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The subject o f  the present paper is the proof o f  the Riemann-Roch theorem for 

(possibly singular) complex spaces: 

TI-I~ RIEMANN-ROCn THEOREM. Denote by IQo~ the Grothendieck group of  the 

category o f  all coherent sheaves on the complex space M and by Kt~p(M) the usual 

homology K-functor of  the underlying topological space. Then there exists a group 

homomorphism aM: K0h~176 such that: 

(a) For M regular the restriction o f  the homomorphism a M to the subgroup 

/~hol(M)cK~0~ generated by the classes o f  all locally free sheaves, coincides with 

the natural morphism 

attaching to each locally free sheaf on M the class of  the corresponding vector bundle. 

(b) I f  f'. M--->N is a proper morphism o f  complex spaces, and f.,:/~o~176 is 

the direct image homomorphism, provided by Grauert' s theorem, then the equality 

f ,  aM(~) = a ~ )  

holds for any coherent sheaf .T on M. 

A detailed consideration of this form of the Riemann-Roch theorem, and its 

relation to the classical form of this theorem, due to Hirzebruch and Grothendieck, can 

be found in [41. 

Originally, the R-R theorem was proven by F. Hirzebruch for algebraic vector 
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bundles on a non-singular projective variety. Atiyah and Singer showed that the R-R 

theorem is a corollary of their Index theorem for differential operators; the R-R 

homomorphism attaches to any analytic fibre bundle E on the complex manifold M the 

element of the analytical K-group Ell (M)=K0(M), generated by the Dolbeault complex 

of differential forms on M with coefficients in the bundle E, together with the represen- 

tation of the algebra C(M) of continuous functions by multiplication in every stage. 

The first result, concerning coherent sheaves instead of vector bundles, appeared 

in the papers of Atiyah-Hirzebruch [2], [3]. In these papers the authors, using a real- 

analytic resolution of a coherent sheaf, construct the R-R homomorphism from 

K~0~ to K~ for a complex manifold M, and obtain as a consequence the relative 

version of the R-R theorem for embeddings of a complex manifold. 

The essential step was made in the paper by Baum, Fulton, MacPherson where the 

R-R theorem was formulated in the form, cited above. There can be found a detailed 

explanation of the analogy between the algebraical and topological K-homology theor- 

ies. However, the R-R theorem is proved for quasi-projective varieties, and the proof 

makes essential use of the existence of a locally free resolution for any coherent sheaf 

on the complex projective space. 

In a series.of recent papers (cf. [5]), O'Brian, Toledo, and Tong proved the R-R 

theorem in Hodge-Chern cohomology for coherent sheaves on a complex manifold. 

The proof is based on combinatorial "local-global" methods. 

In his survey on K-theory in [1], M. F. Atiyah suggested that it would be desirable 

to have a proof of the R-R theorem in the form, cited above, based on operator- 

theoretical methods, and remaining valid on the larger category of all complex spaces. 

Such a proof is given in the present paper. 

We start with some heuristic considerations. Let M be a complex manifold, and E 

an analytic vector bundle on M. In order to define the cohomology groups of M with 

coefficients in E, we can consider, instead of the Dolbeault complex, used in the 

Atiyah-Singer proof, the (~ech complex C.(M, 23, E) of alternating cochains of sections 

of E for a given Stein covering 23 = { Ui} of M. We can replace this complex of Hilbert 

spaces Ch.(M, 23, E), consisting of spaces of square-integrable sections of the bundle E; 

it can be proved that these two complexes are quasi-isomorphic. In order to obtain an 

element of the analytical K-group EII(M)=K0(M), one needs some more: a set of 

representations of the algebra of continuous functions C(M) on each stage of the 

complex, such that the differentials of the complex are essentially splitting for these 

representations. To do this, choose the elements {U i} of the covering 23 to be 

contractible and strongly pseudo-convex, and consider for any Ua= U,. ft... fl Ui~ the 
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algebra of all Toeplitz operators on U a, i.e., the C*-algebra of operators in L2(Ua), 
generated by the operators of multiplication by the coordinate functions. This algebra is 

essentially commutative(l) and is a Fredholm representation of the algebra C(bU~). 

Since the domain U~ is contractible, then, using Brown-Douglas-Fillmore theory, we 

can find a compact perturbation of this algebra, which is a usual (commutative) 

representation of the algebra C(U~). Since the Toeplitz operators essentially commute 

with the operators of restriction, then, using an appropriate trivialisation of the bundle 

E on the domains U~ we obtain the desired element of the group Ko(M); it can be 

proven that this element does not depend on the choice of compact perturbation of the 

algebra of Toeplitz operators. This gives an alternative proof of the Riemann-Roch 

theorem in the regular case. 

Unfortunately, there does not exist an elaborated theory of Toeplitz operators in 

the singular case; in particular, it is not known if the operators of multiplication by 

coordinate functions are essentially normal in the spaces H2(U, ~ of square-integrable 

sections of a coherent sheaf ~.  Another difficulty comes from the fact that it is not 

known if the homology groups of a coherent sheaf can be computed by the use of 

cochains of square-integrable sections. All these difficulties can be avoided, if we try to 

construct, instead of the element aM(& e) E Ko(M), its Alexander dual, i.e. the corre- 

sponding element of the group g~ 2n, REn~M) for a suitable embedding of M in the 

Euclidean space R 2n. 
Let T=(TI ... . .  T,,) be an essentially commuting set of essentially normal opera- 

tors, acting in a Hilbert space, F c C  n its joint essential spectrum, and ~ the correspond- 

ing element of the group Ext (F). In [1], M. F. Atiyah shows that its Alexander dual in 

K~ can be calculated by the use of Clifford matrices. It is well known that the 

notions of Clifford algebra and Koszul complex are closely related; hence, the same 

element of K~ can be defined by means of the parametrised Koszul complex of 

the operators TI .. . . .  T,,, which is a Fredholm complex of Hilbert spaces on C ~ \ F  

depending continuously on a parameter. The Koszul complex is "more economical" 

than the Clifford algebra, since its definition does not involve the adjoint operators 

.....  /~. In particular, the above-mentioned algebra of Toeplitz operators corre- 

sponds to the parametrised Koszul complex of the operators of multiplication by the 

(I) There  is a gap in our  considerat ion here.  As  far as is known to the author ,  there  does not  exist  a proof  of  

the fact that  Toepli tz  operators  are essential ly normal  in the  space H2(U), if U is an  intersect ion of  s t rongly 

pseudo-convex doma i ns .  However,  this is well-known in the Banach  s p a c e s / ~ ( U ) I  and in our  si tuation we 

can use  Banach  spaces  ins tead of  Hilbert  spaces .  
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coordinate functions. This allows us to replace the Hilbert spaces of square-integrable 

sections by the Frrcbet  spaces of all sections; in this form, this complex makes sense 

even in the singular case. In order to obtain a topological equivalent of the operator- 

theoretical object constructed above, we have to attach together the Koszul complex- 

es, corresponding to the various elements of the covering ~3. Suppose for the moment 

that M is a complex subspace of an open subset U in a Euclidean space; in this case, 

the canonical coordinate system on M can be used, the various Koszul complexes are 

well related and form a bicomplex. The corresponding total complex is Fredholm on U 

and exact off M, and defines the desired element of the group KM(U)=K0(M). Using a 

slightly more complicated construction, the same idea can be realised in the general 

case. 

Now we are going to describe the principal steps of our proof. In w 1 we consider 

parametrised complexes of Frrchet spaces in domains in Euclidean space. We shall call 

such a complex ~g-, ~- or r if the complex of continuous, smooth or holomorphic 

sections of the complex is exact. In contrast to the case of complexes of Banach spaces 

(see [11]), these conditions are mutually different and do not coincide with the condi- 

tion of pointwise exactness of the complex. (In view of the criterion, proven in 

Corollary 1.3 in the text, the CO-exact complexes will be called uniformly exact.) Using 

this, we define the notions of uniformly Fredholm, ~-Fredholm and r 

complex. The principal result of w 1 is that the space of uniformly Fredholm complexes 

can be used as a representative space for K-theory. Another result of w 1 is Lemma 1.8, 

a parametrised variant of the L. Schwartz theorem for compact perturbations of 

epimorphisms; we use this assertion as a substitute for Grauert's direct image theorem 

(a slight modification of this statement leads to a new proof of Grauert's theorem, 

which will be published separately). 

In w 2 we recall the definition and properties of the parametrised Koszul complex 

of a commuting tuple of operators (cf. [11], and construct a R-R invariant for complex 

subspaces of open domains in C n. The general case is considered in w 3. In general, 

there does not exist an embedding of the complex space in a complex manifold; instead 

of this we show that any complex space M can be embedded in a suitable almost 

complex manifold ~t, and this embedding is stably unique (Lemma 3.1). Now, we can 

define the local Koszul complexes on h,]t; using some standard algebraic machinery 

(Lemma 3.2), they can be attached together in a total complex. This completes the 

construction of the Riemann-Roch invariant. The rest of w 3 is devoted to a proof of the 

functorial property of this invariant. Finally, in w 4 we give some remarks and generali- 

sations. 
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Note that in this way we obtain an infinite-dimensional free resolution of a given 

coherent sheaf ~.  More exactly, we obtain a parametrised complex of Fr6chet spaces 

on h,]t, such that the complex of its smooth sections is quasi-isomorphic to the sheaf of 

smooth sections of ~ ,  and the complex of almost-analytic sections is quasi-isomorphic 

to the sheaf ~.  (See remark (1) of w 

I am most grateful to Professor M. F. Atiyah for his interest in this work. I am also 

grateful to Mr John Roe and Mrs Jane Cox for their help. I thank the referee of the 

paper for his useful remarks, in particular for the statement and the proof of the 

sublemma in w 3, which permitted to simplify essentially the proofs of Lemmas 3.1 and 

3.2. 

O. Notations 

Recall that a Fr6chet space is a complete linear topological space with topology 

determined by a countable family of semi-norms IIlln, n = l , 2  . . . . .  A complex of 

Fr6chet spaces is a system X={Xi, di}, i EZ, where Xi are Fr6chet spaces, and 

d:Xi---~Xi+l are bounded linear operators. All complexes are assumed to be finite, i.e. 

Xi=O for Iil sufficiently large. Let U be a domain in a Euclidean space, and X and Y 

Fr6chet spaces. An operator-valued function d(2): X---~ Y, 2 E U, will be called continu- 

ous, smooth or holomorphic on U, if for any x E X the Y-valued function 2 ~--~d(2)x is 

continuous, infinitely differentiable in the strong sense, or holomorphic, on the domain 

U. The parametrised complex X.(2)={Xi, d,(2)}, i EZ, will be called continuous, 

smooth, or homomorphic respectively. Applying the Banach-Steinhaus theorem, one 

can see that in this case d(2) is uniformly hounded on any compact subset of U (in all 

cases) and all its derivatives in the strong operator topology exist (in the smooth or 

holomorphic case). Therefore, if x(2) is continuous, smooth or holomorhic respective- 

ly, then the Y-valued function d(~.)x(2) has the same property. 

Let X be a Fr6chet space. Denote by cgx, ~X and ~?X the sheaves of germs of all 

continuous, smooth, and holomorphic X-valued functions on U. Let X.(2)= {Xi, di(2)) 
be a continuous complex of Fr6chet spaces on U. Then by ~r d,(2)} will be 

denoted the complex of sheaves of germs of all continuous sections of the complex 

X.(2). The analogous notations, ~X. and (7X., will be adopted for the complexes of 

sheaves of germs of smooth and holomorphic sections (provided that the complex X.(2) 

is smooth or holomorphic on U). Note that in the complexes used in our paper, all 

differentials are in fact linear functions of the parameter. 
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w 1. Uniformly Freclholm complexes 

Definition. The continuous complex of Fr6chet spaces X A(~) ~ y B(~) ~ Z, defined on the 

domain U, will be called uniformly exact, if for any compact subset F of U and for any 

natural number p there exists a natural number q=q(p) and a constant C=C(p), such 

that for any 2 E F and y E Y, satisfying B(2)y=0, there exists x E X, such that A(2)x=y 

and llx[Ip<<. Cilyllq. 

In other words, the complex is exact at any point of U, and the entities q(p) and 

C(p), provided by the Open mapping theorem, can be chosen to be locally independent 

of the parameter ~. 

Example. Denote by X the Fr~chet space of all infinitely smooth functions on the 

closed interval [0, I], vanishing at the origin with all derivatives, and let A ( t ) = l - t D ,  

where D is the operator of differentiation. The complex O'>X ACt) ~ X-->O is exact on the 

whole real axis. However, a simple calculation shows that it is not uniformly exact in 

any neighbourhood of zero. 

The following assertion is a slight modification of Lemma 2.2 in [II]: 

LEMMA 1.1. Let the complex X A(2) ) y B(2) ) Z be uniformly exact on the domain 

U and y(2) be a continuous function with values in Y, satisfying B(2)y(2)---0. Then there 

exists a continuous function x(2) with values in X, such that A(2)x(A)---y0.) on U. 

