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1. Introduction 

Suppose S is a surface in R 3 diffeomorphic to the standard sphere S 2 by a smooth 

diffeomorphism W: R3-->R 3 of class C 4, and let H E R .  In this paper we give a sufficient 

condition for the existence of an unstable disc-type surface of constant mean curvature 

H with boundary on S and intersecting S orthogonally along its boundary. In isothermal 

coordinates such a surface may be parametrized by a map XE C2(B; R3)N cl(/~; R 3) of 

the unit disc 

B=Bt(O) = {(u, v)=w E R 2 [ u2+v 2 < 1 } 

into R 3 satisfying the following conditions: 

A X =  2HX~AXo (1.1) 

Ix.lz-lxol ~ = o - - x . . x o  (I.2) 

X(OB) = S, (1.3) 

a,X(w)_L Tx(w)S, VwEOB. (1.4) 

Here X,=(O/Ou)X, etc., " A "  denotes the exterior product in R 3, " ""  denotes the 

scalar product, n is the outward unit normal on OB, ".L" means orthogonal, and ToS 

denotes the tangent space to S at Q E S. 

(t) This research was supported by the Sonderforschungsbereich 72 of the Deutsche Forschungsge- 
meinschaft 
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For brevity, solutions to (1.1)--(1.4) will be called H-surfaces (supported by S). 

Moreover, if such a solution is not degenerate to a constant map, by slight abuse of 

terminology it will be called unstable. Indeed, if S is strictly convex, any non-constant 

minimal surface (H=0) supported by S is strictly unstable as a critical point of 

Dirichlet's integral, cp. Section 2. 

Physically, solutions to (I. 1)-(I .4) may arise as minimal partitioning hypersurfaces 

inside S dividing off a prescribed portion of the volume enclosed by S. Such partition 

problems have been proposed as models for capillarity phenomena and liquid crystals. 

In this context the curvature constant H appears as a Lagrange multiplier. By using 

geometric measure theory the partition problem can be solved in vast generality, cp. 

[12], [25]. However, little is known about partition surfaces of a prescribed topological 

type, cp. [13]. 

Let L be minimal with the property that 

S = BL(Q) (1.5) 

for some QE R 3, where BL(Q) as usual denotes the closed ball of radius L around Q 

(in R3). By translation we may assume Q=0. 

THEOREM 1.1. Suppose S satisfies the above assumption, and let L be given by 

(1.5). Then there exists a set ~ o f  curvature such that 

0 E ~,  and ~( is dense in ---~, --~ 

with the property that for  any H E  ~ there is a regular, non-constant solution X to 

(1.1)--(1.4), satisfying the maximum modulus estimate 

IIXIIL- ~<Z. (1.6) 

Remarks. (i) Considering the limitation of the range of admissible curvatures, our 

theorem may appear as a natural extension of Hildebrandt's existence result [8] for the 

Plateau problem. However, note that our solutions will (in general) be unstable, and (in 

general) the only stable solutions to (1.1)-(1.4) will be the trivial constant solutions 

X==-XoE S. For the Plateau problem the existence of unstable H-surfaces (for suitably 

small I/-/1) was established only in 1982 independently by Brezis-Coron [1] and the 

author [20] - with an addendum by Steffen [19]. In [23] finally an existence result was 

derived showing that for any value H *  0 unstable H-surfaces will exist whenever there 

is a stable surface of constant mean curvature H spanning the given contour. 
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Similarly, it is expected that there will be unstable H-surfaces supported by S for 

any value of H different from 0. But technical complications due to the existence of 

spheres of constant mean curvature H inside S for large ]H 1 prevent us from proving a 

more general result.  Conceivably, combining our methods with a variant of the 

"sphere-attaching lemma" of Wente [26, p. 285 ft.] will lead to complete existence 

results. However, we will not pursue this further. 

(ii) Theorem 1. I generalizes the existence result [21] for minimal surfaces (H=0). It 

is tempting to conjecture that for surfaces S which have mean curvature ~ H  with 

respect to the interior normal one can even find embedded discs of constant mean 

curvature H inside S, as Grtiter and Jost have shown in the case of minimal surfaces; 

cp. [7], [10]. Note that b y t h e  maximum principle for any H E R  any H-surface X 

supported by S will lie inside S whenever S satisfies the condition: 

Any QES lies on the boundary of some bali of radius 1/IHI containing S, (1.7) 

and provided II xIILo <~t<~ I/Inl. 

Problem (1.1)-(1.4) poses numerous technical difficulties. In particular, by invari- 

ance of (1.1)-(1.4) under the non-compact group of conformal transformations of the 

disc it is impossible that the Palais-Smale condition(~) be satisfied in any variational 

problem associated with (1. I)-(1.4) where this group of symmetries acts. 

The following chapter is devoted to setting up the variational problem correspond- 

ing to (1.1)-(1.4). In Chapter 3 we study the evolution problem associated with 

(1.1)-(1.4) and prove local existence and uniqueness of solutions to  the "parabolic 

form':' of (1.1)-(1.4). Our approach will be based on the methods introduced in [24]. 

Ideas from [24] will also be used to investigate the asymptotics and possible singulari- 

ties of the flow. Finally, in Chapter 4 the proof of Theorem 1.1 will be given. 

Although for minimal surfaces our approach may seem somewhat more involved 

than e.g. the approximation method used in [21] also in this case we believe that a 

direct method may have its advantages. 

Moreover, the construction and analysis of the flow associated with (1.1)-(1.4) 

which constitute the major part of this work may be of some interest in itself. 

Ultimately, we hope that results like Theorem 3.1 or Theorem 3.2 may be instru- 

mental in proving higher multiplicity results for unstable H-surfaces. By analogy with 

the problem of closed geodesics on S it is expected that (for sufficiently small I HI, at 

(1) Recall that a C~-functional E on a manifold ~ satisfies the Palais-Smale condition if any sequence 
{Xm} in ~ such that [E(Xm)[ ~c uniformly while[ dE(Xm)]~ 0 is relatively compact. 
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least) there exist even three geometrically distinct unstable solutions to (1.1)-(1.4). 

However, to this moment only partial results are available, cp. [10], [18]. 

Acknowledgement. I would like to thank Professor Hildebrandt for calling my 

attention to this problem and for numerous stimulating discussions. 

2. The variational problem 

Solutions to the above problem (1.1)-(1.4) will be characterized as saddle points of a 

suitable functional E m 

Let L p, H re'p, C '''~, denote the usual Lebesgue-, Sobolev-, and H61der-spaces. 

Domain and range will be specified like L p ( fLR n) if necessary. For 

XEHI'2(B;R3), if2 c B, let 

O(X;~)=-~ folVXl~ dw 

be the Dirichlet integral of X over f~. F o r  brevity D(X;B)= D(X). 
For X ~ H 1'2 n L| R3), moreover, let 

V(X)=I  fBxu A Xv " X dw 

be the volume of X. V(X) measures the (algebraic) volume of the cone with vertex at 0 

swept out by the surfaces X, while D(X) may be thought of as a measure for the area of 

X. V and D are related by a Sobolev-type inequality, the isoperimetric inequality for 

closed surfaces in R 3, cp. Rad6 [14], Wente [26], of which we state the following 

version: 

TrtEOaEM 2.1. Let X, YEH t'2 n L*O(B;R 3) satisfy X-YEH~'2(B;R3), i.e. X=Y  on 

OB in the H s'2-sense. Then 

36:r[ V(X)- V( y)]2 ~< [D(X)+D( y)]3. 

The constant 36:r is best possible. 

Remark that equation (1.1) formally equals the Euler-Lagrange equations of the 

functional 

I~X)=D(X)+ 2H V(X) 
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with respect to compactly supported variation vectors cPECo(B;R3). I.e. /~n is the 

functional corresponding to (1.1) for fixed Dirichlet (or Plateau) boundary data, cp. [8]. 

Note that V(X) for fixed boundary data equals the (algebraic) volume between X 

and a fixed reference surface X 0 satisfying the required boundary condition. 

In our case the boundary data of admissible surfaces X are allowed to vary freely 

on the supporting surface S. Therefore it will be necessary to correct the volume term 

by subtracting the volume of a suitable reference surface ,ft" on S, varying with X. In this 

way we will arrive at a functional whose Euler-Lagrange equations give all of 

(1.1)-(1.4). 

This program will now be carried out in detail. 

Admissible functions. As will become apparent later, a natural class on which to 

study problem (1.1)-(1.4) is the class 

~(S)={X~HL2(B;R 3) ]X(OB) ~ S a.e.} 

of H~'2-surfaces with boundary on S. 

Sometimes, it will also be convenient to consider the subclass 

c~2(S ) = c~(s) lq H 2' 2(B; R3). 

By using arguments of Schoen-Uhlenbeck [16] it is easily verified that R2(S) is dense in 

:r 

Moreover, c~2(S) is a manifold (while ~(S) is not) with tangent space at X E :r 

given by 

~x~(s)= (r  ~ H2"~(B; R3) I ~0(w) ~ ~x~w)S, V w ~ aB}. 

Extension operators. Corresponding to qg(S), resp. ~2(S) consider the (sub-)classes 

c ~ ( S ) = { ) ~ ' E C ( S ) I ~ ' ( B  ) c- S},  c~2(S)=C~(S ) fl H 2 ' 2 ( B ; R  3) 

of ~(S)-, resp. c~2(S)-surfaces contained in S, with tangent space at .~E ~2($) 

T,~r {~ e T,~r I ~0 (w) e ~x~w)S, V w ~ ~}.  

Call ~'E c~(S) an extension of XE ~(S) iff X=~" on aB. An extension operator is a 

smooth map r/:~(r/) c c~(S)---~:~($) with open domain ~(r/) c c~(S) and smooth restric- 

tion ~/: ~(~/)-N ~2(S)--->~2(S) such that r/(X) is an extension of X for every XE ~(r/). 
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Given XE ~(S) and an extenion ~'0E~(S) the set of extensions of X may be divided 

into countably many components by indexing different extensions ,~" with the topologi- 

cal degree of the mapping 

:r I wl-<l 

from R--~S 2 into S ~ S  2. As in [2, Lemma 1] this degree equals the quantity 

v(2)-  V(2o) e z  (2.1) 
vol(S) 

(up to possible change of sign), where vol(S) denotes the 3-dimensional measure of the 

region enclosed by S. 

