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w 1. Introduction 

We give a new proof of several basic properties of plurisubharmonic functions on C ~ by 

making a systematic use of the notion of Dirichlet forms associated with closed positive 

currents of bidegree (n-1 ,  n-1) .  We further extend some of the properties stochastical- 

ly and also exhibit some specific sample path behaviours of the related conformal 

diffusions. In the classical case that n= 1, there are notions of the Lapiace operator, the 

Green function, the Dirichlet integral and the Brownian motion, each of which is 

known to play an equivalent role to the subharmonic function in classical potential 

theory. In higher complex dimensions, we may think of the family of the above 

mentioned Dirichlet forms and the family of the conformal diffusions as the counter- 

parts of the Dirichlet integral and Brownian motion respectively. Thus we may well 

expect that the Dirichlet space theory initiated by Beurling and Deny ([4], [8]) should 

work intrinsically in understanding and developing the theory related to the plurisub- 

harmonic function. 

First of all we describe the preliminary notions and notations. Let D be a bounded 

open set in the complex n-space CL A function u on D taking values in [-o0, + oo) is 

called plurisubharrnonic (psh in abbreviation) if u is locally integrable on D with respect 

to the Lebesgue measure (denoted by V), 

is a positive distribution for any ~ E C n and 

u(z) = inf V-ess sup u(z'), zED, 
U(z) z' E U(z) 



172 M. FUKUSHIMA AND M. OKADA 

U(z) ranging over all neighbourhoods of z. The real L p space based on the Lebesgue 

measure V is denoted by LP(D). ~(D) will stand for the set of  all psh functions on D and 

we let ~b(D)=~(D)NL~(D) .  We use the notations d = a + ~  and dC=i(O-a). Thus 

02 u . . . .  
dd~u = 2 - -  taza ̂  az~ 

sends u E ~(D) into the space of  closed positive currents of bidegree (1, 1) (see Lelong 

[16] for the latter notion). Given u E ~(D)NLtor and a closed positive current 0 of 

bidegree (r, r) ( l <-r<.n - I), the formula 

for test forms ~p of bidegree ( n - r - 1 ,  n - r - 1 )  defines a closed positive current ddCu^ 0 

of bidegree (r+ 1, r+  1). Thus ddCAddCu2^ ... AddCur is well defined as a closed positive 

current of bidegree (r, r) for any u 1, u s . . . . .  urE ~9(D) NLIo~(D), l<~r<.n. For E ~ D ,  we 

denote by u E the upper envelope 

ue(z) ---- sup (v(z): v E ~(D), v ~< 0 on D, v ~< - 1 on E} 

and by u~ its upper regularization: 

u~(z) = lim ue(z'), z E D .  
Z '....> z 

We then introduce the set function C~, on D by 

= - f  u~(z) dV(z), C~,(E) E c D .  

This type of set function was considered by Cegrell [5], Bedford-Taylor [3] and also in 

[10], [11]. A set N e D  is said to be pluri-negligible if there exists a locally uniformly 

bounded family of psh functions such that, denoting the upper envelope of the family 

by u and the upper regularization of  u b y  u*, N is contained in the set {zED:  

u(z)<u*(z)}. A set N c C "  is called pluripolar if each z E N admits a neighbourhood U(z) 

and a function pE~9(U(z)) such that NN U ( g ) c p - I ( - ~ 1 7 6  We shall write E c c D  to 

indicate that /~ is a compact  subset of D. 

Given a closed positive current 0 of  bidegree (n -1 ,  n - l ) ,  we let 
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~~ ~) = fDdCp^cle~^O, cp, ~pE Co(D). (1.1) 

~o is then a non-negative definite real symmetric bilinear form on C~(D) satisfying a 

specific Markovian property and local property (see Appendix (w 9) for these proper- 

ties). In accordance with the authors' previous paper [12], we use the following term. If 

~0 is closable on L2(D; m) for some positive Radon measure m on D with supp [m] =D, 

then we say that (0, m) is an admissible pair. In this case the closure of ~0 is denoted by 

~0 again and the domain of the closure is designated by ~-0. ~0 (resp. ~0) is then a 

Dirichlet space (resp. Dirichlet form) on L2(D; m) possessing Co(D) as its core. The 

terms "~~ and "~~ will be used in relation to the capacity 

defined by the metric ~0(q~, cp)= ~0(q~, q~)+(q~, qg)L2(O;m) ([9]). 

From w 3 to w 6 of the present paper, we make use of the Dirichlet forms ~0 for 

suitably chosen currents 0 to prove the five properties of psh functions listed below 

which have played quite important roles in resolving complex Monge-Amp6re equa- 

tions ([1]. [3], [7], [11]), in developing the relevant potential theory ([3], [18], [19], [20], 

[21]) and also in the study of conformal diffusions ([10]. [11], [12]): 

(P. 1) continuity of the measure v(~176 A ddCv (") under monotone (increasing 

or decreasing) limits of v (~ v ~ . . . . .  v (") E ~(D) n L~o~(D). 

(P.2) comparison theorem: 

u'vE~b(O)' liminf(uf~)--v(~))~>0r ~ f,,<o~ (dd~u)">~ I. {u<v, (dd~v)"" 

(P.3) minimum principle: 

u, VE~b(D), (ddCu)"<.(ddCv) ", liminf(u(~)-v(~))~>0 =~ u(z)~v(z) ,  zED.  
~--)OD 

(.P.4) pluripolarity of pluri-negligible sets. 

(P.5) C~,'quasi'continuity of psh functions. 

The first four properties were obtained in Bedford-Taylor [3] by using the property 

(P.6) CaT-quasi-continuity of psh functions, 

where the set function CBT (which we call the Bedford-Taylor capacity) is defined by 

  T o:s p{f 1 / 
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for compact sets E ~ D .  The property (P.5) was derived in [10] also from (P.6). But our 

present method of proving the listed five properties does not require (P.6). As we see in 

w 4 the notions of quasi-continuity in CBT and C~ are actually equivalent. 

Given an admissible pair (0, m), we show in w 2 that any u E ~(D) 17 L~oc(D) is an if-  

quasi-continuous function in ~or and that this correspondence into ~-~or is continuous 

under the monotone (increasing or decreasing) limit. We next consider the family 

~+(h)=(pE~b(O): p(z)=q(z)+61zl 2, z E D  for qE~b(D) and 6 > 0 } .  (1.2) 

It will be seen in w 2 that, if fl is given by 
0 = ddCp(l)A...AddCp (n-I), p(t) . . . . .  ptn-1)E ~+(D), (1.3) 

then the pair (0, V) is admissible. This choice of the underlying measure (rather than 

O^ddr 2) will be crucial in later applications. 

In w 3, we give a new proof of the property (P. I) as a straightforward application of 

the analytical results of w 2. We further present a variant of (P. 1) by generalizing the 

factor v t~ and thereby prove the right directedness of the space of subsolutions of a 

Monge-Ampere equation. 

From w 4 however, we add probabilistic considerations in terms of the diffusion 

process M~ ~ associated with the Dirichlet space (aM-~ g0). M s is called 

conformal because the stochastic process (Z t, P ~  is a conformal martingale for each z 

([10, 11, 12]). 

A stochastic extension of the minimum principle (P.3) has been given in [11] by 

employing the stochastic boundary limits along sample paths of the conformal diffusion 

M e for fl given by 

0 = (ddr "-l, u E ~b(D), vE ~+(D). (1.4) 

We show in w that an analogous extension of the comparison theorem (P.2) is 

possible. But this time we take, as an underlying measure, the Lebesgue measure V 

rather than O^ddC[z[ 2. Our result of w 4 will imply yet another version of Theorem 2 of 

[111. 
Turning to the proof of (P.4) and (P.5), we denote by ~6 ~ the Dirichlet form on 

L2(D) for O=(ddCp) ~-1, p E ~+(D). The associated conformal diffusion is denoted by 

M~ ~,P~).  In w we shall prove the properties (P.4) and (P.5) along with the 

expression 
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f 
C#(E) = sup | P~z)(Oe < + ~) V(dz) 

p E ~+(D) JD 
(1.5) 

holding for a strongly pseudo-convex domain D and any Borel EcD. A key step is in 

w 5, where we prove (1.5) for compact E by estimating C#(E) from above probabilisti- 

cally. At this= stage, we use the fact that (ddCu~)"=O on D - K  for compact K (Lemma 

4.4). Lemma 4.4 was proven in [3; Proposition 5.3(i)] and the proof required three 

things: properties (P. 1), (P.3) and an existence theorem for the Monge-Amp~re equa- 

tion (dd~u)n=0 on a ball with smooth boundary data [l: Theorem 8.1]. The last theorem 

is the only fact we need to employ which is not directly linked to our Dirichlet forms ~0. 

In w 6, we prove (P.4) and (P.5) as direct applications of the upper estimate of w 5 

and the continuity property (P. l). C# then becomes a Choquet capacity by (P.4), and 

(1.5) extends from compact sets to Borel sets. The expression (1.5) for compact E has 

been shown in [12] for a slightly different family of diffusions M 0') but the very validity 

of the property (P.4) was presupposed in [12]. We emphasize that the probabilistic 

argument in w 5 involves only an elementary principle in the diffusion theory--the 

stochastic super-mean-valued property of ~-superharmonic functions, which is formu- 

lated in the appendix (w 9) in the framework of the general Dirichlet space theory for the 

sake of convenience for reference. This principle was also utilized in the direct proof of 

(P.3) in [11]. The probabilistic argument in w to prove (P.2) is even simpler in that it 

only involves computations of resolvents. 

The expression (1.5) means that a set is pluripolar iff it is unattainable by the 

diffusion M 0') for any p E ~+(D). In w 7, we consider a simple example where 

O : {z ~ C2: Izll2+lzzl 2 < 3} 

E =  {zEC2: yl =Y2=0,  Ixd< 1, Ixzl< 1}, 
(1.6) 

E is not pluripolar but polar with respect to the Newtonian capacity of R 4. We can see 

that the conformal diffusion M ~ associated with p(z)=�89 2 (E ~+(D)) is 

actually attainable to the set E. We explain how the typical sample path of M ~ behaves 

differently from R4-Brownian motion. 

Up to w 7, we deal with the minimum Dirichlet space ~0 in the sense that Co(D) is a 

core of ~-~. w 8 concerns the behaviours of g~O(q~, 7)) for q0, 7) E C~(/)). We study a related 

closability and related inequalities involving a surface integral. 

The authors would like to express their gratitude to professor P. Malliavin who 
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first called their attention to the relation between Dirichlet forms and psh functions. 

