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Introduction 

1.1 Classical Schottky groups 

Let  C ! . . . . .  C n be a collection of  circles in the Riemann sphere that bound disjoint open 

disks DI . . . . .  D n. Note  that circles may be tangent, but  otherwise they don ' t  intersect.  

(See Figure 1.) Le t  F denote  the complement  of  D~ U ... U D n, that is, the closure of  the 

common exterior  of  C~ . . . . .  C n. Suppose that n is even, and that for  i= 1 . . . . .  n/2 we have 

specified a M6bius transformation Yi mapping the exterior  of  C2i_~ to the interior of  C2i. 

The group F of  M6bius transformations generated by the yi's is a Kleinian group with 

fundamental domain F. It is called a classical Schottky group. 

Fig. 1. Circles in the Riemann sphere. 
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1.2. A lower hound for the bass note 

View the Riemann sphere as the boundary of hyperbolic 3-space H 3, and view F as a 

group of isometries of H 3. Consider 20(H3/I'), the bottom of the spectrum of the 

Laplacian A = - d i v  grad on H3/F (note the minus sign). Except in trivial cases, 20(H3/F) 

is a bona fide eigenvalue; we call it the "lowest eigenvalue" of H3/F, or of F. 

Physically, it is the square of the frequency of the bass note of H3/F--the lowest note 

you would hear if you hit H3/F with a mallet. 

We will prove the conjecture of Phillips and Sarnak [13] that for any classical 

Schottky group F, 

2o(H3/F) ~ L 2 > 0, 

where L 2 is some universal constant. 

1.3. Implications 

Let 6(F) denote the exponent of convergence of the Poincar6 series 

exp( - s .  O(z, ~w)), 
7 

where z, w are fixed points of H 3 and p(a, b) is the hyperbolic distance from a to b. Let 

d(A(F)) denote the Hausdorff dimension of the limit set A(F). By work of Patterson [11, 

12] and Sullivan [17, 18], 
6(F) = d(A(F)), 

and 

20(H3/I ") = ~(F) (2 -  6(F)), 

as long as 6(F)>l.  Thus our universal lower bound for 20 implies a universal upper 

bound U2<2 for 6(F) and d(A(F)). 

1.4. Some history 

The problem of finding an upper bound for 6(A) can be traced back to Schottky [16]. 

Burnside [5] conjectured 6~<1; this was disproved by Myrberg [9, 10]. Akaza [1, 2] gave 

examples with 6= 1.5. Sarnak [15] and Phillips proved the existence of examples with 
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Fig. 2. The Apollonian packing. 
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6>11.75. Phillips and Sarnak [13] conjectured the existence of a universal upper bound 

U2<2, and proved the analogous result in higher dimensions. Brooks [3, 4] proved the 

conjecture for the special class of groups for which the disks D~ ... .  , D n are a subset of 

the disks of the Apollonian packing. (See Figure 2.) Phillips, Sarnak, and Brooks have 

suggested that the supremum of 6(F) over all such "Appolonian" Schottky groups 

should equal the supremum over all classical Schottky groups, but this is not known. 

1.5. Rayleigh's cutting method 

To get a lower bound for the bass note of H3/I ", we will apply a classical method from 

physics called Rayleigh's cutting method. This method was introduced by Rayleigh [14] 

as a way of estimating the bass note of a Helmholtz resonator. The idea is to cut the 

system into pieces whose lowest eigenvalue can be estimated, and then observe that if 

the lowest eigenvalue of each of the pieces is ~>c, then the lowest eigenvalue of the 

original system is ~>c. 

1.6. Infinitely skinny tubes that grow more or less exponentially 

In applying Rayleigh's method, our approach will be to cut our manifold into an infinite 

number of infinitely skinny tubes. A crude estimate shows that we can get a lower 

bound for the lowest eigenvalue of a tube as long as its cross-section grows more or less 

exponentially. Thus to get a lower bound for the lowest eigenvalue of a manifold it 

suffices to show that it can be cut into infinitely skinny tubes in such a way that the 

cross-section of each and (almost) every tube grow more or less exponentially. This 

result complements the known fact that the rate of exponential growth of a manifold 

gives an upper bound for the bass note. Here we have a sort of converse: A definite 
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rate of exponential growth gives a lower bound for the bass note, provided that the 

growth can be "correlated" by means of tubes. 

1.7. Plan 

In section 2, we will make precise the notion of cutting a manifold into tubes, and show 

how a cutting into tubes gives a lower bound for the bass note. In section 3, we will 

show how to cut H3/F into tubes, so as to prove the existence of a universal lower 

bound for 20(H3/F). 

2. Cutting a manifold into tubes 

2.1. The lowest eigenvalue 2 o 

Our goal is a method for getting lower bounds for the lowest eigenvalue 2 0 of a manifold 

M. Among several equivalent definitions for 2 0, the following will be most convenient 

to work with: 

Definition. Let M be a non-compact complete n-dimensional Riemannian manifold 

with boundary. Let TF(M) ("test  functions") denote the set of C | functions 

u: M--, [0, ~) that have compact support and do not vanish identically. We define ;t0(M) 

as the infimum over TF(M) of the Rayleigh quotient 

f, Jgr  ul 2 

fM u2 

2.2 The cutting method 

To estimate k 0 we will use Rayleigh's cutting method (see Rayleigh [14], Maxwell [8]). 

This method belongs to a class of related methods known collectively as Rayleigh's 
short-cut method. For a general discussion of the short-cut method see Doyle and Snell 

[6]. (In the references given here, Rayleigh's method is applied to conductance prob- 

lems; the generalization from conductance problems to bass-note problems is straight- 

forward.) 

