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0. Introduction 

In this paper we will present a new approach to the invariant subspace problem for 

Banach spaces. Our main result will be that there exists a Banach space B and an 

operator T on B such that T has only trivial invariant subspaces. We feel though that the 

ideas of the approach can be used also to prove results about existence of invariant 

subspaces. As an example of this, see [1]. In Section 1 we give the general ideas of the 

approach. In this section we also reduce the problem of proving our main result to the 

problem of proving Theorem 1.3. In Section 2 we prove an inequality which will be the 

basic tool in the construction. In Section 3 we first reduce the problem of proving 

Theorem 1.3 to the problem of proving 6 statements. These statements contain a 

parameter k. We first give lemmas and propositions which give these statements for 

k= 1 and k=2. We then give the induction hypothesis and the lemmas and propositions 

which give the statements for all positive integers k. In Section 4, finally, we give 

proofs of Theorem 1.2 of Section 1 and of the lemmas and propositions of Section 3. An 

outline of this construction was presented in Enflo [2]. This version is the same---ex- 

cept for some changes in the presentation--as was given in Enflo [3]. The author 

wishes to thank professor Enrico Bombieri for suggesting these changes. 

1. Outline of the proof 

We will below construct an operator with only trivial invariant subspaces on a Banach 

space. The Banach space in this example will be constructed at the same time as the 

operator and will be non-reflexive. There are very serious difficulties in carrying out a 

similar construction in a reflexive Banach space. So we feel that the construction gives 

some weak support to the conjecture that every operator on a Hilbert space has a non- 

trivial invariant subspace. We now turn to the basic considerations behind this ap- 

proach. It is clear that every operator with a cyclic vector on a Banach space can be 
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represented as multiplication by x on the set of polynomials under some norm. So what 

we will do is to construct a norm on the space of polynomials and prove that 

multiplication by x under this norm has only trivial invariant subspaces. Our next basic 

consideration is based on the fact that one can have an operator with a dense set of 

cyclic vectors without having all vectors cyclic. In order to be able to make some limit 

procedure work we will construct the operator so that it has the following property: 

(1. I) Let  1 be a cyclic vector of  norm I in B. Let  (pj) be a sequence which is dense 

on the unit sphere of B. For  every j and every m there is a positive number Cj, ,,, such 

that for every Pn with Ihoj-pnll<I/2 m+4 there is a polynomial l(T) in T with 

II/(T~llop~<f~,m such that IIl(T)p,,-lll<~l/2 m. It is easily verified that such a T has only 

trivial invariant subspaces. 

It follows easily from the fact that the spectrum of an operator is non-empy that 

there is no operator for which Cj, r a  depends only o n j  or only on m. 

If  we have the operator T represented as multiplication by x, then l(T) will just  be 

multiplication by the polynomial I. From now on we shall identify B with the closure of 

the vector space of  all polynomials with real (or complex) coefficients under a suitable 

norm II II- This leads us to the next basic consideration. Assume that we have a norm II 11 
on the space of polynomials. Assume that p is a polynomial of  norm I and assume that 

Illp-lll~<e and II/llop~<K. This gives that for every polynomial h we have the inequality 

And this implies that 

Ilhll-gllhpll Ilhlp-h. III  llhllop. 

if Ilhlloo <~l  llhll, then Ilhpll >~ Ilhtl2K" (1.2) 

In order that the operator also satisfies (1.1) it is of course necessary that the 

inequality Ilhpll>~llhll/2g holds uniformly in p in every ball of size e/16 on the unit 

sphere. (At least if we put e= 1/2".) 

There is a sense in which the inequality (1.2) is sufficient for p to be moved close to 

1 by a polynomial with small operator norm. This is given by our Theorem 1.2 below. 

In order to describe this theorem we have to tell something about the way that we 

construct the final norm. It should be pointed out that this sufficiency of  (I .2) depends 

on the fact that the norm constructed is non-reflexive. We do not know whether 

anything similar can be done in a reflexive space. 

Consider all pairs (q, e) where q is an arbitrary polynomial whose coefficients have 

real and imaginary parts rational, and e is of  form 2 -k. We enumerate all such pairs and 
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call the sequence (qn, en). We also insist that for a fixed q, if hi, n2 . . . .  are all the 

integers such that qn=q, then en >en2>e~ 3 . . . .  Also we assume degqn<~n. 

Our construction will be completely determined by a sequence of polynomials In 

and constants Cn>2. !1 . . . . .  lk and C1, ..., Ck will determine a number ak+l inductively 

as explained below and we define a sequence of norms as in the following definitions. 

Definition l .  For  any polynomial p,  consider all representations 

p = S  ai.axil( ~ ... 1~, ~ and put 

[Plop. = i n f ~  lai.r 12'(C,ll,I,) ~, ... ( c . I I . l , f i  

where Ill denotes the usual II n o r m  equal to the sum of the absolute values of  the 

coefficients. 

Remark.  In the final norm the operator x will have norm ~<2, and multiplication by 

lk norm <--.Ckllkll. 

Definition 2. For  any p, consider all representations 

n 

P = r + 2  Sk(lk% qk-- 1). 
1 

Put [pF=inflr l l+Z ISklopntk. Put and let u~ be determined inductively 

by the corIdi~ion tak q/,I ~- ~ --- I. 

Remark.  Ilkakqk--lln<ek and clearly the operator norm of multiplication by g is 

Iglop n. We see that I I n is the maximal norm satisfying the following four properties: 

I I n-<l I, 
(2) Ilkakqk--lln<~ek, k =  1,2 . . . .  n, 

(3) Iglop ~< Ig[op n, 

(4) IXlop < 2. 

Observe that [ ]n and I lop n are decreasing sequences of norms and hence converge 

to some pseudo-norms. We write II [[=liml ["- 

THEOREM 1.1. A s s u m e  that (C,) and (1,) are sequences which define norms I I m as 

above and assume that there are sequences o f  positive numbers Dn ,,~ ~ and Ln ,,~ ~ so 

that the fol lowing holds: 
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(I) ~{~ is constant for m ~>(degp)- 1. In particular Iqnl m is constant for m >~n- I. 

(II) For any n, consider all k<~n such that en----ek, and lakqk--anq~[(~-l)<effl6. 

Let K be the least such k. Then [l,,ll =LK, C~=Dr. 

Then the resulting limit norm defines a space B, for which multiplication by x has 

no invariant subspace. 

Proof. Let  q be an element of B, which we recall is the closure of  all polynomials 

and [[qH= 1. Let  e be a fixed negative power of 2. Choose increasing nk such that e~k=e 

and a,, k q,, --~q in B. We can even insist that I[a~ qn~-q[l<e/64. 
Hence for k>  1, 

E 
[ank qnk--an~ qn,I (~k-l) = Jla~k q~,-an, qn~ll < 32 '  

so by (II), C,,~<~maxm<~nDm and II,,~ll<~max,,~n, Lm so that Ilnklopnk is bounded 

<~A. Therefore 

<~ eq-llnJopnk l[q-an, qnk[I 

<~e+allq-an~ q~kll. 

Letting k tend to infinity, we see that 1 is within distance e of the space generated 

by q and hence, letting e-->0, we see that 1 is in that space and hence it equals B. 

We will now drop ak in our notation so when it is clear from the context we will 

denote akqk by qk and assume }qk[ k-l= 1. 

Definition 3. o rdp=degree  of  lowest order term Of the polynomial p. 

Definition 4. L e t f b e  a positive real valued function defined on (0, oo). We say that 

l= Ej~o ajx ~j is more lacunary than f if 

ord I = n o ~>f(O) 

and 

n j ~ n j _  1) for every j .  

Our next theorem which we prove in Section 4, shows that, under the assumption 

of  an inequality similar to (1.2) we can satisfy condition (I) as soon as the polynomials 

In are lacunary enough. 
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THEOREM 1.2. Let Ii . . . . .  lN, Cl . . . . .  CN be given with Ck>2. Assume for all h and 

some B that 

Ihl~ <__~__ I =~ [hqN+tlN~ Ihl 0 

Ihl ~ eN+l B 

Then, given K>4B/eN+I, there exists a lacunarity function f such that i f  

(1) IIN+,I, = K, 

(2) the lacunarity o f  IN+ 1 >~f, 

(3) CN+ 1 > 2, 

then with this choice o f  IN+ 1 and CN+ 1 we have 

IgIN+l = Igl N for all g with degg<~N. 

We now assume that we have two sequences Dn ,,~ ~ and Ln , z ~ .  Assume that 

I I is defined. We will then define I I according to the following rule: consider all 

k<.n such that ek=e~ and [qk-qn[n-~<effl6. Let K be the least such k. Then 

I/nI~=LK, C~=Dr. If  this rule is fulfilled for all n<.N, we say that [ I N is defined in a 

compatible way from the sequences Dn and Ln. If  for every N, I I N is defined in a 

compatible way from the sequences D~ and L~, then obviously condition (II) of 

Theorem 1.1 is fulfilled. Our next theorem combined with Theorem 1.2 will now enable 

us to get also the condition (I) of Theorem 1.1 fulfilled. We first make 

Definition 5. A growth function F is a function that for every n and every 3n-tuple 

D1 . . . . .  D~, Ll  . . . . .  Ln, Ii . . . . .  l~ gives a positive number F(D1 ... . .  D~,LI .. . . .  Ln, 

11 . . . . .  in), and for every n and every (3n+2)-tuple D~ . . . . .  D,,+I, L! .. . . .  Ln+l, II . . . . .  In 

gives a lacunarity function f and a positive number 6. We say that the sequence 

{D~, L,,, In, C~) grows faster than F if 

(1) lk and Ck are defined in a compatible ,way from the sequences D~ and L~ for 

every k. 

(2) For  every n, D~+I and L~+I are >F(DI .. . . .  Dn, Ll . . . . .  L~, II . . . . .  ID. 

(3) For  every n the lacunarity o f / ~ + ~ > f a n d  the moduli of the coefficients of  l~+~ 

are ---<6 where f and 6 are given by the growth function applied to DI . . . . .  D,,+~, 

Li . . . . .  Ln+l, 11 . . . . .  l~. 

We will, by slight abuse of  language, say that a number depends only on I I m thus 

meaning that it is determined by D~, ...,Din, LI .. . . .  Lm, l~ ..... lm, C~ .. . . .  Cm. (Obvi- 

ously different such sequences could give the same I I 'n.) 
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We now have 

THEOREM 1.3. There is a growth  func t ion  F such that  i f  {Dn, L~, In, C~} grows 

fas ter  than F, then  f o r  every n there exists Bn depending  only on I [~-1, such that  f o r  

all N ~ n  

iq_q~lN < e~ and  I h l o p N < l  imply IhqlN >~ Ihl~ 
16 Ihl ~ en B~" 

We now combine this theorem with Theorem 1.2 to give also (I) of Theorem 1.1. 

The main difficulty in the construction is to prove Theorem 1.3. This will be done in the 

following sections. 

Comple t ion  o f  the construct ion  as suming  Theorem 1.3. 

For every N~>0, choose LN+~ and 

D ~+ , > m a x  { F(D,  . . . . .  D n, L t . . . . .  L n, I l . . . . .  l~), 4BN+ I/eN+ I ) . 
(A) 

Now we assume that 

for every r ~< N we have defined L l . . . . .  L r, D l . . . . .  D r, I l . . . . .  It, C l . . . . .  C r 

according to (A) and the growth function F, 
(A') 

Assuming this we will choose lN+l by the following considerations (B)-(E): 

Take the smallest n<~N+l such that ]qN+l--qnlN<en/16 and en=eN+l. Then by 

Theorem 1.3 

IhlopN < l__l_ - =~ ihqN+,lN~ Ihl ~ 
Ihl ~ eN+, n~ " 

By the compatibility assumption and (A) we now choose 

IIN+,l, = L~ > 4Bn/e n. 

CN+ I = D n > 2 .  

(B) 

(C) 

By Theorem 1.2 by choosing IN+~ lacunary enough we then get 

Lol N = [pl N+l for degree p ~< N. (D) 
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We choose IN+~ more lacunary and with smaller moduli of the coefficients than 

what is given by 

F(D1 . . . . .  D N+ I ' Li , ... ' LN+ I, ! 1 . . . . .  IN). (E) 

By choosing the sequence (Dn, Ln, In, Cn} according to (A)-(E), we thus get the 

following: {Dn, Ln, In, Cn} is compatible by (B) and (C) and it grows faster than F by 

(A), (A') and (E) so it satisfies the assumptions of Theorem 1.3. 

By (B) and (C) it also satisfies (II) of Theorem 1.1 and by (D) it satisfies (I) of 

Theorem 1.1. Thus for the limit norm multiplication by x has only trivial invariant 

subspaces. So in fact Theorems 1.1, 1.2 and 1.3 give 

THEOREM 1.4. There is a growth funct ion F such that i f  {Dn, Ln, In, Cn} grows 

faster  than F, then lim[[ n is a norm for  which multiplication by x has only trivial 

invariant subspaces.  

2. An inequality for products of polynomials 

Before continuing with the construction, we will use this section to prove the following 

theorem which we will need many times in Section 3, where the actual construction 

continues. 

THEOREM 2.1. Let  A, B be homogeneous  polynomials in many variables o f  degree 

dl, d2. Then 

[AB[I I> K(d~, 42) IAl~ IBh. 

Remark.  The essential point is that K is independent of the number of variables. A 

bound depending on the number of variables is trivial since AB4=0 is not zero for 

A, B*0,  and the spaces of all A and B would then be finite dimensional. All norms in 

this section are l~-norms. 

In order to prove Theorem 2.1, we will analyze a more general situation. Let 

A1, ...,An denote homogeneous polynomials of fixed degree, but having no restriction 

on the number of variables. Let P be a polynomial of n variables of fixed degree which 

is "isobaric" so that P(A1 . . . . .  An) is homogeneous of fixed degree. We shall study the 

case when P(AI,  . . . ,An) is small. 

From now on we consider a sequence of such P,A~ . . . . .  An and drop any index to 

denote the term of the sequence. Quantities or polynomials whose norms tend to zero 
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are denoted o(1). Bounded quantities are denoted by <<1, and bounded from below by 

>> I. If we write [P[ we mean the l rnorm of P as a function of n independent variables, 

and not IP(Al . . . . .  A~) I. 

THEOREM 2.2. A s s u m e  

(I) IA;I < < I ,  Ie[ <<1 

(2) IP(al  . . . . .  An)l = o(1). 

Then for  some subsequences  o f  the P, A1, . . . ,An, there exist an integer m, polynomials 

QI . . . . .  Qn, in m variables and polynomials B1 . . . . .  Bm o f  bounded degree such that 

(3) ai  = oi(gl  . . . . .  Bm)+O(1), Jail <<1, IBe[ <<1.  
(4) I f  P(Ql(h  . . . . .  tin) . . . . .  Qn(tl . . . . .  tm)) = R(tl  . . . . .  tin), then [R I = o(I). 

Remark.  The number m and degBi, deg Qi admit bounds depending only on degAi, 

degP. The polynomials B consist of various derivatives of the Ai. Note also that if (3) 

and (4) hold, clearly [P(A)I=o(1). 

Theorem 2.1 can now be deduced from Theorem 2.2. Assume ~41A2[=o(1), and 

AI=QI(Bj),  A2=Q2(Bj) satisfying (3) and (4), and IAil=l. Then clearly [Q/[>>I. But 

then Ql(t)Q2(t) cannot be o(I), since this violates Theorem 2.1 in the case in which the 

number of variables is bounded. 

We use the following notation: If R(tt  . . . . .  t ,) is a polynomial, IRI(IAd . . . . .  IAnl) 

denotes the value obtained by replacing each coefficient of R by its absolute value and 

substituting IAi[ for ti. If Ai=~.iBi, and S(tt . . . . .  tm)=R(Altl  . . . . .  ~.mtm), then clearly 

ISI(B,], . . . ,  IB,O=IRI(IA,I ,  ..., ]Am]). This will be used shortly. 

For any polynomial A(z~ . . . .  ) let A ~~ denote aA/azi. Now the following lemma is 

obvious: 

LEMMA 2.1. I r A  is homogeneous  o f  degree d, E IA(i)l=d~41. 

We made the convention that all polynomials must have degree >0. For example, 

in the following lemma, if degAk=l,  the variable A~ ) does not occur, but is 

treated as a constant. 

LEMMA 2.2. Let  

[P(A,, An)IO')=E ~--~-P A(~')=Ri(AI, A A(i) A (0] 
OA k 
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IR,I(IA,I . . . . .  IAnl, IA~~ . . . . .  IA~91) ~< g .  IPI(IA,I . . . . .  lAnD 

where K depends only on d e g P  and degAk. 

221 

and 

THEOREM 2.3. Assume  again 1,4/1<<1, IPI<<I, and let degA1 be maximal  among 

degAs. Let  

P = A~ Co(A 2 . . . . .  An)+A~ -t CI(A 2 . . . . .  An)+...-1-Cr(A 2 . . . . .  An). 

/ f  IC0(A2 .. . . .  An)l>>l,  then there are Q and Bj with degBj<degAl ,  IQI<<I, 

Injl<< I, and A l = Q(A2, ..., A , ,  B1, ..., Bin) +o(1). Furthermore, the degree o f  each mono- 

mial in Q(A, B) is equal to degA1. 

Proof. Assume first that deg Co>0. Then 

[p(A 1 . . . . .  An)] (o = A~ [C0(A 2 . . . . .  An)](~ +A ~-1 ... 

= Ri(A l , ,~ ,~ (0 A (i),~ " " , ' ~ n , ' ~ l  ' " " ' ~ n " "  

We have 

(1) E I[Co(A2 . . . . .  A,,)](~ 

(2) E I[P(A~ . . . . .  An)]t~ and 

(3) E IR,I(IAII . . . . .  Ianl, Ia~~ . . . . .  Ia~l )<<l .  

From (1) ,  (2) ,  and (3) it follows that for some i, if ct=[[Co(A2 . . . . .  A.)](")I, then 

I I [ P ( A  l . . . . .  an)](~ = o(1) 
a 

IlR,I(IAII . . . . .  IAn}, IA~i~ I . . . . .  }A~I)<< 1. 
6t 

If we write . l  ka(~ n so that IBkl= 1, and put S = R / a ,  it follows that 

Proof. We can reduce to the case where P is a monomial where the proof is 

immediate. 

Theorem 2.2 will be derived from Theorem 2.3 below. 
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S__ r , . . . ,  - A I D ( A 2  . . . .  A , ,B )+Ar l  - '  ISl<< 1, 

ID(A~ . . . . .  an, B)l>> 1 and IS(A I . . . . .  An, B)  [-- o(1). 

S is a polynomial which, although involving more variables than P, clearly has "total 

degree" one less than that of P. By induction then the result will follow. 

We now handle the case where Co is a constant. In this case 

[P(A)](O=A~-I(rCoAI(O+C(IO)+Arl-2 . . . .  Now, if r C o A l + C l = o ( 1 ) ,  since (7o>>1, we have 

A l = ( r C o ) - l C l + o ( 1 )  and the result follows. If I r C o A l + C d > > l ,  then we have 

F, i lrCoA~~176 and the proof proceeds as before. Thus Theorem 2.3 is proved. 

Now we prove Theorem 2.2. We write, as in the proof of Theorem 2.3, 

P - A I C o ( A  2 . . . . .  A , ) +  . . . .  If ICo(t2 . . . . .  t,,)l=o(1), then the first term can clearly be 

dropped and we have lowered the degree to which A! appears in P. If 

ICo(t2 .. . . .  t~){>>l, and ICo(A2 .. . . .  A=)I>>I, then we apply Theorem 2.3. Replacing A] 

by Q(A2 . . . . .  A , , B ) + o ( 1 )  leads to another polynomial R in which A! is absent and 

IR(A2 .. . . .  A,, B)l=o(1). If JR(t2 . . . . .  t,, u)l=o(1), we are done. If not, apply Theorem 2.3 

again to R. Because R has one fewer variable whose degree is degAl, we can deduce 

the theorem by induction. If IC0(t2 . . . . .  tn)l>>l, but IC0(A2 .. . . .  An)l=o(1), then Co in- 

volves fewer variables, so by induction we can assume A2=Q2(B)+o(1)  . . . . .  

An=Qn(B)+o(1)  satisfying Theorem 2.2. Substituting in P(Al  . . . . .  An), we get a polyno- 

mial Arl Co(Q2(B ) . . . . .  Qn(B))+ . . . .  Now we have ICo(Q2(t) . . . .  )1=o(1) by the conclusion of 

Theorem 2.2, so we can neglect the first term and we have lowered the degree to which 

Al appears. The theorem follows again by induction. 

Remark .  Although the proof proceeds by contradiction, it is possible to reverse the 

implications and obtain effective bounds. 

From Theorem 2.1 we get the following corollary for the case when the factors are 

not homogeneous. Here ifA is a polynomial in many variables, let [A], be the part of A 

that has degree ~<n. 

COROLLARY. A s s u m e  that  A and  B are po lynomia l s  in many  variables such that  

I[Alnh = 1, I[Bl,nl, = 1 ,  I[Aln+,,,h ~< K, I[Bln+,,,I, ~< K 

then 

I[AB],+ml 1 I> a(n, m, K).  
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Proof. Assume n>~m. Put Actg=the part of A which has degreej. Now there exists 

a smallest ji~<n such that [AO.)ll>~l/2n and a smallest j2<-m<~n such that ]Bci2)ll>~l/2n. 
According to Theorem 2.1, put 

We then have two cases: Either 

and the result is proved, or 

C =  infK(j, l) 
j<~n 
I<~n 

I[ABIo,+i2)[ 1 > I . c "  I 
4n 2 

In the latter case more 

Obviously, this can only be done if either 

o r  

1 1 
2 4n 2 

Q 

than half of the contribution from Aci,)Btj2) is cancelled. 

I[Al~,-d, ~>L. •  1 1 
2 2 4n 2 K+ 1 

itm:2_,l,~>Z.Zc, l .  ! 
2 2 4n 2 K+I"  

So for this case consider now the smallest number j3 such that 

1 1 C 1 1 1 
ItAlt/;I'>~T'~ 4n 2 K+I  2n 

and the smallest number J4 such that 

~ > I . I c .  1 1 1 
}[B]~ 2 2  4n 2 K+I  2n" 

Then we have Ja+J4<Jl +J2<-2n. 

Now we have again two cases: Either 

[[AB](/3+A)II ~>~-C3( 14n 2 K+ll 2n 2121)  2 

and the result is proved, or we have the opposite inequality. In the latter case we repeat 
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the argument above and getjs+j6<J3+J4. This procedure must end after at most 2 n - 2  

steps, since 2~<J2k-l+j2k. Thus the theorem is proved. 

o 

In this section we will give 6 statements which will prove Theorem 1.3. We will then 

give lemmas and propositions that prove these 6 statements. Most of  these lemmas and 

propositions will then be proved in Section 4. Before giving the 6 statements we have to 

make some definitions. 

Consider the sequence (n, en). Let  1/2m=min {el, e2 . . . . .  en}. We put m=f(n). We 

consider a sequence (~tl,Ct2 . . . . .  ak)  such that cti=(ni, e,,) and en,+l<en ,. I f  en,+, 

<rain (el, e2, e3 . . . . .  en) we say that the pair (a,  ai+O is a jump. 

Assume that I I N is defined in a compatible way. For  every k<.N we consider the 

smallest number, say i, such t h a t  Iqk--qilk-l<~ei/16 and ei=ek. We then say that k 

belongs to the ith system. So with N given, a system is a subset of the integers 

{1,2 . . . . .  N}. To every system corresponds an e in an obvious way. To every system 

corresponds in an obvious way qi, Di and Li and if k belongs to the ith system, the 

compatibility assumption gives Ck=Di, [lkll=Li. 

Let al,  ct2 . . . . .  r be a sequence of  systems such that ai is the n3h system. We will 

consider such sequences where e,,,+l<e~ ̀  and we define jump as for the a 's .  If  a is a 

system let b(ct) be the number of the system (ct is the b(c0th system). 

We will now give 6 statements from which Theorem 1.3 follows easily. We will 

then let the propositions of  this section prove these 6 statements. To estimate [hq[ N we 

form a representation V of hq, 

hq = vl(l I q l -  1)+v2(12 q 2 - 1 ) + . . .  + VN(l N qN-- 1 ) +  V 

and the estimate for Ihql N given by this representation V is 

N _ _  IVlost- IvjlopN'Ej+lvh. 
J 

Below we will not assume that V is the best representation of  hq in the sense that it 

gives the I I N'norm. It will turn out that when Ihql N is estimated many different cases 

can occur, the number of  cases increasing with N. We will now write down a list of  all 

cases that can occur, we will describe them later. 