They also owe to Professor C. O. Kiselman for stimulating discussions on the subject 

of w 

w 2. Basic relations between S ~ and ~9(D) 

Given a closed positive current 0 of bidegree (n-: 1, n -  1), we define the bilinear form S ~ 

on Co(D ) by (1.1). An integration by parts yields 

v2) = " fo q~ddCV2AO' % V/C CO(D). (2.1) S~ 

which implies (cf. [12; Lemma 1]) 

is closable on L2(D; OAddClzl2). (2.2) 

Together with this, we shall utilize the following Schwarz inequality and Poincar6 type 

inequalityi which are found in [18]: 

(2.3) 

(2.4) qo2ddeq AO <~ 811qll~ s~ ~), q ~ ~b(D), q0 E CO(D), 
. ID 

(2.3) particularly implies 

S~ fo~2d~oAdC~oAO+2 fo~o2d~AdC,JAO, rlECo(D), cpEC| (2.5) 

LEMMA 2.1. Consider an open set D iceD and a sequence {ok} of functions on D 

such that vkE ~(D1)fl C~(DI) and {Ok} is decreasing and locally uniformly bounded on 

D1: Then, for any r 1E Co(D) with supp [r/]cDl. {r/vk) is a Cauchy sequence with respect 

to S ~ 

Proof. We may assume O<<.vk<.M on K=supp[r/] for some positive constant M. 

Since 

ddC(v~)A 0 = 2dvkAd=vkA O+ 2v k ddCvk A 0 >! 2dvkA ~VkA 0 
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on K, we have 

where C depends only on )7 and n. Hence,  if we let ak= ~o(riok, r/ok), then we have from 

(2.5) and the Schwarz inequality (2.3) 

supa#<  ~ ,  l i m  ( rl(vt-vk)drlAd~vk AO = 0. (2.6) 
k Lt--,~ .ID 

Since 

we have 

where 

Hence 

Now, for k<l, 

$O(rlVk--riVl, rlVk--riV l) = at-a~ + 2 {a k -  ~~ r/Vk)}. 

fo rl2(vt- v k) ddCvk ^ 0 <~ O, 

ak-- $O(riVt' riVk) = fO rI(vt- vk) ddCOlvk) ^ 0 <~ b L t 

bk, l= Ior](Ol--Ok)vkddCriAo+2 foq(Ol--Ok)driAdCVk^O. 

~O(OVk--riVt, riVk--riVl) <~ at--ak + 2bk, t, k < I. (2.7) 

In view of  (2.6), {ak} is bounded and bk. t---~0 as k, l---> ~.  Therefore (2.7) means first that 

the finite limit limk_~ a k exists and secondly that (riUk} is ~~ q.e.d. 

For  v E ~9(D), denote by v ~ the function u*a~ with the mollifier a~. On each open 

set D ~ c D ,  v ~ then belongs to ~(DONC~(DO and decreases to v on Dl as 6 ~ 0 ([16]). 

Therefore the next theorem is immediate from Lemma 2. I and (2.1). 

THEOREM 2.2. Let  (~o, ~o) be the Dirichlet space for  an admissible pair (0, m). 

Then any v E ~(D) n L~oc(D) is an ~~ function in ~~ c. riv ~ is ~~ 

gent to rio as r) ~ 0 for  any 7? E Co(D). Further 
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t "  
SO(~v, cp) = - Jo q~ddCv ̂  O, 

whenever ~ E Co(D) and ~= 1 on supp [qo]. 

q9 E Co(D) (2.8) 

We now turn to the proof of the following theorem. 

THEOREM 2.3. Let (~o, ~o) be the Dirichlet space for an admissible pair (0, m). 

Consider v k E ~(D) f) LIve(D), k= l, 2 . . . . .  and v E ~(D) n LI~(D) such that { ok} is mono- 

tone (increasing or decreasing), locally uniformly bounded and limk._.| o,(z)=v(z) for 

m-a.e, z ED. Then r/vk is S~ to rio as k-->oo for any r~ E CO(D). 

Proof. The assertion being local, it suffices to prove that each point z E D admits a 

neighbourhood U such that r/ok is an So-Cauchy sequence for any r/E Co(D) with 

supp[r/]cU. Therefore the following reduction is possible. Take open sets U and O 1 

such that UccDIc-cD and DI is a strongly pseudo-convex domain with a determining 

smooth psh function Q: D~={Q<0}. According to [3; p. 5], there exist then a compact 

set K with U~KcD1,  constants A>~0, B and a sequence {0k} of uniformly bounded 

monotone (increasing or decreasing) psh functions on D1 such that 0k=Vk on U and 

Ok=AQ+B on D I - K .  Take next an open set E with K c E ~ D 1  and a function ~E Co(D) 

such that ~--1 on E and supp [~]~Dl. 

We see from (2.5) and Theorem 2.2 that, for r/ECo(D) with 0<~r/<~l and 

supp [r/] c U, 

~~ r/(vk-vt))= ~~ r/~(O,-~)) 

JD ~2(vk- Vl)2dr/ A dr ^ 0 + 2 $o(~(f~,_ Or), ~(Vk-- Vt))" 2 

Hence it is enough to show that {~0k} is $~ To this end, we first assume that 0k 

is increasirig. 

By (2.1), we have for k<l 

which is not greater than 
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because O~ is increasing in k and t0~ is independent of k on D - E  for sufficiently small 

6>0. Consequently 

0 ^6 ^6 

By letting 6 $ 0, we get on account of Theorem 2.2, 

~g~ ~f~k-tOt) <~ ~~ ~Ok)-- ~gO(tot, tot) , k < l, 

which means first that ~~ k, ~0 k) is decreasing and secondly that {t0k} is ~~ 

Assume next that 0k is decreasing. Then 

~gO(tOk--tOt, ~Ok--tOt) <~ ~o(~ot, tot)-- ~0(~0 k, ~Ok), k < 1, 

and ~~ k, ~Ok) is increasihg this time. Let 0=limk~ = O k, thenO E ~b(D~) and we can see 

as above 

~~ ~O~) ~< ~~ t0~) ~< ~~ t0 ~) and ~~ t0k) ~< ~~ ~0) 

by letting 6 $ 0. Therefore {~Ok} is ~~ again. q.e.d. 

By virtue of Theorem 2.2, the functions ok and v in Theorem 2.3 are ~~ 

continuous. Further the function v 0 defined by v0(z)=limk_,| ok(z), z ED, is also ~o_ 

quasi-continuous because v k converges to v 0 in the topology of ~~ But V=Vo m-a.e. 

by assumption and consequently V=Vo up to an ~-polar  set. 

THEOREM 2.4. Let  ( ~o, ~o) be the Dirichlet space for  an admissible pair (0, m). I f  

m is absolutely continuous with respect to the Lebesgue measure V, then any pluri- 

negligible set is ~~ 

Proof. By Choquet's lemma, any pluri-negligible set is contained in the set 

N=  {v0<v}, where v0 is the limit function of some increasing sequence {ok} of locally 

uniformly bounded psh functions and v is the upper regularization of v0. In particular, v 

is psh. Since V(N)=0, we have m(N)=0 by the assumption. Hence we are in the 

situation of Theorem 2.3 and we get Cap~ by the preceding observation, q.e.d. 

As our next task in this section, we consider the family ~+(D) of psh functions and 

the closed positive current 0 of bidegree (n-1 ,  n -1 )  defined by (I .2) and (1.3) respec- 

tively. 
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THEOREM 2.5. I f  O is de f ined  by (1.3), then (0, V) is admissible.  In other words, go 
is closable on L2(D). 

Proof.  We can write pO) . . . . .  p(,-x) E ~+(D) as 

p , )  = q~)+61zl z . . . . .  p~,-~) = q(n-l)+61zl 2, 

We then have 

qO) . . . . .  q("-x)E ~b(D), 6 > 0 .  

where 

n-1 
ddCp(')A ,.. Addr l) = 6"-'(ddr 6,,-t-, ~ 0 i ' i*  

I =  l 1 <~i I < . . . < i l < ~ n -  I 

oi, ... it __ ddc q(i,)A . . . ̂  ddC q(O A ( ddClz]2),,-t-1 

and accordingly 

with 

n - I  

gO(q3, ~D) = 6 n-I ~(0)(q?k ~)  + Z (~n-l-1 ~ gil""il(q), ~l)) 

l= 1 1 ~i I <... <it~n- 1 
(2.9) 

f ~o)(q~, 
~p) = jodq  ~ ̂  dCV2 ̂  (ddClzl2).-I (2.10) 

g~...i,(q~. ~o)= go', ',(q~, ~0). 

Suppose that a sequence q~k E Co(D) constitutes an g~ sequence and con- 

verges to zero in L2(D). Then {qgk} is ~~ and gi' i~-Cauchy as well. But ~0) is 

a constant multiple of  the usual Dirichlet integral which is closable on L2(D). Hence we 

have ~0)(q0k, q~k)---~0, k---~.  On the other hand, the Poincar6 type inequality (2.4) with 
q = q  (iO and O=(ddC]z[2) n-1 reads 

fo~2Oi'Adde[zl 2 <~ 8llq(i')ll=~(~ 1 ~< ~< n - 1 .  q~), i 1 

Therefore q~k---~0 in L2(D; Oi'Addr z) and consequently g"(q~k, q~k) --~0 as k---~+~ in 

view of (2.2) for 0 = 0  i', l<~il<~n - 1. Inequality (2.4) again reads 

fo~020 i li 2 ddClz[2 <~ [qO,)[[= gi2(q~, q~), 1 ~ < ~< - 1 ,  A 8[ il i2 n 
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which, together with (2.2) for 0 = 0  ili2, means 

lim ~il i2(q~k ' 9k) = O. 
k---~ oo 

Using (2.2) and  (2.4) repeatedly this way, we see that 

lim ~il ... i,(gk, ~0k) = 0 for 1 ~< i~<... < i  t ~< n -  1, 1 ~< 1 ~< n -  1, 
k---~ oo 

as was to be proved, q.e.d. 

As a corollary of  Theorem 2.4 and Theorem 2.5, we get the following property 

apparently weaker  than (P.4): 

COROLLARY 2.6. I f  O i s ' g i ven  b y  (1.3), t hen  a n y  p lu r ineg l i g ib l e  s e t  is ~~ ~o 

be ing  c o n s i d e r e d  on  L2(D). 