The cutting method is based on Rayleigh's cutting law, one form of which is the 

following: 
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PROPOSITION. I f  M is obtained by gluing together parts of the 
another manifold Mcu t, then 

~.o(M) t> ~.0(Meut). 

Proof. This follows from the definition of '~0 that we have adopted. 

boundary of 

[] 

2.3. Cutting into tubes 

Our method for getting lower bounds for Z 0 is based on cutting M up into infinitely 

skinny tubes. In other applications it will be most convenient to consider tubes 

modeled on [0, oo) that begin inside the manifold and run out to infinity in one direction. 

Here, we will consider only tubes modeled on R that run out to infinity in both 

directions. There are two excuses for this. The first is that these doubly-infinite tubes 

are best for the specific application we have in mind. The second is that you can always 

get a singly-infinite tube by folding a doubly-infinite tube in half. 

Definition. A cutting of  M into tubes consists of a measure space T (to index the 

tubes) and measurable maps 

f'. TXR---* M, 

o: TX R---* [0, oo) 

(to show how they run, and tell their cross-section) such that 

(i) f pushes the measure o(r, x)drdx on TxR over onto the Riemannian volume 

measure on M, that is, for any integrable function u on M, we have 

(This makes precise the notion that o tells the cross-section of the tube.) 

(it) for almost all r, the curve f(z, .) is piecewise C ~, parametrized by arc length, 

and proper. (The tubes may zig-zag a little, but must run out to the boundary.) 

(iii) for almost all z we have 0<fbo(z, x) dx<oo whenever -oo<a<b<oo.  (The tubes 

are neither too fat nor too thin.) 

2.4. Inhomogeneous strings 

Our purpose in cutting M into tubes is to reduce our n-dimensional eigenvalue problem 

to a bunch of 1-dimensional inhomogeneous string problems (Sturm-Liouville prob- 
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lems). An inhomogeneous string is described by two functions o and O, telling its cross- 

section and its density as a function of  length. When we come to consider the strings 

that arise from our  tubes,  we will want to set Q=a,  to indicate that the mass per  unit 

length is proportional to the cross-section. For  the moment  we will distinguish o from 

Q, not so much for the sake of  generality as to make clearer their differing roles. 

Definition. If  o: R---> [0, oo) is measurable,  and 

0 < a(r,  x) dx < ~ whenever  - ~ < a < b < ~ ,  

we will say that a is neither too big nor too small. Thus (iii) above states that for almost 

all r, a(r, .) is neither too big nor  too small. 

Definition. Let  

o, O: R--o [0, oo) 

be measurable, with a and 0 neither too big nor  too small. Then we define ;t0(o, O) as the 

infimum over TF(R) of  the Rayleigh quotient  

f ( a \-~x) 

f Offf 2 dx 

2.5. Using piecewise differentiable test functions 

Our method from converting information about  the tubes into information about M will 

involve pulling back a test function on M to each of  the tubes. The functions on the 

tubes that we will obtain in this way will not necessarily be smooth,  because we are 

allowing the tubes to zig-zag. It would be possible to work only with cuttings into 

smooth tubes, but we prefer  to allow ourselves the extra latitude in cutting, and pay the 

price by smoothing the pulled-back test  functions,  rather than the tubes themselves.  

LEMMA. I f  qD: R---, [0, oo) is piecewise C l, has compact support, and doesn't vanish 

identically, then 

>t ~.o( a, 0). 

f ocp dx 
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Proof. Choose b: R---> [0, ~ )  to be smooth,  with support in the interval [ -1 ,1 ]  and 

f~l b(x)dx= 1, and convolve 9 with (l/e)b(x/e). The result is a member  of  TF(R) whose 

Rayleigh quotient approaches that of  tp as e-->0. [] 

2.6. What the tubes tell us about the original space 

We now show how to turn information about  the lowest eigenvalues of  the tubes into 

information about M. Note  that in treating the tubes as inhomogeneous strings, we set 

O=a, as promised. 

PROPOSITION. Suppose M can be cut into tubes is such a way that for almost all r, 

;t0(~r(r, �9 ),a(r,  �9 )) >I ;t. 

Then 20(M)~>~.. 

Proof. Let  u be an element  of  TF(M). Then 

f lgradul2=fdrf o(r,x)lgradu(f(r,x))12dx 

(note the use of  parametrizat ion by arc length) 

>--;tfdrfo( ,x)((uof)(r,x))2ax 
(note the need for properness  of  the tubes) 

= ;tyMu 2 
[] 

2.7. Twiddling o and 0 

In estimating ;t o for our tubes, we will want to know what effect altering o and 0 by 

some bounded factor  will have on ;t0(o, O). There  are two reasons for this. The first is 

that when all we are after is a very conservative lower bound for ;to, we may want to 

hack the space into tubes in such a way that we have only very gross information about  

17-888286 Acta Mathematica 160. Imprim6 le 20 mai 1988 
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the growth of the cross-section of  the tubes. The second reason is that to get a lower 

bound for ;t0(a, 0), it may be convenient to assume that cr and 0 are pretty smooth. 

LEMMA. For any K (0<K<oo),  

Ao(Ko, o) = ;to(o, l o )  = K )%(o, Q). [] 

LEMMA. Let O, 0: R--> [0, oo) be measurable, with 0 and ~ neither too big nor too 

small. I f  

and 

then 

0 9 0  

0 < ~ ,  

;to(O, o) >t ;to(O, 0). f. [] 

LEMMA. Let  O, 0: R---> [0, oo) be measurable, with 0 and 0 neither too big nor too 

small. Suppose that for  constants K~, K 2 (0<K 1, K2<oo), we have 

and 

Then 

O <<.K20. 