Proof. It is sufficient to prove the assertion on any compact subset F of U. We can 

suppose that for all x E X ,  nEZ+,  we have I (A)xlln <llxlln, and for any AEF, 

yEkerB(2), nEZ+ the equation A(A)x=y has a solution xEX ,  satisfying 

Ilxlln<.Cnllylln+l. We shall construct a sequence xn(2) of continuous X-valued func- 

t!ons, such that: 

I[xn(A)lln 2-n, " IlY(A)-a(x)  s (A)lln§ < c ; 2 , .  2 -n-I, 

where s~0~) denotes the nth partial sum of the series E x~(A). Suppose that all x,Q.) are 

already constructed for l<~i<~n, and give a construction for X~+l(2). Let r~(2)= 

y(A)-A(2) s~(2). Fix 2 E F. One can find an element xx E X such that A(A)xx=rn(2) and 

I[xxll~+l<~C~+lllr~(2)ll,,+2~2 -~-1. Using the continuity of the vector-functions rn(2) 

and A(A)x, on can find a neighborhood Ua of Z in F such that for any 2' E Ux one has 

§ "-~-~+2-<~-1 ...9-~-2 . . . .  Choose a finite covering Ux,, , Ux~ of F, denote 

by {fi}, i= 1 . . . . .  k, a partition of unity, subordinated to the covering { Ua,}, and put 
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k 

i=1 

It is easy to check that all the required conditions for x,,+m(4) are satisfied. 

Finally, we can put x(4)=Ek~ l xk(4), and the proof of the lemma is completed. 

COROLLARY 1.2. Suppose that 4o is a point o f F  and the element xoEX satisfies 

A(4o)xo=Y(4o). Then we can find a vector-function x(4), satisfying the requirements of 

the lemma and the supplementary conditions x(40)=xo, 

sup IIx(A)lln 211x0lln+2c  supll 
F F 

This follows immediately from the construction above. 

Now, we are able to give the following characterisation of uniformly exact com- 

plexes: 

COROLLARY 1.3. The continuous complex X.(A)={Xi, d,(4)} is uniformly exact if 

and only if the corresponding complex of  sheaves of continuous functions ~gX. is exact. 

Proof. Suppose that the complex of sheaves cOX. is exact. Since the sheaves ~Xi 

are soft, this implies that for any compact subset F c U  the complex C(F, X.) of 

continuous functions on F with values in X is exact also. The system of semi-norms 

IIx(4)llp=sup~llx(A)llp determines a Fr6chet structure in the spaces C(F, Xk). Fix a 

number k. It follows from the Open mapping theorem that for any natural number p 

there exist a consant C and a natural number q, such that for any continuous Xk-valued 

function y(4) on F, satisfying dk(4)y(4)--0, there exists a continuous Xk_l-Valued 

function x(4), such that dk_l(4)x(4)=y(4) and IIx(4)llp~Clly(4)ll q. Suppose that we have 

already proved that the complex X.(4) is uniformly exact at the stage Xk+l. Let 20 be 

an arbitrary point of F and Yo E ker dk(4o). Using Corollary 1.3, we can find a continu- 

ous Xk-valued function y(4), such that y(Ao)=Yo, dk(4)y(4)=0, and I[y(4)llq<.21lyollq. 

Choosing x(4) as above, we obtain that dk-l(4o)x(4o)=yo and Ilx(Zo)ll,,<~2Cllyollq. This 

means that X.(4) is uniformly exact at Xk, and the proof is completed. 

It will be useful for us to consider the classes of exact complexes, satisfying the 

same lifting property for smooth and for holomorphic vector-functions. Namely, the 

smooth (holomorphic) complex X.(4)={Xk, dk(4)} will be called ~-exact (r i f-  

the complex of sheaves ~X. (~?X.) is an exact complex of sheaves. 
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LEMMA 1.4. Any ~g-exact complex is uniformly exact. Any ~7-exact complex is ~- 

exact and uniformly exact. 

The proof uses the machinery of Koszul complexes and will be given in w 2. 

Definition. Let X.(2) and Y.(2) be continuous complexes of Fr6chet spaces, and 

q0.(2): X.(2)---~ Y.(2) be a continuous morphism of complexes. The morphism q0.(2) will 

be called a uniform quasi-isomorphism, if its cone is a uniformly exact complex. An 

equivalent definition is the following one: q0.(2) induces a quasi-isomorphism between 
the complexes of sheaves qgX. and qgY.. 

In the same way one defines the notions of ~-quasi-isomorphism and ~-quasi- 
isomorphism. 

The following lemma points out some elementary properties of the notions intro- 
duced above. 

LEMMA 1.5. (a) Let q0(2):X.(2)---~Y.(2) and q~.(2): Y.(2)----~Z.(~.) be morphisms of 

complexes and ~.(2)=~p.(2) o q9.(2). Then if two of  the morphisms ~.(2), ~p.(2), qg.(~,) are 

uniform quasi-isomorphisms, then the same is true for the third. 

(b) Let X.(2)={Xi, j, d~,v(2), ~',j(2)} be a continuous bicomplex and X.(2) be the 

corresponding total complex. Suppose that for any j the j-th row X.,j(;O is a uniformly 

exact complex. Then the total complex X.(,;t) is also uniformly exact. 

(c) Let X.(;~)={Xi, d,(2)}, X~(2)={X~,d~(2)}, be continuous complexes, and 

q9(2): X~(2)---~X.(2) be a uniform quasi-isomorphism. Let H.(2)= {Hi, ai(2)} be a continu- 

ous complex of finite-dimensional spaces and ~0.(2): H.(~.)---~X.(A) be a morphism of 

complexes. Then there exists a morphism ~p~(;t): H.(;t)---~X~(2), such that ~o.(~) is homo- 

topic to q0.0].) o ~p~(2). 

Proof. The statements (a) and (b) are obvious. Let us prove (c). Denote by 

~'.(2)={,~'i,d,(2)} the cone of the morphism q0.(2), and by ~b.(2):H.(A)---~X.(2) the 

composition of the morphism ~.(2) and the natural embedding of X.(2) in X.(2). We 

have ,~i=X'~X~_I. Since the complex of sheaves ,('. is exact and Hi are finite- 

dimensional, standard sheaf-theoretical arguments show that the morphism of sheaves 

~b.(2) is homotopic to zero. So, there exists a series of continuous operator-valued 

functions, ,~t(2):Hi---->f(i_l, such that ~i(~.)=Si+l(~)az(~.)-di_l(,~)S,(~.). Denote by 

~o~,~):Hi~X~, Si(;.): Hr-*Xi-l the components of the map S,O.). Then the equality 
above is equivalent to: 
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/fl:+l(2) ai(2 ) = dil(2 ) ~ir(2 ) 

~i(2) -- q9i(2 ) 11)~(2) = di(2 ) Si(2) + Si+ 1 (2) ai(2). 

In other words, ~p~ is a morphism of complexes, and S.(2) defines a homotopy between 

~p.(2) and q~.(2)~p~(2). 

Of course, the same assertions are valid for f~- and (7-quasi-isomorphisms (in the 

latter case on Stein domains). 

The statement (c) remains true in the case H.(2) is a continuous complex of finite- 

dimensional vector bundles. In fact, we can construct ~p~ and S.(2) locally and then use 

a partition of unity. 

Definition. The continuous complex X.(2), defined on the domain U, will be called 

uniformly Fredholm, if any point 2o E U has a neighborhood V, such that there exist on 

V a continuous complex H.(2) of finite-dimensional spaces and a uniform quasi- 

isomorphism q0.(2): H.(2)--->X.(2). 

In an analogous way we can define the notions of *-Fredholm and ~-Fredholm 
complexes. 

Example. Let U be a bounded domain in the complex plane C, and denote by 

X=H(U) the Fr6chet space of all holomorphic functions on U. Let A(2)=Mz-2I, where 

Mz is the operator of multiplication by the coordinate function z, acting on X. Then the 

continuous complex 0--->X A~a)~X--->0 is Fredholm for all 2 E C, but near the points of 

bU its index is not locally constant. It is not hard to see that this complex is uniformly 

Fredholm only on the domain C/b U. 
Note that any complex of Banach spaces, Fredholm at all points of U, is uniformly 

Fredholm. 

Remark. Let M= c~, ig or (~. One can see from the definition that the parametrised 

complex X.(2) is M-Fredholm if and only if the complex of sheaves ~/X. is a perfect 

complex in the category of all complexes of M-modules in the sense of [12]. Suppose 

that all the sheaves of homologies ~/(MX.) are perfect, i.e. locally have a finite 

resolution of finitely generated free M-modules. Then simple arguments (see [12], I, 

Lemma 4.15) show that the complex MX. is also perfect and therefore X.(2) is M- 

Fredholm. In particular, the complex X.(2) is ~7-Fredholm if and only if all the sheaves 

~,(~TX.) are coherent. 
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The next lemmas show that the topological K-functor K~ of the topological 

space U can be defined by the use of uniformly Fredholm parametrised complexes of 

Fr6chet spaces. 

LEMMA 1.6. Suppose that the continuous complex o f  Fr~chet spaces X.(;t) is 

uniformly Fredholm on U and F c  U is a compact subset. Then there exist a continuous 

complex H.(;t) o f  finite-dimensional vector bundles on F and a uniform quasi-isomor- 

phism 9.(;t): H.(;t)--~X.(;t). The class o f  the complex H.(;t) in the group K~ does not 

depend on the choice o f  H.(;t). 

Proof. Suppose that Ht(X.(;t))=0 for any i>n and 2=F. We shall construct a 

Euclidean space C N and a linear operator ~p(2): c'V---~Xn, continuously depending on 

the parameter ;tEF, such that d,,(2)~(;t)=0 and for any 2 E F  the image of ~p(2) 

generates the space of homologies Hn(X.(;t)). In fact, take ;t o E F and choose a continu- 

ous complex of finite-dimensional spaces E.(;t) and a continuous uniform quasi-isomor- 

phism r.(;t): E.(;t)--*X.(2), defined in a neighborhood of ;to. One can take E.(;t) such that 

El=0 for i>n. Then the space En and the operator r,, satisfy the conditions above in a 

neighborhood of ;to. Multiplying r,(;t) by a continuous function with sufficiently small 

support, equal to one in a neighborhood of ;to, we obtain an operator-function, defined 

on the whole of F. Since F is compact, we can choose a finite open covering { V/} of F, 

finite-dimensional spaces C ~ and ~J:C~---~Xn such that d~(;t)~0-/(;t)=0 for all ; tEF 

and the image of ~0J(;t) generate H~(X.(;t)) for 2 E Vj. Taking for C a' the direct sum of all 

C ~ and for ~p(;t) the sum of ~pi(;t), we obtain the necessary. 

Suppose that Xi=O for i<0 or i>n. We shall construct H.(;t)={Hi, ai(;t)} and qg.(;t) 

by recurrence. Suppose that Hi, a,(;t), tp,(;t) are already constructed for i>_.k+ 1, and 

denote by .~'.(2)= {-~i, di(;t)) the cone of q0.(;t). Then X.(;t) is uniformly Fredholm (see 

Step I in the proof of Lemma 1.7 below) and uniformly exact in the stages >k. If k>0, 

we apply the assertion above and obtain ~0(;t):CN---~/~'k. Denote Hk=C iv and 

ak(;t), q%(;t) the projections of ~p(2) on Hk+l and Xk. When we reach the case k=0, the 

complex .~.(;t) has only one non-zero homology group kerdo(;t) and therefore the 

dimension of ker do(;t) is independent of ;t. Denote by Ho the corresponding vector 

bundle on F, and by ao(;t), q0o(;t) the components of the corresponding embedding of 

H0 in -~'0(;t). The construction of H.(;t) and q0(;t) is completed. 

Let H.(2), H~(2) be two complexes of vector bundles on F, uniformly quasi- 

isomorphic to X.(2). As above, statement (c) of Lemma 1.5 shows that the complexes 

H.(;t) and H~(;t) are quasi-isomorphic, and therefore determine the same element of the 

group K~ 
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We have proved that any uniformly Fredholm complex' X.(2) on U determines an 

element of the group K~ which will be denoted by [X.(2)]. Moreover, if the complex 

X.(2) is exact off the closed subset M of U, then the element [X.0.)] belongs to the 

group K~ U",,,M). In such a way, the topological K-functor K~ (or K~ U",,,M)) 

coincides with the free abelian group, generated by the equivalence classes of uniform- 

ly Fredholm complexes of Fr6chet spaces on U modulo the following relations: 

(I) If the uniformly Fredholm complexes X~0-), X':(2) are uniformly quasi-iso- 
morphic on U, then [X~(A)]=[X"(2)]. 

(2) Suppose that the complexes X~(2), X'.'(2) are uniformly homotopic, i.e. there 

exists a complex X.(t,2), uniformly Fredholm on Ux[0, I] (and exact off Mx[0,  1]) 
such that X.(0, 2)=X~(2) and X.(1,2)=X'.'(2). Then [X~(2)]=[X"(,~)]. 

(3) If X.(;0=X~(A)(3X"(;0, then [X.(2)]=[X~(A)]+[X':().)]. 

The following assertions show that the group operation may be defined using exact 
sequences of complexes instead of direct sums. 

Definition. Let X~(2), X(2), X"(2) be uniformly Fredholm complexes on U, and let 
tp(;t):X~(A)---~X.(2) and ~p.(;t):X.(A)--->X"(2)be morphisms of complexes satisfying 
v/.(2) tp(2)---0. The short sequence of complexes 

O--->X~(;O ~'~); X.(;t) r<~), ~'(2)-->0 

will be called uniformly exact, if the total complex of the corresponding bicomplex is 
uniformly exact on U. 

In particular, this is satisfied, if for all numbers k the sequence 

wkO.) , 
O ~ X ~  ~k~), X k , X'~---,0 

is uniformly exact (see Lemma 1.5 (c)). 