By attaching a branched k-fold covering of a sphere suitably, it is clear that from 

one map CPo:S2--->S 2 we can obtain a map q0 k of degree 

deg(q0 k) = deg(q00) + k 

for any k, which also coincides with q~0 outside an arbitrarily small open set. 

In this way it is clear that given XE ~(S) and one extension operator r/0 with 

X 6  ~(~/0) there will exist countably many such extension operators qk, kEZ, with 

V(r/k(X))- V0/~ =k. (2.2) 
vol(S) 

The following lemma hence guarantees a rich choice of possible extensions of any given 

XE ~(S): 

LEMMA 2.1. For any X E  qg(S) there is an extension operator 77o (and hence a 

countable family rl k, k E Z, o f  extension operators satisfying (2.2)) defined in a neigh- 

borhood o f  X. 

Proof. First assume that S is convex. 

Given XE c~(S), replace X by the harmonic surface Y: 

AY=O in B, Y=X on aB. 

By standard regularity results Y is as smooth as the data, so YE qg(S). Moreover, Y 

depends smoothly on X. 
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Now let P be a point lying interior to S not on Y(B) (cf. Lemma A. 1 in the 

Appendix) and project Yfrom P onto S to obtain X, i.e. for any wEB let .~(w) be the 

unique point of intersection of the half line from P through Y(w) with S. 

Since P ~ im(I0 this projection preserves regularity, and XE cd(S), if XE c~(S), 

resp. XE cr i fXE  c~2(S). 

In order to extend the composition mapping 

X---~ Y---~.~ 

smoothly to a neighborhood of X it is sufficient to extend the projection Y---~X to 

harmonic surfaces close to Y in ~(S). This is clearly possible if for all harmonic ZE cr 

sufficiently close to Y we have P ~  im(Z). So suppose by contradition that for 

a sequence {Zm} m of harmonic surfaces in ~r Z,,---,Y in H 1, we have Zm(Wra)----~P 
for some wmE/~. Since WmEB, and we may reparametrize Z,, by conformal maps 

rm E cCl(/~;/~') to obtain a family Zm=Z,~ or,~ with Z,~(0)---~P. 

But by conformal invariance of Dirichlet's integral, and since D(Z m) for an H l- 

convergent sequence is surely bounded, even after this change of parameter 

D(2,.) <~ c 

uniformly, and we may assume that a subsequence ,~,m-----Z weakly in Hm(B; R3). Also 

the equation AZm=0 is conformally invariant, whence AZ m =0 and Zm---~Z uniformly 

locally in B. In particular Zm (0)---~Z(0) = P. 

By invariance of Dirichlet's integral and of harmonicity again, and since Zm----~ Y in 

HI'2(B;R3), it also follows that 

Zm-YOr,~--,0 in HI'2(B;R 3) 

and uniformly locally on B. 

Considering the sequence of harmonic surface Ym = y o  rm E ~(S) we thus find that 

Ym(O)-->Z(O)=P. 

On the other hand Ym(B)= u for all m, and therefore we obtain the desired 

contradiction, 

This concludes the construction in the case of a convex surface S. If S is only 

diffeomorphic to S 2 by a diffeomorphism qJ : R3--~R 3, we carry out the above construc- 
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tion for the images ',F(X)E ~(S 2) and apply W-I to obtain the desired extensions in 

r [] 

Variational integrals. Now we are able to define a family of variational integrals 

giving rise to the Euler equations (1. I)-(1.4). 

For X E qg(S) and an extension operator q defined in a neighborhood of X, let 

En(X)--D(X) + 2H [ V(X)- V(r/(X))]. (2.3) 

Since V(r/(X)) by (2.1)-(2.2) is only determined up to integral multiples of vol(S) this 

definition actually gives a countable family of functionals. However, the differential of 

E n (at a point X E cg2(S)) will be independent of the particular extension operator. In 

particular, critical points of Eft will not depend on q: 

LEMMA 2.2. Let X fi cg2(S), ~1 any extension operator defined in a neighborhood of  

X. Then X is a critical point of  El4 on cg2(S), i.e. 

{de,,(X),~)=0, v ~  rx~,(s), 

iff X solves (1. I)-(1.4). 

Proof. Note that H~ '2 NH2'2(B;R 3) ~ Tx~g2(S) and that by (2.1) 

V(r/(X+cp)) = V(r/(X)), Vq~EH~'~NH2'2(B;R3), (2.4) 

provided X and X+q9 are connected in ~(r/). The equation 

(dE.(X), ~)=0, V~0e ~,2 nH2,2(B;R3), 

thus is equivalent to (1.1). 

Next observe that TxC~z(S) c TxC~2(S), where .~=r/(X), and that by antisymmetry o f  

the volume form 
~ . A L .  ~-0, V~ e Txr 

since )(,(w),f(o(w), cp(w) E Tx(w)S, a.e. on B. 

Hence by partial integration 

(dV(ft'),cp) f ? . A ' v  cpdw- ( - = -,. n(v )?.-u" Xo) A X cp do 

(2.5) =foo.2^2.~do, v~ ~ T~2(S), 
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where 0~" is the tangent derivative of ~" along 0B (in the counter clock-wise direction). 

Since/~'= X on 0B: 0~X=a~X on 0B, and also (d~(X), r on aB; and since finally 

T 2 c~2(S )+H01'2 n H 2' 2(B; R 3) = T x •(S), 

we may combine (2.4)-(2.5) in the single statement 

(dV(rl(X)), cp) = ( O~XAX.cpdo, Vcp E Tx%(S). (2.6) 
Ja B 

Performing an integration by parts similar to (2.5) for (dV(X), cp) we hence infer that 

(d[ V(X)- V(r/(X))], cp ) = fs X, AX o "q~ dw (2.7) 

while the boundary integrals cancel. 

Integrating by parts and using (1.1) we deduce the natural boundary condition 

(dEH(X),cp) = f ,  [-AX+2HX"AXv]'cpdw+ fasa"X'cpd~ 

(2.8) 

= ~BO"X'q~d~ VqgETxqgz(S), 

where 0,X is the derivative of X with respect to the outward normal on aB. I.e. O,X is 

(weakly) orthogonal to S along OB. 
Introducing polar coordinates (r, ~) on B from (2.8) we see that 

O X .  0 X = 0  a.e. on0B. 
Or O0 

But then the holomorphic function 

�9 (r, ~O)= 
k ar caO ] car cadp 

is real on caB (hence on B) and therefore constant (by the Cauchy-Riemann equations). 

Inspection at r=0 shows that D--0, i.e. X is conformal and satisfies (1.2). 

Boundary regularity and strong orthogonality now follow from [5], [6]. [] 

Mini-max characterization of unstable H-surfaces. Define a family P of paths in 

qr connecting constant (point-) mappings on S (which we may regard as local 

minimizers of our functional En; cp. (2.1 I) below) as follows: 
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P = {/7 E C~ cr -= P0 6 S, p(1) ~ p, E S, Iho(s)llL.  L, and 

IV(r/(p(0)))-V(r/(p(1))) I = vol (S) for any choice of extension 

operators r/such that E n is continuous along p}. 

The volume condition defining the class P may be visualized as follows: If we extend 

p(0) by rl(p(O))=p(O)=p o 6 ~(S) any continuous choice of extensions ofp(t) at t= I must 

give a map covering S (of degree _+ 1). 

Also let 
[ En(p(O))+Et~~ ] 

fin = inf sup EH(P(t)) - (2.9) 
pEPO<~t<~l 2 

where E H may be defined using any choice of extension operators such that E H is 

continuous along p. 

LEMMA 2.3. P~=O, and for  any H E R  we have the estimate 

~H <<- c(1 + I1-1]) 

where c denotes a constant depending only on S. 

Proof. To construct a comparison path p 6P  let W: R3--->R 3 be the diffeomorphism 

in the hypotheses of the theorem mapping S to S 2. Let q(t) be the family of plane 

parallel surfaces bounded by circles of constant latitude on $2: 

q(t; u, v) = r(2t-  1) (u, v, 0)+(0, 0, 2 t -  1) 

where r(s)=VTL-~ -, and let p(t)=W-l(q(t)). Clearly (p(0),p(1)) are constants 6 S. More- 

over, p(s) lies "inside" S and hence satisfies ILo(s)IILo~<L. Finally, if we let 

/~(s)=tlt-l(#(s)), where #(s) is a parametrization of the spherical cap "below" q(t), 

clearly V(p(0))=0, [V(p(1))l=vol (S). For any other continuous choice of extension both 

these quantities could at most change by the same integral multiple of vol (S). Hence 

p 6 P ,  flH<~. The bound follows immediately from the form of E H since p does not 

depend on H. [] 

LEMMA 2.4./3H>IH I vol (S). 

Proof. Note that by definition of P 

EH(P(O) )+ EH(P(1) ) 
I/-/] vol (S) = sup {EH(p(0)), E~p(1))} 2 
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The claim hence amounts to show the following: 

There exists 5>0 such that 

sup En(p(t)) >I sup {En(p(0)), En(p(1)) } +6 
O~t~l 

(2.10) 

for any p E P. 

We may assume En(p(O))>~En(p(1)). Choose an extension such that rl(p(O))= 

p(0)=p 0, En(p(0))=0. 

To complete the proof of Lemma 2.4 we need the following 

LEMMA 2.5. There exist a>0,  c depending only on S such that ~ may be extended 

smoothly to surfaces X E cr with D(X)<a in such a way that there results: 

D(r/(X)) ~ c. D(X). 

