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1. Introduction 

The concept of uniformly distributed sequences plays a fundamental role in many 

branches of mathematics (ergodic theory, diophantine approximation, numerical inte- 

gration, mathematical statistics, etc.). The object of the theory of Irregularities of 

Distribution is to measure the uniformity (or nonuniformity) of sequences and point 

distributions. For instance: how uniformly can an arbitrary distribution of n points in 

the unit cube be distributed relative to a given family of "nice"  sets (e.g., boxes with 

sides parallel to the coordinate axes, balls, convex sets, etc.)? 

This theory was initiated by the following conjecture of van der Corput. Let 

r z3 ....  } be-an infinite sequence of real numbers in the unit interval U=[0, 1]. 

Given an x in U and a positive integer n, write Z,[r for the number of integersj with 

l<.j<n and 0~<zj<x and put 

D.[~;; xl = Z.[~;xl-n.x. 

Let A,[~] be the supremum of ID,[~; x] t over all numbers x in U. In 1935 van der Corput 

[6] conjectured that A,[~] cannot remain bounded as n tends to infinity. It was proved 

by Mrs T. van Aardenne-Ehrenfest [1] in 1945. Later ,her  beautiful theorem was 

improved and extended in various directions by the work of K. F. Roth and Wolfgang 

M. Schmidt, There is now a vast literature on this subject. We refer the reader to 

Schmidt's book [13]. 

In this paper we continue the research started in Schmidt [11], [12]. We recall one 

of his basic results (Corollary of Theorem A3 in [12]): Let there be given n points 
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z~ ..... z, in the K-dimensional unit cube UX=[O, 1) x. Then there exists a ball A con- 

tained in U x with "error"  

[D[z, .....  z , ;A]l= Z 1-n./~(A) > c , ( K , e ) . n  (x-')/2K(K+2)-e (1.1) 
zjEA 

where /z denotes the K-dimensional Lebesgue measure and el(K, e) is a positive 

absolute constant depending only on the dimension K and e>0. 

In short, this theorem expresses the fact that no point distribution can, relative to 

balls in U K, be too evenly distributed. 

Note that Schmidt's theorem above guarantees the existence of a ball in U K with 

"error" very large as compared to that of boxes in U r with sides parallel to the axes. 

We recall: in 1954 K. F. Roth [9] proved the existence of a box B contained in U K with 

sides parallel to the axes and with "error"  

[D[ zl . . . . .  z,,;B]l = Z 1-n-/~(B) > c2(K).(logn) ~r-')/2. 
zjGB 

In the opposite direction, there is a distribution Wl ..... w. of n points in U K such that 

ID[w, .. . . .  w,; B]I ~< c3(K). (log n) x-1 

for any box B in U x with sides parallel to the axes (van tier Corput-Hammersley-Hal- 

ton sequence, see e.g. Schmidt [13] Theorem 1 E in Chapter I). 

In the last section of his book Schmidt [13] raised the question of understanding 

the fascinating phenomenon that balls have much greater "error"  than boxes with sides 

parallel to the axes. Our aim is to give a partial answer to this question. 

We start with an essential improvement of Schmidt's bound (1.1) (observe that in 

(I.1) the exponent of n tends to zero as K tends to infinity). 

THEOREM 1A. Let  e be a positive real number and ~ be an arbitrary distribution 

o f  n points in UK=[0, 1) K. Then there exists a ball A contained in U x with error 

[D[~;A]I= ~ 1-n .~(A)  >c4(K,e).n I/2-1~K-~. 
xE~NA 

(1.2) 

Here the exponent (1/2-1~2K-e) of n is essentially the best possible. Indeed, using 

probabilistic ideas it is not hard to show that (1.2) is certainly false if we replace the 

exponent by (1/2-1/2K+e) with e>0 (for a quite analogous situation, see the proof of 
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Theorem 2 in Beck [3]). Observe that in (1.2) the exponent o fn  tends to I/2 as K tends 

to infinity. 

To avoid the technical difficulties caused by the requirement "contained in U r ' ' ,  in 

what follows we shall study a new model. 

Let S={%,z2,z3 ... .  } be a completely arbitrary infinite discrete set of points in 

Euclidean K-space R r. Given a compact set A c R  x, write 

~[S;A] = X 1-/~(A) (1.3) 
zj~A 

where/z denotes the K-dimensional Lebesgue measure. Observe that here the normal- 

ization is different from that in the previous results (compare the definitions of the error 

in (1.1) and (1.3)). 

For arbitrary proper orthogonal transformation r of K-space R r, real a E (0, 1] and 

vector v 6 R x set 

A(z, a, v) = {a(rx)+v: x 6A}. 

Clearly A(z, a, v) and A are similar to each other. Let 

Q [ S ; A ]  = s u p  I~[S;A(r, a, v)]l 
I", a ,  V 

and 

f~[A] = inff~[S; A] 
s 

where the supremum is taken over all rotations r, contractions a and translations v, and 

the infimum is extended over all infinite discrete sets ScRr .  

We say that f~[A] is the discrepancy of the family A(z, a, v). We also say, in short, 

that Q[A] is the rotation discrepancy of A. 

Now assume that A is convex. Let aA be the boundary surface of A and r(A) be the 

length of the radius of the largest inscribed ball in A. Let cr denote the (K-1)- 

dimensional surface area. 

The next result (and the remark below) shows that for convex bodies the rotation 

discrepancy is always large and behaves like the square root of the surface area. 

THEOREM 2A. Let  S c R  K be an arbitrary infinite discrete set and A c R  r be a K- 

dimensional compact convex body with r(A)~>l. Then 
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~[S; A] > cs(K)-(o(0A)) I/2, 

i.e., there exist %, a0E(0, 1] and v 0 such that 

[~[S; A(~0, a0, Vo)]l >cs(K)" (o(0A)) In. 

Note that in the particular case K=2 and A="rectangle of size nX2" Theorem 2A 

yields the existence of a tilted rectangle with error of "random size", that is, there is a 
!/2 tilted rectangle A with area(A)-.<2n and with error I~[S;A]l>constant'n 

(Throughout this paper constant stands for positive absolute constants depending 

only on the dimension K.) 

Note that in the proof of Theorem 2 A we shall actually estimate from below the 

quadratic average of the "er ror"  ~[S ;A(r, a, v)]. More precisely, we shall prove that 

f fo'f, lim inf (2M) -K (fi~[S; A(r, a, v)]) 2 dr da dv > cs(K), o(OA), 
M ~  | . ] I - M ,  M) r 

where T is the group of proper orthogonal transformations in R r and dr is the volume 

element of the invariant measure on T, normalized such that j ' rdr= 1. 

We now explain that this stronger L2-norm version of Theorem 2 A is already sharp 

apart from the constant factor. Let ~(!) denote an arbitrary point in the cube 

K 

Q(l)=I-I[li,  li+l) where !=(/1,/2 . . . . .  lx)EzXn[-M,M) ~ 
i=l 

(the parameter M will tend to infinity). Let 

S t = {~(1): I E Z x N [ -M,  M)x}, 

and for any A(r, a, v ) c [ -M,  M) x, let 

By definition, 

.4(r, a, v) = U Q(I). 
I: Q(I)cA(r ,  a ,  v) 

~[St ;A( r ,  a ,  v)] = 0. 

Consequently, we obtain the trivial upper bound 

~[St; A(r, a, v)] ~< card {! E Z x N [ - M ,  M)X: Q(I) N (A(% a, v) \A(~,  a, v)) * ~ } 

< c6(K), a(aA) 
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provided A(r,a,v)=[-M,M) K. Now assume ~(!), IEZXN[-M,M) x are independent 
random variables uniformly distributed in their cubes Q(I). Since the L2-norm of the 

"random error" is roughly the square root of the trivial error (Bessel inequality for 

orthogonal systems), there exists a (2M)X-element set S'(M)c[-M, M) x such that the 

L2-norm of the "error"  of all sets A(r, a, v ) , - [ -M,  M) x is less than constant. (o(0.4)) ~a. 

Using a simple compactness argument we conclude that there exists an infinite discrete 

set S ' ~ R  x such that 

l imsup(2M)-g f folfr(~[S';A(r, ct, v)])2dTdadv<c7(K)'o(OA), 
M~ | J[-M, M) ~ 

as required. 
Essentially the same random construction shows that for a suitable infinite discrete 

set S"cR K the L| t~[S",A] of the errors is less than a sufficiently large constant 

multiple of 

(o(aA)) In. (log o(aA)) v2. 

To prove it, choose M=[diam(A)]+l (integral part) and apply the standard large 
deviation theorem of probability theory. The concrete calculation gives 

sup I ~[Sr A(r, a, v) n [ - M ,  M)x]I < cs(K)" (o(0.4)) v2" (log o(aA)) 1/2 
l r , 0<a~ l ,  v 

with probability I>1/2 (for the details of this argument, see the proof of Theorem 2 in 

Beck [3]). Therefore, there must exist a (2M)g-element set S"(M)c [ - M ,  M) t~ such that 

sup [~[S"(M);A(r, a, v) N [ - M ,  M)x]I < cs(h0" (0(0.4)) v2" (log o(0A)) 1/2. 
z , 0 < a ~ l , v  

Finally, extend S"(M) periodically modulo [ - M , M )  x over the whole K-space R x. We 

obtain an infinite discrete set S"=R x such that 

~2[S",A]= sup [~ 1/2. 
r, 0 < a ~ l ,  v 

Here we used the simple fact that every set A(r, a, v) (rE T, a E(0, 1], v ER K) is the 

disjoint union of not more than 2 tc sets of type 

A(~,a,v)n([-M,M)X+2M.l), IEZ  K. 
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This result indicates that Theorem 2 A is nearly best possible. 

From Theorem 2 A one can immediately obtain results concerning the unit torus. 

Let ~ be a distribution of n points in the unit cube U g. Extend ~ periodically over the 

whole K-space R r modulo U r. That is, let 

3 ~* = {x+l: x E ~, ! E Zr}. 

Given a compact set A c R  ~, write Z[~*;A] for the number of points of ~* in A, and put 

Finally, let 

and 

D*[~;A] = Z[~*;A]-n . l z (A) .  

f l * [~ ;A]=  sup ID*[~;A(z,a,v)][ 
r,0<a~l,v 

f]*[A] = infg)*[~;A] 

where the infimum is taken over all n-element sets ~ c  U r. 

