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This paper originated with a question of Yves Meyer: Let T be a convolution Calder6n- 

Zygmund operator on R d, d~>2, with kernel K ( x - y ) .  Let b ~ .. . . .  b m be m L | functions 

and let FE  C| Does the kernel 

L(x ,y)  = K ( x - y ) F (  .... b i ( t x+(1- t )y )d t  . . . .  ) 

define an operator bounded on L2(Ra)? When d= 1 this is equivalent to asking whether 

the nth Calder6n commutator is bounded o n / 2  with polynomial growth of the operator 

norm, that is, with a bound Cn ~ as n---~ [2]. The argument in [11 also reduces the 

higher-dimensional problem to proving the boundedness of a sequence of operators, 

which we call the d-commutators, with polynomial growth. The kernel of the nth 

d-commutator is 

in L(x ,y)  = K ( x - y )  a ( t x + ( 1 - t ) y ) d t  

where a E L| a) is complex-valued, and the question is whether 

[[fL(x,Y)f(Y)dYll2<-CnMllall llfll2 
for all f E  L 2, a EL** and nE Z +, the integral being suitably interpreted. This question is 

motivated in part by work of Leichtnam [3], and in part by the formal analogy with the 

Calder6n commutators. We answer it in the affirmative. 

For an arbitrary a ~ L  | the expresssion Sloa(tx+(1-t)y)dt  is a far less regular 

function of x, y when d~>2 than when d= 1. Consequently the kernels of the d- 

commutators fail to satisfy the "standard estimates" of Calder6n-Zygmund theory, and 

the general boundedness criterion of [5] does not apply. In fact the d-commutators 
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actually fail to map L | to BMO when d~>2. The first issue here is the boundedness of 

the individual d-commutors. 

The second issue is polynomial growth of the bounds. None of the techniques 

already known for the Calder6n commutators, direct or via the Cauchy integral on 

Lipschitz curves, seem to generalize to the case d~>2. This has lead us to formalize the 

notion of a multilinear singular integral operator (MSIO) used implicitly in [2] and [4]; 

we regard the d-commutators as multilinear operators i n f and  a, wi th fand  a placed on 

an even footing. This formalization permits a transparent generalization of the TI- 

Theorem of [5] to the multilinear context, a generalization which easily yields polyno- 

mial growth of bounds for MSIO's in fairly general circumstances. In particular we 

obtain a new, conceptually simple proof of the boundedness of the Calder6n commuta- 

tors, with a b o u n d  c~(n+l) 1+6 for all 6>0. However, when d~>2 the d-commutators lie 

slightly outside the scope of this general result, and their analysis involves further 

considerations. 

In Section 1 we review some background material on Calder6n-Zygmund theory. 

In Section 2 we prove a T1-Theorem for Carleson measures and apply it to the Kato 

operator [2] in dimension 1. The notion of MSIO is discussed in Section 3, where a 

general boundedness criterion is proved. The application to the Calder6n commutators 

follows in Section 4. In Section 5 we indicate some elements of the study of the d- 

commutators and analyse the smoothness of mx.ya=S~a(tx+(1-t)y)dt in dimensions 

d~>2. It turns out that on the average mx,ya is somewhat smoother than is apparent; it is 

on this extra smoothness that our proof is based. In Section 6 we split the ntJa d- 

commutator into two parts. The first part is treated by applying the general theory of 

MSIO's of Section 3. The second part, to which the general theory does not apply 

because its kernel is insufficiently regular, is treated in Section 7. The final section 

treats the L p boundedness for p:t:2. 

In a forthcoming paper the second author will extend the theory of MSIO's to the 

product setting to establish polynomial growth for the Calder6n-Coifman bicommuta- 
tors [17]. 

We are grateful to the referee for the comments which have helped to improve our 
exposition. 

1. Preliminaries 

A singular integral operator is initially defined as a mapping from Co(R a) to its dual. In 

other words it is defined by a bilinear form on [C~0(Rd)] 2. In the next definition we 
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emphasize this aspect, which is more suitable for a generalization to the multilinear 

context. 

Definition 1. Let 6>0. A 6-bilinear singular integral form (6-BSIF) is a mapping T: 

[Co(Ra)] 2 ~ C with the following property: if f and g have disjoint supports, then 

T(g,f~=ffK(x,y)g(x)fty)a~dy (I.1) 

where K is a function 

Ix-x'l<<.lx-yl/2, 
defined for x*y  such that, for all x, y, and x' satisfying 

IK(x, y)l ~ ~ (1.2) 
Ix-yl ~ 

IK(x, y)-K(x ' ,  Y)] ~< clx-x'la (1.3) 
Ix-yl  d§ 

Igfy, x ) -g f y ,  x')l < clx-x'la 
Ix_yl a+6 . 

(1.4) 

The best constant c in (1.2) is denoted as IKI0, and in (1.2), (1.3) and (1.4), IKI6 or 

I/]6. Notice that if 6'<6 

Igla, ~ ca, 6' Igl~ -a'/a Igl~ '/a (1.5) 

A 6-BSIF can be extended to C~0 (R d) x C~ (R a) or C~ (R d) X C~0 (Rd), where C~ (R d) 

denotes the space of bounded C OO functions and C~0 (Rd), the subspace of C o (R d) of 

C | functions with vanishing integral [5]. We then denote by T 1 (1) the element of [ 00 (Rd)] ' 

defined by 

(g,  TI(1) ) = T(g, I) for all gEC~ (R  d) (1.6) 

and define T2(1) dually. 

Definition 2. The 6-BSIF T has the weak-boundedness property (WBP) if for all 

pairs of C o (R d) functions f and g whose supports have diameter at most 4t, 

IT(g, f ) l  < ctd(llgll~ + tllV glloo) (llflloo + tll Vflloo). (1.7) 

The best constant c in (1.7) is denoted I/]w. 
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Definition 3. The 6-BSIF T is bounded if for all pairs of C o (R d) functions f a n d  g 

Irtg,f)l  ~< cllfll2 Ilgl12. (1.8) 

The best constant c in (1.8) is denoted Ilaq12,2 and Ilaql:lgl~+ll~ql2,2. The following are 

well-known. 

THEOREM A. 
boundedness o f  T: 

Let T be a 6-BSIF. The following are each equivalent to the 

IT(g,f)l ~ cllgllH~ Ilfll. 

IT(f, g)l ~ cllgll.~ Ilfll- 

for all g E C~0(Rd), fE  Co(Rd), or 

I~g, f ) l  ~< ctdllfll. Ilgll| 

for all, g , fE Co(R d) whose supports have diameter at most 4t. 

A proof of this theorem can be found in [6]. 

(1.9) 

(1.10) 

(1.11) 

T1-THEOREM [5]: The form T is bounded if  and only i f  Tll and Tel lie in BMO and 

T has the WBP, and then 

117112.2 ~ c(llZl IlIBMo+IIT2 IlIBMO+I~w)+C~ 12q6 �9 (1.12) 

The main ingredients in the proof of this theorem are the almost-orthogonality 

lemma of Cotlar-Knapp-Stein, quadratic estimates and Carleson measures. We shall 

briefly recall these elements for future reference. 