(1) a~, B, m* a~, B, * 2, B' m3,B, ak_l,a, m k (2) a~',a, * * �9 .., m2,B, 122,B, m3,B, "- ' ,  ~k - l ,B ,  mk, G 
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(3) a~B, * . : , m2 ,B ,  ~2,B, m3 ,B ,  " " ,  Oik-l,B, mk, B 
�9 * nc (5) CtI,B, mE, B, erE,B, m3, B . . . . .  ink, B, Ct k 
�9 , nc (7) ch.B, m2,a, aa.B, mE, B . . . . .  ink, B, ak. o 

(4) al,B, m2,B, a2,B, m3, B . . . . .  mk. B, a k 
* * ' C (6) a1,B,m2,B,a2,a,m3,B ..... ink, a, ak, a 

( 8 )  * * n~ 
CtI,B~ m2,B~ [~2,B, m3 ,B ,  " ' ,  mk, B, ~k,B 

In this list the ct's are systems with b(a)<~N. The e of  the system {~j+l is smaller 

than the e of  the system aj. The m's  correspond to e's such that 1/2"J is the e of  aj. The 

superscripts c and nc correspond to cancelled and non-cancelled and * takes the values 

c and nc. B and G should suggest bad and good. In this list (2) and (3) are subcases of  

(1), (4) is a subcase of  (3), (5) and (6) are subcases of  (4), (7) and (8) are subcases of  (5). 

After listing the cases we now turn to the statements.  We assume 

~n Iq-qf f<--~,  Ihh=l, IhlopN < 1 .  
gn 

STATEMENT l. There is a growth function F such that i f  {Dn, L . ,  In, Cn} grows 

faster than F then for  every n there is a Bl. depending only on II "-1 

such that i f  ]hql iv is estimated by V then either 

1 a nc �9 The estimate given by V is ~ B . ,  c a s e  1, G" 

or 

some case a~, B, m 2 occurs with 1/2 "2 smaller than the e corresponding to al. 

STATEMENT 2. There is a growth function F such that i f  {Dn, L~, l~, C~} grows 

faster than F then for  every n there is a B2. depending only on 

[ [.-! such that i f  case a~, B, m 2 occurs when Ihql N is estimated by V then either 

case a~',B, m2,c: The estimate given by V is >-B2. 

or  

case a~, B, m2,B: Some case a~',a, m2, B, a 2 occurs. 

After these statements we can now pass to statements for cases which are 

represented by arbitrary long sequences.  

STATEMENT 3. There is a growth function F such that, i f  {D., L . ,  In, Cn} grows 

faster than F, then for  every k~2 ,  n and N,  i f  case a*,B, m2, B, at, B, m3, B, ..., ink, s, a k 

occurs when Ihq[ N is estimated then either 

* , nc 
c a s e  ~I ,B,  ml,B~, O-2,B, m2 ,B ,  . " ,  ink, B' ~k 
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o r  

c a s e  ~ , B ,  * c ml ,B,  1~2,B, m2.B, "" ,  ink. B, ~k.B 

O c c u r s .  

STATEMENT 4. There is a growth function F such that, i f  {D~, L~, l~, C~} grows 

faster than F, then for  every k~>2, n a n d N ,  i f  the case  a~, B, mE, B, CtE,a,. m3,a, . . .  ' mk, a ' Ct knc 

occurs when ]hql N is estimated then either 

, ., "r �9 The estimate given by V is >I I case  a~,B, ml,a,a~B, m2,a,., mk, B,Ctk, G. 

o r  

, . . . ,  , c  m some case  a~a, ml,B,a~,B, m2, B, mk, B, ak, a, k+i 

o c c u r s .  

STATEMENT 5. There is a growth function F such that, i f  {Dn, Ln, In, C~} grows 

faster than F, then for  every k ~ 2 ,  n and N, i f  the case  ct~, B, * ml,B,  122,B~ m2,B~ 

.... mk, B, a~, B occurs when ]hqi N is estimated then there is an mk+l such that the 

case  a T B, * c , ml ,B,  122,B, m2,B, - . . ,  mk,  B, Ctk, B, mk+l  

O c c u r s .  

STATEMENT 6. There is a growth function F such that, i f  {Dn, L~, l,,, C~} grows 

faster than F, then for  every k>-2, n and N,  i f  the case  a~,B, ml,B,a~,a, m2, B, 

.... mk, B, ak, s, mk+ l occurs when Ihq] N is estimated then either 

* �9 The estimate given by V is >-I case  Ct~',B, ml,B,  Ctff, B, m2, B . . . . .  mk, B, Ctk, B, mk+l,G" 

o r  

some case  a*,n, m2,B, ~,B, m3,a, . . . .  mk, B, Ctk, B, mk+l,B, Ctk+l 

O c c u r s .  

We now p rove  T h e o r e m  1.3 f r o m  these  s t a t emen t s .  A s s u m e  tha t  {Dn, Ln, In, Cn} 

grows fas t e r  than  F and  let  Bn=min(Bln, B2n). L e t  Ihql N be  e s t ima ted  b y  V. T h e n  by  

S ta t emen t s  1 and  2 e i ther  the  e s t ima te  g iven by  V is ~B~  or  s o m e  case  al, B, m2, B, a 2 

occurs .  T h e n  b y  S t a t e m e n t s  3, 4 and  5 e i ther  the  e s t ima te  given b y  V is />1 or  s o m e  

case  aLa,  m2,a, a2,a, m 3 occurs . .  In  the la t ter  case  b y  S t a t e m e n t  6 e i ther  the  e s t ima te  

given by  V is t>I or  s o m e  case  Ctl, B, m2,B, r B, m3, B, Ct 3 occurs .  In  the  la t ter  case  we 

app ly  S t a t e m e n t s  3, 4 and  5 again  and  the  a r g u m e n t  con t inues  in an obv ious  m a n n e r .  

Since the  a ' s  are  a l l  d i f ferent  and  are  a m o n g  the  N first  s y s t e m s  (we recal l  
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moreover from above that the e of aj+l is smaller than the e of  aj) this process must 

eventually stop. We have now in fact proved that if some case ctl, B, m2, B, c~ 2 occurs then 

the estimate given by V is 31.  Since it is otherwise ~>B~, Theorem 1.3 is proved. 

Our next task is to give the propositions that prove the Statements 1 and 2. In 

order to give these propositions we have to do some preparations. Let  [ ]r, [ ]r operate 

on polynomials E aix i by means of 

ai Xi = ai xi 
i>r 

[ Za ix i ]  r =Zaixi'i<~r 

We start with 

LEMMA 3.1. Suppose that I I N is defined in a compatible way. Then for  every n 

there exist R~ and S~ depending only on [ I ~-1 such that 

[q_qn],-i < en 3 
16 =~ [[q(x)]R"[t > and [q[t < S,. 

Proof. The existence of  S~ is obvious since all norms I I m are equivalent to I I1 and 

E n E n 

Iq-q"l"-'< 16 =~ Iq["-l<l+ 16" 

To get Rn we write 

q = qn+Z al,i, kxi~k)(ll q l - 1 ) + . . . +  Z an_l,i, kXii~k)(ln_l q~_l-1)+t .  
i,k 

Here 

lj Ikl = kl+k2+...+kn-1 I(k)=~l ~n-I and /~-Iljlt 1 "'" n - I  ~ " 

By Sublemma 4.1 of  Section 4 we can assume that there is a uniform bound on i+ Ikl. 
Thus there exists R n depending only on I I n-I such that deg (q-t)(x)<~Rn. We have 

[ q - - t l l 1 > [ q - - t r l >  1 en 
16 
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Since ]tll<e,/16 we get 

en en 3 > J[q(x)]R,h > 1 
16 16 4 

We will now always assume ord In>R,,. 
We will now define a pre-(n, m)-expansion of a polynomial q in the ] I~norm and 

begin by defining the kth stage of a pre-(n, m)-expansion. The kth stage of a pre-(n, m)- 

expansion of q is a polynomial in 4 types of variables, q's, l's, s's, t's. The 0th stage of 

the pre-(n, m)-expansion is just q. The first stage of the expansion contains the follow- 

ing types of terms qn, sj, sfljcb., t. It is in fact a polynomial 

qn + s l(ll ql  - 1) +s2(12 q2-1)+... + S N(IN qN-- 1)+ t. 

The kth stage of the pre-(n, m)-expansion contains the following types of terms: 

(1) shlj shlj2...sjIjqj, r<~k 

(2) sjlljlsj21j2...sjrlj qp, r<~k-l, p<j  r 

(3) sj lj, sj2lj2...sjlj,.Sjr+,, r<~k-1 

(4) shlh521h.. .s l j t ,  r<-k-1. 

The (k+ 1)st stage of the pre-(n, m)-expansion is obtained from the kth stage by 

replacing q's in the two first types of terms according to the following rules: 

For terms of  the first type. 

Rule A. If qs belongs to the vth system, V<jr, m<jr it is replaced by a polynomial 

qo+ st(ll q t -  1) +s2(12 q2-1)+...+Sj_l(lj_ ! q j , - I -  1)+t. 

Rule B. If q2, belong to the j,th system, re<jr, it is replaced by a polynomial 

st(ll q l -  1) +s2(12 q2-1)+.. .  +sj _l(Ij _ l q j - l -  1)+ t. 

For terms of  the second type (and the q~ that appears in the first stage). 

Rule B'. If  m<p (m<n), then qp(q~) is replaced by a polynomial 

Sl(/i q l -  1)+s2(12 q2-1)+. . .  +$p_l(lp_l qp-l-  1)+t. 

Moreover, we have the following rule: if a term in the ith stage of the expansion 

and a term in thejth stage of the expansion are both of the first type (second type), and 
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end with the same ljrqi,(Ij~q p) then 4,  (qp) is replaced in the same way for the two 

terms when passing to the (i+l)st, ( j+l)s t  stage respectively. If a term of first or 

second type ends with q,, and is replaced according to rule B or B', it is replaced in the 

same way as qn that appears in the first stage. 

Since the indices of the q's are going down at every new stage we see that there is a 

final stage of the pre-(n, m)-expansion. We will call this final stage the pre-(n, re)- 

expansion of q. We see that the parameter n only refers to qn in the first stage of the 

expansion. The parameter m refers to the fact that ql, q2, ..., q,, are not replaced. We 

see that to every term sj in the first stage of the expansion corresponds an e namely ej. 

In the same way there corresponds an e to every term of the third type, namely ~'Jr+l" 

We say that a pre-(n, m)-expansion is shortened with respect to lk qk if all terms of 

the first type which end with lk qk are not replaced further. Consider the final stage of a 

pre-(n, m)-expansion of q which is shortened with respect to lkqk. Let S(i, s)lkqk be 

the sum of all terms which end with lkqk. We then say that S(l, s) is the coefficient of 

lkqk in the pre-(n, m)-expansion of q. Below we will define other types of shortened 

pre-expansions. (For every lk we normalize it by putting ik=ldllk}l.) 
From the kth stage of a pre-(n, m)-expansion of q we get the kth stage of an (n, re)- 

expansion of q in the following way. For every variable s in the kth stage put 

s = E a i, k xiirk) with /tk): ~, ~2... ~N 

and every variable t in the kth stage put 

t = E ai Xi" 

With these expressions substituted for s and t we have for replacements according to 

rule A 

qJ, = qo + E al,i,*xil~*)(li q l -1 )+. . .  + E alv.i,k xilt*'(INqN- 1)+ E ai xi 
i ,k i ,k i 

where this representation shows ]qs,-qv~'-l<eJ16. For replacements according to 

the rules B and B' the representations should show }tb.f'-l=l and Iqp~~ 

Obviously every variable s or t that appears in the kth stage of the expansion has 

appeared for the first time at some stagej~<k as the result of Some replacement of some 

q. An (n, m)-expansion of q is derived from a pre-(n, m)-expansion of q by making the 

15-878289 Acta Mathematica 158. Imprim~ le 28 juillet 1987 
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substitution above in the final stage and replacing ql, q2 . . . . .  qm by polynomials in x. 

We observe that an (n, m)-expansion of q is a polynomial in x, and/ ' s .  By making the 

substitution above we get the coefficient of lkq k in an (n, m)-expansion of q. It will be a 

polynomial S(x, I). We say that an (n, m)-expansion of q is r-substituted if every l j , j~r 

is substituted by a polynomial in x. More generally we say that we make an r- 

substitution in a polynomial P(x, l, q, s, t) if the q's and t's are replaced by polynomials 

in x and s's are substituted by polynomials in x and ii's with i>r and every li with i<_r is 

substituted by a polynomial in x. Let us say that this gives P(x, l, q, s, t)=P'(x, l). We 

then say that every monomial out of P'(x , l )  is derived from the polynomial 

P(x, l, q, s, t). We will sometimes below use the notation P(x, l, q, s, t)=P(x, l)=P(x), 

thus meaning that wc get P(x, l). by substituting q's, s's, and t's by polynomials in x and 

/'s and P(x) by substituting l's, q's, s's, and t's by polynomials in x. 

As for a polynomial q we can define pre-m-expansion of V. We only need 1 

parameter m since we do not use that q is close to qn. The first stage of such a pre-m- 

expansion is the polynomial vl(l~ q l -  1)+o2(/2 q2-- l)+...+ON(! N q N -  1)+O. The re- 

placements of q's are then done in exactly the same way as for pre-(n, m)-expansion 

ofq.  

Let S(l, s) be the coefficient of//,qk in a pre-(n, m)-expansion of q and V(l, s) the 

coefficient of lk qk in a pre-m-expansion of V. We then say that hS(l, s ) -V( l ,  s) is the 

coefficient of lk qk in h q - V ,  with a pre-(n, m)-expansion of q and a pre-m-expansion 

of V. 

Before going into the propositions of this section we will discuss growth functions 

in somewhat more detail. We say that a growth function is trivial up to thej th stage if it 

gives the value 1 for all 3m-tuples, m<j, and gives the function f of lacunarity -1  and 

6=I  for all (3m+2)-tuples, m<j. We say that two growth functions F! and F2 coincide 

up to the flh stage if they give the same values for all 3m-tuples and (3m+2)-tuples, 

m<j. We say F1 dominates F2 if for all 3m-tuples F1(D! . . . . .  Din, Ll . . . . .  Lm, ll . . . . .  lm) 

>~F2(Dl . . . . .  Dm, L1 . . . . .  Lm, ll . . . . .  lm) and for all (3m+2)-tuples we have for the 

lacunarity functions f l  and f2 and the 6's, 61 and 62, thatfl(x)>~f2(x) for all xER + and 

6~--.<62. In the propositions and lemmas of this section we will meet different growth 

functions and so in order to have the assumptions of all propositions and lemmas 

fulfilled with the sequence {D,,, L~, l~, C~) we have to know that there is one growth 

function which dominates all of them. We now go into these considerations. 
m,_ 

Let as above (a~, a2 . . . . .  ak) be a sequence of systems such that 1/2 --eb<a)<eb~aH ). 

We will also consider sequences (a~ . . . . .  ak, mk+~) where eb~a?<e~o~_ 0 and 1/2mk+t< 
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1/2mk=eb{ak}. For  such a sequence we consider 

M = { m l , m 2  . . . . .  mk} (resp. {ml . . . . .  mk, mk+l}). 

Let  92 be the set of  a f s  such that (aj, aj+~) is a j u m p D t h a t  is 

eb{a~+p <min  (et, e2 . . . . .  eb(%)), 

a/E92 and (ak, mk+l) is a jump if 1/2mk+~<min(et, e 2 . . . . .  eb~a0). Let  H e M  be defined in 

the following way: rake H(mk+ 1E H) and if rage H,  let i<j be the largest number  such 

that min(el,  e 2 . . . . .  eb{a~))<~l/2 m~, then also miE H. 

We now observe: 

(3A) Given a set M there are only finitely many different sets 92 and H that are 

derived from sequences (al . . . . .  ak) or (al . . . . .  ak, ink+l) with eb{a,)=l/2 m'. 

For  a sequence (a I . . . . .  ak, mk+l) we define N(a t . . . . .  a k, mk+t) to be the sequence of  

Mj,92j, l-Ig,j<...k+l for  the subsequences (al ,a2 . . . . .  aj), j<~k, and Mk+t,92k+ t, Hk+ t be 

the M, 92,H of  (a t . . . . .  a k, mk+t). 

We define N(cq . . . . .  ak) to be the sequence of  My, 92j, Hi,j<~k, and with the system 

a / a s  the (k+ 1)st e lement  of  the sequences.  Below we will have a family of  growth 

functions 

We assume that if 

then 

FN{a~ ..... ap and FN{at ..... ak,~k+P" 

N(a  I . . . . .  a k) = N(b I . . . . .  h~) (N(a I . . . . .  a k, mk+l)=N(bl . . . . .  b k, mk+m)) 

We now have a family of  growth functions FN{~ ..... ak) and FN{~I ..... ~k. mk+ p which 

satisfy the following: 

(3A1) If(ak_ p ak)((ak, mk+l)) is a jump FN{al ..... ap(FN{at ..... ak;mk+ p coincides with 

FNta i ..... ak_ t) (FN<a~ ..... ap) up to the (b(ak)-1)st  stage ((b(mk+l)--1)st stage) and depends 

only on N(al . . . . .  ak) (N(cq . . . . .  ak, ink+l)) and I I b{ak)-I (I Ib~mk+p-l) �9 
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(3A2) If  (a k_l, at) ((ak, ink+l)) is not a jump FN~.~ ..... a,) (FN<a~ ..... ok ,,.,+~)) coincides 

with FN~.~ ..... .,_,;m~) up to the (b(ak)--l)st stage (the (b(mk+l)--l)st stage) and depends 

only on N(al . . . . .  a,) (N(a~ . . . . .  a , ,  mk+O) and  I I ~a*)-I (I Ibr �9 

We now show that for a family of growth functions which satisfies (3A1) and (3A2) 

there exists one growth function F which dominates all growth functions of the family. 

(3B) In fact the conditions (3A1) and (3A2) give that every FN agrees with some 

FN~ ..... ~k) (or FNta~ ..... a,_l,,,,)) up to (b(mk+l)--l)st stage, where b(ak)<b(mk+l). Since 

b(mk)<-b(ak)<b(mk+O there are by (3A) and the definition of N only finitely m a n y  

such N(a~ . . . . .  aD and N(a~ . . . . .  ak- l ,mD.  Thus there is obviously one growth func- 

tion F which dominates all FN'S. 

For the next proposition consider a pre-(n, m)-expansion of q. In the final stage 

remove all terms of  the third type for which the corresponding e is <min(e l  . . . . .  e,). 

This will be called q'.  Similarly we consider a pre-n-expansion of V and define V' by 

removing the terms of  3rd type for which the corresponding e is <min  (el, e2 . . . . .  e,). 

Now two cases can occur, either 

I ~ 1 .  
I[q'(x)]Rnl,> ~ or I[q'(x)ls.Ii 

We denote them a~ c and a~ (low degrees of  q are not cancelled resp. cancelled). We 

will need a couple of more definitions to state our first proposition. We say that a 
a 1 a N polynomial E a ~ M~ aa X~ ~... XN N contains a polynomial E a ~ M2 aa Xl "'" XN if M 1 ~M2. 

a a N Below we will let p~(Ea~Maax~ ~ ... XN N) denote a polynomial Ea~MbaX~ ~ ... x N 

where E~MIb~--aJ<eEaeu]aa[. 

In the next proposition consider an (n-1)-substi tution in q' and an (n-1)-substitu- 

tion of V'. In the proposition we let ctl denote the nth system so b(cq)=n. 

PROPOSITION a~r For all n, there is a growth function FN<aO which is trivial 

up to the ( n -  1)-st stage and depends only on N(aO and I I " - l  and there are numbers 

B" and m depending only on I I " - l  such that for all N ~ n ,  i f  a~e occurs then for  all V 

either 

n c  . ][AN ~ l t ~ t  
Oil, G" " l e s t '= 'Vn  

o r  
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nc ~ at, a. (hq'- V') (x) contains pl/25(E(x)) 

where 

E= 2 ei, J, aXi~t [~2"" (" 
i+]a<~m 

A>~n for all k 

with IE(x)ll>B" and where jk belongs to one of the n-1 first systems for all k. 

Proof. We will give a detailed proof in Section 4. The strategy is the following: We 

first prove that hq' regarded as a polynomial in x contains pl/5o(E(x)) like in the 

proposition. We then show that if [VI is too small, V' will not interfere very much with 

E. To prove that hq' is big we use that ]h[opN/lhll<l/en implies that h is essentially a low 

degree polynomial, regarded as a polynomial in x and r s  and that {[q'(X)]Ro[l> 1/2 just 

says that q' has some concentration on low degrees regarded as a polynomial in x. 

c that is ][q'(x)]Rn[l<~l/2. To get the Statements 1 and 2 we now study the case a l, 

(I) We first show that with q=q~+E~l sj(ljqj-1)+t, 

__1 implie s [ 2 s j ( x ) ]  >__1 [q'(x)lR.I1 ~< 2 4 
j~n Rn 1 

where the summation is done only over those s~(x) for which ej~>min (el, e2 . . . . .  en). 

(2) To prove (1) we consider the first stage of a pre-(n, n)-expansion of  q, 

q=qn+sl(llql--1)+...+SN(INqN--1)+t. We observe that the ord of every term 

sjljqj,j>>-n---or of any term derived from such a term in a later stage of the pre-(n, n)- 

expansion is >~R~ when expanded as a polynomial in x. 

We have 

q.+ sj(ljqj-l)+t > 3 .  (3) 
Rn i 4 

To see (3) we write for i<N-1,  si(x, [)=sll)(x, l)+sl2)(x, i) where slt)(x, D contains 

only lr'S with l<~r<~n-1 and every term in sl2)(x, l) contains an lr with r>~n. Then 

We have 

[( )] o<l) (x) (liq i- 1)+t qn + .~i 
Rn 

3 

1 4 

(4) 

(5) 
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by Lemma 3.1 since the distance between q~ and q~+E~.~ 1Sl I) (x) (liq i-  1)+t in the 

I I~-Lnorm is <en/16. 

Now (3) follows from (4) and (5) and (1) follows from (2), (3) and 

1 
][q'(x)lRn] <-~ - �9 

(6) We have that the condition ]q-q~l'V<e,,/16 implies  '   lsjlopN" tj<e~/16 and this 

inequality obviously also holds if the summation is extended only over thosej  for which 

ej~>min {el, e2 ....  , e,,}. 

Now (1) and (6) give that if ][q'(x)]RN]~ <.�89 there is on average i n j  a bound on 

ISjlopdlsjh for J >n. 

We have 

Thus 

and so by (1) 

E en{SjIopN <~ E eJlSj}op N~ 16 
j~n j~n 

I e~e. ~j~e~ 

sj(x) ~<16 

Ej '~n  1 

E 4'(x) 
ej<e n 

1 1 1 > - - : >  
4 16 8" 

I 

So with en= 1/2 mt there is a smallest m2>ml such that for m2 we have 

1 1 > 
8 2m2-m' " (3.1) 

r We then say that the case a~, B, m 2 occurs. 

Remark. The argument above gives the reason for the requirement 

[q--qnlN<e,,ll6. The factor 1/I6 in e,,/16 gives the existence of an m2>ml with 

S~I)(X) > S 2m2 -mr' 

E./= i /2 m2 1 

and it is important for the argument that we do not have m2<.ml . 
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(3.2) We recall that b(m) is the smallest j such that ej= 1/2". In order to give the 

next lemma and proposition we have to take into account not.only sj but the coefficient 

S~(x,l) o f / j q / i n  a (b(mz)-l)-substituted (n,b(mz))-expansion of q, ej=l/2 m2. To do 

this we first consider the coefficient of  ljqj in a pre-(n, b(mz))-expansion of  q. The 

terms of this coefficient have the forms 

We put 

sj]lj]...lj,_ sj, r>~ l , j l> j2> . . .>L_]>j~b(m2) .  

SjI (Xl ~) Ijl . . .  Sjr_I (Xl ~) ljr_l Sjr(X , ~) : lj] . . o ljr_| e ( x ,  1). 

We say that every term (monomial) out of  lj.../j,_] P(x, D is derived from Sjllj]... lj,_, sj,. 

Now consider in S~(x, 1) those terms which contain at most r' different l's (or i' s) with 

index >j.  Every such terms is obviously derived from a term sit/j, ... sj, with r'<~r- 1. 

Let  Kg, r be the sum of  those terms out of  S~(x, i) which 

(1) do not contain any li (or ii) with both i>j and i belonging to a system with 

number >~b(m2), 

(2) contain at most  r different l 's (or / ' s )  with index >j.  

Put 

1 2ai 'axi~]  =Zlai'al2i(lllllCl)a] (IIN]I aN . . . . . .  C N )  �9 

est  op N 

We now have 

_<  . m 2 r .  �9 . r 
LEMMA 3.2. Eyigj, riestoplV~2 ( 2 )  L b ( m 2 ) _  i Db(m2)_l, where the summation Ej is ex- 

tended over all j for which the corresponding e is 1/2 m2. 

