes 1 \in \overline{\operatorname{conv}}\left\{x \otimes 1-u(x \otimes 1) u^{*} \mid u \in U(M \widehat{\otimes} B(\mathscr{K})), \mathrm{sp}_{\psi}(u) \subseteq[-\delta, \delta]\right\}
$$

Since convex sets in $M \widehat{\otimes} B(\mathscr{K})$ has the same closure in σ-weak and σ-strong topology, we have for every $\zeta \in \mathscr{K} \otimes \mathscr{K}$, that

$$
\begin{aligned}
\|((x-\lambda 1) \otimes 1) \zeta\| & \leqslant \sup \left\{\left\|\left(x \otimes 1-u(x \otimes 1) u^{*}\right) \zeta\right\| \mid u \in U(M \widehat{\otimes} B(\mathscr{K})), \operatorname{sp}_{\sigma^{v}}(u) \subseteq[-\delta, \delta]\right\} \\
& =\sup \left\{\left\|\left(u^{*}(x \otimes 1)-(x \otimes 1) u^{*}\right) \xi\right\| \mid u \in U(M \widehat{\otimes} B(\mathscr{K})), \operatorname{sp}_{\sigma^{v}}(u) \subseteq[-\delta, \delta]\right\} .
\end{aligned}
$$

By applying the above inequality to the vector $\zeta=\zeta_{0} \otimes e_{1}$, we find that there exists $u \in U(M \widehat{\otimes} B(\mathscr{K}))$, such that $\operatorname{sp}_{\sigma^{\psi}}(u) \cong[-\delta, \delta]$ and

$$
\begin{equation*}
\left\|(x-\lambda 1) \xi_{0}\right\| \leqslant \sqrt{2}\left\|\left(u^{*}(x \otimes 1)-(x \otimes 1) u^{*}\right)\left(\xi_{0} \otimes e_{1}\right)\right\| . \tag{*}
\end{equation*}
$$

The operator u^{*} can be represented as an infinite matrix $\left(a_{i j}\right)_{i, j=1}^{\infty}$ with elements in M where $a_{i j}$ is characterized by

$$
\left(u^{*} \xi, \eta\right)=\left(a_{i j} \xi \otimes e_{j}, \eta \otimes e_{i}\right), \quad \xi, \eta \in \mathscr{H} .
$$

Since $\operatorname{sp}_{\sigma^{\psi}}(u) \subseteq[-\delta, \delta]$ also $\operatorname{sp}_{\sigma^{\psi}}\left(u^{*}\right) \subseteq[-\delta, \delta]$, and since $\sigma_{i}^{\psi}=\sigma_{t}^{\Phi} \otimes \mathrm{id}_{B(\mathscr{K})}$, we have

$$
\mathrm{sp}_{\sigma^{\psi}}\left(a_{i j}\right) \subseteq[-\delta, \delta] \quad \text { for all } i, j \in \mathbf{N}
$$

The inequality $\left({ }^{*}\right)$ can now be expressed as

$$
\left\|(x-\lambda 1) \xi_{0}\right\|^{2} \leqslant 2 \sum_{i=1}^{\infty}\left\|\left(a_{i 1} x-x a_{i 1}\right) \xi_{0}\right\|^{2}
$$

because the set of vectors $\left(a_{i 1} x-x a_{i 1}\right)\left(\xi_{0} \otimes e_{1}\right)$ are pairwise orthogonal. Since

$$
\left(x \xi_{0}, \lambda \xi_{0}\right)=\bar{\lambda} \varphi(x)=0
$$

we have

$$
\left\|(x-\lambda 1) \xi_{0}\right\|^{2}=\left\|x \xi_{0}\right\|^{2}+|\lambda|^{2} \geqslant\left\|x \xi_{0}\right\|^{2}
$$

Hence also

$$
\left\|x \xi_{0}\right\|^{2} \leqslant 2 \sum_{i=1}^{\infty}\left\|\left(a_{i 1} x-x a_{i 1}\right) \xi_{0}\right\|^{2}
$$

Since u^{*} is unitary, we have $\sum_{i=1}^{\infty} a_{i 1}^{*} a_{i 1}=1$.
This proves Lemma 2.7.

The remaining part of the proof of Theorem 2.3 is strongly inspired by the techniques from Connes' and Størmer's paper [12]. As in [12] we shall consider M in its standard representation (cf. [1], [6], [15]). Following the notation of [15], we can to every von Neumann algebra M associate a unique quadruple (M, \mathscr{H}, J, P), where \mathscr{H} is a Hilbert space on which M acts, J is an isometric involution in \mathscr{H}, such that
(i) $J M J=M^{\prime}$,
(ii) $J c J=c^{*}, c \in Z(M)$,
and P^{\natural} is a selfdual cone in \mathscr{H}, such that
(iii) $J \xi=\xi, \xi \in P^{\natural}$,
(iv) $x J x J\left(P^{\natural}\right) \subseteq P^{\natural}, x \in M$.

We put

$$
\mathscr{H}_{\mathrm{s} . \mathrm{a} .}=\{\xi \in \mathscr{H} \mid \boldsymbol{J} \xi=\xi\} .
$$

Moreover, we will consider \mathscr{H} as a two-sided M-module, where the right multiplication is given by

$$
\eta x=J x^{*} J \eta, \quad x \in M, \eta \in \mathscr{H} .
$$

Recall that every positive normal functional φ on M is implemented by a unique vector $\xi_{\varphi} \in P^{\natural}$. By Araki's generalization of the Powers-Størmer inequality, one has for φ, $\psi \in M_{*}^{+}:$

$$
\left\|\xi_{\varphi}-\xi_{\psi}\right\|^{2} \leqslant\|\varphi-\psi\| \leqslant\left\|\xi_{\varphi}-\xi_{\psi}\right\|\left\|\xi_{\varphi}+\xi_{\psi}\right\|
$$

(cf. [1, Theorem 4(8)], [15, Lemma 2.9], [21]). Note that in the above notation the quantity $I(\varphi, x)$ used in [12] is simply given by

$$
I(\varphi, x)=\frac{1}{2}\left\|x \xi_{\varphi}-\xi_{\varphi} x\right\|^{2}, \quad x \in M, \varphi \in M_{*}^{+}
$$

For later reference we prove:
Lemma 2.8. Let M be a von Neumann algebra with standard form ($M, \mathscr{H}, J, P^{\natural}$) and let φ be a normal faithful state on M. Then:
(a) For every unitary operator u in M

$$
\left\|u \xi_{\varphi}-\xi_{\varphi} u\right\|^{2} \leqslant\|u \varphi-\varphi u\| \leqslant 2\left\|u \xi_{\varphi}-\xi_{\varphi} u\right\| .
$$

(b) For every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in M,

$$
\lim _{n \rightarrow \infty}\left\|x_{n} \varphi-\varphi x_{n}\right\|=0 \Leftrightarrow \lim _{n \rightarrow \infty}\left\|x_{n} \xi_{\varphi}-\xi_{\varphi} x_{n}\right\|=0
$$

Proof. (a) It is elementary to check that $u \xi_{\varphi} u^{*} \in P^{\natural}$, and that the vector functional on M given by $u \xi_{\varphi} u^{*}$ is equal to $u \varphi u^{*}$. Hence by the Araki-Powers-Størmer unequality cited above

$$
\left\|u \xi_{\varphi} u^{*}-\xi_{\varphi}\right\|^{2} \leqslant\left\|u \varphi u^{*}-\varphi\right\| \leqslant 2\left\|u \xi_{\varphi} u^{*}-\xi_{\varphi}\right\|
$$

which is equivalent to the stated inequality.
(b) Let \mathscr{A} (resp. \mathscr{B}) denote the set of bounded sequences in M for which $\lim _{n \rightarrow \infty}$ $\left\|x_{n} \varphi-\varphi x_{n}\right\|=0$ (resp. $\lim _{n \rightarrow \infty}\left\|x_{n} \xi_{\varphi}-\xi_{\varphi} x_{n}\right\|=0$). Then \mathscr{A} and \mathscr{B} are unital C^{*}-subalgebras of $l^{\infty}(\mathbf{N}, M)$. Moreover, by (a) their unitary groups $U(\mathscr{A})$ and $U(\mathscr{B})$ coincide. Since any unital C^{*}-algebra is the linear span of its unitaries, we have $\mathscr{A}=\mathscr{B}$.

Throughout the rest of this section, M is a $I I I_{1}$-factor with separable predual, and with standard form ($M, \mathscr{H}, J, P^{\natural}$).

Lemma 2.9. Assume that M satisfies (1) in Theorem 2.3. Let $\xi \in P^{\natural}$ be a cyclic and separating unit vector, and let $\eta \in \mathscr{H}_{\text {s.a. }}$ (i.e. $J \eta=\eta$) be a unit vector orthogonal to ξ. For every $\delta>0$, there exists $a \in M, a \neq 0$, such that

$$
\|a \xi\|^{2}+\|a \eta\|^{2}<8\|a \eta-\eta a\|^{2}
$$

and

$$
\|a \xi-\xi a\|^{2}<\delta\|a \eta-\eta a\|^{2} .
$$

Proof. We may assume that $0<\delta<1$. Define normal states φ, ψ on M by $\varphi=(\cdot \xi, \xi)$ and $\psi=(\cdot \eta, \eta)$. We treat first the case where ψ is dominated by some scalar multiple of φ; i.e. $\psi \leqslant K \varphi$ for some $K \in \mathbf{R}_{+}$. Then the operator $x \xi \rightarrow x \eta, x \in M$ extends by continuity to a bounded operator $x^{\prime} \in M^{\prime}$, such that $\left\|x^{\prime}\right\| \leqslant K^{1 / 2}$ and $\eta=x^{\prime} \xi$. Put $x=J x^{\prime} J \in M$. Since $J \xi=\xi$ and $J \eta=\eta$, we have $\eta=x \xi$. Note that $\varphi(x)=0$ because $\eta \perp \xi$. Put

$$
\delta_{1}=\min \left\{\left(\frac{\delta}{8}\right)^{1 / 2},\left(2^{7} K\right)^{-1 / 2}\right\}
$$

By Lemma 2.8 we can choose $\left(a_{j}\right)_{j=1}^{\infty}$ in M, such that

$$
\begin{aligned}
& \mathrm{sp}_{\sigma \varphi}\left(a_{i}\right) \subseteq\left[-\delta_{1}, \delta_{1}\right], \quad i \in \mathbf{N} \\
& \sum_{i=1}^{\infty} a_{i}^{*} a_{i}=1 \\
& \sum_{i=1}^{\infty}\left\|\left(a_{i} x-x a_{i}\right) \xi\right\|^{2} \geqslant \frac{1}{2}\|x \xi\|^{2} \\
&=\frac{1}{2}\|\eta\|^{2}
\end{aligned}
$$

Let Δ_{φ} be the modular operator associated with ξ via Tomita-Takesaki theory [22]. For every $f \in L^{1}(\mathbf{R})$ for which the Fourier transformed f vanishes on $\left[-\delta_{1}, \delta_{1}\right]$ we have for every $j \in \mathbf{N}$

$$
\begin{aligned}
\hat{f}\left(\log \Delta_{\varphi}\right) a_{j} \xi & =\int_{-\infty}^{\infty} f(t) \Delta_{\varphi}^{i t} a_{j} \xi d t \\
& =\int_{-\infty}^{\infty} f(t) \sigma_{t}^{\varphi}\left(a_{j}\right) \xi d t \\
& =0
\end{aligned}
$$

because $\operatorname{sp}_{\sigma \Phi}\left(a_{j}\right) \subseteq\left[-\delta_{1}, \delta_{1}\right]$. Hence $a_{j} \xi$ is contained in the spectral subspace of $\log \Delta_{\varphi}$ corresponding to the interval $\left[-\delta_{1}, \delta_{1}\right]$.

Since $\xi \in P^{\natural}$, the isometry J in the quadruple ($M, \mathscr{H}, J, P^{\natural}$) coincides with the isometry J_{φ} obtained in the polar decomposition of the modular conjugation S_{φ} associated with ξ, i.e.

$$
S_{\varphi}=J_{\varphi} \Delta_{\varphi}^{1 / 2}=J \Delta_{\varphi}^{1 / 2}
$$

(cf. [6], [15, Lemma 2.9]). Since $S_{\varphi}(x \xi)=x^{*} \xi, x \in M$, we have

$$
\xi a_{i}=J a_{i}^{*} J \xi=J a_{i}^{*} \xi=\Delta_{\varphi}^{1 / 2} a_{i} \xi
$$

Clearly

$$
\sup \left\{\left|1-e^{s / 2}\right| \mid s \in\left[-\delta_{1}, \delta_{1}\right]\right\}=e^{\delta_{1} / 2}-1 .
$$

Therefore,

$$
\begin{aligned}
\left\|a_{i} \xi-\xi a_{i}\right\| & =\left\|\left(1-\Delta_{\varphi}^{1 / 2}\right) a_{i} \xi\right\| \\
& \leqslant\left(e^{\delta_{1} / 2}-1\right)\left\|a_{i} \xi\right\| \\
& \leqslant \delta_{1}\left\|a_{i} \xi\right\| .
\end{aligned}
$$

For the last inequality we have used that $\delta_{1} \leqslant(\delta / 8)^{1 / 2}<1$. Using $\sum_{i=1}^{\infty} a_{i}^{*} a_{i}=1$, we have

$$
\sum_{i=1}^{\infty}\left\|a_{i} \xi-\xi a_{i}\right\|^{2} \leqslant \delta_{1}^{2} \sum_{i=1}^{\infty}\left\|a_{i} \xi\right\|^{2}=\delta_{1}^{2} \leqslant \delta / 8
$$

Clearly,

$$
a_{i} \eta-\eta a_{i}=\left(a_{i} x-x a_{i}\right) \xi+x\left(a_{i} \xi-\xi a_{i}\right)
$$