If 0 of  (1.3) is expressed as in the proof  of Theorem 2.5, then inequality (2.4) for 

q=  Izl 2 and 0= (ddClzl2) ~- 1 implies 

fD 2~ c pzdV <~4 . _ ln ! 6 . _ l  ~~ q~), ~ E C o ( D ) ,  (2.11) 

where 7=SUpzeo Izl 2. The same inequality for q=q~0) E ~b(D) and present 0 give 

( rpEddCq(~176176176  rp), r p C C ~ ( D ) .  (2.12) 
dD 

w 3. Continuity of the measure v~~ ... ^ddev (") under monotone limits 

The first half of  this section is devoted to the proof  of  the property (P. 1). We only use 

Lemma 2.1, Theorem 2.2, Theorem 2.3 and Theorem 2.5 of  w 2. 

LEMMA 3. I. F o r  a n y  v ~1) . . . . .  v ~n) E ~b(D) 

ddCv (1) A ddCv (2) A ... A ddCv (") = ddCv (il) A ddCv (i2) A .. . A ddCv (i~ 

w h e r e  (is, i 2 . . . . .  in) is a n y  p e r m u t a t i o n  o f ( I ,  2, . . . ,  n).  

P r o o f .  We first show 

ddCv (1) ̂  dd~v  (2) ̂ 0  = ddCv(2): ^ ddCv (1) ̂  0 (3.1) 
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where 0 is a closed positive current of bidegree (n-2 ,  n-2) .  It suffices to prove 

lim lim f rlddCv(1)'6AddCv(2)'6'AO = lim ( rlddCv(l)'6AddCv(2)'6AO (3.2) 
6~06' J, O JD 6J, O J o  

for any r/E Co(D), because the left hand side of (3.2) equals the integral of ~/against the 

left hand side of (3.1) and, on the other hand, we can interchange v (i)' 6 in the integral of 

the right hand side of (3.2). 

Take a function ~ E Co(D) such that ~= 1 on supp [7]. Take A large enough so that 

o--Alzl2-rl6~dD). Rewriting r/ as rl=Alzl2-O and introducing the closed positive 

currents 01, 02 of bidegree ( n - l ,  n - l )  by Oj=AddClzl2AO, Oz=ddCeAO, we have 

tfDrlddCv(t),~AddC(v(Z).~'-v(2),6)AO I 

= Jo d(~v(')' 6) A dC(~v (z)' 6'_~v(2), ~) A ddCrl A 0 

< 

which tends to zero as 6', 6 $ 0 by virtue of Lemma 2.1, proving (3.2). Lemma 3.1 is a 

consequence of (3.1). For instance, denoting by 0 a closed positive current of bidegree 

( n - 3 , n - 3 ) ,  we have 

f,,Taao: aac: ) aac: o = f,,,Tda~ ' aacv (') aa~ )^o ^ A ^ ^ ^ 

= lim i rl ddCv~) A ddCo (3) A 0 A ddCv (2)' 6 

6~OJo 

= lim f rlddr (3) A ddCv (l) A 0 A ddCv (2)' 6 

6 J.0./o 

= JD rldd~v(2) ̂  ddCv~ ^ ddCv~ ^ 0. q.e.d. 

Now, for each choice of q(~) . . . . .  q(n-,) E ~b(D), we may consider the associated 

(n -  I, n - I ) current 

0 = ddr AddCq ~-~ (3.3) 

and the associated bilinear form $0 on Co(D). However qO)'s are not necessarily 

belonging to 9~§ and it is convenient to consider a perturbed current 
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0 = ddr 2) ̂ . . .  ^ ddC(q("-l)+OolZ 2) (3.4) 

for a fixed 60>0. On account of Theorem 2.5, we may consider the corresponding 

Dirichlet space ( ~  *~ on L2(D). Since 

~O(q~, cp) ~ ~O(q~, q~), ~o E Co(D), (3.5) 

~o also extends to a~4and, in the remainder of this section, ~0 will denote this specific 

extension. Applying Theorem 2.2 to (0, V), ~0 is seen to be well defined on the linear 

span of 

and 

{t/v; t/E Co(D), v E ~J(D) N La~(D) } 

$~ t/v) = lim $~ t/v~). (3.6) 

Further, if ~, t/E Co(D) and ~= 1 on supp [t/], then we have for u, v E 9~(D) fl Lloc(D) 

~~ ~v) = - lot~udder^O, 77 E Co(D) (3.7) 

because the left side equals 

lim lim ~~ ~v ~') 
~ o ~ ' ~ o  

and (2. l) applies. We next apply Theorem 2.3 to (0, V) in getting 

lim ~~ t/Vk--t/V) = O, t~ E Co(D), (3.8) 
k . . . ,  oo 

whenever v k, k= 1,2 .. . . .  and v belong to ~(D)N Li~(D), {vk} is monotone (increasing or 

decreasing) and limkf,| for V-a.e. zED. Keeping these in mind, let us 

proceed to the proof of property (P. 1). 

THEOREM 3.2. Suppose that v~ ~, v (~ E ~(D) N Lloc(D), O<~i<~n, k= 1,2, ..., satisfy the 

following conditions: 
(i) either v~ ~ are locally uniformly bounded in k with limk~| v~~ = v(~ z E D, or 

v~ ~ are increasing in k with limk~ | v~O)=v (~ V-a.e. 

(ii) either v~ 0 l<~i<~n, are simultaneously decreasing in k with limk...}= v~(z)=v(~ 
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, (o l<~i<n, are simultaneously increasing in k with 1;m ,,(0_,,(0 zED,  or "k . . . . .  k---~ ~k - - ~  V-a.e. Then 

we haoe 

v(O)nnr ^ ~nc,,(2) ̂  ^ ~Ae,,(~) __~ v(O)ddCv(l) ̂  ddCv(2) ̂ . .  ^ ddCv(n) 
k t~t t  v k M w u  t,  k t x . . . r x u t ~  v k k : + ~  

as the vague limit o f  Radon  measures. 

Proof. It  is enough to show for r/E Co(D) 

limf~rw(k~176 
k--~ ~ 

(3,9) 

and, for each m = 0 ,  1 . . . . .  n -  1 and r/E Co(D), 

l wl (0),,.///c~ (I) ^ ^ H H c , , ( m ) ^ r l t . i c ~ , ( m + l ) ^ ~ i A c , , ( m + 2 ) , ,  lim / " ~ k  " "  " k  " . . . . . . . .  k . . . . .  k . . . . . . . . .  ^ ddCv(") 
~--'| vo (3.10) 

f D  ~(O)zLdC,,(1) ^ ^ d d c ~ ( m ) ^ r l r l c ~ ( m + ! ) ^ z t r l c , , ( r n + 2 ) ^  = lira ,r,k ,-,- ,'k . . . . . . . . . .  k . . . . .  ' . . . . . . . . .  ^dd~v(~)" 
k---> oo 

(3.9) is evident when V~k ~ and v (~ satisfy the former  condition of  (i) and it is also clear in 

the latter case because  the difference of  the integrals of  the both sides of  (3.9) equals,  in 

view of  (3.7), 

~~ ~v (~ ~v (1)) 

for 0 = ddCv(2)^.., n ddCv (n), ~ E Co, ~ = 1 on supp [r/], and then (3.8) applies. 

As for the p roof  of  (3.10), we can  make  the same reduction as in the p roof  of  

Theorem 2.3, since the asser t ion is local. In particular,  we may assume that  D is a 

strongly pseudo-convex  domain with a determining smooth  strictly psh function 

p: D={Q<0} .  Fo r  open  U c c D ,  we can  choose  compac t  K with U c K c D ,  constants  

A>0 ,  B and u k~(0, ~9(0 E ~b(D), l<i<.n, k=  1,2 . . . . .  such that  {0~ )} is monotone  (increasing 

or decreasing) in k, "" ~(0 ~(0 nmk_.~u k =u  V-a.e.,  l<.i<.n, and 

O~ ) = v ~  ~, 0 ~~  ~~ on U, l<~i<.n, k = l , 2 ,  .... 

0~)=AQ+B,  O(~ on D - K ,  l~i<~n, k = l , 2  . . . . . .  

Take  an open  set E with K c E c ~ - D  and a non-negative funct ion ~ E Co(D) with ~= 1 

on E. Fix any rlECo(D) with supp [ r / ] cU .  We then see f rom L e m m a  3.1 and the 
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identities (3.7) and .(3.8) that the difference of  the integrals of  the both sides of  (3.10) is 

equal to 

where 

- ge~ (~ ~0 (re+l) ~O (re+l)) - - l i m  ~m'~(r/v(k~ ~"k'~d(m+l)-- bt"l'~d(m+ 1)~1 I /  k k - -  - -  
/--,0o 

0 ,~, k = ddC O(kl ) A . . . A ddC O~ m) A ddCu (m + 2) A . . . A ddC O {"). (3. I 1) 

For simplicity we denote 0(k re+l) and 0 (re+l} by 0 k and 0 respectively. Thus what we must 

show is 

lim lim $~176 ~Ok--~Ot) = 0. (3.12) 
k---~ ~ t---~ ~ 

By Schwarz'  inequality, we have 

c~O"k(r /v(O) ,  ~Ok--~Ol) 2 ~ bm, k" ~O='k(~Ok--~O,, ~Ok--~Oi) , (3.13) 

w h e r e  bm, k=~Om'k(Y]V(k 0), riO(0)). In order to estimate the right hand side of  (3.13), we 

proceed essentially on the same line as in the proof of  Theorem 2.3. To get a bound of  

bm, k, we first note from the proof  of  Lemma 2.1 that 

= lim ~g0,,,k(r/v(k0), a, rlv(kO), a) ~ C M  2 ( Omk ^ ddC{zl 2 b,,,k 
a~o Ju 

for M=SUPk sup~e t:lo~~ and C=C(r/)>0.  Let  9 0 = o + B  ' for sufficiently large B' so that 

q%>~l on D. By assuming that {O~ ~} is increasing in k for each i, it then holds that 

fvOm, kAddClz'Z <~ fo'CPoOm, kAdd~lz'Z 

= feo~)dd%PoAdd~O(k2) A...Addr + fo_EO(f ddr A...Addr 

which is not greater than 

fe O(1)ddCq3oA ddCO(2) A " " ^ ddClzl2 + fD-e O(')dd~(~j%) A ddcO~2) A " " A ddClzlZ 

= fo q od:O(1)AddCO(kZ)A... Add~Izl z 

13-878283 Acta Mathematica 159. Impr im6  le 23 oc tobre  1987 
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because 0~l)~<O ~ everywhere and O~t)=O")=A~+B on D - E .  Using Lemma 3.1 and the 

above argument repeatedly,  we get 

C M  2 (~q)oddr ^... AddCO(m) AddCO(m+E) A... AddClzl 2. (3.14) s u p  bm, k 
k Jo 