This can be proved by induction on r by considering the observation (3.2). We give 

a complete proof  in Section 4. With this preparation we can now define a semigood 

coefficient Sj(x, D of liq j, ej = 1/2 m2, assuming that the case a~. a, m 2 occurs. 

We now let Sj, o(X, 1) denote those terms out of s)t)(x, l) which contain on ly / ' s  with 

indices from the b(m2)- 1 first systems. We say that S~(x, 1) is semigood if 

IsJ"l~ N 100"4 m2-m] (1) 
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j estopN and are all~< 100.4 m2-m'. 
[SJI)I, ' .(1)1 c(l) 

aj Iest op N o j  opN 

Isj,0[l ~1,  [Sj, o[opN ~ 1  

(2) 

(3) 

1 1 1 (4) 
Is~(x)h~ 4 2m~-m, 2 j 

-- m2 r r . D r IKi,,.l~stopN<-Isj(x)h'8"2 m' m"2(2 )'tb(m~)-~ b(m~)-~ "10~" (5) 

Let the weight of  Sj, be w(Sj)=ls,<x)l,. 
In the next lemma we consider also a (b(m2)-D-substi tuted representation of h, 

say h(x, l). That is, we consider an h with Ih(x)[,--1 and IhlopN<l/en and we consider a 

representation h=Ei, ~ ai, axi(~... ~N for which IEi,,~ ai, ax'~...  ~l~topN < I/e~, In this re- 

presentation of h we substitute every [~ with i<~b(m2)-1 by a polynomial in x. So in 

h(x, l) every i has index ~b(m2). 

In the next lemma we let 

denote the following terms out of  the product h(x, i) Sj(x, I): 
In every /~a)=~a0 ~a2) ~aP) we have 

11 12 ~176  Ip 

(A) al+aE+...+ap=r]. 
(B)  i l ,  i2 . . . . .  ip are all >j.  

(C) il, i2 . . . . .  ip all belong to the b(m2)-1 first systems. 

(D) For  every kin, l<_m<.s, i n / ~ ) = ( ' )  ~2)... ~ ? w e  have km<~j. 

LEMMA a~,a, m2, N(al,  m2). For all (a 1, m 2) there is a growth function F~(al.m 9 

which is trivial up to the (b(m2)- 1).st stage and which depends only on N(al, mE) and 
[ [ b(mg-i, an integer nl, and a positioe number El depending only on [ Ib(m2)- 1 such that if 

{Dn, L,,ln, Cn} grows faster than FN(at.m2), and the casea~, a, m E occurs when Ihql N is 

estimated by V tflen there is an rl<<.nl, such that for 
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EllSj(x)h~,a~=rl(li~,~)C(a)'i'~3)xi]~) est op N t  

~,a~=rl (i~)C(a)'i'~3)xii(~)t(X)l, 
~ Is~ (x)ll" 
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Proof. We give a detailed proof later. The ideas are the following. 

The condition IhlopN/Ihl~<l/e. on h gives that h has a representation which has its main 

weight on low degrees (and early systems) regarded as a polynomial in x and I's. The 

condition (1) on sj in the definition of semigood coefficient shows that the same holds 

for sj. So by the theorem on multiplication of polynomials in many variables hsj is big 

as a polynomial in x and /'s and so also ]hsj(x)ll is big. On the other hand the 

submultiplicativity of es topN-norms give a bound on [hsj[estopN. The extra complica- 

tions in the statement and proof of Lemma a~. B, m2, N(a~, m 2) are due to the fact that we 

consider hSj instead of hsj. 

Now consider V and let Vj(x, i) be the (b(m2)-1)-substituted coefficient of ljqj in a 

b(m2)-expansion of V. Let 

E ~a)(Z d(a),,,(#)x~i~a)l 
lal=q \ i , ( f l )  / 

(3.3) 

denote the terms out of h(x, i)Sj(x, i)-Vj{x, I), which fulfill (A)--(D) above (as for 

h(x, l) Sj(x, i)). 
We now say that h(x, i)Sj(x, D-vj(x, i) is a good coefficient of ljq i if 

( - " l )  
[a[ = r I i, (fl) est op N 

1 E(Ec(~) ' i '@xq~) I ) 
~< lO lal=q\ Ii,(~) estopN 

and 
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(d(a)'i'(fl)-c(a)'i'(fl))xii(13)(x)1) 

We say that Isj(x)[l is the weight of this good coefficient. 

We now have 

PROPOSITION Ct~,a, m2, N(al, m2). For all (a I, m2) there is a growth function FN(al,m2) 
which is trivial up to the (b(m2)-1)-st stage and which depends only on N(at, m2) and 

]1 b~mg-l, and a number B(m2) depending only on ll btmg-I such that i f  {Dn, Ln, l~, C~} 

grows faster than FN<%m2) and the case ct~, B, m 2 occurs when Ihql N is estimated by V 

then either 

a~,a, m2,G: IVI~t>>-B(m2) 
a], a, m2,B: the sum o f  the weights o f  good coefficients o f  ljqj's, ey= 1/2 m2, is 

1 1 1 > - -  
2m2-mI 8 2" 

Proof. The strategy is the following. If [Vle~t is very small, then the d~a),i,~'s are 

almost the same as the cr ~)'s. This gives many good coefficients. 

Remark. We observe that the estimates and growth functions in Lemma 

aCl,a, mE, N(al,m2) and Proposition a~,B,m2,N(al,m 2) are uniform in al as long as 

ebtaO = 1/2 ml. 

(3.4) If a~,a, m2, a occurs, let D be the sum of the weights of good coefficients of 

/jq/'s, ej=l/2 m2. Among the systems a2, I a2,2,ct2, 3 ... b(ct2,1)<b(a2,2)<...for which the 

corresponding e is 1/2 m2, there is a first system, say a2,p=a 2, for which the sum of the 

weights of good coefficients of / jq i ' s ,  jEct2, is >1)/2 p. We then say that the case 

Ct~, B, m2, B, O2 occurs. 

n c  n c  and then consider how We will now study the case aLs of Proposition r ) 

much we have proved of the Statements 1-6. We will first define the cancellation 

effect. 
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(3.5) If PI(Yl, "",Yn)=Eal,aY ~and P2(Y l  . . . . .  Yn)=Ea2,ay~,ct=(al . . . . .  a n ) , Y = ( Y l  . . . . .  Yn) 

and ai,~4:0 for all terms in the summation are two polynomials we say that the 

cancellation effect of Pl o n  P2  is Xalal, ~l where the summation is extended only over 

those a for which a2, a is ~0. Let S(1/2 j) and V(1/2 y) denote the sum of those terms of 

the 3rd type in a pre-(n, m)-expansion of q and a pre-n-expansion of V for which the 

corresponding e is 1/2( Let S(1/T) (x) and V(1/2 j) (x) denote the same sums after having 

been substituted as polynomials in x. If a~cB occurs we know by Proposition a~CN(~d that 

(hq'-V')(x)  contains Pu25(E). Since on the other hand (hq-V)(x)=-O, we have that 

there is a smallest j say m2, 1/2m2<min (e I . . . . .  e~)~< 1/2 m' such that the cancellation effect 

of hS(1/2m2)(x)-V(1/2m2)(x) on E(x) is >lE(x)ll/2.2 m2-mt. We then say that the case 
nc 

I:II ,B,  m 2 o c c u r s .  

In the next proposition we assume that we have an (n, b(m2))-expansion of q and a 

b(m2)-expansion of V and a representation h(x, D of h with [hi1 = I, IhlestopN<l/e~ and 

that all of these are (b(mE)-l)-substituted. We consider the (b(m2)-l)-substituted 

coefficients Sj(x, D and Vj(x, i) of ljqj' s, ej= l/2 m2. 

Below we put hSj(x,i)-Vj(x,I)=S~(x,I)+S')(x,D where S')(x,D consists of those 

terms which either are of degree >m, defined in Proposition a~,~N~al) in I{s or contain an 

l~ with i from a system with number >~b(m2). Below we consider Sj~(x) (which we get 

from Sj(x, I) by substituting the l's by polynomials in x). 

PROPOSITION nc al,B,m2,N(al,m2). For all n and m2 there is a growth function 

FN(%,~ which coincides with FNt~ ~ up to the (b(m2)-l)-st stage and which depends 

only on N(al, m2) and I I b~m2)-I such that i f  {Ln, Dn, l~, C~} grows faster than FN(Q,,m2) 
n c  and the case ai,B, m 2 occurs when Ihql N is estimated by V then either 

nc N ~_ al,B, m2,~: IVl0s,~-I 
o r  

ct~CB, mE, S: The sum of  the cancellation effects of  all monomials xil~=Pa(x) of  all 

S'j~(x, l)' s on E(x) is <l E(x)l~/( l O. 2. 2'~2-m~). 

Proof. The proposition is a simple consequence of the fact that the l's behave like 

independent variables. We give a detailed proof in Section 4. 

(3.6) Let Tj(x, l) consist of the following monomials out of hSj(x, l ) -  Vj(x,/): Those 

which are of degree ~<m in li's with i>j, and for which every li with i>j is from one of 
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N ~  the b(mz)-1 first system�9 If IV[est-~ I, then by the previous proposition the cancellation 

effect of  [Ej(hSj(x, i)-  V~(x, i)-  Tj(x, b)l (x) on E(x) is . . . .  

IE(x)l~ 
< 

10" 2" 2 m~-mj 

�9 and so the cancellation effect of [E/T~(x,/)] (x) on E(x) is 

9 IE(x)h 9 B'~ 
) - -  > - -  

10 2.2m2-m~ I0 2.2mz-ml 

We now have 

LEMMA 3.3. IflVl~t~l in the previous proposition, then 

E I r~x. t)to,,oo,, ~< 2. ~ L;,-2~,_,. o;,~,_, .(2 ~) 
j r~m 

= Kb(m2 )_ ! �9 

Proof. This can be proved by considering the different stages of  the pre-expansions 

of  q and V and the terms of  Ij(x, i) derived from them. We give details in Section 4. 

With (3.6) and Lemma 3.3. we now give 

Definition. We say that hSj(x, i)-Vj(x, i) is a good coefficient o f / j q / i n  h q - V  if 

(1) ITj(x,/)lostopN~< gb(mz)-I'lO0 
9 B" I[r;<x' t)] (1)t' 
10 2" 2 mz-'~r 

B'n 1 (2) i[r~Zx, t)l(x)l, 
2.2m~-ml 10/" 

(3.7) 

(3.8) f f  Tj(x, D fulfills (I) and (2) o f  (3.7), let T}. r(x,/) be the terms out o f  T~(x,/) 

which are of  degree r in l's with index >j .  Let  rl be the smallest number such that 

ITj, r,fX)l~>~(1/m)lTj(x)l~--obviously Er~mTj,,(x,I)=Tj(x,i)�9 We say that ITj. r,(x)ll is 

the weight of  this coefficient. 

(3.9) If  aT,ca, mz, B occurs let D be the sum of the weights of  good coefficients of  

l iqfs ,  ej= 1/2 m2. There is among the systems ct2. 1, a2, 2, a2.3.., b(a2, 0<b(az ,  2) 

<. . .  for which the corresponding e is 1/2 m~ a first, say az,p=a 2, for which the sum of  the 
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weights of good coefficients of  ljq.i's, jeer2, is >D/2 p. We then say that the case 
nc 

CII,B' m2~ 1~2 o c c u r s .  

We have now in fact proved the Statements 1 and 2. To see this we first observe 

that there is one growth function F which dominates all growth functions in the 

previous propositions. 
nc and the case The case ancLG of Statement 1 now follows from Proposition Cq,N(al ) 

a~, s, m 2 follows from the discussions above (3.1), (3.5) for * =c  or nc. In Statement 2 the 

case a~, B, m2, G follows from Propositions a~, a, m2, N(al, m2)and a~ B, m 2, N(a 1 , m2). The 

B2n here depends in fact only on I I b(m2)-1 <n .  The case a~' B, m2, B, a2 follows 

from these propositions and (3.4) and (3.9). 

If  the case a~',B, m2, B, ct 2 occurs, *=c or nc, consider for each ljqi, j E  a2, which has 

a good coefficient a pre-(b(a2), b(a2))-expansion of q./. (Since j belongs to the system 

with number b(a 2) we get qj=qb(a2)+ ... in the first stage of this preexpansion.) We form 

~(s, l, q, t) by removing from the final stage of  this preexpansion all terms of the 3rd 

type for which the corresponding e is <min{et ,e2 . . . . .  eb(a2)}. We form'qj(x) by 

expanding the s 's,  l 's, q 's and t 's  as polynomials in x. For  e a c h j  we have either 

1 1 Itqj(x)]R,,o ,i>-f o r  

(3.10) Let  D'  be the sum of the weights of good coefficients of lj qj' s, j E a2. Let D1 

be the sum of the weights of  the good coefficients of ljqi's, j E  a2, for which 

[[qj(X)]Rs~'z'[I > I2 

and let D2 be the sum of the weights for which 

1 It, ; x)a I Rb(a2 ) 1 2 

Then D'=DI+D2.  Now if DI>~D'/2 we say that the case a~,B,m2,a,a~Coccurs and if 

DE>D'/2 we say that the case ct~',B, m2,B, Ct~, B occurs. These definitions now give the 

Statement 3 for k=2.  

(3.11) Now we assume that the case a~',B, m2. B, a~, a occurs. For  every j with 

1 



242 P. ENFLO 

consider the smallest 

from (3.1) such that 

m~ (obviously 1/2m~>--min(el, e2 . . . . .  eb(a2)), m~>m2 will follow 

1 1 (see (3.1)). IsJl, > 2";S-m2 
~= v2'~ 

Let wj be the weight of the good coefficient of ljtb.. Let rn3 be the smallest number 
m3--m2 c such that Em~m3 wj>D2/2 . We then say that the case a~' a, mE, Ct2. B, rn3 occurs. This 

definition gives Statement 5 for k--2. 

We will next give the Statements 4 and 6 for k--2 before going into the induction on 

k of the Statements 3-6. 

Before the next proposition we will make the 

Definition. We will say that a pre-(nl, n2)-expansion of q is shortened with respect 

to systems of number ~>m if every term of the first type which ends with ijc b. where j 

belongs to a system with number ~>m is not expanded further. 

(3.12) In the next propositions we will assume that the case a~,a,m2,a,a~ c or 

a~Ca, mE, a,a~ ~ occurs when Ihql N is estimated by V. We consider a pre-(n,b(aE))- 

expansion of q which is shortened with respect to systems with number ~>b(ct2). Let 

E Sfljcli+R(s, l, q, t) be the final stage of this shortened expansion wherej  belongs to a 

system with number ~>b(ct2). 

(3.13) We observe that Sj need not be the coefficient of /2q/ in  a pre-(n, b(a2))- 

expansion of q, since the terms out of the coefficient which contain an lj with j from a 

system with number ~>b(a2) are missing. 

(3.14) We also consider a pre-(n, b(a2))-expansion of V which is shortened with 

respect to systems with number >~b(ct2), let E Vflyqi+Rv(s, l, q, t) be the final stage. 

From (3.12) and (3.14) we get 

hq(s , l ,q , t ) -V(s , l ,q , t )=  X(hSj -Vj ) l jq j+hR(s , l ,q , t ) -Rv(s , l ,q , t ) .  (3.15) 

For every q/such that/s'q/has a good coefficient we now form a pre-(b(a2), (b(ct2))- 

expansion of qj and form ~ by removing from this expansion all terms of the third type 

where the corresponding is <min (e~, e 2 . . . . .  eb(a2)). Remove also from R and Rv all terms 

of 3rd type for which e<min (el, e 2 . . . . .  eb(a2)), thus forming R' and R[,. 
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(3.16) From (3.15) we now define (hq-V) '  (s, l, q, t) by 

'+ ' t)-R'v(S, l, q, t) (hq- 10' (s, l, q, t) = E ( h S f  Vj.) lj q) E (hSj- Vj) lj qj+ hR (s, l, q, 

where the sum (hSj-Vj)iyqj is extended over those qfs  which have a good coefficient 

and for which 

I [qj(x)]R~o2,11 > 1 2" 

(3.17) In (3.16) we consider the terms (hSj-Vj)lyqj. For every such j consider a 

(b(m2)-l)-substitution of hSj-Vj and consider the part 

E ira) E d~'),m,~) xmi~) (see 3.3) 
lal=rl m, ~ )  

o r  

" ( a ) ,  m , ~ )  "~ - -  " 
lal=rl 

We observe that (3.17) coincides with (3.3), (3.6). The reason is the following: 

It follows from (3.13) that every term out of the total coefficient of / jq/ in  h q - V  (in 

a pre-(n, b(a2))-expansion of q and a pre-(b(a2))-expansion of V) which is not in 

hSj-Vj, contains an li with i>~j and i from a system with number >~b(a2). This 

obviously remains true for (b(m2)-1)-substitutions of hSj-Vj, and of the coefficient of 

/jq/in hq-V.  
We now make a (b(a2)-l)-substitution in (3.17). Since in/~a) the index of every l 

appearing is >j>~b(a2),/ta) remains unchanged when this replacement is done. So we 

get 

E/~'~) E d~),m,~e)xm~)= E / ~ ) E  d(a),m,~) xm~)" (3.18) 
(a) m, ~0) (a) m, ~ )  

(3.19) Now, using (3.16) we will define (hq-V) '  (x, l) in the following way: In every 

term (hSj-Vj)l j~ make a (b(ct2)-D-substitution of hSj-Vj and a (b(a2)-l)-substitu- 

tion of qj. In every term (hSj-Vj)ljqj make a (b(az)-l)-substitution of hSj-Vj and 

expand qj as a polynomial in x. In hR'(s, l, q, t) we make a (b(a2)- D-substitution of h. 

In R'(s, l, q, t) and R[,(s, l, q, t) we expand every s as a (b(a2)- 1)-substituted polynomi- 
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al in x and I. Every t and every q is expanded as a polynomial in x. Every ! with index 

~>b(a2) remains unchanged and every l with index ~<(b(a2)-l) is substituted by a 

polynomial in x. 

(hq-V) '  (x) is defined by expressing every l in (hq-V) '  (x, l) as a polynomial in x. 

(3.20) Here we observe that every q that appears in R'(s, l, q, t) or Rv(s, l, q, t) has 

index ~<b(a2)- 1. 

The reason is the following: Every term of the first type which ends with /ja~. 

where q./belongs to a system with number ~>b(ct2) is not expanded further and the term 

does not go into R(s, l, q, t) or Rv(s, l, q, t). Thus if a term of the first type is expanded 

further t b. is replaced by a q with index ~<b(a2)-1. Moreover if n>b(a2) (obviously 

n4:b(a2)) then qn will be expanded and so in particular q,, will not appear in R(s, l, q, t) 

and from the shortened expansion of q~ we only get q's with index ~<b(a2)- 1. 

In the next proposition we will let 

�9 (a), k, (B) ~ ] 

stand for a polynomial where 

(1) lj runs over those /j's such that lja d has a good coefficient and for which 

I[q;~x)l.~o2,h>�89 
(2) For every j,  (a) runs over a subset of the set of  (a) 's appearing in (3.17). 

(3) Only r s  from the b(a2)-1 first systems appear in i(fl) and b(aE)<~i<.j for every li 
there. 

We now have 

P R O P O S I T I O N  Ct~', B , nc m2, B, a 2 ,N(a  l, a2). For all (a 1, a 2) there is a growth function 

FN<aj,a2) which coincides with FN(al,m2) up to the (b(a2)-l)-st  stage and which depends 

only on N(at,  a2) and I I bta')-land numbers B'bta2 ) and n 2 depending only on I I b~a~)-I and 

j,  such that i f  {Ln, Dn, ln, Cn} grows faster than FNtal,a2) and the case 

ct*a, mE, B, Ct~ c occurs then either 

~ , B ,  m2,B, nc . N =~_ a2,G. [V[est~- 1 

o r  
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a~',B, m2, B, a~,ea: ( h q -  V)' (x) contains Pv20(E) where E=EjIj(E ~)  E eta),k, ~)xk~ ~) 

has the properties 1-3 above and in addition 

(4) k+lfl[<~n2for all k and fl 

(5) [E{1>~DB~a2)Lbta2) where D is the sum o f  the weights o f  the good coefficients o f  

ljq.i' s with j in the system a2. 

We give the proof of this in Section 4. 

As before it follows from (3B) that there is one growth function which dominates 

all growth functions FN<a,,a2). Since (hq-V)(x)=O we have the following: 

There is a smallest m 3 with 1/2m3<min (el, e 2 .....  eb~a2 )) such that the following holds: 

Let in (3.16) SI,j be the sum of the terms of 3rd type in ~ - q / w h i c h  the corresponding 

e is 1/2 m3. Let S and S v be the sum of the terms of 3rd type in R and R v  for which the 

corresponding e is 1/2 m3. Then the cancellation effect of 

~ ( h S j -  Vj.) Sl , j (x)+hS(x)-Sv(x ) on E is > IEI~ . 
j 2" 2 m3-m2 

We then say that the case a*,B,m2,a,a~C, m3 occurs. So the Proposition 

a~, s, m2, a, a~ c, N(a 1, a 2) now gives Statement 4 for k=2. 

To get Statement 6 for k=2 we now assume that a* ,,, ~nc I ,B '  "~2,B' tt2, B'  m 3  o c c u r s  when 

Ihql iv is estimated by V. We consider a j E  a2 such that ljq/has a good coefficient and 

such that t[qj(x)]R~2~ll~<�89 and m]=m 3. 

(3.18) We define a semigood coefficient of I k qk, ek= 1/2m3, in a (b(m3)-1)-substitut- 

ed (b(a2), b(m3))-expansion of qi like above (see before Lemma 3.2). We now give a 

lemma which corresponds to Lemma a~,a, m 2, N(a I , m2): h in Lemma a~, B, m 2, N(a I , m 2) 

corresponds to the "good"  part of the coefficient of I jq/below and Sj of Lemma 

a~, B, m 2, N(a i, m2) corresponds to S k below. 

Let Sk(x,l) be the semi-good coefficient of lkqk in a (b(m3)-l)-substituted 

(n, b(m3))-expansion of ~.  We observe that the indices of all r s  appearing in Sk(x, i) 
are <j. 

(3.19) Put s~,,(x,b=h(x, bSj(x,b-Vj(x,I) where Sj(x,I) a n d V j ( x , i ) a r e  the 

(b(m3)- 1)-substituted coefficients of ljqj in the (n, b(m3))- resp. b(m3)-expansions of q 

and V and h(x, l) is a (b(m3)- 1)-substituted representation of h. We observe that Sj(x, I) 

and Vj(x, l) would be the same if we instead considered (n, b(m2))- resp. b(m2)- 

16-878289 Acta Mathematica 158. Imprim~ le 28 juillet 1987 
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expansions of q and V. This is sincej>k>~b(m3) which gives that the expansions of q's 

with index between b(m2) and b(m3) will never contain any ljq i. 

In the next lemma let 

lal= q ~l=r2 i, (y) 

denote the following terms out of the product Sl,~(x, D Sk(X,/): For every/~0) we have 

the conditions A , B  and C of semigood coefficients (given after Lemma 3.2). 

In every /~)=~1) .... ~p), we have (A0 fll+fl2+...+flp=r2, (Bl)il,i2 ... . .  ip are all >k 

but <j, (CO il,/2 ... . .  ip all belong to the b(m3)- 1 first systems---(since j belongs to a 

system with number ~>b(m3) we get < j  instead of ~<j in (B0. (Di) For every mr, 

l~<lrl~<s, in I~Y)=P "' ... I ~ we have m~<~k. 

In the next lemma let wj denote the weight of the good coefficient of 

lj qj and let qj.= qb~2) + E ~j_ 1 Stir q , -  1) + t be the first stage of the expansion of qj. 

In the lemma below, if *=nc, rl is the number given by (3.8) and if *=c, rl is the 

number given by Lemma a~.B, m2, N(al, a2). 

LEMMA al,a,* m2,a ' r m3, N(Ctl, Ct2, m3). For all (a 1, r 2, m 3) there is a growth func- 

tion F~(%a2,mp which coincides with Fs{a.m2 ) up to the (b(m3)-l)-st stage and which 

depends only on N(a 1, r m3) and I [ b(m3)- l (and numbers E2 and n2 depending only on 

[ [b(mp-l) such that if{D~, L~, l~, C~} grows faster than F'N~al,a2,m3)and a~, n, mE, a, a~, B, m 3 

occurs then for  some r2<~n2 we have for 

[al=r I ~ffl=r 2 i, 0') 

E2Wj[Sk(X)[I ~1r t i,(y~) c(a)'(fl)'i'O')xi~y) estopN) 

~'[a[=rl~,=r2l(i,(y~)C(a"~ff)'i'(Y)~Y)) (x) 
I> • %lsk(x)l 

E2 

Proof. The proof of this is essentially the same as the proof of Lemma 

aT, B, m 2, N(a~, m2). We give the details in Section 4. 
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Now we can use this lemma to define a good partial coefficient of lkqk that 

contains Ij and define its weight. 