Using the triangle inequality in the Hilbert space $\otimes_{i=1}^{\infty} \mathscr{H}$ we get

$$
\begin{aligned}
\left(\sum_{i=1}^{\infty}\left\|a_{i} \eta-\eta a_{i}\right\|^{2}\right)^{1 / 2} & \geqslant\left(\sum_{i=1}^{\infty}\left\|\left(a_{i} x-x a_{i}\right) \xi\right\|^{2}\right)^{1 / 2}-\|x\|\left(\sum_{i=1}^{\infty}\left\|a_{i} \xi-\xi a_{i}\right\|^{2}\right)^{1 / 2} \\
& \geqslant \frac{1}{\sqrt{2}}-K^{1 / 2} \cdot \delta_{1} \\
& \geqslant \frac{1}{\sqrt{2}}-2^{-7 / 2} \\
& =\frac{7}{8 \sqrt{2}}
\end{aligned}
$$

Hence $8 \Sigma_{i=1}^{\infty}\left\|a_{i} \eta-\eta a_{i}\right\|^{2} \geqslant 49 / 16>3$, while

$$
\sum_{i=1}^{\infty}\left(\left\|a_{i} \xi\right\|^{2}+\left\|a_{i} \eta\right\|^{2}+8 \delta^{-1}\left\|a_{i} \xi-\xi a_{i}\right\|^{2}\right) \leqslant 1+1+1=3
$$

Hence, for at least one $i \in \mathbf{N}$,

$$
8\left\|a_{i} \eta-\eta a_{i}\right\|^{2}>\left\|a_{i} \xi\right\|^{2}+\left\|a_{i} \eta\right\|^{2}+8 \delta^{-1}\left\|a_{i} \xi-\xi a_{i}\right\|^{2}
$$

In particular, $a_{i} \neq 0$ and

$$
\begin{gathered}
\left\|a_{i} \xi\right\|^{2}+\left\|a_{i} \eta\right\|^{2}<\left\|a_{i} \eta-\eta a_{i}\right\|^{2} \\
\left\|a_{i} \xi-\xi a_{i}\right\|^{2}<\delta\left\|a_{i} \eta-\eta a_{i}\right\|^{2} .
\end{gathered}
$$

This proves the lemma in the case $\psi \leqslant K \varphi$ for some K.
Assume next that ψ is not dominated by a multiple of φ. In this case we can choose a non zero projection $p \in M$, such that

$$
\psi(p)>\frac{16}{\delta} \varphi(p) .
$$

Moreover, since the reduced algebra $p M p$ has no minimal projections, we can choose a projection $q \in M, 0 \leqslant q \leqslant p$ such that

$$
\psi(q)=\frac{1}{16} \psi(p)
$$

Note that $q \neq 0$ and $p-q \neq 0$. Since M is of type III, any two non zero projections in M are equivalent, so we can choose $v \in M$, such that

$$
v^{*} v=p-q \quad \text { and } \quad v v^{*}=q .
$$

Then

$$
\|u \eta\|^{2}=\psi(p-q)=\frac{15}{16} \psi(p)
$$

and

$$
\|\eta v\|^{2}=\left\|J\left(v^{*} \eta\right)\right\|^{2}=\left\|v^{*} \eta\right\|^{2}=\psi(q)=\frac{1}{16} \psi(p) .
$$

Hence,

$$
\|v \eta-\eta v\| \geqslant\|v \eta\|-\|\eta v\| \geqslant \frac{\sqrt{15}-1}{4} \psi(p)^{1 / 2} \geqslant \frac{1}{2} \psi(p)^{1 / 2} .
$$

Therefore,

$$
\begin{aligned}
\|v \xi\|^{2}+\|v \eta\|^{2} & \leqslant \varphi(p)+\psi(p) \\
& \leqslant\left(\frac{\delta}{16}+1\right) \psi(p) \\
& <2 \psi(p) \leqslant 8\|v \eta-\eta v\|^{2}
\end{aligned}
$$

and by the parallelogram identity

$$
\begin{aligned}
\|v \xi-\xi v\|^{2} & \leqslant 2\left(\|v \xi\|^{2}+\|\xi v\|^{2}\right) \\
& =2\left(\|v \xi\|^{2}+\left\|v^{*} \xi\right\|^{2}\right) \\
& \leqslant 4 \varphi(p) \\
& <\frac{1}{4} \delta \psi(p) \\
& \leqslant \delta\|v \eta-\eta v\|^{2}
\end{aligned}
$$

This finishes the proof of Lemma 2.9.
Lemma 2.10. Let M, ξ, η be as in Lemma 2.9, and let $\delta>0$. There exists $b \in M_{\text {s.a. }}$, $b \neq 0$ such that

$$
\begin{gathered}
\|b \xi\|^{2}+\|b \eta\|^{2}<32\|b \eta-\eta b\|^{2} \\
\|b \xi-\xi b\|^{2}<\delta\|b \eta-\eta b\|^{2} .
\end{gathered}
$$

Proof. It is sufficient to consider $0<\delta<1$. By Lemma 2.9 we can choose $a \in M$, such that

$$
\begin{gathered}
\|a \xi\|^{2}+\|a \eta\|^{2}<8\|a \eta-\eta a\|^{2} \\
\|a \xi-\xi a\|^{2}<\frac{\delta}{4}\|a \eta-\eta a\|^{2} .
\end{gathered}
$$

Put $b_{1}=\left(a+a^{*}\right) / 2$ and $b_{2}=\left(a-a^{*}\right) / 2 i$. We will show that either b_{1} or b_{2} satisfies the conditions of the lemma. If $b_{1}=0$ then $b_{2}=-i a$ clearly satisfies the conditions. Also if $b_{2}=0$ then $b_{1}=a$ satisfies the conditions. Hence we can assume that $b_{1} \neq 0$ and $b_{2} \neq 0$.

First, note that

$$
\begin{aligned}
\left\|a^{*} \xi\right\|=\|J(\xi a)\|=\|\xi a\| & \leqslant\|a \xi\|+\|a \xi-\xi a\| \\
& \leqslant\left(8^{1 / 2}+\left(\frac{\delta}{4}\right)^{1 / 2}\right)\|a \eta-\eta a\| \\
& <4\|a \eta-\eta a\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|a^{*} \eta\right\|=\|\eta a\| & \leqslant\|a \eta\|+\|a \eta-\eta a\| \\
& \leqslant\left(8^{1 / 2}+1\right)\|a \eta-\eta a\| \\
& <4\|a \eta-\eta a\| .
\end{aligned}
$$

Moreover, since $J \boldsymbol{\xi}=\boldsymbol{\xi}$,

$$
\left\|a^{*} \xi-\xi a^{*}\right\|=\|J(\xi a-a \xi)\|=\|a \xi-\xi a\|
$$

and similarly

$$
\left\|a^{*} \eta-\eta a^{*}\right\|=\|a \eta-\eta a\| .
$$

Hence,

$$
\begin{aligned}
\left\|a^{*} \xi\right\|^{2}+\left\|a^{*} \eta\right\|^{2}+32 \delta^{-1}\left\|a^{*} \xi-\xi a^{*}\right\|^{2} & <\left(2 \cdot 16+\frac{1}{4} \cdot 32\right)\|a \eta-\eta a\|^{2} \\
& =40\|a \eta-\eta a\|^{2}
\end{aligned}
$$

Clearly,

$$
\begin{aligned}
\|a \xi\|^{2}+\|a \eta\|^{2}+32 \delta^{-1}\|a \xi-\xi a\|^{2} & <\left(8+\frac{1}{4} \cdot 32\right)\|a \eta-\eta a\|^{2} \\
& \leqslant 24\|a \eta-\eta a\|^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left(\|a \xi\|^{2}+\left\|a^{*} \xi\right\|^{2}\right)+\left(\|a \eta\|^{2}+\left\|a^{*} \eta\right\|^{2}\right)+32 \delta^{-1}\left(\|a \xi-\xi a\|^{2}+\left\|a^{*} \xi-\xi a^{*}\right\|\right)^{2} \\
& \quad<64\|a \eta-\eta a\|^{2} \\
& \quad=32\left(\|a \eta-\eta a\|^{2}+\left\|a^{*} \eta-\eta a^{*}\right\|^{2}\right)
\end{aligned}
$$

Using $a=b_{1}+i b_{2}$ and $a^{*}=b_{1}-i b_{2}$ we get now by the parallelogram identity that

$$
\begin{aligned}
&\left\|b_{1} \xi\right\|^{2}+\left\|b_{2} \xi\right\|^{2}+\left\|b_{1} \eta\right\|^{2}+\left\|b_{2} \eta\right\|^{2}+32 \delta^{-1}\left(\left\|b_{1} \xi-\xi b_{1}\right\|^{2}+\left\|b_{2} \xi-\xi b_{2}\right\|^{2}\right) \\
&<32\left(\left\|b_{1} \eta-\eta b_{1}\right\|^{2}+\left\|b_{2} \eta-\eta b_{2}\right\|^{2}\right)
\end{aligned}
$$

Hence, for either $b=b_{1}$ or $b=b_{2}$ we have

$$
\|b \xi\|^{2}+\|b \eta\|^{2}+32 \delta^{-1}\|b \xi-\xi b\|^{2}<32\|b \eta-\eta b\|^{2}
$$

Thus, b satisfies the conditions of the lemma.
The following lemma is very similar to [7, Proposition I.1].
Lemma 2.11. Let $\zeta \in \mathscr{H}$, and let $b \in M$ be selfadjoint. Then there exists a positive bounded measure v on \mathbf{R}^{2} with support in $\mathrm{sp}(b) \times \mathrm{sp}(b)$, such that for any two bounded Borel functions f,g on \mathbf{R}

$$
\|f(b) \zeta-\zeta g(b)\|^{2}=\int_{\mathbf{R}^{2}}|f(s)-g(t)|^{2} d v(s, t)
$$

Proof. Since left and right multiplication with b on \mathscr{H} commute, there exists a representation π of the abelian C^{*}-algebra $\mathrm{C}(\operatorname{sp}(b) \times \operatorname{sp}(b))$ on \mathscr{H} such that

$$
\pi(f \otimes g) \xi=f(b) \xi g(b)
$$

for $\xi \in \mathscr{H}$ and $f, g \in C(\operatorname{sp}(b))$. Let v be the positive measure v on $\operatorname{sp}(b) \times \operatorname{sp}(b)$ defined by

$$
\langle\nu, h\rangle=(\pi(h) \zeta, \zeta), \quad h \in C(\operatorname{sp}(b) \times \operatorname{sp}(b)) .
$$

For $f, g \in C(\operatorname{sp}(b))$,

$$
\begin{aligned}
(f(b) \zeta g(b), \zeta) & =(\pi(f \otimes g) \zeta, \zeta) \\
& \iint_{\operatorname{sp}(b) \times \operatorname{spp}(b)} f(s) g(t) d v(s, t) .
\end{aligned}
$$

By standard arguments the above equality can be extended to all bounded Borel functions f, g on $\operatorname{sp}(b)$. Hence, for any pair of bounded Borel functions f, g on $\operatorname{sp}(b)$

$$
\begin{aligned}
\|f(b) \zeta-\zeta g(b)\|^{2} & =\|f(b) \zeta\|^{2}+\|\zeta g(b)\|^{2}-2 \operatorname{Re}(f(b) \zeta, \zeta g(b)) \\
& =\left(|f|^{2}(b) \zeta, \zeta\right)+\left(\zeta|g|^{2}(b), \zeta\right)-2 \operatorname{Re}(f(b) \zeta \bar{g}(b), \zeta) \\
& =\iint_{\operatorname{sp}(b) \times s p(b)}\left(|f|^{2}(s)+|g|^{2}(t)-2 \operatorname{Re}(f(s) \overline{g(t)})\right) d v(s, t) \\
& =\iint_{\mathrm{sp}(b) \times \mathrm{sp}(b)}|f(s)-g(t)|^{2} d v(s, t) .
\end{aligned}
$$

We can extend v to a measure on $\mathbf{R}^{\mathbf{2}}$ by putting

$$
\nu\left(\mathbf{R}^{2} \backslash \operatorname{sp}(b) \times \operatorname{sp}(b)\right)=0 .
$$

This finishes the proof of Lemma 2.11.
Lemma 2.12. Let $\zeta \in \mathscr{H}$, and let $b \in M$ be selfadjoint. If

$$
b=\int_{-\infty}^{\infty} \lambda d e_{\lambda}
$$

is the spectral resolution of b (i.e. $e_{\lambda}=\chi_{1-\infty, \lambda]}(b)$), then
(a) $\int_{-\infty}^{\infty}\left\|e_{\lambda} \zeta-\zeta e_{\lambda}\right\|^{2}|\lambda| d \lambda \leqslant\|b \zeta\|\|b \zeta-\zeta b\|$
and
(b) $\int_{-\infty}^{\infty}\left\|e_{\lambda} \xi-\zeta e_{\lambda}\right\|^{2}|\lambda| d \lambda \geqslant \frac{1}{4}\|b \zeta-\zeta b\|^{2}$.