Proof. For convex S replace X by its associate harmonic surface Y as in Lemma 

2.1 and project from a fixed point Q lying in the interior of S to obtain X. This is 

possible since by [21, proof of Lemma 3.7, p. 553]: 

[dist (Y, S)] 2 <~ c " D( Y) <~ c . D(X) < ca, 

cp. also (A.2)--(A.3) in the Appendix. Hence for suitable choice of a 

dist(Y,S) < ~ dist(Q; S), 

for all Y with D(Y)<a,  and the map projecting Y onto X will be bounded independent 

of Y. 

In the general case we use the diffeomorphism ty to transfer the above extension 

operator from S 2 to S. [] 

LEMMA 2.6. inf sup D(X)~>ct>0. 
pEPO<~t<~l 

Proof. Otherwise, for a certain p E P  we would have D(X)<a,  uniformly for 

X=p(t), 0~<t~<l. The map r/constructed in Lemma 2.5 is an admissible extension with 

V(r/(p(0)))= V(rl(p(1)))=0, a contradiction. [] 

Proof of  Lemma 2.4 (completed). Now use the isoperimetric inequality Theorem 

2.1 to estimate for any X=p(t),X=rl(X): 
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EH(X) = D(X)+2H[ V(X)- V(X')I 

>I D(X)-  ~ [ D(X) + D( fO ] 3/2 (2. I l) 

~> D ( X ) ( 1 - c ~  ~> 2 D ( X ) ,  

provided D(X)<a H for some suitable chosen a~/E ]0, a[, where ~1, a, c are as in Lemrna 

2.5 (2.10) and the lemma thus is seen to be a consequence of Lemma 2.6. [] 

The deformation lemma. Recall that for a Ct-functional E on a Hilbert manifold d/t 

satisfying the Palais-Smale condition one can easily construct a continuous deformation 

of 2t from a (pseudo-) gradient flow for E with the property that E decreases uniformly 

along the trajectories of this deformation away from critical points of E. 

With the minimax-characterization (2.9) and the bound Lemma 2.4 of a possible 

critical value of E H at our disposal, a deformation of cr having the above property 

would immediately lead to a proof of our Theorem 1.1--and even show the existence of 

a non-constant solution to (1.1)--(1.4) for all H. 

However, as we remarked in the introduction, by conformal invariance it is 

impossible that the Palais-Smale condition holds for our functional E H, and the con- 

struction of a suitable deformation becomes a delicate matter--to be dealt with in the 

next section. 

3. The evolution problem 

Notations. For a domain ~ c R  2, -o~<<.s<t<<.oo let 

t O _  t ~ ~ '~ t .  g)~=Qx]s , t [ ,  ~ s - f ] ~ ,  g20- 

For such Q, s, t introduce the  space 

V(f2's) = {X fi C~ t];H" 2(fl, R3))I IVZX], la ,XI 6 L2(f2',)}, 

where the derivatives are taken in the distribution sense. 

Also let 

R 2 = {(u, v) 6 R2Iv > 0} 

denote the upper half-plane. 

c denotes a generic constant depending only on S and a bound for H, occasionally 

numbered for clarity. 
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In this section we study existence and uniqueness of solutions to the time depend- 

ent problem 

O t X - A X + 2 H X . ^ X  o = 0 (3. I) 

in a cylinder B r with initial condition 

X(0) = X 0 E qr (3.2) 

subject to the free boundary condition 

X(w, t) E S a.e. on (aB) r (3.3) 

and to the orthogonality condition 

O,X(w, t)• oS a.e. on (OB) r. (3.4) 

Moreover, we analyze the regularity of solutions to (3.1)-(3.4), and study their behav- 

ior for t---~ and in the neighborhood of possible singularities in the same way as we did 

for the evolution problem associated with harmonic mappings of Riemanian surfaces, 

cp. [24]. The results we obtain are completely analogous to those of [24]. In fact our 

derivation of these results reveals the deep connections between the two problems. In 

particular we establish: 

THEOREM 3.1. For any H E R ,  any XoEC~(S) there exists a unique solution 

XE nr<t  V(B r) of  problem (3.1)-(3.4), defined and regular on/~x]0, ]'[ where i">0 is 

characterized by the condition that 

lim sup D(X(t);BR(w)NB)~g (3.5) 
T - - - ~ i ' ( w  ' t) EB r 

for all R>0,  with a constant g>0 depending only on S and H. 

I f  in addition I/-/]< 1/L, ]lX0llL.~<L, the solution X will satisfy the maximum modulus 

estimate 

IIXlIL-~B~ ~ I". 

Moreover, /f(3.5)holds for some T<~ and 

fffB IO'Xl2dwdt+supD(X(t))<~'o~,~ 

(3.6) 

(3.7) 
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there exists a sequence tm/~7 " and sequences RmNaO, WmEB such that the rescaled 

functions (after a possible rotation o f  coordinates) 

Xm(W)~X(Wm+RmW, t~)---~X in ./-/2'2/!~2.1oc ~.-~+,'R3), (3.8) 

where X: R2+--->R 3 is conformal to a non-constant, regular solution to (I. 1)-(1.4). 

Finally, i f  for  some R > 0  and all ~'<<. oo (3.7) holds while (3.5) is not achieved, X is 

globally regular and there exists a sequence tm--->~ such that X(t  m) E ~2(S) and 

X(tm)-->X in Hz'2(B;R 3) 

strongly, where X is a solution to (1.1)-(1.4). 

For minimal surfaces (H=0) condition (3.7) is automatically satisfied (cp. Lemma 

3.6) and we obtain global existence of (distribution) solutions to (3.1)-(3.4): 

Tr~EOREM 3.2. Suppose H=0.  Then for any XoE ~(S) there exists a (distribution) 

solution X to (3,1)-(3.4) which is defined and regular on/~x]0, ~] with exception o f  at 

most finitely many points (w <k), l~k)), T~k)<<. oo, l ~k<~K, and unique in this class. 

The singularities are characterized by the condition that 

lim sup D(X(t); BR(w Ck) N B) >>- 
ill<k) 

t m / 7  ~ , for alI R>O, and for each k there exist sequences ~k) k) w~), R~)NaOand surfaces ~k) 

such that the rescaled functions (after a possible rotation o f  coordinates) 

k) ok) ~k) ~k)  in H~'2~R 2 R 3~ X<km (W) -- X(W m +R m w, t~ ))--> Ioc' +, ", 

where .y~k) is conformal to a non-constant, regular minimal surface solving (1.1)-(1.4) 

for H=0.  

Similar results will hold for arbitrary H E R .  However, in general we cannot 

guarantee the uniform boundedness (3.7) of D(X(t)) and solutions might cease to exist 

(even in the distribution sense) after a finite time and might pass through denumerably 

many singularities on their intervals of existence. 

Although results as powerful as Theorem 3.2 are not needed to complete the proof 

of Theorem 1.1, they may be of some interest in themselves. A short of  proof is 

supplied at the end of this chapter. 
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In the following various constants ej>0 depending only on S and H will be 

introduced. We agree to let g be the least of these numbers. 

A basic inequality. Note the following Sobolev-type inequality 

LEMMA 3.3. For any smooth and bounded domain Q c R  2, any function q9 E HI'2(Q) 

with a constant c depending only the shape of  ~. (I.e. c is invariant under scaling 
w~---~Rw.) 

By a covering argument Lemma 3.3 implies the following estimate for functions in 

v(Q',): 

LEMMA 3.4. There exists a constant c such that for any T<. oo, any X E V(Br), any 
R E ]0, 1] there holds the estimate 

f, lWO'dwdt c:2:?uBD(X(t);B,'w)nB){  IV2 2dwdt+R-2 TlVXI dwdt }" 
(3.9') 

Moreover, for any w o E B, any R E ]0, 1 ], any X E V(Br), and any function r E Co (BR(wo) 

depending only on the distance ]w-wo] and non-increasing as a function of this 

distance there holds the estimate 

fBr[VX]4~2 dw dt <~ C eSoSSUp D(X(t); B,(wo) nB) { fBrlV2Xl2~2 dwdt+ R-2 fBr'VX'2~2 dwdt ) �9 

(3.93 

For details cf. [11, II. Theorem 2.2 and Remark 2.1, p. 63f.] and [24, Lemma 3.1, 3.2]. 

In view of (3.9'), (3.9'3 the quantity 

e(R)= sup D(X(t);BR(w)nB) (3.10) 
(w, t) E B r 

associated with a function XE V(B r) will play an important role in our estimates. 

L| bounds. 

3-888285 A c t a  M a t h e m a t i c a  160. Imprim6 le 25 f~vrier 1988 
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LEMMA 3.5. Suppose ~ < I / L ,  IIXoIIL~<L. Then for any continuous solution 

XE V(B f) of  (3.1)-(3.4) there holds the estimate 

l lX(OllL. ~ L  

for all t E [0, :F]. 

Proof. Multiply (3.1) by X to obtain the differential inequality 

~ (O,--A)IX1 = = -2HX.X.^Xo-IVXI 2 

IVXI2(IHI I lXl l , -c. , )-  l) ~< 0, 

for all T>0 such that X(t) is defined on [0, 7] and llXllL=~BT~ ~ 1/IH1 �9 

The parabolic maximum principle then implies that for such T in fact IIxIIL.(BT)<~L 

and by continuity of the flow X(t) the set of such T is both open and closed in the 

interval [0, ~ .  [] 

LZ-a-priori bounds. No quantitative bounds on H are required to obtain L2-a-priori 

bounds for solutions of (3.1)-(3.4). First consider the time derivative of X: 

LEMMA 3.6. Suppose HER,  XoE~(S), and let XEV(B r) be a solution to 

(3.1)-(3.4). Then D(X(t)),EH(X(t)) are absolutely continuous in tE[0, T], and there 

holds the estimate 

~ la,Xl 2 dw <<. dt+E~X(T)) E~Xo). 