LEMMA CKS [7]. Let (Rt)t> o be a family of  operators on a Hilbert space H. I f  for  

some a>0, all s>0 and all t>0, 

IIRT, R,II+IIR, R*~,II <. c(s^s- l )  ~ (1.13) 

then fo Rtdt/t defines a bounded operator and is strongly convergent. 
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An easy corollary of this lemma is that if only IlRtR*ll<<.c(sAs-l) 6, then for each x E H 

f), R,x cllxll 2. (1.14) 

Definition 4. A function w:Ra++L--~C is a Carleson function if for all balls B of R d 

where r is the radius of B. 

The best constant in (1.15) is denoted Iwlc or Iw,lc. 
One interest of Carleson functions lies in the following fact. L e t f b e  an L 2 function 

on R a and ptf(x) denote its Poisson integral. Then [8] 

f f ,  ~otf(x)lZlw(x,t)ledxdt<.clwl2cllfll~. (1.16) 
~+§ t 

This inequality accounts for the wide use of quadratic estimates in [9], [2], [4]. We 

shall however encounter a slight technical difficulty in reducing our problems to 

quadratic estimates. Even though this is quite standard, we shall describe why it 

occurs, and how it is dealt with. 

Let ~ be a radial function in C~0(Ra), and for all t>0 let Qt be the convolution 

operator with symbol ~(t~). We shall have to show that for certain families (ft),>0 of L 2 

functions the integral f0 Qtf, dt/t is weakly convergent and defines an L 2 function. The 

easiest  way to do this is to choose ~ as the product of two functions ~ and ~2 of the 

same kind, so that Qt can be written as QII)QI 2). Then, in order to show that for 

g EL2, fo (g,Qtft)dt/t is absolutely convergent, one uses Cauchy-Schwarz to domi- 

nate it by 

[IQI2), g 2 dt o~I) f 2 dt ] I/2 [i" 
The first factor is equal to c0llglh for some c0>0, by Plancherel's theorem. One is then 

reduced to estimating 

[fO +ao _ -I 1/2 Q(I) f, 2 at l 
' ' " 
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This route is unavailable to us for the following reason. The operator  Qt will arise 

as -t(a[at)P t where (Pt)t>0 is defined as follows. Let  q~ be a non-negative radial Co(R d) 

function with fq0= I and let Pt be the multiplier with symbol q~(t~) for all t>0.  The 

condition tp~>0 will be needed to ensure that Pt is a contraction on L =, which will be 

essential in our argument, but prevents us from writing ~(~)=-(~,Vq~(~)) as a product  

~1(~)732(~) in a straightforward way. What we do instead is to introduce an auxiliary 

function ~ and to define Q, accordingly, so that Qt is self-adjoint and f~| ~tt dt/t=L To 

show that fo Qtffl t/t is weakly convergent,  it then suffices to show that 

fo | (+ | dt ds Q,f, 
lao t s 

is weakly convergent. Using Cauchy-Schwarz as before,  we see that this reduces to 

estimating 

fo+~176 [fo +~176 _.~] 1/2 liras, Q,f, ii z ds (1.17) S 

To show that the integration in s has no harmful effect, it suffices to show that QstQt 

behaves like a small Qt when s is very small or large. More precisely we have the 

following. 

Then 

LEMMA 1. Let 7: and ~ be two functions in C~0(Rd). For all s > 0  let rls be defined by 

. .x. 

[rls(X)[+[Vrls(X)[<~c(sAs_l)v2 I , (1.18) 
1 + Ixl d+ 1/2" 

This lemma is straightforward and we omit its proof. 

From the above remarks it follows that if ~)t>0 are L 2 functions then 

tf0"-.  2ocsu,[fo" (1.19) 
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where Qt is the multiplier with symbol 0(tO and the sup ranges over those radial 0 such 

that fO=O and 

1 (1.20) 
IO(x)l+tVO(x)l <- 1+ Ixl 

If the right-hand side of (1.19) is finite it follows that the left-hand side converges 

weakly. 

We shall conclude these preliminaries with a lemma of Coifman and Meyer. For 

every function f ie  Co(R d) and (x,t)E R d+l denote by fl~ the function such that 

= l  fl[ z - x  ~ 
fl,(z) t d \ t ]" 

For all t>0 and 6E]0,1[ we denote by w~, t the function defined on R d by 

t 0 

wo, , (Z) - td+O + izla+0. 

LEMMA 2. Let T be a 6-BSIF having the WBP. I f  OECo(R a) and ~E C~0(Rd), 

IT(q, ~)l <~ cwo,, (x-Y) (1.21) 

for all x,y E R d and t>0. 

Conversely let (Tt)t> o be a family of  operators whose kernels satisfy 

IT,(x, Y)I ~< cwo,,(x-y) (1.22) 

IV x T t (x, y)]+ IVy T t (x, y)I ~< two , ,  (x-y).  (1.23) 

Then if T,1 =0 for all t>0, the integral f (g, Ttf)dt/t is absolutely convergent for f and 

gE C~(Ra). The bilinear form T it defines is a 6'-BSIF for all 6 '<6  and has the WBP. 

We shall omit the proof. 

2. A TI-Theorem for Carleson measures 

Carleson measures were used in [2] to efficiently estimate norms of families of multilin- 

ear operators. We shall see that this can be done in some generality using the following 

theorem. 
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Definition 4. A family SP=(St)t> o of operators given by kernels satisfying 

IS,(x, y)[ <~ cw,, t(x-y) (2. I) 

for all x, y and z such that ly-zl<~12---(t+lx-yl), is an e-family. It is bounded if for a l l f E L  2 

( 2 dt "] u2 JllS,fll~TJ ~< cllfll2. (2.3) 

We denote by IsL or I~1, the best constant in (2.1) and (2.2) and by II~el12 the best 

constant in (2.3). 

THEOREM 1. Let 5e be an e-family. It is bounded i f  and only if F:Ra++l--.-~C defined 

by F(x,t)=Stl(x), is a Carleson function. In this case for  all a E L  | IS,alc< +~  and 

IS,aL ~ IlalL IS,11~+CllalL. ISL. (2.4) 

The essential difference between this theorem and the T1-Theorem is the absence 

of a multiplicative constant in front of Ilall| IStllc. This will enable us to apply Theorem 

1 repeatedly to obtain polynomial growth in cases where the T1-Theorem would yield 

exponential growth. 

To prove the theorem let ~p and (Pt)t>o be as before. Let {St I } be the operator of 

pointwise multiplication by the function St 1. Notice that 6e' = (S~)t> o = (S t -  { St 1 }et)t>o is 

itself an e-family. Moreover S~ 1 =0. It follows that for all s>0, t>0, IIS; s's*ll<-c(s ̂ s- l)  ~ 

for some 6>0. By (1.14), ~ '  is bounded. Therefore 5e is bounded if and only if 

({Stl}Pt),> o is a bounded e-family, that is, if IS,1tc<+~. Notice that in this case, if 

a E L  ~, 

IS,ale ~ I(S,l)(P,a)lc +lS;alc. 