In case that {0~ ~} is decreasing in k, we have in the same way 

sup bm k<~ CM2 fD~Cp~ ^'"^ddCO~m) ^ddr ^'"^ddClzlZ" k , (3.14)' 

In view of (3.13), (3.14) and (3.14)', it only remains to show 

lim ~O"k(~Vk--~V t, ~Vk--~V t) = 0. (3.15) 
k, I---, ~ 

Assume first that {v~ )} is increasing in k. Then we have already seen in the proof  of  

Theorem 2.3 the inequality 

~Ora, k(~Vk__~Vl f) ~V~k--~V~l) ~ :m'k(~V~k,~V~k)--~]~m'k(~v~,~V~l) , k< l .  (3.16) 

But this time we go on further in performing a similar computation: 

- ~ ~ ~0~) = - fn d(~O~) ̂  dC(~0~) ̂ ddCO(k~) ̂... ̂  ddCO ('~ 

_ _ ( ^ ( 1 )  c^c$ 2 c^(2) - v~ (dd v l) Add v k ^...^ddCO ~) 
I dE 

+ jo(_F >(ddc(~~ ^ dd%~^... ^ ddCO% 

which is not greater than 
/- t" 

^ ... ̂ .::= - Jo ^..%"^ ... ̂ .:: 

by the same reason as in the preceding computation. Using Lemma 3. I and the above 

argument repeatedly, we see that the right hand side of (3.16) is dominated by 

Now let 6 $ 0. Then by (3.6), we get 

:"~(~Ok--~vl,^ ~Vk--~Vt)~" ^ :'"(~Vk,~Vk)--~O"'(~Ot,~Ot)," ^ k <l ,  
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which means first that ~'.k(~O k, ~Ok) is decreasing in k and secondly that (3.15) is valid. 

When {0~ )) is decreasing, it holds on the contrary that 

which means that ~m ~(~0~, ;0~) is increasing. But the same computation as above gives 

for 

0 = dd:O {1} A. . .  A ddCO {~) A dd:O {~+2) A. . .  A dd:O (~}, 

and we have also ~(~0k, ~0k)~<~~ ~O) from the proof of Theorem 2.3 and equality 

(3.6). Hence we get (3.15) in this case too. q.e.d. 

Although we do not state it explicitly, our method of the proof of Lemma 2. I, 

Theorem 2.2, Theorem 2.3 and Theorem 3.2 suggests the possibility of extending these 

assertions by replacing the local boundedness condition for psh functions with certain 

local integrability conditions. However the monotonicity assumption for the sequences 

of psh functions in these statements is essential. See Cegrell [6] in this connection. 

It is also possible to extend Theorem 3.2 by generalizing the factors v~ ~ and v <~ in 

the following manner: 

PROPOSITION 3.3. Le t  v~ ~, vO "), l<~i<~n, k= I, 2 . . . . .  be as in Theorem 3.2. Consider  

fu r ther  f unc t i ons  u~ t), u ~~ E ~ ( D )  NLI~c(D), l<~l<,r, k=  1,2, ..., such that  u~ ~ are locally 

uniformly b o u n d e d  in k and  limk_~= u~O(z)= u{~ z E D. Then,  f o r  any b o u n d e d  continu-  

ously di f ferentiable f unc t i on  f o n  W with bounded derivatives, 

. . . . .  k . . . . . . . .  k k~| ' ' ' ,  u(r)) ddcv(l) ' ' '  ddCv(") 

as the vague limit o f  R a d o n  measures .  

Proof .  Consider 0 (resp. 0) of the type (3.3) (resp. (3.4)) and q, r h fi C=(D) with 

rh=l  on supp[r/]. For any w{!), ..., w(r)E~l~ we see from (2.3), (2.5) and (3.5) that 

r l f (w {1) . . . . .  w (r)) 6 ,~or and 

~~ . . . ,  w(~)), ~ f ( w  "} . . . . .  w(r))) 

~< 2rllr/I]z~tz} ) s Hfx~}]zL| ~~ W{8, ~11 w{8)+211fllt~(Rg~(r/, ~/)" (3.17) 
l=l 
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Now, in order to prove Proposition 3.3, it suffices to show (3.10) with v~ D) being 

replaced by f(u~ 1) .... , u~)). Hence, in view of the proof of Theorem 3.2, it is enough to 

show the bound 

$%'k(r/f(u~kl?, ..., U~')), rlf(u~ ') ... . .  U(k~))) <<- C f v  Ora' k ̂  ddCizl 2, 

for O<~m<n - 1, ~1 E Co(D) with supp [r/It U and for some constant C independent of k. 

Here Om, g is given by (3.11). But this bound can be achieved by virtue of the inequality 

(3.17) holding for O=O,,,k, wC~176 l<~l<~r, and for r/t E Co(D) such that supp [ql]=U 

and r/l=l on supp[r/], q.e.d. 

Proposition 3.3 enables us to establish the next theorem. 

THEOREM 3.4. Let  I~ be a positive Radon measure on D. For u, v E ~(D)n LI~r 

we let w = u v v ,  l f  (ddCu)'~/a and (ddCv)n~p, then (ddew)n>~p. 

Proof. Take any r/E Co(D), ~1>~0 and a sequence {uk) of continuous psh functions 

decreasing to u on an open set G such that supp [~l]~GccD. We let Wk=UkVV. Then, by 

virtue of Theorem 3.2, the measures rl(dd~wk)" converge weakly to rl(ddCw)" on G as 

k~oo. In particular, ~l(dd~wk) ~ are uniformly bounded on G. 

On the other hand, we have from Proposition 3.3 that, for a n y f E  Co(R~), 

,_.~lim fJ(u-o)  ~(dd'wk)" = fJ (u-v)  e (ddCw)"" 

which can be written as 

with 

lim ~_ f(x) dFk(x) = f ;| dF(x) (3.18) 
k---~ 0o 

Fk(x) = fa I~_~, ~l(u--v) q(ddCwk)" 

and 

F(x) = f~ I~_ ~ ~l(u- v) ~(dd'w)" . 
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Since u - v  is bounded on G, the supports of  the one dimensional measures dF k and dF 
are concentrated on a common finite interval. Hence  we see from (3.18) that dF k 
converge weakly to dF as k---> ~ .  

Choose positive e I $ 0 so that each e I is a continuous point of  the measure dF. Then 

limk_,~ Fk(et)=F(el) and hence 

lim fr rl(ddewk)n = fr rl(ddew)", (3.19) 
k.--> o0 

1 I 

where Ft={zEG: u>v+el}. Applying the same argument to u k and u, we may further  

assume 

lim l rl(ddCuk)n = fv rl(ddcu)n. (3.20) 
k'-'~'c~ J F I  t 

Now F l is contained in each open set {zEG:uk>V+el} on which Wk=U k and 

(ddCwk)"=(ddeuk) ". We get therefore from (3.19) and (3.20), 

fr ~(dd~w)"= ( ~(dd~u)">~ fr ~. 
1 .1 I" 1 I 

C n ~  By letting l-->~, we have S{u>o~ rl(dd w) ~-S{u>v) r//z, and by symmetry,  

f( ~l(ddew)"<~ ( rlt z. 
u<v} a {u<v} 

Thus the desired inequality SD~l(ddCw)">~fo ~hU is achieved provided that l~(u=v)=O. 
In general, choose positive 6 k ,l, O, k= 1,2, ..., such that i~(u=v+6k)=O, k= 1,2 .. . . .  

Since (ddCu)">~/u and [ddr we have [ddr by the 

preceding observation. Now let k-+or and use Theorem 3.2. q.e.d. 

As far as bounded continuous psh functions u, v are concerned,  this theorem was 

proven in [I ; Proposit ion 2.9]. [1] also contains a counterexample for locally unbound- 

ed psh functions. 

To illustrate a use of  Theorem 3.4, let us consider a strongly pseudo-convex 

domain D and a Monge-Amp/~re equation 

uE ~b(D), (dd~u) ~ =fdV on D (3.21) 
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with boundary condition 

lim u(~) = q~(z), z E aD, (3.22) 
~ z . ~ o  

for given da tafE L| f~>0, q~ E C(~D). The associated Perron Bremermann family is 

B 

~(f,  q0) = {v E ~b(D): (ddCv)" >-fdV on D, lim v(~) ~< q0(z), z E aD}. 
r 

This family is non-empty, uniformly upper bounded and, by virtue of Theorem 3.4, 

right directed. Therefore the upper regularization of the upper envelope of the family 

~(f,  q~) satisfies the equation (3.21) by [11; Theorem 6]. A similar statement holds for a 

weakly pseudo-convex domain with a boundary data being assigned on the Silov 

boundary. 

w 4. Stochastic extensions of the comparison theorem and the minimum principle 

LEMMA 4.1. Let 0 be given by (1.4) for u E ~ b ( D )  and v E ~+(D). Then (0, V) is 

admissible. 

Proof. Put O=ddC(u+v)) n-l. Then 

C,~0(q~, tp) ~< ~~ tp) ~< C 2 ~~ q0, q~ E COW), (4.1) 

for constants C1, C2>0. But (0, V) is admissible by Theorem 2.5. q.e.d. 

Given u E ~b(D) and v E ~+(D), we define 0=0 u' o by (1.4) and denote the associated 

Dirichlet space (~-o, ~fo) on L2(D) and the conformal diffusion M~ ~ by 

(~u,o, ~f~,o) and M~'~ ~,p~.o) respectively. Because of the inequalities (4.1) and 

(2.11), the life time of M ~' ~ has a finite expectation 

E~'o(~)< ~,  ~ '~ zED (4.2) 

in view of Theorem 9.4 of the appendix. It also follows from Theorem 2.2 and Lemma 

9.2 that, for any qE ~(D) NLIoc(D), - q  is ~u'~ ddCq^O u'~ charges no 

~ '  ~ set and 

~u,O(q, oF) = - f ~ddcqAO u'~ q9 E ~ o ,  (4.3) 
Jo 
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for any open G==D, where ~ v  is defined by (9.1) for ,~"'~ and q~ is an ~'~ 

continuous version of q0. 

Since M "'~ is a conformal diffusion and D is bounded, we have that Z~ =limtt r t 

exists and Zr E OD, Pz'O-a.s. on {~<~} for each z ED. Moreover for any w E ~b(D), 

w(Z t) is a Pz'~ and hence limi~ ~ w(Zt) exists Pz'V-a.s. for z ED. See [I 1; 

w for more details. Accordingly the following theorem immediately implies the 

comparison theorem (P.2). 