,~o(a, o) >--K--~K 2 ;to(O, O). [] 

2.8. Estimating ~0 for a string 

The great thing about  a string is that it is easy to get lower bounds for the lowest 

eigenvalue by exhibiting an appropriate superharmonic function. Of  course the same 

thing works in higher dimensions, but  it is easier to cook up a superharmonic function 

on the line than in n-space. 
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Rather than appeal to established theory, we will find it simplest to concoct our 

own proof of how to get a lower bound for ;t o out of a suitable superharmonic function. 

This proof, which is based on some ideas of Holland [7], may seem a little mysterious. 

Its advantage is that it works directly with the definition of A 0 that we have been using, 

rather than the definition of A 0 as some kind of  eigenvalue. 

LEMMA. / f  a is piecewise C 1, and i f  there is a C 2 function 990: R--> (0, co) that 

satisfies 

dx 

then ;to(U, O)~>A. 

Proof. Setting 

we find that 

-Veo 
q90 = e , 

dx tr - o  ~>A@. 

Let 99 be in TF(R). Then 

d~P0 f f 
(integration by parts) 

dx (992)+o dx 

\--A- ~u \-A-/jCdx 

(completing the square) 

ko-~-/-~ t-~- / j~ 

I> A(O~ 2 ~. 
J 

[] 
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2.9. Tubes that grow more or less exponentially 

If the cross-section o of a tube does not grow exponentially in one direction or the 

other, there is no hope that 20(or, o) will be positive. The reason is that 20(cr, a) measures 

the exponential rate of decay 36the heat kernel for the tube, and since the flow of heat 

along the tube is slow and no heat is lost, the temperature can't decay exponentially 

unless there is an exponential amount of material over which to distribute the heat. 

On the other hand, if cr is growing exponentially with a certain minimum rate, and 

if it doesn't waver too much, then we can get a positive lower bound for )t0(a, a). The 

bigger the minimum growth rate and the smaller the amount of wavering, the better the 

lower bound will be. 

LEMMA. Suppose that 

O(X) = e ACx), 

where A:R--> R is piecewise C l and 

dA 
- - ~ a > 0 .  
dx 

Then 

a 2 

20(o, o) ~>--. 
4 

Proof. Let 

_ a  x 
2 qOo(X) = e 

Then 

d / dq~o ~ a [ dA a \  _ a 2 

dx --L--) ~ = 

SO 

a 2 

20(0, o) ~>--. 
4 

[] 

Definition. If f :  R---> (0, oo) is measurable and satisfies 

l e A ( x )  <~ O(x) <~ Ke  A(x), 0 < K < ~  
K 
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for some piecewise C 1 function A: R---~ R wi th  

dA 
~ a > 0  

dx 

then we say that f g r o w s  more or less exponentially, with rate a and factor  K. 

PROPOSITION. Suppose for  a cutting o f  M into tubes we can f ind  constants a, K 

such that for  almost  all r, o(r, .) grows more or less exponentially, with rate a and 

factor K. Then 

a 2 
[] 

)[0(M) I> 4K 2 �9 

2.10.  Growth criteria 

It will be handy to have some simple criteria to tell when a function is growing more or 

less exponentially. 

PROPOSITION. Le t  f :  R--> (0, oo) be measurable, and suppose that for  some se- 

quence 

we have 

Let  

and 

--O0<'-... ~ X  I ~ X o ~ X I  ~ . . . - -~O0  

f ( x  i) <-f(x) <~f(Xi+l), XE [Xi, Xi+I]. 

a = inf. l~  l~ 

i Xi+ I ~Xi 

f(Xi+l) 
K = sup 

i f ( x  i) 

I f  a>O and K<oo then f grows more or less exponentially, with rate a and factor  K. [] 

COROLLARY. In  particular, i f  

IXi+l--Xil ~ L < co 
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c3 

Fig. 3. Planes in hyperbolic 3-space. 

and 

1 < r<~ f(xi+l) <~R< 
f (xl) 

then f grows more or less exponentially, with rate (log r)/L and factor  R.  [] 

3. Cutting up H3/][" 

3.1. The geometrical problem 

Thanks to Rayleigh's method, we have now reduced our problem to showing that H3/F 

can be cut into tubes whose cross-section grows more or less exponentially. This is a 

problem of pure geometry. The solution is straightforward and elementary, though a bit 

complicated. It relies mainly on a crude estimate of how densely you can pack circles 

on the Riemann sphere. 

3.2. Cutting up the fundamental domain 

There is an obvious fundamental domain/~ for the action of F on H 3. Let C1 ... . .  Cn be 

the planes in H 3 that meet the sphere at infinity in the circles C~ ... . .  Cn, let/91 .. . . .  /)~ be 

the corresponding open haft-spaces that meet the sphere at infinity in the disks 

D l . . . . .  D~, and let F be the complement of b I U ... U/)~ in H 3. (See Figure 3.) Note that 

whereas we described F as the exterior o f  C 1 . . . . .  C~, we can best describe/~ as the 

interior of C1 .. . . .  Cn. 

The manifold H3/F is obtained from F by gluing the boundary components 

Cl .. . . .  C~ together in pairs. If we cut H3/F apart along the n/2 surfaces along which it 
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was glued, we recover F. By the cutting law, any lower bound for ~.0(/~) is also a lower 

bound for 20(H3/F). Hence instead of cutting up Ha/[" we will work on cutting up/~. We 

will forget all about the pairings, and drop the assumption that n is even. Here 's  what 

we will prove: 

THEOREM. Let F be the manifold (with boundary) corresponding to the finite 

collection of circles C1,..., C~ in the Riemann sphere. Then 

Ao(/~)/> L 2 > 0 

for some universal constant L 2. 