Consider again (b(m3)- l)-substituted (n, b(m3))- resp. b(m3)-expansions of q and V 

and let Sl,k(X,D resp. Vl,k(X,i) be the coefficients of lkqk in these expansions. 

Consider also a (b(m3)- 1)-substituted representation h(x, 1) of h. 

Consider out of h(x, [)SI,k(X, l)--Vl,k(X, I) the terms 

t ~ (a), (fl), i, (y) "~ 
[alffir 1 [alfr2 i, (y) 

where (a) and (fl) run through the same sets as in the lemma above. Every I in/~Y) has 

index ~<k but i and (~) need not run through the same sets as in the lemma above. We 

say that 

) i y) lj ~. ita) ~ ~ ~dfa),~),i, fr)xI t 
[alffir I ~[=r2 i, (},) 

is a good partial coefficient of lkqk that contains/j with weight WjISk(X)]I if 

(1) St,j(x, D is a good coefficient of ljqj with weight wj. 

(2) Sk(x, l) is a semigood coefficient of lk qk. 

(3) 
[al=rl~l=r 2 i, 0') [ estopN 10 lal=rt~l=r 2 i,(y) 

and 

�9 st  op N 

la[frl ~lffir2 \ i , ( y )  / I 

In the next proposition let D' be the suni of the wj's. The proposition is analogous 

to Proposition a~, a, m2, N(a l, m2). 

P R O P O S I T I O N  Ct*l,B, m 2 , B ,  Ct2,B,C m 3  ' N(at, 0t2, m3). For all ( a l ,  Ct2, m 3 )  there is a growth 

function FN(al,a2,m3 ) which coincides with FNtal,m2) up to the (b(m3)-l)-st stage and 

which depends only on N(c h, ct2, m 3) and I I b(m3)'' such that if {D n, L n, I n, Cn} grows 

faster than FN(al,a2,m3 ) and * c ctl, n, m2, a, a2, B, m 3 occurs then either 
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a~, B, m2, a~, a, m3,G: [V[~,~ 1 
or 

a~,s, m2, a2,B , c  m3,B .. The sum o f  the weights o f  good partial coefficients Of lkqk'S, 

ek=l/2 ''3, that contain l/s,  jEa2,  is 

1 1 1 
> D '  

2m3-'~2 8 2 

Proof�9 The strategy of  the proof  of  this proposition is similar to that of  Proposition 

ctCl,s, m 2, N(al ,  m2). We give details in Section 4. 

(3.20) Let  D be the sum of  the weights of  good partial coefficients of  lkqk'S that 
, c contain/j 's---assuming that al, B, m2, a, ct2, a, m3, a occurs.  There is among the systems 

a3,l,a3, 2 . . . . .  b(ct3,1)<b(cq,2)<...for which the corresponding e is 1/2 m3, a first, say 

a3,u=a 3 for which the sum of  the weights of  good partial coefficients of  l iq i ' s ,  kE a3, 

that contain lj s, j E a 2 ,  is >D/2 p. We then say that the case a~,B, m2,a,a2.B,m3,B,a 3 

occurs. 

(3.21) It now follows from (3B) that there is one growth function F which domi- 

nates all FNta,,a2.m3 ). This gives Statement 6 for k=2.  

We now turn to the induction on k to get Statements 3-6. We draw a "f low char t"  

(next page) to illustrate how the argument goes. 

In the induction hypothesis  below we let a~'s, m2, B, a~, B, m3, B . . . . .  a k define M~fH 

and N(Ctl . . . . .  ctk). With M =  {ml, m2 . . . . .  mk} we let {my,, my2 . . . . .  mj,, ink} 

----'{m2, m3 . . . . .  mk} NH. Let  lsy, denote an I with sji in the system cti, (and lsk an l with sk 

in the system ak). We assume that [h h = 1, h=  E bi.oy,r O) is a representation of  h in x, and 

l's which shows IhlopN<l/e,. We have already proved the induction hypothesis  below 

for k= 1,2, 3. We use it below to prove Lemma 

Ct~, B . . . . .  trek, B,  m k +  l , N(a, . . . . .  at,, mk+l) 

and Propositions 

g~ c al,B . . . . .  ak, B, mk+l, N ~ I  . . . . .  ~s mk+t) 

a~, a . . . . .  Ct~ c, N(a, . . . . .  ak), 
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~ e r  
/ . IVI~,~I or we can deter- 

/ / 'mi:e an E. In the latter 
/ / case go to 4. 

1. 
If nc occurs, go 
to 2. If c occurs, 
go to 3. 

. 
Choose 
t<min (e~, e2 . . . . .  eb(a)). 

N~ Prove that either [Vlest~ 1 

or we can define a good 
partial coefficient and 
weight of good partial co- 
efficient. In the latter case 
choose a system a and go 
to 1. 

~ ~  Choose 1 / 2 m ~ e b ( a ) . D e  - Prove that eiSther I V]:t~> 1 

fine semigood coefficient, or we can choose a sys- 
l~'ove product lemma. ~- tern a for which there are 
Define good partial coeffi- many good partial coeffi- 
cient and weight of good cients. In the latter case, 
partial coefficient and go go to I. 

a~, B . . . . .  a~e, B, mk + l , N (  al . . . . .  a k, mk  + l) 

and to get the induction hypothesis verified for k+ 1. 

Assuming s j l > s j 2 > s j r > s k ,  we let 

~ lsj, l,h...lsj , ~ if'~'...l~a"l~' ~ d,a,,ta).i.(v, xil f~') 
I~11 ..... la.L.t#l i1.ty) 

= r l ,  . . . ,  rr, r k 

stand for a polynomial where each F~') is a monomial of degree r~ in l's from the 
b ( m j ) -  1 first systems and the index of every/~0 appearing is >s j i  but > s j i - i  (for/W) 
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we have l's from the b(mk)-1 first systems and with indices >sk but <sj~). For every 

sj~ or sk we let R,(x, 1) bet the coefficient of l~j, q~j, in h q - V ,  in an (n, b(mj))-expansion 

of q and a b(mj)-expansion of V which is (b(mj)-l)-substi tuted.  Since 

sji>sk>-b(mk)>~b(mj), R,(x, t) would not change if we consider an (n, b(mk))-expansion 
of q and a b(mk)-expansion of V. 

We define the coefficient R,(h, s, l, q) of lsj~q~j, in h q - V  as follows: 

Let S~j, and V~j, be the coefficients of l,j,q~j, in q and V. Then R~=hS~j-V~j. 
Let 

I'hl,la21 . . . . .  lahl 
= r  I ,  . . . ,  r h 

~al)~a,) ... ~ah_,) E d(eo, i,o,)xq(y ) 
i, (~) 

be the sum of those terms out of Rh(X, I) which contain the product l,j, 1~ A ... l~j~_, 

and where/~ ' )  is a monomial of degree r,~ in / ' s  from the b(mj , ) -  1 first systems and 

with indices >Sin but <Sjm-1. The indices appearing in 

i, (y) 

are <~sj. We observe that this implies that no lsj. appears in any monomial/~') .  

Now consider a pair (mjh_: mj)  of adjacent integers of H such that (mjh_: mj)  is 

also a pair of adjacent integers of M (that is jh=jh_ I+ 1). 

Let Sh(X, I) be the coefficient of l~& in a (b(ak_~), b(mk))-expansion of q*Jh-: 

Consider the part 

Wh=lsJtlsJ2""lsJh E ~al)l(a2)'"i(ah)E d(a),i,(y) xi~y) 
lad ..... la,I i, (~,) 

= r  I ,  . . . ,  r h 

of the product l~jhRh_t(x, D'Sh(x , D, with notations as above. With these notations we 

can now state the Induction Hypothesis. We work with a fixed N. 

INDUCTION HYPOTHESIS. (1) There is a growth function FN~a, ..... ak_~,mk)such that i f  

{Dn, Ln, l n, Cn} grows faster than FNCa~ ..... ak_,,mk) then it is well defined that the case 

a~, B, me. ~, ct~, B, m 3 . . . . .  ct~ occurs when [ IN is estimated by V. 

(2) There are numbers nl, n2 . . . . .  nr, nk, Ei ,E2 . . . .  , E  r, Ek, G~ and G2 where ni and 

Ei depend only upon [ I b%,~-z and n k, E k, G l and G 2 depend only upon [ ]~mg-i so that 
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with these numbers we have (1), (2), (3), 3, 4, 5 below and the iemmas below. 

(3) Now assume that r,,<~nm, m<.k. We assume that it is defined that l~kq~k has a 

good partial coefficient Uk(X, 1) containing lsjllsj.., lsj, and that this implies that 

there exist rl . . . . .  rr, rk such that (I)-(3) below are satisfied. 

(a) For every m<.k we have for Urn(x, 1) 

Z Z 
[all, la2] ..... [a,n I e s t opN lall,la21 ..... laml 

= r  I ,  r 2,  . . . ,  r m m r  l ,  r 2,  . . . ,  r m 

E d~a), i, cr) xil[y) 

i, (7) 

x i~7  ) 

i, (e) 

(b) For every h the coefficient Sh(X, 1) is semigood. 

(c) For every Wh(X, i) and Uh(X, 1) we have 

(a l) .....  (at,) i, (y) estop N (al) .....  (ah) ~ i, (y) [ r N 

(4) I f  Uk(x,D is a good partial coefficient o f  lskqsk then Urn(x, D ,is a good partial 

coefficient o f  l~jm qsj. for every m<<.r, and the definition o f  good partial coefficient o f  

lsjmq~jm is given by the numbers nl,n2 .. . . .  nm and El,E2 ... . .  Era, and Urn(X, 1) is 
given by rl, rz .. . . .  rm. 

(5) The weight w(Um) o f  Urn(X, D, m= 1,2 ... . .  r, k is defined inductively after m as 

follows. 

I f  (aj._ t, aj m) is a jump, then 

, W ( U m ) =  

I f  (aj- l ,aj .)  is not 
--w(Um-l) w(Sm). 

E E Id, 
(1) ..... (m) i,03 

a jump (that is i f  jm-l=jm-1)  then W(Um) 

LEMMA 1 I. 
GI 

For the next lemmas let a~ be the p g h  system for which the e is 1/2 ink. Assume 

first that (ak-1, aD is not a jump (that is k - 1  =Jr) and form the sum E c w(Ur) where the 

summation is extended over all different combinations lsyt lsA.., lsy, for which 

7 
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For  m =  1,2 . . . . .  r, k, let r, w(Um) be the sum where the summation is extended over all 

combinations l~./, 1~ ... 1~./. 

LEMMA 21. I f  (ak-l, ak) is not a jump, then 

2Pk 2'~k-'~k-~ 16 

LI~MMA 31. I f  (ak-1, ak) is not a jump, then 

Assuming the induction hypothesis  for  N(a~ ... . .  ak-i ,  ink) we will by  the defini- 

tion below verify Statement  3 for  those sequences a~, B, m2, B . . . . .  a k 

which give N(a  I . . . . .  ak). 

Definition (3.21). We assume that the case a~, a, m2, a . . . . .  ak occurs.  

Then if 

IIC we say that the case a~',B,m2, a . . . .  a k occurs.  Otherwise we say that the case 
a *  ~ _c ~,a, "2 ,a  . . . .  uk, a occurs.  Thus,  if we can prove that there is one growth function that 

dominates all growth functions that appear  in the lemmas and propositions below, and 

verify the Induction hypothesis  for  k+ 1 then this gives Statement 3. 

c (3.22) Now we assume that the case aLa, m2, ~ . . . .  ak, a occurs.  For  every sk with 

y 

consider the smallest m~t, such that 

1 ,1 
X I,j(x)lz> 2":-', 

ej= 112 m'sk 

Let  D'k be the sum of  the weights of  good partial coefficients of  lskqs k. Let  mk+l be 

the smallest number  such that 
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w(Vk) 
D~k> 

m'sk=mk+ l 2m~+ l --ink 

where E W(Uk) as above is the sum of  the weights of  good partial coefficients of  

lskqsk'S, skEak.  We then say that the case a* c LB,  m 2 , B ,  " " ,  r B'  mk+l O c c u r s .  This 

definition gives Statement  5 as a consequence of  the induction hypothesis.  
r 

In the next  lemma we assume that the case a~, B, m2, B . . . . .  ak, a, mk+~ Occurs. We let 

Ss(k+~) be a semigood coefficient of  ls(k+~)q,(k+~ ) in a(b(mk+~)-l ) -subst i tuted 

(b(nk), b(mk+l))-expansion of  q~k" Let  Uk(X, D be a good partial coefficient of  l~kq,k in 

h q - V  with an (n, b(mk))-expansion of q and b(mk)-expansion of V, which contains 

lsj...l~j, and which is (b(mk+l)-D-subst i tu ted.  We observe that since 

sk>>-b(mk+l)>b(mk) we could as well consider an (n,b(mk+O)-expansion of  q and 

b(mk+l)-expansion of  V. 

We now have 

L E M M A  r c I,B, mE, B . . . . .  ak, B, mk+ I, N(al ,  ..., ak, m,+l). There is a growth funct ion 

F'N(a~ ..... ak, m,+ p which coincides with FN(a, ..... ak_,,,#p up to the (b(mk+1)--l)-st 

stage and numbers  nk+ l and Ek+ 1 depending only on I I b(m*+p-I such that i f  

{D n, L n, 1 n, Cn} grows fas ter  than F~v(a t ..... a,, ink+ z) and the case a~. B, m2, B . . . . .  a~, B, mk+l 

Occurs then we have the fol lowing: 

There is an rk+l<~nk+l such that i f  we consider the part  

Wk+i (X,t)= l~j ' . . . .  l~y l~, ~ ~')~9""~a*-') ~ "(Q),i, (y) ~'r 
la,l,la21 . . . . .  l akl, lak+11 i , (y) 

=r l, r 2, ..., r k, rk+l 

out o f  the product  lsk Uk(x, i) Ss(k+l ) (x, b then we have 

(a O . . . . .  (a~+t)  

(a z) ..... (a,+l) 

1 /> 
Ek+l 

l i ~ )  C(a), i, (y) Xi~[y) I r N 
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Here Ssck+l) is given by 

qsk = qbt~p +...  + Ss<k+ l) (lsck+l) qstk+l)-- 1)+.. .  +t .  

Proof. The proof of  this is essentially the same as the proof of Lemma 

a~, a, m2,N(a l, m2). We give details in Section 4. 

(3.23) Now consider the part 

d x"/~y)~ (x,/) l,j,'"l~j,l,k ~ (~al) o..~etr)~(ak)~ {Otk+l)) ~ (Q),i,(Y) / = Uk.i. 1 
lall ..... lak+t[ i 0') 
mrl,...,rk+ 1 

out of  the coefficient of  lstk+ I) q~tk+ I) in h q -  V where we consider (b(m~+ 1)- 1)-substituted 

(n, b(mk+l) )- resp. b(mk+l)-expansions ofq  and V and a (b(mk+ 1-1)-substituted represen- 

tation of  h. Let  /~a0.../~)/~p run through the same set as in the lemma above. Every 

index appearing in /0~ is ~<s(k+l)but  the monomials x~/~ need not run through the 

same set as in the lemma above. We say that Uk+ l(x, l) is a good partial coefficient o f  

ls(k + l) qstk + l ) that c o n t a i n s  lsj 1 lsj z . . .  lsj lsk with weight w( Uk)lS stk+ l) (X)[1 if 

(1) UAx, i) is a good partial coefficient of  l~t, qsk that contains l~j, ...Is j, with 

weight w(Uk). 

(2) S,<k+i) is a semigood coefficient of  l,~k+l)q,<k+l). 

and 

e \ i ,  0') est op N i, (y) [ cst op N 

a I \ i, (y) / 1" 

Let  E w(Uk) be the sum of  the weights of  good partial coefficients of  l s k q s k ' S ,  

skECtk. We now have 

P R O P O S I T I O N  * c ai,B,m2, s . . . . .  ak, a ,mk+l,N(al ,a2 . . . . .  ak, mk+~). There is a growth 

function FNtal,a 2 ..... ak, mk+O which coincides with Flvta~,a2 ..... ak-~,mk) up to the 

(b(mk+l)-1)-st stage such that i f  {D n, Ln, l~, C~} grows fas ter  than FNta~ ' ~2 ..... ~, ink+,)and 

the case a~, a 2, ..., a k, mk+ 1 occurs then either 

case a* * 2v >_ l,B, m2,B . . . . .  ak, B, mk+l,G: II'qest ~'1 
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or 

case a~,B, m2, a . . . . .  Ct/c,B,* ink+l, B." The sum Dk+ 1 o f  the weights o f  all good partial 

coefficients o f  all lstk + l) qstk + l)'S containing l~jt lsh ... l~k' s is 

1 1 1 
>I w(V ) - -  

2 m~+l-mk 8 2 

(3.24) The proof  of  this will be given later in Section 4. I f  case a~',B . . . . .  mk+l, B 

occurs,  then there is among the systems ak+~,~,ak+l,2...for which e is 1/2 mk§ 

a first, say ak+l,p, for which the sum of  the weights of  good partial coefficients for  

ls(k+l) qstk+l)'S, s(k+ 1) E s 1 is >Dk+l/2 p. We then say that the case 

~I,B~ " ' "  mk+l,B, ~k+l  O c c u r s .  

(3.25) The Proposit ion a~',a, m2, B . . . . .  cry, B, mk+ 1, N(Ctl, ct 2 . . . . .  Ctk, ink+ I) and (3.24) 

now give Statement  6. 

n r  (3.26) In the next  proposit ion we assume that the case a~'.B, m2, B . . . . .  ctt~ occurs  

when Ihq} 'v is est imated by V. Le t  b = m a x  (b(al), b(a:) . . . . .  b(ak)). We say that a pre- 

(n, b(ak))-expansion of  q (pre-(b(ak))-expansion of  V) is shortened with respect  to the 

case a~,a,m2, ~ . . . . .  a~ c, if every term which ends with lskqsk, skEak of  sk belongs to a 

system with number  >b ,  is not  further  expanded.  With such a shortened expansion we 

get 

( h q -  V) (h, s, l, q, t) = ~ Sj lj qj+ R, 
J 

where every j belongs to a system with number  > b  or to the system ak. 

(3.27) In (3.26) we make a pre-(b(ak), b(aD)-expansion of  every ~ ,  j E  Ctk and form 

by removing all terms of  the 3rd type for which the corresponding e is 

<rain {el, e2 .... eb(ak) } . We do this also in R thus forming R ' .  Now we form the sum 

E Sjljqj+ ~ S~liqj+R' =(hq-lO' 
J J 

by letting the first sum run over all those j in (3.26) for  which a A has a good partial 

coefficient and for which Iqj<x)lR ok, lz> �89 and let the second sum run over the o t h e r j ' s .  
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Since for every qj in ( 3 . 2 7 ) j E a ,  we change the notation and write 

ESyljq)=S~kl~kq" k when sk runs over the same set as j .  By making a (b(ak) - l ) -  

substitution we form (hq-V) '  (x, I). 

(3.28) We get (hq-V) '  (x) by substituting all l 's in (hq-V) '  (x, i) by polynomials in 

x. We have for every sk, S~k(X,/)=El Ui,~k(x, i)+Rsk(x, i) where Ui, sk runs over the good 

partial coefficients of  lskqs k containing l s j l s j2 . . . l s j  r, for  different combinations 

lsj, lsJ2 ... lsJr 

We observe that the part  

lsjllsj2""lsj , ~ (~a')i(a2)...l(a')~ak)(~d(e)i(~,)xi~'))3 
la~l ..... la,I \ \i .  (~,) ' ' / /  

~ r  t . . .  r k 

out of  S~k(X, D coincides with the good partial coefficient of  l~kq~k that contains 

l~j~ l,j . . ,  i~j. This is since in a good partial coefficient none of  the Sjm'S or indices in 

l(m)'S belong to the system at, or  to any system with number  >b .  

We now have 

PROPOSITION Ct'1,3, m2,3, .. . .  a~ r N(al, r ..., Ctk). There is a growth function 
FN(a~,a 2 ..... ak ) which coincides with FN(%a 2 ..... ink) up tO the (b(ak)--l)-st stage and num- 

bers B'b(a, ) and n k depending only on [I b(ak)-I and N(al,a2 . . . . .  r such that if  

{D~, L~, l~, C~} grows faster than FN(at ' as ..... a,) and the case a~', 3, m2, 3 . . . . .  a~ c occurs then 

either 

or 

case a~, 3, m2,B, ant . N .... k,~" IVI~ >1 

case a~',3, m2, B . . . . .  ak ,no3.. (hq-lO'  (x) contains pl/20(E) with 

E = ~ l s l  I ~ (lsy, lsh'"lsj, ~ ({aO...{a')i~a~)~, 

\ \ mrlJ...~l" k 

(2) i+lYl<.nkfor all i and 7. 

and with 
(1) [E[l>~D.B'b~ak).Lb%,).Lb%2)... Lb<ap where D is the sum of  the weights of  good 

partial coefficients of  lsk qsk'S containing l~j~ lsh ... lsj ,. 
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Proof. The strategy of  the proof  of  this proposition is similar to that of  Proposition 

a'{,a, m2,a, a~ r N(at, a2). We give details in Section 4. 

(3.29) For the final proposition we now assume that the case a~',a, m2, a . . . . .  a~,r 

occurs. Since (hq-V)(x)=-O we get by the previous proposition that there is a smallest 

m,+~ with 1/2 m~§ min (e l, e 2 . . . . .  ebf~))= 1/2/' such that the cancellation effect of  the terms 

of  3rd type for which e=l/2 m~+~ o n  E(x) is >[E[~/2"2 m~+~-:. We then say that the case 

~ , B ,  m2 ,B ,  nc " ' "  {~k, B '  m k + l  O c c u r s .  

(3.30) We observe that the set H '  given by the sequence a~',B, ..., a~,cB, mk+ 1 is not 

uniquely determined by the corresponding set H for a~'B, m2, B, a,. We have, howev- 

er, obviously the following: If  m j E H n H ' , t h e n m j h E H N H ' f o r h < ~ i .  We put 

H'={mj:mj2 ..... mj.,m,+l}. Given ljqj, eyE1/2 m*+', we consider the (b(mk+l)-l)-  

substituted coefficient Sj(x, i) of  ljqj in an (n, b(mk+0)-expansion of  h q - V .  For every 

l,j,, with sj,, ~ c% (and mj,, ~ H') and every l,j t l,j ... l,jr,_t such that l,j. has a good partial 

coefficient 

l,j, isJ2""l,,,_, E /~')/~2)'"/t~e-')/~AE dt.),,,,,) xi~') 
lull ..... lael 
= r  I , . . . ,  r r,  

containing l,j. l,j2.., lsj,,t, we consider the terms 

T'sJ~,~J2 ..... s:;,,~',+~= l,, lsy2 "" l~J,, E /~a')'"/t~A/ta'+')E d(~),i, fy) "~') 
lall, .:.,1~,,I 

= r  I , . . . ,  r r,  

r t k +  I < ~ n k +  1 

out of  the coefficient of  l jq /where  ' - n k  + l - - r r ,  + l-I-  . . . + r k  + n k .  

For every such lsj,, and every lsj. l~j 2 .., lsj,,_t, consider also the terms 

T~ ~I,~2 ..... ~,',~+l "~Jt'~2""l~e 
I.I 

lull ..... la,,I i, (y) 
r 1 , � 9  ~ r r,  

r k + l ~ ? t k +  I 

out of  the product  S'~j~ .S'7.1sj,,, where S'j,, is the (b(mk+t)--1)-substituted coefficient of  

lsjq~j, in h q - V  in an (n, mk+0)-expansion of  q and a b(mk+i)-expansion of  V, and 
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S'5 is the (b(mk+t)--1)-substituted coefficient of  ljqj in a (b(aj), b(mk+l))-expansion of  

q~j. Now let 5e~ be the subset  of  all combinations sjp sj2 . . . . .  Sjr, such that 

~_~Xlc<~,.i.<v,-d,.,.i.<v,[ ~ 1  1 ~ X Ic,.,.i.,,,I 
Q i,(y) 10 r'k+ 1 i,(r ) 

and such that 

i y) 1 1 XlC(co, i,(y)xl[lestopN. X X [(c,a),i,<r)-d<a),i, ty)) X//(~')lestopN ~ lO r~+ l 
a i, 0') i, (~,) 

Now let 

T~'.(x,i)= E T'. sJi,sh ..... sj,,,nk+~ (X, D. 
se: 

With these notations we have the following 

P R O P O S I T I O N  Ct~,a, m 2 ,  B . . . . .  ct~Ca, N(a,, a 2 . . . . .  r m k + l ) .  There is a growth function 

FN(%a2 ..... ak ,mk+t ) which coincides with 

FN(%a2 ..... ak) up to the (b(mk+t)-- 1)-st stage such that i f  {L n, D n, ln, Cn} grows fas ter  

, _nc m than FN(al,a 2 ..... ak, mk+t) and the case al, B,m2, B . . . .  , uk, B, k+l Occurs then either 

c a s e  ~ , B , m 2 , B ,  . ,  nc . N >~ �9 . Ctk, B,mk+l,C. IVqest~l 
or 

case a~,B, m2,B, ..., ak, B, "r mk+l,B." The sum o f  the cancellation effects o f  all mono- 

mials x//a=Pa(x) o f  all Sj(x, l ) -  Tj'(x, D, ej= l/2 mk§ is 

IE(x)h lE(x)h ~< ~< 
10" 2" 2 mk+l-j' 10" 2" 2 mk+l-mk" 

Proof. The proof  will be given below in Section 4. 