Proof. Differentiate and integrate by parts---observing that O,X.atX=O in the 

distribution sense on (aB) r by (3.3)-(3.4)--to obtain for a.e. t E [0, T]: 

dD(X( t ) )= fBv xva tXdw=- fBAxa tXdwEL ' ( [O ,T] ) ,  

resp. (cp. (2.7), (2.8)) 

d E,(Z(t)) = :a [-'~X+X"/,Zo]. a, x dw 

= - fB l a ' ~  dw ~ U([O, T]). [] 
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Let us now bound the second spatial derivatives of X: 

LE~MA 3.7. For any H E R  there exist constants c I, et>Odepending only on S and 

H such that for any solution XEV(B r) of (3.1)-(3.4) and any RE]0,1]  there holds 
the estimate 

fB IV2X] dw dt <~ D(Xo)+cITR -2 D(X(t)), Cl s u p  
r O<<-t<~T 

provided e(R)<.el, cp. (3. I0). 

Proof. Multiplying (3.1) by - A X  and integrating by parts on account of (3.3)-(3.4) 

we obtain 

f r \ 2 / 

<~l f~ ltOOe dwdt+c fn lVXl4 dwdt. 

By (3.9'), (3.10) this implies 

D(X(T))-D(Xo)+ l ~rlA~2 dw dt <- ce, ~r  [V2X] 2 dw dt+cTR -2 sup D(X(t)). 
O<~t~T 

(3.11) 

Let (r, qb) denote polar coordinates on B. Multiplying (3.1) by -(02/8q~e)x and integrat- 

ing by parts we find 

f a,(• v Xedwdt [L,,, a 2 O . X - ~  X d~ dt 
j~, \21a~, / (3.12) / ,  

+ I~ .JB], IVXl21vexl dw at. 

For X E S  now let G(X) be the outer normal to S. If SE C m, the Gauss mapGE C m-l. 

By (3.4) 
O.X=(OnX.G(X)).G(X) a.e. on(OB) r. 

Noting that by (3.3) 

0 
C~X). X=O. ar a . e .  
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an integration by parts with respect to ~ yields 

fan a~ bz02 0,,X'----=Xd# = f (0nX" G(X)) (_0_0 X" VG(X) "--~-a X~ d~ 
3o~ \a~ ar / 

for a.e. r Extend G of class C ~ to R 3. By the divergence theorem then 

JoB a~ \a~ a~ / j  

+ f vx.v{G(X)(2-X.VC~X).3LX)~dw, o, ar /J 

cf~ IV2Xl IVXl2+ IVXl" dw. 

Hence (3.12) may be estimated for arbitrary 6 fi ]0, 1[: 

0 2 0 2 
o,  J. dwdt 

~< (c(t$) e I + c$) f ]vex] 2 dw dt+ c(6) TR -2 sup D(X(t)). 
Js T O<~t <~T 

Since 

(3.13) 

IV2X]2 ~< 1A~2+4 V - ~ X  V (3.14) 

from (3.11), (3.13) we obtain 

fJv2X12dwdt<~(c(t~)e'+46)fBr'V2X]2dwdt+cD(X~ o<a<.rsupD(X(t)) 

and the claim follows for el, 6>0 sufficiently small. [] 

A variant of the above proof also gives the following 

LEMMX 3.8. Suppose HE R. Then there exist constants c 2, e2>0 depending only on 

S and H such that for any solution XE V(B r) of (3.1)-(3.4), any RE]0, 1[, any woEB 

there holds: 

D(X(T); Be(wo) fl B) <~ 2D(X 0, B2e(Wo) fl B)+c 2 TR-2e(R), 

provided e(R)<~e 2. 
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Proof. Let ~ECo(B2R(Wo)) be a non-increasing function of the distance 

Iw-w01 such that r on BR(wo), IV~I<-cR -~. Testing (3.1) with -AXe 2, -(a2/ar �9 ~2 
resp. and going through the proof of Lemma 3.7 using (3.9") instead of (3.9'), analogous 
to (3.11), (3.13) we obtain the estimate 

Z 2 2 l 0 2 2 dwdt<~(ce2+6) Io r dwdt ~ r a t (  2 [VX[ ~ + T  ~-~ x ~)+[V2X[2~  2 - ~  IV2Jtq2~2 

+ c(6) TR -20<-t<.TSUp D(X(t); B2R(wo) f~ B) + 6 fs r [at X[2~2 dw dt 

(3.15) 

for any 6>0. 

The last term results from estimating terms like 

fsr atXVXCV~ dwdt <<. 6 fsr [atX[2~2 dwdt+c(6) far [VJ02[V~12 dwdt, 

while 

fB IVX]2[V~[2 dw dt <~ cTR-2 sup D(X(t);B2R(w o) N B). 
T O<~t<~T 

On the other hand, by (3.1) 

hence 

Io, x1 c(lV2Xl+lVX]2); 

fB r [at X12r 2 dw dt <~ c fB r [V2XI2~ 2 dw dt + c fn r [VJ04~ 2 dw dt. (3.16) 

Now again apply estimate (3.9"): 

fn r [VXl4~2 dw dt <<" e2 fB T [V2JOZ~2 dw dt +cTR-2 o-<t<.rSUp D(X(t),B2R(Wo) nB). 

Also note the trivial estimate 

sup D(X(t);B2R(Wo) fiB) <<. ce(R). 
O<~t<~ T 
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Choosing 6 sufficiently small and adding (3.15)--(3.16) we thus arrive at the estimate: 

fBr tgt (21V"~q2~ 2+ 0-~ X2~2~+lV2Xl2~2dwdt<~ce2flv2~2~2dwdt+ce(R)TR -2 , ]  

On account of the simple inequality for t E [0, T]: 

1 2 

the claim now follows if e2>0 is chosen small enough. [] 

For later reference we note the following useful inequality which results as a by- 

product of the preceding proof: 

Remark 3.9. Suppose HER.  Then for any solution XE V(B r) of (3.1)-(3.4), any 

R E ]0, 1 [, any w 0 E B there holds the estimate 

for faR(wo)nB lV2X]2 dw dt <~ 4c2( l + TR-2) e(R), 

provided e(R)<.e 2. 

Higher regularity. So far we had found analogies with the evolution problem for 

harmonic mappings of surfaces on a technical level. In order to obtain higher regularity 

(and later local existence) for the flow (3.1)-(3.4) we now make use of a more profound 

relationship which has already played an important role in regularity analysis of free 

boundaries of surfaces; cp. [9, p. 241]. To see this relation consider the reflection of a 

given solution XE V(B r) to (3.1)-(3.4) in S: 

By compactness and regularity of S there exists a 6-neighborhood U~(S) of S such 

that any point P E Ur(S) has a unique projection Z~s(P) E S, defined by 

Ie- zrs(e)l = m i n  IP-QI. 
QEs 

Now let 

~(P)  = 2 ~q (P) -P  

denote the reflection of a point P E Ue(S) in S. 

~Z=id. Moreover, ~ E C m-* if S E C '~, m>~l. 

Note that ~ is involutory, 
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For a solution XE V(B r) to (3.1)-(3.4) now consider the set 

and define an extension to/}--Brtj/~ by letting 

r X(w, t), if wEB 

f ( ( w ' t ) = ~ ( X ( ~ w ~ , t ) ) ,  if (w,t)El~. 

By the interior regularity results for (3.1)/)  is open in R2x ]0, T[ and it is meaningful to 

consider (distributional) derivatives of X on / ) .  Using the relation 

\ \ Jwt 

for (w, t)EB T with (w/lw] z, t)E15 it is elementary to verify the following facts: 

L~MMA 3.10. Suppose X E V(B r) solves (3.1)-(3.4)for some HER. Then ff  satisfies 

0,2, VZX E L~oc(b) (3.17) 

and )( is a weak solution to a system 

Ot.~-a(w) Aff+F(w, )0 (V~', V)~') = 0 (3.18) 

in 1~ with uniformly Lipschitz continuous coefficients a>~ 1 and a bounded bilinear form 
whose coefficients are measurable in w and of class C 1 in f(. 

Proof. To obtain (3.17)note the pointwise estimates 

for all (w, t) E D. 
Moreover, it is easy to see that X(t) is of class H 2' 2 for a.e. t E [0, t] on its domain 

/}(t). Indeed, it is clear that )~'(t) E H 2'2 separately on B and l~(t)\B=f)(t) for a .e . t .  But 

(3.3)(3.4) imply that for any q~ E C~(/~(t)): 

ft5 gVZq~dw=l  gV2cpdw+(ffV2cpdw 
(t) Jl)(t) .JB 

=fD(t)Vzf(cpdw+fB V2f(cpdw 
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while the boundary terms cancel. Hence the L2-function V2,('(t) (defined on/)(t)  O B) is 

the 2nd distributional derivative of ~'(t), and ,~'(t)E H2'2(/)(t); R 3) for a.e. r 

(3.18) now follows from (3.1) upon differentiating 

by the chain rule. In particular, note that the coefficients of I" involve the Christoffel 

Symbols of the metric 

~0~-'b = (v~ ' (~ .  v~(~3),_,,.j_,3, 

and (3.18) is the evolution equation for H-surfaces f rom/ )  into R 2 with metric 

~ 6  U , if Iwl~l 
~o(w, x3 = t~o(X)  ' if Iwl > I. 

Since ~ E  C ' ' ~  for S E C", ~oE C "-2, and the Christoffel symbols I" associated with 

go will be of class C 'n-3. Hence, if S E 6"4, ' the coefficients f" in (3.18) will be locally 

uniformly bounded and measurable in w and of class C 1 in X. 

Finally, a is given by 

1, Iwl~ l  
a(w)= Iwl', Iwl>l. 

Remark  3.11. For later reference we note another useful implication of (3.3)--(3.4). 

Let 6>0 be as in the definition of ~ ,  and let ~pE C o satisfy 0~<q0~<l, q0(s)=l if Isl<a/2, 
while tp(s)---0 if Isl~>6. Then for any solution XE V(B r) with extension ,(" the function 

1, if Iwl < 1 
~(w,  t) = qg(f((w, t)-at6(ff(w, t))), if (u~, t) E/9 (3.20) 

O, if ( w, t ) r l )  

belongs to H ~ ( R  2) for a.e. t and satisfies a.e. 