Then 

THEOREM 4.2. Suppose that u, v E ~b(D) satisfy for  any b>0 

lim u(zt) >I lim v(zt) e~z'~ V-a.e. z ED. (4.4) 

f{ (ddr <~ ( (ddCu) ". (4.5) 
~<o} a{u<v} 

Proof. Fix 6>0 and set O(z)=v(z)+61zl2-6~ ,, z f iD,  where 7=supzeD Izl z. By (4.4), 

the function w = u - O  satisfies 

l imw(Z t) I>0, P~'V+alzl2-a.s. V-a.e. zED.  (4.6) 
tt~ 

Note that pU,z v+alzl2=P~ ' e because 0 u' ~ does not change if we add a constant to v. On the 

other hand, (4.3) and the identity 

ddCw ^ 0 ~, e = (ddCu), _ (ddCO), 

implies that w is ~U' e-quasi-continuous and 

- ~"" e(w, cp) = fo cP{(ddCu)"-(ddCO)"}' - E ~u, e (4.7) ~u G ' 

for any open G c c D .  

Consider now the set S = { z E D :  w(z)<0}. Choose a sequence {Gk} of open sets 

such that Gk=cGk+l=D and G k ~ D,k---~oo. We let Sk=S fl G k and denote by R~ and Hk~ 

the resolvent and the a-order hitting measure defined as (9.2) for the Borel set D - S  k. 

Then we have from (9.3) that, for non-negative f E  L2(D), R~ f is an ~"' ~ 

ous element of ~:"' e ~, e sk (= ~ak) and 
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~g~'~ = (w-H~w,  f)s,, a > 0 ,  (4.8) 

for any ~"'~ wE ~ff"'~162 �9 Here ( , )sk denotes the inner product of 

LZ(SI,, V). 

Since R~ l(z)=0 for ~u'e-q.e. z E D - S  k by [9; Theorem 4.2.3], we have from (4.7) 

and (4.8) 

f 1 {(dd u) "-(aa~ "} = - a  1) Ot 

. I S  k 

= - a ~ "  ~ Rk~ 1)+a2(w, R~ 1)s, 

= - a ( l  -aR~ l ,  W)s,+a .Is[,H*~ w(z) dV(z) 

I 

and 

Now 

fs(ddCu)" ~a ( Rk~ l(dd~v)"+a fs H~w(z)dV(z). 
J S k  k 

(4.9) 

lim H i w(z) , o za%^O = E z' (e lim w(ZQ) 
k---~ oo k- - .  oo 

= E~" ~(e-a~Sw(Z~);rs < ~)+E~' ~162 lim w(Zt); r s = oo). 

The first term of the last expression vanishes for V-a.e. z ED because w is ~"'~-quasi- 

continuous and so w(Zt) is continuous at r s P~'~ on {rs<~ } for V-a.e. zED. The 

second term also vanishes for V-a.e. z ED on account of (4.6). We let k---~oo in (4.9) and 

use the monotone convergence theorem to the first member of the right hand side and 

the bounded convergence theorem to the second one (at this stage the finiteness of 

V(D) is used), we arrive at 

fs(ddCu)">~afsRSl(ddCv)n. 

w being MU'~ continuous, S is M"'~-fine open and aR s l(z)1' I, a 1' oo, for any 

z E S. Moreover S increases to (u<v} as 6 ~ 0. (4.5) is proven, q.e.d. 

Just as (P.3) follows from (P.2) (see Corollary 4.4 of [3]), the next theorem can be 

derived from Theorem 4.2. 
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THEOREM 4.3. Suppose that u, vE ~b(D) satisfy (ddCu)"<~(ddCv)" on D and (4.4)for 

any 6>0. Then u(z)~v(z) for any zED. 

This is essentially the same as Theorem 2 of [11] except that the underlying 

measure OAddClzl 2 for the Dirichlet forms ~0 in [11] is now replaced by the Lebesgue 

measure V. Of course Theorem 4.3 implies the minimum principle (P.3). 

In the remainder of this section, we state some applications of properties (P.2) and 

(P.3). The minimum principle (P.3) is useful not only in proving the uniqueness of the 

solutions of Monge-Amp~re equations but also in constructing them by the method of 

the spherical modification ([1]). Especially the following lemma was proven in [3; 

Proposition 5.3] by using (P.1), (P.3) and the existence theorem of the solution of 

(ddCu)"=O on a ball with a smooth boundary function [1, Theorem 8.1]. 

LEMMA 4.4. Suppose D be a bounded strongly pseudo-convex domain, then for 

any compact KcD,  (ddeu~;)"=O on D - K .  

In the same proposition of [3], Bedford and Taylor made use of Lemma 4.4 and the 

properties (P. 1) and (P.2) to get the representation of the Bedford-Taylor capacity 

= fo(ddOu )~ (4.10) CBT(E) 

holding for a bounded strongly pseudo-convex domain D and any compact or open set 

EccD.  

We now mention an application of (4.10) and (P.3). A function u defined on an 

open set E c D  is said to be CBr-quasi-continuous on E if, for any e>0, there exists an 

open set O c D  with CBT(O)<e such that the restriction of u to the set E - O  is a 

continuous function. Since CBT is countably subadditive, the CBT-quasi-continuity is a 

local property: a function u on D is CBr-quasi-continuous on D iff, for any point z ED, 

there exists an open set E with z E E=D and u is CBr-quasi-continuous on E. 

The C#-quasi-continuity is defined analogously. It is also a local property owing to 

Lemma 6. I of w 6. Let us denote CBT and C# by C0T and C~ respectively to indicate 

their dependence on the bounded open set D. 

PROPOSITION 4.5. Let D be bounded open and f be a function defined on an open 

subset of  D. Then the following conditions are equivalent: 

(i) f is C~ 

(ii) f is C~-quasi-continuous. 
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Furthermore each of  these conditions is independent of the choice of  the reference 
set D. 

Proof. Suppose first that D is a bounded strongly pseudo-convex domain. Let  {Ok} 

be a sequence of decreasing open sets with 01=~-D. Then, by (4.10), (P.I) and (P.3), we 

readily see the equivalence 

lim C~ = 0 <:~ lim C~ = 0. (4.11) 
k----) ~ k--*~ 

Since the quasi-continuity is a local property, we get the equivalence of (i) and (ii) from 
this. 

Observe now that the set function CBOT is decreasing in D, while C ~ is increasing. 

Hence we can conclude that (i) and (ii) are equivalent for any bounded open D and that 

the conditions are irrelevant to the choice of D. q.e.d, 

From the next section, we shall be exclusively concerned with the set function C~, 

because it is more directly linked to the probabilistic notion than CBT. Lemma 4.4 will 

be used in the next section. But otherwise no result of this section will be utilized in the 
rest of this paper. 

w 5. Upper estimates of C~ 

For p E ~+(D), the pair ((ddCp) "-1, V) is admissible by Theorem 2.5. The corre- 

sponding Dirichlet space on L2(D) and the conformal diffusion are denoted by 

(~o), ~0,)) and M~~ ~, P~z )) respectively. The next proposhion has been shown in 

[10; Proposition 2] for any conformal diffusion (cf. [12; Lemma 4]). 

PROPOSITION 5.1. For a Borel set E c c D  

foeT'(oe< ~) dV(z), p E ~+(D), 

where o e denotes the first hitting time of  E. 

In order to get an estimate of  C# in the opposite direction, we now consider a 

compact set K c D  and a function 

p(z) = uT,(z)+61zl 2, z ~ D ,  (5.1) 
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for 6>0. The associated objects ~(P), ~--(P), Cap ~~ and P~) with this specific p E ~+(D) 

will be denoted by ~(/r ~r,~), Cap(r,~), and P~'~) respectively. 

THEOREM 5.2. I f  D is a bounded strongly pseudo-convex domain and K is a 
compact subset of D, then 

fo p(K'~)t'~ o~)dV(z)+2(n-1)y6V(D), (5.2) C~,(K) <. -z "VK < 

where 7=7(D)=supz~o [Z[ 2. 

Proof. By Theorem 2.2, u E is an ~(r'a)-quasi-continuous element of ~lo~(x'a) and 

~(r, a)(uE, cp) = - f cpdd Cu E ̂  (ddCp)~- a, for q0 E C o (D). 
3o 

Since 

dd Cu E ̂  (dd Cp),-, ~< ( dd CUE)" + (n-  1) 6dd C{zl2 ̂ (dd Cp)"-', 

we conclude using Lemma 4.4 that the function 

w = u E - ( n -  1) 61zl 2 (5.3) 

is ~(/r on D - K  in the sense of the Appendix. Since ~(/c~) has the 

property (2.11), Theorem 9.4 applies and 

w(z) ~>E(~r'~)(w(Z~c^o ) )  for V-a.e. zED, 

and hence we have 

-uE(z ) <<.-E~zI~'~)(u~Z~^o))+2(n-l)y6 for V-a.e. zED. (5.4) 

Because of the strong pseudo-convexity of D, limz_~aouE(z)=O and consequently 

~K, ~)(u~(Z~^ o)) approaches E(z x' ~)(u~(Zo); oK< ~) as we let G increase to D. Obviously 

-E(~'~)(uE(Zo); ox<oo)<~P~'O)(ax<o~), V-a.e; z 6D, and (5.2) follows from (5.4). q.e.d. 

Since Theorem 5.2 holds for any 6>0, we get from it and Proposition 5.1 the 

following. 

PROPOSITION 5.3. The equality (1.5) holds if D is a bounded strongly pseudo- 
convex domain and E is compact. 
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This proposition implies the validity of property (P.4) for compact sets. In fact, if E 

is bounded, D~E is bounded open and C~,(E)=0 relative to D, then u~:=0 on D and, as 

is easily seen, E is pluripolar. On the other hand, a Borel set EcD is ~~ iff 

P~)(cre<~)=0 V-a.e. z E D. Hence we get from the above proposition and Corollary 2.6 

PROPOSITION 5.4. I rE  is a compact pluri-negligible subset of a strongly peudo- 
convex domain D, then E is pluripolar. 

Finally we rewrite Theorem 5.2 in a way convenient for the next section. 

PROPOSITION 5.5. Under the hypothesis of  Theorem 5.2, 

/' 2yV(D) "~1/2 
C~(K) <<. \ - 4 ~ _ 1  / Cap(r'a)(K)'/2+2(n-1)y6V(D) 

for any 6>0 with y6<l .  

Proof. Let er(z) =P~r' a) (or<  ~), z E D. Then Theorem 5.2 reads 

Cn(K)~(e x, l)L2+2(n-- 1) y0 V(D). 

Since goza) satisfies the bound (2.11), we can use formulae (9.7) and (9.11) of the 

Appendix to get 

(er, 1)L2 = g~K. a)(er, G1) ~< ~ /Cap  (s a)(K) X / g~r, ~)(G1, GI). 