(3.31) We now let Ew(U,,) be the sum of the weights of  good partial coefficients of  

all Is j,, qsj,,' s. 

We now have 

LEMMA 3.4. There is a number  K'b(mk+O depending only on I I ~mk§ 

such that i f  [Vl~t< 1 in the previous proposition then 
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,,, ) E E "fb(rr , 
et i, (y) 

where the summation is extended over all T~j, ..... ,j:,,~+, for all 6:,,~ and j. 

(3.32) 

(3.33) From Lemmas  1 I, 21 and 31 of  the induction hypothesis it follows that the 

cancellation effects of  T:(x,/)'s on E(x) is 

> I0 2.2mk+,-m* ~> w(Ur') "Lb(aJ,)'""Lbf% ')'Cb(mk+')' 

w h e r e  C;(mk+l)_ 1 depends only on l[ btmk+')-l. 

So with Lemma 3.4. and (3.33) we can define good partial coefficient of ljq/. For  

this let rk+~ be the smallest number  ~<n;,+l such that for 

we have 

lad ..... I~,1 i,(y) 
=r I, ..., r k 

ntk+l 

We now say that T'syz,UA,...sj,, ) (x, ~ is a good partial coefficient of  l jq/ that  contains 

Is~, I~./... I~/,, ff 

' ' I00 

i y) ~ Z E Id<*),i,(r)xiitr)l'" ( 3 . 3 4 )  ZZld(a) , i . ( , , x l~  [estopN... Kb(m'+','n'+l" 
a i, (y) Cb(mk+ I) a i, 0') 

(3.35) We say that E~ ~ i , ( y ) l d ( a ) , i ,  (y)[ is the weight of  this partial coefficient. 

(3.36) Let  D'  be the sum of the weights of  good partial coefficents of  /jqj's, 

ejE1/2 m~§ There is among the systems a,+l, lak+z, 2. . .b(ak+l, i)<b(ak+l,2)<.. .for 

which the corresponding e is 1/2 mk§ a first say ak+Lp=a,+ ~ for which the sum of  the 

weights of  good coefficients of  ljqj's, e71/2 ink§ is >D'/2 p. We then say that the case 

t:t* I,B, " " ,  m k + l , B ,  ~k O c c u r s .  

With this we will now see that we have verified the Induction Hypothesis  for k+  I. 
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(1) follows from Proposition a~',B, m2, a . . . . .  a~,B, mk+l, N(a l ,  a 2 . . . . .  Ctk, mk+l) and (3.24) 

and Proposition a~,8, m2, a . . . . .  a~B, mk+l, N (  al, o~ 2 . . . . .  ak, mk+l) and (3.36). The existence 

of Ek+l which works for (3a) in the definition of good partial coefficient follows from 

Lemma a~',B, mE, B . . . . .  ~ a, mk+l, N(a l  . . . . .  a k, ink+l) and (3.23) and from (3.34). (3b) and 

(3c) of the definition of good partial coefficient follow from (3.23). (3) of the Induction 

Hypothesis follows from (3.23) and (3.30) and (3.34). (4) of the Induction Hypothesis 

follows from (3.35) and (3.23) and (5) after Lemma 3.2. The existence of V1 and Lemma 

1 I, follow from Lemma a~'. B, mE, B ..... Ct~, B, mk+l, N(al, a2 . . . . .  O~k, mk+1) and 

(3.23) and (3.35). Lemma 2I follows from Proposition a~',B, m2, a .. . . .  ack, B,mk+l, 

N ( a l , a  2 . . . . .  a k, ink+l) and (3.24). The existence of V2 and Lemma 3I follow from 

(3.31)-(3.36). So we have verified the Induction Hypothesis for k+ 1. 

Now the family of growth functions in the propositions, lemmas and in the 

Induction Hypothesis satisfy (3A1) and (3A2) so there is, by (3B) one growth function F 

that dominates all of them. So to conclude the construction we now verify that 

Statements 3--6 follow from the propositions and the Induction Hypothesis. Statement 

3 follows from (3.21), Statement 4 follows from Proposition 

Ct~',B, m2, B ... . .  a~C,N(al, i~ 2 . . . . .  Oik) and (3.29). Statement 5 follows from (3.22). State- 

ment 6 follows from Proposition a~, B, m2. B . . . . .  aCk, B, ink+ I and (3.24). This concludes the 

construction. 

o 

In this section we will give the complete proofs left from Sections 1 and 3. We start by 

proving Theorem 1.2 from Section 1 and then we turn to proofs of lemmas and 

propositions from the 3rd section. 

P r o o f  o f  Theorem 1.2. 

SUBLEMMA 4.1. L e t  !~ . . . . .  In, C~ . . . . .  Cn be given, Ck>2. There exists a cons tan t  

M depending  only on [ld~ . . . . .  [lnl~ such that  fo r  all y there is a represen ta t ion  

n 

y = r + ~ S k ( l k q k - - 1 ) ;  S k = ~ a k ,  i, axil l  I l: n 
k = l  

and  
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n 

ly r  = Irl, + ~ lak, i ,~12i(Cl l l ,  l l) ~' . . .  (C=ll~l,) ~"ek 
k=l  

and f o r  each term ak, i,a~O, we  have l i+al+. . .+a~[<,M. 

Remark .  This means that the norm I[" is attained and with Sk having bounded 

powers of  x and li this shows that Ipl ~ never vanishes for any polynomial p * 0 .  

Proof .  We have 

lyl ~ i n f { I r l ~ + ~  i a l  ~trl = lak, J 2 ( C l l l l h )  ...(Cnl/nl0 ek. 
k 

If we take a given term corresponding to ak, i, a and remove it from the sum and place it 

in the term r, we decrease  the sum but increase Irll. If  a n y i  or a j>M,  we decrease the 

sum by at least 2Uekiak, i, JJl~ ~ ... i~ n. On the other  hand we increase Irll by at most  

[ak, i,~xil~ ~ ... l~nl �9 Ilkqk--lll. Remembering that there is by compactness  a bound on Iqkl~ 
depending only on I/d~ ... I/nh it follows that we can assume l i + a l + . . . + a , l < M  for  

suitable M. Compactness  yields that the inf is attained. 

COROLLARY. I f  II . . . . .  ln, C1 . . . . .  Cn are given there exist  M,  (depending  on Ilkll 

and  degree o f  lk, l<-k<~n) such  that  i f  ord g > M ,  Igln=lglO=lgll. 

Cont inuat ion  o f  p r o o f  o f  Theorem 1.2. Fix K and N. Le t  g be any polynomial with 

d e g g ~ N .  Suppose g has a representat ion 

n+l 

g = E Sk(lkqk--1)+r (4.1) 
k = l  

Sk--" E ak i axil~ ~ ~n+~ .. .  In+ I �9 

So Ig[ n+l is defined as 

n+l 

' "  ! ~an+l e / i n f { l r [ l + ~  lak, i, al2i(Cllldl) a' ... tt'~+l ~+l IJ k, 
1 

and we can assume by Sublemma 4.1, that Igl n+l equals the above expression.  

17-878289 Acta Mathematica 158. Imprim6 ie 28 juillet 1987 
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Our goal is to show that we can find another representation of g in which / n + l  

does not appear and with a lower "norm".  Recall that we denote by [g]m the 

polynomial g "cut-off at m",  i.e. with all terms of degree > m removed. We shall be 

comparing the representation (1) with the same representation with all terms "cut-off" 

at some suitable degree. 

Let us expand S k by powers of l,+p so Sk=So, k+l~+ j S~,k+12~+~ S2,k+ ... where each 

Si, k is a polynomial inx, l~ .. . . .  I, and by Sublemma 4.1, since II~+~l~ is given S k and in 

particular Si, k have bounded degrees. Thereby, if ord ln+~=to + 1 for sufficiently large to, 

we have by "cutting down" to to, 

n 

g = [r],o+ 2 So, k(lkqk-1)-So,~+l. (4.2) 
k ~ l  

We see that the "norm" of (4.2) where we put together the terms r-So, ~+~ is smaller 

than the "norm" of (4.1) by at least the amount 

~+,lS0,~+,lo~-IS0,n+tl, 

Hence, this quantity cannot be positive and so we deduce that 

ISo,.+dop~ ~< __.~_1 (4.3) 
ISo, n+d, e.+," 

Therefore, So, n+l satisfies the condition for our theorem. So, denoting ~r 

I q,+ll ~ I~r "n. (4.4) 

Now again comparing (4.2) with (4.1) above we see that the norm in (4.2) is less than 

that of (4.1) by at least 

(~_ IS (I 1)l+e.+,lS I ) ISl [rF'+C I/ I " - - -  n + l  n + !  1 l , k  kqk-- I , n + l o p n  I 

with [r]'~ 
Again, since this quantity cannot be positive, and I Iop.~l I1, 

oJ n [r] +Cn+,l/n+,l, S~,k(lkqk--l)l +E.+,lS,.~+,l, <1~r (4.5) 
= 

We need a sublemma. 
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SUBLEMMA 4.2. Let A>0. There exists a lacunarity function f such that if  l is a 
polynomial of  lacunarity ~f ,  and deg Gi lA ,  1 ~ i~A ,  then 

A 
I IG 1 +12G2+... +IAGAll = ~ IlkGkll �9 

k=l 

Proof. if  nl<n2<.. ,  are the exponents occurring in l, then ni+...+ni, are the 

exponents in I r. Hence, the lemma is true if we know 

Ini +. . .+ni-(nj+. . .+nj)[>A if r * s .  (4.6) 

We can clearly assume ir*js, since otherwise we drop these terms. If ir>js, we can 

ensure (4.6) if ni>nir_+...+n~+A. This is a lacunarity condition. 

Now since degg<w we have by looking at (4.1) and considering terms with 

ord>to, 

, 
0 = [rib+/n+1 Si,k(ltqk-1)+So, n+l q~+l-Sl,n+l +In+ 1G2+ln+! G 3 

\k=l 
(4.7) 

where deg G~ <~ A 

for some constant A by our application of Sublemma 4. Thus from our lemma, if ln+l is 

sufficiently lacunary, 

ln+l Si,k(lkqk--1)+So, n+l qn+l-Si,n+l <~ I[r]~ (4.8) 
1 

The left side equals the product norm of the norm of the two factors if ln+l i s  

SUfficiently lacunary, since the second factor has bounded degree. So, the left side of 

(4.8) is >~lln+d~ times the I I n norm of the second factor so, since the [ [ n norm is ~<[ Ii, 

~> Iln+,l, Is0,n+,qn+tl ~ -  ~ St,k(lkqk -1) -IS,,~+11~ �9 
k=l 

Using (4.8), 

>~[ln+l[l [S~ [ln+lll SI k(lkqk -1 )  +s n+ll l  . 
B e~+l k = l  ' 

Using this and 
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[l.+dl > 
4B 4lSo,,+dl 1 

En+l s En+l 
- -  [iSo, n + d , -  ItrrOl,] > it,-rol, 

contradicting (4.8). Q.E.D. 

For the proof of Proposition a~ c, N(al) we need a sequence of  lemmas which will 

also be used later on. The general idea behind these lemmas is that if a sequence of li's 

is sufficiently lacunary and has sufficiently small coefficients then the cancellation 

effect of a monomial which contains l; is small on a polynomial in which the terms do 

not contain li. We make here the trivial but important observation that the sequences 

(/i) in the Lemmas 4.1-4.12 below do not need to start with ll but can start with any lj 

with j>~ 1. 

We also make the remark that for the proofs of  these lemmas it is more convenient 

to write indices of  l 's in increasing order as opposed to what we have done in Section 3. 

So let J=(JbJ2  . . . . .  j,) below denote a finite sequence of integers such that jk<j,,, if 

k<m. Put [Jl=r. We recall l~=li/llill. We will below assume that for each i the moduli of 

coefficients of l~ are constant. 

LEMMA 4.1. Given e>O, a sequence (Fj) o f  real numbers and a w>0 and ro>0 and 

mo>0, there is a lacunarity function f and a sequence 6j such that i f  the sequence (li) is 

more lacunary than f and has moduli o f  coefficients <~di then the following holds: 
Assume that in 

s ai, j, axilj~h ~.. J2 l;-a# 
J2 """ Jr 

i,J,a 

we have 

Then for every polynomial 

la,.j.QI ~ F,. 
i,J,a 
IJl=,- 

�9 j l  ).aj2 s(x): s ,,; . . .  
i,J,a 
i<m 0 
~1~o 
I':'l~w 

the cancellation effect o f  
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i Jl Taj2 ~'faJr 
Pro(X)= Z ai, j, aX~jl lj2 ""ljr 

i,J,a 
~sl>r0 

on S(x) is <e. 

Proof.  Let s l, 1, s i ,2  . . . . .  s1, N 1, $2,1, $2,2 . . . .  $2,N2 . . . .  b e  t h e  exponents o f  x appearing 

in I l, 12 . . . .  and written in increasing order. Then the moduli of the coefficients of 

i v l 2 . . . .  will be 1/Np 1/N z . . . .  Now we write 

e,(x)= Z 
l,g,a 
Ill>ro 

fsl>~o 

(4.9) We observe that if the sequence li is sufficiently lacunary then the moduli of 

the coefficients in/j,/J2 "'"/Jr are all 1/Nj, 1/Nj ... 1/Nj. 

This is all right only if the l;'s are so lacunary that the monomials in l;, ... can arise 

in only one way (for example, we may ask that the monomials in the li's be powers of  2, 

all distinct). 

Now let 

\ p<i q<j 
(4.10) 

It is clear that (4.10) holds if we put the lacunarity f unc t ion f ( k )=8wk .  Now we fix 

i0 and il and we study the cancellation effect of the monomial 

C= fil,jxilljllj2...ljr 

on 

B=Zb xior', C2. 
io" Ja Jl "'" J2 "'" 

a,J 

The exponents appearing in C have the form i 1 + Eke< r sA. qk and the exponents appearing 

in B have the form iO+~h<~rodjh, qhSjn, qh where every djh, q h is an integer with l<~djh, qh<-W. 

Now assume that there are solutions E,~<~ s I,j,, q, and E,<~, s24 ' q, of equations 
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i, + ~ S,,j~, qk = io + ~ d,,jh, q, Sjh, q h 
k<_r h<~r o 

(4.11) 

and 

il+~S2,jk, qk=io+~d2,jh, qhSjh, q," 
k<~r h<~r o 

(4.12) 

Then (4.11) and (4.12) will give 

SI 'Jk' qk-- ~ d l,jh, qh S I ,Jh" qh : ~ "2"Jk' qk-- ~ d2'Jh" qh S2'Jh" qh" 
k<<.r h<~r o k<~r h<~r o 

(4.13) 

Since r>r0, Ek~O$1,Jk, q t contains at least r - r  o different terms $1,ji, q i which do not 

appear in Ek~r0 d I,jh, q, s l,J,, q, and correspondingly for Ek_< r s2,jk ' qk" Now (4.10) and (4.13) 

implies that these sLj,,q~ s must be the same as the s2,j,q, s. And this implies, since 

NI<N2< that for i 0 and i I fixed there can be at most N~ Nj  ... Nj,  different sums 
Jr-r0+l r-r0+2 

Ek<.,sl,jk, q k which solve equations of  the form (4.11) and (4.12). 

This together with (4.9) now implies that the cancellation effect of 

c~,,jx//j,/j2.../j, on ~b~o, jx'(J'(~2...~J m 
a , J  

is 

1 1 ~ [c i , , j [1  1 1 
[r "'" Nj,_,o i N2 "'" Nr-ro" 

Now summing this over all il and the m possible/o'S gives that the cancellation 

effect of 

i,Y 
~=r 

on S(x)  is 

), ,  1 
<~m ffi ]ci.j[ N I  N2 ... N'-'o 

mrr 
N 1 N 2 . . .  N , - r  o 
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And so the cancellation effect of P,o(x) on S(x) is 

~ mF, 

By choosing 

1 E 

~r-,o = Nr_, ~ < m .F~. 2" 

we get the lemma. 

LEMMA 4.2. Given w there is a lacunarity function f such that if the sequence (li) is 

more lacunary than f,  then for all polynomials 

�9 JI "ah ~..J, h(x) = ~ ai.j.~x' ~ Ij; ... j, 
i , J ,a  

i+lal~w 

we have Ihl,--~lai, j.~l. 

The proof of this is obvious. 

LEMMA 4.3. Given integers m and w and positive real numbers K and e there is a 

lacunarity function f and a sequence 8iN a0 such that if (li) is more lacunary than f and 

the moduli of  the coefficients o f  l~ are <8i then the following holds: Put 

�9 22 2r S(x)= ~ ai jaxi~"~ . . .~  
i , J ,a  
i~m  

IaEfw 

and let 

satisfy 

P(x) = E ai , ax'~ jl ~h ... ~J, 
i , J ,a  
~%m 

J, lal = w 

~ ]  la,.j.~l ~<K. 
i>m 

J, la(= w 

Then the cancellation effect o f  P(x) on S(x) is <e. 
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Proof. The proof  of  this lemma is quite similar to that of  Lemma 4. I. We form 

sl, 1, Sl,2, ..., Sl,N,, S2, l, S2,2 . . . . .  S2,N2 . . . .  as there. Let  the sij 's satisfy the condition (4.10) 

of Lemma 4.1. Then it follows f rom the binomial theorem that the moduli of  the 

coefficients of  

i~dXJl J 5 xl,, 

a r e  

a j !  a j !  %! w! 
~< - -  - - . . .  - -  ~< . ( 4 . 1 4 )  

N?~, N?~, N % % ~J2 N % J! J2 Jr N i l  Nj2 "'" Jr 

Now fix io<~m and i~>m and consider the cancellation effect of the monomial  

o n  

B= X aio,J,~xi~ ~'~j' ~j" Jz "'" J, " 
J, lal=w 

The exponents  appearing in A have the form i I +X ah, qk SJk" q, with ~ aik, qFW and the 

exponents  appearing in B have the form io+E dj,,qhSjh, q h with X djh, q~W. NOW assume 

that there are solutions X al,A, qkSl,j,,q k and E a2,jk~qS2,jk,  q k of  equations 

i~ E a l , j k ,  qk Sl , jk ,  qk = io+ X d l , j h ,  qh Sl , jh ,  qh (4.15) 

and 

il + ~ a2,jk,  qk S2,J~ , qk = io+ E d2,Jh ' qh S2,jh" qh" (4.16) 

Since il>i o there is in (4.15) at least one Slj,, q, which either does not appear  on the 

fight hand side of  the equation or appears but is multiplied by a smaller number  than on 

the left hand side. Analogously we find at least one szj,,q, from equation (4.16). As in 

Lemma 4.1 above, (4.10) implies that the s L J,, qi'S must be the same as the s2j,, q'S. Since 

Njl<Nj ... this gives that for  fixed i 0 and i I there are at most 

J2 "'" J, 
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different sums Z aj~, qk sJk, qk which solve equations of  the form (4.15) or (4.16). By (4.14) 

this gives that the cancellation effect of  A on B is at most w.w!/Nj<.w, w!/N r 

Since there are only m different/o 'S and since 

Z lai, Aal <~ K 
i>m 
I~l=w 

we get that the cancellation effect of  P(x) on S(x) is at most K.m.w.w!/N~.  This gives 

the lemma if we choose 1/Nl<e/K.m" w. w!. 

LEMMA 4.4. Given integers m and w a positive number e and a function y such that 

y(k)--~O as k---~oo, there is a lacunarity function f and a sequence 6j~O such that if  {li} 

is more lacunary than f and the moduli of  the coefficients of  I i are <6i then the 

following holds: Put 

Z .dTL ~JJr S ( x )  = ai, j ' ax,ljil, ~..J2 , J2 " " ~ 
i, J, a 
i<~m 
[al=w 

and let 

e ( x )  Z i yaj` :/2 ~.'/r 
= " ' ' ' r  

i,J,a 
lal>w 

satisfy 

la;a, = I ~ ~,(k). 
i,J,a 
lal~k 

Then the cancellation effect o f  P(x) on S(x) is <e. 

Proof. We first choose W so that y(W)<e/2. Then  it is obviously enough to prove 

that the cancellation effect of  

i Ji ,'ah Z ai, j, aX~jt lj2 ...~j;r 
w<la[~W 

on S(x) is <~e/2. 
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If in (4.10) (of the Lemmas  4.1 and 4.3 above) we replace w by W we can now just  

repeat the argument of  L e m m a  4.1. The only difference is the following: In this lemma 

we use the condition lal>w in the terms of  P(x) to conclude that the left hand side of  

(4.15) has an sji, q i which either does not appear  on the right hand side or appears 

multiplied by a smaller number  than on the left hand side. 

Let  D be a subset of  the integers. Le t  

P= ~ ai, j,a~lJ~J'~ j2"''cj'Jr 
i , J , a  

be a polynomial such that in every term 

out of  P there is at least one k with Jk E D. Then we can write 

where P(mj~ consists of  the following terms out of  P: 

The term 

"~Jl J2 Jr-m :/r-m+l Jr 
" ' "  J r - m  Jr-m+l Jr 

belongs to Pem,j3 ifj=jr--,,, and j is the highest index of  an I appearing in the term with 

j E D .  So for such a term none of  the numbers Jr-,,+~, jr-m+2 ..... jr is in D. Now 

every term out of  Pr we will below rewrite in the following way: 

�9 J: 52 
Jr-m Jr-m+l "'" Jr ~k JI 32 "'" "Jr-m-I "Jr-m ] "Jr-m "Jr-m+l "'" Jr " 

We now write 

�9 Jl J2 
"'" Jr-m-t  Jr-m 

as a polynomial in x (by expanding the l's). We also put 

a ( m  ) = ( a j  . . . .  i . . . . .  Oljr ) ,  J(m)= (],-,,,'J,-m+, ..... J,)" 
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Then we get 

i Jr-m+ I P(m,j)~- E C i t  XL ~ ...~jfr. '~(m),a(m) Jr-m Jr-m+l 
i 

J(m)' a(m) 

We will put 

Ie(m,j)lt,f = ~ [Ci, J(m),a(m)[" 

We put 

P(m,j,w) = E 
i,J(m) 

[al~)>~w 

i Jr-m+l c. x l  ?.." l'J(m),atm) Jr-m Jr-m+l "'* Jr 

and 

[ecma, w)ll,f = ~ Ic,,,,.,.a,.,I. 
latm)l>~w 

In order to prove the more important Lemma 4.6 we use the following 

LEMMA 4.5. Given integers m and w there is a lacunarity function f such that if (li) 

is more lacunary than f then the following holds: 

Let D be any subset of  the integers and {Gj} any sequence of  real numbers. 

Assume that in 

s ( x ) - - X .  ,e, tf,, e/. ~i,  J X ' j l  U] "'" Jr 
i ,J ,a 
i<~m 
lal~w 

for all A in all terms we have AI~D. Assume that in P(x)=Ei, yCijxilj we have 

Eilci, J<.Gj for every j. Assume that the moduli of  the coefficients of  li are <<.e/(4imGj). 

Then the cancellation effect o f  P(x) on S(x) is <e. 

Proof. Let the lacunary condition be (4. I0) of Lemma 4.1. We fix i0, i~ and j and 

consider the cancellation effect of xillj on 

C" 
J, a 
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The equations (4.11) and (4.12) take the form 

i +  Sj, ql = io+ E dl,Jh, qhSl,jh, qh 

and 

i I +sj, q2 = i~ E d2,jh ' qh S2,Jh' qh" 

Since by assumption the index j does not appear in any of the terms out of S(x), 

(4.10) now gives Sj, q=Sj, qf Since there are only m different i 0 we get that the 

cancellation effect of xi'~ on S(x) is <.me/(4iG~m). And by the assumptions this gives 

the lemma. 