IV~l <~ ClV,r IV~l < ClV2,r (3.21') 

moreover, the distributional derivative O, t~ E L2or and 

la, ffl ~ cla,,r a.e. (3.21") 

LEMMA 3.12. Let  H E R .  There exists a constant e3>0 depending only on S and H 

such that the fol lowing is true: 
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Any weak solution XE  V(B r) to (3.1)--(3.4) with initial data X0E ~(S) is HOlder 

continuous on/~x]0, T], and on any subinterval [r, T], r>0,  the HOlder norm of  X is 

uniformly bounded in terms o f  T, r and the number 

R = sup{RE]0,  1]le(R) ~< e3). 

I f  XoE ~2(S), the solution X is HOlder continuous on/~x[0, T] and its HOlder norm is 

bounded in terms o fT ,  R, and the H2'2-norm o f  X o. 

Proof. We proceed as in [24, Lemma 3.10] using the extended system (3.18). 

First we derive uniform bounds for smooth solutions for the L2-norm of 

atx(t) for a.e. t>0. 

Let ~ be the function constructed in Remark 3. I 1, w 0 E B, and let ~ E Co(B2R(Wo)) 

be a radially symmetric function as in the proof of Lemma 3.8. Differentiate (3.18) with 

respect to time to obtain the differential inequality 

la~ ' -a (w)  A o , ~  <~ clva,21 lWtl+cla,,r IV.el 2 

o n / ) .  Testing this inequality with the function at.('9~2r 2 and integrating over a time 

interval [to, tl]C[0 , T] we infer that 

~< c~" {Io,213~,r 1 la,21~ztg+lVa,2l la,2llvX'l~r = Jo. 

+ Iva,,r la, + la, Xl=lV,r162 =} dw at. 

Note that we have used (3.21 '), (3.21") to estimate derivatives of ~. 

Next recall that integrals of .~" and its derivatives over/~ may be estimated by 

corresponding integrals of X over B; cp. (3.19). Hence we may replace the domain R 2 by 

B and omit q3 in all integrals at the expense of enlarging our constants c. If we then also 

apply HOlder's inequality we obtain 
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fB la'X(tl)[2r dw+l Iva,x]2r dw at <~c fB latx(t~162 dw+ l f IVatXI2~2 dw dt 
j.:,0 ~ j~;,0 

+c( f~, la, XI2r162 dwdt) l~ ( f~;,ola,Xq'~2 dwdt) "~ 
+c/0jB la, xI2(r IVr 2) dw dt. 

(3.22) 

Since by (3.1) there holds 

la,Xl ~ IV~Xl+r (3.23) 

we may estimate 

f#tolOtX[2~2 + lVXl4~2 dw dt <~ c fB:tolV2X]2~2 +lV'~]4~ 2 dw dt 

c ~ IvExI2~E dwdt+c(tl-to) R -2 sup D(X(t);B2R(WofqB). 
JB 

<. c(tl--to) R-2e3 +ce3. 

For the last inequality we have also used (3.9'9, Remark 3.9, and our assumption that 

e(R)<.%. 
Moreover, note that we may also apply (3.9") to estimate the term 

fB latXl4r fB la, X(t)12dw 
ttlo to<~t<~t! ~(wo) nB 

x(f#t,o'VOtX12~2dwdt+R-2/B,~o'atX12~2dwdt t 

appearing on the right of (3.22). 

Going back to (3.22) we may now write 

fB 'OtX(t')12~2 dw+ ~ ]VatXl2~2 dw dt <~ c fB latX(t~ dw+c[(l +(t'-t~ R-2)e3]J/2 

• sup I [OtX(t)12dw(l, lVa,Xt2~Zdwdt+R-2~ 'a'X]2~2dwdt)l'/2 
L ~ ~'' "~"~"~ ~ \ J':o "B:'o 
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f +c(tz-to)(l+R -2) sup | 18,X(t)12dw 
to <~t<~t ! ,.I B2R(W O) n B 

<--.cflOtX(to),2~2dw+c[(l+(tz-to)R-2)e3]z/2fB IVOtX~2~2dwdt 

+c[e3+(tl-to)R-2] sup I latX(t)l 2 dw" 
to<~t<~t l J B2R( Wo) n B 

I.e. for sufficiently small e3>O , tl-to<<.e3R2 there holds 

fB R 'OtX(tz)'2dw<'cf ,atX(to),2dw+ce3suPfB ,8,X(t)12dw. 
(Wo)t~B JB2R(w~)flB to <~t~tl m(wdnB 

This inequality will hold for any woEB and anyto, t I E [0, T] such that tz-to<.e3R 2. Fix 

O<~io<<.iz<~io+e3R 2, ~=�89 and for toe [to, t~] let woEB, t, E [t o, t~] be defined such 

that 

2 fnRcwo)nnlatX(tz)12 dw>'esssup ~ la, X(i)12 dw. 
(a~, f) EBr~ JBR(~)f~B 

Covering B with balls of radius R, for sufficiently small e3>0 and suitably chosen 

t o E [to, t-l] we then obtain that 

c-'R2fBlstX([2)12dw<"fsR<wo)nnlStX(tz)12dw<'cfn~two, nBlStX(to)12dw 
(3.24) 

<.c inf ~lO,X(t)12dw<~ f . ,~<,~<t, ,2 IOtxl2 dw dt. 
I -  0 JB:o 

By (3.23) and Lemma 3.7 finally 

fBl stX(tz)12 d w  <. c____c_._ 
t T - t  o 

for all to, tlE[O,T] such that O<tz-to<~e3R 2, with a constant c=c(T,R). I.e. for all 

t E ]0, T] there holds 

fnlatx(t)l 2 dw <~ I + t-z). (3.25') C( 
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If XoE ~2(S) from (3.23)--(3.24) we obtain 

fBl(gt X(t)l 2 dw ~ (3.25") r 

uniformly, with c depending in addition on IlX011.2,2  ,R, . 
Now we derive pointwise estimates for J'B Iv2x(012 dw, using (3.25'), (3.25'3. Note 

that (3.18) implies 

I A,~(t)l ~< c(IO,,r + Iv-~'(t)12). 

Testing with A~(t)(~2 and integrating by parts we find that for a.e. t E ]0, T]: 

f, lv2 Y: aw c f, +,v.e[') 4: dw+c f. [v Xq [v,l d  

I.e. by (3.19) again 

fnlv2X(t)l dw ~ Jn (l~ dw. 
I" c 

(3.9) and our assumption e(R)<~e 3 now imply that 

fB,V2X(t),2 dw ~ c fBlO,X(t)12 dw+cR -2, 

and (3.25) yields the estimate 

f lV2X(t)l 2 dw <- c(T, r, R) 

for all tE[r,  T] , r>0,  resp. the global bound 

fBIV2X(t)I c(T, IIX011,~,2(B .~3)) dw R, (3.26) 

for regular initial data. 
By Sobolev's embedding theorem H 2' 2(B)~C~ and X(t) is uniformly continuous 

locally on ]0, T], resp. on [0, T] for regular X 0. In particular, /9 contains a uniform 

neighborhood of/~x]0,  T], resp. of/~x[0,  T], and we can proceed to derive estimates 

for X from (3.18) and the local regularity theory for linear parabolic equations with right 
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hand side bounded in Z q for all q<oo locally on ]0, T], resp. globally on [0, T] for 

X 0 e %(S). 

The contended HOlder continuity thus is a consequence of [1 I, Theorem 3.10.1]. 

For weak solutions X E  V(B r) the time derivative has to be replaced by difference 

quotients. The remainder of the proof stays the same. [] 

Remark 3.13. Once HOlder continuity and a priori HOlder bounds have been 

established for X higher regularity and a priori bounds for derivatives of X may be 

obtained in a standard manner by locally mapping a neighborhood of S around a 

boundary point of X onto a plane e.g. by introducing normal coordinates around S and 

reflecting the transformed surface .~ in this plane to obtain a solution of a parabolic 

system 

with coefficients ['E C m-3 if S E C m, m~4.  The standard regularity theory for such 

systems (cp. [11]) together with our HOlder bounds now implies that X really is as 

smooth as the data permit, i.e. of class C m-2 in space and of class C m-3 in time for any 

m~>4 with all derivatives up to this order HOlder continuous on/~x]0,  T]. 

I f X  0 is sufficiently smooth we obtain regularity and a priori bounds up to t=O. 

Remark 3.14. As in [24, Lemmata 3.7', 3.10', Remark 3.11'] we can also prove 

local regularity and a priori bounds for solutions XE Nr<r r) on any subset D'~/~ r 

with the property that for some R >0  

sup D(X(t);BR(w) flB) <~ e 4 
(w, t) E D' 

where e4>0 is a suitable constant depending only on S and H. 

Uniqueness. 

LEMMA 3.15. Let  H E R ,  XoE ~(S) and suppose that X~I),X~2)E V(B r) are weak 

solutions to (3.1)-(3.4) with x(l)(0)=X(2)(0)=X0. Then X~I)-X ~z). 

Proof. Let .~'~/) be the extension of X t/~ defined in Lemma 3.10, q~o) the associated 

truncation function, j =  I, 2. Define ~=min {q3 (u, Sa)}. Subtracting equations (3.18) for 

.~),~,~2) and testing with (.:~1)-~2))q32 we obtain the following estimates for 
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[at ~'-a(w) A YI <~ clVYOIVgl+clVY021 f'l, 

+ IV-el IV ~'11 ~'l~Z+ IV,('121 ~'12~ 2} dw dt. (3.27') 

For brevity we have denoted [V~'~ IVY" l, etc. By (3.21) 

[cOtr IVr ~< ctV~, 

and we may bound the right hand side of  (3.27') by 

fa, I YI2(la' ~ + IVXl2)+ IV YII rl(1 + tvxq) dw ,it. C 

Again we have used the fact that 

Y(w, t) = (,~,)_)~2)) (w, t) = (R(X('))-R(X(Z))) - ~ ,  t 

~0 1 �9 (~1)_X(2)) d ~  = VR(X<2)+~x~,-x~2))) 
(w/(w12). t) 

whence 

(3.27'9 

[~r(W,t)[<<.C Y( w.,t~[ 
\ Iwl ~ / 

for all w~B, where  Y=X(~)-X (2), and integral estimates for I~ can be obtained from 

estimates for Y on B r. A similar statement applies to V Y. 