LEMMA 1.7. Suppose that 

0---,X~(2) ~'~), X.(;t) 
V,.(~) 

, ~ . ' (~)-- ,0  

is a uniformly exact sequence of uniformly Fredholm complexes. Then 
[X.(~)] = [X~(2)] + [,V'(2)]. 

Proof. Suppose that X~(2), X.(2) are uniformly Fredholm complexes, and 

q~.(2): X~(2)--->X.(;t) is a morphism. Then we shall prove that its cone Kq0.(2) is uniformly 
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Fredholm and [KqD.(2)]=[X.(2)]-[X~(2)]. In fact, let H~(2), H.(2) be complexes of 

vector bundles, and let a~(2): H~(2)--->X~(2), a.(2): H.(2)--->X.(2) be uniform quasi-iso- 

morphisms. Applying Lemma 1.5 (c), we obtain a morphism r H~(2)--->H.(2), such 

that a.(2)r is homotopically equivalent to q0.(2)a~(2). Denote by Sk(2):H'k---~Xk-1 

the corresponding homotopies. We can suppose that r is a monomorphism (if this is 

not satisfied, one may add a suitable exact complex to the complex H.(2)). Therefore, 

one can construct a sequence of operators SA2): Hk---,Xk-l, such that 

~r Denote by a.(2): H.(2)--->X.(2) the morphism of complexes, obtained 

by modifying the morphism a.(2) by the homotopy S.(2). Then we have 

d.(2) r(2)-----cp(2) a~(2). Denote by KqL(2), Kr.(2) the cones of the morphisms q~.(2), r.(2). 

It is easy to see that the pair a~(2), a.(2) of quasi-isomorphisms determines a uniform 

quasi-isomorphism from the complex Kr.(2) to the complex Kq0.(2). The assertion is 

proved. 

Let 

0--->X~(2) ~~) , X.(2) ~ ~ ,  ~ ' (2 )~0  

be a uniformly exact sequence of complexes. This means that the morphism from the 

complex Kq0.(2) to the complex X"(2) induced from the morphism ~0.(2) is a uniform 

quasi-isomorphism. Therefore, [X'.'(2)]=[Kcp.(2)]=[X.(2)]-[X'.'(2)], and the proof is 

completed. 

It is well-known that ifX., Y. are complexes of Fr6chet spaces, and K.: X.---> Y. is a 

compact quasi-isomorphism, then both complexes X., Y. are Fredholm. This assertion 

is an immediate consequence of L. Schwartz's perturbation theorem and has been used 

in Cartan-Serre's proof of the finiteness theorem. We shall prove a parametrised 

variant of this assertion. 

LEMMA 1.8. Suppose that X.(2)={Xi, d,(2)}, and Y.(2)={Yi, s,(2)} are continuous 

complexes o f  Fr~chet spaces on the domain U, and K.: X.(2)---~ Y.(2) is a uniform quasi- 

isomorphism of  complexes, such that all Ki are compact operators. Then the complex- 

es X.(2), Y.(2) are uniformly Fredholm on U. 

Proof. Step 1. Suppose that for some 2 o E U the complexes X.(2~ Y.(2 ~ are exact 

at the (i+ 1)st stage. We shall prove that on a sufficiently small neighborhood of 2 o they 

are uniformly exact at the same stage. In fact, fix the seminorms I1 lip on x ,  and I1 IIr on 

Yi-1. There exist natural numbers q, s and a constant C, such that for any 2 close to 2 o 

and for any pair xEXi+l, yEYi,  satisfying di+i(2)x=O, si(2)y=Ki+l x, there exist 

z EXi, t E Yi-1, such that d,(2) z=x, Kiz+si-l(2) t=y, and IIzllp+lltll,<-C(llxllq+llylls). 
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SUBLEMMA. There exist a constant C' and a neighborhood V o f  2 ~ such that for  

any 2 E V and x E ker di+l(A) with IlXllq<~ 1 there exists an element z E Xi, satisfying 

Ilzllp <c ' and Ilx-de(2)zllq<- 1/2. 

Proof. Suppose that the assertion is not true. Then there exists a sequence of 

points 2n--->2 ~ and a sequence of elements xnEkerdi+l(2 ~) with IIx~llq~<l such that for 

any zEXi  with Ilzllp<~n we have Ilxn-d~(2~)zllq>I/2. Let 2n-->2 ~ be a sequence of points 

of U and xnEXi+l be a sequence of elements, such that di+l(2~)x~=O and Ilxn[Iq<~l. 

Replacing the sequencex,, by a subsequence, one can find an element XoE Yi+~, such 

that Ki+lx~--~Xo. There exist a constant D and a natural number m (not depending on 

Xo), and an element yoE Yi, satisfying s,(2~ Ilyolls<<-DIIxollm. Take constants 

Dm, q such that IIKjxllm<~Dm. qllxllq for any number j and element xEXj. T h e n  
n IIx011m <D ,q and IlYolls<-D'Dm, . N o w  s/2)Yo-Ke+lX  0 and there exist se- 

quences of elements u~ E Y/, on EXi+I such that u~---~0, v~-~0 and 

si(2 n) u~- Ki+ l on = s~(2 ~) yo-  Ki+ 1 xn. 

This implies that there exists a sequence {z,,}, z~EXi, such that 

IIZ~II~<.C'=C(I+D'Dm.q) and xn-vn=d,(2~)z~. Then xn-d,(2~)z~-~O and we obtain 

a contradiction. 

Fix 2 E V and x E kerd/+l(2) with Ilxllq~<l. Iterating the construction, stated in the 

sublemma, we obtain a sequence ~nEXi, such that I1~11p~<2C' and IIx-di(2)~nllq ->nO" 
Put ~=Ki~n.  One sees that the sequence Pn has a limit point )~6 Yi, satisfying 

s,(A)~=K~+~x and IIYlI~<2C.D,,p. Applying again the fact that K. is a uniform quasi- 

isomorphism, one obtains the existence of an element z EXi such that d,(2)z=x and 

IIzll  <c"-- c(1 + C' "Ds. p). The proof of step 1 is completed. 

Step 2. We shall construct a continuous complex H(2)={Hi, ai(2)} of finite- 

dimensional spaces, defined on some neighborhood of 2 ~ and a uniform quasi-isomor- 

phism ~p.(2): H.(2)--§ Suppose that Hi, ai(2), and q0,(2) are already constructed for 

i>~k+ 1, and denote by .~'.(2)= {~'i, d,(2)} the cone of the morphism tp(2), determined for 

stages ~>k. Since the complex X.(2 ~ is Fredholm, the space 

ker dk(2~ dk-1(2 ~ 

is finite-dimensional, and one can choose elements xl .... ,xm E kerdk(2~ forming a 

basis of this space. Since the complex ,('.(2) is uniformly exact at the (k+ 1)st stage, 

applying Corollary 1.2, one can construct continuous functions xj(2), j =  1 .. . . .  m, with 

values in X k ,  such that dk(Z)xj(2)----O and xj(2~ Put Hk=C m and denote by x(2) the 
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map from Hk to )/'k, determined by the functions xt(2) .....  xm(2), and let ak(2), tp,(2) be 

the projections of x(2) on Hk+l and Xk. Now the complex H.(,~)={Hi, ai(2)) and the 

morphism of complexes q~.(2)= {q~k(;t)} are defined also for i=k, and it follows from the 

construction that q~.(2 ~ is a quasi-isomorphism at the stages ~>k. IfXk is the first non- 

zero stage of the complex X.(;t), then we put Hi=O for i<k. Then q~.(2 ~ is a quasi- 

isomorphism at all the stages. 

Let ~.(2)=K. oqL(2), and let 9(2) be the cone of the morphism ~p.(2): H.(2)---~ Y.(2). 

Let/~.:.8.(2)--~I7".(2) be the morphism of complexes, determined by the morphism K. 

and the identical map of H.0.) into itself. Since K. is a uniform quasi-isomorphism, K. 

is also. Applying the assertion proved in step 1, we obtain that X.(,;t) is uniformly exact, 

i.e. q~.(2) is a uniform quasi-isomorphism. 

w 2. Koszul complexes 

In this paragraph we shall describe a construction of an infinite-dimensional free 

resolution of a coherent sheaf in C n, using the notion of  Koszul complex. 

Denote by An the free anticommutative algebra with n generators s~ .. . . .  sn, and by 

A~ the space of all its homogeneous elements of degree p. Let a=(a~ ..... an) be an 

n-tuple of elements of a commutative algebra A. Recall that a Koszul complex for the 

n-tuple a in A is the complex K.(a,A)={Ki(a,A), di}, where Ki(a, A)=Nn| and 

di:Ki(a,A)-->Ki+l(a,A) is the operator of exterior multiplication by the element 

Ein=l ais r If X is a linear space and a=(a~, ...,an) an n-tuple of commuting operators, 

acting in X, then a Koszul complex for the n-tuple a in X will be defined as the complex 

K.(a,X)=K.(a, A)~AX, where A is the algebra of operators, generated by the opera- 

tors of a. For our purposes, it will be useful to recall the inductive definition of the 

Koszul complexes. If the set a consists of only one operator a~, then K.(a, X) coincides 
a I 

with the complex0-->X-->X--~0. Let a'=(al ..... an-O, a=a'U {an} be sets of commut- 

ing operators. Since a,, commutes with the operators of the set a ' ,  the multiplication by 

an determines an endomorphism of the complex K.(a', X). It is not hard to see that the 

complex K.(a, X) coincides with the cone of this endomorphism (up to a change of 

enumeration). Let a, b be sets of commuting operators in X and bca. Then the 

inductive construction shows that there exist a natural embedding of K.(b, X) in the 

complex K.(a,X) and a natural projection of K.(a, X) on K.(b,X). If there exists a 

commutative n-tuple Pl . . . . .  Pn of operators in X, which commute with the operators of 
n ~ . a, such that ~i=lPiai-I, then the complex K.(a, X) is homotopically trivial. 
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Let 2=(21 ... . .  2n) be a point of C n. Denote by K.(a,X)(2) the Koszul complex for 

the n-tuple of operators a-;~I=(al-21I ... . .  a,-~.nI). This parametrised Koszul com- 

plex was used by J. L. Taylor in [I1] in his definition of joint spectra of several 

commuting operators. I f X  is a Fr6chet space, the complex K.(a, X)(2) is a continuous 

(and holomorphic) complex of Fr6chet spaces of C n. 

Let X.(~)= {Xi, di(~)} be a continuous complex of Fr6chet spaces on the domain U 

and a=(al .. . . .  an) be an n-tuple of commuting endomorphisms of the complex X(~). 

(This means that for each i, ai = {ai, j}j= 1, ai, j are continuous linear operators, acting in 

the space Xj, and ail,j commutes with ai2j.) Then each differential dj(~) induces a 

morphism of complexes d~,.(~): K.(A, X 2) (2)--oK.(a, Xj+ l) (2). Denote the parametrised 

bicomplex constructed in this way by K(a, X.)(2,~), where (2,/0 E Cn• U, and let 

KX.(a) (2,/t) be the corresponding total complex. 

LEMMA 2.1. Suppose that X.(IZ) is uniformly exact or uniformly Fredholm on the 

domain U. Then the same is true for the complex KX.(a)(2,/z) on C~x U. 

Proof. IfX.f~) is uniformly exact on U, the assertion follows from Lemma 1.5 (b). 

If X.~) is uniformly Fredholm, one uses the inductive definition of Koszul complex 

and applies several times the assertion of step 1 in the proof of Lemma 1.7. 

Denote by M the support of the uniformly Fredholm complex X. in U and by M' 

the support of KX.(a)(4, p) in Cn• U. Let [X.(~)] and [KX.(a)(4,/~)] be the correspond- 

ing elements of the groups KM(U)--~Ko(M) and KM, (cnx U)~Ko(M'). Suppose that 

ai ,72 i l  are invertible for 12i[ sufficiently large. 

LEMMA 2.2. (a) [X.(IZ)]=[KX.(O)(2,1~)] , where 0 is the n-tuple consisting o f  zero 

operators. (In this case M'=M.)  

(b) [X.~)]=p,[KX.(a)(A,/~)], where p is the projection o f  M' on M, induced by the 

projection of  C~xU on U. 

Proof. (a) If H.(~) is a complex of vector bundles, uniformly quasi-isomorphic to X.(~), 

then KH.(O)(4, ~) is uniformly quasi-isomorphic to KX.(O)(2,/~) (see Lemma 2.1). Since 

[KH.(0)(2,/~)] coincides with the element i~[H.(2)], where i~:KMU---~(Cn• is the 

Thom-Gysin isomorphism, the assertion (a) follows. 

(b) Note that the uniformly Fredholm complexes KX.(O) (2, a) and KX.(a) (4,/~) are 

uniformly homotopic on CnxU, the homotopy being given by the complex 

KX.(ta) (2,/~), 0~<t~< 1. Let B be a closed ball in C n, such that M' c B  x M=B'. Therefore 

in the group KB,(C~x U) we have 
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[KX.(a) (2,/~)] = [KX.(O) (2,/z)] = h[X.(2)] 

and the assertion is proved. 

Now, we are able to prove Lemma 1.4. 

Proof of Lemma 1.4. We shall prove that any ~-exact complex on a domain U is 

uniformly exact. The case of an (7-exact complex can be treated in an analogous way. It 

is sufficient to consider the case when U is the product of n copies of the interval (0, 1). 