If we rescale the periodic set ~* in ratio n~/K: 1 and apply Theorem 2A then we 

conclude that 

COROLLARY 2B. Let  ~ be an arbitrary distribution o f  n points in the torus U K, and 

let A be a compact convex body in R ~. Suppose that r(A)>~n -ILK. Then 

f~*[~; A] > cg(K)" n 1:2-1r2~ " ( o( OA ) ) 1r2. 

In the particular cases A = " c u b e "  and A ="ba l l " ,  we get respectively Corollay 2 C 

and Corollary 2 D. 

COROLLARY 2C. Let  t} be a positive real number and ~ be an arbitrary distribu- 

tion o f  n points in the torus U K. Then one can f ind a cube A in arbitrary position with 

diameter <~ and with "error" 

[D*[~;A]I > cl0(K)" (n. 6x) v2-v2K. 

We should mention here the pioneering result of Schmidt. For boxes in arbitrary 

position and K=2,3  he proved the slightly weaker lower bound (n.~K) v2-1/2r-~ (see 

Schmidt [12]); for arbitrary K it was hopeless 'to handle the very difficult integral 

equations that arise. 
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For balls Schmidt [12] was able to prove the lower bound (n.6X) 1/2-1/2r-~ for 

arbitrary K. Here we obtain the following slight improvement. 

COROLLARY 2D. Let  t) be a positive real number  and ~ be an arbitrary distribu- 

tion o f  n points in the torus U K. Then one can f ind  a ball A with diameter <<.6 and with 

"error"  

]D*[~;A]I > cl I(K). (n. 6r) lrz-l/2r. 

We note without proof that using the "truncation" technique in the proof of 

Theorem 1 A it is not hard to show the following "contained in U K'' version of 

Corollary 2B: Let ~ be an arbitrary distribution of n points in U r. Let A c R  K be a 

compact convex body of diameter less than one. Further suppose that r(A)>>-n -ILK. 

Then there exist an orthogonal transformation z0, a real a0 E (0, 1] and a vector v0 E R K 

such that A(~0, a0, Vo)=Ao is contained in UK and has "error"  

1 - n  "/z(Ao) [ l/2-1/2K-e i/2 > c l 2 ( K ,  e ) .  n �9 ( o ( a A ) )  . 

x E ~I3A o I 

In-the forthcoming paper II we shall study the (traditional) case when rotation is 

forbidden (i.e., we may only contract and translate). We mention in advance that in this 

case the magnitude of the "error"  depends mainly on the smoothness  of the boundary 

surface aA of the given compact convex body A~-R K. 

The proofs are based on the so-called "Fourier transform method".  As far as I 

know, the first appearance of this method is in Roth [10]. The same basic idea was later 

utilized in Baker [2] and Beck [4], [5]. 

We have learned that in the case K = 2  results similar to our Corollary 2 B, 2 C and 

2D have been proved, independently and about the same time by Montgomery [14]. 

We explain the machinery of the "Fourier transform method" with the following 

simple example. 

THEOREM 3. Let  ~ be a distribution o f  n points in U r. Then one can f ind  a cube A 

in arbitrary position with diameter less than one such that 

xE~nA 1-n . l z (A  n U K) > Cl3(g).n !/2-1/2K. 

Clearly Theorem 3 is an easy consequency of Corollary 2 C, but in the next section 

we give a simple direct proof. 
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2. Illustration of the method 

P r o o f  o f  T h e o r e m  3. The proof is based on an argument to "blow up"  the "trivial 

error" (see (2.10) below). Let 

We introduce two measures. 

For any H ~ - R  x let 

= {z I . . . . .  zn}. 

Zo(H) = ~ 1, 
zjEH 

i.e., Zo denotes the counting measure generated 

~={zl ..... zn}. 
For any Lebesgue measurable H = R  ~ let 

/~o(H) =/~(H n UZ), 

by the given point distribution 

i.e.,/~0 denotes the restriction of the usual K-dimensional Lebesgue measure (volume) 
to the unit cube. 

Given any proper orthogonal transformation r and real r>0, let Z~., denote the 

characteristic function of the rotated cube 

r [ - r ,  r] K = {zx: x E [ - r ,  r]r}. 

Consider now the function 

F,, , = Z r. , * ( d Z o -  n " dlzo) 

where * denotes the convolu t ion  operation. 
More explicitly, 

F,. r(X) = fnxz~.r(x-y) (dZ0(Y)-n. d/z0(y))) 

= card (3an ( r [ - r ,  r ] X + x ) ) - n  ./z((r[-r, r]r+x) n Ur).  

(2.1) 

(2.2) 

In other words, F,.r(x) equals the "error"  of the intersection ( r [ - r ,  d r + x ) n  U r.  Since 
the "error function" F, . ,  has the form of a convolution (see (2.1), it is natural to utilize 

the theory of Four ier  t rans format ion .  We recall some well known facts (see any 

textbook on harmonic analysis). 
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I f f E  L2(R r) then 

f(t) = (2:r) -Kn fnx e-~'t'J~x) dx 

denotes the Fourier transform o f f (he re  i is the square root of minus one and x . t  is the 

standard Euclidean inner product). It is well known that 

( f .  g)^ = f . ~  (2.3) 

and 

fR K If(x)12dx = ln,~ Iflt)12dt (Parseval-Plancherel identity). (2.4) 
f 

Let T be the group of proper orthogonal transformations in R r and dr be the 

volume element of the invariant measure on T, normalized such that frdr= 1. 
Let q be a positive real parameter. Let 

Qo(q)=~f2qfrf,,(F~,,(,,))eaxd~,lr. (2.5) 

By (2.1), (2.3) and (2.4) we have 

Qo(q)=fR,~(~'frLL.r(t)ledrdr).l(aZo-n.a~,o)"(t)leat. (2.6) 

For the sake of brevity, let 

1 2q 
a)q(t) = --~- fq fr[~,,(t)12drdr (2.7) 

and 

f q~(t) = (dZo-n" dtzo)" (t) = (2~) -K/2 Jnxe-t~'t(dZo-n" dlao) (x). 

Thus we can rewrite (2.6) as follows: 

= fR ~ tOq(t)" [q~(t)l 2 dt. flo(q) 

We claim 

%(0 >> if O<q<p t h e n - - - ~  (P)X-luniformlyforalltERX. 

(2.8) 

(2.9) 
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(Throughout this paper the implicit constant in Vinogradov's notation >> is positive 

and depends only on the dimension K.) 

Before verifying (2.9) we explain how it will be used to prove the theorem. As in 

Schmidt [12] we shall apply the following trivial observation: 

if B c U r satisfies 0 < ~ < kt(B) < 1 -___~6, then B 
n n 

has "err~ I 1-n- / z (B)  

a--In-l/K Let ~ - e ~  . Combining (2.10), (2.2) and (2.5) we see 

> 6 .  

(2.10) 

Qo(q) >> 1. (2.11) 

Next let p=~K -~rz. From (2.9), (2.8) and (2.11) it follows that 

f f 
f2o(p) = Jar COp(t). I~(t)l 2 dt >> (nVlC) r-I  Jar toq(t)" I~(t)l 2 dt = n (K- l)/r. f~o(q) >> ni- yr. 

(2.12) 

Therefore, by (2.12), (2.5) and (2.2) we obtain the existence of a cube A in arbitrary 

position such that the diameter of A is less than one and 

I 
E 1 -n -# (A n U ~) [ > >  n i/2-i/2K, 
zjEA I 

which completes the proof of Theorem 3, provided that (2.9) is true. 

It remains to check the assumption (2.9). It needs only elementary estimations. By 

definition, 

3, r(t) = s it) (2.13) 

where X, denotes the characteristic function of the cube [ - r ,  r] x. So it is sufficient to 

study the function ~r(U), u E R K. From the definition it follows via elementary calcula- 

tion that 

r 2sin(r.uj) where u = ( u  I .. . . .  Ulc). 
L(u) = ~ (2~)la.u j 
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Since 

we get 

I sin(r-u) > r  if < 1 ,  lul u 2 r 

l ]2q r(u)12 dr >> /qX_ _ . 1 2 --q j q \  - mm(q,-~-})  if lu,i < 1 ,  lu2l < lq ..... lu~-,I < 1.q 

(2.14) 

A similar calculation shows the validity of the opposite inequality 

<< min {q2X, qX-t Ogq(t) j .  (2.19) 
itl K+t 

Indeed, let ll~>l ..... lx_,~l be arbitrary two-powers, that is, let lj=2 ~, sj>~O, I<~j<~K-1. 
It is easily seen that 

1 fq2q ((K-l_~..) { 1 }}2 
q I~r(U)l 2 dr >><< I-I .min q,-~- 

Lkj=I J ~  

Here [u[ denotes the usual Euclidean length, i.e., [ul=(E~l uf) u2. Let 

q 

and for any t E R r, 

W(I,1, K-1)={rET:r-itEv(1, K-1)}. (2.16) 

Simple calculation shows 

fw dr>>min{1, ( 1  ~x-,~ ( t'l'K-1 ) \ q'~ltl / j. (2.17) 

Combining, (2.13), (2.14), (2.15), (2.16) and (2.17) we conclude that 

~ 2q ~r'(O]2drdrJr ' 

>>(qX-l'min{q,~tl})2"min{1,(1---L-~K-l~ \q ' l t l /  3 (2.18) 

= min {qEg, qX-I ~ 
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if 

[//21 ~lujl< lJ, I<~j<~K-1. 
q q 

Note that here u=(u~ .. . . .  ur), [x] denotes the lower integral part, i.e., the largest integer 

~<x, and the notation f '~><<g means that both f<<g and f>>g. 