From HOlder's inequality and (3.27) we now obtain 

~ l Y( T),2 dW + ~r lV y,2 dw dt <- c ( fBr ,O tXI2 + lV Xl4 dw dt ) '/2 " ( fnr l Yl4 dw dt ) lCZ 

+~ fBrlVYl2 dwdt+c fBrlYl2 dwdt" 

With no loss of generality we may assume that T>0 is chosen such that 

fB I Y(T)'2 dw = 0.,.Tsup JBI t Y(t)t2 dw" 
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Estimating the L4-norm of Y by (3.9') we conclude that 

sup I [Y(t)12dW+~rlVy[2dw 
O<~t<~ T .] B 

+cT sup [ [Y(t)12dw, 
O~t<~T .JB 

and for T>0 let 

(BQ) r = Be(0 ) x [0, T]. 

and by absolute continuity of the Lebesgue integral the right-hand-side can be made 

~<--1 ( s u P 2  \0 , t ,  r JBf'Y(t)12dw+~ rlVYl2dwdt ) 

for T>0 sufficiently small. Hence Y-0 on Brfor small T>0. By iteration Y~0 on Brfor 
any T>0 such that X ~ X (2) a r e  defined. [] 

Local existence. Local existence of solutions to (3.1)-(3.4) will be obtained by a 
fixed point method. 

LEMMA 3.16. For any HER, any XoE ~(S) there exists a number/~>0 depending 

only on H, S and the number 

I~ = sup ( R E ]O' I ]I sup D(X~ BR(w) N B) <~4 

such that (3.1)-(3.4) admits a solution X E V(Bt). Here, ~<0 is the least of the constants 
ej appearing in Lemmata 3.7, 3.8, 3.12. 

If ~J~<I/L, then 

Proof. First consider smooth initial data X 0 E cr By reflection in S we may 

extend X 0 to some ball Bo(O), 0>1. Denote 

2o(W)= [ X~ Iwl~<l, 
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For sufficiently small o>0, T>0 and a suitable number q>4 to be determined later 

consider the set 

"~ = {'~ E V((B )r)lk(O) = f(~ ess sup f%)rlVk(t)-V'~~ dw <~ o<~t<~T 

Endowed with the topology of V((Be)r), E is closed and convex. 

To XEE we now associate the unique solution I;'=:f(~)E V((BQ) r) of the Cauchy- 

Dirichlet problem 

O, I~-a(w)A Y+f'(w, ~ (VX, V.~') = 0 in (B0)r (3.28) 

with initial and boundary data 

Y(0) = k o, (3.29) 

I~=~ " on 8BQ• (3.30) 

From (3.28) and [11, Theorem 4.10.1 and (10.12), p. 355] i fXoEC 2 we have uniform 

estimates 

Iv2  lq'2 aw at la, 

Hence it is possible to a priori bound I 7" on the cylinder surface OBI/Q(O)• [0, T] in a trace 

space ~12/2 with />3/2, cp. [I1, Lemma 2.3.4]. In particular, for sufficiently small 

0>1, T>0, o>0, the points ~'(w/]w] 2, t), ]wl= O, O<~t<~T, will all lie in a 6-neighborhood of 

S and their reflection in S will be defined. We may therefore define a map F: .E---> = - by 

letting Z=F(Y~') be the unique solution to the problem 

O,2-a(w)A2+f'(w, fO(Vf(,W~) =0 in (Be) r (3.31) 

with initial and boundary data 

2(0) = ~'0, (3.32) 

2(w,t)=R( ~'(--~w~,t)) on OBe • (3.33) 

Note that if q>4 is chosen sufficiently large from [11, Theorem 4.9.1] and our above 

observation about the regularity of Y on OB~/o(O)• T] we obtain uniform H~lder 
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estimates for V2 in space and time. In particular, for small enough T>0 we obtain ZE -Z 

and F: -=--->E. Moreover, F(E) is bounded in V((BQ)r). 

Finally, F is compact. To see this consider a bounded subset of Z. By weak 

compactness of V((BQ) r) and uniform boundedness of V.~'(t) in Zq(Bo(O)) for any t E [0, T] 

and any XE .E this subset is compact in L2([0, T];HI"4(Be;R3)). Moreover, the asso- 

ciated set of traces f'lon,lo• rj is compact in the trace space W~/2'3/4. From (3.31)-(3.33) 

and [11, Theorem 4.9.1] it now follows that F is compact in the V((Bo)r)-topology. By 

the Schauder fixed point theorem F has a fixed point .~=Z. Necessarily 

~'(w,t)=ff(w,t)=Z(w,t)=R(fr(~w[2,t)) on OBox[O,T]. 

I.e. g is also a solution to (3.31)-(3.33). Hence ~'=Z=~" and g is a solution to (3.18). 

But by construction also R(fC(w/lwl 2, t)) is a solution to (3.18) in [Bo(O)\B1/o(O)x [0, T]] 

with the same initial and boundary data as .~'. Our proof of uniqueness for (3.1)-(3.4), 

cp. Lemma 3.15, conveys to this situation and we infer that fC(w, t)--R(ff(w/Iw[ 2, t)). 
In particular, XE~(S) and (3.3) is satisfied. (3.4) also holds---otherwise 

V2XOiL2((Bo)r). Finally, by Lemma 3.5 if tI-1]<I/L estimate (3.6) will be satisfied. 

This proves local existence for smooth initial data X o 6. c~(S)n C2(B; R3). To obtain 

local existence for arbitrary X 0 E cr we approximate X 0 by smooth data X~0 and let 

X m E V(B r') be the corresponding solution. Note that by Lemmata 3.7, 3.8, 3.12 each 

X m persists as a regular solution to (3.1)-(3.4) for at least a time T=gl~2/2c2>O. In fact, 

Lemma 3.7 guarantees the estimate e(/~)<~g for all X m on [0, I'], and Lemmata 3.8, 3.12 

apply. Moreover, we have a uniform bound 

fib [atgml2 § § dwdt§ <~ c(g). sup. D(Xm(/)) 
o) f 0 <~t<~T 

and we may extract a subsequence that converges weakly to a solution of (3.1)-(3.4). 

If IHI<I/L, estimate (3.6) for X" implies the same estimate for X. [] 

Asymptotics. Let us now investigate the global behavior of the solutions to 

(3.1)-(3.4). 

4-888285 Acta Mathematica 160. Imprim6 le 25 f6vrier 1988 
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LEMMA 3.17. Let H E R .  Suppose XE  nr<| V(B r) is a solution to (3.1)--(3.4), and 

suppose that for  T= oo condition (3.7) is satisfied while for some R >0  there holds 

sup D(X(t);BR(w)NB)<~g. 
(w,.t) E B | 

Then X is globally regular and there exists a sequence t, ---~oo such that X(t m) E Cr 

and 

X(t,.)---~f~ in H2'2(B;R 3) 

where f( is a solution to (1.1)-(1.4). 

Proof. Our assumptions and Lemma 3.7 imply that for m E N: 

B,~+tlOtJO2 dwdt__> 0 (m--.oo) 

fn IV2XI 2 dw dt <<, c uniformly in m. 
==+1 

By Fubini's theorem we may thus choose a sequence t,---~oo such that Xm= 

X(t m) E ~2(S) satisfies 

atx(t ,  .) = AX. , -2HXm. ^ Xmo~ 0 in L2(B) 

a.Xm(w)• a.e. on aB 

supD(Xm, BR(w)nB)<.g, for all m. 
w E B  

The claim now follows from Theorem 3.19 below. [] 

Singularities. Likewise we may analyse singularities created by concentration of 

Dirichlet's integral. 

LEMMA 3.18. Let HE R, II~<I/L. Suppose that for  some ~'<~ oo, X E f3T< ~ V(B r) is a 

solution to (3.1)-(3.4) satisfying the modulus estimate (3.6). Assume that condition 

(3.7) is satisfied while for  all R>0:  

lim sup D(X(t);BR(w)NB)>~g. 
T ~ i " ( w , t )  EB  T 
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Then there exist sequences tm/~T, wmEB, RmNaO and a surface XE 2,2 2. 3 H~o c (R+, R ) such 

that X(tm) ~ ~2(S) and the rescaled functions 

Xm(W ) =-- X(wm+ wRm, tm)-'-~f~ in ..1oe~,..+,/-/2'2(!~2" R 3) 

after a possible rotation o f  coordinates. Moreover, D(,O<~,  and X is conformal to 

some non-constant regular solution to (1.1)-(1.4). 

Proof. For a sequence Rm--->O let tm<~T be maximal with the property that for some 

WmEB 

D(X(tm),BRm(Wm)flB) = sup D(X(t);BR (W)flB) = g. 
(w, t) E B tm 

Clearly tm,ZT asm--->~. 

By Lemma 3.8 there exists a constant c3=g/2c 2 such that for all tE [tm-C3R2m, tm] 

D(X(t), B2Rm(Wm) aB) >>- 4 > O. 

Moreover, by Lemma 3.7 and (3.7) 

fBi:_c3: " IVeXl z dw dt <<. c 

uniformly for all m while again by assumption (3.7) and absolute continuity of the 

Lebesgue integral 

fn ,m IOrX]2dwdt--->O (m--->oo). 

tin-c3 R2 

Finally, by (3.7) also 

uniformly for all m. 

Hence if we rescale 

ess sup D(X(t)) <~ c < 
tm--C 3 R2m~t~tm 

Xm(w, t) = X(Wm+R,. W, tm+R~ t) 
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and l e t  

B" = {w E R21wmWRm w E B} 

our new functions X m E V((Bm)_c,) will satisfy (3.1)-(3.3) on (Bm)_c3 together  with the 

est imates 

f~ ,  OcV"12dwdt---~O (m---> oo), 
)-c 3 

Iv2xmlZ dw dt <. c, 

ess infD(Xm(t); B2(0) N B m) >~ e__. > 0 
-c3~<t~<o 4 

ess sup D(X~(t); BI(w) fiB m) ~ g, 
(w, t) E (B~)_q 

r 

ess sup D(Xm(t)) ~< c < 0% 
-c3~t~O 

uniformly in m. 