Let X be a Fr~chet space. Denote by D(U, X) the space of smooth X-valued functions 

on U, and let ai, 1=i . . . . .  n, be the operator of multiplication by the ith coordinate 

function, acting in D(U, X). Denote by K.(a, D(U,X))(t) for t=(h ..... tn) the Koszul 

complex for the operators a l - h I ,  an-tnI, and let A(t): D(U,X)~X be the evaluation 

at the point t. The first step of the proof is the following: the complex 

K.(a,D(U,X))(t) ~>) X---~O 

is uniformly exact on U. We shall use an induction by n. For n= 1, the complex 

a- t l  A ( t )  
O-..D(U,X) ~ D(U,X) ~ X---~O (*) 

is uniformly exact on the domain U=(0, 1); this follows from the fact that any smooth 

X-valued function f(s), vanishing at the point rE(0, 1), can be represented in the form 

f(s)=(s-t)g(s). In the general case, denote by U' the product of n - 1  copies of the 

interval (0, 1), U = U ' x ( 0 ,  1), a=(al . . . . .  a n _ l ) .  Note that D((0, 1),D(U',X))=D(U,X). 
As in (*), we obtain the uniformly exact complex (for tn E (0, l)) 

O-~D(tJ, X) "~ O(V,X) ~(")) D(V',X)--)O 

which induces a uniformly exact sequence of complexes on U: 

an-tnI A(t, , )  t t . _ . )  
O-*K.(a',D(U,X))(t) , K.(a' ,D(U,X))(t)---) K.(A ,D(U ,X))(t) O. 

Recalling the inductive definition of  the Koszul complexes, we obtain that A(t~) indues 

a uniform quasi-isomorphism, of the complex K.(a, D(U, x))(t) with K.(a', D(U', X))(t), 
compatible with the evaluation morphism A(t). Then step 1 of the proof is completed. 

Now, let X.(t)= {Xi, d,(t)} be an ~-exact complex on the domain U. Let a be, as 

above, the tuple of operators of multiplication by the coordinate functions in the spaces 

D(U, Xi), and denote by KD.(t) the corresponding Koszul complex, i.e. the total 
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complex of the bicomplex K.(a, D(U, X)) (t). The first step of the proof and Lemma 1.5 

(b) shows that the parametrised complexes X.(t) and KD.(t) are uniformly quasi- 

isomorphic on U. On the other hand, since all the rows of the bicomplex 

K.(a,D(U,X.))(t) are constant complexes (the differentials do not depend on the 

parameter t), and any exact constant complex is uniformly exact, Lemma 1.5 (b) shows 

that the total complex KD.(t) is uniformly exact. The lemma is proved. 

Now, we begin the construction of the main object of the paper in the case of a 

Euclidean space. Let U be a Stein domain in the space C m with coordinates Zl . . . . .  z~, 

and ~g be a coherent analytic sheaf, defined on some neighborhood of U. Denote by 

~ t h e  corresponding coherent sheaf of ~-modules: ~ =  ~ ,  here ~ is the sheaf of 

germs of smooth functions on C ". The space Fv(Af), of all sections of ~ on U has a 

canonical structure of Frdchet space. Let a=(al ..... aD be the n-tuple of operators of 

multiplication by z~ . . . . .  zn, acting on the space rv(~) .  In order to abbreviate the 

notations we shall denote the corresponding parametrised Koszul complex 

K.(a, rer(~q)) 0.) by K.(U, ~)  (2). 

ff ~ is a sheaf on the topological space M and U is an open subset of M, then we 

shall denote by ~?te the sheaf on M, associated to the present V~Fvn ~ ) .  

LEMMA 2.3. The complexes of sheaves ~?K.(U, ~) and ~K.(U,~) are quasi- 
isomorphic on C ~ to the sheaves ~ v  and ~ v  respectively. 

Proof. Denote U'=Cnx U, and let/]'=(/~1 . . . . .  ~'n) be the coordinate function on C n, 

and z=(zl,..., z~) on U. Let p and q be the projections of U' on C n and U respectively. 

Put ~f'=q*~. Then it is easy to see that the sheaf t ? F ~ )  coincides with the direct 

image p .  ~ '  of the sheaf ~ ' .  Denote by A the diagonal {(2, z): 2=z} in U', and by 

K.(A-z, ~')  the Koszul complex of the operators of multiplication by 21-zl, ..., 2~-z,, 

in the sheaf ~ ' .  Then the complex of sheaves 

K.(Z-z, ~')--, CA@~'-,o 

is exact. In fact, this follows from the fact that the complex K.(2-z, ~Tt~,)--~?a--*O is 

exact and that the sheaves t~a and ~ '  are Tor-independent on U'. It is easy to see that 

the direct image of the complex K.(2-z, ZP') under the projection p: U'---~C" is equal to 

the complex ~?K.(U, ~g) and that the direct image of the sheaf ~g'| coincides with the 

sheaf Afu. Therefore we obtain the exact complex ~K.(U,~)--,&ev--~O. Multiplying 

this complex by the sheaf ~ and recalling the theorem of Malgrange (see [8]), which 

asserts that the sheaves ~ and ~ are Tor-independent as r we obtain the 

exact complex of sheaves ~K.(U, ~SO-->~g~v--->O. 

11-878289 Acta Mathematica 158. Imprim~ le 28 juillet t987 
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Remark. Let U=VxW,  where VcC  ~, WcC" are Stein domains, and ~ be a 

coherent sheaf on U. Denote by K.(V, &o) (2) the Koszul complex of the operator of 

multiplication by the coordinate functions z, . . . . .  z, on V, acting in the space Fv(5~). 

The same arguments as above show that the complexes ~TK.(V, ~)-->at.~g--*0 and 

~gK.(V, &~ are exact, where at is the projection of U on V. 

We shall need to use for technical purposes the following generalisation of Lemma 

2.3. Let flt)=(fl (t) ..... f,(t)) be an n-tuple of continuous scalar functions on the 

interval [0, 1] and denote by K.(f(t)a-;t, U) the Koszul complex for the operators 

f i ( t )al - ; t l l  ..... f,,(t)a~-;t~l in the space Fv(&q) defined on C"x[0, 1] (here, as above, 

a is the n-tuple of operators of multiplication by the coordinate functions, and ;t~ are 

coordinate functions on C"). Denote by OK.(f(t)a-;t, U) (resp. ~K.(f)t)a-;t, U)) the 

complex of sheaves of all sections of this complex, which are holomorphic (resp. 

smooth) with respect to ;t and continuous with respect to t. Denote by ~r162 the sheaf 

over the space Ux [0, 1], such that the sections of this sheaf over a subspace of the type 

Vx (a, fl) are all continuous vector-functions on (a, fl) with values in the Fr6chet space 

Fv(~). Replacing ~ by ~Lr we obtain a definition of the sheaf ~ .  Denote by 

p: U x [0, 1 ]--,C"x [0, 1 ] the map, determined by the formula 

P(;tl . . . . .  2., t)=(fl(t)21 ..... f,,(t) 2., t). 

LEMMA 2.3'. The complexes of  sheaves 

~K.(f)(t)a-2, U)--.p.qL~q~---->O and ~K.(f(t)a-A, U)--.p.qg~g~--->O 

are exact on C~x[0, 1]. 

The proof is the same as that of Lemma 2.3. We need only to remark that if we 

denote by A the subspace of U' x[0, 1], defined by the equations f(t)z;=2i, i= I . . . . .  n, 

and by r the sheaf of all functions on /~, holomorphically depending on 2, z and 

continuously on t, then ~ is homeomorphic to Ux[0,  I], ~| is isomorphic to ~ ,  

~a|162 to cr and the natural projection of A on Cnx[0, 1] coincides with the above 

defined map p. 

Let U be an arbitrary domain in C n, .~a coherent sheaf on U, and let ~8={Ui}, iEI  
be an open bounded locally finite Stein covering of U. As usual, for a given finite subset 

a=(il ..... ik)Cl denote [al=k, Uct=Ui, nUi~, Ck(U,~,~=~lal=kFua(.~), and let 

C.(U, ~3,&~ ~3,&~ 6k) be the standard cochain complex of the covering ~ .  

Let z~ .. . . .  z,, be the coordinate functions in C ~. Then the operators of multiplication by 
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zl .....  zn act as endomorphisms in the complex C.(U, ~8, ~) .  The corresponding Koszul 

complex on C n will be denoted by KC.(U, ~3, ~)(;t). 

LEMMA 2.4. The complex of sheaves ~?KC.(U, ~ ,  ~ is quasi-isomorphic to the 

sheaf ~ on U. 

Proof. Denote by cO.(U, ~3, ~ )  the canonical alternating resolution of ~ relative to 

(see [6], w chapter B). We have qgk(U, ~ , ~ L P ) = ~ ) l a l = k ~ U  �9 L e m m a  2.3 shows that 

the complex ~TKC.(U, ~3, ~)  is quasi-isomorphic to cr ~ ,  .~?). On the other hand, the 

complex ~r ~ , ~ )  is quasi-isomorphic to ~ ,  and the assertion of the lemma is 

proved. 

Note that the same arguments imply immediately that the complex of sheaves 

~KC.(U, ~ ,  ~)  is quasi-isomorphic to the sheaf ~ .  

COROLLARY 2.5. The complex KC.(U, ~ , ~ )  is ~- and ~-Fredholm on the do- 
main U. 

Let ~={Ui},  iEl, and ~'={U~,}, i' El '  be two locally finite Stein coverings of the 

domain U such that ~ is a refinement of ~ ' ,  and let 0: I---~I' be a refinement mapping 

(i.e. UicUb~o for any iEl). Denote by C.(O):C.(U, fS,&~ the corre- 

sponding morphism of cochain complexes, and by cr qg.(U,~3',~---~cC.(U, rS,~) 

the corresponding morphism of complexes of sheaves. Then the morphism C.(O) 

induces a morphism of the parametrised Koszul complex 

KC.(O): KC.(U, ~' ,  &v) (2)--.>KC.(U, ~ ,  c.~ (2). 

It is easy to see that the corresponding morphism ~KC.(O) of the complexes of sheaves 

of holomorphic sections is associated with the morphism cr and, therefore, is a 

quasi-isomorphism. The same is true of the morphism ~KC.(O) of sheaves of smooth 

sections. Then we obtain: 

COROLLARY 2.6. The morphism of  complexes KC.(O) is an ~7- and an ~-quasi- 
isomorphism on the domain U. 

Now we are able to define the Riemann-Roch invariant for coherent sheaves on 

open domains in C". Namely, if ~ is a coherent sheaf on U~C",  we put ~tv(~) = 

[KC.(U, fS, .~)(Z)], where ~3 is a Stein coveting of U. Corollary 2.6 shows that at.,(~) 

does not depend on the choice of ~ ,  and the functorial property of this invariant is a 

simple consequence of Lemma 2.2 (b). 
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w 3. Proof of the Riemann-Roeh theorem 

If we attempt to reproduce the construction of the previous paragraph in the case of an 

arbitrary complex space, we meet two principal obstacles. The first is that, in general, 

complex spaces are not embeddable in complex manifolds. The second is that there is 

no global coordinate system on a general complex space, and it is not clear how to 

combine the Koszul complexes corresponding to the various local coordinate systems. 

In order to overcome the first obstacle, we shall introduce a class of embeddings of 

complex spaces in smooth manifolds, which are suitable for our purposes. 

Let M be a complex space. As usual, a triple (W, qg, U) will be called a chart on M, 

if W is an open subset of M, U is a bounded Stein domain in C n, and ~: W---~U is a 

closed holomorphic embedding. A locally finite covering ~ =  {W i}, i E I, will be called 

an atlas on M, if any Wi is an element of a chart (Wi, cpi, Ui). Likewise, for any finite 

subset a=(il . . . . .  ik)cI there exists a chart (Wa,~a, Ua) with Wa=Wi, N...N Wi,, rp~ 
a restriction, for instance, of q)i,, and U~ a suitable open subset of Ui,. 

For any chart (W, rpi, Ui) there exists an ideal Ji in the sheaf of germs of holo- 

morphic functions O~, on Ui such that tp*defines an isomorphism between the factor- 

sheaf r and the restriction ~w, of the structure sheaf OM Of the complex space.M 

to the open subset Wi. Take i, j E l  with Wi, j=win W j . ~ ,  and let UJi be an open subset 

of Ui such that cpi-l(u~)=Wid. The holomorphic map h: U~---~Uj will be called a 

connecting hoiomorphic map, if h* maps Jj. in Ji, and the induced map of ~vj/Jj in 

~Tv/Ji coincides with the isomorphism (~/*)-Io ~*. It is easy to prove that a connecting 

holomorphic function always exists, and if h, h' are two connecting functions, then all 

the components of the difference h - h '  (considered as an n-dimensional vector-function 

on U~) belong to the ideal Ji. 
Fix an atlas ~3={(W, qgi, Uj)}, iEl,  on the complex space M. For any iEI  denote 

by ~vi the sheaf of germs of smooth functions on Ui, by ~Ji the idealJi| ' ~gv, in ~gv,, 

and by ~w, the sheaf ~t~/~gJi. It follows from Malgrange's theorem that the sheaf ~,Ji 

consists of germs of all functions of the type E'm=~fm'g m, where f~ .. . . .  f ,  are the 

generators of the sheaf Ji and gl . . . . .  g~ are arbitrary smooth functions on Ui. Denote 

by ~u, the direct sum in ~t.,, of its subsheaves ~Tt~, and ~Ji. Then ~v, is a sheaf of 

rings, and f~/i is an ideal in (~v,. We have r 

Definition. Let (W, (p, U) and (W', (p', U') be two charts on M with W=W'.  The 

infinitely smooth map ~/,: U--~U' will be called admissible, if ~p* transfers r in 

(?v, fgJt~, in IgJv, and the induced map of (Tw/~Jv, in (Tv/~Jv coincides with the map 
(q~.)- 1 o ((p')*. 
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Equivalent definition. The map ~p is admissible if for any holomorphic connecting 

function h: U--->U' all the components of the vector function ~p-h belongs to the ideal 

~Ju. 