Since Pt is a contraction on L ~, 

I(S,l )(Pta)lc <~ Ilall| IS, I ]r 

(2.5) 

(2.6) 

Finally, to prove that 
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ISialc <~ cllall.IS,l~. (2.7) 

consider an arbitrary ball B in R d of radius r. Set a=al+a2 where a~=az2n. Then a~ EL 2 

and its contribution may be treated using the boundedness of Sr The a2-term is treated 

using (2.1) for (S~)t> 0. We omit the details, which are standard [9]. Clearly (2.5), (2.6) 

and (2.7) imply (2.4) and Theorem 1 is proved. 

This theorem is nothing but a general version of the commutation lemma of 

Coifman-McIntosh-Meyer [2]. We are going to see, however, that it permits us to 

improve the estimates of [2] for the Kato operator DVrffh--D in dimension 1. The 

problem is to estimate the norm of f~OOqt(Mbpt)kdt/t where Mb is the operator of 

multiplication by a function b E L ~0, and qt and Pt are for all t>0 convolution operators 

with symbols t~/(1 +t2~ 2) and 1/(1 +t2~ 2) respectively. 

PROPOSITION 1. For all 6>0, there exists a constant c,~>O such that for  all k>~O, 

iio  i 2 
the integral being weakly convergent. 

First we reduce (2.8) to a quadratic estimate. To this end we write 

t~ / till \ m  
1 ~-~2- ~ )  fl(t~). 

I f  a t denotes the convolution operator with symbol (till/(1 +t2~2)) 1/2, then for all g E L 2, 

Ig| for some constant Co. Let fit denote the convolution operator with 

symbol/~(tO, so that qt=at~r For any test function g E L 2, 

[(g,fo~qt(MbPt)kfd~ttl <~fo| Pt)kf}ld'~ 
2 dt 112 o0 - -  k 1/2 

So it suffices to prove 

[ f f  Ilfl,(MbPffll~ ~ ]~/2<~ c~ (l +k)l+allfll21lbll ~. (2.9) 
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By routine arguments it may be shown that the kernel f i t (x-y)  of fit satisfies 

c ( t )  I/2 1 
Ls,(x-y)l ~< ] ~  t+ lx -y l ;  

see for instance [10, p. 73]. The kernel ofpt  is (2t)-le -k-yl/t, so Pt is a contraction on L | 

These estimates on the kernels of fit and pt imply immediately that the kernel of 

flt(MbPt) k satisfies (2. l) and (2.2) for all exponents e~ < 1/2, with a constant c~(1 +k)alIbll~ 

where 6=6(e) may be taken to be arbitrarily small by choosing e to be sufficiently small. 

(2.9) follows from Theorem 1 and 

~3t(Mopt) kllr ~< Aa k'+allbl[~ for all k~ > I. (2.10) 

We prove (2.10) by induction on k. For k=0 it is routine that ~3tblr174 [9]. For k>~l 

~3t(MbPt) kl Ir = ~3t(MbPt)k-iblr 

Ilbll  ~3 t( MoP t) k-' l l~ + c ollbll~k 

<~ A n ( k -  1)'+allbll~ +cakallbl[~ 

<~Aak'+allbll~ 

provided Aa is large enough. The first inequality results from Theorem 1 and the second 

from the induction hypothesis. 

3. Multilinear singular integral forms 

A Coifman-Meyer multilinear operator T is usually defined, for some k~>l, on 

[L| d) or on a subspace of it. It is then determined by a form U defined on 

C x D ( T )  where C is some space of test functions and D(T) is the domain of T. Let g E C 

and (a 1,a 2 ... . .  an , f )  E D(T).  This form U is related to T by 

U(g, a I . . . . .  an , f )  = ( g, T(a I . . . . .  an , f )  ). (3.1) 

One feature of the expression U(g,a I . . . . .  an, f )  is its formal symmetry in all the n+2 

functions g,al . . . . .  a n and f. In most examples this symmetry is actually more than 

formal. This suggests the following. 

Definition 5. Le t  6 E ]0,1]. A 6-n-linear singular integral form (6-n SIF) is a mapping 

U:[Co(Rd)]n---~C with the following property (3.3). For each l<~i<j<_n, and any (n-2)  
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Co(R d) functions h I . . . . .  h k . . . . .  h n, k * i , j ,  define Uo(h I . . . . .  h k ..... hn) as a bilinear form on 

[Co(Rd)] 2 so that for hi ,h iE  Co(R d) 

[Uo(h I . . . . .  h k . . . . .  h~)] (h i, hi) = U(h,  . . . . .  hn). (3.2) 

Then Uij(h t . . . . .  ht~,...,h,,) is a 6-BSIF and 

IU~/(hi . . . . .  hk ..... hn)16 <~ co" F [  }Jhkll| (3.3) 
k*i,j 

The best constants in (3.3) are denoted IUol6 and sup/jlU016 is denoted IUl6. 
From Theorem A we see that any of  the estimates 

'UOCl ..... fn)[~ ci(I-[ {[fk[[~l [Ifi'lH 1 for all f ,  ..... f , , E C  o (3.4) 
\ k~i / 

is equivalent to any of  the estimates 

]U(fl  . . . . .  f , , ) l < ~ c i j ( I - I  I ll /]lf/ll2llfjl]2 f ~  ..... f , , E C o .  (3,5) 
\k*i,j / 

Let HUH/, l<~i<~n, and [[U]li,d, l<~i<j<~n denote the best constants in (3.4) and (3.5) and 

let HuH be their maximum. Then 

IIul[ c (inf(llUlli, IIuilij, 1 i < j  <<. n)+lUl ) (3.6) 

with a constant ca independent of  n or U. We say that U is bounded if {[U[[<+~. 

To U and to each integer m E {1,2 ..... n} we associate a multilinear operator ~ ) ,  

defined by 

( h m, ~r(t~)(hl ..... hm_ 1 , hm+ l . . . . .  hn) ) = U(h I . . . . .  h m . . . . .  hn). 

z(t~ ) maps (Co) ~-1 to (C~0)'. 

We are going to use Theorem 1 to give a boundedness criterion for 6-n SIF's .  First 

observe that as in the bilinear case [5], U(f~ ..... f~) can be given a precise meaning when 

one function is in C~0(R d) and all the others are in C~(Rd). We then define for all iE [I ,n] 

Uil to be the element of  [C~o(Rd)] ' such that for all g e C~o(Rd), 

( g ,  U, 1) = U(1 ..... 1,g, 1 ..... l) (3.7) 
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where g is at the ith place. By (3.4) it is necessary that U~I be in BMO for all i, for U to 

be bounded. We next turn to an analogue of the WBP. Let (Pt)t>0 be as before. 