Proof. Let v be as in Lemma 2.11. Put

$$
h(s, t, \lambda)= \begin{cases}1 & s \leqslant \lambda<t \text { or } t \leqslant \lambda<s \\ 0 & \text { otherwise } .\end{cases}
$$

Then

$$
\begin{aligned}
\left\|e_{\lambda} \zeta-\zeta e_{\lambda}\right\|^{2} & =\iint_{\mathbf{R}^{2}}\left|\chi_{1-\infty, \lambda]}(s)-\chi_{1-\infty, \lambda]}(t)\right|^{2} d v(s, t) \\
& =\iint_{\mathbf{R}^{2}} h(s, t, \lambda) d v(s, t)
\end{aligned}
$$

By Fubini's theorem,

$$
\int_{-\infty}^{\infty}\left\|e_{\lambda} \zeta-\xi e_{\lambda}\right\|^{2}|\lambda| d \lambda=\iint_{\mathbb{R}^{2}}\left(\int_{-\infty}^{\infty} h(s, t, \lambda)|\lambda| d \lambda\right) d v(s, t) .
$$

If $s \leqslant t$,

$$
\int_{-\infty}^{\infty} h(s, t, \lambda)|\lambda| d \lambda=\int_{s}^{t}|\lambda| d \lambda=\frac{1}{2}\left(t^{2} \operatorname{sign} t-s^{2} \operatorname{sign} s\right) .
$$

Using $h(s, t, \lambda)=h(t, s, \lambda)$, we get for all $s, t \in \mathbf{R}$,

$$
\int_{-\infty}^{\infty} h(s, t, \lambda)|\lambda| d \lambda=\frac{1}{2}\left|t^{2} \operatorname{sign} t-s^{2} \operatorname{sign} s\right| .
$$

A simple computation shows that for $s \cdot t \geqslant 0$

$$
\left|t^{2} \operatorname{sign} t-s^{2} \operatorname{sign} s\right|=|s-t|(|s|+|t|)
$$

and for $\boldsymbol{s} \cdot \boldsymbol{t} \boldsymbol{< 0}$

$$
\left|t^{2} \operatorname{sign} t-s^{2} \operatorname{sign} s\right|=s^{2}+t^{2} \leqslant|s-t|(|s|+|t|)
$$

so in all cases

$$
\int_{-\infty}^{\infty} h(s, t, \lambda)|\lambda| d \lambda \leqslant \frac{1}{2}|t-s|(|s|+|t|) .
$$

Therefore,

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left\|e_{\lambda} \zeta-\zeta e_{\lambda}\right\|^{2}|\lambda| d \lambda=\frac{1}{2} \iint_{\mathbf{R}^{2}}|t-s|(|s|+|t|) d v(s, t) \\
\leqslant & \frac{1}{2}\left(\iint_{\mathbf{R}^{2}}|t-s|^{2} d v(s, t)\right)^{1 / 2}\left(\iint_{\mathbf{R}^{2}}(|s|+|t|)^{2} d v(s, t)\right)^{1 / 2}
\end{aligned}
$$

By Lemma 2.11,

$$
\iint_{\mathbf{R}^{2}}|t-s|^{2} d v(s, t)=\|b \zeta-\zeta b\|^{2}
$$

Since $(|s|+|t|)^{2} \leqslant 2|s|^{2}+2|t|^{2}$, we get by Lemma 2.11

$$
\iint_{\mathbf{R}^{2}}(|s|+|t|)^{2} d v(s, t) \leqslant 2\left(\|b \zeta\|^{2}+\|\zeta b\|^{2}\right)
$$

But since $J \zeta=\zeta$,

$$
\|\zeta b\|=\|J b \zeta\|=\|b \zeta\|
$$

Hence

$$
\iint_{\mathbf{R}^{2}}(|s|+|t|)^{2} d v(s, t) \leqslant 4\|b \zeta\|^{2}
$$

This proves (a). To prove (b), observe that for $s \cdot t \geqslant 0$,

$$
\left|t^{2} \operatorname{sign} t-s^{2} \operatorname{sign} s\right| \geqslant(t-s)^{2}
$$

Moreover, for $\boldsymbol{s} \cdot \boldsymbol{t}<\mathbf{0}$

$$
\left|t^{2} \operatorname{sign}-s^{2} \operatorname{sign} s\right|=t^{2}+s^{2} \geqslant \frac{1}{2}(t-s)^{2}
$$

Hence,

$$
\int_{-\infty}^{\infty} h(s, t, \lambda)|\lambda| d \lambda \geqslant \frac{1}{4}(t-s)^{2}
$$

Therefore,

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left\|e_{\lambda} \zeta-\zeta e_{\lambda}\right\|^{2}|\lambda| d \lambda & \geqslant \frac{1}{4} \iint_{\mathbf{R}^{2}}|t-s|^{2} d v(s, t) \\
& =\frac{1}{4}\|b \zeta-\zeta b\|^{2}
\end{aligned}
$$

Lemma 2.13. Let M, ξ, η be as in Lemma 2.9. For any $\delta>0$ there exists a projection $p \neq 0$ in M, such that

$$
\begin{gathered}
\|p \xi\|^{2}+\|p \eta\|^{2}<2^{7}\|p \eta-\eta p\|^{2} \\
\|p \xi-\xi p\|^{2}<\delta\|p \eta-\eta p\|^{2} .
\end{gathered}
$$

Proof. Let $\delta>0$, and put $\delta_{1}=\left(2^{-7} \cdot \delta\right)^{2}$. Assume that $b \in M_{\text {s.a. }}$ satisfies the conditions of Lemma 2.10 with respect to δ_{1}. Let

$$
b=\int_{-\infty}^{\infty} \lambda d e_{\lambda}
$$

be the spectral resolution of b. Put

$$
f_{\lambda}= \begin{cases}e_{\lambda}, & -\infty<\lambda<0 \\ 1-e_{\lambda}, & 0 \leqslant \lambda<\infty\end{cases}
$$

Using that $e_{\lambda}=0$ for $\lambda<-\|b\|$, and $e_{\lambda}=1$ for $\lambda>\|b\|$ we get by partial integration

$$
\begin{aligned}
\int_{-\infty}^{0}\left\|f_{\lambda} \xi\right\|^{2}|\lambda| \delta \lambda & =-\int_{-\infty}^{0}\left(e_{\lambda} \xi, \xi\right) d\left(\frac{\lambda^{2}}{2}\right) \\
& =\int_{-\infty}^{0} \frac{\lambda^{2}}{2} d\left(e_{\lambda} \xi, \xi\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\infty}\left\|f_{\lambda} \xi\right\|^{2}|\lambda| d \lambda= & \int_{0}^{\infty}\left(1-\left(e_{\lambda} \xi, \xi\right)\right) d\left(\frac{\lambda^{2}}{2}\right) \\
& =\int_{0}^{\infty} \frac{\lambda^{2}}{2} d\left(e_{\lambda} \xi, \xi\right)
\end{aligned}
$$

Thus

$$
\int_{-\infty}^{\infty}\left\|f_{\lambda} \xi\right\|^{2} \lambda \left\lvert\, d \lambda=\frac{1}{2} \int_{-\infty}^{\infty} \lambda^{2} d\left(e_{\lambda} \xi, \xi\right)=\frac{1}{2}\|b \xi\|^{2} .\right.
$$

Similarly

$$
\int_{-\infty}^{\infty}\left\|f_{\lambda} \eta\right\|^{2}|\lambda| d \lambda=\frac{1}{2}\|b \eta\|^{2}
$$

Since for all $\zeta \in \mathscr{H}_{\text {s.a. }}$ we have

$$
f_{\lambda} \zeta-\zeta f_{\lambda}= \pm\left(e_{\lambda} \zeta-\zeta e_{\lambda}\right)
$$

we get from Lemma 2.12, that

$$
\int_{-\infty}^{\infty}\left\|f_{\lambda} \eta-\eta f_{\lambda}\right\|^{2}|\lambda| d \lambda \geqslant \frac{1}{4}\|b \eta-\eta b\|^{2}
$$

and

$$
\int_{-\infty}^{\infty}\left\|f_{\lambda} \xi-\xi f_{\lambda}\right\|^{2}|\lambda| d \lambda \leqslant\|b \xi\|\|b \xi-\xi b\|
$$

Using, $\|b \xi\|^{2}<32\|b \eta-\eta b\|^{2}$ and $\|b \xi-\xi b\|^{2}<\delta_{1}\|b \eta-\eta b\|^{2}$, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left\|f_{\lambda} \xi-\xi f_{\lambda}\right\|^{2}|\lambda| d \lambda & <\left(32 \delta_{1}\right)^{1 / 2}\|b \eta-\eta b\|^{2} \\
& \leqslant 6 \delta_{1}^{1 / 2}\|b \eta-\eta b\|^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left(\left\|f_{\lambda} \xi\right\|^{2}+\left\|f_{\lambda} \eta\right\|^{2}+\delta_{1}^{-1 / 2}\left\|f_{\lambda} \xi-\xi f_{\lambda}\right\|^{2}\right)|\lambda| d \lambda \\
&<\frac{1}{2}\left(\|b \xi\|^{2}+\|b \eta\|^{2}\right)+6\|b \eta-\eta b\|^{2} \\
& \leqslant \frac{32}{2}\|b \eta-\eta b\|^{2}+6\|b \eta-\eta b\|^{2} \\
& \leqslant 32\|b \eta-\eta b\|^{2} \\
& \leqslant 2^{7} \int_{-\infty}^{\infty}\left\|f_{\lambda} \eta-\eta f_{\lambda}\right\|^{2}|\lambda| d \lambda
\end{aligned}
$$

Thus for some $\lambda \in \mathbf{R}$, one has

$$
\left\|f_{\lambda} \xi\right\|^{2}+\left\|f_{\lambda} \eta\right\|^{2}+\delta_{1}^{-1 / 2}\left\|f_{\lambda} \xi-\xi f_{\lambda}\right\|^{2}<2^{7}\left\|f_{\lambda} \eta-\eta f_{\lambda}\right\|^{2}
$$

In particular, for this $\lambda, f_{\lambda} \neq 0$ and

$$
\begin{aligned}
\left\|f_{\lambda} \xi\right\|^{2}+\left\|f_{\lambda} \eta\right\| & <2^{7}\left\|f_{\lambda} \eta-\eta f_{\lambda}\right\|^{2} \\
\left\|f_{\lambda} \xi-\xi f_{\lambda}\right\|^{2} & <2^{7} \delta_{1}^{1 / 2}\left\|f_{\lambda} \eta-\eta f_{\lambda}\right\|^{2} \\
& =\delta\left\|f_{\lambda} \eta-\eta f_{\lambda}\right\|^{2} .
\end{aligned}
$$

This proves Lemma 2.13.
Lemma 2.14. Assume that M satisfies (1) in Theorem 2.3, and let $\xi \in P^{\natural}$ be a cyclic and separating unit vector. Let $\eta \in \mathscr{H}_{\text {s.a. }}$ be a unit vector, $\eta \neq \xi$, and $\eta \neq-\xi$, and let θ be the angle between ξ and η, i.e.

$$
\theta=\arccos (\xi, \eta)
$$

Then for every $\delta>0$ there exists a projection $p \neq 0$ in M, such that

$$
\begin{gathered}
\|p \xi\|^{2}+\|p \eta\|^{2}<\frac{2^{10}}{\sin ^{2} \theta}\|p \eta-\eta p\|^{2} \\
\|p \xi-\xi p\|<\delta\|p \eta-\eta p\|^{2}
\end{gathered}
$$

Proof. Note first that the angle θ is well defined because $\mathscr{H}_{\text {s.a. }}=\{\zeta \in \mathscr{H} \mid J \zeta=\zeta\}$ is a real Hilbertspace. Moreover, $0<\theta<\pi$. It is sufficient to consider the case $\delta<1$. The vector η can be written in the form

$$
\eta=\cos \theta \xi+\sin \theta \eta^{\prime}
$$

where $\eta^{\prime} \in \mathscr{H}_{\text {s.a. }}$ is a unit vector orthogonal to ξ. Put $\delta_{1}=\frac{1}{4} \delta \sin ^{2} \theta$. By Lemma 2.13 there exists a non-zero projection $p \in M$, such that

$$
\begin{gathered}
\|p \xi\|^{2}+\left\|p \eta^{\prime}\right\|^{2}<2^{7}\left\|p \eta^{\prime}-\eta^{\prime} p\right\|^{2} \\
\|p \xi-\xi p\|^{2}<\delta_{1}\left\|p \eta^{\prime}-\eta^{\prime} p\right\|^{2} .
\end{gathered}
$$

Since

$$
\sin \theta \eta^{\prime}=\eta-\cos \theta \xi
$$

we have

$$
\begin{aligned}
\sin \theta\left\|p \eta^{\prime}-\eta^{\prime} p\right\| & \leqslant\|p \eta-\eta p\|+\|p \xi-\xi p\| \\
& \leqslant\|p \eta-\eta p\|+\delta_{1}^{1 / 2}\left\|p \eta^{\prime}-\eta^{\prime} p\right\| .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|p \eta-\eta p\| & \geqslant\left(\sin \theta-\delta_{1}^{1 / 2}\right)\left\|p \eta^{\prime}-\eta^{\prime} p\right\| \\
& =\sin \theta\left(1-\frac{1}{2} \delta^{1 / 2}\right)\left\|p \eta^{\prime}-\eta^{\prime} p\right\| \\
& \geqslant \frac{1}{2} \sin \theta\left\|p \eta^{\prime}-\eta^{\prime} p\right\|
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\|p \xi-\xi p\|^{2} & <\frac{4 \delta_{1}}{\sin ^{2} \theta}\|p \eta-\eta p\|^{2} \\
& =\delta\|p \eta-\eta p\|^{2}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\|p \eta\| & \leqslant \cos \theta\|p \xi\|+\sin \theta\left\|p \eta^{\prime}\right\| \\
& \leqslant\left(\|p \xi\|^{2}+\left\|p \eta^{\prime}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|p \xi\|^{2}+\|p \eta\|^{2} & \leqslant 2\|p \xi\|^{2}+2\left\|p \eta^{\prime}\right\|^{2} \\
& <2^{8}\left\|p \eta^{\prime}-\eta^{\prime} p\right\|^{2} \\
& \leqslant \frac{2^{10}}{\sin ^{2} \theta}\|p \eta-\eta p\|^{2}
\end{aligned}
$$

This proves Lemma 2.14.
Lemma 2.15. Assume that M satisfies (1) in Theorem 2.3. Let $\xi \in P^{\natural}$ be a cyclic and separating unit vector, and let $\eta \in \mathscr{H}_{\text {s.a. }}$ be a unit vector such that $\xi \perp \eta$. Then for every $\delta>0$ there exists a family $\left(e_{i}\right)_{i \in I}$ of orthogonal projections in M with sum 1 , such that

$$
\begin{gathered}
\left\|\xi-\sum_{i \in I} e_{i} \xi e_{i}\right\|^{2} \leqslant \delta \\
\left\|\eta-\sum_{i \in I} e_{i} \eta e_{i}\right\|^{2} \geqslant 2^{-18}
\end{gathered}
$$

Proof. Let \mathscr{F} be the collection of all sets of projections $\left\{p_{i}\right\}_{i \in I}$ in M for which
(1) $p_{i} \neq 0$ for all i and $p_{i} \perp p_{j}$ for $i \neq j$.
(2) With $p=1-\sum_{i \in I} p_{i}$,

$$
\|\xi-p \xi p\|^{2}+\|\eta-p \eta p\|^{2} \leqslant 2^{14}\left\|\eta-p \eta p-\sum_{i \in I} p_{i} \eta p_{i}\right\|^{2}
$$

and

$$
\left\|\xi-p \xi p-\sum_{i \in I} p_{i} \xi p_{i}\right\|^{2} \leqslant \delta\left\|\eta-p \eta p-\sum_{i \in I} p_{i} \eta p_{i}\right\|^{2}
$$