LEMMA 4.6. Given an integer mo, a positive number e, an increasing sequence o f  

integers {Wm}m~ o and an increasing sequence {Fro} o f  real numbers then there is a 

lacunarity function f such that for  every subset D o f  the integers and every increasing 

sequence {Gj} o f  real numbers We have the following: 

Assume 

S ( x )  = xi~..Jl~_.J2...~j~" 
ai, j ,a Jl J2 

i+r~m o 
lal-<w0 

where for all Jk o f  all terms A ~ D. Assume 

j m 

where 

Gj 
Ie<m,j)ll,f~Gjfm and IPm,j, Wm]l,f~ 2 m 

Assume also that {li} is more lacunary than f and that the moduli 1/Ni o f  the 

coefficients o f  li are 

N i ~lk<li~-~kJ J (Wi+mo)!Wi+mo 4 i+mo moGi(Fo+...+Fi+mo+l) 
o 

Then the cancellation effect o f  P(x) on S(x) is <t.  
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Proof. By assumpt ion  we can write 

�9 e~ f ~ ' = S '  ' -  e ( m j 3  = E c .  e l .  !. r - m + l  Ci, j X lj 
I'J(m)'Ct(m) Jr-m Jr-m+l "'" Jr 

i i 
J(m)' a(m) 

Also we can write 

P(m,j, win) = 

with 

We now consider  the sum 

And so we  get 

~lc,J<- ~ k,,,,.,.oi.,l<-6jvm. 
i i 

J(m)' Ct(m) 

E c. ~,.J,c_.~ . . . .  . . .  LJ(m),a(m) J Jr-ra+l 
i, J(m)' Ct(m) i 
a(m)~Wm 

Ici',jl ~ ~ Ici.j,.,.a,.,I ~ aj. 
i 

E e,m.,,+ E e,~ E d,.,x,~. 
m<~m o m>m o i 

Id,,jl ~ a j ( F o + f  l +. . .  +Fro0+ 1). 
i 

And this gives by the previous L e m m a  4.5 that the cancel lat ion effect o f  

on S(x) is <e/2 .  

So we now consider  the cancel lat ion effect  o f  

o n  $(x). 

273 
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We assume 

p<i j<q 
(4.17) 

We observe that (4.17) is stronger than (4.10) since the Wm'S increase with m. We 

also observe that (4.17) is given by the lacunarity function f ( k )=8Wk+mok .  

We now fix j ,  m > m  0, i 0 and i~ and we investigate the cancellation effect of  

il ]l~Jr-m+l �9 .. ~jfr X ~.lj;_m+l o n  

Z XlOl'l~Jl ~J2 ~,Jr 
aio,J,a tJl h "'" Jr " 

J, a 
io + r~ ra 0 
lal<~w0 

coefficient o f  - 3r-m+l is smaller We observe that the largest absolute value of  a out t/jr_,.+, "'" Jr 

than or equal to the largest absolute value of  a coefficient out of  [% . . . . . .  o...  ~fr. And the Jr-m+m-m 0 

l~J,-,,o ~fr is, by (4.17) and the largest absolute value of  a coefficient out of  j,_m ~ ... binomial 

theorem, and since r - m > 0 ,  

(air_toO)! (Ol, j ) !  Wm! 
, . . -  

N?J,--o N % N~',-"o N % 
Jr_toO Jr Jr-m 0 "'" Jr 

As above we flow form the equations 

i I + s j, r F, a l,Jk, qk S l,Jk ' qk = io + E d l,jh ' qh S l,jh ' qh (4.18) 

i I + s j, q2 F~ a 2,jk, qk s2,jk, qk = iO "~" E d 2,jh, qh S2,Jh, qh" (4.19) 

There are at least m - m o  different indices Jk which appear  on the left hand side of  

(4.18) and which do not appear  on the right hand side. And the correspondingly is true 

for the equation (4.19). So for  at least one of  these we get an sl,j,,q i so that the index of  

the corresponding I is j ,_m+tm_mo)>m--m o. And so by (4.17) there must be some k so that 

Sl,ji, qi=S2,jk, ql. Thus for f ixed j ,  m, i 0 and i ! there are at most  

~{j N~:  Jr--mO - | �9 r-m+l Na:Jr 
W m N j  N j  . . . .  l ' ' '  Jr-m 0 " ' ' J r  
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s u m s  that can satisfy equations of the form (4.18) and (4.19). Thus the cancellation 

effect of  xizij ~Jj,_,,+~ . . . .  ' ... (f" on S(x) is 

<~ Wm[m 0 . . % . . . .  ~ N%-mo-~ 1 Wm Nj Nj . . . .  ' " "  J'-"o-' Nj,_,,o" 

Since jr_,~o>~J+m-mo this is 

Wm !mo Wm e I e 1 <<. < ~ _ _  
(Wm+j)!moWm+ j 4 j+m Gj+m_mo(Fo-t-...-I-Fj+mh-1 ) 4 ]+m G j F  m" 

This gives the lemma. 

For the next lemma we introduce the following notation. With 

xil~:Jl ~_.J2 ... ~Zr H= ~ ai, j, a Jt J2 
i,J,a 

we put 

a r  = Z ",'ah Jr. ai, j, a xtljt ~j" 2 ... ~."j~ 
i,J,a 
~ffr 

and 

Hrw = 2 a,.~,~x'~6~ h'' '~j" " Jr " 
i 

lal=w 

We will also put 

= la,  j ol .  

LEMMA 4.7. Given an integer R, an increasing sequence {Fj}, j>~O o f  real numbers 

and a function F, 7(k)--*O as k---~c~, then there is a lacunarity function f ,  a sequence 

6j%O, an integer m and a positive number B so that if  {li} is more lacunary than f and 

has moduli o f  coefficients <<.6j then the following holds: 

Assume that H is a polynomial, Jill,f= 1 and Ei+lal~klai.j.a[<~y(k). 
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Assume that Q=Ej~oQj defined like Hr above, is a polynomial such that 

IQjll,f~Fj, j>~O and I[Qo]Rlt=l. 

Then there is a polynomial 

E= X ei, J, aXi(Jl~JzJ2""~Jfr 
i+[al<~m 

such that IE(x)I~>-B and HQ(x) contains pl/loo(E). 

Proof. We choose kl so that y(k0~<l/2. Then we can find rl and wl with 

rl<<.wl<<-kl so that [Hr, w, ll,z>-l/2~. We consider H , , w :  There is a K 1 so that in Hrt.w ~ 

we have Ei>K,]ai, j.a[<l/4~ (we just  choose K 1 so that y(Kl)<l /4~) .  We now form the 

product 

nrl,lOl(X'[)'Qo(X)= X el,i,J, aXi(J'(J'"'( j'" 
~I=ri 
lalfwt 

Now it is easy to see that there is a B~ such that Ei<_X:R[e~,i,J,~l>~B~ and obviously 

Ei>Kt+Rlel,i,j,~[<~1 "F o. Thus if we put 

E,= X e,.,.,.~x'("('2""~ ' '  
i~Kl+R 

then by Lemma 4.2. IEI(x)h--E le~,,,s.~l and by Lemma 4.3. (H,,,wtQo)(x) contains 

p~/2oo(E~(x)). 
Now by Lemma 4.1 the cancellation effect of (Emax~m,u)>,Hm Q)(x) o n  E l is 

<(1/400).B 1. So either (HQ)(x) contains pl/ioo(El), in which case the lemma is proved, 

or the cancellation effect of  

(m, w)*(r l ;  w I) 

on E1 is >(1/400)B1. 

By Lemma 4.4 the cancellation effect of  (Ew>wl Hrl ' w YT<~r, aj)(x) on E I is <(1/800)B 1. 

We see this by writing Ej~r, Qj as a polynomial in x. So in this case the cancellation 
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effect of  (Er<r~,p~<r, H r Q,) (x) + (Ew<w~ H,,. w E/~<,, Qj) (x) on E l is >(1/800) B I. And this 

implies that either for  some r<r I we have 

or for some W<Wl we have 

1 
I/"/rll,s > 1600"j <  BI 

Fj" rl 

tar, wll S > - -  
1 Bi 

1600 
w l ~ F j  

j<~r I 

In the first of  these cases we can choose k 2 to be so big that 

y(k 2) < - -  
1 Bi 

3200 
~ Fj ' r l  
j<~r I 

This gives that in either case we find a n e w  Hr2" w2 for  which we can repeat  the same 

argument as for  Hrl ' w~" Obviously this process  has to stop after at most  ~ steps which 

only depends on y. This proves the lemma. 

For  the next  lemma consider  an ( n -  1)-substituted (n, n)-expansion of  q and form 

q'. Put q'=q~+q~ where q~ consists of  those terms which contain only x 's  and l 's form 

the n - 1  first systems. And so in q~ every term contains at least one I from a system 
t ~ " Jl :/2 with number  n. As in L e m m a  4.7 above with ql-Eai.z.~x'~ ~ .. .~',  we use the 

notation 

t " J2 ~/m q l , m = ~ a i J a X i ~ J l ~ J ' 2  ""~/m " 

LEMMA 4.8. There are constants C and D depending only on I ]~-1 such that for 

all N>~n we have the following: 
Consider q with [q-qnIN <en/16. Then Iq'j.m]l.:C'Dm for all m>>-O. 

Proof. (4.20) We consider  a pre-(n, n)-expansion of  q. We say that a term in the 

final stage of  the pre-expansion contributes to ql, m i f - -when  the s 's  are written as 

polynomials in x and I's and 11,12 ..... ln-i and [1,[2 ..... ln-i are written as polynomi- 

als in xmwe get the terms that enter  into q~, m. We observe that a term of  the second 

18-878289 Acta Mathematica 158. l m p r i m r  le 28 jui l le t  1987 
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type can contribute only if p<_n-1. Since otherwise Is belongs to a system with 

number ~>n. 

(4.21) We observe that a term which is derived from a term of  the second type 

cannot contribute to q~. m. Since every such term will contain an ljr from a system with 

number ~>n. 

(4.22) We observe that no term of  the types 1--4 with r>.m+2 can contribute to 

q l , m .  Since all such terms contain at least m + l  different lj's with the indexji>-n. The 

same is obviously true also for terms which are derived from such terms. 

(4.23) We finally observe that a term of  type 1 can contribute only i f jr~n. Since 

otherwise the term will be replaced either by the first or the second rule. 

Put e = m i n { e l , e  2 . . . . .  e~} and fix an integer r<~m+l. Consider those terms 

sit lit s h lj2... Sir li, qj, of  the first type,  such that either the term itself or some term derived 

from it contributes to q'L m" We have 

(1)r 
E [Sjl Sj2... SjrlopN ~ (4.24) 

where the sum is extended over all such terms. 

To prove (4.24) we first recall that in forming q' we only consider terms in which 

every sj, has its corresponding ej>~e. 

We prove (4.24) by induction on r. For  r=  I we only have to consider the first stage 

of  the pre-(n, n)-expansion of  q, q=qn+Eis,(liqi-1)+t. It is clear that in this case all 

terms from later stages of  the expansion contain both an lj, and an li2. We get 

E n 
~ ,  [silopN" Ei <---(-~ <<- l, 

and this gives 

IsilopN-< +. 
We now assume that (4.24) is true for r. By the observations (4.20) and (4.21) above, for  

r + l  we only have to consider  those terms which are obtained by replacements 

according to the first rule. So consider a term sj~ ljl sj2 lj2.., sj, lj, qj. Assume that we have 
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qL=qp+EiSr+l.i(liq i- 1)+t, where p<~n- 1 (otherwise 1i, would belong to a system with 

number ~>n). Then 

Ep 
Is'+l'A~ 16 ~< 1. 

Er+ 1, i ~<~ 

And so 

_<1 
Iffr+l,ilopN ~ - "  

And since the op N-norm is submultiplicative this gives (4.24) for r+ 1. 

We now have 

ISjl sj2...'j,I, <- I j, sj2.. lop . 

We also have that all/j, which appear in terms that contribute to q~.m are from the 

n -1  first systems and so ]lj, l~<<.L,_t. Thus given r we get by (4.23) that for terms of the 

first type that contribute to q~. ,, 

f l_._~" Lr 

Obviously for terms of the second type we get the same estimate 

Z IsJ~ li~ si2 lJ2""siJj, qph <~ (max (IqJ ]0) ( I l L ~  i. 
\ j6n k, E / - 

For terms of the third type we get by (4.24) 

Z]s j t l j ,  sj2lj2...SjrljSj,+,h ~ - - ~ -  ] Ln-l,  

and finally since Itl~<l we get by (4.24) for terms of the fourth type 

Zlsjtlj, sj21h'..sj, ljrt[<~(+)rLr-, �9 

Now r<~m+ 1 by (4.22). So summing these estimates over all r<.m+ 1 we get 
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]q'l,mll ~< ~ r  (2ma?Iq j l l++  +1)  (+)rL~-I  

<. ~(2max]q . l l+ l  +l~ l . L ~  l ~ 2mLm-I 
l \  .~,, ~ e / e  - j  ~m 

It is easy to check that this holds also for m=0. 

This gives the lemma with 

( C-- 2maxlqjh+ +1 
j<~n e 

and 

2L~_ 1 
O = - -  

e 

In the next lemma we will let D denote the subset of integers ~<N so t h a t j E D  if 

and only if lg belongs to a system with number ~>n. We can then as in the Lemmas 4.5 

and 4.6 above write 

LEMMA 4.9. There is a number D and a sequence of  integers {Win} depending 
only on I I "-1 and numbers Kj, j~n ,  Kj depending only on I ~-1 such that for all N>~n, 
with Iq-q~lN <e~/16 we have for q~ 

m ~ m IP m,  l ,f o gj and IP,m,y,w=)li,i-~K]2 . 

Proof. We consider a pre-(n, n)-expansion of q. For every k we consider terms of 

the first type at the stage k which have the form sy, l h sjx Ij,... si,_t Ij,_, sj lj qy and which 

have the property that some term derived from them contributes to P(m.jg" Let P~m.j) be 

the sum of these contributions. Obviously all terms of any of the four types which in the 

final stage contains ly is derived from such a term. 

(4.25) Now consider a qj in a term sjljsj21h...sj,_,lj,_sjljqj and consider what 

expression qj is replaced by in the final stage of the pre-(n,n)-expansion say 

qy, n,n(S,t,q). Then remove from qy, n,n(s, l,q) all terms of the third type so that the 

corresponding e is <min {e t . . . . .  en}. Let qj, n,~(s, l, q) be what remains. Now we expand 
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t t t qj,~,~(s, l, q) as a polynomial in x, say q),,,~(x). Then we obviously get Iqj,~,~h-~K~j 

where Ki, j is determined by the sequence 1~, 12 . . . . .  lj_~, C~, C 2 . . . . .  Cj_~, D t, D 2 . . . . .  Dj_~, 

LI,L 2 ..... Lj_t. 

We make here the following remark: When q/ is  replaced in the pre-(n, n)-expan- 

sion of  q and then in the final stage the s 's  are replaced by polynomials in x and / ' s ,  then 

only q 's  and l's with index < j  will appear. So for computing IPtm,j)h,f all these will be 

replaced by  polynomials in x. 

(4.26) We observe that in order that a term of 1st, 2nd or 3rd type of  the form 

sj, lit sj2 lj2.., has a term which is derived from it and which contributes to PtI,j9 it is 

necessary that r-l<~m, that the e 's  corresponding to si~,sj2 ..... sj,_~ are all 

~ e = m i n  {e~ . . . . .  e~} and that lj,, Ij2 . . . . .  lj all belong to the n -  1 first systems. 

We remark that ej which corresponds to s i can possibly be < t .  

With J=Jl,J2 ..... Jr-hi we consider all products 

Si, Sj2"" Sj,_,Sj= E aj, i, axi~' f"'2k2 "'" ~ 

where for every kt, kt>~j, l<~l<~p. We get as in (4.24) of  Lemma 4.8 that 

laj, i,~l <~ j \ e l  e i 

By (4.25) and (4.26) we get by summing over all r 

[P[m'J3l"f~ ~ ~a (~n'n'~) r-' ~ g"'J ( ~ - ' L )  ej (4.27) 

Consider 

~ "  c x'~ k' ~'~ s i l j . . . s j , _ , l j , _ , =  ~ . ,  J.,.o k, ""  kp 

and let wt, ,~ be defined by 

~j, lsj, lj,'"sJ,_,lJ,_,lopN<<'(~) m o r 2 2m 
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Then we get 

, _< I KI,j 1 

Ie(m'J'w~.')ll'f~'2 ej 2 ~ Iljll" 

We fix an r<~m and we consider  the terms derived f rom terms of  the form 

sj, lj~ sj2 lj2.., sj, ljqj, where  jr>j. Obviously  we can assume that all the lj's are f rom the 

n - 1  first systems.  Then by  passing to the next  stage of  the expansion we have 

q j = q p + ~ s i ( l i q i - 1 ) + t ,  p<~n-1.  
i 

Now we consider  the te rms of  the first type sj~ ljl s h l h ... sj, li, s ili qi and we first consider  

the terms where  i<j. For  these te rms we form as above qi',n,~(x)and we put 

K2j=max~<jlq~',n,~(x)h . Let  P~',s~ be the contr ibution to Ptm,j) f rom terms derived f rom 

these terms. Then  we get as above 

I~'~,j)ll,f~ ~ ( ~  -Z) 
, ~< -+ , . 

min {e I . . . . .  Ej_I} min { e  I . . . . .  e j _ l }  

As above we find a w2, ,,, so that 

g2,j 
IFt"J'we.m)ll'f~< min {ej . . . . .  ej_j} 

1 1 

2 m 4 

Now we consider  terms of  the first type sj, ljl s h lj2 . . .  s i l i q  i with i>j. We see that these 

terms will appear  when we consider  r +  1. 

So now we fix r<~m and consider  te rms of  the second type sj~ lj, sj2 lj2.., sir lj, qp where 

we can assume p<~n-1, otherwise  ij, would belong to a sys tem with number  ~>n. For  

the contributions F t " j  ~ f rom these terms we get as above after summing over  r 

(m,j)  l , f  "~ max ]qp]l <<" " K 3 , j  
p<~n-  I 

with Ka,j= maxp<~n- i [qp[l. 

As above we also get a number  w3, ,,, such that  

1 

m,j, w3,m) I,f ~ K3,J 2.2 m 
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For  te rms of  the third type sjlljllj2...sjrljr$ i w e  observe 

ei>~min {e i . . . . .  e~}=e will enter.  So withK4,71/e  we get 

p,V ~ l (2Ln- l lm 
(re,j) l,f ''~" E \ E / 

and we find a w4, m such that  

plV _< 1 
(m,j, W4, m) I,f ''~ K4, j" 2 m �9 

And for terms of  the fourth type  we have [tl~<l. So with K s , j = I  we get 
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and 

and we get an ws, m such that  

i/ 2Ln_l \ m :<- ) 

Ks,j 
Ie~m,y, w5.)l,,f <~ 2 m 

Finally for  te rms sj,, t and terms derived f rom sj, ljl qJl with j~<j, we get K6,j and 

w6,j so that the contr ibutions to P(m,j9 satisfy 

VI / 2Ln-l \ m 
IP(m,j, I I , f ~ K 6 , j ~ T  ) 

pVl ~ K6,j 
(m,J, w6,j) l , f  ' '~ 2 m 

This gives the l e m m a  with win=max (Wl,m, w2, m . . . . .  W6,m} , D=2Ln_l/e, and 

K j = ( K I , j ' +  K2j ) 
" I- K3,j+K4,j-I-Ks,j+K6, j �9 

\ ej min(e  I . . . . .  ej_ 0 

In the next  l e m m a  we consider  

H =  E bi, a xii~ll ~222 ' ' '  iaNN= E a i ,  J, a Xi(J' (J2 "" lJ'f "' 
ji>~n 

H(k) E a .ilJt 7J, 
= i , Y , a . . ~ t l  ... l r �9 

i+lal>~k 

that only Si'S with 
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The last representation is of course the (n-1)-expanded representation of H. We recall 

IHl~,f--r~lai, J, al. We also assume that the representation 

shows IHlopN < 1/e which in particular implies Ei+lal~klbi, ~l ~< 1/(e. 2k). 

LEMMA 4.10. Given e>0 and I I '~-I there is 
ye, n-l(k)--->0 as k---~ oo so that the following holds: 

Let IHlopN<l/e hold. Then 

a function Y~,n-I such that 

lai, j, al ~< Y~,n-I(k) 
i+]al>~k 

Proof. We consider the representation 

H = ~ b i ,  aXii~l'~22...~N N. 
i, a 

We have that the only terms that can contribute to H(k) have the property 

N 

i+ ~ a jdeg l j+~  aj>~k, 
j<~n-! j=n 

which implies 

i+lal  deg In-1 ~> k, 

which implies 

i + l a l > - -  
deg I n_ i" 

This gives the lemma with 

ye,n_ i(k) ~-- e. 2 ktdeg In-I " 

Remark. The assumption ]Hll,f=l would be obviously superfluous in the lemma 

above. 

In the next lemma we assume ]q--qnlN<~en/16. We consider an (n-1)-replaced 
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(n, n)-expansion of q. We consider q'=q~+q'2 as in Lemmas 4.8 and 4.9. We assume 

that the case a~ c occurs that is I[q']Rnl~>�89 We recall that a growth function is trivial up 

to the mth stage if it takes the value 1 for all 3k-tuples, k<<.m- l, and has the lacunarity 

function f - 1  and the 6= 1 for all (3k+2)-tuples, k ~ m - 1 .  

We will assume that [hi l =  1 and that Ihlop N ~ 1/en. We let 

h= ~ ai, J, aXi~J' fj2Y2 ... fjf" 
i, a 

jk>~n for all k 

be an (n -  1)-substituted representation of h as for H in the previous lemma. 

LEMMA a~ ~, N(al). There is a growth function F'NCa~ ) which is trivial up to the 

(n-1)-st stage and numbers B' n and "m depending only on [ [n-i such that if 

{D n, L n, ! n, Cn} grows faster than F'~(a~ ) and the case a~ c occurs then there is an 

E= ~ ei, j, axifjlh fj2J2.., fj;~ 
i+lal~<m 

jk>>-n for all k 

such that IE(X)tl>~B" and (hq')(x) contains pl/5o(E). 

Proof. We put q'=q'l+q~ and put 

h = ~ ai, j, axi~J' ~J2... ~/" = h, +h2 

where h~ consists of those terms which contain only l's from the n - 1  first systems and 

where each term in 112 contains an l from a system with number >~n. Now if Dn>lO/e n 

then IhE[i.f~ and so Ihl l l , f~ .  Then by the Lemmas 4.8 and 4.10, h~ and q~ satisfy the 

assumptions of Lemma 4.7 and so (h I q'0 (x) contains a pt/t00(E) where E is as above. 

Now by writing h lq ~+ h2(ql +q~) in the form Ej (E m P(" j)) it follows easily from Lemma 
t I m i P ~ r m 4.9 that we have [P(m,j)ll,f<<,(D ) Kj and IP(m,j,w,)ll.f~Ky2 . Thus by Lemma 4.6 if 

{D n, L n, l n, Cn} grows sufficiently fast then the cancellation effect of h I q~+h2(q'l+q ~) on 

E is <(1/100)IEI1. This concludes the proof of the lemma. 

To estimate Ihq[ N we write EjN_I Vflj qf- 1) + v = V and the estimate [~eNt of Ihq[ N given 

by V is ~NllVjlopN'ej+lVlr We consider a pre-n-expansion of V. We form V' by 
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removing all the terms of the third type such that the corresponding e is 

<min{e~ .... , e,}. We then form an (n-1)-replaced n-expansion of V'. We write 

V'= V'1+V ~ where V' l consists of those terms out of the (n-1)-replaced n-expansion of 

V' which contain only l's from the n - 1  first systems and where every term out of V~ 
t t contains an I from a system with number ~n. We write V'l=2 V~. m and V2-Ej(EmP(m,j )) 

with the same notations as for q'l and q~. We now have 

LEMMA 4.11. There are constants C' and D' depending only on I I "-~ such that for 

all N>~n we have IV'l,mh,f< lVlC'. (D') '~. 

Proof. The proof is essentially the same as for Lemma 4.8. We observe that (4.24) 

will be replaced by 

and we have corresponding modifications later in the proof. 

LEMMA 4.12. There is a number D' and a sequence of  integers w" depending only 

on II "-1 and numbers Kj,j>-n, Kj depending only on I ~ -~ such that if I ~ t < , l  then for 

all N>~n we have for V~, 

_~  i r m .  N IPm,jILy~Kj(D ) Ivlest 

K! 
nero,j, I qo , 

The proof is essentially the same as for Lemma 4.9. 

With these lemmas we now easily complete the proof of Proposition a~ c, N(a O. 