Choosing "/'m E [--C3, 0]  

Xm E H2"2(Bm; R 3) and 

while 

and 

suitably we can achieve that  Xm=Xra(rra ) satisfies 

otxm(rm)= AXm-2HXm AXm ---~O in L2(B m) 

OnXm(W).L.Tx,,(w)S, a.e.  onOB m 

0 < C ~ D(Xm;B2(O) nB m) ~ D(X m) <~ c' < oo, 

sup  D(Xm; BI(w) fl B m) <<- g 
wEB m 

uniformly in m. Shifting t ime we may assume L ,=0 .  Again Theorem 3.19 may now be 

invoked. It  follows that  ei ther  B ' - ->R z or  B "  (after rotation) exhaust  a hemi-space  R2+. 
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In the first case moreover 

.xm--->,( " locally in H2'2(R2;R 3) 

where X is a conformal branched covering of a sphere of radius I/[HI>L. But this is 

impossible by (3.6). 

This leaves as the only possibility that 

X,~--->J? locally in H2"2(RX+;R3) 

where X is conformal to a non-constant solution of (1. I):-(1.4) [] 

A local Palais-Smale condition. The following compactness result may be inter- 

preted as a local Palais-Smale condition for the functional E H on the dense subset 

~2(S)c ~(S), cp. [24, Proposition 5.1]. 

For reason of exposition we have scaled domains to achieve a uniform control of 

the densities D(Xm;BI(w)f)Bm). In spirit, however, the result below is of the same 

nature as [3], [4], [15], [17], [22], [23, Proposition 3.7], [24, Proposition 5.1], [27] where 

"compactness modulo separation of spheres" is observed. 

TrIEOREM 3.19. Suppose BmcR 2 is a sequence o f  balls, XmEH2'2(Bm;R 3) a se, 

quence o f  surfaces such that 

Xm(OB")=S 

8,,X,,,(w).l_Tx.,~S, a.e. on OB '~ 

D(X m) ~< c < ~,  uniformly in m 

(3.34) 

(3.35) 

(3.36) 

sup D(Xm;B~(w)flB m) <-g, uniformly in m (3.37) 
wEB m 

while for some HE R 

f~ lAxm--2nXm AX~f dw~ O. (3.38) 

Then there exists a limiting domain B| 2 and a surface f(  E H2~(/~| R 3) such that for 

a subsequence m--->oo 
Bm__.~ B | 

Xm-~7( in H~(B| 
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and.~ solves (1.1)-(1.4) on B | I.e. X satisfies 

Moreover, 

A J(= 2Hf(u^J( o in B | (3.39) 

~'u[2--l,eYol2=0 =,eYu',eY v in B | (3.40) 

X(OB| (3.41) 

O,,f((w).LTe(w)S on OB | (3.42) 

D(.Tt') < oo. 

In particular, i f  Bm=B| the sequence X m accumulates 

solution ,~ o f  (1 .1) - (1 .4)  with curvature H. 

I f  B| the surface X m accumulates at a surface f~ which is conformal to a 

regular solution of  (1 .1) - (1 .4)  with curvature H. 
Finally, i f  B| 2, X m accumulates at a branched conformal covering of  a sphere 

of  radius 1/tl- ~. 

Proof. Testing with AX m we obtain 

f.ml XXml dw<-HfBIVXml2lZXXmldw+~ 
where o(1)--,0 (m-->oo). By (3.9') this gives 

fnmlAXml2 dw<<- c fB,.]VXm]4 dw+~ 

(IVZxml 2 dw+c+o(1). 

(in H 2'2) at a regular 

R2m f [ v -~Xm[2dw~ce  fBmlV2Xm[2dw+c 

Similarly, testing with R2m(a2/adp2)Xm--where (r, qb) denote polar coordinates on 

B m and Rm ~ denotes the radius of Bm--yields that 
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"~g2mfoBmlOnXra'G(Xm)[~-~Xm'VG(Xm)-~Xra]d~l)q-~ 
c, f.  [V2Sml 2 dw+c+o(1), 

cp. the proof of Lemma 3.7. 

Together, these estimates allow us to conclude that 

fB lV2Xml2 dw<~ c uniformly. 
m 

(3.44) 

By Sobolev's embedding theorem, in particular the X m are equicontinuous and hence 

may be extended to a 0-neighborhood/}m of B m by reflection in S, with Q>0 indepen- 

dent of m. (3.34) and (3.35) guarantee that these extensions XmEH2'2(Bm;R 3) and 

satisfy (3.44) on /}m, cp. (3.19). Moreover, as in the proof of Lemma 3.10, for the 

extensions Xm Of Xm from (3.38) we derive that 

Sa la(w)z~,,,-f'( w, gin) (VXm, VXm)I 2 dw--, 0 (3.45) 

for all m with uniformly continuous coefficients a~>l. 

Suppose (as we may) that Bm-.-.-~B | By (3.44) we may select a subsequence k m such 

that for any bounded f~cR 2 

Xm----,(" weakly in H~'2(B| 

Note that for any such fl we always have/~mDB| n fl if m is sufficiently large. 

By ReUich's theorem therefore also 

and 

"~m ~ ~ strongly in H l'q(B | N f~; R s) 

km---~,~" strongly in HI'q(~B| 3) 

for any q<w.  Hence we may pass to the limit m--~oo in (3.34), (3.35) and (3.38) and find 

that k solves (3.39), (3.41) and (3.42) as claimed. 

Moreover, letting ~m be the cutoff function associated with Xm by (3.20), 
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q~=min (~,,, q3n} , ~ E .~0 (fD, upon testing the difference of equations (3.44) for m, n E N 

with the function A(~m-kn)q3~ we obtain: 

JR2 

XA(2m-2n)~o~dw+o(1)--'~O as m-- -~ ,  

and .~m--*X strongly in Hz'2(B | fl ~ ;  R 3) for any bounded f~cR 2. 

The remaining assumptions of the theorem are now easily verified. 

Note that by (3.39) the complex valued function of w=u+iv E B| 

�9 ( w ) -  [,r162 

is holomorphic and by (3.43) is integrable over B | 

In case B| 2 from the mean value theorem for harmonic functions 

1 fo dP(w')dw' r ~-R n~) 

upon letting R--->r162 suitably we obtain at once that r  i.e. that X is conformal. 

Similarly, if B| by (3.41) and (3.42) r is real on aB| By 

reflection the imaginary part of r may be extended to a harmonic function EL~(R2), 

hence it must vanish identically by the preceding argument. The Cauchy-Riemann 

equations now imply that ~ - c o n s t .  But CELl(R2+), thus r  and )( is conformal. 

By conformal equivalence of B~R2+ and (conformal invariance of (3.39)-(3.43)) this 

argument also proves conformality of X in the case B| and concludes the proof in 

this case. 
IfB| by conformal equivalence B----R2+ again, the map X will be conformal to 

a surface XE ~(S) satisfying (1.1)-(1.4) in a weak (distribution) sense. By the regularity 

result of [6] .,~ is regular and the theorem is also verified in this case. 

Finally, the characterization of solutions to (3.39) on B| 2 with finite Dirichlet 

integral follows e.g. from [3]. [] 

Proof of Theorem 3.1. Existence, uniqueness and regularity of solutions X E V(B r) 

to (3.1)--(3.4) for small T>0 follow from Lemmata 3.12, 3.15, 3,16 and Remark 3.13. 

Also (3.6) will be satisfied whenever IH[< I/L. 
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By iteration, local solutions may be continued either globally--and their asymptot- 

ic behavior is given by Lemma 3.17---or until a singularity is encountered. In this case 

under assumption (3.7) the desired conclusion follows from Lemma 3.18. 

Proof of  Theorem 3.2. If H=0  we have EH=D and Lemma 3.6 implies the uniform 

a priori bound 

fsT 10txl2 dw (3.7) dt+D(X(T)) <. D(Xo) 

for all solutions to (3.1)-(3.4) with X 0 E qg(S). Theorem 3.1 now guarantees the existence 

of a unique regular solution X to (3.1)-(3.4) (for H=0) in a time interval [0, TI[ where T 1 

is characterized by (3.5). 

By Remark 3.14 and arguments in the proof of [24, Theorem 4.2] we infer that X 

remains regular up to T 1 with exception of (finitely many) points w~ !) .. . . .  wll) where 

non-constant minimal surfaces solving (1.1)-(1.4) for H=0 separate (in the sense of 

Lemma 3.18). Moreover, by (3.7) for some tm/~Tl: X(tm)-"~X t weakly in ~r and 

finiteness of the number of singularities follows from (3.7), Lemma 3.8 and the estimate 

Ii 

0 <. D(X~) <~ D(X o) - l im inf ~ lim infD(X(t); B~(wl ~J ) N B) 
R ~  R 0 /=1 t-~Tl 

11 
~ D(Xo)---  ~. 

C2 

By Theorem 3.1 X may now be continued to a (weak) solution of (3.1)-(3.4) on a larger 

interval [0, T2[ by solving the initial value problem (3.1)-(3.3) with X(TO=X I . Moreover, 

X will be a regular solution to (3.1)--(3.4) on/~x]0,  T2[ with exception of the points 

(wl l~, Tl). By induction we obtain a solution X to (3.1)-(3.4) on intervals [0, Tk[ where at 

each T k finitely many (lk) non-constant solutions to (1.1)--(1.4) for H=0 separate. 

Moreover, letting X k= w-lim,_,rkX(t) 

k 

D(Xk) <- D(Xo)- ~'~ l. L 
j= l  J c2 

and there can be at most a finite number of singular points (wl k), Tk) in space-time. In 

particular, for some kEN we must have Tk=oo. This proves Theorem 3.2. [] 
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4. Proof  o f  Theorem 1.1 

To illustrate the general principle first consider the case H=O. Suppose by contradic- 

tion that there is no non-constant solution to (1.1)-(1.4) for H=O. Theorem 3.2 and 

Lemma 3.17 then guarantee the existence of a global solution X ( t ; X  o) through any 

initial data X 0 E ~(S), and X(t, X o) converges to a solution of (I. 1)-(1.4) as t--> oo. 