Let !=(/I .. . . .  It-O, 

and for any t E R r. 

w(t �88 
It is not hard to see that 

dr >><< H rain 1, . 
(t, I--;D j=l  

q 

Summarizing, we obtain (2.19) as follows 

%(t)=1~ frL~:(t)'2 drdr 
{ :-'} 

<< X "'" X 2(s'+"+s~-')'min q2r, Itl T M  

SI~>0 S~_I;~0 

= ( X 2 _ s t r - l . m i n { q 2 ~ ,  qr-. i.~<<min{q2r, qg-I ) 
\S~0 / It[ r+l J" [t[~+, j 

From (2.18) and (2.19) the desired (2.9) follows immediately. Hence the proof is 

complete. 

3. Proof  o f  Theorem 1 A 

First we renormalize Theorem I A as follows. 

THEOREM 1B. Let e be a positive real number. Let there be given n points z I . . . . .  z n 

in the cube [-M,  M]x where M=�89 I/g. I f  n is sufficiently large depending only on K and 

e, then there exists a ball B contained in [-M,  M] ~ such that 
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I > nl'2-1r  -, 
z~EB I 

We recommend the reader to read first the proof of 

Throughout we assume that n is sufficiently large depending on K and e>0 only. 
For notational convenience let S--{z~ . . . . .  zn} and 

Q(a) = [-a, a] x, a<0 real. 

Let m, O<m<.M=�89 vx be a real parameter. Let 

Win(x) = card {(Ur+x) n a(m) fl S}. 

We need 

LEM~A 3.1. For arbitrary sufficiently large 
M. exp {-(log n)2n}<~mo<~M/2 such that either 

o r  

(i) card (Q(mo) n S} < -~-0" (2m~ 

n there exists a real mo with 

1 
(ii) card {Q(mo)nS ) ~>-~-0 "(2m0)X and with m I = mo/logn we have 

f.x(w.~(x))2 dx > exp (-(log n)2n}" f.x(Wmo(X))2 dx. 

Proof. Let pl=M/2 and pj+l=P~ogn, j>~l. Let 

Wj = fltx (wpflx)) 2 dx, j I> 1. 

We may assume that for every pj>~M, exp {-(logn) 2/3} 

card {Q(pj) N S} ~> ~ 0  (2pj)r. (3.1) 

Indeed, if the opposite case (i) holds, we are done. From (3.1) we obtain via elementary 
estimations that for every pj>~M, exp { -  (log n) 2/3} 
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n ~< (pj)r << Wj ~<n 2 
(2 exp {(log n)2/3}) x 

(3.2) 

(we recall: << is the Vinogradov's notation with positive implicit constants). 

Now suppose, contrary to (ii), that 

Wj+ l ~< exp { - ( l o g  n)2/3} �9 Wy 

Then clearly 

and so by (3.2) 

for all j with l~<j ~< l = (log n) 1/2. 

Wl+ 1 <~ (exp {--(log n)2/3}) t- Wl, 

Wt+ 1 <~ exp {-(log n)7/6} �9 W 1 << ~2" WI ~ 1. (3.3) 

Let n be sufficiently large. Then (3.3) contradicts the second inequality in (3.2), since 

= Pl" (log n) -t = 1 M .  (log n) -l ~> M. exp {-(log n)2/3}. Pl+l 
z ,  

Lemma 3.1 follows. 

If alternative (i) of Lemma 3.1 is true, then we are immediately done. Indeed, the 

cube Q(mo) contains less than I0 % of the expected of the points zj, and by a standard 

averaging argument we get the existence of a ball B contained in Q(mo) with radius 

mo/K such that Ez:BI<~(B ). Thus B is certainly contained in Q(M)=[-M,  M] r and has 

a huge "error"  

E 1-/~(B) 
zjEB 

1 
I> -~-/z(B) >> (too) K >I (M. exp ( - ( log  n)~'3}) K 

1 r 
=n.(-~-exp{-(logn)2/3}) >~n 1-~. 

3.1. 
Therefore, from now on we may assume the validity of alternative (ii) of Lemma 

We introduce two measures. For any H e R  Ic let 

Z0(H) = card (S n H N Q(mo)) 

where m0 is defined to satisfy property (ii) in Lemma 3.1 (We recall: S= (zl .. . . .  z,}.) 

For any Lebesgue measurable H c R  x let 

/% (H) =/z(H fl Q(mo)). 
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Let Xr denote the characteristic function of the ball 

B(O,r)= x = ( x  I . . . . .  XK) E Rx: 2 ~ < r  2 
j = l  

centered at the origin and having radius r. The parameter r will be specified later. 

Consider the function 

Fr = Zr  ")(- ( dZo- dtto) 

where * denotes the convolution operation. More explicitly, 

Fr(x ) = fR,,Zr(X--y) (dZo-dlZo) (Y) 

= card (S n B(x, r) N Q(mo))-/~(B(x, r) N Q(mo)), 

(3.4) 

(3.5) 

where B(x, r) denotes the translate B(0, r)+x of B(0, r). 

Let 

~ E(x) = exp (-Ixl z, (ml) -2} (3.6) 

where Ix[ =(E~ lX]) 1/2 denotes the usual Euclidean distance and =m0/log n. 

Consider now the following "truncated" version of Fr: 

G r = E. F,. (3.7) 

Clearly Gr(x) is a good approximation of the "error function" 

0 Z 1-/.t(B(x, r)) ifB(x,r)cQ(M) 
E B(x, r) 

otherwise, 

since the "weight" E(x) is extremely small whenever (B(x, r) is not contained in Q(mo) 
(we mention in advance that r<m0/2). In order to estimate the quadratic average of Gr(x) 

we shall employ the theory of Fourier transformation. Besides identities (2.3) and (2.4) 

we need (see any textbook on harmonic analysis) 

( f . g ) " = f . ~  (f, g E L2(R/()). (3.8) 

By Parseval-Plancherel identity (2.4) 

fRK(Gr(X))2dX= fRK'Gr(t)12dt" 
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On combining (2.3), (3.4), (3.7) and (3.8), we conclude that 

G, = E - ~  Fr = E *  ( z r ' f dZo-d l~o )" ) .  (3.9)  

Unfortunately, ~ ,  has a rather difficult form, so we introduce the following auxiliary 

function 

Hr = X, * (E" (dZo-d#o)),  (3.10) 

that is, 
f 

H , ( x )  = J~ Xr(x-y) (E(y)'dZofy)-efy)'d~ofy)) 

= ~ E ( z j ) - f  E(y)dy .  
z~ ~ B(x, r) n Qfm 0) JB( x, r) n Q(m 0 

From (3.10), (2.3) and (3.8) we obtain 

f lr = i ,"  ( E * ( d Z o -  dl~o) " ) . 

For the sake of brevity, let 

q~ = (dZo-dl~o)" and ~o = E-~ (dZo-dp~)"  = F. * q~. 

Then, by (3.9), (3.10), (3.12) and (3.13) 

( ~ = / ~ - x - ( ~ . ~ p )  and  H ~ = ~ . ~ 0 ,  

and we see that 

/ -It ( t ) -  (~(t )  = fa" (~ ~ ( t ) -~  ~(t - u)) .  qo(t - u)- E(u)  du .  

(3.11) 

(3.12) 

(3.13) 

(3.14) 

i f f ( x )  = e -a2x~cz then f ( t )  = le-r  (3.16) 
a 

An outline of the proof of Theorem 1 B is as follows. Since Hr has the form of a 

simple product (i.e./tr=:~r �9 ~p), it is not hard to prove that the L2-norm of Hr is "large".  

Moreover, we shall show that the difference Hr-Gr  is "predominantly small". Combin- 

ing these arguments, we shall obtain a good lower bound to the L2-norm of f~r, or by 

Parseval-Plancherel identity, to the L2-norm of the "truncated error function" Gr(x). 

We start with the investigation of the difference ~,(t)-(~,(t). Using the following 
well-known result: 

(3.15) 
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by (3.6) we have 

Clearly 

/~(u) = (ml)g 
2g/2 exp {--[u12"(ml)2/4}. (3.17) 

I~<t)l ~ t<d~~176 <t)m ~ - - - ~  Y I ~ffi~ e-~: < 2 :  L , +~ ~,~ d x t ~ '  

and since the parameter r will be less than M, 

ILl, I [~,(t) I = (2sr)K n e ,x tdx ~< .~(B(0, r)) ~< n. 
(o, ,) (2x) gn 

Let 6o=(logn)/m~. Then by (3.17) 

RK~(r E ( u )  d e  ~ n -2 , 

Using these upper estimates to (3.15) we see that 

':I'(t)-~ (~'(t)-xr(t - u)) ~(t - u) "E(u) du + c'4(K) 
�9 ( 3 . 1 8 )  

~< max Lfr(t)-~'(t-u)[" f ~ "  r Q('~0) 60) 9(t-u)"/~(u) du I +c'4(K)" 

We are going to study the Fourier transform of the characteristic function of the 

ball ~,(s), s 6 R g. For the sake of brevity, let s = Is I. By definition 

(2~) -g/2 [ e-iX's.x,.(x ) dx = (2x) -Ic/2 ~ e -ix', dx ;~,(s) 
JR K JB(0, r) 

f_ = c15(K) e-OS. (r2_y2)(g-l)n dy (3.19) 
r /' -- c15(K).r ~. cos(s.r.h).(1-h2)~g-I)n dh. 

1 

The classical Bessel-function J,(x) (see e.g. in [81 p. 241) has the following integral 

representation (Poisson's integral) 

j r (x)= 1 ( x ~ r . ~ ' c o s ( x . h ) . ( l _ h 2 ) v - t / 2 d h ( v > _ l l  ( 3 . 2 0 ,  
~1/2.r(v+�89 \ 2 / J_~ 

2-878282 Acta Mathematica 159. Imprim6 le 25 aofit 1987 
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Hence, by (3.19) and (3.20) 

~r(S) = C,6(K).(r)K/2jK/2(r's ). (3.21) 

By Hankel's asymptotic expansion (see [8] p. 133) 

&(x) = \ - ~ x /  " 

where the implicit constant in the O-notation depends only on v. 
Therefore, by (3.21) and (3.22) 

r(g-DI2 [ r(g-3)/2 \ 
)~r(S) = C17(K)" s(g+l--------~.cos(r.s-(K+ l ) : r / 4 ) + O ~ ) .  (3.23) 

Here and in what follows the implicit constants in the O-notation depend only on the 
dimension K. 