But the second factor of the last expression is dominated by 

( 2 ~ V(D) ) 1/2 
4~-1 n!6n-I 

according to the bound (2.11). q.e.d. 

w 6. C~-quasi-continuity, pluri-negligibility and pluripolarity 

The next lemma follows easily from the definition of the set function C,~ on D. We shall 

denote C# by C~ whenever it is necessary to indicate its relevance to the bounded open 

set D. 

LEMMA 6.1. (i) For any open set EcD, 
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C**(E) = sup {C~,(K): Kis compact, KcE} .  

(ii) For any set E~D, 

C~,(E) = inf {C~,(O): O is open, ODE). 

(iii) For Et,E 2 .... cD,  C~, (t.l~=~ E/)~<E~=~ C~(Et). 

(iv) I f  D l,D 2 are bounded open and D IcD 2, then C~t(E)<~C~2(E) for any EcD I . 
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Proof. (i) For  an open set EcD,  choose compact sets Kj increasing to E. Then u* Kj 

decreases to a psh function v. Since o = -  1 V-a.e. on the open set E, o = -  1 identically 

on E. Hence o<<-ue~u ~ and we have o=u~. 

(ii) It suffices to find, for any set EcD,  a decreasing sequence of open sets O ~ E  

such that Uoj converges to u E V-a.e. By Choquet 's  lemma, there is an increasing 

sequence of cpjE ~9(D)nL~~ such that cpj(z)<<.uE(z), z ED, and limj_~ cpj(z)=uE(z) for 

V-a.e. z E D. We let Oj= {z E D: (1 + 1/j) q0~<- 1 }. Then the O/s  are open sets containing 

E and (1 + 1/j) cpj<<.Uoj<<-u e. 

(iii) When the Et's are open, ue - - -  1 identically on E~ and �9 

E l" 

(iv) trivial, q.e.d. 

We are now ready to prove properties (P.4) and (P.5). The proof is based on the 

upper estimate of C~, in Proposition 5.5 and the continuity property (P. 1). Le t  us first 

give the proof of (P.5). See the latter half of w for the precise definition of quasi-  

continuity. Because of the countable subadditivity of C~, shown above, the C**-quasi- 

continuity is a local property. 

THEOREM 6.2. Any function of  ~(D) & CD-quasi-continuous on D. 

Proof. For any u E ~9(D), consider open sets 0 7 {z E D: u (z )<- j} .  Then C**(Oi)~O 

asj--->~ because O>~uoj>~(u/j) v ( -1 )  and Uoj-->O V-a.e. as j--> ~ .  Therefore, replacing u by 

uv(-j') if necessary,  we may assume that u is locally bounded. 
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Take any v E ~(D)nLlor and open E ~ D .  In proving the C~-quasi-continuity of 

v on E, we may assume that D is a strongly pseudo-convex domain {0<0} with a 

smooth psh function ~ by replacing D with a larger ball if necessary owing to Lemma 

6.1 (iv). We may further assume that there exist a compact set K with E~K=D and 

functions VkC~(D)fIC(D) such that Vk~V as k-->oo and Vk=V=AQ+B on D-K,  
k= l ,2  ... . .  for some constants A>0 and B (cf. [3; p. 5]). 

We then let, for 2>0 and k<j, 

Ok= {vk-v>g }, Kk.j= {vk--vj>~2+l}. 
J 

is compact and increasing to the open set O k as j...,oo. Hence 

C~,(Kk,j)--->C~,(Ok), j--+~ and u*x~.i decreases to U'ok as j---~ by virtue of Lemma 6.1 (i). 

Denote u k,j+ lzl 2 by p~,j. Choose a non-negative ~E Co(D) with ~= 1 on K. Then 

Vk--Vj=~Vk--~V J belongs to the Dirichlet space ~ k ' / b y  Theorem 2.2. Therefore we can 

combine Proposition 5.5 with the identity (9.10) of the Appendix to get the bound, for 
k<j, 

1 ~%'/(vk-v j, Vk--Vj)l/2+R(6), (6.1) C~,(Kk. j) <~ C(6) 2+(1"------~ 

where 

{ 2y V(D___~) ) 1/2 
C(6) = I 4,,_in!O,,_, and R(6)=2(n-1)yfV(D). 

By Theorem 2.2. we have 

~kJ) (v~-vj, Vk--Vj) <~ fD (~Vk--~VJ) ddr Vj A (ddCPk.j) n-l, k <j, 

and the fight hand side converges as j---->oo to fD (~Vk--~V)ddCv A (dd~pk) n-I by virtue of 

Theorem 3.2 where Pk=U$k+i31zl 2. Hence we have from (6.1) 

C~*(Ok) <~ T + R(6). (6.2) 

Let p* be the upper regularization of the function p =limk_ += Pk" Since Pk is increas- 

ing in k, p=p* V-a.e. and v k decreases to v. Theorem 3.2 implies that the integral in (6.2) 

tends to zero as k--~oo. Therefore by letting k-->oo in (6.2) and then 6 $ 0, we arrive at 
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lim C~(Ok) = 0 .  ( 6 , 3 )  
k___, oo 

which means that v is a C#-quasi-uniform limit of continuous functions v h and 

hence v is Ca-quasi-continuous on D. q.e.d. 

Only a slight modification of  the above proof leads us also to the property (P.4). 

Let  N ~ D  be pluri-negligible. In order to get the pluripolarity of N, it suffices to show 

Cn(N)=0. By L e m m a  6.1, we may assume that D=(Q<0} with a smooth strict psh 

function ~ and N c c D .  Take ukE ~b(D) such that u k increases as k--->~ to a bounded 

function u and Nc{u<u*} .  We can then choose uk,i, vie ~b(D)nC(D),j=I,2 . . . . .  "such 

that uk, j<<.v J and uk, j (resp. vj) decreases to u k (resp. u*) as j---,~. As in the preceding 

proof, we may further assume that uk, y and vj are equal to Ao+B outside some common 

compact set. 

Now let Ok={Vk--Uk>2 } for 2>0.  Since { u * - u > 2 } c O  k, it is enough to show (6.3) 

for the present open sets O k. Since Kk,j={Vk--Ukj>~2+l/j}, j>k, is compact and in- 

creases to O h asj---,oo, we proceed exactly in the same way as in the preceding proof to 

obtain the inequality (6.2) with v in the right hand side being replaced now by u k. We 

then let k---~oo. Since u k increases to u* V-a.e. and v k decreases to u*, we again achieve 

(6.3) by Theorem 3.2. Thus we have proven (P.4): 

THEOREM 6.3. Any pluri-negligible set is pluripolar. 

Remark. (P.4) can also be derived from Proposition 5.4 (validity of (P.4) for 

compact sets) and Theorem 6.2 (property (P.5)) in the same way as in the proof of  

Proposition 5.1 of  Bedford-Taylor [3]. 

C# is an outer capacity by Lemma 6.1 (ii). To prove that C# is a Choquet capacity, it 

is therefore enough to show 

Ej ]' E ~ C#(E) = sup Ca(Ej). (6.4) 
J 

THEOREM 6.4. C~, is a Choquet capacity. In particular. C~,(E)=sup (Cn(K): K 

compact cE)  for any Borel set EcD.  

Proof. This theorem is contained in Proposition 8.4 of  [3]. Indeed, as was pointed 

out in [3], we get (6.4) from Theorem 6.3 as follows: we let v =l im~= u~. Then v E ~(D) 
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because v is a decreasing limit of functions in ~(D). If  we put E' = {z E E: v(z) = - 1 }, 

then E - E '  is pluri-negligible and C~,(E-E')=O by Theorem 6.3. Hence C,~(E)<~C~,(E') 

by Lemma 6.1 (iii). On the other hand, v<<.u e, and consequently, 

lim C~,(Ej) >t Cn(E') >I C~,(E). 
j-~ 

The converse inequality is clear. q.e.d. 

From Proposition 5.3 and Theorem 6.4, we have 

THEOREM 6.5. Suppose D be bounded strongly pseudo-convex, then the identity 

(1.5) holds for any Borel set E c D :  

C#(E) = sup f P~)(tr E < oo) dV(z). 
pE~+(D) JD 

Remark. Obviously this is valid in a more general form: for any non-negative 

bounded B o r e l f o n  D, we have 

- f uZ(z)flz)dV(z)= 3n ~ P~z )(~ < ~176 

which is the present version of  our previous result [12; Lemma 8]. 

THEOREM 6.6. Let E be a bounded set. Take a bounded open set D~E.  Then the 

following conditions are equivalent for E: 
(i) CD(E)=0. 

(ii) Cap~ for any p E ~+(D). 

(iii) There exists a Boret set E ' ~ E  such that 

P~z)(OE,<Oo)=O V-a.e. zED foranypE~+(D) .  

Moreover, each o f  the above conditions for E is independent of  the choice o f  the 

reference set D which is bounded open. 

Proof. Denote the above three conditions by (i) n, (ii) o and (iii) o respectively to 

indicate their relevance to D. By Theorem 6.5, (i) n and (iii) o are equivalent when D is a 

bounded strongly pseudo-convex domain. (ii) D and (iii) o are equivalent for any bound- 

ed open D=E ([9]). 
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Consider two bounded open sets D,D with EcDc19.  If p E~+(/)), then 

p E ~+(D) and ~ )  equals the part of ~a~) on D (see Appendix), and consequently, 

Cap~)(E)>~Cap~)(E). This means the implication (ii)o=~(ii) D. By Lemma 6. l(iv), we have 

the converse implication for (i): (i)6=~(i) o. Therefore, taking the countable subadditivity 

of Cap ~p) also into account, we conclude that (i) o and (ii) o are equivalent for any 

bounded open D ~ E  and they are independent of the choice of D. q.e.d. 

Remark. The independence on D of the condition (i) of Theorem 6.6 enables us to 

prove the following fact due to Josefson [15] exactly in the same way as the proof of [3; 

Theorem 6.8]: A set E c C  n is pluripolar if and only if there exists a psh function p on 

C ~ such that E c p - t ( - ~ ) .  In particular, each of the conditions of Theorem 6.6 is 

equivalent to the pluripolarity of E. 

The next lemma will be refered to in w 7. 

LEMMA 6.7. I f  E is a Borel subset o f  D and (ddCq)n(E)>0 for some q E ~b(D), then 

E is not pluripolar and for  p=q+61zl 2, 6>0, we have Cap ~~ (E)>0 and P~z)(ae<~)>Ofor 

z ED of  positive Lebesque measure. 