Choose some path P0 E P. By Lemma 3.5 and continuous dependence of X on the 

initial data for all t<  oo then also 

pt(s) =- X(t; po(S) ) E P 

and therefore by Lemma 2.4 for all t 

sup D(pt(s)) I> fl0 > 0. (4.1) 
0~<s~<l 

Let tm--->~ and suppose the supremum in (4.1) is achieved at s=s m for each t=t  m. By 

compactness Sm--->s, and since D(X(t)) is non-increasing for any solution X to (3.1)-(3.4) 

there results 

D(X(tm);Po(S)) = l im D(X(tm);Po(Sn)) ~ lira D(X(tn);po(s~)) >- flo > 0 
n ....~ oo n-. .-r r 

and X(tm;Po(S)) for a suitable sequence tm--->oo converges to a non-constant solution of 

(1.1)-(1.4) for H=0.  
Next consider the case O<H<I=I<.I/L. Again assume that (1.1)--(1.4) possesses 

only the trivial (constant) solutions. 

Note the identity 

I : I -H  D(x)+ H E.H(X) (4.2) EH(X) = /~ 

which holds for all X E ~(S), provided EH(X) and E-n(X) are defined by means of the 

same extension operator, cp. Section 2. 

Let p E P. For convenience we normalize 

EH(P(O)) = EH(P(O)) = 0 > EH(p(1) > Ea(p(1)). (4.3) 

(If necessary, p may be reparametrized via s ~ l - s  to achieve (4.3).) 

Let X=X(t;p(s))  denote the unique local solution to (3.1)-(3.4) through Xo=p(s), 
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0~<s~ < 1, guaranteed by Theorem 3.1. Note that Lemma 3.6 and (4.2) imply for any such 

X and any T>0 in the domain of X the estimate: 

L fnr]OtX]2 dw dt+L2(lt-H)D(X(T))+ 1 En(X(T)) 

<~H(fzr[OtXI2dwdt+-~H-D(X(T)+HE-tl(X(T))) (4.4) 

In particular, if for some e>0 we let p EP satisfy (4.3) and 

sup E~(p(s)) <~ flH--H vol ( S)+ He, 
$ 

which is possible by (2.9) and (4.3), from (4.4) we obtain 

L fB, IO'Xt2 dwdt+L2(FI-HlD(X(T))+ I E~x(T))~ ~"-v~ (4.5) 

for any X=X(t;p(s)), and any T>0 such that XE V(B T) is defined. 

Let T(s)~oo be maximal such that X(. ,p(s)) is defined on [0, T(s)[ and consider an 

arbitrary continuous path 

p'(s)=X(t(s);p(s)), 0~<s~l, O<-t(s)<T(s), 

connecting p'(O)=X(t(O);p(O))=p(O) with p'(1)=X(t(1);p(1))=p(1). Note that by (3.6) 

ILo'(s)IIL.~L. Hence p'  EP and by (2.9) 

sup Ea(p'(s)) >t f l a -Hvo l  (S). (4.6) 
$ 

Inserting (4.6) into (4.5) we infer that for some s E [0, 1], X=X(. ;p(s)), T=t(s): 

L fB r ]a'xl2 dw dt+L2(IZI-H) D(X(T))+ fla_H <~ ~H+e'H (4.7) 

where X(T) maximizes E a on p'.  Since e>0 is arbitrary this proves 

LEMMA 4.1. The function H~--)fln/H is non-increasing in ]0, I/L[. 
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But any function of bounded variation, in particular any monotone function is a.e. 

differentiable. Now let 

~ is differentiable at 

Then ~§ IlL] and for any H E  ~§ there exists c>0 such that 

lim sup ~< c. 
H%H 1 " 1 - - 1 - 1  

(4.8) 

such H and for H > H  close to H choose e=c(l:l-H) in (4.7). For any p ' ,  Fix 

X=X(" ;p(s)), T=t(s) as above then there holds 

fB r ]0t ~'~ 2 dw dt ~ c(I:I-H) (4.9) 

D(X(T)) ~ 2c (4.10) 

uniformly in /~  and p' .  

(4.9) and (4. I0) almost give us the criterion (3.7) which we need to invoke Theorem 

3.1. In order to obtain a uniform bound on D on a time interval of length >~cR 2, where 

e(R)~<~, we now argue as follows: 

For a sequence Hm---->H, Hm>H, let p=pmEP be chosen corresponding to e= 

em=c(Hm-H). The index m will be implicit in the following. Let t(s)=min{T(s), I}, 

t(0)=t(1)= 1, and consider the simply connected set 

V=  {(s, t) ER210~<s~ < 1,t(s)<<-t<~ 1}. 

LV.MMA 4.2. Efi(X(t;p(s))-->-~ if (s, t)--->(So, to) E aV, to< 1. 

Proof. Otherwise (4.5) implies (3.7) while X(-,p(s0)) becomes singular at T<~t o. By 

Theorem 3.1 a non-constant solution to (1.1)-(1.4) separates from X at 2r, contrary to 

our assumption. [] 

Perturbing the boundary of V slightly for any m we obtain a path p '  E P, 

p'(s)=X(t'(s);p(s)), t'(s)<T(s) with the property that t '(s)= 1 if Enm(p'(s))>-O. In particu- 

�9 lar, (4.9) and (4.10) will hold for suitable solutions X=X(.  ;p(s)) with T=I.  I.e. we have 

proved: 

LEMr~A 4.3. For any HE ~+ there exists a constant c o and a sequence of solutions 

Xm E V(B 1) to (3.1), (3.3) and (3.4) such that Xm(1) maximizes EHm on p'm E P and 
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number exists. Let 

era(R)= sup D(Xm(t);BR(W)f~B), 
(w, t) E B~,~ 

and let R,~>0 be maximal with the property that 

~m(Rm) ~< g. 

LEMMA 4.4. R2m/(1--tm)<.c<oo uniformly in m. 

Proof. By Lemma 3.7 for t<~tm+R2m, t<~l: 

B', / t--tm\ 

m 

Hence for such t 

D(Xm(t)) = D(X'(tm))+ f l  d D(Xm(t))dt 

= 2co- ~ OtXm'~mdwdt 
JB~,,, 

~ C o 

for sufficiently large m. It follows that tm+R2m < - I. [] 

The proofs of either Lemma 3.17 or 3.18 (depending on whether Rm>~R>O or 

Rm--->O) now show that a sequence of surfaces Xm(t'm), t 'E [t m, I], either converges in 

D(Xm(1)) <. c o uniformly. 

Now let tm<l be maximal with the property that D(Xm(tm))>-2Co, tm=O if no such 
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H2'2(B; R 3) to a solution X of (1. I)-(1.4) or (after rescaling) converges locally to some 
- 2 , 2  2 . 3 XE Hior (R+, R ) which is conformal to a non-constant, regular solution to (1.1)-(1.4). 

In the second event the proof is complete. In this first case it might happen that 

X-const .  But then D(Xm(t'~))--*O and by Lemma 3.8 also D(Xm(1))-->O. 

Inspection of the proof of Lemma 2.4 now shows that EHm cannot achieve its 

supremum on p' =p"  at Xm(1) for large m. The contradiction shows that )(*const. ,  and 

the proof is complete in the case H~>0. 

The case H~<O follows by reversal of orientation. [] 

Appendix 

LEMMA A1. Let yEHI'2(B) be harmonic in B with Y(OB)cS in L2(OB;R3). Then 

Y(B) c(Y(B) U S); 

in particular, for  any harmonic function Y E HI'2(B; R 3) with boundary on S there exists 

a point P lying interior to S such that P {~ Y(B). 

Proof. By local continuity of Yit suffices to show that for any e>0 there exists r < l  

such that the image Y(w) of any point w, Iwl>r, lies in a e-neighborhood of S. 

Let w o E OB and for Q>0 denote 

B' o = Be(wo) fiB, 

C' o = aBo(wo) n B, 

and let s measure arc length along C~. Note that by Fubini's theorem a Y/as E L2(C'o;R 3) 

for a.e. Q and Y(w O, Y(w2) E S, where w l, w 2 denote the endpoints of C' o. Then analo- 

gous to the well-known Courant-Lebesgue-lemma for any 6>0 we have: 

~---  ess inf Y 
2 o ~ [6/2, ~] , 

Choosing 0 E [6/2, 6] such that 

fc_ff_s_s Y 2 c 3  ds<~---~4fBlVYl2dw , 
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by H61der's inequality we may estimate for w E C'e 

[dist(Y(w),S)]2<-(fc;t-~s YIds)2<<-z~Ofc, -~sy2ds<-4~fB, lVYl2dw; (A.1) 

moreover, by absolute continuity of the Lebesgue integral the right hand side is smaller 

than e2/4, provided 6>0 is sufficiently small. 

Now given any w' EB '  o there i s a  conformal map r o f B '  o onto B such that r(w')=0. 

Denote Y= Yo 3 -1. By the mean value property of harmonic functions 

= ?(0)  = ( 2 , 0  -I ( ~dw. r(w') 
JaB 

Hence by H6tders inequality and (A. 1) 

dist (Y(w'), S) = dist (I~(0), S) 

~< ess inf [ I2(0)- 17"(tb) I +ess sup dist ( I7"(tb), S) 
�9 EOB ~EOB 

~<c a n iw_Wl2 dwdW +eL2 

(A.2) 

and the latter double integral is equivalent to Douglas' integral which in turn is 

equivalent to Dirichlet's integral 

I ~ ' ( w ) -  ~(~)12 _ _< - c,LL 
In conclusion, if 6>0  is sufficiently small we may cover the annulus 

A = {wEBI  Iwl > I-6/4} 

by balls B~, 0 E [6/2, 6], where for any point w' E B' o 

dist (Y(w'), S) < e. 

Now we may let r= 1-6/4 to achieve our claim. [] 
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