In fact, suppose that ~p satisfies the first definition. Then all the components of the 

vector-function ~p belong to ~v and therefore ~p can be represented in the form 

~p=h+g, where h is holomorphic and g has the components from K/t:. It is easy to see 

that h is a holomorphic connecting map. Conversely, suppose that ~p has the form 

~p=h+g, h and g as above. Then all the components of ~p belong to (~v and therefore ~p* 

maps (7 v, in ~v. In order to prove that ~p satisfies the conditions of the first definition, 

it is sufficient to show that ~p* maps ~Ju' in K/v. Malgrange's theorem shows that it is 

sufficient to check this at the level of formal series. L e t f b e  one of the generators of 

Jr:. Then the formal series of the difference f o  ~p-fo h belongs to the ideal, generated 

by the formal series of the components of g=~p-h, and therefore to ~Jt:. Since h is 

connecting, then foh  belongs to Jv and fo~p belongs to ~gJu, which proves the 

equivalence of the definitions. 

Definition. An almost complex embedding of the complex space M in the smooth 

manifold ~t is determined by an atlas ~ on M, a closed embedding ~: M---~h~t of the 

underlying topological space of M in bY/, and a set of C~176 ~Pi: Ui---~ Ui of 

Ui to open subsets Oi of M such that  0;Iw,= lw, and for any i,jEI the connecting map 

~ i , j = ~ j  -10/] ) i '  defined on/ptTl((.7/i f] ~f]j), is admissible. 

It is easy to see that in that case the system of sheaves ~pi.(dU;), defined on 

Ui, i E I, determines a globally defined sheaf of rings on ~t, which will be denoted by 

~ .  In the same way, the system of sheaves ~Pi.(~Ji) determines a globally defined 

sheaf K/M of ideals in 6~.Then the factor sheaf t~-u/K/M is isomorphic to the structure 

sheaf t7 M of the complex space M and the isomorphism is given by the mapping 0. .  

Another important sheaf connected with an almost complex embedding is the sheaf 

~M=~-u/~JM, and the mapping ~p~. defines an isomorphism between ~w, and the 

restriction of ~M on (-]i. 
Let 0: M---~t be an almost complex embedding. We shall prove that the tangent 

bundle T(M) of AT/ has an almost complex structure. In fact, it follows from the 

definition, that for any i,j we have a~pi, j(2)=0 for all points 2 E cp,(Wi). Therefore, the 

maps d~Pi transfer the complex structure from T(Ui) to T((.li)le~ono,, and determine a 

globally defined complex structure on the restriction of T(.~t) to Q(M). It is easy to see 
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that this complex structure can be extended to some neighborhood of o(M) in 37/. 

Shrinking ~t, if it is necessary, we obtain the assertion. 

Definition. Let (Q, ~ ,  {~Pi}) and (Q', ~ ' ,  {~p[,}) be two almost complex embeddings 

of M in the manifold J~ with O=Q'. We will say that these embeddings are equivalent, if 

the set (Q, ~ tJ ~ ' ,  {~pi} tJ {~pi,}) is again an almost complex embedding. 

One can prove that two almost complex embeddings are equivalent if and only if 

they determine the same sheaves ~7~t and ~Ju on hT/. 

Let us note some particular cases of equivalence of almost complex embeddings. 

- -The equivalence class of  almost complex embedding does not depend on the 

choice of the covering (Wi}. More precisely, if the covering {Wr) of M is a refinement 

of {Wi}, and q~'i, U'i are the corresponding restrictions of r and U;, then we obtain an 

equivalent embedding. 

- -The equivalence class of  an almost complex embedding depends only on the 

germ of the manifold /14 near its closed subspace p(M). In fact, if we replace the 

domains Ui by arbitrary small neighborhoods of q~,~Wi) in U~, and the diffeomorphisms 

tpi by their restrictions, we obtain an equivalent embedding. 

- -Le t  (h,-} be a set of  admissible diffeomorphic mappings of the domains Ui onto 

themselves. Then, replacing ~p; by ~pi o h;, we obtain an equivalent embedding. 

To prove this, we shall use the following 

SUBLEMMA. Let (W, cp, U) be a chart, and suppose that h is an admissible 

diffeomorphism o f  U into itself. Then the inverse map h -1 is admissible also. 

Proof. Consider first the case when W is regular. One can assume that W is 

embedded in U as the coordinate subspace zi =. .. zk=0. The components of the map h 

have the form: 

h, z) = zj.ao z), i--1 .. . . .  k, 
jffil 

k 

h:~z)~- z i d - s  zj.bu(z), i= k-bl . . . . .  n, 
j=l 

where ao~z), bo~z) are smooth functions and the matrix {ao<z) } is non-degenerate near 

W. Solving the equations with respect to zi, we obtain the statement. 

In the general case denote by f~ . . . . .  fk the generators of the corresponding ideal J. 

Then the components of h have the form: 
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k 
h,(z) = zi+ 2 f j ( z ) ' a C z ) ,  i= 1 . . . . .  n, aCz) smooth. 

j= l  

Put U'= U x B ,  where B is a sufficiently small open ball in C k, and denote by (z, 2) the 

coordinates on U'. Let J '  be the ideal in 6u,, generated by the functions fj{z)-2j, 

j = l  .....  k. Then the space W', determined by ~Tw,=~?u,/J ', is regular. Denote by 

h'(z, 2) the map from U' to U', determined by the formula: 
k 

h;(z, 4) = Zi-{-x2(fjj(Z)-2j) aij(Z), i = 1 . . . . .  n, 
j= l  

h'n+m(z, 4) = 2 m, m = I . . . . .  k. 

Then h' is a diffeomorphism near Ux {0}, and is admissible with respect to W', and 

therefore its inverse (h') -~ is admissible. Since h -~ coincides with the restriction of 

(h') -~ to Ux {0}, then it is admissible also. 

Let O: M--oh~t,Q': M--->M' be two almost complex embeddings with corresponding 

atlases ~8, ~8' and corresponding mappings ~Pi, *P~'. 

Definition. The infinitely smooth map h: 2~t---,~t' will be called a morphism from 

the almost complex embedding 0 to the almost complex embedding Q', if for any 

i E L i ' E I '  the map 0p[,)-loho,pi is an admissible map from the open subset 

~pi-l(Oif'] 0~,)  of Ui to U~,. 

Remark 1. If h is a morphism of almost complex embeddings, then the morphism 

of sheaves h* sends the sheaf (?~r, to {TM and fgJ,~ to g/M. 

Remark 2. For an arbitrary pair of almost complex embeddings o:M--->2(/I, 

O': M---~/~t' there exists a morphism of almost complex embeddings h: M--->M'. In fact, 

let ~8={(Wi, cp,, Ui)}, {~0i} , iE l ,  and~3'={(W;,,q0i',, U;,)}, {lp;,}, i 'EI ' ,  be the corre- 

sponding atlases and diffeomorphisms. Without loss of generality one can assume that 

I '=I  and Wi=W ". Put Vk=t,lik=l (.1 i. We shall assume that we have already defined a 

morphism hk: Vk--->/~ t' of almost complex embeddings, and we shall show that it can be 

extended to Vk+~. L e t f a n d  g be two non-negative infinitely smooth functions, defined 

on Vk+l, such that f = l  on some neighborhood of Vk+l\(Jk+l ,  g = l  on some 

neighborhood of V k + l \ V k ,  and f + g =  1. Put f=lp*k+lf and ~=~P~+l g. Denote 

//= OPt+ l)- 1 o hi, o g-'k+ 1. 

Then// '  is an admissible mapping from - i  - ~Ok+i(Uk+z n V~) to U~+I. Let//" I~e an arbitrary 

admissible mapping from U~+l to UI,+~. Then it is easy to see that the mapping 
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/~=f./~'+~./~" is also an admissible mapping from Uk+l to U~,+I. Define the mapping 

hk+l on Ok+1 by the formula hk+l=~Pk+lO/~O(~pk+0 -1, and on Vk+l\Ok+l by 

the formula hk+~=hk. Then it is easy to see that hk+~ is a smooth mapping and defines 

a morphism of almost complex embeddings from Vk+t to M'. 

Definition. The atlas ~'={(W~, q~, U~)} will be called a modification of the atlas 

~={(Wi, cPi, Ui)}, if for any i we have W~=Wi and there exists a closed regular 

embedding ei: Ui--+ U~ such that ei is a holomorphic connecting map. 

Definition. The almost complex embedding Q': M--->37/' , corresponding to the atlas 

~ ' ,  will be called a modification of the almost complex embedding ~: M--->A~t, corre- 

sponding to the atlas ~ ,  if the atlas ~ '  is a modification of the atlas ~ ,  and there exists a 

regular embedding of C~ e: h~--->M', such that for any i ~I  the diagram 

ei 
vi  , ~ 

~i] e l ~  

is commutative. 

Denote by (~.,/z) the coordinate system on U~, where 2 = (~.1 .. . . .  ~.n),/~ = (Ul .....  /~t,), 

n=dim Ui, k+n=dim U~. Without loss of generality one can assume that e,(Ui) coin- 

cides with the subspace of U~ defined by the equation/~=0. Denote by pi the projection 

of U~ on ei(Ui). If the ideal Ji in the ring t~u, is generated by the functions fl  .... .  fro, 

then the ideal J~ in tTu~ is generated by the functions P*fl ..... p*fm,/Ul . . . . .  /~k, and 

therefore the same functions generate the ideal ~J[ as an ~v7module. 

Let the almost complex embedding Q':M--->,~I' be a modification of the almost 

complex embedding •: M--->A~t, and e: ~t-->A~t' be the corresponding embedding. It is 

easy to see that the complex structure of the tangent bundle T(lq/) of M coincides with 

the complex structure, induced from T(2(I') (at least, at the points of Q(M)), and, 

therefore, the conormal bundle T(.~I')/T(~ of e07/) in A~t' has a complex structure at the 

points of o(M). The following assertion shows that the equivalence class of a modifica- 

tion is uniquely determined by this bundle. 

LEMMA 3.1. (a) Let E be a complex vector bundle on M, and Q:M-->3J be an 
almost complex embedding. Then there exists a modification Q' : M-->2~I' of Q such that 
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the restriction of  the conormal bundle T(I(I')/T(I~ on o(M) is isomorphic to E. 

(b) Suppose that the conormal bundles, corresponding to two modifications of  a 

given almost complex embedding, are isomorphic as complex vector bundles on M. 

Then these modifications are isomorphic. 

Proof. (a) One can extend E up to a complex vector bundle on ~t. Let 

Ai: ( ] ixCk~E be a trivialisation of the vector bundle E on the domain t_);, and let 

Ai, j(A)=A-floAi be a corresponding connecting function. Then Ai, j(;t) is a smooth 

function on UifqOj with values in GL(k,C). Denote U~=UixCk, W~=Wi and 

q0~=q~i• Then the atlas 23'={(W~,q~,U~)} is a modification of the atlas 

23={(Wi, cpi, Ui)}. As holomorphic connecting maps for the atlas 23' we can take 

qJ;,j(2, p)=q0;,j(2) • {0}, where ~t)i,j: U~ ~ U i are holomorphic connecting maps for the 

atlas 23, and ~. is a point of U~ and p=(~l  .. . . .  Pk) a point of the space C k. As it was 

pointed out above, for any i the ideal J;~ ~Tt~, is generated by the generators of the ideal 

Ji and by the coordinate functions/~ .. . . .  Pk. Now, denote by h4' the total space of the 

vector bundle E, and let e: M ~ M '  be an embedding of M as a zero section in M'. 

Define the maps ~p;: U;---~I' by the formula lp[=Aio(lPi• We have only to check 

that the connecting maps ~p;,j=0pj)-I o ~0; are admissible. In fact we have 

~) it, j( A , ILl) = ~3 i, j( ~ ) X ( A i,j( ~13 i( A ) ) , /,t ~ , 

and therefore 

~13~,j(~, ILl) --qg;,j(~,,/L$) = [/ffi,j(/~) X (Ai , j (2) , / z  ) - ~i.j(Jl,) • {0} ] + [l~i,j(~t) • {0} - ~oi,j(2) • {0 ) ] .  

Both the summands on the right are vector-functions with components, belonging to 

~,J[. Therefore, since q0[,j are admissible, then so are ~p;,j. 