Combining (3.18) and (3.23) we obtain via elementary estimates 

[~ /r\(r+l)t2 rig-3)/2\ fQ r +O(1) (3.24) 
]/-It(t)- (~r(t)[ << ~00" ~t) + ~ ) "  (~o) 

whenever r.t>>.l (here t=]tl). Since 6o=(logn)/ml, by (3.17) we have 

/~(u) << (60) -r- (log n) r for u E Q(6o). 

Consequently, 

fQt6o) ~o(t--u)'/~(u)du << (log n) r" (26o) -r" fQ( o ~o(t-u)du (3.25) 

By Cauchy-Schwarz inequality 
) 112 

(260)-K ~ ~0(t-u) du ~< I(2Oo)-g~ ,q~(t-u)12du~ . (3.26) 
JQ(~o) / JQt~o) 

Using the elementary inequality (a+b)2<~2a2+2b 2, a and b reals, (3.24), (3.25) and 
(3.26) we see 

[ 2 /r\r+! rr-3\ n)Eg.(26o)-r.f [H,(t)- (~,(t)[2 << ~(~o) �9 I t  ) + - ~ )  "(log . JQ<Oo) I~0( t -u)  l 'du 

(3.27) 

+O(1) whenever r . t ~  > 1. 
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Let q, 0<q<�89 0. (log n) -3 be a real parameter to be fixed later. Let TcR  K be a 

Lebesgue measurable set such that the usual Euclidean distance of the origin 0 E R 1r and 

T is greater than 1/q (note that in this section we do not use the group of proper 

orthogonal transformations, so this notation cannot cause any confusion). 

Using the general inequality aE>~�89 2, a and b reals, (3.14) and (3.27) we 

have 

fq2q (fTlP.r(t)12dt)dr>>.~2q (f ]s162 (t)12dt)dr:f~ (fTl~,(t)_r 
>~l l { f2q[~,(t)i2dr).,v;(t)i2dt 

2 .Jr \.~q (3.28) 
12q I' l ( [  2/r \K+I rr-3\ 

-const. I I | { / (6o ) / -J  +--~-~|'(logn)2K(26o) -~c Jq \./rt\ \t/ r" / 
x fo.(~o l~(t-u)12du } dt dr-c~ ffq ( frdt) dr" 

Note that by definition r.t>-q.inft~rltl>l, and const stands for positive absolute 

constants depending only on the dimension K. 

Next we need two lemmas concerning ~0(t) and ~p(t). We recall: 

Wm(X ) = card {(UX+x) n Q(m) NS}, S = {z I ..... zn} 

and m I = mo/log n .  

LEMMA 3.2A. fQOOO) I~~ {Wml(X)}2dx" 

For any real b, 0<b<200, let 

D/,(x) = card {(Q(-~)+x)f)Q(m0)N S} 'g ( (Q(b)+X)N Q(mo) ) . (3.29) 

Moreover, let 

Ab(x) = ~ ]  E(x-  zj)- l E<x-y) d/zo(y). (3.30) 
zjE (Q(l/b)+ x) Cl Q(m~) O Q( llb)+ x 

LEMMA 3.3. For any 0<b~<200 

(i) ~ {Db(X) } 2. dx 
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and 

(ii) f~,v,(o,~a,<<f,, {,,,(.,,,~.(~)%.,. 

We postpone the proof of these lemmas to the end of this section. 
Combining Lemma 3.1 (ii) and Lemma 3.2 A we get 

fQ(,oo) [~O(t)'2 dt >> f.x { Wm, (X) } 2 dx > exp {-(l~ n)~3} " f.x { wmo(x) ) 2 dx" 

By Lemma 3.1 (ii) we see 

f., {Wmo(X)} 2dx >~ f., W,.o(X) dx = card ( Q(mo) n S} >-~O "(2mo)X. 

Clearly 

(3.31) 

(3.32) 

from (3.32), (3.33) and (3.34) it follows that 

fR (w.(x))2dx>> f.  (D2oo(x)) 2dx. 

Combining (3.31), (3.35) and Lemma 3.3 (i) we obtain 

fQ(loo) [~0(t)12dt >> exp {-(log n)Z~ �9 Iq~(t)12dt" 

Moreover, from (3.31) and (3.32) we have 

f~loo) [7~(t)12dt >> {-OOg n)2/3} �9 (mo) x. exp 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Since 

Wmo(i)+/~o(Q(-~-~ )+ x  ) ~> [D200(x)[ 

where x=(xl-2,t x2_12, .... xx-�89 x=(x I ..... Xx), therefore, using the general inequality 

(a+b)2~202+2b2, we see 

2fRx(Wmo(X))2dx+2fsx(go(Q(-~)+x))2dx~fsx{D2oo(X))2dx. (3.33) 
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Now let r/>0 be arbitrarily small but fixed. We distinguish two cases (I) and (II). 

(I) fQ i~o(t)12dt < 1 ( I~P(t)12dt where a o = n~.(mo) -l. 
(%) 2 JQ(100) 

Then by (3.36) 

fQ~lOO)\Q(ao) ]W(t)12dt >> exp { -( log n )  2/3 } " ~O(200)Iqo(t)12dt" (3.38) 

From (3.38) it follows that there exists a real bo with ao~<bo<~50 such that 

fro l P(t)12dt >> I fo I~0(t)12dt where 
log n (lO0)\Q(a0) 

Let q=m o. n-~/2=n~/2.1. Then clearly 
a o 

T o = Q(2bo)\Q(bo). (3.39) 

inf Itl = bo ~> ao > I ,  
tero q 

i.e., the Euclidean distance of the origin 0ER r and To is greater than 1/q. By (3.28) 

fq2q(fTo,Gr(t)12dt)dr>~ll(fq2qL~r(t)12dr)'lff.)(t)12dt 
2 ar ~ 

_const.q.I(6o)2. { q ~K+l qX-3" I \--~0] + b o - ~  "(lOg n)2K (3.40) 
K 

Since 

6 o = (log n)/m I = (log n)2[mo <~ (log n) 2. (�89 1Ix exp {-(log n)2/3}) -I ~< 100, 

we have 

fro{ (26o)-~c f~o lqa(t-u)12du} dt ~ f~zoo) lqa(t)12dt. (3.41) 

Furthermore, by (3.23) 

fq 
2q K-  1 

inf L~,(t)12dr >> q" bo~+l" 
tET o 

(3.42) 
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We recall: q=mo" n -~/2, 50>~bo>~ao=n ~" (mo)-land 6o=(log n)2" (too) -1 . Combining (3.40), 

(3.41) and (3.42), via elementary calculations we have (n is sufficiently large) 

fq~ ( frolG,(t)12dt) dr >-const" b~To+~" frol~P(t)'2dt-n-~" qr b0 r+~" f ,2oo, Iqg(t) 12dt- O(q). 
(3.43) 

From (3.43), (3.39) and (3.38) it follows that 

fq2q(frol~,(t)12dt)dr>>(1-O(n-"/4)), q-~+l.~bo -/r0 Iw(t)12dt-O(q). (3.44) 

By hypothesis (I), (3.37) and (3.39) we get 

fro lW(t)12dt >> 1 {_(log n)2/3} �9 (mo) r. (3.45) . exp  
log n 

By (3.44) and (3.45) we see 

Ig~,(t)12at dr>>~o+l.(mo)X-~rZ>>qX. >>q-(m0) 2r-l-E. (3.46) 

Now we are in the position to complete case (I). By Parseval-Plancherel identity 

(2.4) and (3.46) 

fq2~ (f. (G,(x))2dx) dr= f2~ (f. lG,(t)12dt) dr 
(3.47) 

>~ fq2q ( frolG,(t)12dt) dr >> q'(mo)2X-l-~. 

We recall: G r = E . F  r where 

and 

Clearly 

E(x) = exp {-Ixl2.(ml)-2}, ml = mo/logn 

Fr(x) = card {S fiB(x, r) Iq Q(mo)}-/t(B(x, r) fl Q(mo)). 

E(x) ~< n -c~176 whenever q<~r<~2q 
and B(x, r) = {y E Rx: Ix-yl <~ r} r Q(m o) (3.48) 
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Now from (3.47) and (3.48) we obtain the existence of a ball B(xo, r 0) such that B(xo, to) is 

contained in Q(mo)cQ(M), q<~ro<.2q and 

],jentx,~z.rol-~(B(xo, ro))>>(mo) K-'-~. 

Since mo~�89 ira. exp {-(log n)2/3}, we conclude that 

~ 1-/~(B(xo, ro)) > n 1/2-1r2~-~ 
zj E B(xo, ro) 

if n is sufficiently large depending only on K and e>0. This completes case (I). 

(II) fQ(aO ]~P(t)12dt~> 1 aQ(lOo) f '~P(t)12dt where ao=n~.(mo) -1. 

This is the simpler case. From (3.37) and Lemma 3.3 (ii) we obtain 

>> exp {-(log n)~3} �9 (2too) K. 
(3.49) 

From (3.49) standard averaging arguments yield that either 

(111) there is a vector x lER x such that the translate Q(1/ao)+xl of the cube 

Q(1/ao) is contained in Q(mo) and IAao(x)l>> exp {-�89 n)2/3} �9 (2/a0) r,  

o r  

(112) there is another vector X 2 E R K such that Q(1/ao)+X2 is not contained in Q(mo) 
but [A=o(X2)[>4" (2/ao) K. 

Since by (3.6) 

1 ~>E(y)~> 1-const  (l~ 
n21/ 

whenever 

elementary calculations give (see (3.29) and (3.30)) 

f > > e x p { _ l ( l o g  2 r 
,Dao(Xy)]~IIAao(Xj)II>~(2)K n)2/3}" (~00) 

for j =  1, case (11 I) 

for j = 2, case (IIz). 
(3.50) 
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If alternative (111) holds then let Ao=Q(l/ao)+Xl; if alternative (112) holds then let Ao be 

a translate of Q(1/ao) such that (Q(1/ao)+x2)n Q(mo)=AocQ(mo). In the latter case by 
(3.50) and (3.29) 

card ( ( Q(1)  + x2 ) n Q(mo) fl S ) >~ 'D % (x2)l ~ 2 " ( 2 ) r = 21u(Ao), 

and so 

Consequently, we have 

1 ~ 2 ./~(Ao). 
zjEAo 

I ~o 1-/z(Ao) { >> exp ( - 1  (log n)2/3} ./~(A0) 

~(Ad 

in case OI l ) 

in case (II2). 
(3.51) 

Now using (3.51) one can complete case (II) as follows. Let r=m.n-2~=(1/ao).n -~. 
Again we distinguish two cases (a) and (13). 