3.3. The picture in the upper half-space model of H 3 

To describe how to cut up F, it is convenient to use the upper half-space model for H 3. 

In this model, we represent H 3 as the upper half-space 

outfitted with the metric 

{(x, y, z)l Z > 0}, 

ds = 1 V  ( dx2 + dy2 + dz2) . 
Z 

The sphere at infinity appears as the (x, y)-plane, together with a point oo at infinity. 

In this model, which was already tacitly used in Figure 3, the circles C 1 . . . . .  C n 

appear as circles, possibly degenerating into straight lines, in the (x, y)-plane. The 

planes C1 . . . . .  t~n appear as hemispheres, possibly degenerating into planes, that are 

perpendicular to the (x, y)-plane. 

3.4. The case of no circles 

Suppose first that there are no circles at all (n=0). Then F is all of H3, and we can make 

all of our tubes vertical (parallel to the z-axis). The cross-section of the tubes grows 

exponentially as a function of the length along the tube, thanks to the factor of  1/z in the 

metric: Let  dx dy denote the cross-section of  a tube at height 1, that is, where it passes 

through the surface z = 1. Then the cross-section at height h is 
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But moving from height 1 to height h corresponds to going a distance 

d = - log h 

along the tube, so the cross-section as a function of distance along the tube is 

e2d dx dy. 

Applying the final proposition of section 2, we conclude that 

,;Lo(H 3) I> I. 

In fact, 

2o(H 3) = 1, 

so by cutting we haven't  thrown anything away. 

3.5. The case of one circle 

Suppose that there is only one circle. Moving a point of the circle to ~ and normalizing, 

we may assume that the circle coincides with the x-axis, and that P is the domain 

{(x,y,z)ly>~O,z>O}. 

Again, we can cut l 6 into vertical tubes; again, we conclude that 

~-0(~ >I 1; 

again, the correct answer is 

,~o0 ~') I> I. 

3.6. The case of two tangent circles 

Suppose that there are two circles that are tangent. Moving the point of tangency to 

and normalizing, we may assume that the circles coincide with the lines y---0 and y-- 1, 

and that F is the domain 

{(x, y,z)lO<~ y<~ l,z>O}. 

Once again, we can cut into vertical tubes, etc. 



ON THE BASS NOTE OF A SCHOTrKY GROUP 

Ct j 

Fig. 4. Introducing a third circle. 
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3.7. The case of  two non-tangent  circles 

It may seem that we have gone as far as we can go with verticla tubes, but this isn't  

quite true. Suppose that there are two circles C~ and C 2 that aren ' t  tangent. Pick a point 

on C~, move it to oo, and normalize as in the one-circle case above. C 2 is a bona fide 

circle in the half-plane 

{(x, Y)I Y ~> 0}. 

Now construct  a circle C 3 between C 1 and C 2 that is tangent to C~ and C 2. (See Figure 

4.) Decompose P into the part F(CI, C3) between Cl and (~3, and the part F(C2, C3) 

between (~2 and C3. If  we move the point of  tangency of  C 1 and C 3 to oo, we can cut 

F ( C  1, C 3) into vertical tubes. Similarly, if we move the point of  tangency of  C 2 and C 3 to 

oo, we can cut F(C2, C3) into vertical tubes. As for the boundary between F(C 1, C3) and 

/~(C 2, C 3) we can simply ignore it, since it has measure 0. In this way, we get a cutting of 

into tubes, some of  which are vertical from one point of  view and some from another.  

Once again, we conclude that 

whereas in fact 

20(1~) I> I, 

2o(f-~ = 1. 

Taking a second look at the argument we have just  gone through, we see that it can 

be simplified as follows: Cut F into the two pieces F(C l, C3) and F(C 2, C3). We already 

know that 
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By the cutting law, 
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2o(P(C~,C3))~I 

;~o(P(C2, C3)) I> 1. 

~0(~ t> z0(P(c,, c3) u P(c2, c3)) 
d i s j o i n t  

= min(20(P(C~, C3)), 20(F(C2, C3))) 

I>1. 

3.8.  The  case o f  three or m o r e  circles 

From now on we will assume that there are three or more circles. We can assume that 

some pair of circles are tangent: If  not, pick one of  the circles (say C l) and enlarge it 

until it hits another of the circles. Call the enlarged circle C'~ and cut F into the two 

pieces 

and 

By the cutting law, 

P(c1,c;) 

^ t F(C1, C 2 . . . . .  Cn) .  

~.0(~ >I minQ.o(F(C,, C'0), 20(F(C'. C2 . . . . .  C)) )  

I> min(l,,to(P(C' ~, C2 . . . . .  C))) .  

Hence it suffices to find a lower bound for 

~o(P(c'l, c2 ..... c ) ) .  

The argument we just  went through shows that without loss of generality, we may 

assume that C1 and C 2 are tangent. Moving the point of tangency to oo and normalizing, 

we may assume that C 1 and C 2 are the lines y=0  and y =  1. (See Figure 5.) 
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~y 

C 2 y =  I 

C 1 x 

Fig. 5. Normal ized configuration.  

3.9. The obvious strategy doesn't work 

Take a look at the domain F. It lies above the (x, y)-plane, between the planes y=0 and 

y= 1, and on or above the hemispheres r . . . . .  Cn. (From now on, all geometrical terms 

used will be Euclidean by default.) 