Proof. This is a consequence of Theorem 6.6 and the bound 

f.e(dd'q)n<~8llqll~ Cap~ which follows from (2.12) and (9.9). q.e.d. 

w 7. An example 

Let us consider the domain D c C  2 and its subset E defined by (1.6), where the 

coordinates of z E C 2 are denoted by z=(zl, z2), zj=xj+iy~, j =  1,2. The 4-dimensional 

Newtonian capacity of E is zero because the codimension of E is 2. We consider the 

function q(zl, z2)=~ (lYal+ lY21), (z~, z2) E O. Then 

a21y~[ idZl A d~+ 02Iy2I idz2 A d~ 2 
ddCq - az I a~  azt a~2 

and hence q E ~b(D). Moreover we see that 

(ddCq)  2 = 2 d x  I ~0 (dy l )  d x  2 a0(dy2)  , (ddCq)2(E)  = 8.  (7.1) 

14-878283 Acta Mathematica 159. Imprim6 le 23 octobre 1987 
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E is therefore not pluripolar by Lemma 6.7. 

By virtue of Lemma 6.7, Capt~ for 

1 + + 1  
p(zl,z2) = T(ly,I  ly21) T Iz12, zED, 

and E is attainable by the associated conformal diffusion (Z r, P~z )) on D. The Dirichlet 

form 

1 f d c | ge')fu, u ) = ~ - j n d u A  uAddCp, uECo(O), 

has the expression 

g:~P)(u,u)=--D(u,u)+--:-f (u2 +u2l)dX, dy, dx2 + (u2z+u~2) dxldxzdy 2 
2 2 Jr 2 ar I 

where D denotes the usual 4-dimensional Dirichlet integral on D and 

(7.2) 

F j = ( z E D : y j = 0 ) ,  j=l,2.  

This expression gives us an intuitive picture how the sample paths 

Z t under the law P~) are attainable to the set E:  Z t starting at z E D - F I - F  2 is governed 

by the form �89 u) and behaves as a 4-dimensional Brownian motion. It can not attain 

directly the 2-dimensional set E but can hit any non-empty open subset of the 3- 

dimensional set FI (and ofF2). Upon the arrival of Z t at F 2 at some point 

(x0, y0, x 0, 0)E I'2 with Ix~ 1, an additional diffusion on F 2 governed by the second term 

of the right hand side of (7.2) is superposed to the 4-dimensional Brownian motion. The 

typical sample path of this diffusion on F 2 behaves as the 2-dimensional Brownian 
0 0 0 motion on the plane domain {x2=x ~ y2=0} N D starting at (x l, y~, x 2, 0). Therefore it can 

attain the one-dimensional segment { Ixll < 1, y~ = o, x 2 =x ~ y2 = o) which is a part of E. 

The above intuitive description could be made rigorous if one constructs the 

diffusion (Z, P~)) by the method of skew products as in Ikeda-Watanabe [14]. 

w 8. ~~ ~,) for f ,  ~ E C~(/)) 

In this section, we deal with the symmetric form ~(~p, ~p) for functions q0, 7) belonging 

to the space C~176 instead of Co(D). We study the closability of g~ and give some 
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formulae involving go and a surface integral on 0D. A Hartogs '  type property of  0 will 

be presented as an application. 

We first show a natural extension of  the property (2.2) from Co(D) to C| 

Given a closed positive current 0 of  bidegree ( n - 1 ,  n - l ) ,  we consider go(q0, ~0)= 

SodcpAdc~AO forq0, ~0E ~ where  

= {q~ E C~176 q0 E L2(D; 0 Add  e IzlZ), So dq0 A d e q0 A 0 < oo}. (8.1) 

THEOREM 8.1 ~ Suppose m is a positive Radon measure satisfying m>-f �9 O Add c Izt z 

for some strictly positive continuous function f on D, then E ~ defined on C is closable 
on L2(D; m). 

Proof. Let  q0kE cr be an go-Cauchy sequence such that q~k-->0, k-->~, in L2(D; m). 

First we note lim ~(r/tpk , r/q0k)=0 for any r/E CO(D) with 0~<r/~<l. To see this, it suffices 

to show, on account  of  (2.2), that {r/qOk} is go-Cauchy, which is however a consequence 

of  (2.5): 

go(r/q~k--r/qh, r/qgk--r/qh) <- 2 go(q~k--Cpl, qgk--Cp~)+ 2C(r/)[[Cpk--q h 1122W, mf--~O, k, l-+oo. 

For any e>0,  choose N such that ~~ , 99k--qTN)<e, k>~N, and a compact  set K 

such that So_rdq~NAd~q~lvAO<e. Taker/E Co(D) with 0~<r/~<l on D and r/= 1 on K. Then 

~~ k, tpk) ~< 2 ~(r/q0 k , r/tpk)+ 2 go((1- r/)q9 k , ( 1 -  r/)tpk) 

and the second term of the right hand side is dominated by 

4fo_x(1-r/)2dCPkAdCq kAO+4focp2dr/AdC AO 
<<- 8 fD dcp N A dCq91v A 0+8 ~(tpk--tpN, Cpk--q)N)+4 2 C(r/) IIq~kllL2<O;m) 

- K  

~< 16 e+4C(r/)II~0kll~2~o;~). 

Hence 

lim go(Cpk, q~k) <- 16e. q.e.d. 
k----> oo 
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Suppose m in Theorem 8.1 further satisfies m(D)<~ and supp[m]=D, then 

~=C=(/9) and the ~-closure of C=(/)) on LZ(D;m) gives rise to a regular Dirichlet 

form on L2(D;m) (we set m(OD)=O), whose part on D is identical, on account of 

Proposition 9.1 of the Appendix, just with the /~-closure of Co(D). 

As an application, let us consider an open set D~=cD and a closed positive current 

0 of bidegree (n -  1, n -  1) defined on a neighbourhood of/9~. We then let 

0 = { ~  onD~ 
on D - D  I (8.2) 

so that 

fDdcpAdC~AO= fD dcpAd~AO, q~,~PECo(D). 
1 

(8.3) 

Thus tJ is a positive current on D but not closed as we shall see presently. 

Nevertheless 0 gives us a Dirichlet form. Denote the left (resp. right) hand side of 

(8.3) by ~ (qg, ~p) (resp. ~o~ (q0, ~0)) indicating the domain of integration. Let 

m = 0 Add ~ IzlZ+, o(dd Iz12)" 

for a fixed 60>0. Then we see from Theorem 8.1 applied to ~D1 on 

C~(/) 1) that ~o on Co(D ) is closable on L2(D; m). The resulting Dirichlet space (~0, ~ 0) 

on L2(D;m) has a special property that associated semigroup {~, t~>0} makes 

the set D-D~ invariant: 

T~ID_DIU) ---- Io_Dl " ~U, U ~ L2(D; m) 

(actually T~u(x)= u(x)m-a.e, x E D - D  l in the present case). By symmetry, the set 

D~ is also/tt-invariant. 

We next establish a Poincar6 type inequality and a trace inequality involving 

and an integral on OD. First of all, we assume that D is a bounded domain defined as 

D= {r< 1 } by a non-negative smooth psh function r on a neighbourhood o f / )  such that 

dr*O on 0/9 and 0 is a smooth closed positive differential form on /) of bidegree 

( n - l , n - 1 ) .  dCrAO then induces a non-negative surface element on aD (denoted by 

dCr A0 again) and we may consider the following three integrals of r for q0 E C=(/~) with 

respect to three non-negative measures: 



ON DIRICHLET FORMS FOR PLURISUBHARMONIC FUNCTIONS 205 

S(qg)=faoqgdCrA0' I(cP)=fogddCr/XO' a(cP)=foq~dr/XdcrAO" 

LEMMA 8.2. Suppose S(cp2), I(~o 2) and A(cp 2) are finite for cp E C~(f)), then 

S(qo 2) ~< 8 ~~ qo) + 3  l(r 2) (8.4) 

i(~2) ~< 4 ~~ q0)+S(q9 2) (8.5) 

Proof. Let us write S, L A and E for the above three integrals of (p2 and geg(q0, q0) 

respectively. Using the positivity of ddcrAO, Stokes' theorem and finally Schwarz 

inequality (2.3), we then have 

A=fo 2d(rd~176 
= fDq92rdCrAO-2 foq~rdq~AdcrAO<~S+2X/EX. 

Hence X/-X<~X/-E+X/E+S. On the other hand, we have analogously 

S=f d(gZdr 
Consequently S < ~ I + 2 E + 2 ~ ,  from which we can derive the desired inequality 

(8.4) : S<~8E+3I. (8.5) can be derived similarly and the proof is omitted, q.e.d. 

Since 

we have 

Suppose that .fO ddcrAO and i'D (l--r) ddr IzlZAO are finite. Then, for ~ E C~ 

fodgAdCrAO=fodrAd%pAO=-fod(1-r)AdCq~Ao=fo(1-r)ddCq~AO. 

S(cP)= fDcpdder A O+ fodCp A dcr A O, 

S(qT)= fDcpddcr A O+ fo(1-r)ddr A O, cpEC| (8.6) 
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Note that the right hand side still makes sense even when r and 0 are not smooth. This 

suggests the way of  defining the surface integral S(q0) for general r and 0. 

THEOREM 8.3. Suppose that D is a bounded domain defined as D={r<l}  by a 

non-negative continuous psh function r on a neighbourhood o f  D and that 0 is a closed 

positive current on D o f  bidegree (n -1 ,  n -1 )  satisfying 

~ ddCrA 0 < oo, fD(l-r)ddClzl2 A 0 <  oo. (8.7) 
D 

Then there exists a unique positive measure s on OD such that 

faow(z)ds(z)=fo~oddCr̂ O+fo(1-r)ddCw^O, q~EC=(l~). (8.8) 

Further the inequalities (8.4) and (8.5) persist to hold i f  we interpret S(q02) 

as the integral o f  q~2 by the measure s on ~D. 

Proof. For q0 E C| we define S(q~) by the right hand side of (8.8). By (8.7), S(r 

is finite and linear in q0. So if we can show the implication 

opEC| opt>0 on aD =~ S(cp) 1>0. (8.9) 

Then S(q0) is uniquely determined by the restriction of cp to the boundary aD and S can 

be extended to a unique positive linear functional on C(aD) proving the first assertion 

of Theorem 8.3. 

To prove (8.9), we let rm=Oq/m%r , Om=al/m-YCO by a mollifier a ,  and consider the sets 

D m , ~ = { r m < l - 6 ) , D ~ = { r < l - 6  }, 6 > 0 ,  m = l , 2  . . . . .  