(a) E,j~A01-/~(A0)>0 in (3.51). Then by a standard averaging argument we con- 

elude that either 

o r  

(am) there is a ball B(x3, r) contained in AocA(rno) with 

X l-lu(B(x3,r))>c~ 1-/~(Ao))' 
zjEB(x3,r) \ z j E A  0 

(~2) there is another ball B(x4, r) such that 

B(x4, r) Iq Q(mo) * f~ and X 1 > 2./~(B(x 4, r)). 
=s E B(x 4 , r) n Q(m o) 

In the case (a2), since 2r<mo<.�89 we have that B(x4, r)cQ(M) and 

X I-/z(B(x 4, r)) >/~(B(x4, r)). 
Zj E B(x 4, r) 

Summarizing, there exists a ball BcQ(M)=[-M,M] r of radius 

�89 2/3}-n -2r/ such that the "error"  E=jeB1-/~(B) is 

n ~-' if r/>0 is sufficiently small depending only on e>0 and K. 

r= /T /O  �9 n - 2 r / ~  

greater than 
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(~)/t(A0)--EzjeA ~ 1>0 in (3.51). Then there is only one alternative: one can find a 

ball B(xs, r) contained in A0 with 

/z(B(xs,r))- ~ l>const'n-X~'(#(Ao)- ~ l)  �9 
zj~B(xs, r) \ zj~A0 

This completes case (II). 

It remains to prove Lemma 3.2A and Lemma 3.3. For later application we prove 

the following slight generalization of Lemma 3.2A. 

LEMMA 3.2B. Let ~00---( p and V/l=V 2. Then 

fe,,oo lt~ dt>> f,, {wm,(x))2 dx, i=O, 1. 

Proof of Lemma 3.2B. Let 

x (2sin(bxj)) 2 
f(x) = ~.=lI-I (2~)1/2xj 

where the real parameter b>0 will be fixed later. From the general identity (3.8) we see 

that the Fourier transform, f of f equals the convolution of the characteristic function of 

the cube Q(b)=[-b, b] x with itself, i.e., 

K 

f(t) = (X~b) -X- Ze(b)) (t) = I-'[ (2b-lt~l)+ 
j=l 

where (y)+=y if y>0 and 0 otherwise. 

Let E0(x)----1 and El(x)=E(x). Then from (2.3) we obtain that the Fourier transform 
of the convolution 

gi(x) = raft(x--y) (E~y)'dZo(Y)-Ei(Y)'dlzo(y)) 

equals f .  ~i, i=0, 1 (see also (3.8) and (3.13)). By Parseval-Plancherel identity (2.4), for 
i=0,1 

fR, g~(x) dx = fn,J /(t)lZ " lw /t)12 dt 
(3.52) 

= fa,~(~ (2b-ltjl) + )2" lw/t)le dt <- (2b)2r" fo,zb) lW/t)le dt. 
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On the other hand, an elementary calculation shows that if b is sufficiently large, b=50 
say, then 

j~x-zj) "EI(zJ)--I-J'(x-Y)JR dy > cls(K) > 0 

(3.53) 

whenever zjE(Q(1)+x)NQ(mi), i = 0 ,  I. 

Therefore, using the fact thatflx) is a positive function (i.e., a Fefir kernel), with (3.53) 

we get (i=0, 1) 

JnJ(x-y) (Ei(Y).dZofY)-E,(y). d/zofy)) Ig,(x) l 

- ~  Zf(x-zj).Ei(zj)- x-y) Ei(Y)dgofY) >c,s(K)'S,(x) 
jffil 

(3.54) 

where S,(x) denotes the number of points zj which lie in (Q(1/50)+x) N Q(mi) (note that 

b=50). 
It is easy to see that (i=0, 1) 

fR (S,(x))2 dx>> fR, (Wm,(X))2 dx. (3.55) 

Combining (3.52), (3.54) and (3.55) Lemma 3.2B follows. 

Proof of Lemma 3.3. We prove only (i). The proof of (ii) goes along exactly the 

same lines as that of (i). 

Let h(x) denote the characteristic function of the cube Q(1/b). Then 

It is easily seen that 

x 2 sin (x/b) 
/~(t) = ]7" . 

(2:~)1/2.xj 

Y~b) Iq~(t)12 dt << b 2K" Ja r Ih'(t)l 2" Iqg(t)l 2 dt .  
f 

By (2.3) and (2.4) 

fR lK(t)12" l~o(t)12 dt = fRK ( f~ h(x-y) (dZo-d#o) (Y) )2 dx. 

(3.56) 

(3.57) 
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Observe that (see (3.29)) 

Db(X) = ~ h(x-y)  (dZo-dlao) (y). (3 J58) 
JR K 

Combining (3.56), (3.57) and (3.58) we conclude that 

fQ~b)lcp(t)12 dt << b2K" fR (Db(x))2 dx, 

as required. Thus the proof of Theorem 1B is complete. Theorem 1A, being equivalent 

to Theorem 1B, follows immediately. 

4. Proof of Theorem 2A 

For notational convenience let Q(a) denote the cube [ - a ,  a] r, a>0  real. 

Let M>0 be a parameter to be fixed later. 

We recall: S={zl, z2, z3 ....  ) is the given infinite discrete subset of R/~. 

We introduce two measures. For any EcR x let 

Z0(E) = card (S A E A Q(M)), 

i.e., Z0 denotes the counting measure generated by the discrete set S fl Q(M). 

For any Lebesgue measurable set EcR r let 

/~0(E) =/z(E A Q(M)), 

i.e.,/z 0 denotes the restriction of the usual K-dimensional volume to the cube Q(M). 

Let Z~, a denote the characteristic function of the set 

A(r, a, 0) = (a(rx): x'EA), 

where A is the given compact convex body, r is a proper orthogonal transformation and 

aE(0,  1] is a real number. 

Consider now the function 

F~, ~ = Zr, ~ • (dZo-d/zo) (4.1) 

where * denotes the convolution operation. More explicitly, 

F,. ~(x) = JRr)Cr" a(x-y)(dZo-d/uo) (y) 

= card (S hA(r, a, x) fl Q(M))-~(A(r, a, x) A Q(M)), (4.2) 
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where A(r, a, x)=A(r, a, 0)+x is the translate of A(r, a, 0). Therefore, 

if A(r, a, x) c Q(M) then F~,a(x) = ~ 1-/z(A(r, a, x)). (4.3) 
zj E A(r, a, x) 

By the Parseval-Plancherel identity (2.4) 

f~, (F~,~(x))2 dx = fR lP~,~(t)12 dt (4.4) 

where P~,~ denotes the Fourier transform of F~,~. By (2.3) and (4.1) 

P,, a = (g,~, a -->6 (dZo-dlto)) ̂  = )~,, a" (dZo-d/ao)", (4.5) 

and so by (4.4) 

frfolfRx(F~,~(x))Edxdadr=fnx(frfo'L~.a(t),2dadr).l(dZo-dlZo)^(t)[2dt (4.6) 

where T is the group of proper orthogonal transformations in R r and dr is the volume 

element of the invariant measure on T, normalized such that f r  dr= 1. 

We mention in advance that M~>100.diam(A) where diam stands for diameter. 

Thus we may assume that 

-(2M)r< card fl < 2" (2M) r. (4.7) (s Q(~O 

Indeed, in the opposite case we are immediately done via standard averaging argu- 

ments. 

In what follows we shall employ both the >> notation and the O-notation, with 

constants which may depend on the dimension K only. 

Let q0 = (dZo-dtzo) ̂ . We need 

LEMMA 4.1. fQ(100)I~(t) l  2 at >> M r. 

Proof. Comparing the definitions of the measures Z o and/z 0 in Sections 3 and 4, we 

see that parameter M in Section 4 plays the same role as that of parameter m0 in Section 

3. Thus by Lemma 3.2B with i=O we have 

fQooo)'qg(t)12 at >> fax (w~x))2 dx 
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where wM(x)=card ((UX+x) N Q(M) N S). Moreover, by (4.7) 

fR, (W~x))i dx >~ fra,(w~x))dx = card(Q(M)ns) > l'(2M)X. 

Summarizing, 

fQ(,Oo) [cp(t)12 dt >> l "  ( 2M)x, 

which proves Lemma 4.1. 

Clearly (see also (4.7)) 

= (2.7 0 -x/2. f x  e-i"t. (dZo_ duo) (x) I~0(t) l 
JR 

(4.8) 

~< (2~) -~e. (card (Q(M) n S)+~(Q(M))} << M ~. 

Therefore, if c,9(K) is a sufficiently small positive constant, with Lemma 4.1 and (4.8) 

we obtain 

fQ(c,9(ho/ ,q~(t),2 dt < l f~,oo) lCP(t),2 dt. (4.9) 

From Lemma 4.1 and (4.9) it follows that there is an integer m satisfying l~<m~< 

O(log M) such that 

I~(t)l 2dt>> 2 where Qm=Q(200.2-m)\Q(100.2-m). (4.10) 
m 

Here is the outline of the proof of Theorem 2A. By (4.6) and (4.10) it suffices to 

give a suitable lower bound to 

tiQnf fol fT[~,,a(t)[2drda. (4 .11 ,  

Obviously 

~ ,  a(t) = a r .~A(~'-l(at)) 

where XA denotes the characteristic function of A~-R K and ~-~ is the inverse rotation. 