The collection \mathscr{F} is a partially ordered set with respect to inclusion. \mathscr{F} is non empty, because $\varnothing \in \mathscr{F}$. Moreover, it is easy to check that \mathscr{F} is inductively ordered, i.e. every totally ordered subset of \mathscr{F} has a least upper bound in \mathscr{F}. Hence by Zorn's lemma \mathscr{F} has a maximal element $\left\{q_{i}\right\}_{i \in I}$. Put $q=1-\Sigma_{i \in I} q_{i}$. We will show that the family of projections:

$$
\left\{q_{i}\right\}_{i \in I} \cup\langle q\}
$$

satisfies the inequalities stated in the lemma. Since $\left\{q_{i}\right\}_{i \in I} \cup\{q\}$ is a family of pairwise orthogonal projections, the family

$$
\left\{q_{i} J q_{i} J\right\}_{i \in I} \cup\langle q J q J\}
$$

consists also of orthogonal projections. Therefore

$$
\begin{aligned}
\left\|\eta-q \eta q-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2} & =\left\|\left(1-q J q J-\sum_{i \in I} q_{i} J q_{i} J\right) \eta\right\|^{2} \\
& \leqslant\|\eta\|^{2}
\end{aligned}
$$

Thus since $\left\{q_{i}\right\}_{i \in I} \in \mathscr{F}$, we have

$$
\left\|\xi-q \xi q-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2} \leqslant \delta\|\eta\|^{2}=\delta
$$

so to complete the proof of Lemma 2.15 we have to show that

$$
\left\|\eta-q \eta q-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2} \geqslant 2^{-18}
$$

Assume that $\left\|\eta-q \eta q-\Sigma_{i \in I} q_{i} \eta q_{i}\right\|^{2}<2^{-18}$. Then by the definition of \mathscr{F},

$$
\|\xi-q \xi q\|^{2}+\|\eta-q \eta q\|^{2}<2^{14} \cdot 2^{-18}=\frac{1}{16}
$$

Put $\xi^{\prime}=q \xi q$ and $\eta^{\prime}=q \eta q$. Then

$$
\left\|\xi-\xi^{\prime}\right\| \leqslant \frac{1}{4} \quad \text { and } \quad\left\|\eta-\eta^{\prime}\right\| \leqslant \frac{1}{4} .
$$

In particular $q \neq 0,\left\|\xi^{\prime}\right\| \geqslant \frac{3}{4}$ and $\left\|\eta^{\prime}\right\| \geqslant \frac{3}{4}$. Moreover,

$$
\begin{aligned}
\left(\xi^{\prime}, \eta^{\prime}\right)=(q \xi q, q \eta q) & =(q \xi q, \eta) \\
& =(\xi, \eta)-(\xi-q \xi q, \eta)
\end{aligned}
$$

Thus

$$
\left|\left(\xi^{\prime}, \eta^{\prime}\right)\right| \leqslant 0+\left\|\xi-\xi^{\prime}\right\|\|\eta\| \leqslant \frac{1}{4} .
$$

Let θ be the angle between ξ^{\prime} and η^{\prime}. Since

$$
|\cos \theta|=\frac{\left|\left(\xi^{\prime}, \eta^{\prime}\right)\right|}{\left\|\xi^{\prime}\right\|\left\|\eta^{\prime}\right\|} \leqslant \frac{1}{4}\left(\frac{4}{3}\right)^{2}<\frac{1}{2}
$$

we have $\sin ^{2} \theta>\frac{3}{4}$.
Let J_{q} denote the restriction of J to $q \mathscr{H q}$.
By [15, Lemma 2.6], ($q M q, q \mathscr{H} q, J_{q}, q P^{\natural} q$) is a standard form of the reduced algebra. It is clear that $\xi^{\prime} \in q P^{\natural} q$ and $\eta^{\prime} \in(q \mathscr{H} q)_{\text {s.a. }}$

Since ξ is cyclic and separating for M, the face in P^{\natural} generated by ξ is dense in P^{\natural}. Hence the face in $q P^{\natural} q$ generated by $\xi^{\prime}=q \xi q$ is dense in $q P^{\natural} q$, which by [6, Lemma 4.3] implies that ξ^{\prime} is cyclic and separating for $q M q$. Since M is of type III and $q \neq 0, q M q$ is isomorphic to M. Therefore we can apply Lemma 2.14 to $q M q$ and the vectors

$$
\xi^{\prime \prime}=\xi^{\prime}\left\|\xi^{\prime}\right\| \quad \text { and } \quad \eta^{\prime \prime}=\eta^{\prime}\| \| \eta^{\prime} \|
$$

Hence, there exists a projection $r \in M, r \leqslant q, r \neq 0$, such that

$$
\begin{aligned}
\left\|r \xi^{\prime \prime}\right\|^{2}+\left\|r \eta^{\prime \prime}\right\|^{2} & \leqslant \frac{2^{10}}{\sin ^{2} \theta}\left\|r \eta^{\prime \prime}-\eta^{\prime \prime} r\right\|^{2} \\
& \leqslant \frac{4}{3} 2^{10}\left\|r \eta^{\prime \prime}-\eta^{\prime \prime} r\right\|^{2}
\end{aligned}
$$

and

$$
\left\|r \xi^{\prime \prime}-\xi^{\prime \prime} r\right\|^{2} \leqslant \frac{\delta}{2}\left\|r \eta^{\prime \prime}-\eta^{\prime \prime} r\right\|^{2}
$$

Hence, using $\frac{3}{4} \leqslant\left\|\xi^{\prime}\right\| \leqslant 1$ and $\frac{3}{4} \leqslant\left\|\eta^{\prime}\right\| \leqslant 1$, we get

$$
\begin{aligned}
\left\|r \xi^{\prime}\right\|^{2}+\left\|r \eta^{\prime}\right\|^{2} & \leqslant\left(\frac{4}{3}\right)^{3} 2^{10}\left\|r \eta^{\prime \prime}-\eta^{\prime \prime} r\right\|^{2} \\
& \leqslant 2^{13}\left\|r \eta^{\prime}-\eta^{\prime} r\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|r \xi^{\prime}-\xi^{\prime} r\right\|^{2} & \leqslant\left(\frac{4}{3}\right)^{2} \frac{\delta}{2}\left\|r \eta^{\prime}-\eta^{\prime} r\right\|^{2} \\
& \leqslant \delta\left\|r \eta^{\prime}-\eta^{\prime} r\right\|^{2}
\end{aligned}
$$

We will show next that $\left\{q_{i}\right\}_{i \in I} \cup\{r\}$ is contained in \mathscr{F}, i.e. we will check that

$$
\begin{equation*}
\|\xi-(q-r) \xi(q-r)\|^{2}+\|\eta-(q-r) \eta(q-r)\|^{2} \leqslant 2^{14}\left\|\eta-(q-r) \eta(q-r)-r \eta r-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2} \tag{*}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left\|\xi-(q-r) \xi(q-r)-r \xi r-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2} \leqslant \delta\left\|\eta-(q-r) \eta(q-r)-r \eta r-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2} \tag{}
\end{equation*}
$$

To prove (**), observe that

$$
\left.1-(q-r) J(q-r) J-r J r J-\sum_{i \in I} q_{i} J q_{i} J=\left(1-q J q J-\sum_{i \in I} q_{i} J q_{i} J\right)+r J(q-r) J+(q-r) J r J\right)
$$

where the right side of the equality is the sum of three orthogonal projections. Therefore

$$
\left\|\xi-(q-r) \xi(q-r)-r \xi r-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2}=\left\|\xi-q \xi q-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2}+\|r \xi(q-r)\|^{2}+\|(q-r) \xi r\|^{2}
$$

Since

$$
r \xi^{\prime}-\xi^{\prime} r=r \xi q-q \xi r=r \xi(q-r)-(q-r) \xi r
$$

and since

$$
r J(q-r) J \perp(q-r) J r J
$$

we have

$$
\left\|r \xi^{\prime}-\xi^{\prime} r\right\|^{2}=\|r \xi(q-r)\|^{2}+\|(q-r) \xi r\|^{2} .
$$

Thus

$$
\left\|\xi-(q-r) \xi(q-r)-r \xi r-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2}=\left\|\xi-q \xi q-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2}+\left\|r \xi^{\prime}-\xi^{\prime} r\right\|^{2}
$$

Similarly,

$$
\left\|\eta-(q-r) \eta(q-r)-r \eta r-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2}=\left\|\eta-q \eta q-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2}+\left\|r \eta^{\prime}-\eta^{\prime} r\right\|^{2}
$$

Since $\left\{q_{j}\right\}_{j \in J} \in \mathscr{F}$ and since $\left\|r \xi^{\prime}-\xi^{\prime} r\right\|^{2} \leqslant \delta\left\|r \eta^{\prime}-\eta^{\prime} r\right\|^{2}$ we have proved (**). To prove (*), we use that

$$
1-(q-r) J(q-r) J=(1-q J q J)+q J r J+r J(q-r) J
$$

where the right side is a sum of three orthogonal projections. Hence

$$
\begin{aligned}
\|\xi-(q-r) \xi(q-r)\|^{2} & =\|\xi-q \xi q\|^{2}+\|q \xi r\|^{2}+\|r \xi(q-r)\|^{2} \\
& \leqslant\|\xi-q \xi q\|^{2}+\|q \xi r\|^{2}+\|r \xi q\|^{2}
\end{aligned}
$$

Since $J \xi=\xi$ we have $\|q \xi r\|^{2}=\|J(r \xi q)\|^{2}=\|r \xi q\|^{2}$.
Moreover, $r \xi q=r \xi^{\prime}$. Therefore

$$
\|\xi-(q-r) \xi(q-r)\|^{2} \leqslant\|\xi-q \xi q\|^{2}+2\left\|r \xi^{\prime}\right\|^{2}
$$

Similarly

$$
\|\eta-(q-r) \eta(q-r)\|^{2} \leqslant\|\eta-q \eta q\|^{2}+2\left\|r \eta^{\prime}\right\|^{2}
$$

Since $\left\{q_{i}\right\}_{i \in I}$ is in \mathscr{F}

$$
\|\xi-q \xi q\|^{2}+\|\eta-q \eta q\|^{2} \leqslant 2^{14}\left\|\eta-q \eta q-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2}
$$

Moreover we have proved that

$$
\left\|r \xi^{\prime}\right\|^{2}+\left\|r \eta^{\prime}\right\|^{2} \leqslant 2^{13}\left\|\eta^{\prime}-\eta^{\prime} r\right\|^{2}
$$

Hence

$$
\begin{aligned}
\|\xi-(q-r) \xi(q-r)\|^{2}+\|\eta-(q-r) \eta(q-r)\|^{2} & \leqslant 2^{14}\left(\left\|\eta-q \eta q-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2}+\left\|r \eta^{\prime}-\eta^{\prime} r\right\|^{2}\right) \\
& =2^{14}\left\|\eta-(q-r) \eta(q-r)-r \eta r-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2}
\end{aligned}
$$

This proves $\left(^{*}\right)$. Hence we have proved that $\left\{q_{i}\right\}_{i \in I} \cup\{r\}$ is contained in \mathscr{F}, which contradicts the maximality of $\left\{q_{i}\right\}_{i \in I}$. Therefore

$$
\left\|\eta-q \eta q-\sum_{i \in I} q_{i} \eta q_{i}\right\|^{2} \geqslant 2^{-18}
$$

while

$$
\left\|\xi-q \xi q-\sum_{i \in I} q_{i} \xi q_{i}\right\|^{2} \leqslant \delta .
$$

Since $\left\{q_{i}\right\}_{i \in I} \cup\{q\}$ is a set of pairwise orthogonal projections with sum 1 we have proved Lemma 2.15.

Lemma 2.16. Assume that M satisfies (1) in Theorem 2.3. Let $\xi \in P^{\natural}$ be a cyclic and separating unit vector, and let $\eta \in \mathscr{H}$ be a vector orthogonal to ξ. For every $\delta>0$, there exists a projection $p \in M$, such that

$$
\begin{aligned}
& \|p \xi-\xi p\|^{2} \leqslant \delta \\
& \|p \eta-\eta p\|^{2} \geqslant 2^{-21}\|\eta\|^{2}
\end{aligned}
$$

Proof. Assume first that $\eta \in \mathscr{H}_{\text {s.a. }}$. By Lemma 2.15 there exists a set of pairwise orthogonal non-zero projections $\left\{e_{i}\right\}_{i \in I}$ with sum 1 , such that

$$
\left\|\xi-\sum_{i \in I} e_{i} \xi e_{i}\right\|^{2} \leqslant \delta
$$

and

$$
\left\|\eta-\sum_{i \in I} e_{i} \eta e_{i}\right\|^{2} \geqslant 2^{-18}\|\eta\|^{2}
$$

Since M is σ-finite, the index set I is countable. Let G be the compact abelian group

$$
G=\{-1,1\}^{I}
$$

For $g \in G, g=\left(g_{i}\right)_{i \in I}$ we put

$$
u_{g}=\sum_{i \in I} g_{i} e_{i}
$$

Clearly u_{g} is a selfadjoint unitary operator for all g. Moreover

$$
g \rightarrow u_{g}
$$

is a strongly continuous representation of G on \mathscr{H}. Therefore

$$
g \rightarrow u_{g} J u_{g} J
$$

is also a strongly continuous unitary representation of G. Let $d g$ be the normalized Haar measure on G. Then

$$
\int_{G} u_{g}\left(J u_{g} J\right) d g=\sum_{i, j} \int_{G} g_{i} g_{j}\left(e_{i} J e_{j} J\right) d g
$$