By Sard's theorem, we can find a sequence 6j ~ 0 such that Dm,j=Dm,~g has a regular 

boundary and Stokes'  theorem is applicable, m = l , 2  . . . . .  j = l , 2 , . . . .  We may also 

assume that the sets Din, j and Di=D~j are continuous with respect to the measures 

ddCr AO and dd c Izl2A0. 

We now have from (8.6) that, for q0 E C| 

fa ~~ r (1-rj-rm) ddC~AOm" 
Dm,j m,j Dm,j 
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Since r,, decreases to r and ddCrmAOm (resp. ddCcpAOm) vaguely converges to 

dd ~ rA 0 (resp. ddCq~ A O) a s  m---* oo, we see that the right hand side of the above equation 

is convergent, as m---,oo, to 

fD q~ddcr A O+ foj(1,6j-r)ddCq~ A O. 

Hence 
f 

lim lim | qo dCrm A 0 m = S(cp), q~ E C~(19). 
j._,o~ rn~oo JaDm,j 

(8.9) follows immediately from (8.10). We have already seen that 

!im lim ( qo ddCrm A 0 m = I(cp). 
j--~oo m---)oo JD 

ra,j 

(8.10) 

An analogous relation holds for ~go(q~, q~). Therefore we get  the second assertion of 

Theorem 8.3 from Lemma 8.2. q.e.d. 

As an application of Theorem 8.3, we have the following property of Hartogs' type, 

which is contained in Bedford-Taylor [3; Lemma 2.5] however: 

THEOREM 8.4. Suppose that D is a bounded domain defined as D = { r < l }  by a 

non-negative continuous psh function r belonging to g~+(D). Suppose a closed positive 

current 0 on D of  bidegree ( n - I ,  n-1)  vanishes on { l - 6 < r < l }  for some 6>0, then 0 

vanishes identically on D. 

Proof. Take 6 0 such tha t0<60<6 and use formula (8.8) for the subdomain 

D6={r<l-6o)=(r/(1-6o)<l ). First choose a function q~EC| q~=l 

on aD60 and (p=0 on { r < l - 6 )  to get s=0 on aD60. Next choose 99 identically equal to 1 

on D60 to conclude that 

fo ddcrAO = 0 and consequently 0 = 0 on D6 o 
~o q,e.d.  

This theorem particularly means that the positive current of the type (8.2) is not 

closed. 
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w 9. Appendix: superharmonic functions for general Dirichlet forms 

Let X be a locally compact separable metric space and m be a positive Radon measure 

on X with supp [m] =X. Consider a dense subalgebra ~ of C0(X) satisfying the following 

two properties: 

(9.1) For  any compact K and open G with K c G c c X ,  ~ contains a non-negative 

function taking value 1 on K and 0 on X - G .  

(9.2) For  any t>0 ,  there exists a real function fl~(t) satisfying that fl~=t on [0,1], 

-e<<.fl,<<.l+t everywhere and O<~fl,(t')-fl,(t)<<.t'-t for t<t' ,  and that fl~(tp) E ~ when- 

ever tp E 9.  

For instance, if X is an Euclidean domain D, then Co(D) and Co(/)) have those 

properties. 

Let  ~ with domain ~ b e  a Dirichlet form on L2(X; m) possessing ~ as its core: ~ is 

dense in ~. Thus ~ on ~ has the Markovian property: 

~(fl,(qo),fl~(q0))~<~(qo, q0, qgE~, f o r t ,  o f (~ .2) .  

We assume further a specific local property: u, v E 9 ,  u = constant on a neighbourhood 

of supp [q0]=~e(u, v)=0. The associated diffusion process M =  (X t, Px, ~)on X then admits 

no killing inside X ([9; Theorem 4.5.3]): 

ex(X~_Ex;r x6X, 

being the killing time, In what follows, the terms "quasi-cont inuous" and " q . e . "  are 

used in relation to this Dirichlet form ~. For  a function u on X, we write as u E ~oc if for 

any open set G c c X  there exists wE ~ such that u=w on G. 

We now recall a few facts from w 4.4 of  [9]. For  a Borel set E c X ,  we let 

~e  = {qo E,~: t~ = 0  q.e. o n X - E } .  (9.1) 

q3 being a quasi-continuous version of  q0. Using the hitting time 

. o E = i n f { t > O : X t E E } ,  

we define, for x E X and a > O. 

H~cp(x) -c, oE = E~(e ~(x~)).  (9.2) 
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For non-negative f E  L2(X, m), R~fis  a quasi-continuous function in ~x-E and satisfies 

for any q~ E 

$~(~,R~f)= -H[" (~ ~ , f ) .  (9.3) 

Here ( , )  is the inner product of L~(X;m) and $~(~,~p)=$(cp,~p)+a(q~,~p): When 

X - E c c X ,  (9.3) holds for any q~ E ~oc- 

For an open set G~X, denote by M e and ~c the parts on G of the diffusion M and 

the Dirichlet form ~ respectively. M c is obtained from M by shortening the life time 

from r to r and $6 is the restriction of $ to the space,~ w 

According to Theorem 4.4.2 of [9]. $c is a regular Dirichlet form on L2(G; m) and 

possesses M G as its associated process. A subset of G (resp. a function on G) is polar 

(resp. quasi-continuous) with respect to $c if and only if it is so with respect to $. 

PROPOSITION 9.1. For an open set G, ~ = { q o  fi 9: supp[q~]~G} is a core o f  the 

Dirichlet space (~6, ~ )  on L2(G; m). 

This is a consequence of the spectral synthesis [9; Theorem 3.3.4 and Problem 

3.3.4]. For instance, if X=R d, ~:=H1(Rd), then this proposition implies ~c=H~(G). 

A function w E ~1or is said to be ~g-superharmonic on an open set G~X if ~g(w, qg)~>0 

for any non-negative ~p E go- 

LEMMA 9.2, The next conditions are equivalent for w E ~oc: 

(i) w is ~-superharmonic (on X). 

(ii) ~(w, qo)~>0 for any non-negative cp E ~N Co(X). 

(iii) There exists a positive Radon measure it charging no set o f  zero capacity such 

that 

I "  

cp) = I (P(x)it(dx), r ~ ,  (9.4) ~(w, 
Jx 

holds for any open set G c c X .  

Proof. (i)=~(ii): Take tp E C0(X) N ~wi th  0~<q0~ < 1 and choose r/satisfying the condi- 

tion of (9.1) for K=supp[tp] and open G with K c G c c X .  Choose q0nE~ which 
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converges to q0 in ~. Then, as in the proof of Theorem 2.1.2 of [9], we see that 

6,=fll/,(q0n)'r/ is weakly convergent in ~: to tp. (ii) now follows from 

~(w, Cn)~>-(1/n) ~(w, ~/). 

(ii)=~(iii): (ii) implies the existence of a unique positive Radon measure/~ with the 

property (9.4) holding for r ~:NC0(X). Let G = = D  and take ~ E ~  with ~=1 on G. 

Then, for any r ~:n C0(X)with supp [qg]=G, 

f l ol d,u = r I ol)< V 

which means that /~[c is o f  finite energy integral with respect to ~G- Hence /~16 

charges no set of *6-capacity zero and the validity of (9.4) for the ~G-quasi-continuous 

version 6 of q9 E o~ follows just as in the proof of Theorem 3.2.2 of [9]. 

(iii)=~(i): trivial, q.e.d. 

THEOREM 9.3. Consider an open set G o c X  and let w E ~oc be quasi-continuous on 

X and ~-superharmonic on G o. Then 

Ex(W(X~cAr)) <~ W(x) q.e. x E X (9.5) 

for  any open Gc,--G o and T>0. 

Proof. First consider the case that Go=X. Let/~ be the positive Radon measure on 

X associated with w by the preceding lemma. Let A be the positive continuous additive 

functional of M corresponding to the smooth measure a. Then it holds that 

Px(wfXt)-w(Xo)  = M~FI-A,, t <  ~)= 1, q.e.x, 

where M ~wl is the local martingale additive functional associated with w. The optional 

sampling theorem for the martingale then yields (9.5) for any open G c c X  and T>0. 

See the proof of Lemma 1 of [11] for more details. 

For a general open set G 0, it suffices to replace ~ and M by their parts ~60 and Me0 

respectively and observe that 

A T< CA 1, q.e. x E G  o 

for open G c c G  o and T>0. q.e.d. 
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Next we consider the Poincar6 type inequality for ~: 

2 II~llL=r ~< c .  ~(~0, ~), ~0 E ~, (9.6) 

which means the transience of ~ and more than that the existence of a bounded linear 

operator G from L2(X;, m) into ~ such that 

~(~p, Gf)=(~/, ,f) ,  fEL2(X;m),  ~OE~. (9.7) 

THEOREM 9.4. Assume that ~ has the property (9.6). 

(i) Ex(r~)<~ q.e. x E X  for any open G ~ c X .  I f  m(X)<oo in addition, then 

Ex(~)<~ q.e. xEX.  

(ii) Let K be compact. I f  w E ~oc | " NLioc(X, m) be quasi-continuous on X and ~- 

superharmonic on Go=X-K,  then 

Ex(W(X~G^o,))<. w(x) q.e. xEX.  (9.8) 

for any open G such that K c G c ~ X .  

Proof. (i) For non-negative Borel fEL2(X;m),  Rflx)=Ex(S~oflXs)ds) is a quasi- 

continuous version of Gfand  consequently finite q.e. In particular Ex(ro)<.RI~(x)<oo 

q.e. for open G c c X .  The second statement is clear from Ex(~)=RI(x). 

(ii) We take an open H with K=H==G. Then we have 

Ex(w(X~_Q)<-w(x) q.e. xEX.  

by letting T 1' oo in (9.5). w is, being quasi-continuous, continuous along the sample path 

X t ([9; w 4.3]). Hence we get (9.8) by making H $ K. q.e.d. 

We mention an additional remark on (9.6). It means that ~ and ~ define the 

equivalent norms and accordingly the potential theory and its probabilistic interpreta- 

tion in [9] can be formulated in terms of ~ instead of ~l. In particular, the associated 

capacity is defined for an open set E by 

Cap (E) = inf { ~(tp, q0): tp E ~:, ~p/> 1 m-a.e, on E} (9.9) 

and is extended to.any set as an outer capacity. For a compact set K c X ,  we then have 
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Cap(K) = inf { g(q~, q~): q~f ~ o  C0(X), q~ I> 1 onK}  

and further the function ele(X)=Px(or<oo), x f iX ,  belongs to 0% and 

Cap (K) = g(e/c, e/c). 

(cf. [9; Theorem 3.3.1, Problem 3.3.2 and Theorem 4.3.5]). 

(9.10) 

(9.11) 
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