(b) Let 0": M--,h~t" be the modification of the almost complex embedding 0: M--*M, 

constructed in the proof of (a), and 0': M---~M' be another modification of this almost 

complex embedding with conormal bundle, equal to E. Let 23' and {~p~} be the atlas and 

the set of local homeomorphisms, corresponding to Q'. We shall construct an isomor- 

phism of almost complex embeddings h: )fl'---~)(/l". First, using the same argument as in 

Remark 2 above, one can construct a retraction from ~t' to hT/, i.e. a morphism 

p: M'--*,~ of almost complex embeddings such that poe= Id~t. Denote by /~i the 

retraction from U[ to ei(Ui) induced by the retraction p, i.e./~i=~pT 1 op o ~p~. The map 

/~i is admissible. Define the map hi: U~---~U~ by the formula h,(;t,k0=(/~i(2,/~),/~). The 

map hi is equal to the identity on e,(Ui) and sends the fiber of Pi over 2 0 to the 

coordinate subspace {A=;t ~ and is therefore a diffeomorphism (in a neighborhood of 
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ei(Ui)). Then h~ 1 is an admissible diffeomorphism. Now we can replace ~p~ by 

~=~p~oh~ -1. Then ~ sends any subspace {2=2 ~ of U~ to the fiber of the map p over 

the point ~i(2~ 

One sees from the conditions of the lemma that one can fix an isomorphism F of 

complex vector bundles on M between E and the subbundle T(p) of the tangent bundle 

to h~t' at the points of e(.~t), consisting of the tangential vectors of the fibers of the map 

p. Define the trivialisations A~: Ui• by the formula A~=F-lo(d~,~)lg=o. (We 

here identify Ui• k with the normal bundle T(pi) to e,(Ui) in U~.) Consider U~ as a 

neighborhood of Uix{0} in UixC r. Then A-[loA~ is an admissible diffeomorphism 

from U~ to U;/'. Put hi=vfoA?loA~oOp') -1. Then/~i is a morphism of almost complex 

embeddings, acting from O~ to ~"  The differential of/~i at the points of e(Oi) induces a 

map F -1 of tangent bundles. For any 2E O~fl Oj the images /~i0.),/~(2) belong to the 

same fibre of the fibre bundle 37/". Let ~-}, i E I be a smooth partition of unity on A:/, 

subordinated to the covering 0~. Put h=Eietfi'li i. Then h is defined on the whole of~t ' .  

The differential of h again induces a map F-~ of tangent bundles and therefore h is a 

diffemorphism near e(hT/). It follows from the sublemma that for any i the map 

(vd~)- loho~ is an admissible diffeomorphism as well as its inverse. Therefore h and 

h -1 are morphisms of almost complex embeddings, which proves the part (b). 

Now we are able to prove the existence and uniqueness (in an appropriate sense) 

of almost complex embeddings. 

LEMMA 3.2. (a) Any complex space with finite atlas has an almost complex 

embedding in some Euclidean space R 2N. 

(b) I f  Q and Q' are two almost complex embeddings of the complex space M, then 

some modification of Q is equivalent to some modification of p'. 

Proof. First, note that if Q: M--->A~t is an almost complex embedding, then there 

exists a modification Q': M---~A~t' of Q such that A~t' is diffeomorphic to a domain in R 2N 

and the tangent bundle of ~t, is trivial as a complex bundle. In fact, denote by E the 

tangent bundle of AT/, and choose a complex bundle E' on/~t such that E~)E' is trivial as 

a complex bundle. Then for suitable m and N there exists a closed regular embedding 

i: AI--->R 2N such that the normal bundle of i(/17/) is isomorphic (as a real bundle) to the 

direct sum of E' and the trivial bundle ~]txC m. Denote by/~t, the modification of 

with conormal bundle equal to E'~(/ktxcm). Then/~t' is diffeomorphic to a neighbor- 

hood of i017/) in R TM and T(h~t') is trivial. 

Let us prove the statement (b). Suppose that Q: M--+/kt and Q': M--~)PI' are almost 

complex embeddings, ~={(Wi, cPi, Ui)} and ~'={(Vr q0', U')} the corresponding at- 
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lases and ~0 i and vdi' the corresponding local diffeomorphisms. As above, we can assume 

that I=I', and Wi=W~. Denote by ~3" the atlas {(Wi, tp",~3}, where W[=Wi, 
o _ _  ? ! t epi-cpixcpi, ~ =  Ui• Ui, by 0" the embedding of M in the manifold )k]t"=Mxh~t', defined 

by Q"=OxO', and by ~p,'-' the diffeomorphism ~p;x~p~ from ~ ' t o  ,(/". It is easy to check 

that tg" is an almost complex embedding of M in M". We shall prove that O" is a 

modification simultaneously of • and Q'. Choose for any i E I a connecting holomorphic 

mapping h,-: U~--*U~, and a morphism of almost complex embeddings h:291---~)(,1' (see 

Remark 2 above). Denote by el: Ui----)U'i'--Ui• and e : ~ l ~ ' = l f l x ) ( l '  the regular 

embeddings, determined by the graphs of hi and h respectively. We have only to assure 

the relation of commutativity ~O~oei=eolPi; in order to obtain this relation, we shall 

modify the mappings ~0". Define the mapping /~: Ui---~U~ by the formula hi = 

(~0~)-1o h o q) i. Then/~i is admissible and therefore all the components of the vector- 

function t~i(2)-hi(2) on Ui belong to ~Ji. Denote by 2 the coordinates on Ui, by p the 

coordinates on U~, and by (2,/~) the coordinates on If/'. Define the mapping si: ~:----~U'; 
by the formula si(2, ~)=(2, I~+i~i(2)-hi(2)). Then si is an admissible diffeomorphism and 

maps the graph of  hi on the graph of/~i. Replacing ~0" by ~"=q,"osi, we obtain the 
- T r i O  ~ 0 - -  ~ t t  relation ~o~ e~-e ~ .  Hence, is a modification of Q. The same reasons show that ~" 

is a modification of p'. Statement (b) is proved. Note that the conormal bundle of e(~/) 

in h;/" is isomorphic to the tangent bundle of h~t'. 

Proof of(a). Let M', M" be open subsets of the complex space M, and suppose that 

Q':M'---~;/', Q":M"---~hT/" are almost complex embeddings. We shall prove that the 

space M"=M'  U)!4" has an almost complex embedding in a smooth manifold hT/" We 

can suppose that the tangent bundles of M' and ,~/" are trivial as complex bundles (in 

the opposite case we can make suitable modifications). Fix the open subsets N'  ch~', 

N"c)9/" such that N'flQ'(M')=p(M'NM"), N"f~O"(M"3=p(M'f~M"). Then, as in the 

proof of (b), the almost complex embedding ~' xo": M' tq M"--~N' xN" is a modification 

of both ~': M' fl M"---~N' and ~": M' f~ M"--~N". 

The conormal bundle of N'  in N' xN" is trivial and can therefore be extended up to 

a bundle on ~]t'. Denote the corresponding modification of ~t, by N'.  Then there exists 

an isomorphism a(Z) of almost complex embeddings from N' • to an open neighbor- 

hood of the image of M' n M" in ~". Similarly, one can construct a modification )~/" of 

)17/" and an isomorphism ~(2) from N'  xN" to an open subset of ~/". Denote by ,~/" the 

manifold, obtained from the disjoint union of N'  and ~/" by identification of all pairs of 

points ; t ~ / V ' , 2 2 ~ / " ,  satisfying a-~(20=fl-~(22). It is easy to see that the natural 

embedding of M ' = M '  tJ M" in 37/" is an almost complex embedding. It remains to prove 

that the smooth manifold ~]~ is Hausdorf. In fact, it is easy to see that any two point, 
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belonging to the image of M, can be separated. Then, replacing 57/by a sufficiently 

small neighborhood of the image of M, we obtain, a Hausdorf manifold. 

Let ~={(Wi, q~i, Ui)}, i=1 .. . . .  s, be an atlas on M. Put Mk=W~ U...U Wk. Sup- 

pose that Mk has an almost complex embedding in the manifold AT/k. Then we can put 

M'=Mk, AI'=AIk, M"=Wk§ hYf'=Uk+l, and the above considerations show that 

Mk+~ has an almost complex embedding also. Using induction on k, we complete the 

proof of the statement (a). 

In the rest of the paper we shall assume that the complex space M has a finite atlas, 

The general case can easy be obtained by passing to the limit. 

Let 0: M--->M be an almost complex embedding. As it was pointed out above, the 

maps 0p?~) * determine isomorphisms between the restrictions 6w, of the structure 

sheaf (TM of M and the sheaf tT-ff~J M on ~t, and between the sheafs ~w= ~vi| 
and the sheaf ~M= ~-u/~JM. More generally, let ~ be a coherent sheaf of ~7~rmodules 

on the space M, and denote by ~ / the  coherent sheaf (tpl),(L e) on Ui. Note that J; has 

zero action on ~i and therefore ~ / c a n  be considered as an ~tl-module. The maps 

(~pcl), then define isomorphisms between the sheafs ~,. and the sheaf Q,(&e) on Ui. If 

we denote by ~.~ the sheaf ~M|  h T/, then the maps (~pT1)*'also define 

isomorphisms between the ~v-module ~ .  and the restriction of the 

~t-module ~ZPon U i, which agree with the action of (~0~-l) * from ~vl to ~M. 

In the next pages, for any coherent sheaf .~ on M, we shall construct an ~- 

Fredholm parametrised complex of Fr6chet spaces on ~t such that the corresponding 

complex of sheaves of germs of smooth sections is quasi-isomorphic to the sheaf ~ .  

Without loss of generality we can assume that M is a domain in R 2n and that the 

diffeomorphisms ~Pi: Ui--* Ui can be extended to some neighborhood of t)i in C ~. Then 

the diffeomorphism ~71: ~fi-'-)Ui can be extended up to a smooth map ri: h~t---~C ~ such 

that rTl(6"i)=U~, Recall that from Lemma 2.3 we have the exact complex of sheaves 

~K.(Ui, ~.)-~(Zei)v,--~O on C n. Denote by K.(Oi, ~ (2) the smooth complex of Fr6chet 

spaces on/~t which is obtained as an inverse image of the complex K.(Ui, ~i) (2) on C ~ 

via the map ri. Then o n / ~  the complex of sheaves ~gK.(Oi, ~)--~(~g~g)v,--*O is exact. 

More generally, for any finite subset C t = ( i l  . . . . .  ik)~I one can define in the same way 

the parametrised complex K.(O~, &~ on ~t such that the complex of sheaves 

~gK.(U~,~)---~(~g&a)oo--~O is exact (we put /-)~=/-)i~ n... n Ui). Now we shall describe 

an algebraic construction, which will be used in order to overcome the second obstruc- 

tion, i.e. to attach all the complexes K.(O~, &~)(2) together. 

Let I be a finite set of indexes and S a simplicial scheme of subsets of / .  Recall that 
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a simplicial system of rings ~ls on S is a system of rings A~, a E S, and ring homomor- 

phisms R~,~:A~---~A8, defined for any pair a, flES, ac f lc l ,  such that for any triple 

a,~,TES, a~flc),cI ,  we have Rae=R~,#oRsy. We define a simplicial system of ~s- 

modules to be a system of A~-modules L~ and homomorphisms r~,8: L ~ L  8 lying 

over the ring homomorphisms Ra, 8, and satisfying the equality ra, y=r~, 8 o rs, ~,- 

Now we shall define the notion of simplicial system of complexes of modules. Let 

~s  be a simplicial system of rings, and let there be given for any a E S a complex 

L.,~={L,~,~,dm, a} of Aa-modules. Denote by L.,k={Lm, k, dm, k} the complex 

L.,k=~l~l=kL.,a. Suppose that for any two subsets a and fl of I such that 

a, fl E S, acfl and I~l-lal=n>0 there exists a homomorphism 

rm, a, 8: Lm, a---~Lm-n+l,fl 

lying over the ring homomorphism Ra, a. Put s and let dp: s163 be 

the operator determined by the set of homomorphisms rm, a,a with m+ lal--p and by the 

differentials of the complex L .... 

Definition. The system {L.,~, r,~,~,8 } will be called a simplicial system of 

complexes, if for all p we have dpodp_l=0. The complex/, .={s dp) will be called 

the cochain complex of this system. 

~, L' ' Let {L., r,,,, ~,8} and { . ,  ~, r,,,, ~,8} be two simplicial systems of complex of 

~ts-modules. Suppose that for any pair a, fl E S, such that acfl and I 1-[al=n >0, there 

is given a homomorphism qgm, a,8:Lm, a-.-~L'm_n, 8 lying over the ring homomor- 
phism Ra, a. 

Definition. The system of mappings q0m, ~, 8' will be called a morphism from the 

simplicial system {L.,~,rm,~,8} to the simplicial system {L~,a,r'm,a,8}, if the 

corresponding mappings ~p: Lp--~Lp determine a morphism from the complex L. to the 

complex L~. 

LEMMA 3.3. Let S be a simplicial scheme of subsets of  the finite set I, ~s  be a 

simplicial system of rings on S, s163 be a simplicial system of ~ls-modules, and 

let for any a E S the complex L., ,~= {Lm, ~, din, ~}, m<-O be a free resolution of the A~- 
module ~ .  

(a) There exists a system of morphisms rm, a,~:L,~,a-->Lm-n+l,8 such that 
{L.,~, rm,~,#} is a simpliciai system of complexes, and a quasi-isomorphism g. from 
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the corresponding cochain complex s to the cochain complex ~. of  the simplicial 
system ~5~ s. 

(b) Let ~'s be another simplicial system of ~s-modules, and 

~P={~Pa}, ~P~: S~---->~" be a morphism of simplicial systems of  Ms-modules. Let L~, 
be a free resolution of ~'a and {L~,a, r' ,  a,#} be the corresponding simplicial system 

of complexes. Then there exists a morphism q~ = {r ~, ~} from the simplicial system 

{L.,a, rm, a,#} to the simplicial system {L~,a, rm,~,~}, such that the diagram of 
morphisms of  complexes 

l 
2e. , 

is commutative. 