Since $d g=\Pi_{i \in I} d g_{i}$, where $d g_{i}$ has mass $\frac{1}{2}$ at both 1 and -1 , it is clear that

$$
\int_{G} g_{i} g_{j} d g= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Hence

$$
\int_{G} u_{g}\left(J u_{g} J\right) d g=\sum_{i} e_{i} J e_{i} J
$$

Therefore,

$$
\int_{G}\left(\eta-u_{g} \eta u_{g}\right) d g=\eta-\sum_{i \in I} e_{i} \eta e_{i}
$$

In particular

$$
\begin{gathered}
\int_{G}\left\|\eta-u_{g} \eta u_{g}\right\| d g \geqslant\left\|\eta-\sum_{i \in I} e_{i} \eta e_{i}\right\| \\
\geqslant 2^{-9}\|\eta\|
\end{gathered}
$$

so for at least one $g \in G$,

$$
\left\|\eta-u_{g} \eta u_{g}\right\| \geqslant 2^{-9}\|\eta\| .
$$

Equivalently

$$
\left\|u_{g} \eta-\eta u_{g}\right\|^{2} \geqslant 2^{-18}\|\eta\|^{2}
$$

Put $\xi^{\prime}=\Sigma_{i \in I} e_{i} \xi e_{i}$. Then $u_{h} \xi^{\prime}=\xi^{\prime} u_{h}$ for all $h \in G$. Therefore

$$
\begin{aligned}
\left\|u_{g} \xi-\xi u_{g}\right\| & \leqslant 2\left\|\xi-\xi^{\prime}\right\| \\
& \leqslant 2 \delta^{1 / 2}
\end{aligned}
$$

Let now p be the projection $p=\frac{1}{2}\left(1+u_{g}\right)$.
Then clearly

$$
\|p \xi-\xi p\|^{2} \leqslant \delta \text { and }\|p \eta-\eta p\|^{2} \geqslant 2^{-20}\|\eta\|^{2}
$$

Let finally $\eta \in \mathscr{H}$ be a general vector orthogonal to ξ. Put

$$
\eta_{1}=\frac{1}{2}(\eta+J \eta), \quad \eta_{2}=\frac{1}{2 i}(\eta-J \eta) .
$$

Then $\eta_{1}, \eta_{2} \in \mathscr{H}_{\text {s.a. }}, \eta_{i} \perp \xi, i=1,2, \eta=\eta_{1}+i \eta_{2}$ and $\|\eta\|^{2}=\left\|\eta_{1}\right\|^{2}+\left\|\eta_{2}\right\|^{2}$. Therefore we can choose $j \in\{1,2\}$ such that $\left\|\eta_{j}\right\|^{2} \geq \frac{1}{2}\|\eta\|^{2}$. By the above arguments, there exists a projection $p \in M$, such that

$$
\|p \xi-\xi p\|^{2} \leqslant \delta \quad \text { and } \quad\left\|p \eta_{j}-\eta_{j} p\right\|^{2} \geqslant 2^{-20}\left\|\eta_{j}\right\|^{2}
$$

Clearly

$$
p \eta-\eta p=\left(p \eta_{1}-\eta_{1} p\right)+i\left(p \eta_{2}-\eta_{2} p\right) .
$$

Moreover, one checks easily that

$$
\begin{gathered}
p \eta_{1}-\eta_{1} p \in i \mathscr{H}_{\text {s.a. }} \\
i\left(p \eta_{2}-\eta_{2} p\right) \in \mathscr{H}_{\text {s.a. }} .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\|p \eta-\eta p\|^{2} & =\left\|p \eta_{1}-\eta_{1} p\right\|^{2}+\left\|p \eta_{2}-\eta_{2} p\right\|^{2} \\
& \geqslant 2^{-20}\left\|\eta_{j}\right\|^{2} \\
& \geqslant 2^{-21}\|\eta\|^{2} .
\end{aligned}
$$

This proves Lemma 2.16.
End of proof of Theorem 2.3. Assume that M satisfies (1) in Theorem 2.3, and let φ be a normal faithful state on M. We shall show that $B_{\varphi}=C 1$. Let $a \in B_{\varphi}$, and put $a^{\prime}=a-\varphi(a) 1$.

Let $\xi_{\varphi} \in P^{\natural}$ be the unique vector in P^{\natural} that implements φ. Then ξ_{φ} is a cyclic and separating unit vector. The vector $\eta=a^{\prime} \xi_{\varphi}$ is orthogonal to ξ_{φ}, because $\varphi\left(a^{\prime}\right)=0$. Thus by Lemma 2.16 we can choose a sequence $\left(p_{n}\right)_{n \in \mathrm{~N}}$ of projections in M, such that for all $n \in \mathbf{N}$,

$$
\left\|p_{n} \xi_{\varphi}-\xi_{\varphi} p_{n}\right\| \leqslant \frac{1}{n} \text { and }\left\|p_{n} \eta-\eta p_{n}\right\| \geqslant 2^{-11}\|\eta\| .
$$

By Lemma 2.8 (b) the first inequality implies that $\lim _{n \rightarrow \infty}\left\|p_{n} \varphi-\varphi p_{n}\right\|=0$ and since $a \in B_{\varphi}$, it now follows that

$$
\lim _{n \rightarrow \infty}\left\|p_{n} a-a p_{n}\right\|_{\varphi}=0 .
$$

On the other hand

$$
\begin{aligned}
\left\|p_{n} a-a p_{n}\right\|_{\varphi} & =\left\|\left(p_{n} a^{\prime}-a^{\prime} p_{n}\right) \xi_{\varphi}\right\| \\
& \geqslant\left\|p_{n} a^{\prime} \xi_{\varphi}-a^{\prime} \xi_{\varphi} p_{n}\right\|-\left\|a^{\prime} \xi_{\varphi} p_{n}-a^{\prime} p_{n} \xi_{\varphi}\right\| \\
& \geqslant\left\|p_{n} \eta-\eta p_{n}\right\|-\left\|a^{\prime}\right\|\left\|p_{n} \xi_{\varphi}-\xi_{q} p_{n}\right\| .
\end{aligned}
$$

Thus

$$
\underset{n \rightarrow \infty}{\liminf }\left\|p_{n} a-a p_{n}\right\|_{\varphi} \geqslant\left\|p_{n} \eta-\eta p_{n}\right\| \geqslant 2^{-11}\|\eta\| .
$$

Therefore $\eta=0$, which implies that $a^{\prime}=0$. This proves that $\boldsymbol{B}_{\varphi}=\mathbf{C} 1$.

3. Characterization of $\mathbf{I I I}_{1}$-factors for which $\boldsymbol{B}_{\boldsymbol{\varphi}}=\mathbf{C} \mathbf{1}$

In this section we will prove the following extension of Theorem 2.3:
Тнеогем 3.1. Let M be a factor of type III_{1} with separable predual. Then the following three conditions are equivalent:
(1) For every (faithful) dominant weight ψ on M and every $x \in M$

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathbf{C} 1 \neq \varnothing
$$

(σ-weak closure).
(2) For every normal faithful state φ on $M, B_{\varphi}=\mathrm{C} 1$.
(3) The set of normal faithful states on M for which $M_{\varphi}^{\prime} \cap M=\mathbf{C} 1$ is norm dense in the set of all normal states on M.

It is very likely that all III_{1}-factors on a separable Hilbert space satisfy the above conditions (see Remark 3.9). The implication (1) \Rightarrow (2) was proved in Section 2. It remains to be proved that $(2) \Rightarrow(3)$ and $(3) \Rightarrow(1)$. The first three lemmas of this section is used to come from $B_{\varphi}=\mathbf{C} 1$ back to the situation we had in Lemma 2.16. The rest of the proof of (2) $\Rightarrow(3)$ is inspired by Popa's techniques from [19].

Throughout this section M is a factor of type III_{1} with separable predual and with standard form $\left(M, \mathscr{H}, J, P^{\natural}\right)$. As usual we define right multiplication of M on \mathscr{H} by

$$
\eta a=J a^{*} J \eta, \quad a \in M, \eta \in \mathscr{H} .
$$

Lemma 3.2. Assume that $B_{\varphi}=\mathbf{C 1}$ for all n.f. states on M. Let $\xi \in P^{\natural}$ be a cyclic and separating unit vector and let $\eta \in \mathscr{H}$ be orthogonal to ξ. For every $\delta>0$, there exists a unitary operator $u \in M$, such that

$$
\|u \xi-\xi u\|^{2} \leqslant \delta \quad \text { and } \quad\|u \eta-\eta u\|^{2} \geqslant \frac{1}{2}\|\eta\|^{2}
$$

Proof. Let φ be the vector state on M given by ξ. By Lemma 2.8

$$
\begin{equation*}
\|u \xi-\xi u\|^{2} \leqslant\|u \varphi-\varphi u\|, \quad u \in U(M) \tag{*}
\end{equation*}
$$

It is sufficient to consider the case $\eta \neq 0$. Assume first that η can be written in the form $\eta=a \xi$ for some $a \in M$. Since $n \perp \xi$ we have $\varphi(a)=0$. Let $\delta>0$ and put

$$
\delta_{1}=\min \left\{\delta,(\|\eta\| / 8\|a\|)^{2}\right\}
$$

By Proposition $1.3(2),(a) \Rightarrow(b)$, there exists $\lambda \in C$, such that

$$
a-\lambda I \in \overline{\operatorname{conv}}\left\{a-u^{*} a u \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta_{1}\right\}
$$

Since the norm $\left\|\|_{\varphi}\right.$ is σ-weakly lower semi-continuous, we get

$$
\|a-\lambda I\|_{\varphi} \leqslant \sup \left\{\left\|a-u^{*} a u\right\|_{\varphi} \mid u \in U(M),\|u \varphi-\varphi u\| \leqslant \delta_{1}\right\}
$$

and since $\varphi(a)=0,\|a-\lambda I\|_{\varphi}^{2}=\|a\|_{\varphi}^{2}+|\lambda|^{2} \geqslant\|a\|_{\varphi}^{2}$.
Hence we can choose a unitary operator $u \in M$, such that $\|u \varphi-\varphi u\| \leqslant \delta_{1}$ and

$$
\left\|a-u^{*} a u\right\|_{\varphi} \geqslant \frac{7}{8}\|a\|_{\varphi}
$$

or equivalently

$$
\|u a-a u\|_{\varphi} \geqslant \frac{7}{8}\|a\|_{\varphi}
$$

Thus

$$
\begin{aligned}
\|u \eta-\eta u\| & =\|u a \xi-a \xi u\| \\
& \geqslant\|(u a-a u) \xi\|-\|a\|\|u \xi-\xi u\| \\
& \geqslant \frac{2}{\delta}\|a\|_{\varphi}-\|a\|\|u \xi-\xi u\| .
\end{aligned}
$$

By the inequality $\left(^{*}\right)$ we get

$$
\left\|u \xi_{\varphi}-\xi_{\varphi} u\right\| \leqslant \delta_{1}^{1 / 2}
$$

Since $\|a\|_{\varphi}=\|\eta\|$ it follows that

$$
\begin{aligned}
\|u \eta-\eta u\| & \geqslant \frac{7}{8}\|\eta\|-\delta_{1}^{1 / 2}\|a\| \\
& \geqslant \frac{\delta}{8}\|\eta\| .
\end{aligned}
$$

Hence

$$
\left\|u \xi_{\varphi}-\xi_{\varphi} u\right\|^{2} \leqslant \delta
$$

and

$$
\|u \eta-\eta u\|^{2} \geqslant\left(\frac{3}{4}\right)^{2}\|\eta\|^{2}>\frac{1}{2}\|\eta\|^{2}
$$

Finally, let $\eta \in \mathscr{H}$ be an arbitrary vector orthogonal to ξ. For every $\varepsilon>0$, there exists $\eta^{\prime} \in M \xi$, such that $\left\|\eta-\eta^{\prime}\right\|<\varepsilon$. Moreover, η^{\prime} can be chosen orthogonal to ξ, because the projection of η^{\prime} onto the orthogonal complement of $\mathbf{C} \xi$ also belongs to $M \xi$. It is clear that the distance between the two numbers,

$$
\sup \left\{\|u \eta-\eta u\|\|u \in U(M),\| u \xi-\xi u \|^{2} \leqslant \delta\right\}
$$

and

$$
\sup \left\{\left\|u \eta^{\prime}-\eta^{\prime} u\right\| \mid u \in U(M),\|u \xi-\xi u\|^{2} \leqslant \delta\right\}
$$

is at most 2ε. Hence, by letting $\varepsilon \rightarrow 0$, we get by the first part of the proof that

$$
\sup \left\{\|u \eta-\eta u\| \mid u \in U(M),\|u \xi-\xi u\|^{2} \leqslant \delta\right\} \geqslant \frac{3}{4}\|\eta\|
$$

Since $\left(\frac{3}{4}\right)^{2}>\frac{1}{2}$ we have proved Lemma 3.2.

Lemma 3.3 Let $u \in M$ be a unitary operator, and let for $0<\theta \leqslant 2 \pi$, p_{θ} denote the spectral projection of u corresponding to the semi circle $\left\{e^{i t} \mid \theta \leqslant t<\theta+\pi\right\}$. For every $\zeta \in \mathscr{H}$
(i) $\int_{0}^{2 \pi}\left\|p_{\theta} \zeta-\zeta p_{\theta}\right\|^{2} d \theta \leqslant \pi\|\zeta\|\|u \zeta-\zeta u\|$
and
(ii) $\int_{0}^{2 \pi}\left\|p_{\theta} \zeta-\zeta p_{\theta}\right\|^{2} d \theta \geqslant\|u \zeta-\zeta u\|^{2}$.