How shall we cut this space into tubes? The obvious thing is to start by cutting the 

space apart along the cylinders that lie above the circles C 3 .. . . .  C n. This yields n - 2  

domains that are congruent from the hyperbolic point of view, along with a residual 

piece. The residual piece can be cut into vertical tubes, so all we have to do is show how 

to cut the hyperbolically congruent domains into tubes that grow more or less exponen- 

tially. Unfortunately, this can't be done; the bottom of the spectrum of one of these 

domains is 0. The problem is that the intersection of one of these domains with the 

plane z = e  has Euclidean area on the order of e 2, hence hyperbolic area on the order of 

e2/e 2= 1. (See Figure 6.) Since there isn't an exponential room at infinity, there is no way 

to cut the domain into tubes that grow exponentially. 

Notice that in higher dimensions, the diffculty we have just encountered disap- 

pears. In the upper half-space model of H 4, the Euclidean measure of the intersection of 

an analogous domain with the hyperplane at height e is still on the order of e 2, only now 

the hyperbolic measure is e2/t 3= 1/e. Thus there is plenty of room at infinity, and it is a 

simple matter to construct an appropriate cutting into tubes. 

Back in H 3, we recognize that because of the difficulty we have just discussed, we 

must allow at least some of the tubes that begin over a given hemisphere to spread out 

beyond the corresponding circle. In so doing, they will most likely stray out over other 

hemispheres, and confusion is liable to result. Our task will be to avoid this confusion. 
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~2 

2a \ 

Area- l 
~2 

2~ta. 2 a ~  

= ~E 2 

Fig. 6. No room at infinity. 

3.10. Keeping the tubes more or less vertical 

Our strategy for laying out the tubes will be to make them all drop down more or less 

vertically toward the (x, y)-plane. To get started, we will make all of  the tubes vertical 

above height z = I. (See Figure 7.) This is okay because all of  the circles have radius 

~<1/2, so no hemisphere protrudes above z=l /2 .  Below z = l ,  we will be forced to bend 

the tubes. In so doing, we would like to make sure that the tubes stay more or less 

vertical, in the sense that the angle that the tubes make with the vertical stays bounded 

above by some universal constant  <~/2.  This way, the true cross-section of  a tube will 

be more or less the same as its horizontal cross-section, that is, the area of  its 

intersection with the plane z=cons t .  Similarly, the length (either hyperbolic or Euclid- 

ean) of a section of  tube will be more or less the same as that of its projection onto the 

z-axis. Thus, instead of  worrying about  the growth of  the cross-section as a function of  

length along the tube, we can worry about  the growth of  the horizontal cross-section as 

a function of  height above the (x, y)-plane. In particular, if we can arrange things so that 

the tubes stay more or less vertical, and so that the horizontal cross-section of  every 

tube never decreases,  and increases by a definite factor  every time the vertical distance 
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vertical tubes 

I 
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z = l  

z = 1/2 

Fig. 7. Cutting vertically down to height 1. 

to the (x, y)-plane drops by a factor  of  2 (or 8, or whatever), then the tubes will be 

growing more or less exponentially.  

Of course near the tops of  the hemispheres there is no way to keep the tubes more or 

less vertical. This is a real nuisance. To get around this difficulty, we will outfit each 

hemisphere with a duncecap,  as shown in Figure 8. A hemisphere of  radius a gets a cap 

whose apex is at height z=2a and whose brim rests along the parallel at height z=a/2. 
Call the region lying on or above the spruced-up hemispheres G. If  we can cut G up into 

tubes that grow more or less exponentially,  then the same goes for F. (See Figure 9.) 

One way to see this is to consider that the obvious "squash  the ha t s"  map from G onto 

P taking (x, y, z) to (x, y, z - f  (x, y)) is a quasi-isometry from the point of  view of  the 

hyperbolic metric. So from now on we will concentrate  on cutting up G, rather than ~6. 

3.11.  W o r k i n g  our  way down 

In extending the tubes down toward the (x, y)-plane, we will proceed one step at a time. 

On the first step, we will go from height 1 to height 1/2, on the second step we will go 

2a 
! 

a l  ..a__d - - 
i 

I 2 , ,  

Fig. 8. Duncecap dimensions. 
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Fig. 9. Duncecaps. 

z = 4 h  . . . . . .  

z h 

k t h  z = h - 

s t e p  ~ z =  h/2____l~ "~ ~ A~ 

Fig. 10. Relevant hemispheres. 

\ 

i r r e l e v a n t  
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from height 1/2 to height 1/4, etc. On the kth step we go from height h=l /2  k-1 down to 

height h/2= 1/2 k. As we do this, we will only need to consider hemispheres of radius 

>h/4, since these are the only ones that protrude into the region we are cutting up. So 

let us define the relevant hemispheres to be those hemispheres (other then C 1 and C 2) 

whose radius is >h/4. (See Figure 10.) Note that we do not consider a hemisphere 

relevant if its radius is exactly h/4, so that the apex of its hat is at height exactly h/2. Of 

course which hemispheres are relevant depends on which step we're working on. 

It is precisely because we only have to consider big hemispheres that this one-step- 

at-a-time approach will allow us to avoid the confusion that we anticipated from sending 

tubes starting above one hemisphere out over other hemispheres. There may well be 

other hemispheres beneath where we send our tubes, but they're irrelevant because 

they're small and don't get in the way. When we're down so that our distance to the 

plane is comparable to their radii, then we'll worry about those little hemispheres. 