Definition 6. The 6-n SIF U has the WBP if for all l<~i<j<~n and all t>0, 3~,]j in 

Co(R d) with supports of diameter less than 4t, and fk, k=l=i,j, in Co(Rd), 

I u(et f l  . . . . .  etfi-1, fi, etfi+l ..... etfj-i  , f j ,  etfj+! . . . . .  etfn) l 

~< co (,~j IIf, II| +tllVf, ll..)(l~ll= +tllVf~ II~). 
(3.8) 

The best constants in (3.8) are denoted IUuI w and their maximum is denoted IUlw. 

Notice that all these constants depend implicitly on the function q0 defining the I t ' s .  

Since tp is fixed throughout the paper we omit this dependence. Note that because of 

the presence of the operators Pt, I UuIw is slightly different from I U.l~ as defined in 

Definition 2. 

THEOREM 2. A 6-n SIF U is bounded i f  and only i f  it has the WBP and  all the 

U~l's, iE[1,n], lie in BMO. 

I1~1 ~ c~ Ilua lllBuo+n2(IUl~+lUlw) , (3.9) 

where c~ does not depend on n. 

The fact that c~ is independent of n will yield polynomial growth for families of 

multilinear operators. 

The proof of Theorem 2 is very much in the spirit of the proof of the T1-Theorem 

given by Coffman and Meyer in [11]. Therefore we shall merely outline it. First observe 

that, by the WBP of U, fff~,l<~i<~n, are in C~0 (Rd), 

lim U(P t f  l ..... e t f  .) = U ( f  ~ . . . .  , f  ) .  
t - - , O  

and 

lim U(Pt f  ~ ..... P , f )  = O. 
f...+ "l- ~ 



POLYNOMIAL GROWTH ESTIMATES 63 

It follows that if Qt---t(a/at)Pt, the integral 

f0 oo n 

is convergent and is equal to U(f, ..... f,). Actually, the WBP of U and the proof of 

Lemma 2 imply that for each m the integral 

fo+| ..... Ptfm-l, Qtfm, Ptfm+l ..... Ptfn) d--~t t (3.9) 

is absolutely convergent. We have therefore decomposed U as the sum of m n-linear 

forms 1Am), l<~m<~n. While it is not clear that the V ~m) are themselves 6'-n SIF's  for 

some 6' E]0,1[, Lemma 2 shows that 1~7)1~,, as defined by (3.2) and (3.3) with V ~m) in 

place of U, is finite for 6 '<6. i f  m E {i,j} and in this case I I~u"~ ~< c~.~, I u~l~. Hence if we 

have 

Iv~m)(f~ . . . . .  f~)[ ~ K, I~ 112 ILfmll2 I-I Itfkll. 
ka~i 
k~ra 

(3.10) 

for some i4=m, it follows from Theorem A that 

[v(m)(fl . . . .  ,L)I ~ K2 Ilfm II~' I-I IIA IL 
k* m 

with K2<<.c~(K i+lUl~). For all j4=m, another application of Theorem A to V~/) gives 

Ivtm)(f~ . . . . .  f,,)l ~ K3 IIf~ I1,t, ]-'[ IIA IL 
k.j 

as well. Therefore if we prove (3.10) with a bound 

c(llUm lllBMo+n(IU~l+tUwl)) = co.n) (3.11) 

for l<.m~n, we obtain 

Iv~m~(f~ . . . . .  L)I ~< C~3..,llf, IIH' I--[ IIA II- 
k > l  

for all m, and Theorem 2 follows from (3.6). 
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Let 

i=  u(Pf,  ..... g,fm_,, QJm,P,f,~., ..... P ,L)~.  
t 

In the notation introduced above, 

, p  - dt 
i = f § = (QJm, ,r ( e l ,  .... ,L)~ 7 

. . . . .  

An application of (1.19) and Cauchy-Schwarz gives 

- -  \ ,/2 

o \Jo 

w h e r e ~ = n g ~ ) ( P t ~  . . . . .  Ptfn) and 0, Qt are as in (1.19). By definition 

oj,(x)=fo,(x-u)r,(u)d,,=fo,(u-x)S,(u)au 
= ( ~ , f , )  = U (  . . . .  etf=-, ~,etfm+, .... )" 

Therefore, assuming without loss of generality that m= l  and i = n ,  it suffices to 
demonstrate 

IU(~,  Ptf2 . . . . .  e,f,)l  2 ~< cr II/, 112 I-I Ilfjll= (3.12) 
~+1 j=2 

when 0 satisfies (1.20). By Theorem 1 the left-hand side of (3.12) is dominated by 

n-I  

([U(0;, e, f2  . . . . .  e t f , _ , ,  1)Ic§ UIw§ UI9 I-[ Ilfj I1=)Ilf, 112. (3.13) 
j = 2  

Repeated applications of Theorem 1 immediately yield a domination of (3.13) by 

r ] (IU(O;, 1 . . . . .  1)It +n(lUL +lUlg) I-I II~IL IlL 112. (3.14) 
Lj=2 

Finally observe that IU(0~, 1 ..... 1)l~<cllU,111sMo by the characterization of BMO in 

terms of Carleson measures and the definition (3.7) of U~ 1. Therefore (3. I0) holds with 

the bound (3.11) and Theorem 2 is proved. 
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Notice that in replacing thef/ 's  by 1 one after the other to go from (3.13) to (3.14), one 

can proceed in any order. Moreover if U~ 1 =0 it may happen that replacing only one or 

twof/'s by 1 suffices to annihilate U(O~, Ptf2 ..... Ptfn_l,1), in which case it would be a big 

waste to continue applying Theorem 1 to estimate 0! To make this precise we define 

N(1) to be the minimum number off / ' s ,  2<~i<~n, whose replacement by I annihilates 

U(Qtf, Pt f  2 ..... P,f,). We define N(m) similarly for all m E [1 ,n]. 

THEOREM 2'. In Theorem 2 (3.9) holds with ~mN(m) instead of n 2. 

This refinement is clear from the proof of Theorem 2. We shall see that for the 

multilinear forms associated to the Calder6n commutators E~m=l N(m)<-Cn. 

4. The Calder6n commutators 

Recall that the Calder6n commutators Tn[a], where a E Lc(R), are initially defined as 

bilinear forms on [Co(R)] 2. Let A be an anti-derivative of a and f ,g E Co(R). Then, 

(g, T, [a]f) = lim ( f (.A(x)-__._A(y))" f(y)g(x) 
~o JJl~-yl>e \ x - y  ": ~_y dxdy. (4.1) 

The existence of the limit is an easy consequence of the smoothness of f and g and of 

the size and antisymmetry of 

( a(x)-a(y)  )" 1 . 
x - y  x - y  

The theorem of Coifman-McIntosh-Meyer [2] says: 

liT. [a] 112,2 l)4llall"~. 

i 

PROPOSITION 2. For all 6>0 there exists c~>0 such that 

IlL [a] IIz,2 c (n+ 1)1+ 11a11 . (4.2) 

We present this estimate purely as an illustration of Theorem 2 and claim neither 

sharpness nor novelty. Indeed it is conceivable that the growth rate in (4.2) can be or 

has been obtained, or even improved, from the work of Murai on the Cauchy kernel 

[12]. 