Proof. Let \mathbf{T} be the unit circle in C. Arguing as in the proof of Lemma 2.11, one can find a positive measure μ on \mathbf{T}^{2} such that

$$
\|f(u) \xi-\xi g(v)\|^{2}=\iint_{\mathrm{T}^{2}}|f(s)-g(t)|^{2} d \mu(s, t)
$$

for all bounded Borel functions f, g on T. (See also [11, proof of Lemma 3.3].) Define a function h on $T \times T \times 10,2 \pi$] by

$$
h(s, t, \theta)= \begin{cases}1 & \text { if } \theta \leqslant \arg s<\theta+\pi \text { and } \theta-\pi \leqslant \arg t<\theta \tag{*}\\ 1 & \text { if } \theta-\pi \leqslant \arg s<\theta \text { and } \theta \leqslant \arg t<\theta+\pi \\ 0 & \text { otherwise }\end{cases}
$$

Then it follows that for all $0<\theta \leqslant 2 \pi$

$$
\left\|p_{\theta} \zeta-\zeta p_{\theta}\right\|^{2}=\iint_{\mathrm{T}^{2}} h(s, t, \theta) d \mu(s, t)
$$

Hence, by Fubini's theorem

$$
\int_{0}^{2 \pi}\left\|p_{\theta} \zeta-\zeta p_{\theta}\right\|^{2} d \theta=\iint_{\mathrm{T}^{2}}\left(\int_{0}^{2 \pi} h(s, t, \theta) d \theta\right) d \mu(s, t)
$$

Let $\beta \in[0, \pi]$. Then

$$
h\left(1, e^{i \beta}, \theta\right)= \begin{cases}1 & \theta \in] 0, \beta] \cup] \pi, \beta+\pi] \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, for $\beta \in[-\pi, 0]$,

$$
h\left(1, e^{i \beta}, \theta\right)= \begin{cases}1 & \theta \in] \pi+\beta, \pi] \cup] 2 \pi+\beta, 2 \pi] \\ 0 & \text { otherwise }\end{cases}
$$

Hence,

$$
\int_{0}^{2 \pi} h\left(1, e^{i \beta}, \theta\right) d \theta=2|\beta| \text { for }-\pi \leqslant \beta \leqslant \pi
$$

Assume now that $h(s, t, \theta)$ is extended to a function on $\mathbf{T} \times \mathbf{T} \times \mathbf{R}$ periodic in θ with period 2π. Then, for $\alpha, \beta \in \mathbf{R}$

$$
h\left(e^{i \alpha}, e^{i \beta}, \theta\right)=h\left(1, e^{i(\beta-\alpha)}, \theta-\alpha\right)
$$

Therefore, if $|\alpha-\beta| \leqslant \pi$, we get

9-878288 Acta Mathematica 158. Imprimé le 10 avril 1987

$$
\begin{aligned}
\int_{0}^{2 \pi} h\left(e^{i \alpha}, e^{i \beta}, \theta\right) d \theta & =\int_{0}^{2 \pi} h\left(1, e^{i(\beta-\alpha)}, \theta\right) d \theta \\
& =2|\alpha-\beta| .
\end{aligned}
$$

It is elementary to check that for $|\alpha-\beta| \leqslant \pi$ one has

$$
\frac{2}{\pi}|\alpha-\beta| \leqslant\left|e^{i \alpha}-e^{i \beta}\right| \leqslant|\alpha-\beta| .
$$

Since, for every pair $(s, t) \in \mathbf{T}^{2}$, one can choose $\alpha, \beta \in \mathbf{R}$, such that $e^{i \alpha}=s, e^{i \beta}=t$ and $|\alpha-\beta| \leqslant \pi$, it follows that

$$
2|s-t| \leqslant \int_{0}^{2 \pi} h(s, t, \theta) d \theta \leqslant \pi|s-t|
$$

for all $(s, t) \in \mathbf{T}^{2}$. Hence,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left\|p_{\theta} \zeta-\zeta p_{\theta}\right\|^{2} d \theta & \leqslant \pi \int_{\mathrm{T}^{2}}|s-t| d \mu(s, t) \\
& \leqslant \pi\left(\int_{\mathbf{T}^{2}}|s-t|^{2} d \mu(s, t)\right)^{1 / 2}\left(\int_{\mathrm{T}^{2}} d \mu\right)^{1 / 2} \\
& =\pi\|u \zeta-\zeta u\|\|\xi\|,
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{2 \pi}\left\|p_{\theta} \zeta-\zeta p_{\theta}\right\|^{2} d \theta & \geqslant 2 \int_{\mathbf{T}^{2}}|s-t| d \mu(s, t) \\
& \geqslant \int_{\mathbf{T}^{2}}|s-t|^{2} d \mu(s, t) \\
& =\|u \zeta-\zeta u\|^{2}
\end{aligned}
$$

This completes the proof of Lemma 3.3
Lemma 3.4. Assume that M satisifes (2) in Theorem 3.1. Let $\xi \in P^{\natural}$ be a cyclic and separating unit vector and let $\eta \in \mathscr{H}, \eta \perp \xi$. Then, for every $\delta>0$, there exists a projection $p \in M$ such that

$$
\begin{gathered}
\|p \xi-\xi p\|^{2} \leqslant \delta \\
\|p \eta-\eta p\|^{2} \geqslant \frac{1}{32}\|\eta\|^{2} .
\end{gathered}
$$

Proof. We can assume that $\|\eta\|=1$. By Lemma 3.2 there exists $u \in U(M)$, such that

$$
\|u \xi-\xi u\|^{2} \leqslant(\delta / 16)^{2}
$$

and

$$
\|u \eta-\eta u\|^{2} \geqslant \frac{1}{2} .
$$

Let $p_{\theta}, 0<\theta \leqslant 2 \pi$ be as in Lemma 3.3. Then

$$
\int_{0}^{2 \pi}\left\|p_{\theta} \xi-\xi p_{\theta}\right\|^{2} d \theta \leqslant \delta / 16
$$

and

$$
\int_{0}^{2 \pi}\left\|p_{\theta} \eta-\eta p_{\theta}\right\|^{2} d \theta \geqslant \frac{1}{2} .
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{2 \pi}\left(\frac{1}{2 \pi}+\frac{16}{\delta}\left\|p_{\theta} \xi-\xi p_{\theta}\right\|^{2}\right) d \theta & \leqslant 2 \\
& \leqslant 4 \int_{0}^{2 \pi}\left\|p_{\theta} \eta-\eta p_{\theta}\right\|^{2} d \theta
\end{aligned}
$$

Hence, for some $\theta \in] 0,2 \pi]$ we must have

$$
\frac{1}{2 \pi}+\frac{16}{\delta}\left\|p_{\theta} \xi-\xi p_{\theta}\right\|^{2} \leqslant 4\left\|p_{\theta} \eta-\eta p_{\theta}\right\|^{2}
$$

In particular, for this θ,

$$
\begin{aligned}
\left\|p_{\theta} \xi-\xi p_{\theta}\right\|^{2} & \leqslant \frac{\delta}{4}\left\|p_{\theta} \eta-\eta p_{\theta}\right\|^{2} \\
& \leqslant \frac{\delta}{4}\left(\left\|p_{\theta} \eta\right\|+\left\|\eta p_{\theta}\right\|\right)^{2} \\
& \leqslant \delta
\end{aligned}
$$

and

$$
\left\|p_{\theta} \eta-\eta p_{\theta}\right\|^{2} \geqslant \frac{1}{8 \pi}>-\frac{1}{32} .
$$

This completes the proof.

For any von Neumann subalgebra N of M we put

$$
\mathscr{H}_{N}=\{\eta \in \mathscr{H} \mid a \eta=\eta a, a \in N\},
$$

and we let Q_{N} be the projection of \mathscr{H} onto \mathscr{H}_{N}. It is clear that \mathscr{H}_{N} is invariant under J. We let J_{N} denote the restriction of J to \mathscr{H}_{N}.

Lemma 3.5. Let N be a finite dimensional subfactor of M. Then
(a) \mathscr{H}_{N} is invariant under $N^{\prime} \cap M$, and

$$
\left(N^{\prime} \cap M, \mathscr{H}_{N}, J_{N}, P^{\natural} \cap \mathscr{H}_{N}\right)
$$

is a standard form for $N^{\prime} \cap M$.
(b) If $\xi \in P^{\natural}$ then $Q_{N}(\xi) \in P^{\natural} \cap \mathscr{H}_{N}$. If, moreover, ξ is cyclic and separating for M, then $Q_{N}(\xi)$ is cyclic and separating for $N^{\prime} \cap M$ on \mathscr{H}_{N}.

Proof. (a) It is clear that \mathscr{H}_{N} is $N^{\prime} \cap M$-invariant. Let $\left(e_{i j} j_{i, j=1}^{n}\right.$ be a set of matrix units for N, and put $e=e_{11}$. By [15, Lemma 2.6]

$$
\left(e M e, e \mathscr{H e}, J_{e}, e P^{\natural} e\right)
$$

is a standard form for $e N e .\left(J_{e}\right.$ is the restriction of J to $e \mathscr{H} e$.) We will establish an explicit isomorphism between this quadruple and ($\left.N^{\prime} \cap M, \mathscr{H}_{N}, J_{N}, P^{\natural} \cap \mathscr{H}_{N}\right)$.

Since N is a finite factor, M can be identified with $\left(N^{\prime} \cap M\right) \otimes N$. From this it follows that the map

$$
x \rightarrow x e, \quad x \in N^{\prime} \cap M
$$

is a *-isomorphism of $N^{\prime} \cap M$ onto $e M e$.
It is easy to check that the orthogonal projection Q_{N} of \mathscr{H} into \mathscr{H}_{N} is given by

$$
Q_{N}=\frac{1}{n} \sum_{i, j=1}^{n} e_{i j} J e_{i j} J
$$

Put

$$
w=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i 1} J e_{i 1} J
$$

Then $w^{*} w=e J e J$ and $w w^{*}=Q_{N}$. Thus w is an isometry of $e \mathscr{H e}$ onto \mathscr{H}_{N}. Since w commutes with every $x \in N^{\prime} \cap M$, we have for $x \in N^{\prime} \cap M$ and $\xi \in e \mathscr{H e}$,

$$
w^{*} x w \xi=x w^{*} w \xi=x \xi=(x e) \xi
$$

Hence w implements a spatial isomorphism of ($e M e, e \mathscr{H}$) onto ($N^{\prime} \cap M, \mathscr{H}_{N}$). Since $a J a J\left(P^{\natural}\right) \cong P^{\natural}$ for all $a \in M$,

$$
w\left(e P^{\natural} e\right) \cong w\left(P^{\natural}\right) \subseteq P^{\natural} \cap \mathscr{H}_{N}
$$

and

$$
w^{*}\left(P^{\natural} \cap \mathscr{H}_{N}\right) \cong w^{*}\left(P^{\natural}\right) \cong e P^{\natural} e .
$$

Since also $w J=J w$, one gets that w implements an isomorphism between (eNe, $e \mathscr{H e}, J e, e P^{\natural} e$) and ($N^{\prime} \cap M, \mathscr{H}_{N}, J_{N}, P^{\natural} \cap \mathscr{H}_{N}$). This proves (a).
(b) It is clear from the computations above that

$$
Q_{N}\left(P^{\natural}\right) \cong P^{\natural} \cap \mathscr{H}_{N} .
$$

Let $\xi \in P^{\natural}$ be cyclic and separating. Put

$$
\zeta=w^{*} \xi=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{1 i} \xi e_{1 i}^{*} .
$$

Then $\zeta \in e \mathscr{H} e$ and $w(\xi)=Q_{N}(\xi)$. By [6, Lemma 4.3], $e \xi e \in e P^{\natural} e$ is cyclic and separating for $e M e$ acting on $e \not \mathscr{}$. Since

$$
\xi \geqslant \frac{1}{\sqrt{n}} e \xi e
$$

in ordering on $e \mathscr{H e}$ given by the cone $e P^{\natural} e, \zeta$ is also cyclic and separating for $e M e$. Therefore $Q_{N}(\xi)=w \zeta$ is cyclic and separating for $N^{\prime} \cap M$ on \mathscr{H}_{N}.

Lemma 3.6. Assume that M satisfies (2) in Theorem 3.1, and let $\xi \in P^{\natural}$ be a cyclic and separating unit vector. Let $\eta \in \mathscr{H}, \eta \perp \xi$. For every $\delta>0$ there exists a finite dimensional subfactor N of M, such that

$$
\left\|\xi-Q_{\mathcal{N}}(\xi)\right\|^{2} \leqslant \delta
$$

and

$$
\left\|Q_{N}(\eta)\right\|^{2} \leqslant \frac{31}{32}\|\eta\|^{2}
$$

Proof. We may assume that $\delta<1$. By Lemma 3.4 there exists a projection $p \in M$, such that

$$
\|p \xi-\xi p\|^{2} \leqslant \delta^{2} / 36
$$

and

$$
\|p \eta-\eta p\|^{2} \geqslant \frac{1}{32}\|\eta\|^{2} .
$$

Clearly $p \neq 0$ and $(1-p) \neq 0$. Choose a rational number $\varrho \in] 0,1[$, such that

$$
\varrho-\delta / 6<\|p \xi\|^{2}<\varrho+\delta / 6 .
$$

Write $\varrho=k / d$, where $d \in \mathbf{N}$, and k is an integer, $0<k<d$. Put $\varphi=\omega_{\xi}$ on M and put $\varphi^{\prime}=p \varphi p+(1-p) \varphi(1-p)$. Let $u=2 p-1$. Then u is a selfadjoint unitary, and

$$
\varphi^{\prime}=\frac{1}{2}\left(\varphi+u \varphi u^{*}\right) .
$$

The state $u \varphi u^{*}$ is implemented by the vector $u \xi u^{*} \in P^{\natural}$. A simple computation shows that any two vector states ω_{η} and ω_{ξ}, one has $\left\|\omega_{\eta}-\omega_{\xi}\right\| \leqslant\|\eta-\xi\|\|\eta+\xi\|$. Hence

$$
\begin{aligned}
\left\|\varphi^{\prime}-\varphi\right\| & =\frac{1}{2}\left\|\varphi-u \varphi u^{*}\right\| \\
& \leqslant \frac{1}{2}\left\|\xi-u \xi u^{*}\right\|\left\|\xi+u \xi u^{*}\right\| \\
& \leqslant\|u \xi-\xi u\| \\
& =2\|p \xi-\xi p\| \\
& \leqslant \delta / 3 .
\end{aligned}
$$

Choose next a normal faithful state ψ on M, such that the centralizer M_{ψ} of ψ contains a subfactor F isomorphic to the $d \times d$-matrices M_{d}. This is possible because $M \cong M \otimes M_{d}$ and because the centralizer of $\varphi \otimes \operatorname{tr}$ contains $1 \otimes M_{d}$ (tr is here the normalized trace on M_{d}). Let $q \in F$ be a projection of dimension k (relative to F). Then $\psi(q)=k / d$. Since M is of type III, we have $p \sim q$ and $(1-p) \sim(1-q)$ as projections in M, so we can choose a unitary operator $v \in M$, such that $v q v^{*}=p$. Now, put

$$
\psi^{\prime}=v \psi v^{*} \quad \text { and } \quad F^{\prime}=v F v^{*} .
$$