3.12. Associating pieces of the plane to relevant hemispheres 

In going from height h down to height h/2, we proceed by dividing the (x, y)-plane into 

pieces, one for each relevant hemisphere, together with a residual piece. We consider 

each piece separately: The tubes that begin over a piece remain over that same piece 

throughout this stage of their descent. This is precisely what we tried to do before, only 

now the piece we associate to each hemisphere extends beyond the base of the 

hemisphere, and the hemispheres we have to consider and the pieces we associate to 

them change at each step. As before, we will make the tubes vertical over the residual 

piece. What we have to figure out is how to associate a piece to each relevant 

hemisphere, and how to cut up the space above it. Of course these two problems are 

really the same: What piece we associate to a hemisphere depends on how we plan to 

cut up the space above it. 

3.13. Taking care of the babies 

Among the relevant hemispheres, we will distinguish those whose hats intersect the 

region we are trying to cut up, i.e. whose radius is ~<2h, and refer to them as babies. 

Each hemisphere spends three steps as a baby: If the radius is a, the hemisphere will be 

a baby when h/4<a<.h/2, when h/2<a<.h, and when h<a<.2h. During each of these 

steps, the piece of the (x, y)-plane that we associate to the hemisphere will consist of the 

base of the hemisphere, and no more. By deflecting the tubes radially, we can arrange 
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a VT:V-h 

A(h): 
area = ~h 2 

. 4 ( h ) : ~  
hyperbolic 
area = :t 

Fig. 11. No room at infinity (reprise). 

things so that the tubes stay more or less vertical, and so that the horizontal cross- 

section of every tube never decreases, and increases by a definite factor between the 

beginning of the first step and the end of the third. (Look back at Figure 9.) This takes 

care of the babies. 

3.14. Room to grow 

Consider a hemisphere C, associated to the circle C and the disk D. Let the radius of C 

be a. We assume that C is relevant, and not a baby, that is, that a>2h. At height h, the 

tubes trapped over C cover an annulus A(h) in the plane of outer radius a and inner 

radius Vr'~'L-~. (See Figure I 1 .) The Euclidean area of A(h) is 

~ a  2 -  ~ ( a  2 -  h 2) = 3zh 2. 

This annulus is the image under projection into the plane of the annulus A(h) consisting 

the intersection of the plane z=h with the locus of points above t~ and inside the 
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cylinder over C. Earlier we determined that the hyperbolic area of  A(h) was on the 

order of  1. Now we see that it is exactly n. 

In order  to insure that the tubes over C have enough room to grow, we will need to 

annex around the base of  the hemisphere a region B having Euclidean area on the order  

of that of  A(h), that is, we must have 

Area(B) t> K.  Area(A(h)) = K.  2th 2 

for some universal constant  K. To see that this is the right condition, let/~(h) be the 

portion of  the plane z=h that lies over B. The hyperbolic area of  fi~(h)U/~(h) is 

_~2 (arhZ + Area(B)) = z~4 
Area(B) 

h 2 

while the hyperbolic area of  A(h/2) u/~(h/2) is 

(hl) 2(ar(h/2)2/2 + Area(B)) = ~+  4 Area(B)h 2 

Our assumption on the area of  B guarantees that the ratio of  the latter quantity to the 

former will always be I>(1+4K)/(1 +K).  Thus in going from height h down to height h/2 
the hyperbolic area available to the tubes increases by a definite factor, which is the 

kind of condition we need. 

3.15. Annexing annuli 

Of course this condition on the area of  the annexed region B is not in itself enough: It 

matters how the annexed terr i tory is distributed around C, because all of  the tubes have 

to keep on expanding more or less exponentially,  and it might not be possible to avoid 

pinching tubes over one part  of  the hemisphere even though there is plenty of  extra 

room somewhere around on the far side of  the hemisphere.  

To make sure that the terri tory we annex is nicely distributed, the ideal thing 

would be to annex an annulus, since then we could just  divert our tubes radially away 

from the center  of  C, and all would be well. Unfortunately,  if C is tangent or nearly 

tangent to the base of  another  relevant hemisphere,  or to C 1 or C 2, hostilities will arise 

when we try to annex terri tory belonging to or coveted by the other  hemisphere.  (See 

Figure 12.) 

18-888286 Acta Mathematlca 160. Imprim~ le 20 mai 1988 
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f 

/ 

/ 

Fig. 12. Disputed territory. 

3.16. Avoiding conflicts between neighboring hemispheres 

To avoid this kind of conflict, we will prescribe a policy of universal appeasement. If 

the annulus claimed by C overlaps that claimed by another hemisphere, we instruct 

to renounce its claim to any territory beyond the line tangent to C and perpendicular to 

the line joining the center of C to the center of the base of the competing hemisphere. 

(See Figure 13.) A similar rule applies if the annulus claimed by (~ intersects D 1 o r  D 2. 

Fig. 13. Universal appeasement. 
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Fig. 14. Overlap. 
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3.17. Overlap of renounced territory 

The effect of this policy of appeasement is that the domain associated to each circle is 

no longer an annulus, but an annulus with certain pieces snipped away. The question 

arises, whether two of the snipped-away pieces can overlap, as shown in Figure 14. 

This will depend on how large the annuli are that we originally tried to associate to the 

hemispheres. 

This question of the possible overlap of snipped-away parts is important, because 

now that we don't have a complete annulus to work in, we can no longer simply spread 

our tubes out radially away from the center of the hemisphere. If we do this, the tubes 

near the middle of the snipped-away part will not be growing. If these tubes are to 

grow, we must allow them to expand laterally, which will squeeze tubes out away from 

the middle of the snipped-away part. (Peek ahead at Figure 24.) But if two snipped- 

away parts overlap, there will be nowhere for the tubes to spread out into. We want to 

arrange things so that snipped-away parts can never overlap. 