Proof. (a) Set L.,k=~lal=kL., a and Ak=~)lal=kA~. Then L.,k is a free resolu- 

tion of the Ak-module ~k=~)lal=k~a. Let ek:L..k--->~ k be the corresponding quasi- 
isomorphism. We have to construct a series of maps rm, n,k:Lm, k-"->Zm_n+l,k+n. 
Let ~. = {s 6k} and ,4. = {Ak, Ak} be the cochain complexes of the simplicial systems 

~s  and Ms, and denote by ~ the truncated complex 0--->~s--->~s§ .... Denote by 

/~ the direct sum of all Lm, k with k~s, m~O, m+k=p. For negative s with Is[ sufficient- 

ly large we have s163 

Suppose that we have already constructed the mappings rm, n, k for all m, n~>0 and 
k>~s, such that: 

(as) Put s163 where d~: s163 is the operator determined by the map- 

pings rm, ~, k, m+k=p, k>>-s, and by the differentials of the complexes L., k. Then /:Sis 

a complex, and the series of morphisms ek, k>~s, determine a quasi-isomorphism 

Now, we shall define the mappings rm, , ,s-I such that the property (as-l) holds. 

The differential 6s-1: ~s-1--->~s can be interpreted as a morphism from the one-term 

complex ~s_~ to the complex ~ . ; t h e  cone of this morphism coincides with the 

complex ~.~-~. Using the standard construction of the covering morphism of resolu- 

tions, we can find a morphism of complexes r~.-~:L.,s_~--->s such that the  diagram 
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L.,s_t ~ s  
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is commutative. Define the mappings r,~,n,s-i (or, equivalently, the mappings 

rm,~.a with [ a l=s - l )  to be equal to the corresponding entry of the operator r,~ -~, 

multiplied by ( -1)  m. Then the complex L ~-l coincides with the cone of the morphism 

r. ~-l, and the quasi-isomorphisms es, g~determine a quasi-isomorphism from s to the 

cone of 6,_~, i.e. to the complex c~-~. Therefore, .the condition (a,_ 0 is satisfied. 

Using an induction on s, we obtain a proof of the statement (a). 

In order to prove (b), we can apply the same arguments, taking instead of the 

complex ~. the cone of the morphism of the complexes ~b.: LP.--->~'.. 

Remark 1. One sees that if the morphism ~. is a quasi-isomorphism, then the same 

is true for the morphism 9.. Moreover, one can prove that if ~. is an isomorphism, then 

9. is a homotopical equivalence. 

Remark 2. The proof of Lemma 3.2 holds without modification when Ms, &es, L., 
are systems of sheaves on a topological space; we shall need this generalisation. 

Let M be a complex space and ~ a coherent sheaf on M. Now, we are going to  

describe the construction of the Riemann-Roch invariant aM(&~ Let 0: M---~M be an 

almost complex embedding, and let ~ '  and ~M = ~TM be the sheaves o n / ~  introduced 

above. Let ~3= {(Mi, cpi, Ui)}, i E I, be the corresponding atlas on M. Denote by S the 

nerve of the covering {Wi}, by Aa, aES the sheaf ~Fwo(~M) of germs of smooth 

functions on the manifold M with values in the Fr6chet algebra Fwo(~M), and by 

Ra,#:A~--.Aa the morphism of sheaves, induced by the restriction map from 

Fwo(~M) to Fw~(~TM). We obtain a simplicial system of rings As. Denote by ~ , ,  the 

restriction g*~oo of the sheaf ~ to the open set 0~, and take the complex L., ,~ to be 

equal to the complex ~K.(Oa, ~) .  All the conditions of Lemma 3.2 are satisfied, and 

we can include the complexes ~K.(O~, Z~) in a certain simplicial system of complexes 

of sheaves. The simplicial complex of this system will be denoted by ~gKC.(M, ~3, ~'). 
In this case the mappings rm. a. a coming from Lemma 3.2, can be described more 
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explicitly. Recall that for any m, 0~<-m<_n,and a E S, the space Km(~la, ~) is a direct 

sum of (_~) copies of the space F%(&~ It is easy to see that the maps rm,~, ~ have the 

form: 

rm,~,p(2) = Fm, o,~(2)'Ro,z 

where Fm, a,a(2) is a smooth function of the parameter 2E/~t whose values are 
~ x n operators of multiplication by a matrix of dimension (m) (-m-k) (k--I/~l-lal) with 

entries in the Frtchet  algebra Fw~(~?M). Therefore, the mappings r,,, a,Z(2) determine 

a simplicial system of complexes of Frtchet  spaces, depending smoothly on the 

parameter ), E h~, whose cochain complex will be denoted by KC.(M, 23, .~) (2). One can 

see that the complex of sheaves $KC.(M, 23, ~ )  is really the complex of germs of 

smooth functions on/~t with values in the parametrised complex KC.(M, ~ ,  ~ (2). 

Remark. The mappings rm, a,# can be chosen to be independent of the coherent 

sheaf ~ on M. In fact, if we construct the maps rm, a,a for the structure sheaf tTM, 

then it is easy to show that the same maps are suitable for an arbitrary Lr 

Recall that, as was pointed out in Lemma 3.3, the complex of sheaves 

~gKC.(M, 23, ~ )  is quasi-isomorphic to the cochain complex of the simplicial system 

~ s ,  or, in other words, to the canonical resolution of the sheaf ~2~ relative to the 

covering {/);}. Malgrange's theorem asserts that the sheaf ~ZPis ~-perfect on 11~; since 

the complex ~KC.(M, 23, ~ is quasi-isomorphic to the sheaf ~ ,  this implies that the 

parametrised complex of Frtchet  spaces KC.(M, 23, ,~) (2) is ~-Fredholm on M. This 

complex is exact off the closed subset Q(M) of ,Q: therefore, as was shown in w 1, it 

determines an element aM(& p) of the group K~ ,Q\Q(M))=Ko(M). 

In order to obtain the Riemann-Roch theorem, we have to prove the following 

statements: 

LEMMA 3.4. (a) The element aM(~') does not depend on the choices involved. 

(b) / f  0--*~;-->~-->~--->0 is an exact sequence o f  coherent sheaves on M, then 

aM( ~)=aM( :~S) + aM( ~'r 
(C) I f  M is a complex manifold, and ~ a locally free sheaf,  then aM( C~) is the 

Poincar~ dual to the class o f  the underlying vector bundle in the group K~ 

(d) I f  f. 'M--*N is a proper morphism o f  complex spaces, then f ,(aM(~))= aNO~,.~). 

Proof. (a) Remark 1 after Lemma 3.3 shows that the equivalence class of the 

parametrised complex KC.(M, 2~, ~ )  (2) does not depend on the choice of connecting 
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maps rm.~,t~ and of Koszul complexes K.(U~,A~ (which are determined by the 

choice of coordinate system of the domain Ui). 
Statement (b) of Lemma 3.3 shows that the equivalence class of the complex 

KC.(M, f~, .T)(2) does not depend on the choice of the covering { Wi} (see the proof of 

Corollary 2.6). 

Finally, we shall prove that the element aM(~) does not depend on the choice of 

the atlas and of the almost complex embedding of M. Let ~={Wi, cpi, Ui)), iE1, and 

~'={W[,qo~, U~)), iEl' ,  be two atlases of M, and let Q:M--->2~, Q':M--->M' be corre- 

sponding almost complex embeddings. Taking into account the independence on the 

covering, proved above, and Lemma 3.2 (b), one can assume that I=I', W=W', and 

that ~3' is a modification of ~3 and Q' is the corresponding modification ofo.  It is easy to 

see that the complex K.(U', ~ (A) coincides with the Koszul-Thom transformation of 

the complex K.(Ui, &o) (2), As was shown above, the manifold 214' can be identified with 

the total space of a certain complex vector bundle on h4. Then the Koszul-Thom 

transformation of the complex KC.(M, ~ ,  ~ (4) on M can be considered as a cochain 

complex of a simplicial system of complexes, formed by the complexes K.(U', .rE)(2) on 

M'. The Thom isomorphism theorem shows that this complex determines the same 

element of the group K0(M) as the complex KC.(M, ~,  &o) (2) on/14. 

(b) This follows immediately from Lemma 1.7. 

(c) In this case we can take M=M. The complex of sheaves ~gKC.(M, ~ ,  ~ )  is 

quasi-isomorphic on M to the sheaf ~ .  Using Lemma 1.4, we obtain that the 

parametrised complex of Fr6chet spaces KC.(M, ~,  .T) (2) is uniformly quasi-isomorph- 

ic to the vector bundle corresponding to the locally free sheaf Z#. The assertion is 

proved. 

(d) The proof consists of two steps. 

Step 1. Consider the case when N is a subspace of a Stein domain V in C n. Let 

~={W;, ~', U')} be an atlas on M, Q':M--->h4' be an almost complex embedding, and 

~p': U'---~M' the corresponding diffeomorphisms. Put Ui = Vx U', qoi=(f, cp~), IV1= Vxl~l', 
Q=(f, Q'), ~/,~=Idx~p~. Then the atlas ~={(W~, qgi, Ui)} with the embedding ~: M---,J~/ 

and the diffeomorphisms ~Pi form an almost complex embedding of M in M such that 

the restriction of the projection of M on V to Q(M) coincide with the map f. We shall 

assume that M' is a domain in R2m=c m. Since the mapf i s  proper, we can assume that 

h4=VxC"*. The diffeomorphisms ~0i can be extended up to diffeomorphisms from 

Oi=VxC m to hT/= VxC m such that ~/'i is equal to the identity off the set VxB, where B 

12-878289 Acta Mathematica 158. Imprim~ ie 28 juillet 1987 
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is a sufficiently large closed ball in C ' .  Put ri=~PT ~. Choose a coordinate system 
a a Zl . . . . .  z, on V, and w~ . . . . .  w m on U~ for any a = l .  Denote by a~ . . . . .  a,, bl . . . . .  b,, the 

operators of multiplication by zl . . . . .  z,, w~ . . . . .  w,~in the Fr6chet space Fwo(-L0. 

For any points A=(;q . . . . .  2 , )EV,  /Z=(pl,...,/Zm)EC m and tE[0,1] denote by 

K.(Ua,~)( ; t , /z , t )  the Koszul complex for the tuple of operators 21-a l  . . . . .  

, ~ . , - a , , / z l - t ' b l  . . . . .  / z m - t ' b m ,  acting in the space Fwo(L~). Denote by ~/~. (U~,~)  
the complex of sheaves of functions on O~x[0, I] with values in the spaces I~j(Ua, ~ )  

which depend smoothly on (2,/Z) E U~ and continuously on the parameter t E [0, 1]. We 

shall describe the sheaves of homologies of the complex $/~.(Ua, ~ ) .  Denote by 

~ r  the sheaf on Uax[0, 1], consisting of germs of all sections of the sheaf ~ , ,  on 

Ua, depending continuously on the parameter tE[0, I]. Denote by $ ~  the direct 

image of the sheaf qgSAr under the map pa: U~x[0, I]--->0~• 1], defined by the 

formula p~(A,/z, t)=(2, t/z, t). The same arguments as in Lemma 2.3'. show that the 

complex of sheaves ~/~.(U~, A~ ~- - ->0  is exact on U~x[0, 1]. 

Our next objective is to attach all the complexes/~.(Ua, A~)(A,/Z, t) together. For 

any a ~ I  denote by r the map from O~x[0, 1] to ]~x[0, I], defined by the formula: 

~b~(}t,/z, t) = (~., t.~p'a(t-l/z), t), for t > 0  

$a(X,/Z, 0) = (;t,/Z, 0). 

The maps $,~ are bijective, continuous and depend smoothly on )~ and/Z for fixed 

tE[0,1]. Denote by ~ a  the direct image of the sheaf ~ by the map $,, and by 

/~.(Oa, &~ t) the image in M• 1] of the complex/(.(U~, A~ t) by $21. 

We shall show that the sheaves ~ , ~  form a simplicial system of sheaves on 

.~x[0, 1]. Denote by c r  the sheaf on/l~tx[0, 1], consisting of families of germs of 

sections of the sheaf ~S#, depending continuously on the parameter tE [0, 1], and by 

p :Mx[0 ,  1]--->.~tx[0, 1] the map, defined by the formula p(X,/z, t)=(;t, t/z, t). Then the 
diagram 

Uax[0, l] 

~paxId 

Mx[0, l] 

Pa 
, O,~x[o,  1] 

, . ~ 'x [o ,  11 
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is commutative. Denote ~r Then the sheaf ~ r  coincides with 

the restriction of the sheaf c r  to Oax[0, I]. Therefore, the sheaves q r  form a 

simplicial system of sheaves on ~tx[0, I], and the same is true for the sheaves 

~ a = p . ~ ,  endowed with the system of morphisms /~a,a, induced from the 

restriction morphisms of sheaves ~ r  Note that the specialisation of the simplicial 

system of sheaves ~ on the space/~tx {1} coincides with the simplicial system ~ 

(used above in the construction of the complex KC.(m, ~8 ,Ze), and on Mx {0} with the 

simplicial system i . f .  ~ ,  where i is the embedding of V in ~]t as the subspace Vx {0}. 