Let G(x), x E R K be a function satisfying 
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I ~ 0 ,  

[G(t)] ~2,  
L=O, 

for t E Q(~. 2 -m) 
for t E Q = Q(100.2 -m. K-U2)\Q(c5 �9 2- ' )  

for t ~ Q(100-2-'.  K -1/2) 

where 6>0 is a sufficiently small constant depending only on K. Then for every t* E Q" 
(we recall: Q=Q(100- 2 -m. K - v 2 ) \ Q ( 6  �9 2- ' ) )  

s f = a 2K- (O(B(0, alt*l)))-l" ~A(t)l 2 do(t) da  
JIt]=alt*l 

- 1 llt*l Y 2 r ,  t*, , / fit ( ] ~ ]  �9 (O(B(0, y)))-' ~,( t )12do( t )dy  
.10 I=y 

_ 1 Io :ltl 2  
It*] .o(o, I,'1) \ It*l ] "(o(B(0, Itl)))-" L~A(t)[ 2 d t  

\ It*l/ (o(B(O, ItD)) -!" L~A(t)l 2 at 

> >  (/z(Q))- '  �9 fe ~ L~A(t)I 2 d t  

>> (u(Q')) -l .  fl~ L~A(t)I2" ]G(t)] 2 dt, 

where a denotes the (K-1)-dimensional surface area and B(0, r) is the ball {xERX: 
Ix)~r}. 

Choosingf=xA-x-G, by (2.3) and (2.4) we have 

x,:,,-,)G(,)ay)2a,,. 
Therefore, in order to give a lower bound to (4.11), it suffices to investigate the right- 
hand term of the last equality. 

We shall construct the desired function G in the form of a difference G = h - H .  The 
functions h and H will satisfy the following properties: 
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(ii) both functions h and H are "predominantly" positive. 
Let r(h) be the smallest radius such that 

fB h(y) dy 
99 

(0, r(h)) 100 ' 

and similarly, let r(H) be the smallest radius such that 

fn 99 
(0,,~H))H(y) dy >~ I0--O-" 

We also need the following property: 

(iii) r(H) is "much smaller" than r(h). In other words, the integral ofH(y), y E R K is 
"essentially concentrated" on a much smaller ball centered at the origin than that of 
h(y), y E R x. 

The geometric heuristics of the proof is as follows. Assume x0 EA, and further that 
the Euclidean distance of x~ and the boundary aA of A is in the interval [r(H), 2r(H)]. 

Since the ball B(xo, r(H))={x0-y: [yl~<r(H)} is contained in A, it is expected that 

fR ZA(x0--y) H(y) dy 
9 

K 10 

(note that H(z) is not necessarily positive everywhere on the set {x0-z:zEA }, but 

"predominantly" positive). O n ~ e  other hand, the intersection B(x0, r(h))NA forms, 
roughly speaking, a half-ball, so it is rightly expected that the integral 

flit XA(X0--y) h~) dy 

is also about the half of the integral 

fB h(y) dy = 9___9_9 
co, ,(h)) 1 O0 ' 

i.e. about �89 Summarizing, for these values of x0 we expect that the integral 

I f. ZA('--Y)'G(y)dyI = f.ZA('--Y)(H--h)(y)dy 

is greater than a positive absolute constant, which implies the desired lower bound to 
(4.11). 
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After the heuristics we give the explicit form of h and H. Let 

h(x)= 1 f f i  2sin(elxj) ~ ~ f i  2sin(e2x,) ~ (4.12) 

and 

H(x)= (2e3)K.{jffi~ 2sin(e3xj) ~ 2sin(e4xj) ~ 1 i~J'(j=l-~l "~-)~J' xERr (4.13) 

where 0<e l<e2<e<e4  and e2-el=e4-e3 . These four parameters ei, 1~<i~<4 will be 

specified later. 
For later application we list the basic properties of h and H (see (4.18), (4.19), 

(4.22)-(4.29), (4.31) and (4.32) below). 

Since 

2 sin (bx) ~ ̂  
"-~)1-~. ~ : = X[-b,b](t) (4.14) 

where xt_b,b] denotes the characteristic function of the interval [ -b ,  b], by (3.8) we 

have 
K 

]~(t) - 1 I-[ (X[_q, q] _x_ X[_~2, Eel) (tj) (4.15) 
(2e0 x j=i 

and 
K 

H(t) 1 (4.16) 

where * denotes the convolution operation (note that h and H are de la Vallee Poussin 

type kernels). 

If 0<a<b  then obviously 

lEa  forltl<.b-a 
(Zt-a, ~] ->e Zt-b bl) (t) = /--- < 2a for b-a <<. It[ ~ b+a. (4.17) 

' l 0  for Itl I> b+a. 

Combining (4.15), (4.16) and (4.17) we see 

i for tE Q(e4-e 3) = Q(e2-e l) 
I(h- tt)l-- 2 for tEQ(e3+e4)\Q(e4-e3). 

for t ~ Q(e3+e4). 
(4.18) 



IRREGULARITIES OF DISTRIBUTION. I 33 

Let e3 and e4 be defined by the equations 

M o r e o v e r ,  l e t  E 2 ~ . E 4 ,  Ei~-E2--~.E4m(1--~)E2J" (4.19) 

Here the parameter c~>4 will be specified later as a sufficiently large absolute constant 

depending only on K. Observe that e2-el=e4-e3. 
Choosing f=xA*(h-H), by Parseval-Plancherel identity (2.4) we have 

f..(f, zA(x-y).(h- (y)dy)2dx=f. L A(t)12.1( - (t)12dt (4.20) 

where ZA denotes the characteristic function of the given convex body A. By (4.18) we 
obtain 

fRr l~A(t)12"l(~--I~l)(t)12 dt~<2 �9 f ~A(t)] 2 dt. (4.21) 
J Q(E3 +e4)~Q(e 4-e 3) 

In order to give a lower bound to the right-hand term of (4.21) (and via this to (4.11)), it 

suffices to investigate the left-hand term of (4.20). 

Using the well known general identity (see any textbook on harmonic analysis) 

f.,/(x).g(x)dx=f.,/h).~(t)dt (f, g E L2(RK)), 

from (4.12), (4.13) and (4.14) we get 

f h(y)dy=f. 1 .ZQ(Eg(t) dt = 1, (4.22) �9 (2el)r'X ~,)(t) 

and 

fRH(y)dy=fnK K(2~3) K'ZQ%)(t)ZQ<,4)(t)dt=I" (4.23) 

Besides (4.18), (4.22) and (4.23) we shall also use the following properties of h(y) and 

H(y): if the parameter c is sufficiently large, then, roughly speaking, both functions h 

and H are positive "nearly everywhere",  and the integral fs,~H(y) dy of H is "essen- 

tially supported" by a much smaller ball centered at the origin than that of h. More 

explicitly, using (4.12), (4.13) and (4.19), via elementary estimates we obtain 

3-878282 Acta Mathematica 159. Imprim~ le 25 aofit 1987 
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if 

if 

if 

-~2 then h(y) is positive and h(y)>> (e2) x, 

yEQ(-~4 ) then H(y)is  positive and H(y)>>(e4) x, 

yEi ~ li-t, lj+�89 where i= (l ! ..... lx)EZ K 
j=l e2 e2 J 

if 

K 
then Ih(y)l << (e2) x" l--[ 1 

j=1 (1 +l/il) ~' 

l y ~ l - I  - 11+' where ~ = ( / ,  . . . . .  / K ) ~ Z  '~ 
i=1 L e4 e4 J 

K 
then IH(y)l << (e4) r'I-[ 1 

j=, (1+11il) 2. 

For notational convenience let 

Q(-~e;l)=ffI[.lY-�89 lJ+--�89 
1=1 [. ei e i _] 

! = (It, ..., IK) E Z x, i =  1, ...,4. 

Using (4.26) we have for any fl~> 1, 

g\Q(fllez) zK: ; I) I E ZK: 
max I/il>~B- �89 max I/jl~>/~- �89 

1 <~j<~K 1 < ~ K  

\ltl<a-�89 

K 

17 ' i=, (1+11il) 2 

< < Z  1 1 - - < < - - .  
tcz: (1+111) 2 fl 

14->.-~ 

Repeating the same argument we get 

fRX, Qq3/~4) 'H(y)' dY << ~ for every real fl~> I. 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
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We need the following elementary observation: 

if 0 < a < b  and s in~.x)-s in(bx)<0 then Isin(ax).sin(bx)l<<-l(b-a)2"x 2. 

(4.30) 

Indeed, then for some d, a<d<b, sin(dx)=0, and so we have that 

Isin (ax). sin (bx)l = [sin ((d-a) x). sin ((b-d) x)l <<- (d-a)  (b-d).  x z ~ 1 (b a)  2- x 2 . 

Let yE Q(1/2e2;l) where !=(ll . . . . .  /K) EZ r with I/jl c+�89 l<~j <~K. If  h(y)<O, then 

for some index v, l<<.v<~K, sin (el "y~)" sin (e2"y~)<0 (see (4.12)). Therefore,  by (4.12), 

(4.19) and (4.30) we obtain that 

I sin (el'y~)" sin(e 2 - y ~ ) l  
I(h(y))-I <<  

EI'Yv" e2"Yv 

K 

(e2)g" H 1 
j=l (1 + I/jl) 2 
j*v  

1 ( e 2 - e l )  2 (e2) r . I~  1 / 1 \2 x r I 

~< 4 el  22 j=l  
�9 (l+l/jl)2 ( <  " 2 | "(82) 11 (4 .31)  - -  [,-c--2 ,] jfl  (1 +llj[) 2 

j~-v j~-v 

K 
1 

C j=l  (1 +l/jl) 2 

where (h(y))-=h(y) for h(y)<0 and 0 otherwise. Similarly, if yEQ(1/2e4;l) where 

l=(ll . . . . .  lr)EZ r with I l c+�89 I<~j<~K and n (y )<0 ,  then for some index r, l<~v<~K, 

sin (e3 "Yv)" sin (e4"yv)<0. Therefore,  by (4.13), (4.19) and (4.30) we obtain that 

K 
i(H(y))_ <<  Isin(e3"yv)'sin(e4"yv)l (e4)g.  H I 

e3"Yv ' e4"Yv  j= l  (1 +1/il) 2 
j*v  

1 ( - (e4) K ' H  1 1 2 1 
~< 4 e3"e 4 7=T (l+l/jl) --------~ << ~ (e4)~I-Ij=l (l+l/jl) 2 (4.32) 

j*v  j4=v 

K 
1 

< <  4"(~4)K'Hc o j=, (1 ~-1/il) 2" 

For  any compact  convex body P c R  g and real O, O<o<<-r(P) (we recall: r(P) 
denotes the length of the radius of  the largest inscribed ball in P), let P-[O] be the set of  



3 6  J. nECK 

all centres of balls of radius 0 contained in P. It is obvious that P-[O] is also compact 

and convex. 