5-878282 Acta Mathematica 159. Imprim~ le 25 aollt 1987 
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To prove Proposition 2 we consider the (n+2)-linear form on [Co(Re)] ~§ defined 

by 

U~ (f~ ..... f~,f~+t,f~+2) = lim mx,yfi fn+l (x)fn+2(Y) dxdy 
r---,0 J j[x_yl> e x - y  

where mx.yf=S~f(tx +(l --t)y) dt. 

Observe first that if l<~i<.n, then N(i)=2. Indeed, for all fl ..... fn E Co(R), 

U~n)(Ptf, ..... e,fi- ,, a,fi, etfi+, ..... etf~, 1,1) = 0 

because of the antisymmetry of 1~(x-y). Hence 

n+2 

E N(i) <. 4n+2. 
i=1 

(4.3) 

Also u~in)l =0 for all i E [1 ,n+2] because U ~) is invariant under simultaneous translations 

of all the f f s ,  j E  [1,n+2]. By Theorem 2', 

IlL [a]112,2 ~< ca llall~ (n + 1) [I U<n)la+ I ~ ) l w ]  �9 

We are going to show 

and 

(4.4) 

IU<")10~2 and IUC")ll~<2(n+l) (4.5) 

Iur w ~ c .  (4.6) 

By (1.5), (4.5) implies IU<~l~<ca(n+l) ~ so that (4.2) follows from (4.4), (4.5) and 

(4.6). To check (4.5) and (4.6) we shall limit ourselves to the case where i= I a n d j = n + 2  

in definitions 5 and 6, the other cases being similar or simpler. 
n) Letf2 ..... fn+l E Co(Rd). The kernel K(o,y) o f  U~l ,n+2(s  . . . . .  fn+l) is given by 

: [ x ^ y , x ~ i y ]  ~ v i=2 Ix-yl x -y"  

From this expression we see that 

n+l  n+l  

IKIo~I-[llf~ll~ and IKll~<(2n+2)I~llf~ll~. 
i=2 i=2 
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We turn to (4.6). We want to estimate U(fl, Ptf2,...,Ptf.+l,f.+2) when fl and f.+2 

have supports of diameter at most 4t. Assume by scale-invariance that t= 1 and let f.+2 

be supported in the interval of length 4 centered at y0. Let g(x)=f.+~(x) for [x-y0[~ < 100 

and =0 for Ix-y01>100, and let h=f.+l-g. Then 

]mx.yfll <~ 4IlL I1= Ix'yl -~ for all x e support(P, h), y {z support(f.+2) 

since P~f~ is supported in an interval of length 4. Hence 

n f f : 5 ; ~  0 I Utn)(fl, Plf2 ..... P,f., P~ h,f.+2)l ~< c H  Ilf~ I1~ ix y1-21 P, h(x) llf.+2(y)l dx dy 
i=1 

n+2 
< c I ]  IIf, I1 , 

i=l 

For the contribution of g note that Pig is supported in an interval of fixed length, and 

IIP~gllc,<.cl)L+l[l~. If the distance between the supports of Pig and f.+2 is at least one 

then the desired bound for U ~) follows by direct size estimates. Otherwise for arbitrary 

L ~ functions gl ..... g. consider the kernel 

n 
L(x, y) = (x-y)-' H mx,y gi; 

i=1 

L is antisymmetric and satisfies 

[L(x, Y) t <~ clx- yl-~ I-I llgi II~. 

Thus 

ff I u(n)(gl ..... gn' PI g,f~+2) ] = L(x, y) Pl g(x)f.+2(Y)dx dy 

= l  ffL(x,Y)[Plg(x)fn+2(Y)-Plg(Y)fn+2(x)]dxdy I 

C[tfn+2[[C I [[PIg[[cI H [[gi [1~ f f~X__Yol<~C I X- YI-1IX-Yl dx dy 
ly-yo[<~c 

and the desired estimate follows. 
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5. The d-commutators  

Let T be a Calder6n-Zygmund convolution operator  on R d, assumed to be bounded on 

L 2. It is associated to a kernel K ( x - y )  satisfying (1.2), (1.3) and (1.4), in the sense of  

(1.1). We shall also denote by K ( x - y )  its distribution-kernel, in the sense of  the 

Schwartz kernel theorem. Let  fl ..... f~+2 be n+2  functions in Co(R d) and for each 

a E C~b(R d) and x4=y let 

Then the integral 

fO I mx,ya = a(tx+(1-t)y)dt. 

ffK(x-Y)[, nmj]Y § (5.1) 

is well-defined and determines an (n+2)-linear form W. 

THEORmVI 3. For each 6 > 0  there exists ca such that for all n>0  

(n ) IW(fl ..... fn+2)l<~c~ n2+6 IIf, II~ IlL+die IIL+2112. 
\ i = 1  

(5.2) 

In order to see the difference between the d-commutators and the Calder6n 

commutators,  we shall indicate some elements of  the proof  when n=  1. We want an a 

priori estimate, valid for a, f ,  g E Co(Rd): 

f f K(x-  y) mx,y a g(x) f(y) dx dy <- cllall| llgll2 llfll2. (5.3) 

Observe that the kernel Ka(x,y ) defined for x~:y by Ka(x,y)=K(x-y)mx,ya does 

satisfy (1.2) with a constant Ilall| but satisfies (1.3) or (1.4) with a bound which 

depends not only on Ilall | but also on IIVa[l| and on the size of  the support  of  a when 

d > l .  Therefore a straightforward application of  Calder6n-Zygmund theory will not 

provide an estimate l ike (5.3) depending only on Ilall| We shall rely on some weaker  

kind of  smoothness for Ka, which the following lemma expresses.  

LEMMA 3. For all x o E R d, 0 < r < R  and a E Co(R d) 
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ly-y'l<r 

(5.4) 

Similar inequalities appear in [13] and [14]. Notice that it is the positive exponent 

in the factor (r/R) ~ which expresses the smoothness of mx.y a. 

Since (5.4) is dilation- and translation-invariant we may assume that R-- 1 and x0--0, 

and also that a is supported in {z,[zl~<l}. Then it is enough to show that 

f fz-~'l<r Imx:+~ a-mx,~+z, al2 dz dz' dx <~ cra+~3llall~. 
[zl,lz'l-<2 

(5.5) 

The left-hand side of (5.5) is translation invariant. Therefore, by Plancherel, (5.5) is 

equivalent to 

sup f f Imozei(">-moz, ei("~)12dzdz ' <~cr a+2/3. (5.6) 

izl,lz'[~<z 

Let ~ be fixed. Clearly 

Imo.~ e i<''e>-mo,z, e i<'~:>[ ~< Ill r, 

which gives a majorant crd+2[~[ 2 for the left-hand side of (5.6). This is sufficient as long 

as I~1~<r-2/3. When ]~l~>r-~3 an immediate calculation shows that 

:~ mo,zei< 'e>12 dz<~ ~ <~cr~3" 
1~<2 

This implies (5.6) and the lemma is proved. 