Proof of  Proposition a~ c, N(a O. hq' contains Pvs0(E) by Lemma a~ c, N(a O. Now if 
N ~  t [Vlesc-~l then by the Lemmas 4.6 and 4.12 the cancellation effect of V~ on E is 

~<(1/100)[E[ and by Lemma 4.1 the same is true for Ej>,, V'~,j. So if (hq'-V')(x)  does not 

contain p~/25(E) then the cancellation effect of Ej~,, V'~,j on E is >(1/25)[Elr By Lemma 

4.11 this concludes the proof of the propostion with 

s'o B; 
2 5 . C ' . Z ( D '  ~ 

j ~ r n  
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Proof of  Lemma 3.2. We prove that the estimate holds for the terms derived from 

terms of the 3rd type in a shortened pre-(n, b(m2))-expansion of q. These terms should 

have the form sj, lj~ sj2 lj2 ... %-1 l#_i sj, with p<~r+ 1, where ji>j for all i<~p- 1, jp>~j and Ji, 

i<<.p, is from one of the b(m2)- 1 first systems. Since for every term Sjl lj. . .  lj,_, s# ljqjin 

the shortened pre-(n,b(rnz))-expansion of q there is a term s~l~ ... s~,_s~p in the short- 

ened pre-(n, b(m2))-expansion of q this obviously gives the lemma. 

We thus prove the estimate 

Isj lj, ... Sj (X, i)lestopN<" (2" 2m2r" LPb(m2)-l" l~b(m~)-,, 
Ji,'",Jp 

Jt>J 
system of Ji~b(m2)- 1 

(4.27) 

which completes, the proof of the lemma. 

We l~rove (4.27) by induction on p. To get it for p =  1 we consider the first stage of 

the pre-(n, b(rn2))-expansion of q 

N 

q = q n + X  si(liq i -  1)+t. 
i=1 

We observe that, since j>n no li with i>j will appear in any stage of the further 

expansion of qn (or qi, i<n), not even if the s 's are substituted by polynomials in x and 

l's. 

We observe further that any term of the 3rd type that "ends"  with sip, jp>>-j, and 

which does not appear in the first stage of the pre-(n, b(m2))-expansion, must contain at 

least one li with i>~j. So to get (4.27) for p =  1, it is enough to prove 

Is/,,lestop,v ~2"2m~ 
J~J 

l 

%~ 2,,, ~ - 

which is immediate from the assumption Iq-qnlN<~e,,/16<l. Now we assume that 

(4.27) holds for an integer p and we prove it for p +  1. 

Every term of the 3rd type, say sit l i . . .  Ijp sjp+, in the pre-(n, b(m2))-expansion of q is 
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obtained by expanding qj~ in the term sj, 6 , ' "  lj, qjf  Since we assume jp>j and that jp 

belongs to a system with number ~ b ( m 2 ) - l < n < j  we have 

j - I  

qjp = q~+'~ si(liqi-1)' +t', with r~b(m2)- l .  
i=1 

So, as above, we get that for fixed s h ljz ... sj, we have 

~l%,lo~,oou = ~ ISjp+,le~topN <<-2"2m2. 
Jp+l>~J 

I 
EJp + l ~ 2 - ~  

Since IljplestopN~Db(m2)_l Lb(m2)_ 1 we get (4.27) and the lemma is proved. 

Proof of Lemma a~, B, m 2, N(a l, m2). We write h(x, l)=hl(x, [)+ h2(x, [) with 

h~(x,I) = Z i~ 3 h~,ol(x' l) and h2(x, i) = Z i~ 1 h2,03(x' i) 
oi ol 

and 

s/x, t)= t)+ s2., x, t)= Z t ls,.o3(x, t)+ Z s,.ol(x, t) 
ol ol 

where we have the following: Every l in h~,o9, h2,01, SI, w or $2,01 has index ~<j and 

every lini~l,I~3,l~ or ls~ has index >j .  For  every liin l~ 3, i~ h1,01 or $1,0),i belongs 

to some of the b(m2)-1 first systems and in every 1h2-01, 101s~, h2,(0) or $2, (0) there is an [i 

with i belonging to a system with number  ~>b(m2). For  ~j]=0 say ( j)=0,  we put 

S2,<o)(X, i ) - 0  and we observe that S~,to)(X, [) consists of  terms out of  Sj(x,I) and that in 

fact Sl,~o)=Sj, o. 

To prove Lemma a~, B, m2, N(a~, m 2) it is obviously enough to prove the conclusion 

for the product  hl(x,I) SIj(x,i). To do this we first observe that 

[h2(x)l< ~ if Ob<m2)> 10" 2m2> 10/e n since Ihlestop Jlh(x)l~< 1/en and so Ih,(x)}~>~. 

Since [hlestopN~<I/e., we have that 

E [hl,o~(x)[t < 1 
O'l>r e." 2 r 
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and so for some r L 1<10m2 we have 

(I~ hl,o~) (x) 

Obviously for the same r L ; we have 

9 1 )  1 
> 10 1-0 10m 2 

1 E Ii("~h,.(.,',(x,i)l,,to,,N~e~ �9 
[l~=rl, I 

289 

we have 

~lfrl, 1 estop N 

I( ' ~ E C',(JS, i.(k~ i ](k) (X) ~ ~ Is/x)l i. 
l/~ = 1,1 \i ,(k) / 1 , 

Now two possibilities can occur�9 Either the terms 

out of the product 

satisfy 

or satisfy 

]-/]=rl.l I,(/5,i, (kY" : 

(~<,~, I0)h 

E ~ ,.., .,,.iifk ) I 
[J~ffirl,I i, (k) estop N 2El, 1 

E E C;,(.l'),i,(k) xil(k) > ~ I~/x)l,. 
[/~rl, 1 i,(k) est op N 2EI, I 

s...o.--- 
tit= ,,, / 

"h I "l,(j~,i,(k) "~ " 

This gives by the multiplication theorem that there is a constant El, 1>2 depending 

only on m2 such that for the product 
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In the first case the lemma follows with El=2El,l  since always ] lestopN~ I I1, and for 

the other  terms out of  h~ St,j  we have IJl>rL 1. In the second case we have 

( ~  [(J')Zhl,(j~)(x) "Elgj, rlestopN>2~l,1]Sj(X)[l 
L/]<rl, 1 I r < r l , l  

which gives 

1 > i  
1 2El , l  

2 m 2 - m l  ~ . m2 r r �9 . r 8- (2 2 ) Lb(m2)_lDb(m2)_l 10 r<rl, 1 
1 

> 2El. 1 "Cm2 m 2 ra 2 
Lb(m 2) - 1 Db(m2)- 1 

with obvious notations. 

Thus there is a number  rl, 2<rl,  1 such that 

1 Cm2 1 > - -  
rtl 2 m 2 

1 2E1,1 m2 Lb(m2)-I Db(,~ 9- 

We can now repeat  the argument above with rl, 2 instead of  r L t and so the result 

follows. 

Proof  o f  Proposition a~,13,m2,N(a p m2). We observe that the only terms out of  

coefficients o f / j q f s  in V, ej=l/2 m2, that can contribute to (3.3) are those which are 

derived from terms of  the form ojljsAlj2...ljrsj where jl ,J2 . . . . .  Jr are in the b (m2) - I  

first systems and r<~r~<.nl. The sum of  the e s t o p N - n o r m s  of  all such terms is 

I VI'L2 m )_, (2- 2% 1*1 

by similar arguments as above. This gives the propositon. 

Proof o f  Proposition ct nr m N 1,13, 2,N(al,m2). We assume IVeqest<l. First consider the 

sum Sl of the e s t o p N - n o r m s  of  all monomials derived by a (b(m2)- l ) - rep lacement  

from the following types of  terms: hsj~ l j . . .  ljsjr+, or vjlj, ... ljrsj,+t obtained in the pre- 

(n, b(m2))-expansion of  q and b(m2)-expansion of  V, with r<.m and with every lj, from 
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one of  the b(m2)-1 first systems. Like in the proof  of  Lemma 3.2. we obtain 

S l ~ 2 . ( 2 . 2 m 2 ) m + l . L  m D m 
b(m2) - 1 b(m 2) - I" 

This gives that there is a function ~,(k)--*0 as k--~oo such that the sum of  l r n o r m s  of  

monomials of  degree k in x and l 's is <y(k). Thus by Lemmas  4.1, 4.4 and 4.5 the sum of  

the cancellation effects on E(x) of  the monomials which are of  degree > m  in li's or 

contain an i~ from a system with number  ~>b(m2) is 

lE(x)l, 
< 

30" 2" 2 "2-'~' 

Now for each r > m  we consider the sum S2r of  the est op N-norms of  all monomials 

derived by a (b(m2)-  1)-replacement from the following types of  terms: 

hsj l j . . . ILsjr+,  or o j l j . . . i j r s j + l  obtained in the pre- (n ,b (mz) ) -expans ion  of  q and 

b(m2)-expansion of  V with every Ji f rom one of  the b ( m z ) -  1 first systems. 

Like in the p roof  of  Lemma  3.2 we obtain 

~ (  ,)m2~r+ I r D r 
S2r.-<~,2"~. ) Lb(m2)-I b(m2)-l" 

Thus we can use L e m m a  4.1 with Fr=(2" 2"2) r+~ Lrbfmg_l Drb(m2)_r and get that the sum of  

the cancellation effects on E(x) of  the monomials which are of  degree > m  in li's or 

contain an li from a system with number  >~b(rn2) is 

[E(x)l, < 
30- 2.2 'n2-m' " 

We finally consider the sum P of  all monomials derived by a replacement described 

below from the following types of terms: sjI j . . . l j ;sj .+,  or ojljl...ljrsj.+, where 

some j; belongs to a system with number  ~>b(m2). In every j; which belongs to a system 

with number  >~b(m2) we consider those terms sj, lit ... lj, ... li sjr+, or oj, li, sj2 ... lj, ... li sj,+l 

where Jl,J2 . . . . .  j;_~ all belong to a system with number  ~<b(m2)-l. For  every such 

term we rewrite sj, sj2.., sj/_, sj, and vj, sj, s i . . .  sj, as a polynomial in x, we rewrite every 

sj,+, Iji+, ... Ij sj,+, as a polynomial  in x (Ij,, lj2 . . . . .  ljr, Sj,+, we do not rewrite)�9 With  j i=j  and 

i - l = m  we then rewrite P = E j ( E m > . o P m , ) w h e r e P m j  consists of  all monomials 

xilj, ... l j l j .  We can now apply L e m m a  4.6 in the following way: 

D is the set of  integers {j} such t h a t j  belongs to a system with number  ~>b(m2). Gj 



292 P. ENFLO 

is the l r s u m  as polynomials in x of  all terms s~,§ /j,+, ... si.+, which appear in the 

expansion of q/. G; is obviously determined by ] ~~-l. 

�9 /~1 m o F m = 2 Lb(m2)_ 1 Db(m2)_ 1 (2 2m2) m+l. 

Then ]Pmj]l,f<~GjFm by the same arguments as in Lemma 3.2 and 

IPm,i,w.[LS<Uj for Wm>~m+ 1. Thus the cancellation effect of P(x) on E(x) is 

Ie(x)ll 
30" 2" 2 m2-ml 

and the proposition is proved. 

obviously 

Proof of Lemma 3.3. We omit this proof  since it is the same as of Lemma 3.2. We 

now turn to the 

Proof of Proposition ,~* "1" ,,nc N(ch ' a2). We consider (3.16) and we assume ~ I , B ~  rr~2, B '  ~ 2  ' 

N ]V]e~t<l. The proof of the proposition will be completed from Lemma 4.17 below�9 To 

prove that lemma we first prove Lemma 4�9 To prove Lemma 4.13 we use the 

Lemmas 4.14 and 4.15. 

For  every j there is an nLj<~n ~ such that for the part 

I~l=nl,j 

of hSj-V 1 we have 

]2E2]E (Eld(ct),m,(fl)xml(fl)]l) ~E]Ed(a),m,(fl)xml~) 
�9 op N 

where n t is given by Lemma ct~.a, m2, N(al, m2) and nl, j is the r I of that lemma. We put 

Gj=Gj, i +Gj,2 where Gj, ! = E [(a) E d(a),m, ~a) xm [~a) where the summation is extended over 

those (a) for which 

l O E~ l E d(a), m, ~) xm lt~) l > E d(a), m, (fl) xm ~ )  est op N 

and Gi, 2 is the s u m  extended over the other (jTs. We let Bj be defined by 

HSj- Vj--Gj ,+Gj,2+Bj. 
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We can now apply Lemma a~ c, N(al) to the product (E d(a),m, (#)x" I ~)) q~. for every fixed 

(a) appearing in G~. 1. Then E d(~),.1, ~)xm l~) will play the role of h and q~ the role of q'. 

Here, of course, r. d(a),m,~)x r~ I ~) is not normalized as h in Lemma a~ ~, N(a~), but the 

important thing is that E d~a), m, ~) xm i~) like h in Lemma a~ ~, N(ct~), has a bound 10 E~ on 

the ratio between its I l o p . n o r m  and its [ Irnorm. The (n-1)st  stage of Lemma 

a~C,N(cd), will here be the (b(a2)-l)st stage. So this gives us that there exist 

n 2 and B'~(a2 ) depending only on ] I bt~2)-! such that r. dt~), m, ~)xm i~) qJ contains 

k ) Pv5o (E(a), L j) = Pl/5o ~ e(~),k, (8) x /~, k+ 131 ~ n2 

where 

[E(a),,,j]l ~> B~(a 9 I ~ d(a)' m, ~) xm/'~) 

Now by Lemma a~,a, m3, N(al, m2)and the definition of weight of good coefficient and 

the definition of ( h S F V  i) ljq)in (3.16) and the definition of Gj, ~ there is a constant C 

depending only on I ] ~m2)-1 such that 

where D is the sum of the weights of good coefficients of lj qj's with qj in the system a 2. 

Now we define 

With this definition we get IEI~D.C.B~,(,2).Lb(,2 ) and so this gives that E has the 
f _ _  P~ properties 1-5 above with B~a2)-C.Bb(.~ ). To prove that (hq -V) ' ( x )  contains P~/20 (E) 

we start by proving 

LEMMA 4.13. For every j, (hSj- Vj)ljqj contains 

Pl/24 (lJ lO) E(a),l,j ) " 

To prove Lemma 4.13 we first prove 

19-878289 Acta Mathematica 158. Imprim~ le 28 juillet 1987 
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LEMMA 4.14.  For every j 

( ~ d xk l ~a) q;) ~(c ) l(a) ~.~,d Ca), m, (/3) 
lj (x) 

To prove this we put  

contains 

Z d(a), m, ~) xm l~a) q: 
m' 

=Xa i+Xaix' 
i=0 i>m' 

where m' is chosen so that deg (Eek, r  k/~))~<m'. We can choose m'=n 2 deg lj_ r Then 

we obviously have that m' i E 0 aix contains pl/5o(E(,~),~,j) and 

( ) X [(a) aixi 
(a) = 

contains 

if ord lj > n 2 deg lj_ 1 

which certainly is true if the sequence is sufficiently lacunary. We have 

i~>m' aixi I <~ X aixi 
i~O 1 

<~ X d(a), m, Ca) xm !~) IqSl  IE,a,,',Jll " IqSl," 
1 b(m 2) 

Now we apply L e m m a  4.3 in the following way: 

S(x) of  the lemma is lj E(a ) (l (a) Ei~ m, aixi). P(x) of  the lemma is lj E(~) (i (~) E;> m, aixi), 
w=[ i l+ l .  Since we have not normalized we get that the cancellation effect of  P(x) on 

S(x) i s  ~E'[E(a), l,j[l" Zb(a?.) if the sequence {l,},~j is sufficiently lacunary and the moduli 

of the coefficients decrease  sufficiently rapidly. With e= 1/30-1/50 this gives Lem m a  

4.14. 

To continue the proof  of  L e m m a  4.13 we will now study the cancellation effect of  

(Gj,2+Bj)ljq ~ on Ij(E(,~)I('~)E(a),~,j). To do that we will use the Lem m a  4.15 below. That  

lemma will be used both in studying (hSj- V) l t q~i and (hSj- V) l~q~. 
Fix a j and consider hSj-Vjas in (3.16). Expand hSFVjas a polynomial in x and 

i's and do not substitute any i by a polynomial in x. We can now write 
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(hSFVj')(x'I)= 2 ( 2 J,~, 
IJl=~ 

with the following notations: lj,,Ij. 2 ..... /jr are in systems with number 

<~b(ct2)-I and JpJ2 . . . . .  Jr are all >j .  Fj, a(x,/) is a polynomial in x and i's there for each 

i,., either i belongs to a system with number >~b(a2) or i<~j (or both). F',,~,(x,D is a 

polynomial in x and i's where all l 's have index <~j. F~,y (x,/) is a polynomial in x and l's 

where in each term for at least one [~, i>j and i~ belongs to a system with number 

~ > b ( a 2 ) .  

(4.28) We observe that for those j for which Gi, 1 is defined we have 

' l~ lY. 6 1~/2 1 yj" GJ, ' = 2 F;, y (x' -" -:, J2 ""% 
J,y 

if the sum is extended over appropriate J and a and every I with index ~< b(a2)- I in F' is 

substituted by a polynomial in x. 

(4.29) We also observe that for every r (with n o / ' s  substituted) 

:.4 
-" )Jl )J2 " ' "  "Jr l e s t o p N  

lr~'] *VI~ '"  r  2 l~f, I 
J1 J2 " '"  Jr l e s t o p N - - Z - ~ l - - J , Y ~  ' " ' "  e s t o p N "  

LEMMA 4.15. For every i and eoery fixed r~>0, 

V. lF~.~ (x, y:' ~'j~ " r 1)l)~ l~. 2 ...l;?]os, , .fmllllld | 

J, 7 
~'l=r 

where e=min (e I . . . . .  eb(a2)}. 

The proof is the same as for Lemma 3.2. 
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Now we use this lemma to estimate the cancellation effect of  

(Gj, 2+Bj)Ijq; o n  ljY~(a)[(a)E(a),l,j which will give Lemma 4.13. By (4.28) and (4.29) we 

have ff in Gj, 2 and Bj no l is replaced by a polynomial in x, 

�9 J" \|'{~F" (x ) Gj,2+Bj = 2 2 F;,y(x'~)ffJl ll?'j2 ffJ: + 2  |.l.d J,Y" 'i)[Jlr J2 " ' "  

J, vr ~ 

where the first sum is ex tended only over those J, y which do not enter  in Gj, l. Now 

with 

nl+n2+l 
F,,, = 

rffi0 
' - r 6 r  " " D (~t l. rj~ l;f' 2F'J,v(x'l)ljl l;f'+2 2 F l ,  r(x' h "'" 

we have by L e m m a  4.15 

F "  -<~. ( 1 ~  ~'+~x+2 D " nl+n2+l 
est ~ N "~" ~ \ E ]  (Lbta2)-I bta2)- !) " 

This gives that for  every e>0  there is an m" depending only on e and [ ~/-l so that 
m u i 1 with F -•i, yai, rx l~l ~22... ~N N we have that 

2 laj,,I Ie, ,,,,Jll "~" 
j+lrl>m" 

To see that m" only depends on e and [ ~-i we observe that given [ ~'--1 we  have 

an estimate f rom below on r ,o, lE, I, and precise information on IqJr Now we have 

that the cancellation effect of  

~ 2 ai, rxilrl' lr22""lNN) ljqJ o n  lj21(a~E(a),l, j 
+[rl-<m" (a) 

is 0. To see this we can argue as follows: 

Make an ( j - l ) - subs t i tu t ion  in lj r./ta)E(a), I.g and in 

j+lyW-m" 

Then both these expressions have bounded degrees as polynomials in x and l 's, 

and the bounds depend on [ ~-i.  And by definition, a monomial that appears in one of  
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them does not appear in the other�9 Combining this with (4�9 we get that the cancella- 

tion effect of F' l j  qj on lj E(~)/~) E(~), l,j is <~Lb(~2 ) (E [Eta), l,A i). 

To prove Lemma 4.13 we have finally to prove that the cancellation effect of  

FIV Ijq; = r>~ll+ P~2+ | E E  ( E FJ,~'(x' l) ~j~l ~jjf2 "~ (fr) 
~'l=r 

on ljE(a)/(")E(~),~,j is sufficiently small. To see this we make an (j-1)-substi tution of 

lj q; say 

F~Vljqj=ljEai,,,yxi~Jl~2...~" 

and an ( j -  1)-substitution of lj E(.)/(") E(.), 1,~ say 

i jE bi, J, aXi~jlJt~j2J2.. ~Jra �9 Jm " 

Now by Lemma  4.15 the conditions of  Lemma 4. I are fulfilled (except for normaliza- 

tion of lj) and so the cancellation effect of  F TM lj q] on lj E/~a)  Eta), 1, i is 

With 6= 1/104 this completes the proof of Lemma 4.13. 

The next step is to prove that Ej(hSFV ) ijqj contains pv23(~,lj(El~a)E(~),l,)). To do 

this we first prove 

LEMMA 4.16. Let the support of  a polynomical in x be the set of  exponents. 
Assume that {Ai} and {Bi} are sequences, finite or infinite, of  polynomials in x. 
Assume that the Bi' s are mutually disjointly supported. Assume also that Ai contains 

p~(Bi) and that the cancellation effect of Ai on ~.y.iBj is<elBill. Then EAi contains 
P6+e(EBi). 

Proof. Put Ai=p~(Bi)+Ci-I-Di where 

suppC/,--supp Ej.in j and supp D i fl supp EjBj=~ 
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Then by assumption the cancellation effect of Cion EB/is ~elni[ 1. We have 

EAi=p~(Bi)+ECi+ED r The lemma follows since the cancellation effect of ED,. on EBfis 

0 and the cancellation effect of EC i on EBg is <elB;l~. We now prove 

LEMMA 4.17. Ej (hSj- Vj) lj qj contains Pl/23 (~6 ~/(a)E(a)" I,)" 

To prove this we first consider the cancellation effect of (hS F Vj)lj qj on 

r*j = ~ e x k fm)~ Elr(E[(a)E(a),l,r) ~r.jlr(Effa) l..~ k,(m) /" 

We make a (j-1)-substitution in (hSj-Vj)6 q~ and in 

s~.jlr(E(a)'a)Eek,(m) xkl(m)) 

and replace qj by a polynomial in x. Then obviously lj will not appear in 

E l r ( E ( a )  fa) E kl(m)) k,(m) ek,(m)X r*j 

since every 1 in every 1 (a) belongs to a system with number <~b(m2)-1 and every ! in 

every/~m) belongs to a system with number ~<b(a2)-1. This makes it possible to apply 

Lemma 4.6 where the set D consists of the one integerj. S(x) of the lemma will be the 

( j -  1)-substitution of 

Elr(E(a)'a)E ek,(m)Xk'm) ) r~j k, (m) 

and P(m,j3 will be the sum of all monomials out of the ( j -  1)-substituted expansion of 

(hSj-Vj)ljqj with q] replaced by a polynomial in x, which are of degree m in r s  with 

index >j. Sequences Wm and Fm depending only on [ }/-i can now be determined by 

Lemma 4.12. 

(4.33) Thus, given 6 the cancellation effect of (hSj-Vj)ljqj on 

J~*jlr(E~a)Eek'(m)xk~m) (m) 
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will be 

By applying Lemma 4.16 we now get Lemma 4.17. 

(4.34) We now investigate the cancellation effect of Ej (hSj-Vj) lj qj on E. Given any 

sequence 6j",a0 we prove that the cancellation effect of (hSj-Vj)ljqj on E is <6j in 

exactly the same way as (4.33) is proved. 

We now finally investigate the cancellation effect of hR ' -R~ ,  on E. We first 

observe that all terms in hR' and R~ are derived from terms in which the li's that 

appear have i from one of the b(a2)-I  first systems and the q;'s that appear have 

i<.b(a2)-l. Thus, assuming WI<I, we get by the same argument as in the proof of 

Lemma 3.2 that the sum of/1-norms of  all terms derived from terms that contain at 

most n l+n2+l  (m+n2+l)di f ferent  li's in hR' or R~, is 

,~mk~m+n2+2 [ m + n 2 + l ~  
~< max (Iqjl,).(2.gm,,~n'+"2+2.r",+"2+~.( max (Iqjl,).(2.,. , " J~b(a2 ,_ l /  

j<~b(a2)- 1 ~ / ~b(a  2)- 1 \j<~b(a2)- 1 

and this is much smaller than IEI1/200 since IEI~ contains the factor Lb(a2 ). 