We shall apply the following result from discrete geometry (Hadwiger [7]): for any 

compact and convex body A c R  K there exist boxes in arbitrary position B and D with 

parallel edges such that 

B c A c D  and Iz(D). <~Ia(A) <~ KK./~(B). (4.33) 
K[ 

Let bj and dj, j= 1,2 ... . .  K denote the length of the parallel edges of B and D, 

respectively. Without loss of generality we may assume that 

b I <~ b e <~... <~ b K. (4.34) 

From (4.33) it immediately follows that 

bj<~dj<~Kr.K!.bj, l <~j<~K. (4.35) 

Furthermore, we shall apply without proof the following well-known geometric 

fact: 

if PI and P2 are compact convex bodies in R x 
(4.36) 

and PIcP2 then o(OP 1) <~ o(OP2). 

Here OP denotes the boundary surface of P, and t~ is the ( K -  1)-dimensional surface 

a r e a .  

Let e=c. ee=(1/c).e4. Now we are ready to estimate from below the left-hand term 

of (4.20). We distinguish two cases (I) and (II). 

(I) 1/e<~bl/8. Let AI=A-[1/e ] and A2=AI\A~[1/e]. in order to estimate the vol- 

ume of A2, it suffices to use the following very crude lower bound. 

LEMMA 4.2. I f  P c R  K is a compact convex body and 0<0~<r(P), then 

I z (P \  P-[O]) ~> c20(K) �9 0" o(OP- [0]), 

where the positive absolute constant c20(K) depends only on the dimension K. 

Proof. Let 

E = OP-[o], F = B(0, O) = {Y E RX: [y[ ~< 0} and G = P \ P - [ o ] .  

Simple double integration argument gives 



IRREGULARITIES OF DISTRIBUTION. I 37 

f 
(4.37) 

--fo(f 
where Xo denotes the characteristic function of the ball F. Since P-[Q] is convex, for 

any x E E the intersection (F+x)O G certainly contains a half-ball of radius Q. Hence 

#((F+x) fl G) I> I # ( F )  for any x E E. (4.38) 

On the other hand, by (4.36) 

o((F+y) fl E) ~< o(0F) for arbitrary y E R/~. (4.39), 

Combining (4.37), (4.38) and (4.39) we obtain 

and so 

1 /z(F) = o(E). C2o(K)-o. #(G) >I o(E) 2 o(OF) 

Lemma 4.2 follows. 

By definition (see (4.33)) 

with some appropriate orthogonal transformation r~ and translation x~. By hypothesis 

2/e<-bl/4<-bE/4<~...<.br/4, and so we have 

A~- - ~ r  "4-x  I . (4.40) 
\ j~l  4 '  4 

By (4.36) and (4.40) 

o(aA[ [+]) >> o(OB), (4.41) 
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and by (4.35) and (4.36) 

That is, by (4.41) and (4.42) 

By Lemma 4.2 and (4.43) 

o(aB) > >  o(aD) >I o(aA). 

o(OA{ [1]) >> o(OA). 

(4.42) 

(4.43) 

By (4.45) and (4.46) 

By (4.23) 

fnxXA(xo-y) H(y) dy >~ fQ< ) H(y) dy- IH(y)[ dy. 

fQ H(y) dy = l- fn H(y)dy >~ l- fn IH(Y)IdY. (~) "\~(~) '~\e(~,) 

fn XA(X0--y) H(y) dy I> 1 --2 JnKNQ(xL4.~)IH(Y)[ dy. 
f 

Since e=(1/c)e4, from (4.29) it follows that 

R IH(.v)I dy << l ,  

(4.45) 

(4.46) 

(4.47) 

Therefore 

#(A2)= #(AI\A'{ I+]) >> I.o(aA). (4.44) 

After these preparations we are ready to realize the heuristics mentioned above. 

Let xoEA2, and estimate the integral 

Ifn, xA(Xo-y)(h-H)(y)dy 

from below. Since xoEAl = A-[1/t], we have 
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thus by (4.47) 

for any x 0 EA 2. (4.48) 

On the other hand, since x 0 E A2=AI\A-([1/e] where Al=A-[1/t], we see that the usual 

Euclidean distance of xo and the complement RK\A of A is <~2/t. Using this observa- 

tion and the convexity of A it is easily seen that 

((~)) , ,449, Q +x 0 \ A  contains a ball of radius 2t----~" 

Here we also used that e=c'e2 and c~>4. Clearly 

fR'~(,-Y)h(Y)<~Y'f~m'~('-Y)h(y'dY+fR<,~mh~)dY+lf..,~m(h(')-d' I 
where (h(y))- = / h(y) 

for h (y )<0  (4.50) 

otherwise. t u  

By (4.22), (4.24) and (4.49) 

(~) "\o(~) " ,o (~ )  

<~ l-c21(lO'(e2)x'lz( {yER': iYl <~-~e2 ) ) 
= 1-c22(K) (4.51) 

where C22(K)~'0. 
Moreover, 

fRg\Q(~) h(y))- dy ] 

where 

I/d~c+�89 I/KI~c+�89 

J=~ e2 e2 -] 
IEZ K. 
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By (4.28) 

By (4.31) 

fR Ih(y)ldY << 1 '  

rzl o , ,Ez:  ' : ( 4 . ' )  
I/ll~c+�89 IIxt~c+�89 

<< ~ ]  "'" ~ "~2"j[~t ( ILI)l /,Ez: IxeZ: "ffi -l+w,-2 
[I,[~c+�89 Ilrl~c+�89 

-<b 
IIEZ: 

I/tl~c+�89 

I-I(l+l  l)2 (llltt)2 �9 
/fEZ: j=! 
16d<~c+�89 

(4.53) 

(4.54) 

Combining (4.50), (4.51), (4.52), (4.53) and (4.54) we obtain 

fRxXA(Xo--Y)h(Y) dY<~ 1-c22(g)+o(1)+O(-~) 

From (4.48) and (4.55) it follows that 

fnZA(Xo-Y)(H-h)(y)dy>~c22(IO-O(1 ) > lc22(g)  > O 

for any x0EA 2. (4.55) 

if c ~> c23(K) and x 0 E A 2. 

(4.56) 

Using (4.44) and (4.56) we see that if c>~c23(K) then 

xan �9 / JA a 

>> k/(A2) >> _1. o(OA). 
E 

(4.57) 

(II) 1/e>bl/8. Since the boxes B and D have parallel edges, we have 

B ~- 1" i H "~-X l a n d  D = r I 2 '  ' + x 2  
kjffil I- 2 '  \ j = l  t. 

where rl is an orthogonal transformation and xt, XeE R x. 
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Let 

BI = rl 2 2K'e 4 2 2 .e 4" 

Let xoEB1. We are going to estimate 

(f.,XA(Xo-y)(h-H)(y)dy) 2 

from below. Clearly 

f .Z A(Xo--Y) H(y) dy ~ f~,/~,)Z A ('--Y) H(y) dy - fIIK\Q(I/ejZA(Xo --y) (H(y))- dy o 

(4.58) 

Since xoEBt, we see that the usual Euclidean distance of xo and B is <1/2e4. Hence 

K 

it((Q(-~a)+Xo)NB)>>j~__l min{-~4,bJ}. (4.59) 

By (4.25) and (4.59) 

fQ(t/e4)ZA(xo-y) H(y) dy >~ c24(K)'(e4)K'Iz( ( Q(-~4 ) +" ) flA ) 

I> c25 (K)" (e4)K" H min , 
j= l  

K 

= c25( K)" I-I  min { 1,e4"bj}. 
jffii 

(4.60) 

Moreover 

fn (H(y))- dy <~ |X\Qfc/,4)XA(Xo--y)" IH(y)I dy 
f 

XA(Xo--Y) 
K\Q(Ile 4) JR 

+ X "'" X f •A(Xo-y)(H(Y))- dY 
/IEZ: IKEZ: JQ(ll2e4;I) 

l/ll~<c+l [/td<~c+�89 

(4.61) 
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where 

j=l e4 J 
IEZ r. 

By (4.27) 

f %A(X0--Y) IHfY)I dye< X f ZA(x0--Y) IH(Y)I dy 
JR g\Q(cle4) I E Zg: JQ( 1/2e4; I) 

l<~r (4.62) 
1 << X (e4)r'H /~ Q ;! +x o 

,~ z,~: j r ,  (1 +l/j l)  z 

I ~ j~  K 

Since  

/,((Q(~e4; ,)+Xo)hA)~</,((Q(~e4; I)+Xo)nD)<< ~ min {I, dj}, (4.63) 

by (4.62) we have 

L " ' 1 )  l %A(Xo-y)[n(y)ldY<<(i-Irrdn~--,r "(e4)X" X (l+[/jl) 2 g\Q(cle4) \ j= l  L E4 IEZK: 

I <~j~K 

(fi ~,,I << rain { 1, e 4. 
\ j = l  / 

(1+1/I)2 12z-i (1+1/I)2 

<< ( f i  rain {1, e4.dy}). ( ,e~z 1 ) \j=l : (1+]1]) 2 
\l~c-~ 

K 

<< 1 .  ]-[ man { 1, e4.dj}. 
C j=l 

(4.64) 
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By (4.32) and (4.63) 

E . . .  