3.18. Avoiding overlap 

It turns out that to insure that snipped-away parts don't overlap, it is sufficent to make 

sure that the annuli that the hemispheres try to annex are sufficiently small, though of 

course we must still make them large enough to be useful. Specifically, say that to the 

hemisphere C, with notation as above, we associate an annulus of outer radius 

~ a + K h 2 / 2 a ,  

where K is some universal constant yet to be specified. The claim is that if K is chosen 

small enough, then no two snipped-away parts will ever overlap. The truth of this 



274 P. G. DOYLE 

C2 

P2 

Co ~ ~ C  1 

Fig. 15. Notation for the elementary geometric lemrna. 

s t a t emen t  d e p e n d s  on  on ly  the  g ros se s t  o f  e s t ima te s  o f  how dense ly  one  can  p a c k  

circles  in the  p lane .  

3.19. An elementary geometric lemma 

LEMMA. Let  C 0, C 1, C 2 be three circles bounding disjoint open disks in the plane. (See 

Figure 15.) Let  the radii o f  these circles o f  a o, a t, a 2. A s s u m e  that 

ao,al, a 2 >! 1. 

Let  Pl and P2 denote the points  on C O closest  to C 1 and C 2. Le t  

do, l = dist(Co,Cl) = d i s t (p l ,  Cl) 

and 

do, 2 = dist(Co, C2) = dist(p2, C2). 

Then fo r  universal constants  K 1, K 2, i f  

do,l, do,2 ~< K I 

then 

dis t (Pl ,P2)  t> K 2. 

This conclusion remains true in the limit when one or both o f  the circles C l and C 2 are 

allowed to degenerate  into lines (circles o f  infinite radius). 
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Fig. 16. Special configurations. 
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Proof. Choose any K 1 between 0 and 1. Call a configuration of  circles a Kl-COn- 

figuration if 

d0,1, d0,2 ~ K~. 

Clearly dist(pl, P2) is a continuous positive function on the space of  Kl-configurations. 

The only way for dist(pl,p2 ) to approach 0 is for something bad to happen as one of  the 

radii a0, al, a 2 approaches 0, but it 's easy to see that no such bad thing happens. Hence  

there is some appropriate choice for K 2. 

More concretely,  consider the two special Kl-COnfigurations for which a0=al  = 

aE=l,do, l=Kbdl,2=O, and either d0,2=0 or d0,E=Ki . (See Figure 16.) An arbitrary 

Krconfigurat ion can be transformed into one of  these two special configurations by a 

sequence of  steps that do not increase dist(pl,p2 ). (Without going into detail, the steps 

are: make a l = a 2 = l ;  assume d0,1~>d0,2; make d0,1=gl; make dl,2=0; either make 

d0,2=0 or make d0,E=gl; make a0=l .  ) Setting 

K 1 -- 2 V ~ - - 2  = 0.8284271247 ... 

and computing dist(pl,p2 ) for the two special configurations, we find (see Figure 17) 

~ / 2 - X / T  = 0.765... 

2V~_~l I x 2 V ~ - - 2  

- -  = 0.707...  
V T  

Fig. 17. The case where K1=2V-2-2. 
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~ - - a  t 

dist(C, C') ~< ( ~ - a ) + ( ~  - a ' )  

h 2 h 2 
~ K ~ + K  

=2( h + h'~ Kh_ 
\"~ -~7 ] 4 

< 2 ( 1 + 4 )  . Kh4 

= 9 . K  h 
4 

<~KI h if K<~..K 1 
9 

Fig. 18. Making sure conflicting hemispheres are close. 

that we can choose 

' 
~ =  0.7071067811 ... [] 

3.20.  How little area to ask  for 

The elementary geometric lemma tells us how small to make K in order to make sure 

that no two snipped-away parts overlap. By choosing 

KI 
K ~ < - -  

9 '  

we can guarantee that any relevant hemisphere with which C conflicts is within a 

distance K 1 �9 h/4 of C. (See Figure 18.) Thus by the elementary geometric lemma if two 
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( 
tip 

dist(center, tip) = 3v/(a2 + K h  ~)- a 2 

= V ~ h  

K2 < K 2 " h  if X / K ~ < - -  
2 4 8 '  

i.e. if K ~ < - -  
64 

Fig. 19. Making sure snips are short. 
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hemispheres both conflict with C the distance between the centers of the corresponding 

snips must be ~>K 2 �9 h/4. (Recall that we only have to worry about relevant hemispheres, 

which have height >h/4.) But by choosing 

K~< K2 
64'  

we can guarantee that the distance from center to tip of either snip is <~K2/2. h/4. (See 

Figure 19.) Thus if the snips overlap, the distance between their centers must be 

< K  2 �9 h/4, a contradiction. 

For the values K l=2V '2 - -2  and K2=l/X/-2-, we find that these conditions on K 

will be satisfied for K=1/128. With this value of K, each hemisphere is asking for 

growth room of 1/128th the area that its tubes cover at height h. 

3.21. Laying out the tubes 

Now we're in great shape. We have annexed our annulus, and although parts have been 

snipped away, no two snipped-away parts overlap. Within the sector defined by one of 

the snipped-away parts, the annexed area is on the order of the original area. (See 
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Detail: 
X/Kh V ~ h  3 

2a h~ ~ 

V K_h 
Fig. 20. Comparing areas within a snipped sector. 

Figure 20.) Thus we hope and expect that there is enough room for the tubes to grow. 