NOW Lemma 4.1 gives that the cancellation effect of the terms derived from terms 

that contain > n l + n 2 + l  ( > m + n 2 + l )  different l 's is IEI~/200 with F r of that lemma 

= max Iq.il,.(2 .',-.~V+'lr �9 " / ~t'~b(a2)- 1" 
j<~b(a 2) - l 

This completes the proof of  Proposition at, B, m2,a, r c, N(a 1, a2). 

Proof  o f  L e m m a  a'~, B m2,s, a~,B, m 3, N(al,  a 2, m3). Consider the terms (3.3) or (3.8) 

out of SI, j or Tj',,. 

a j  (x ,  D = ~ /[a) ~ d(a) ' i, (~) x i  i~3) 
laL = q i, 6) 

Since every I in Sk(x, l) has index <j, the terms 

= X i [(Y) 

I,~,t=rl I,~21=r2 
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from S l , j ( X  , [) S k  (X , [) or T:(x, i) Sk (X, i) are obtained from the product Gj(x, l) Sk (x, i:). 
We now by (3.3) and Lemma 12~.a, m2, N(al, m2) or by (3.8)) consider those (a) for which 

o r  

i ]'(F) < 20" E~ i, (y zx ) d(a),i, (r) xi I~y) (x) I i, (y~) c(a)' i, (~) x est op N 

I ~ x i l(r) C (a), i, (y) 
i, 0') est op N 

1 0 m  " Kb(m2)_ 1 �9 100 
9 1 1 r~ r 1 

10 "B'~ 2 2m2-ml Lb(m2)-I'Db(m2)-I 

2 d(~), i, (~) xi i~) (x) 

Apparently this is so for " m o s t "  of  the (a)'s. Now for every such (a) we can 

exactly repeat the proof of  Lemma 12~.a, m2, N(ap m 2) with 

2 d(~), i. (y) i(y) 
i, (y) 

playing the role of  h and Sk (x, i) playing the role of Sj(x, i). This will give us a different 

r2 for each (a) but by losing at most a factor n2 on E2 we can fix one of  them. This 

completes the proof. 

Proof  o f  Proposition 12~,B, m2, B, 12~,B, m3, N(ap 122, m3). We consider for a fixed k 

E r,, E 2 - a(ad,(ag, i, (r) "~ ~ " (4.35) 
j la~l=r~ la21=r2 i, (y) 

We consider a pre-(n, b(m3))-expansion of  q and a pre-(b(ma))-expansion of V. 

And we consider terms which are derived from terms hsg, l j . . .  lg, sg,+, or Vg, Ij. . .  lg, Sgr+ ~ 

and which contribute to (4.35). Terms derived from the following types of terms 

hsg, lj, ... lg sg,+, or Og, Ij, ... lg sg,+, can contribute to (4.35): 

(1) Terms derived f r o m  hSjl  lj . . .  lj sj,+, or vj, lj, sj2 ... lj, sj,+, where for some i, lh=l j for 

j out of  a2. The sum of  the contributions of  all these terms will obviously be precisely 

i, (y) 

as defined in Lemma 121,8,* m2,a, a2,B,c m 3, N(ap a 2, m3). 

(4.36) 
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(2) Terms derived from hsj,.., lj, si,+t or vj, Ij, sh... lj, sj,+, where lj~ #: lj for all i and j. 

Since in (4.35) for all li with i>k, i belongs to one of the b(m3)- I first systems we must 

have that Jl . . . . .  j~ (which all are >k) belong to the b(m3)-1 first systems. Moreover 

from (4.35) we get r<~rl+r2<~nl+n2. Assuming that IVl~t~<lwe get that the sum of 

estopN-norms of all these terms after summation over k is 

~ , ~  l n l + n e  l'~nl+n2 (,,~. 2m3)nl+n2 +l 
~"" X'~b(m3)-1 a'l b(m3)-1 "~  

by the same argument as in Lemma 3.2. 

The sum of the/1-norms is 

by the same argument. 

_<~.,n,+n2 (2.2m3)n'+n2 +1 
-.-=. ~ X-,b(m~)_ 1 

(4.37) 

(4.38) 

/ j E / ( a l ) E  ] ( a 2 ) E ~  ~ri~Y) 
v(al),(a2),i, (y)'~ -- 

(a m) (a 2) i, (y) 

where E~ depends only on I[ um3)-l. Also the sum of the ll-norms is 

~>D'l,j. ~ .  [Sk[ l .Lb~., ) where E'~ depends only on [ [Um3)-l. Now there is a C depending 

only o n [ [  u~2)-~ such that DI>C. This follows from Propositions a~,B,m 2 and the 

definition of a~, B, rn2, s, a 2. 

Since a~, s, m2,a ' a2,B , c  m3 occurs we have ~jD'I, j>�89 ! if we sum only over those j 

for which 

I 
i0m3-"2 

Thus We get that the sum of the est op N-norms of all terms 

20-878289 Acta Mathematica 158. Imprim6 le 28 juillet 1987 

is 

(4.39) Let D[,y be the weight of the good coefficient of lgqj, jEa2. Let D~ the sum 

of the D~,g'S. For every j and k we get that the sum of the est op N-norms of the terms 
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"(at), (a2), i, (y) ~ " 

J ( a  1) (a  2) 

summed also over all a2'S is 

D; 1 t m 
T I0  m2-m2 E 2"Lb(a2)Db(a~). (4.40) 

The sum of l rnonns  is 

D; 1 
~ -  10 m3-m2 E~.Lb(c~2). (4.41) 

Since b(a2)>b(m3)-I  these numbers are much bigger than (4.37) and (4.38) and 

this gives the proposition. 

Proof  o f  L e m m a  * c al,a, m2, B . . . . .  ak, B, mk+l, N(al . . . . .  ak, mk+l)" By in the Induction 

Hypothesis we have a bound E 2 on the ratio between estopN-norm and [ Ii-norm 
depending only on I [b(mk)-! for 

• ~ d(a),i, (r) xi itr) 
a i, (y) 

in Uk(x, I). We observe that the assumption that Uk(X, i) is (b(mk+D-1)-substi tuted 

only effects the terms d(.),i, (v)x//(y) where all indices are <~sk since in 

lsi, ... l~j, ~ l~ ,.. ita') l ~ak) 
(a I) . . . . .  (a k) 

every index that appears is >sk>b(rnk+l). We observe that in Ss(k+l)(X, [) all indices that 

appear are <sk. Now for most combinations 

lsj, ".. lsj, ~ l~a') ... It~') l t~', 
(ap ..... (%) 

we have a bound 100 E 2 on the ratio between the es topN-norm and I [rnorm of 

" •  d(~), i, (r) p). 
i, (r) 

The proof is now the same as for Lemma a~, B . . . . .  a~, a, m 3, N(a l, a 2, m3). 
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Proof of  Proposition a*l,a m2,B,  " " ,  i n k + l ,  N(ct t .... a~, m~+~). For the proof of this 

proposition we will consider the part 

u~tk+t)-lsj, l~j~...ls~, ~ ~~176 ~ a l ~ ) ~ a k + ' ) E d ( ~ ) , i , ( y ) X J i ' ( Y )  ,(~) - -  . . .  

rl , . . . ,rk+ 1 

of the (b(mk+l))-substitutedcoefficientofl~(~+])q,<k+~) in h q - V  as above. (o~)= 

sj~, sj2 ..... sk. We will do this for different ( ~  and s(k+ 1) and we will show that either V 

gives a big estimate of [hq[ N or the sum of the weights of those U~<~)~)which are good 

partial coefficients is big. We will only consider such combinations l,y, l~y ... l~ where 

is a good partial coefficient of lskqsk and where the coefficient Ss(k+t) of 

/s~k+t)q(k+l) in the (sk, b(mk+l))-expansion of qsk is semigood. We first observe that with 

the definition below 

U~l<k+l) W~k+l) + ~  1,~(k+l) (4.42) ,(~ = 1,0,(~ Z_J vVl,h,(y) 
h 

W~<,+~) is defined in the following way: ,h,(,,'~ 

Consider, for fixed ,,q and s(k+l)  out of the coefficient of l,~k+~)q~k+~) 
in a pre-(n, b(mk+l))-expansion of q and a pre-(b(mk+l))-expansion of V, those terms 

which contain l~j h but do not contain any l,~ with p>h, call them Th(s, l) and Vh(S, l), 

respectively. By substituting the s 's we get Th(S, l)=Th(x, [) and Vh(S, l)=Vh(s, l). Now 

~.(k+~) be the part let ,, l.h, 

l,j,l,jz'"l,k ~ l<~ e<,).i.(r)xir r, 
lall . . . . .  [at + l l i, (Y) 
=r l , , , , , r k+  I 

of h. Th(x, l)-Vh(x, l) after having in this expression made substitutions between l's and 

l's as above, u,~t,+l),, L0.(y) consists of those terms which do not contain any lsj, at all. With 

this definition (4.42) is obvious. 
- ~]rs(k+l) We see that we get wk+l= " l ,k ,~  where Wk+ I is defined in 

Lemma ct~. B, m2, ..., ct~. n, mk+ I, N(c h .. . . .  ct k, mk+l). 
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~ 1 , h , $ [ 2 .  
Let ,,~l={sjl, sj~ ..... Sjh} and ~={Sjh+i .... , sk}. Let ~,<~+l) oe the terms out of the coef- 

ficient of l,(k+~)qa~+~) in a pre-(b(ah), b(m~+l))-expansion of qj~ which do not contain any 
-~.h.:~ l~ with i from a system with number >~ b<,,k+0 and not any l%, p>h. Form b'~<k+l)~.,,/) by 

u~(k+l) ;~ the part b(m~§ 0 substituting the s's. Then it is easy to see that "~,h,(~ "~ 

of the product 

l~j, lsJ2""l~k E l(a')i(~2) . . . .  I("k+"E"'(~),i,(r)"'i/(r)" 
lad ..... la,+,l i, (r) 

mr,,...~rk+ , 

1,h,32 - 
lsj h Uh(X, l) Ss(t:+l)(X, l).  

Now consider a pre-(b(ah), b(mk+l))-expansion of qsih" Consider those terms out of 

the coefficient of l~tk+l)q~tk+~ ~ which contain only l's from the b(mk+O--1 first systems 

and which are of degree at most Z~+__~ nm+card H in the l's. They form the polynomial 

S~ (k+~), say. We see that for fixed ~ no other term out of the coefficient of any 

l,<~+l)q,(k+~) will, when multiplied by U~J~ 0 and with s 's expanded in x and l's, give any 

W~, tk+l) for any s(k+l)  or any ~2. This is clear since they willall either contribution to ~,h,(~ 

have too high degree in l's with index strictly between sjh and s(k+l)  or contain an l 

from a system with number ~b(mk+~). The only possibility for that would be an l~p, 

p>h~accord ing  to the definition of US,, (k+l) but this would contradict the definition of l,(,y) 

W~l(k+ 1) ,h,(#)" 

By the previous argument of the proof of Lemma 3.2 we have 

s(k + 1) 

and this estimate obviously also holds even if we sum the estimated op N norms of all 

monomials m(I, x) in x and/ ' s  out of all S~ tk+l)'s. We observe that every such monimial 

145~ tk+l) for several different ,,~2's when multiplied by U~/,h(~ 0. m(l,x) can contribute to h, oo 

For fixed ~ and s(k+ 1) but different ~2's we consider the parts 

~2 la,I .....  }',+,1 i, (y) 
mrl ,  .*., tk+ , 

out of the product U~h~,In(I, x). Here we have 
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Z 
& 

Z f(.), i, (r) xi I(~) I 
(a), i, (r) [ estop N 

1 1 1 
. . .  

Lb(aih+l) Lo%h§ 2) L b ( a k )  

l ( ~ l ~ , d d h x i l ~  N) Ira(l, x)[.~top N ~< L"-~ i,O~ 
op 

where 

r = max (b(ajh+,), b(aj**2) . . . . .  b(Ctk) ). 
(4.43) 

The factor 

1 1 1 

Lb(aj.+~) Lt'%.+2) Lb(a,) 

comes in since all the l's in l,j~+x.., lsk have to appear in the products (Xd~ ol xi l~ m(I, x). 
By summing (4.43) over all different m(l,x) and then over all s(k+l) we get for 

fixed ffl 

s(k+ 1) i, (~') opN ' [ o p N / L r  

By finally summing (4.44) over 

b(as)) we obtain 

J! s(k+l) ~2 I i'(y) 

all different ,,~ (which end with an l in 

1 K 
opN) ~ < E  W(Uh)"-~'Cb(,,k§ b(~+,)-I (4.45) 

where EW(Uh) is the sum of the weights of good partial coefficients of 

l~jh's, l~j, E system b(aj). 
To finish the proof we first observe that every (*+~) " W~t, k,(~) saUsfies the conditions in the 

definition of good partial coefficient and so if we sum the "weights" over ,~ we get 

Ew(Uk). IS~(k+l)ll and then over s(k+l) we get a number 
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w(o, )  l 1 
2m~*' -ml' 16' 

or by Lemma a~B ..... mk+ ,, N(c h .. . . .  rnk+ I) 

1 1 1 S ' w w , ~  
E Elc, . , , , ,J~']l  >-- t6 E~§ 2",§ , g . . d  " t t  

,~, s(k+ l) ~t 

Now by Lemma 2I and 3I of the induction hypotesis there exists a C' depending only 

on ]1 ~mk§ such that we have 

~,,(k+l) ~ h 2~,+, k 16 ] 2Ph+, ~* Ek+ 1" 
(4.46) 

By (4.46) above we have 

h " y )  EEI'.o...J  Io .o. <~ D h �9 L'~r " C/,(m~+i)- 1 "Kb(rak§ 

which is much smaller than 

Dh Ek+, ~ + '  2"' 2 m~+' \ - ~ t ]  

if the L's grow sufficiently fast since r>.max{ph+ l . . . . .  P k ) .  This is obviously also true 

even if we sum (4.46) over all h if the L's grow sufficiently fast. To complete the proof 

we now assume that the estimate given by V is ~<1. Then it is clear that ] lestopN of the 
l,Vs(k+ t) ,~ perturbation caused by the ,, Lo.t,~ o is much smaller than 

) ,  , i  
w(Uk) 2 '~-,-m~ Ek+~ I6 

by the same argument as in Lemma 3.2. This completes the proof of the proposition. 

Proof o f  Proposition a~,B, m2, B . . . . .  a~:,N(ai, .... ak). We consider the first sum 

~jSjljq]=F, skSsklskq'sk in (3.27). With S,~=Er s~+R~ (see (3.28)) we get 

For every set l,j, l,j2.., l~j, we consider the good partial coefficient 
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l,...l,, 2 [(al)'"l(")l("P(2d(.'.i.(v)Xil~')) 
lall ..... la,I \ i ,  (y) / 
= r l , . . . , r  k 

out of Vi,,k. We consider those/(aO .../~a,)/~) for which 

~, c~>,,,~ji ~ ~ lOOEi ~ d~),~,~,) 
i, 0') est op N i, 0') I 

For these there exists B~a~)andn k depending only o n  {I b(ak)-I 

(Ed(,), i, (y) x//(~') q'k) (X) contains 

such that 

with 

P l / 5 o ( E ( a , )  . . . . .  ( % ) , s j  I . . . . .  s j , )  = Pl/5O X e ( a ) , i , ( y )  x i / ' ( y ) '  i+ [ml  ~< nt, 
i, (y) 

d il ~v) iE<o,) ..... c~,),,:, ..... ,J,l(X)l>~a'~,~,)" 2i, (, ,  (r 1" 

Now by Lemma lI in the Induction Hypothesis we have 

=sj~ . . . . .  sj, 

where V l depends only upon [ [ t~ak)-I and D is the sum of the weights of good partial 

coefficients of lsk q'k' s, sk E a k. 

Now we define E by 

E = 2 1 s k  2 l~j I l . ~  ~') ~*)E �9 "" sjv " . .  (al) . . . . .  (ak) ,s j  I . . . . .  sj  r" 
sk  (a  I) . . . . .  (a  k) 

=sjl,..., sj, 

Then 

.I L 

and so E satisfies the conclusion in the proposition. We now prove that for every sk, 
~ i  U i ,  sk  lsk q'sk(x) contains 

... ~a*) ~, Pv3o (l~k 2 lsj I lsj, ~(al) .... *'(a,) ..... (al,),sY, ..... sj,] 
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and for this we apply Lemma 4.3 in the same way as in the proof of Lemma 4.14. The 

strategy of the proof will now be the following: 

We first prove that the cancellation effect of 

2Rsklskq '~k+R'+ 2 Sjljqj on E is < IEI, . (4.47) 
1000 sk  j 

Then we prove that the cancellation effect of E,. Ui, sk lskq'sk on 

is 

E' = E- lsk  21SJl l . ~ a') #a~) E(a,) ..... " '"  SJr " "" (ak)' $Jl . . . . .  sir 

~< ~ I(E'-E) (x)lt. 

That will by Lemma 4.16 give that 

contains Pl/30+IIIO00 (E). (4.48) 

For the proofs of (4.47) and (4.48) we introduce the following notation: Let 

%/aji  2 . . . . .  ajik, by the subsequence of aj~, a h . . . . .  aj, a k with the following property 

b(aj,,) = max { b(ai,), b(%) . . . . .  b(aj), b(a k) } 

and if b(aj~m) is defined we put 

b ( ~ + )  = max { b(%+1) b(%+,) .. . . .  b(ai), b(ak) } . 

We say that a monomial M contains exactly a combination 

lsj, . . . lsj, ~ t~l) . , .  ~ (at)  

if l,j, is in the monomial and if the l's with index >sjr in M agree with 

l , j  . . . 1 r  . . . 

( I f M = a i x ~  ' . . . ~"  then of course aix i or the l's with index < s j  r do not influence 
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whether M exactly contains a certains combination or not.) We say that a monomial M 

contains exactly a combination 

lsjl . . .  lsjr_ , l~a') ' ' "  i ~~ 

if the l's with index >l,j, in M agree with 

... 

We say that a monomial is obtained by multiplying terms out of A by terms out of B, 

thus meaning that the monomial is one of the terms in the product AB. 

(4.49) We consider now the shortened pre-expansion used in defining (hq-V) '  
above. Assume that at some stage of the preexpansion some term of the first type ends 

with l i qi. We now define q"(s, l, q, t). In the final stage of the shortened pre-expansion 

the qi will be replaced by a polynomial in s ' s , / ' s ,  t's, and q's. Let q"be the polynomial 

we get from qi=q~(s, l, q, t) by removing all terms of the 3rd type for which 

e<min{el,e 2 ... . .  ebtak)}. Now obviously there is a number Ki depending only on 

I I/-: such that the sum of/t-norms of all terms out of the expansion of qi is 

<Ki, in particular Iq'i(x)h <ge. 

Moreover ]lil I depends only on ] ] i-t and D i and L;. To estimate the cancellation 

effect in (4.47) we consider out of 

2 R,kl,,q;k+ 2S j l yq j+R '  
sk 

the following types of monomials M,,: Those which contain exactly a combination 

l~h l~h.., l~r i~l).., i~im) 

which appears in some term of E but which do not contain exactly any combination 

r r~ / ~ 

that appears in any term out of E. First we study for fixed sji" the sum of the 

cancellation effects on E of all monomials Mm,~J,m out of M m which are derived from 

terms that contain an lSJ~m. Monomials out of Mm,,j~. are obtained only by multiplying a 
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good partial coefficient of l~j,m by terms out of qt~Jim. TO study this we substitute 

qji(s, 1, q, t) as a polynomial in x and l's in the following way: 

We get, from the shortened pre-(n, b(a,))-expansion of q a shortened pre-expansion 

of q,j,m~jUst consider what q~j,, in terms that end with I,j~, q~J~m is replaced by in the final 

stage in the shortened pre-(n, b(ak))-expansion of q. We shorten this pre-expansion of 

qsj,, further by not expanding terms which end with lgqi, iEsystem with number 

~b(ai,,+,), any further. Let then Siliq i be the sum of all terms ending with lgqi. For all 

these i we substitute q~ as a polynomial in x. For all other terms out of 

q"Jim we make a (b(ak)-D-substitution. 

(4.50) Now we fix i and study the cancellation effect of all monomials Mm, sj,;i of 

Mm,,i. " obtained by multiplying a good partial coefficient of lsj,, by Silgq' :, where 

tf__ S i is (b(ak)-l)-substituted and qi-~[x). We get that the sum for fixed m and i over all 

�9 ~S sjg m of the / :no rms  of all Mm,j, ~ which contain <nl+nz+...+n~m+im+r different l's 

with index >i  is 

<< VI.D(m) r r ( ')mim+l+l'~r l "r .[lil Ki 
~t'Sb(0~jl ) . . . .  b(flJim) \ ~  / ~'~b(QJim+l)--! i 

(4.51) 

where D(m)=Zw(Ui, ) is the sum of the weights of all good partial coefficients of all 

lsj, qsj,,'s by the same argument as in Lemma 3.2. 

(4.52) Now by Lemmas lI, 2I and 3I we have 

[E[~ > D (m). Lb%) ... L~%m)" L~%,+,) " Lb(ahr~+, )" C, 

where C depends only on [ I Now this gives by Lemma 4.1 that the sum over 

sj'i, of the cancellation effects on E of the Mm, sji's which contain >n~+n2+...+n k 

different l's with index >i  is 

Ieh <. 
m.2000.2 i' 
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For the other Mm,$Jim'S it is alSO 

IEll <, 
m. 2000.2 i" 

We can see this in the same way as we prove Lemma 4.4 by observing that the 

cancellation effect is =0 except for those terms which contain some (~ with 

aj>to i, to i depending only on I I ~-l and the sum of/l-norms of those is much smaller than 

m . 2 0 0 0 . 2  i 

if to i is large enough (depending on I [i-1). 

Now we consider the monomials out of Mm, sj - obtained by multiplying a good 

partial coefficient of lsj,, ~ by other terms of ~j, than those in (4.50). These terms out of 

q"j~. are derived from terms that contain only l's from the b(aj~.§ first systems. 

So instead of the estimate (4.50) we will get the estimate 

V l �9 D (m) Lb(aji)... Ll~ajim ) (2 m'+~ + 1)r Lb%~,§ - l" C', 

where C' depends only on I I b~ap-1. So for small r's we can here just use that this is 

much smaller than IE[t/1000 and for large r's we use Lemma 4.1 as above. 

We now study the sum of the cancellation effects of monomials Mm.sj~, out of M m 

which are derived from terms that contain an l~j,, r<m,  but do not contain any 1%, 

m>~p>r. Such terms are only obtained by multiplying a good partial coefficient of/,j, by 

terms out of q"Ji,' which are derived from terms which do not contain any 1%, m>~p>r. 

So also here we shorten the pre-expansion of qsj,, by not expanding further terms which 

end with liqi, i belongs to a system with number >b(aj~,§ ). Then we proceed as for the 

t e r m s  Mmsj,,~ but we only need to use 

IEI  > D (r) . Lb%~) ... Lb%,) " �9 LU%=). L~%r,+z )" C 

with obvious notations, C depending only on [ I b(%'§ 
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To prove (4.48) we use Lemma 4.6 letting the set D consist of the single integer sk. 
We can thus make the cancellation effect of E i Ui,$k lskq~k on 

I 
E' < Dsk.--vT'Bb~ap" Lb%~) ... Lb% ) 

where Dsk is the sum of the weights of good partial coefficient of lsk qsk" Summing this 

over all sk obviously gives the result. This is since the estimate Iqi(x)[l<K~ is obviously 

also valid for the sum of the ll-norms of terms of 3rd type in the pre-expansion of q; 

gotten from the shortened (n, b(ak))-expansion of q. 

To complete the proof we have now only to prove that the sum of the cancellation 

effects on E of the following (b(mk+l)-D-substituted terms of 3rd type in h q - V  with 

e =  1/2 mk+t is smaller than ([EII/1000)" 1/2 mk+t. 

(4.53) Every monomial that contains exactly a combination 

lsj ̀  . . .  lsj, l(al) . . .  l(a") i (a'+') 

out of E but is derived from a term, which does not contain lsjr. 

Assume that it is derived from a term that contains lsJim but does not contain lsji,+, 

for any k~> I. (Obviously lsj,,= 1%, for some p. Then it is obtained by multiplying a good 

partial coefficient of lsJ, m, by terms derived from terms of 3rd type out of the expansion 

of qsj. gotten from the (b(mk+l)-l)-substituted shortened (n, b(ak))-expansion of q. 

These terms of 3rd type cannot contain an l i with i from a system with number 

>b(aj, ,)-l .  By the same argument as for the estimate (4.51) we get that the sum of 

l~-norms of terms which contain few different l's is much smaller than 

(1/2ink+l) �9 (IEI 1/1000) and by Lemma 4.1 the sum of the cancellation effect of the others is 

also ~<(IE[I/1000). 1/2 mk§ This completes the proof. 

Proof of  Lemma 3.4. This proof is exactly the same as for the last part of the 

previous proposition. 
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