IIEZ: 
Itll~<c+�89 Itgl~<c+�89 ,(n ,) 

IIEZ: IgEZ: j=l 
IIi1<~c+�89 Ill:l~c+�89 

<l . , e4~r . ( f lm in (1 ,d j l i .E . . .  E 1 
c 6 " " -~4 (l+lljl)2 (4.65) \ j - I  ) /  IlEZ IKEZ 

=l.(~-Imin{1,e4.dj}).(t~ez 1 .)x 
C6 jffil (1+1/1) 2 

<< L "  ( F I  min { 1, ea'dj} ) �9 
Cb \ j=l  

Combining (4.61), (4.64) and (4.65) we see 

)L~(N-Y) (H(y))- dy << 1 H rain { 1, e 4 .d j}. 
g\Q(l/e J C j=l 

(4.66) 

\ 

Therefore, by the inequality d,~KK.K!.bj (see (4.35)), (4.58), (4.60) and (4.66) we 
obtain 

fR K C26(K) K XA(Xo-y)H(y)dy>~czs(K).I-Imin{1,e4.bj} I ' I  min {1, e4.dj} 
K j=l C jffil 

>I c2,(m_Ce.(m. .r~ Nmin{1,e4. } (4.67) 
jffil 

K 
1 . >~ "-~ c25 (K) " I-I nun { 1, e4 .b j} i f  C ~ c27(K). 

jffil 

On the other hand, by (4.26) 

fRgza (xo-y)h(y)dy <~,~,~fo<,a, XA(Xo-Y)lh(y)ldy 
K 1_ 2 .~u Q - - ~ I  ;1 +x  o 

(4.68) 
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Since 

/z((Q(~e2; i)+xo)hA)~</~((Q(-~e2; !)+xo) riD) << I~I min [ 1 ,  dj}, 
j=l  r E 2  

by (4.68) we have 

I fRxZA(Xo--y) h(y) dy << ~e~zg(e2)x" ( I~Ij=l (lllljl)2)'(~-Imin(l'dj}),,j=~ 

= min { l, e 2 �9 dj} �9 1 
\ j = l  / IEZ g j= l  ( l+[ /y [ )  2 (4.69) 

= min {1, e2.dj} �9 << I-[ min {1, e2.6}. 
\j=t (1+111) 2. j=l 

By hypothesis 1/e>bl/8, and so l>e.b~/8. Furthermore, dj<.KX.K!.bj and 
e=e4/c=c.e2, thus by (4.67) and (4.69) 

�89 g g 
XA(x0--y) (H-h)  (y) dy I> c~(K)" I-I min { 1, e 4-bg}- c2s(K)-I-[ min {1, e 2 .d y} 

j= l  jffil 

K 

~> 1 c25(K)" min {1, c.e.bl} .  I-I min {1,e4.bj} 
j=2 

f KX.K[ .e .b l }  r 
-c~(K).min ~ 1, c "(KX'K!)X-I"I-Imin{l'e4"bj} 

j=2 

= { l czs( lO " min { l ' c " e " b l } - C29( lO " min { l ' KX " K----~l" e " b l } 

K 

X 1-[ min { 1, e 4 �9 bj} 
j=2 

K 

>~ I c25(K)" min {1,c'e 'bl}" l'-[ min {1,e4.bj} 
j=2 

K 

= lc25(K)'I- I min{1,e, .bj} 
j=!  

(4.70) 

whenever C ~ C 3 0 ( g ) ~ c 2 7 ( g )  (we recall: xo is an arbitrary point in B0. Obviously 
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#(Bt)  > >  I ~  max  bj,  1 
j=t L. "~4 " 

(4.71) 

Therefore, using (4.70) and (4.71) we have 

far(fagXA(x-y)(h-H)(y)dy)2dx>~fBt(fngZA(x-y)(h-H)(y)dy) 2dx 
r 2 K 1 

>> I ~  rain {1, e4"bj}~" ~ H  max /by , - -~ /  
Lj=I J L jr! [ e4JJ 

for c >~ C3o(K). 

(4.72) 

Let jo be the largest index j, I<~j<~K such that e4" bj<~l. Then by (4.72) 

f.g(f.gZA(x-y)(h-H)(y)dy)2dx>>(,~<~ot4"b~)'(jo<jI~<_Kbj ) ifc>~C3o(K) �9 
(4.73) 

Let c=max {4, c23(K), c27(K), c30(g)}. Then from (4.20), (4.21), (4.57) and (4.73) 
it follows that 

2.~ L~A(t)]2dt>~fR L~A(t)]2- ](~-F/) (t)]2 dt 
J Q(E3 + e4)~ Q(E4 - e3) g 

r(r t = XA(X--y) (h-H)  (y) dy dx 
Jar\JR K 

f l ' o ( a A )  incase(I )  

>>l(k\l~<i<~0I-I e4"b2i)'(kio<J <-KYI bj~/ in case (II) 

(4.74) 

where Jo is the largest index j such that e4.bj < . 1. 
Now we return to (4.11). By definition 

~, a(t) = a r.2A(r-I(at)) 

where X~, a denotes the characteristic function of A(r, a, 0). Consequently, for every 
t* E Qm=Q(2K1/2(e3+e4))~Q(Kl/2(e3+e4) ) (see (4.10) and (4.19)), 
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fr f f  L~,a(t*)12 dadr= L~azX(fr[~a(r-~(at*))12 dr) da 

>> ~(Q(% + e4 ) \ Q(e4 _ %))) - 1 [ ~A(t) l 2 dt 
J Q(e3 +e4) \Q(t4-E 3) 

> >  (E4) - K  f L~A(t)l z dt. 
a Q(e 3 + ~ 4) \ Q(E 4-e3) 

(4.75) 

By (4.74) and (4.75): for every t* E Qm 
r(e4)-K-l.o(OA) in case (I) 

fr fo' ~'a(t*)12dadr>>j b~" I-I (bj] incase (II). (4.76) 
Ll<~i<~Jo jo<j<~X \ e4 J 

Combining (4.6), (4.10), (4.19) and (4.76) we obtain 

fr fo' f.f=..o(X)aXa.a = 'a` 

I> (min ( ( '  1~ ,(012 da dr)" f Iq0(t)lZdt (4.77, 
\ t e Q m J r  JO ' / Qm 

( 1 ,'~(K+ I) m 

J (e4)-K-I.o(OA)---~.M K >>-~--~--- o(OA).M K in case (I) 

>>/I7 17 2 b~" (2m.br) .MK in case (II) 
[ .  l ~i<~j 0 jo <J<~K m 

where cp=(dZo-d/~o) ̂, Jo is the largest index j with e4 .bj<~t and m is an integer with 
l~<m=O(logM). 

Clearly 

K 

1--[ bj = #(B) >> #(A) and 
j = l  

by (4.33), (4.35) and (4.36); moreover, 

K 

1-[ bj >> o(aB) >> a(aD) I> o'(aA) 
j=2 

bK>~ bK_ l >t... >~ b I 



by (4.34), and finally 
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bl >> dl I> r(A)/> 1 

by (4.35) and the hypothesis of Theorem 2A. 
Therefore, in view of (4.77) we have 

f r f o l f n  F2~,~(x) dxdadr >> J~~ r in case (I) and in case ( I I ) ' j ~  
. -(~(A))2 in case (II) ,  Jo = K .  
L (log M)  2 

We recall (4.2): 

F,.~(x) = card (S flA(r, a, x) N Q(M))-/~(A(r, ct, x) n Q(M)). 

Hence 

47 

(4.78) 

(4.79) 

F~,~(x) = 0 whenever x~ Q(M+diam(A)). 

(Here diam stands for diameter.) Thus from (4.78) we obtain 

frfolfQ(M+diam(A))FZ~a(x)dxdadr>>min{ O(OA)'~(A))2~'MK" j (4.80) 

Inequality (4.80) gives that either 

fe*frf~176 (l~g~2J" MX (4.81a) 

with Q* = Q(M+diam (A))\Q(M-diam (A)), 

fQ**fTfo'F2~(x)dadrdx>>min{ ~ ' (1o-0-~ J 

with Q** = Q(M-diam (A)). 

or  

Now we specify the value of the parameter M: let 

M = (diam (A)) 2r+2. 

ff alternative (4.81a) holds, then it follows that there exist 

(4.81b) 



48 J. BECK 

that is 

roET, aoE(0,  1] and xoER r such that 

2 r - I  diam ( A ) > >  min ~o(0A), ~-~(A))-~22 }. Mr; 
(Fro , % (xo)) �9 M I. ' (log M) J 

(Fro,% (Xo))2 >> min ~a(OA), ~(A))22 ~ M . 
[ (log M) J diam (A) 

Since by hypothesis  r(A)>~l, we see that 

/~(A) > >  o(OA) > >  diam (A) = M t/c2r+2). 

Thus by (4.82) and (4.83) 

M 
(Fr~176 >> diam(A) 

and so 

= (diam (A)) 2x+ i >>  diam (A)- (/z(A)) 2, 

(4.82) 

(4.83) 

IV,.o.~(,,,o)l > 2/~(A) if diam (A) ~> c3~(K). (4.84) 

From (4.79) and (4.84) we obtain that the cardinality of  

S n A ( r  o, a o, x o) n Q(M) 

is greater than 2/z(A). Consequent ly (we recall: S={zl ,  Zz . . . .  }) 

1 -(A(~:o, ao, xo) ) > 21u(A)-iz(A) =/z(A) >>  0(8.4) ~> (o(aA)) 1/2, 
zj~A(ro, ao, x0) 

which was to be proved. 

By 

sufficiently large) then 

IzjEa(rt,~dal,Xl) 1-'u(a(rl'~ 

If alternative (4.81b) holds, then there exist rn E T, al  E (0, 1] and xn E R r such that 

�9 r (p(A))2 ] 
A(rl,ai,xl)cQ(M) and (Fr,,al(xl))2>>mmlo(OA),(l~g~2 S. (4.85) 

(4.3), (4.83) and (4.85) we conclude that if diam(A)~>c31(K) (i.e., diam(A) is 

= ( F ~ , , ~ ; ( x l ) )  2 

1/(2K+2) 2 >> rain {o(8A),/z(A)-M �9 ( logM)-  } 

> min {o(OA),/z(A)} > >  a(OA), 
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which was to be proved. 

Finally, if diam(A)<c31(K) then we are done by the following trivial argument.  

Choosing fl=(21t(A))-l/XE (0, 1] we have/~(flA)=�89 and so certainly 

~ [S ;A]  I> 1 .  

The proof  of  Theorem 2A is complete.  

Remark.  The proof  actually gives that there exists a set A0=A(ro, a0, Vo) such that 

and l~>a0>c32(K) (i.e. the contract ion factor  is larger than a positive absolute con- 

stant). 

Acknowledgement .  The author  is indebted to the referee for his very careful work. 
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