Recall that in Calder6n-Zygmund theory, smoothness assumptions such as (1.3) 

and (1.4) are used in particular to show almost-orthogonality of certain families of 

operators [7]. We are going to see that (5.4) expresses enough smoothness to permit the 

same thing. 

LEMMA 4. Let  (St)t> o be a family o f  operators given by kernels St(x,y) satisfying 

(1.22) and (1.23). Let St[a] be the operator given by the kernel St(x,y)mx,ya. Then the 

family o f  operators ((l-Pt)St[a](I-Pt))t> o satisfies the assumpthgns o f  Lemma CKS for  

some 6>0 with a constant depending only on Ilall| 
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Decomposing I-Pt as floQstds/s we see that it is enough to show for all s < l  and 

some e>0 

IIQs, S ,  [a] 112.2 <~ cs~llall++ �9 (5.7) 

Let 0ECo(R +) be supported in [I/2,2] and satisfy, for x>0, Ek~z0(2kx)=l and let 

00=P+k~>10(2k'). We write the kernel of astSt[a] as 

L(x,y)=L(x,y)Oo(IX--Y]~+~L(x,y)O(2k(X--~tY )).  
\ t / k<~o 

On the operator side this gives a decomposition of Q~tSt[a] as V(s,t,a)+ Ek<~oV(s,t,a,k). It 

suffices to establish 

IIV(s, t, a)112,2 ~< c s  + (5.8) 

and 

][V(s, t, a, k)112,2 ~ cs*2i*' (5.9) 

for some e'>o. To this effect we need to recall a basic fact: if an operator V has a kernel 

V(x,y) supported in a strip [x-yl<<.r, then 

IIvll~,2 ~< c sup ft~_zl< ~ J '  IV(x, y)[2 dxdy. (5.10) 

Writing out the kernels of V(s,t,a) or V(s,t,a,k), k<~O, and using (5.10) and (5.4), we 

obtain (5.8) and (5.9). 

It is easy to verify that if T is our original convolution operator, then (QtT)t>o 
satisfies (1.22) and (1.23) with 6= I. By Lemma 4 and Lemma 1 the integral 

z'] = (I-P,) [(Q,T) [al](I-P,) 

converges strongly and determines a bounded operator on L 2 of norm dominated by 

cllall| If T[a] denotes the first d-commutator, the integral fg| is weakly 

convergent and is equal to T[a], since a is assumed to lie in C~0. Thus we have a 

representation of T[a]-z'] as 

fo+| (5.11) 
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Notice that each of these three pieces is already smoother than the original operator, 

because of the factor Pt, and is closer to being a Calder6n-Zygmund operator. The 

point is now to take advantage of the formal symmetry of the expression (g, T [a]f )  in a, 

g and fand  to do for the couples (a , f )  and (a,g) what we just did for (f,g). Rather than 

pursuing the case of the first d-commutator, we next present the outline of the proof in 

the general case. 

6. Outline of the proof of Theorem 3 and treatment of the Calder6n-Zygmund part 

For t>0 we denote by Wt the (n+2)-linear form derived from W by replacing T by QtT, 
+ ~  

so that for f l , . . . , f .+2 E Co(Ra), the integral So Wt(fl ..... f.+2)dt/t is absolutely conver- 

gent and equals W ( f  1 ..... f.+2). From now on we shall implicitly assume that our 

integrals are truncated in order to ensure convergence. 

For eachf~, l<~i~<n+2, we write f i=Ptf, .+(I-Pt)fi  inside Wt(...). By developing we 

obtain 2 "+2 integrals, out of which exactly one has only f i t ' S  and n+2 have o n e  (l-Pt) 
and (n+ 1) Pt's. We shall treat the 2"+2-n-3  remaining terms in the next section using 

variants of Lemma 4. For the n+3 first terms we are going to see that Theorems 2 and 

2' apply. 
+ao We denote by U (~ the (n+2)-linear form S0 Wt(Ptfl ... . .  Ptf,+2)dt/t and for each 

iE [1,n+2] we denote by U (~ the (n+2)-linear form 

f dt f~~ 
Jo +| Wt(Ptfl  ... . .  P t f i - l ' ( l -P t ) f i 'P t f i+!  ..... P t f "+2) 'T -  Jo U~t'3(fl ..... f"+2)dt/t" 

LEMMA 5. For each iE [0,n+2], U ~ is a 6-(n+2) SIF for  some 6>0. Moreover 

given e>0, there exist 6>0 and c>O such that IU~ 1) ~, where c does not depend 

on i or n. 

o, d To fix ideas let us write for instance the definition of U (~ I f f  I ..... f,+2 E C O (R )  then 

ff'ff IO U(~ ..... f.+2) = (Qt T) (x, y) mx,y Pt Ptf.+ I (X) Ptfn+2 (Y) dx dy dt. 
L'=I J t 

It is clear that the size estimates (1.2) involved in computing IU(~ hold with a constant 

independent of n. And for any fixed 6<1, since QtT satisfies the bound in (1.21), the 

constants in (1.3) and (1.4) grow at most like n. Using (1.5) we see that for 6 small 



72 M. CHRIST AND J.-L. JOURNI~ 

enough they grow at most  like n * for any e>0. This remains true uniformly for Io%,  
iE[1,n+2].  

LEMMA 6. For each i E [0,n+2] U ~ has the WBP and I t/01w <-c,(n+ 1) * where e>0 is 

arbitrary and c~ is independent  o f  i and n. 

Notice that i f f t , .  | d �9 .,f~+2 e c~ (R). 

I W,(fl ..... f~+gl-< cllfjll2 IIA II~ ] 1  IIf, ll~ 
t.j,k 

(6.1) 

where c is independent of  j ,  k or n. Indeed only size estimates are involved in proving 

(6.1) and these are uniform in n. 

Suppose we want to verify the WBP of  U ~ at scale s. Then by (6.1), if t>~s the 

integrand 

will be dominated by 

~t~  l . . . . .  P s f  j - l , f  y, P Jj+ , ... . .  fk .... .  P s f  ~+ 2) 

cI - [  IIf~ll~llf~ll2 IIP,A II2 if k~:i. 
t.y,k 

Otherwise j~:i. In both cases we obtain a majorant 

m=~ IIfm 

which is integrable on [s,+oo]. When t is less than s the gain comes from the fact that 

(QtT)I =0. More precisely if Xt denotes either Pt or 1-Pt ,  not  necessarily the same at 

each occurrence, 

I Wt (Ps Ptf l  ... . .  Xtfy .... ,Xtfk .... .  Ps Ptfn+2)l 

<~ c n ( t ]  ' sd  ] 1  Ill, II. (ll~ II~ + sllV~ I1~) x (IIA II~ + sliVA IL), 
k s /  t.j., 

(6.2) 

where c depends only on 6 <  1. In order to get a growth rate of n ~ it suffices to use (6.2) 

when t<~s2 -n" and to use the trivial bound given by (6.1) for t between s2 -n' and s. 