Since the complexes of sheaves ~/~.(O~, ~ )  are quasi-isomorphic to * ~  for all 

acI,  we can apply to them the construction of Lemma 3.3. We obtain a parametrised 

complex KC.(M, fS, ~) (,~, I~, t) on the space Mx [0, I]. If we denote by ~gKC.(M, ~,  ~) 
the complex of sheaves on h~tx [0, 1] consisting of all sections of this complex, depend- 

ing smoothly on (2,/z)EA~t and continuously on tE[0,1], then the complex 

~KC.(M, ~, ~) is quasi-isomorphic to the sheafp.qg~Lf on A~t• 1]. It is easy to see 

that the restriction of the complex K~'C.(M, ~, ~) (2,/z, t) to the space h~tx { 1 } is in fact 

the complex KC.(M, ?8, ~)(2,/z), and determines the element am(& a) of Ko(M). Consid- 

er the restriction of KI"C.(M, ~3, ~) (2, H, t) to the space Mx {0}. Denote by ~.(M, ~ ,  ~ )  

the canonical alternating resolution of ~ relative to the covering ~ ,  and by C.(M, ~,  
the complex of global sections of C.(M, ?8, &'~)" on M, i.e. the cochain complex for the 

covering ~ and the sheaf ~. Then it follows from Lemma 3.3 (b) that the restriction of 

the complex K"C.(M, ~8, ~ to/~tx {0} is Y-quasi-isomorphic to the Koszul complex for 

the operators 21I-a~ ..... 2 , l - a , , I t l I  ..... ItmI, acting in the complex of Fr6chet 

spaces C.(M, ~,  ~). In fact, the sheaves of germs of smooth sections of both complex- 

es are quasi-isomorphic to the complex of sheaves i . f .  ~(M, ~, .2") (for the latter this 

follows from the remark following Lemma 2.3). On the other hand, the generalised 

direct image j~ ~ o f  the sheaf ~ under the morphism f,  considered as an element of the 

derived category of the category of complexes of sheaves on V, can be represented by 

the complexf.~C(M, ~ ,  &a). Therefore, the parametrised Koszul complex for the opera- 

tors a~ ... . .  a ,  of multiplication by the coordinate functions of V, acting in the complex 

C.(M, ~8, &~), determines the element av(f! ~) of the group Ko(V). (Jsing Lemma 2.1 

(a), we can see that the parametrised Koszul complex of operators al .. . . .  a,, 0 .. . . .  0, 

considered above, determines an element of the group K~ m, VX(Cm\0)), corre- 

sponding under the Thom isomorphism to the element av(f.,&?), and therefore the 

image of this element in the group Ko(V) under the natural projection of VxC"  on V 

coincides with the element av(f~ &o). In order to complete the proof, it remains to show 

that the complex KC.(M, ?8, .Le) (2,/z, t) determines a uniform homotopy between these 
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complexes, i.e. to show that this complex is uniformly Fredholm on the space 

~tx[0, 1]. Let V~ be a Stein domain such that I?~=V, and ~ is a refinement of the 

covering ~ .  Put M~ = f -  ~(V0, A]q = V1 xM' .  Ther~ there exist restriction morphisms 

and 

A 

Rv. v,: KC. (M, ~ ,  ~ )  (2,/z, t)--> KC.(M I, ~ ,  ~ )  (2,/z, t), 

A 

R~, ~1: KC. (Mv ~ '  ~ (2,/a, t)---> KC. (M l, ~1, &v) (2,/z, t), 

It is easy to see that Rv, v~ and R~.~, induce quasi-isomorphisms of corresponding 

complexes of germs of vector-functions on Mix[0,  1], depending smoothly on 

(;t,/z) E~t I and continuously on t E [0, 1]. Applying Lemma 1.4, we obtain that Rv, v~ 
and R ~ , ~  are uniform quasi-isomorphisms on Mix[0,  1]. Applying Lemma 1.8 to 

their composition, we complete the proof of Step 1. 

Step 2. The general case. We start with an auxiliary definition, Let ~ b e  a coherent 

sheaf on the complex space M, and let ~IR~ ... . .  ~lRk be Stein coverings of M, where 

~R~= {I~},iEI~. For any k-tuple fl=(fll . . . . .  ilk), where fls is a subset of/s ,  put 

W~= W ~ ... 

Let 

qgi( M, ~R1 ..... Y~,, *~ = ~ .~w , 
kOl=i 

and let ~r ~[l~l . . . . .  Yff~k, ~ be the complex of sheaves, consisting of the sheaves 

qg,(M, ]IR~ ... . .  ~k ,  &o) and the standard co-boundary operators. More precisely, the 

complexes of sheaves ~.(M, ~Rl .. . . .  ~lRk, A0) on M can be defined by induction on k. 

When k= l ,  this is the alternating resolution, used above. The complex 

cO.(M, ~RI .. . . .  $~k, ~02k+~, .ff) can be defined as the total complex of the bicomplex 

~.(M, ~R,+I, ~.(M, ~2j . . . . .  ~2 k, ~)) .  

It is easy to see that the definition does not depend on the enumeration of the coverings 

~1  ..... ~R,. For any two numbers s, k, s<.k, there exists a natural quasi-isomorphism 

rs,,: qg.(M, ~1 .. . . .  ~[Rs, 2~) s-~qg.(M, ~IY/l . . . . .  ~k,  ~) ;  

it is easy to see that rs, k does not depend of the enumeration and that for any p<~s<~k 
we have rs, k~ rp, s=rp. k. In particular, all the complexes ~.(M, ~ l  . . . . .  ~k,  ~ are 
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quasi-isomorphic to the sheaf ~ .  We shall denote by C.(M, ~ 1  . . . . .  ~'~k, ~)  the complex 

of Frrchet spaces, consisting of all global sections of ~.(M, ~Rt .. . . .  ~7~k, ~) .  

Now, let f: M-->N be a proper morphism. Let Q": N--->]Q and O": M---,M' be almost 

complex embeddings. Put 2~t=~t 'x~  and Q=(0', Q"of); then Q is an almost complex 

embedding of M' in ~]t and the projection of M on N extends the mapping f. Let 

~={(Wi, gi, Ui)},iEI be an atlas on N. Let Ma=f-lWa and fix for any iE1 an atlas 

TRi={(Wi, j, gi, j, Ui, j)},jEIi on Mi. For any a c l  such that iEa the restriction of this 

atlas to Ma will be denoted again by ~ i .  As in the proof of Step 1, we can assume that 

the domains Ui, j have the form Ui, j= U~,jx Ui, and that the projection of Uij on Ui 
agrees with the mapping f. Denote by ~O~ the atlas on M, consisting of the union of all 

atlases ~J~i, iEI, and for any a = ( i l  . . . . .  ik)cI set 

~. (Ma, ~J~a, ~)  = ~. (M, fff~it .. . . .  ~ik,  (~Y). 

As was pointed out above, there exists for any two tuples a, fl, acfl ,  a morphism of 

complexes r~,a:~.(Ma,~J~,~)---/a.(M~,~/j,.Y), and for any acre-7  we have 

ra, aora, r=r~,r. Therefore the complexes ~.(Ma,~R~,~) form a simplicial system of 

complexes. It is easy to see that the cochain complex of this system is equal to the 

complex ~.(M, ~ ,  ~) .  For any a c I  denote by z~ .. . . .  z~ a coordinate system on the 

domain Ua. Denote by KC.(Ua, ~J~, ~ (2) the parametrised Koszul complex of opera- 

tors of multiplication by z~ . . . . .  z~ in the complex C . ( M o , ~ , ~ ) ,  and by 

KC.((Ja, ~R~, .~')(2) the corresponding complex on the domain 0 ~ / ~ .  We can apply 

Lemma 3.3 to these complexes: denote by KC.(N, ~IR, o~)(~.) the cochain complex of the 

corresponding simplicial system of complexes. It is easy to see that this complex 

determines the same element of the group K0(N) as the complex KC.(N, ~,f,. ~ )  (2). 

For any tuples a=(it .. . . .  ik)~l and fl=(fli . . . . .  ilk) with ~j~Iifl j = l  . . . . .  k, we can 

construct in the same manner as in Step 1 mappings 

~b~.~(~.,/~, t): U~,/~• 1]---~tx[0, 1], 

sheaves ~ a , B ,  and parametrised complexes K'C.(Ua,~,~5~v)(2,/~, t) on 3~tx[0, I]. Ap- 

plying Lemma 3.2 again, we obtain a parametrised complex of Fr6chet spaces 

K~'C.(M, ~J~, ~)(2, I*, t) on the space/~tx [0, 1]. It is easy to check that the restriction of 

this complex to the space 3~tx {0, 1} coincides with KC.(M, ~J~, .SLO (2), and its restriction 

to 3~tx{0} is homotopically equivalent to the Koszul complex of the operators 

/~,1 .. . . .  /~m, I, acting on the complex KC.(N, ?~R, ~ ( ~ ) .  The same arguments as were 

used in the proof of Step 1 permit us to complete the proof in the general case. 
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w 4. Remarks 

(1) Let (W, q~, U) be a chart on the complex space M, and r Denote by (~v the 

sheaf ~v=~?v+J| The sections of this sheaf will be called almost holomorphic 

functions on U. In the same way, one can define the complex ~K.(U, ~) of sheaves of 

almost holomorphic sections of the complex K.(U, &P) (2). It is easy to prove that the 

complex of sheaves ~K.(U, .ff)---~.~--.O is exact on U. 

Let 0: M--~M be an almost complex embedding and ~0i: Ui--* Oi the corresponding 

diffeomorphisms. Since the connecting maps ~/,:-1 o ~0j are almost holomorphic by defini- 

tion, we can define on M the globally determined sheaf (~m of almost holomorphic 

functions (and, similarly, of almost holomorphic vector-functions). Having this, we 

may attempt to perform the above construction, using almost holomorphic functions 

instead of smooth ones. The only point where this is not possible is in extending the 

maps ri=~/)/1 away from 0/; however, the maps rm, a,a can be chosen to be almost 

holomorphic near Oa. As a result of the construction, we obtain a para- 

metrised complex KC.(M, ~3, ~ (2) on M, such that on any sufficiently small open sub- 

set V of M the complex KC.(M, ~, ~ (2) can be represented as a direct sum of two 

parametrised complexes K~(2), K'.'(2). The complex K~(2) is smooth and R-exact on V; 

the complex K'.'(2) is almost holomorphic on V, and the corresponding complex of 

almost holomorphic sections OK" is quasi-isomorphic to the sheaf ~.  

(2) Let us fix the almost complex embedding M---~A~t and connecting mappings 

rm, a,a (see the remark following Lemma 3.2). Then the correspondence 

am: ~--->KC.(M, ~,  &o) (2) defines an exact functor am from the category of all coher- 

ent sheaves on M to the category of all uniformly Fredholm parametrised complexes of 

Fr6chet spaces on h4, exact off M. More precisely, any short exact sequence of 

sheaves transforms into a uniformly exact short sequence of parametrised complexes. 

Therefore, this functor determines a homomorphism of higher K-groups; 

Kh.~ P(M), where Kh.~ denote the algebraic K-theory of the category of all 

coherent sheaves on M, defined in [9], (see also [10]). Moreover, if we fix all auxiliary 

entities, used in the proof of functoriality (Lemma 3.4 (d)), then we can see that the 

parametrised complex KtC.(M, ~3 , .~ (2, I~, t) (realising the homotopy between the com- 

plexes KC.(M, TR, ~(2, /~))  and KC.(N, ~R, A~ can be considered as an exact 

functor of ~.  On the other hand, it is easy to see that the natural quasi-isomorphism 

between KC.(N, T/~, .~  (2, Iz) and KC.(N, ~3,f,. ~P) (2,/z) is a natural transformation 

of functors (if KC.(N, ~R, A~)(2,/z) is considered as a bicomplex, then 

KC.(N, ~,f,.cd~)(2, I~) coincides with the total complex of the bicomplex consisting of 
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the homology groups of the rows of KC.(M, ~R, &o) (2, /,)). This natural transformation 

gives us an equivalence between the functors f .  o am and CtNof~, i.e. a Riemann-Roch 

theorem for higher K-groups. 

(3) Let N be a complex manifold and let M be a precompact domain in N. Denote 

by ~ = { Ui}, i E I a locally finite coveting of M by strongly-pseudoconvex domains, and 

by ~ a holomorphic vector bundle on N. Denote by ch.(M, ~, .~ the cochain complex 

of square-integrable sections of ~? on the elements of ~ .  We shall assume that the 

Toeplitz operators on the domains Ua are essentially normal (see the note in the 

introduction). In that case, denote by ~k the element of the Brown-Douglas-Fillmore 

group Ext, corresponding to the algebra of the Toeplitz operator in the Hilbert space 

Ch(M, ~,~), and let ~=X(--1)k~k (the coveting ~ may be chosen in such a way that 

the complex Ch.(M, ~ ,  ~ )  is finite). ~ is an element of the group 

Ext ( i~,bUi ); 

however, it can be proven that in fact ~ belongs to the image of the group Ext (bM) 

under the natural embedding. On the other hand, we can construct, as above, the 

complex Kch.(M, ~, ~) (2), replacing in the complex KC.(M, ~,  .Y) (2) Fr6chet spaces 

by Hilbert spaces. This complex is Fredholm off bM. Denote by [~M] the element of 

the group K ~  generated by the vector bundle equal to ~ on M and zero off AT/. 

It is easy to see that the element of the group K~ determined by the complex 

Kch.(M, fS, ~) (2) coincides with [~M]. (In fact, this element coincides with the image 

of Ctm(~) under the map ~:Ko(M)---,K_I(bM)-~K~ The following index 

theorem is valid: 

The element ~ E Ext (bM) is dual to the class of the complex KCh(M, fS, 0~ (2), i.e. 

to the element [Z~M]. 

When bM is smooth a standard calculation shows that: 

ch,  (0  = (ch* (&a) tJ td (bM)) n [bM], 

i.e. we obtain a generalisation of Boutet de Monvel's index theorem. 
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