Then ψ^{\prime} is a faithful normal state on M, and

$$
p \in F^{\prime} \cong M_{\psi^{\prime}} .
$$

Note that by the definition of φ^{\prime} also $p \in M_{\varphi^{\prime}}$. Moreover,

$$
\varphi^{\prime}(p)=\varphi(p)=\|p \xi\|^{2} .
$$

Put

$$
\begin{array}{ll}
\varphi_{1}^{\prime}=\frac{1}{\varphi^{\prime}(p)} p \varphi^{\prime}, & \varphi_{2}^{\prime}=\frac{1}{\varphi^{\prime}\left(p^{\perp}\right)} p^{\perp} \varphi^{\prime} \\
\psi_{1}^{\prime}=\frac{1}{\psi^{\prime}(p)} p \psi^{\prime}, & \psi_{2}^{\prime}=\frac{1}{\psi^{\prime}\left(p^{\perp}\right)} p^{\perp} \psi^{\prime}
\end{array}
$$

Then $\varphi_{1}^{\prime}, \psi_{1}^{\prime}$ are faithful states on $p M p$ and $\varphi_{2}^{\prime}, \psi_{2}^{\prime}$ are faithful states on $p^{\perp} M p^{\perp}$. Since $p M p \cong p^{\perp} M p^{\perp} \cong M$ and since M is of type III_{1}, we can by the Connes-Størmer transitivity theorem [12] find unitaries $w_{1} \in p M p$ and $w_{2} \in p^{\perp} M p^{\perp}$, such that

$$
\left\|\varphi_{i}^{\prime}-w_{i} \psi_{i}^{\prime} w_{i}^{*}\right\| \leqslant \delta / 3, \quad i=1,2
$$

Then $w=w_{1}+w_{2}$ is a unitary in M.
Since $\psi^{\prime}(p)=\psi(q)=k / d$ we have

$$
\psi^{\prime}=\frac{k}{d} \psi_{1}^{\prime}+\frac{d-k}{d} \psi_{2}^{\prime}
$$

Therefore

$$
\left\|\left(\frac{k}{d} \varphi_{1}^{\prime}+\frac{d-k}{d} \varphi_{2}^{\prime}\right)-w \psi^{\prime} w^{*}\right\| \leqslant \delta / 3
$$

Using

$$
\varphi^{\prime}=\varphi^{\prime}(p) \varphi_{1}^{\prime}+\varphi^{\prime}\left(p^{\perp}\right) \varphi_{2}^{\prime}
$$

and that

$$
\frac{k}{d}-\frac{\delta}{6} \leqslant \varphi^{\prime}(p) \leqslant \frac{k}{d}+\frac{\delta}{6}
$$

we have

$$
\frac{d-k}{d}-\frac{\delta}{6} \leqslant \varphi^{\prime}\left(p^{\perp}\right) \leqslant \frac{d-k}{d}+\frac{\delta}{6}
$$

Thus

$$
\left\|\varphi^{\prime}-\left(\frac{k}{d} \varphi_{1}^{\prime}+\frac{d-k}{d} \varphi_{2}^{\prime}\right)\right\| \leqslant \frac{\delta}{3}
$$

Since $\left\|\varphi-\varphi^{\prime}\right\| \leqslant \delta / 3$ we have altogether

$$
\left\|\varphi-w \psi^{\prime} w^{*}\right\| \leqslant \delta
$$

Put $\omega=w \psi^{\prime} w^{*}$. Then ω is a faithful state and M_{ω} contains the finite dimensional factor $N=w F^{\prime} w^{*}$. Moreover, $p \in N$ because $w p w^{*}=p$. Let ξ_{ω} be the unique vector in P^{\natural} that implements ω. Then, by Araki's generalization of the Powers-Størmer inequality [1, Theorem 4(8)],

$$
\left\|\xi-\xi_{\omega}\right\|^{2} \leqslant\|\varphi-\omega\| \leqslant \delta
$$

Since $u \omega u^{*}=\omega$ for all $u \in U(N)$, we have $u \xi_{\omega} u^{*}=\xi_{\omega}$ for all $u \in U(N)$. Hence,

$$
\xi_{\omega} \in \mathscr{H}_{N}=\{\zeta \in \mathscr{H} \mid a \zeta=\zeta a, a \in N\} .
$$

Therefore,

$$
\left\|\xi-Q_{N}(\xi)\right\|^{2}=\operatorname{dist}\left(\xi, \mathscr{H}_{N}\right)^{2} \leqslant\left\|\xi-\xi_{\omega}\right\|^{2} \leqslant \delta .
$$

Put

$$
\mathscr{K}=\{\eta \in \mathscr{H} \mid p \eta=\eta p\} .
$$

Then \mathscr{K} is a closed subspace of \mathscr{H}, and the orthogonal projection Q of \mathscr{H} onto \mathscr{K} is given by

$$
Q(\zeta)=p \zeta p+(1-p) \zeta(1-p)
$$

Since $p \zeta p,(1-p) \zeta(1-p), p \zeta(1-p),(1-p) \zeta p$ are orthogonal vectors in \mathscr{H} with sum ζ, we have for all $\zeta \in \mathscr{H}$,

$$
\begin{aligned}
\|\zeta\|^{2} & =\|Q(\zeta)\|^{2}+\|p \zeta(1-p)-(1-p) \zeta p\|^{2} \\
& =\|Q(\zeta)\|^{2}+\|p \zeta-\zeta p\|^{2}
\end{aligned}
$$

Using that $\mathscr{H}_{N} \subseteq \mathscr{K}$, and that $\|p \eta-\eta p\|^{2} \geqslant \frac{1}{32}\|\eta\|^{2}$, we get

$$
\begin{aligned}
\left\|Q_{N}(\eta)\right\|^{2} \leqslant\|Q(\eta)\|^{2} & =\|\eta\|^{2}-\|p \eta-\eta p\|^{2} \\
& \leqslant \frac{31}{32}\|\eta\|^{2}
\end{aligned}
$$

This completes the proof of Lemma 3.6.

Lemma 3.7. Assume that M satisfies (2) in Theorem 3.1. Let $\xi \in P^{\natural}$ be a cyclic and separating unit vector and let $\eta \in \mathscr{H}$. For every $\delta>0$ and $\varepsilon>0$ there exists a finite dimensional subfactor N of M such that

$$
\begin{gathered}
\left\|\xi-Q_{N}(\xi)\right\| \leqslant \delta \\
\operatorname{dist}\left(Q_{N}(\eta), \mathbf{C} Q_{N}(\xi)\right) \leqslant \varepsilon .
\end{gathered}
$$

Proof. We prove by induction that for every $r \in \mathbb{N}$ there exists a finite dimensional subfactor N_{r} of M, such that

$$
\begin{equation*}
\left\|\xi-Q_{N_{r}}(\xi)\right\| \leqslant\left(1-2^{-r}\right) \delta \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dist}\left(Q_{N_{r}}(\eta), \mathbf{C} Q_{N_{r}}(\xi)\right) \leqslant\left(\frac{31}{32}\right)^{r / 2} \operatorname{dist}(\eta, \mathbf{C} \xi) \tag{**}
\end{equation*}
$$

First, let $r=1$. Put $c=(\eta, \xi)$. Then

$$
\eta=c \xi+\eta^{\prime}
$$

where $\eta^{\prime} \perp \xi$, and $\operatorname{dist}(\eta, \mathbf{C} \xi)=\left\|\eta^{\prime}\right\|$.
By Lemma 3.6 there exists a finite dimensional subfactor N_{1} of M, such that

$$
\left\|\xi-Q_{N_{1}}(\xi)\right\| \leqslant \delta / 2
$$

and

$$
\left\|Q_{N_{1}}\left(\eta^{\prime}\right)\right\|^{2} \leqslant \frac{31}{32}\left\|\eta^{\prime}\right\|^{2}
$$

Hence,

$$
\begin{aligned}
\operatorname{dist}\left(Q_{N_{1}}(\eta), \mathrm{C} Q_{N}(\xi)\right) & =\operatorname{dist}\left(Q_{N}\left(\eta^{\prime}\right), \mathrm{C} Q_{N}(\xi)\right) \\
& \leqslant\left(\frac{31}{32}\right)^{1 / 2}\left\|\eta^{\prime}\right\| \\
& =\left(\frac{31}{32}\right)^{1 / 2} \operatorname{dist}(\eta, \mathbf{C} \xi)
\end{aligned}
$$

This proves $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ for $r=1$. Assume next that we have found N_{r} satisfying (${ }^{*}$) and ${ }^{(* *)}$. We proceed to construct N_{r+1}. Put

$$
\xi^{\prime}=Q_{N_{r}}(\xi) \quad \text { and } \quad \eta^{\prime}=Q_{N_{r}}(\eta)
$$

By Lemma 3.5,

$$
\left(N_{r}^{\prime} \cap M, \mathscr{H}_{N_{r}}, J_{N_{r}}, P^{\natural} \cap \mathscr{H}_{N_{r}}\right)
$$

is a standard form for $N_{r}^{\prime} \cap M$ and $N_{r}^{\prime} \cap M$ is isomorphic to M. Moreover, ξ^{\prime} is cyclic and separating for $N_{r}^{\prime} \cap M$ on $\mathscr{H}_{N_{r}}$. Using the above argument for $r=1$ to the two vectors $\xi^{\prime \prime}=\xi^{\prime} /\left\|\xi^{\prime}\right\|$ and η^{\prime} we can find a finite dimensional subfactor F of $N_{r}^{\prime} \cap M$, such that

$$
\left\|\xi^{\prime}-Q_{F}^{\prime}\left(\xi^{\prime}\right)\right\| \leqslant 2^{-r-1} \delta
$$

and

$$
\operatorname{dist}\left(Q_{F}^{\prime}\left(\eta^{\prime}\right), \mathbf{C} Q_{F}^{\prime}\left(\xi^{\prime}\right)\right) \leqslant\left(\frac{31}{32}\right)^{1 / 2} \operatorname{dist}\left(\eta^{\prime}, \mathbf{C} \xi^{\prime}\right)
$$

where Q_{F}^{\prime} is the projection of $\mathscr{H}_{N_{r}}$ onto

$$
\left\{\eta \in \mathscr{H}_{N_{r}} \mid a \eta=\eta a, a \in F\right\}
$$

Put $N_{r+1}=$ span $\left\{a b \mid a \in N_{r}, b \in F\right\}$. Since N_{r} and F are commuting finite dimensional factors, N_{r+1} is also a finite dimensional factor. Moreover,

$$
\begin{aligned}
\mathscr{H}_{N_{r+1}} & =\left\{\eta \in \mathscr{H} \mid a \eta=\eta a, a \in N_{r+1}\right\} \\
& =\left\{\eta \in \mathscr{H}_{N_{r}} \mid b \eta=\eta b, b \in F\right\} .
\end{aligned}
$$

Therefore $Q_{N_{r+1}}=Q_{F}^{\prime} Q_{N_{r}}$. Hence,

$$
\begin{aligned}
\left\|\xi-Q_{N_{r+1}}(\xi)\right\| & \leqslant\left\|\xi-Q_{N_{r}}(\xi)\right\|+\left\|\xi^{\prime}-Q_{F}^{\prime}\left(\xi^{\prime}\right)\right\| \\
& \leqslant\left(1-2^{-r-1}\right) \delta
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{dist}\left(Q_{N_{r+1}}(\eta), \mathbf{C} Q_{N_{r+1}}(\xi)\right) & \leqslant\left(\frac{(31}{32}\right)^{1 / 2} \operatorname{dist}\left(\eta^{\prime}, \mathbf{C} \xi^{\prime}\right) \\
& \leqslant\left(\frac{31}{32}\right)^{(r+1) / 2} \operatorname{dist}(\eta, \mathbf{C} \xi)
\end{aligned}
$$

which proves $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ for $r+1$. Thus we can find N_{r} satisfying $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ for all r. Choose now r such that

$$
\left(\frac{31}{32}\right)^{r / 2} \operatorname{dist}(\eta, \mathbf{C} \xi) \leqslant \varepsilon,
$$

then Lemma 3.7 holds with $N=N_{r}$.
Lemma 3.8. Assume that M satisfies (2) in Theorem 3.1, and let $\xi \in P^{\natural}$ be a cyclic and separating unit vector. Let $0<\delta<1$. There exists an increasing sequence of finite
dimensional subfactors $\left(N_{n}\right)_{n \in \mathbb{N}}$ of M, such that when N is the von Neumann algebra generated by $\cup_{n=1}^{\infty} N_{n}$, then

$$
\begin{gathered}
\left\|\xi-Q_{N}(\xi)\right\| \leqslant \delta \\
Q_{N}(\mathscr{H})=\mathbf{C} Q_{N}(\xi) .
\end{gathered}
$$