Since U <~ 0~<i~<n+2, are r SIF 's  we can apply Theorems 2 and 2'. Notice 
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that ~ ~  for all i and j by translation invariance. When i=0, this plus Theorem 2 

imply that IIU~~ 2+'. When i~>l, it is easy to see that N~~ if k*i  since 

( I -P,) I  =0. Theorem 2' yields IIU~~ 1Y +~. Therefore the total contribution of the 

Calder6n-Zygmund part is majorized by c~(1 +n)2+L 

7. The rough part 

We are left with the 2n+2-n-3 terms for which at least two ( l -Pt ) ' s  occur. In order to 

prove polynomial rather than exponential growth we shall group them according to the 

last two indices for which (I-Pt) occurs. This gives us (n+2)(n+l)/2 packets of the 

following form: for each l<~j<k<~n+2, 

Wj, k(fl . . . . .  fn+2)  

f0 "1"~ �9 w , ( f l  . . . . .  g _ , , ( i - e , ) g , e , g . . ,  . . . . .  . . . . .  e , fn§  t 

We claim that, whenf~ ..... fn+2 E C~(Rd), 

I VCj,~ (fl ..... f~+2)l ~< cE (n+ 1) ~ IIf, ll~ IIL+,II2 IIf~+elh (7.1) 

where cE is independent of j,  k and n. 

We first consider the case where (j, k)=(n+l,n+2). Observe that in this case 

Lemma 4 applies immediately with the following change. The kernel St(x, y)mx, y a is 

replaced by St(x, y)IIi~=! mx, y fi. By what amounts to Leibniz's rule, an analogue of (5.4) 

holds for HiL I mx, r f  i in the following form, for all x 0 in R d and R>0: 

"Y'Y'eB(xo'R) mx.yf i - -H mx, y, fi dxdydy'  <~cn 2 rdR 2d '=' '=' l--I;=, IIf, IIL. (7.2) 

Moreover as in (1.5), cn2(r/R) 2/3 may be replaced by c,n'(r/R) "/3 for any e>0. Lemma 

CKS may then be applied as in Lemma 4 to establish (7.1). 

For all other pairs (j, k) we shall reduce (7.1) to an L 2 estimate, where the L 2 

functions are fj and fk. There are two cases, according to whether k<~n or 

kfi {n+ 1, n+2}. We consider first the casej<k<.n, and as is readily seen, we may then 

restrict out attention to the case (j, k) = (n -  1, n). 
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If we f i x f  1 . . . . .  f~ in C~0(R a) then the bilinear form which to (L+I, L+2 ) E [Co(Rd)] 2 

associates Wn_l,n(fl ..... f~+2) is a &-BSIF with norm bounded by caFIiLl[lfill| By 

Theorem A, plus dilation and translation invariance of  W~_Ln, it will suffice to show the 

following: 

For  any f~+l, f~+2 E Co(R a) supported in B(0, 1) 

n+2 

IW~-~,~(f~ . . . . .  f~+2)l ~< c I-[ IIf, llo. (7.3) 
i=1 

To prove (7.3) we decompose  the integral J'~-| ... dt/t defining W~_I. ~ as J'~-| ... dt/t 

+S~ ... dt/t. For the first part we observe that if t~>l 

IIe, L+dl2 ~<ct-w211L+,l[| and IIP, L+2112~ <ct-a/2llL+211| 

because of  the restriction on the supports offn+l and f~+2. It follows by (6. I) that for all 

t>0 

I W t ( f l  . . . . .  L-2, (l-Pt) L-l, (I-P,) L, etL+l, PtL+2)I 

<" c(]-I llf~l'| (t-a ̂  
(7.4) 

which yields (7.3) for the part j'~| ... dt/t. When t~<l notice that P, fn+l and Ptfn+2 are 

supported in B(0, 2) if we assume q0 to be supported in B(0, 1). It follows from the 

definition of  the d-commutators  that only the values off~_~ and f~ in B(0, 3) will affect 

the left-hand side of  (7.4) when t~< 1. So we may assume that fn-i and f~ are supported in 

B(0, 3). To handle j'~.., dt/t we just  have to prove 

fo' Wt(fl ..... f~-2, (I-Pt)  f~-l, (I-Pt) f. ,  Ptf~+m, tY~+2 ~ )dtt P 

(7.5) 

Using Lemma CKS we see that it is enough to prove that for sE]0,1[  and for some 

ao>O 

' W t ( f l  . . . . .  fn-2, Qstf, g, Ptfn+l, Ptfn+2)l~csa~ rI Ilf, lL)llfll2llgll2. (7.6) 
\ i * n - l , n  
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The left-hand side of (7.6) is dominated by 

c ( f f  wt(x-y)lmx.yQstfllmx.ygldxdy ) i.I~_~,n ]lf,.ll| 

w h e r e  wt~wt},t is as in Lemma 2 and 6 is the exponent in the estimate (1.3) for the 

kernel K of T. By Cauchy-Schwarz it is enough to prove 

ffw,(x-y)lmx, yg[2dxdy<~cl[g,, 2 (7.7) 

and 

f f w,(x-y)lmx, y Qs.tf]2dxdy <~ Ilfll~. (7.8) c s2ao 

Both inequalities are translation invariant and are therefore equivalent to 

f wt(u)lmo,. <~ c (7.9) ei(~, " ) [ 2 d u  

and 

( f wt(u)lmo, u e i<'' ")12du) [~(st~)l 2 ~< cs 2~176 (7.10) 

The inequality (7.9) is obvious. To prove (7. I0) we may assume I~(stOl>~s ~176 which 

implies I~[>-cs~176 since l~0(,7)l<~cl,ll for all r/E R d. There exists fl=fl(t~)>0 such that 

f w,(u)lmo, u <~ ei(~, ' )12du c(tl~l) -a 

for all t, ~. If a 0 is chosen to be sufficiently small then [~l>~cs%-lt-I implies 

(/l~l)-a <~ cs~(l-~ < cs~ 

This concludes the study of the case where j<~k<~n. 
We turn to the case wherej~n<k, and restrict our attention to the representative 

ca se j=n  and k = n + l .  It will suffice to prove 

p .  )dt[ }fo| ..... fn_,, (l-Pt)f~, Qstf,,+l, -Ti  c,~ iif, 
i=l 

IIL+III211L+2112 

(7.11) 
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for some a>0,  for 0<s~<l. Actually (7.11) holds with a factor of n * on the fight, but 

since there are only 2n terms of this type, the bound n suffices for our purpose. 

With fl . . . . .  f ,  6 Co(R a) fixed define a linear operator U t by 

(g, U , f )  = W~(fl ..... f~-t, (l-P,) f~, g,f),  

so that 

dt W'(fl ..... f"-t'(l-P')f"' (I--P')I"+I' P'f")t = <fn+t' (I--P,) U, Ptf.+2) 

~o | fot d s d t  = {In+l, QstUtPtfn+2--Z)--~-. 