To verify this, let us specify precisely how the tubes are to run. 
The region we are supposed to be cutting up is the portion of G between height h 

and height h/2 and lying above DUB, the union of the base of the hemisphere and the 
annexed territory. Just as we divided the plane up into pieces, we will divide D U B into 
pieces, and treat each such piece separately. We begin by cutting DUB along the radii 

that extend to the tips and centers of the snips. (See Figure 21.) This yields pieces of 

f ~ triangle 

sector ft triangle 

Fig. 21. Dividing up DUB. 
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0 = 0-l, na x / F = ~ ( 0 )  

r = a  0 = 0  

r =  

r = 0  

Fig. 22. Polar coordinates. 
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three kinds: sectors, right triangles, and "left triangles". In discussing how to lay out 

the tubes we will ignore left triangles, since they are just like right triangles. 

For a given piece S, either a sector or a triangle, let S(z) be the portion of the plane 

at height z that lies above S, and let 

H =  U 3(z). 
zE[h/2, h] 

Our task is to extend the tubes that have run into S(h) down through the region H until 

they run into S(h/2). Since the tubes are to remain more or less vertical, this amounts to 

specifying a correspondence tpz between S(h) and S(z) for each z E [h/2, hi. Our strategy 

is to choose these correspondences so that the available horizontal cross-section is 

shared equally among the tubes, that is, so that 

Area(tpz(A)) Area(A) 

Area(S(z)) Area(S(h)) 

for all A~S(h) .  

This condition doesn't  determine the tpz's, so we require in addition that the tpz'S be 

nice and smooth, and take "radii" of S(h) to "radii" of S(z). To see what this entails, 

introduce polar coordinates (r, 0) in the (x, y)-plane so that the point r=0 is the center of 

the disk D and the  ray 0=0 lies just to the right of S. (See Figure 22.) Then H is 

determined by the inequalities 
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where 

when S is a sector, and 

h 
- - ~ z < < . h ,  
2 

0 ~ 0 ~ Omax, 

a2V~'~- z 2 <<. r <~ fl( O), 

3 ( 0 )  = 

fl(O) = a sec O, 

a sec Om~ x = 

when S is a fight triangle. Set 

{X = oV'-a~--x 2, 

and define 

fO 32 _ ~Z 2 0 
2 fo 32-a2 

U-- fOma x fl 2-122 -- foOmax32 122 

Jo 2 

V-- 

The function u=u(O, z) tells what fraction of the area of S(z) has 0-coordinate between 0 

and 0. The function o=v(r ,  O, z) tells what fraction of the area of the infinitesimal strip 

between angles 0 and O+dO has r-coordinate between a and r. We make the tubes run 

along the curves u=const,  v=const. The correspondences q0~ associate points in S(h) 

and S(z) that have equal values of u and v. These correspondences are illustrated in 

Figures 23 and 24. Figure 23 shows a sector; here the tubes are being deflected radially. 

Figure 24 shows a right and left triangle together; here in addition to being deflected 

radially the tubes are being squeezed from the center of the snip out towards the tips. 
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z = h  �84 

z=yh 

1 z=Th 

Fig. 23. Tubes above a sector. 
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Have we succeeded in keeping the tubes more or less vertical? This comes down 

to checking whether  there is a universal upper bound for 

(~r~ +~/~O~ 
~/.,. \ az/.,. 

where the subscript u, v indicates that u and v are to be held constant.  For  a sector,  this 

fact is geometrically obvious.  For  a triangle, this fact is not quite so obvious,  but 

nonetheless true. To see why,  consider that the only free parameter  is the ratio h/a, and 
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z = h  

7 
z=--~h 

z 4 

z 8 

I h 
z =  2 

Fig. 24. Tubes above a pair of triangles. 

the only way the expression above can fall to be bounded is if something bad happens 

as h/a goes to 0. So you just  have to convince yourself  that nothing bad happens as h/a 

goes to 0. As a last resort,  this can be verified by computation.  

3.22. Taking stock 

Our task was to cut G into tubes that grow more or less exponentially.  To make sure 

that we have accomplished this, let us follow the course of  a representative tube, as it 

threads its way down toward the plane. To  start off, it drops straight down until it 

reaches height 1. Below height 1, its journey  is divided into steps of  three kinds. 
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Steps spent over the residual piece of  the plane. In the course of one of these 

steps, the tube remains vertical, and its hyperbolic horizontal cross-section grows 

exponentially. 

Steps spent over a sector or a triangle. In the course of one of these steps, the tube 

remains more or less vertical; its hyperbolic horizontal cross-section does not de- 

crease, and increases by a definite factor from the beginning to the end of the step. 

Steps spent taking care of  a baby hemisphere. These steps come in sets of three. 

In the course of one of these sets of three steps, the tubes remain more or less vertical; 

the hyperbolic cross-section does not decrease, and increases by a definite factor 

between the beginning of the first step and the end of the third step. 

Taken together, these facts imply that we have indeed succeeded in cutting G into 

tubes that grow more or less exponentially, with rate bounded below and factor 

bounded above by universal constants. But as we remarked before, this implies that we 

can do the same for the fundamental region F, so there is a universal lower bound for 

2o(/6), and hence for 2o(Ha/F). [] 

3.23. What is the constant? 

In the proof we have just gone through, we neglected to determine precise values for 

various "universal constants".  As a result, while we now know that there is a universal 

lower bound L 2 for 20(/~), and hence a universal upper bound U 2 for 6(F), we do not 

know concrete values for these bounds. With sufficient patience, we could work out 

precise bounds. However, the resulting bounds are liable to be exceedingly poor. To 

get good bounds by the cutting method, a keener knife and a steadier hand will be 

needed. 
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