Proof. Since M has separable predual, the Hilbert space \mathscr{H} in the standard form of M is also separable. Let $\left(\eta_{n}\right)_{n=1}^{\infty}$ be a dense sequence in \mathscr{H}. We will construct an increasing sequence $\left(N_{n}\right)_{n \in \mathbf{N}}$ of finite dimensional subfactors of M, such that

$$
\begin{gather*}
\left\|\xi-Q_{N_{n}}(\xi)\right\| \leqslant\left(1-2^{-n}\right) \delta \tag{*}\\
\operatorname{dist}\left(Q_{N_{n}}\left(\eta_{n}\right), \mathrm{C} Q_{N_{n}}(\xi)\right) \leqslant 2^{-n} \tag{**}
\end{gather*}
$$

for all $n \in \mathbf{N}$. Lemma 3.7 shows that we can choose N_{1}, such that (${ }^{*}$) and (${ }^{* *}$) are fulfilled for $n=1$. Assume next that we have found

$$
N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{r}
$$

satisfying the conditions up to $n=r$, and let us proceed to construct N_{r+1} :
Put $\xi^{\prime}=Q_{N_{r}}(\xi)$ and $\eta^{\prime}=Q_{N_{r}}\left(\eta_{r+1}\right)$. By applying Lemma 3.7 to the standard form

$$
\left(N_{r}^{\prime} \cap M, \mathscr{H}_{N_{r}}, J_{N_{r}}, P^{\natural} \cap \mathscr{H}_{N_{r}}\right)
$$

and the two vectors $\xi^{\prime \prime}=\xi^{\prime} /\left\|\xi^{\prime}\right\|$ and η^{\prime}, one can find a finite dimensional subfactor F of $N_{r}^{\prime} \cap M$, such that

$$
\begin{gathered}
\left\|\xi^{\prime}-Q_{N_{r}}\left(\xi^{\prime}\right)\right\| \leqslant 2^{-r-1} \delta \\
\operatorname{dist}\left(Q_{F}^{\prime}\left(\eta^{\prime}\right), \mathbf{C} Q_{F}^{\prime}\left(\xi^{\prime}\right)\right) \leqslant 2^{-r}
\end{gathered}
$$

where Q_{F}^{\prime} is the projection of $\mathscr{H}_{N_{r}}$ onto the elements in $\mathscr{H}_{N_{r}}$, that commutes with F.
As in the proof of Lemma 3.6, one sees that

$$
N_{r+1}=\operatorname{span}\left\{a b \mid a \in N_{r}, b \in F\right\}
$$

is a finite dimensional subfactor of M, and that

$$
\begin{gathered}
\left\|\xi-Q_{N_{r+1}}(\xi)\right\| \leqslant\left(1-2^{-r-1}\right) \delta \\
\operatorname{dist}\left(Q_{N_{r+1}}\left(\eta_{r+1}\right), \mathrm{C} Q_{N_{r+1}}(\xi)\right) \leqslant 2^{-r} .
\end{gathered}
$$

Moreover, $N_{r} \subseteq N_{r+1}$. Hence $N_{1} \subseteq \ldots \subseteq N_{r} \subseteq N_{r+1}$ satisfy the conditions (${ }^{*}$) and (${ }^{* *}$) up to $n=r+1$. By induction we get an increasing sequence $\left(N_{n}\right)_{n \in \mathrm{~N}}$ of subfactors satisfying (${ }^{*}$) and (${ }^{* *}$). Put now $N=\cup_{n=1}^{\infty} N_{n}$.

Since $\mathscr{H}_{N_{n}}$ is a decreasing sequence of Hilbert spaces, and since

$$
\mathscr{H}_{N}=\bigcap_{n=1}^{\infty} \mathscr{H}_{N_{n}}
$$

we have $Q_{N}=\lim _{n \rightarrow \infty} Q_{N_{n}}$ (strongly).
Therefore $\left\|\xi-Q_{N}(\xi)\right\| \leqslant \delta$. For each $n \in \mathbf{N}$ we can choose $c_{n} \in \mathbf{C}$ such that

$$
\left\|Q_{N_{n}}\left(\eta_{n}\right)-c_{n} Q_{N_{n}}(\xi)\right\| \leqslant 2^{-n} .
$$

Since $Q_{N} Q_{N_{n}}=Q_{N}$ it follows that

$$
\left\|Q_{N}\left(\eta_{n}\right)-c_{n} Q_{N}(\xi)\right\| \leqslant 2^{-n}, \quad n \in \mathbf{N}^{\prime}
$$

Hence

$$
\operatorname{dist}\left(Q_{N}\left(\eta_{n}\right), \mathbf{C} Q_{N}(\xi)\right) \leqslant 2^{-n}
$$

For each $n \in \mathbf{N}$, the sequence $\left(\eta_{m}\right)_{m \geqslant n}$ is also dense in \mathscr{H}. Therefore

$$
\operatorname{dist}\left(Q_{N}(\mathscr{H}), \mathbf{C} Q_{M}(\xi)\right) \leqslant 2^{-n} .
$$

Hence

$$
Q_{N}(\mathscr{H}) \subseteq \overline{\mathbf{C} Q_{N}(\xi)}=\mathbf{C} Q_{N}(\xi)
$$

This proves Lemma 3.8.
End of proof of $(2) \Rightarrow(3)$. Assume that M satisfies condition (2) in Theorem 3.1, and let $\xi \in P^{\natural}$ be a cyclic and separating unit vector. Let N_{n} and N be as in Lemma 3.8 with $\delta=\frac{1}{2}$, and put $\xi^{\prime}=Q_{N}(\xi)$. Then $\xi^{\prime} \neq 0$ and

$$
\mathscr{H}_{N}=\mathbf{C} \xi^{\prime}
$$

Since $\xi^{\prime}=\lim _{n \rightarrow \infty} Q_{N_{n}}(\xi)$, it follows from Lemma 3.5 that $\xi^{\prime} \in P^{\natural}$. Let $e \in M$ be the projection of the vector functional φ^{\prime} on M given by ξ^{\prime}. Then $e \xi^{\prime}=\xi^{\prime}$, and since $J \xi^{\prime}=\xi^{\prime}$ also $\xi^{\prime} e=\xi^{\prime}$. Hence $\xi^{\prime} \in e \mathscr{H e}$. By [15, Lemma 2.6]

$$
\left(e M e, e \mathscr{H e}, J_{e}, e P^{\natural} e\right)
$$

is a standard form for $e M e$. (Here J_{e} is the restriction of J to $e \mathscr{H e}$.) Moreover, ξ^{\prime} is cyclic and separating for $e M e$ acting on $e \mathscr{H e}$. Since $\xi^{\prime} \in Q_{N}(\mathscr{H})$, we have

$$
u \xi^{\prime} u^{*}=\xi^{\prime}, \quad u \in U(N)
$$

Hence also

$$
u \varphi^{\prime} u^{*}=\varphi^{\prime}, \quad u \in U(N)
$$

and

$$
u e u^{*}=e, \quad u \in U(N)
$$

Thus $e \in N^{\prime} \cap M$. Let ψ be the restriction of $\varphi^{\prime} /\left\|\varphi^{\prime}\right\|$ to $e M e$. Then ψ is a normal faithful state on $e M e$, and

$$
e N \subseteq M_{\psi} .
$$

We will show that $(e N)^{\prime} \cap e M e=\mathbf{C} I_{e}$, where $I_{e}=e$ is the identity in $e M e$. Let

$$
x \in(e N)^{\prime} \cap e M e
$$

regarded as an operator on \mathscr{H} and

$$
\eta=x \xi^{\prime} \in \mathscr{H}
$$

Since $e \in N^{\prime}$ we have for all $a \in N$ that $a x=x a$. Thus, for $a \in N$,

$$
a \eta=a x \xi^{\prime}=x a \xi^{\prime}=x \xi^{\prime} a=\eta a .
$$

Hence $\eta \in \mathscr{H}_{N}=\mathbf{C} \xi^{\prime}$. Since ξ^{\prime} is separating for $e M e$, it follows that $x=I_{e}$. Thus

$$
(e N)^{\prime} \cap e M e=\mathbf{C} I_{e}
$$

and since $e N \subseteq M_{\psi}$ we have also

$$
M_{\psi}^{\prime} \cap e M e=\mathbf{C} I_{e}
$$

Since $e M e \cong M$, we have proved that M has at least one normal faithful state ω, such that $\boldsymbol{M}_{\boldsymbol{\omega}}^{\prime} \cap \boldsymbol{M}=\mathbf{C I}$. The density of such states in the set of normal states follows now from the Connes-Størmer transitivity theorem [12].

Proof of $(3) \Rightarrow(1)$ in Theorem 3.1. Assume that M is a type $I I I_{1}$-factor with separable predual, and that φ is a n.f. state on M, such that $M_{\varphi}^{\prime} \cap M=\mathrm{C} 1$. By ([4] or [23]) there exists a normal faithful conditional expectation of M onto M_{φ}. Since M_{φ} is a
finite factor, we get by Popa's result [19, Theorem 3.2] that M_{φ} contains a maximal abelian $*$-subalgebra A of M. Let ω be the n.f.s. weight on $B\left(L^{2}(\mathbf{R})\right.$) for which

$$
(D \omega: D(\operatorname{Tr}))_{t}=u_{t}
$$

where

$$
\left(u_{t} f\right)(s)=f(s-t), \quad s, t \in \mathbf{R}, f \in L^{2}(\mathbf{R})
$$

By [13, p. 497] $\psi=\varphi \otimes \omega$ is a dominant weight on $M \widehat{\otimes} B\left(L^{2}(\mathbf{R})\right)$. It is clear that M_{ω} contains a maximal abelian subalgebra of $B\left(L^{2}(\mathbf{R})\right)$, namely the von Neumann algebra B generated by $\left\{u_{t} \mid t \in \mathbf{R}\right\}$. Thus $C=A \widehat{\otimes} B$ is a maximal abelian von Neumann subalgebra of $M \widehat{\otimes} B\left(L^{2}(\mathbf{R})\right)$. Moreover, C is contained in M_{ψ}. Since $M \widehat{\otimes} B\left(L^{2}(\mathbf{R})\right) \cong M$ it follows that M has a dominant weight ψ, such that M_{ψ} contains a maximal abelian $*$-subalgebra C of M.

Since the unitary group $U(C)$ of C is abelian, it has an invariant mean m. For every $x \in M$, the integral

$$
y=\int_{U(C)} u x u^{*} d m(u)
$$

defines an element in $C^{\prime} \cap M=C \subseteq M_{\psi}$. Moreover,

$$
\begin{equation*}
y \in \overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\}, \quad(\sigma \text {-weak closure }) \tag{*}
\end{equation*}
$$

Since M_{ψ} is a factor, we get by "the Diximier averaging process" (cf. [14, Part III, Chapter 5, Lemma 4], that

$$
\overline{\operatorname{conv}}\left\{u y u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathrm{C} 1 \neq \varnothing .
$$

By $\left({ }^{*}\right)$ it now follows that

$$
\overline{\operatorname{conv}}\left\{u x u^{*} \mid u \in U\left(M_{\psi}\right)\right\} \cap \mathbf{C l} \neq \varnothing .
$$

Since any two dominant weights on M are unitary equivalent, we have proved (1).

Remark 3.9. The problem whether the conditions (1), (2) and (3) in Theorem 3.1 holds in all III_{1}-factors with separable predual is related to the following problem of Kadison (cf. [18], [19]): Let N be a subfactor of a factor M, such that $N^{\prime} \cap M=\mathrm{C} 1$. Does N contain a maximal abelian $*$-subalgebra which is also maximal abelian in M ? Indeed, if Kadison's problem has an affirmative solution for factors on a separable Hilbert
space, then for any dominant weight ψ on a III_{1}-factor M with separable predual, M_{ψ} contains a maximal abelian $*$-subalgebra C of M, and hence by the above proof of $(3) \Rightarrow(1)$ it follows that condition (1) in Theorem 3.1 holds.

References

[1] Araki, H., Some properties of modular conjugation operator of von Neumann algebras and a noncommutative Radon-Nikodym theorem with a chain rule. Pacific J. Math., 50 (1974), 309-354.
[2] Araki, H. \& Woods, E. J., A classification of factors. Publ. Res. Inst. Math. Sci. Ser. A, 4 (1968), 51-130.
[3] Arveson, W., On groups of automorphisms of operator algebras. J. Funct. Anal., 15 (1974), 217-243.
[4] Combes, F., Poids et espérance conditionelles dans les algébres de von Neumann. Bull. Soc. Math. France, 99 (1971), 73-112.
[5] Connes, A., Une classification des facteurs de type III. Ann. Sci. Ecole Norm. Sup., 6 (1973), 133-252.
[6] - Characterisation des espaces vectoriels ordonnés sous-jacent aux algèbres de von Neumann. Ann. Inst. Fourier, 24 (1974), 121-155.
[7] - Classification of injective factors. Ann. of Math., 104 (1976), 73-115.
[8] - Personal communication (1978).
[9] - Classification des facteurs, in Operator algebras and applications, Proceedings of symposia in Pure Math. 38:2, pp. 43-109, AMS 1982.
[10] - Type III_{1}-factors, property L_{λ}^{\prime} and closure of inner automorphisms. J. Operator Theory, 14 (1985), 189-211.
[11] Connes, A., HaAgerup, U. \& Størmer, E., Diameters of state spaces of type III-factors, in Operator algebras and their connection with topology and ergodic theory. Lecture Notes in Mathematics 1132, pp. 91-116, Springer-Verlag 1985.
[12] Connes, A. \& Størmer, E., Homogeneity of the state space of factors of type III_{1}. J. Funct. Anal., 28 (1978), 187-196.
[13] Connes, A. \& Takesaki, M., The flow of weights on factors of type III. Tôhoku Math. J., 29 (1977), 473-575.
[14] Dismier, J., Von Neumann algebras. North Holland Math. Library 27, North Holland Publ. Co. 1981.
[15] Hangerup, U., The standard form of von Neumann algebras. Math. Scand., 37 (1975), 271-283.
[16] - A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space. J. Funct. Anal., 62 (1985), 160-201.
[17] Hermann, R. \& Takesaki, M., States and automorphism groups of operator algebras. Comm. Math. Phys., 19 (1970), 142-160.
[18] Kadison, R. V., Problems on von Neumann algebras. Baton Rouge Conference 1967 (unpublished).
[19] Popa, S., On a problem of R. V. Kadison on maximal abelian subalgebras in factors. Invent. Math., 65 (1981), 269-281.
[20] Powers, R. T., Representations of uniformly hyperfinite algebras and their associated von Neumann Rings. Ann. of Math., 86 (1967), 138-171.
[21] Powers, R. T. \& Størmer, E., Free states of the canonical anticommunication relations. Comm. Math. Phys., 16 (1970), 1-33.
[22] Takesaki, M., Tomita's theory of modular Hilbert algebras and its applications. Lecture notes in Mathematics 128, Springer Verlag 1970.
[23] - Conditional expectations in von Neumann algebras. J. Funct. Anal., 9 (1972), 306-321.
[24] - Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math., 131 (1974), 249-310.

Received January 21, 1985

[^0]: 7-878288 Acta Mathematica 158. Imprimé le 10 avril 1987