By (1.19) it will suffice to show that for s6(0,  1] 

fO ~ a 2 2 IlQs, U, PrflI~ <~ cs n Ilfl12, 

assuming that [[f~[[| for all i<n. The left-hand side is majorized by twice the sum of 

fo| 1}P'f(x)12dxdtt dl{Q,, u, (7.12) 

and 

fo| f~ I[O-.,t Ut-(Q_.,t U, 1)]Ptf(x)12dx dt. (7.13) d t 

We first treat (7.13). The first claim is that 

IIt2s, u,P, fII2 +II{ Q, u, 1} etfll2-< cn:llfll2. (7.14) 

Indeed the kernel of the linear operator Q_.,t Ut satisfies (1.22) uniformly in n and s, 

which suffices to give a bound of c[Ifll2. An application of Lemma 3 and of (5.10), as in 

the proof of (5.7), yields the extra factor of  s a for the L 2 operator norm of Q~, U, f ,  at the 

expense of a factor of n. To bound {Q, U t 1 } P, f a s sume  by scale-invariance that t= 1. 

Since the convolution kernel for P1 has compact support, f may be assumed to be 

supported in a ball B of radius 1, in which event Ilet fll| Therefore it suffices to 

show that 
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This follows readily from Lemma 3 and (1.20). The operator [{)st Ut-{Qs, Utl}]Pt 
annihilates constants, and its kernel satisifies the second bound in (1.23) uniformly in s 

and n, so Lemma CKS plus (7.14) imply (7.13). 

To derive (7.12) we must show that 

IIQ,, u, I Il~ ~ C:nllLll~, 

assuming henceforth that IIf,.ll| for all i<n but allowing f n to vary freely. By scale- 

invariance it suffices to show that for each ball B of radius I, 

folfB I(~stUtl)(x)'2dxdt<~csan2''f"''~'t 

Consider the linear operator V, defined by U t I=V,(I-P,) f,. Its kernel kt(x, y) takes the 

form f& kt,,(x, y) dr where 

kt, ,(x, y) = r-dlt(r-l(x--y)) I-I mx, w fi (7.15) 
i<n 

with w=w(x, y, r)=x-r-I(x-y), I t denoting the convolution kernel of Qt T. 
Let t>0  be a small exponent and let g be the restriction of f~ to the ball of radius 

S-' concentric with B. From (7.15) follows easily 

Ik,( x , Y)l ~< c~c--Yl-d(t-llx--Yl A (t-~lx--Yl) -~) (7.16) 

where c < ~  and 6>0 depend only on T. Therefore for all t~<l 

ItO-st v,( I-P,) (fn--g)IIL'~B)<~ CS~FIILII~ 

for some y(e, 6)>0, and so 

fo'fBIQ,tVt(l-Pt)(f~-g)12dxdt ~< cs2'llLllL. 
t 

Therefore it suffices to show the existence of fl>0 such that for all g E L 2, 

fo| fR d IO_.~t Vt( l-P,) g(x)12dx dt <~ 

since in the present situation Ilgll2<.cs-~a/211LIl~ and we may choose e=fl/2d. To simplify 

the discussion let us suppose temporarily that each I t is supported in (Ix-yl<~ct} and 

still satisfies (1.22) and (1.23). Then kt, ~ is supported in {[x-yl<~ctr}. It follows from 
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(7.2) that for any 7>0  there exists Q>0 such that for all t E (0, ~),  r E (0, 1], r<.tr and 

x 0 E R d, 

fffi ,Y,Y'eB(xo, tr) mx, w f i - H  mx. dxdydy' <~cn2(r/tr)Or-qrd(tr) 2d i<n ~-y'J<~r 
where w(x,y, r) and w'(x,y', r) are as in (7.15). Moreover the same bound holds if the 

roles of the x and y variables are interchanged, even though mx, w ~ is not a symmetric 

function of (x,y). Let  Vt. ~ have kernel kt, ~. Combining (7.16) and (7.17) with (5.10) 

yields 

]10ut V,, , ( l - e  r) fll2 <~ cn(s/r^ t'/tr^ 1)*llfl12 

for some e>0. From Lemma CKS we obtain, for s~<r, 

(fo| r ( l -P t ) f ]2~ )  1/2 2<~cn(S)~(l+log(r-'))Hfll2 �9 

Then by Minkowski 's integral inequality 

112 <<'r 

with a smaller value of e. On the other hand 

(fO ~ foSI/2ostWt, z(i_Pt)fdT 2_~)1/2 2 ~ 0  sl/2 (fo~lOstWt, t(i_pt)fl2~) 

fo 1/2 <<. cn(1 +log (r-1))llfll2 dr 

cnsl/4llfll2, 

1/2 2 dr 

concluding the proof under our assumption on the support of I r To treat the general 

case it suffices to decompose each I t as in (5.8) and (5.9) and to apply the above 

argument to each term individually, as in the proof of (5.7). 

8. LP-boundedness for the d-commutators 

P In classical Calder6n-Zygmund theory, L -boundedness for p E ]1, + ~ [ ,  p4:2, usually 

follows by interpolation between L2---~L 2 and L=---~BMO or H1---~L 1 or Ll---~weak-L l 
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estimates. However the d-commutators  actually fail to map L = to BMO for general 

a E L =, and it is not presently known whether  they are of  weak type (1, 1). Nonetheless  

LP-boundedness can still be proved for p C ] 1, + oo[ as a consequence of  the following 

lemma, already used elsewhere [15], [16] to show LP-boundedness of operators slightly 

outside classical Calder6n-Zygmund theory.  

LEMMA 7. Let (Zr)t> 0 be a family o f  operators whose kernels satisfy (2.1). Suppose 

that the integral f ztdt/t defines weakly a bounded operator on L 2, and that for all 

sE]0,  1], f ztQstdt/t defines weakly a bounded operator on L z, o f  norm dominated by 

cs ~ for some e>0.  Then 5 zt dt/t is bounded on L p, p E ] 1,2]. 

To prove this lemma, observe that 5 zr dt/t-5~ [5 z, Qs, dt/t] ds/s is a bounded opera- 

tor 5 ztPrdt/t. Its kernel satisfies (1.4) and therefore 5 ztPr dt/t is of weak-type (1, 1) and 

bounded on all LP's, p E ]1,2]. Observe also that the kernel of  5 zt Qst dt/t satisfies (1.2) 

uniformly in s and (1.4) with a constant  c~ s -~. Hence  5 zt Qst dt/t is of  weak-type (1, 1) 

with a constant c 0 s -~ for all 6 > 0  and bounded o n  L p, l<p~<2, with a norm majorized by 

s 'p for some ep>0, by interpolation. Lem m a  7 is proved. 

THEOREM 4. The d-commutators are bounded on L p, p E ] l ,  +oo[ with a norm 

cp, 6(n+ l)Z+Ollall"~ for all 6>0.  

We apply Lemma  7 with z t defined by (g, z t f ) =  Wt(a . . . . .  a, g , f ) .  A careful exami- 

nation of  the proof  of  Theorem 3 shows that the assumptions of Lem m a  7 are satisfied. 

This proves Theorem 4. 
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