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The purpose of this paper is to prove the 

FUNDAMENTAL CONJECTURE, Every homogeneous Kiihler manifold is a holomor- 

phic fiber bundle over a homogeneous bounded domain in which the fiber is (with the 

induced Kiihler metric) the product of a fiat homogeneous Kfthler manifold and a 

compact simply connected homogeneous Kiihler manifold. 

This conjecture has been stated first by Gindikin and Vinberg [25] in 1967. At that 

time it was known from results of Borel and Matsushima [1], [14] that the Fundamental 

Conjecture holds if the manifold admits a transitive reductive group of automorphisms 

(= biholomorphic isometries). 

Gindikin and Vinberg proved the Fundamental Conjecture for the case that the 

manifold admits a split solvable transitive group of automorphisms [25]. 

What was known about the Fundamental Conjecture at that time (in 1967) is 

contained in the very readible survey article [9]. 

In the following years only few results concerning general homogeneous K~ihler 

manifolds were published. There are clearly three basic types of homogeneous K~ihler 

manifolds occuring in the Fundamental Conjecture. Here the fiat type is trivial and the 

compact type was known by the work of Wang [27]. Between 1970 and 1980 the 

structure of bounded homogeneous domains and their infinitesimal automorphisms has 

been classified by various authors. Knowledge of the "fine structure" of homogeneous 

bounded domains is used in several places of our proof of the Fundamental Conjecture. 

In the last five years or so several papers have been published discussing the 

Fundamental Conjecture under various additional assumptions. A survey on these 



24 J.  DORFMEISTER A N D  K.  N A K A J I M A  

results can be found in [7]. We would like to mention two developments in more detail, 

since their combination eventually led to a proof of the Fundamental Conjecture. 

On one hand, a few authors investigated homogeneous K~ihler manifolds without 

fiat homogeneous K~ihler submanifolds. The main result, proven by Nakajima [17] is: 

Fundamental Conjecture holds for homogeneous K~ihler manifolds without flat homo- 

geneous K~ihler submanifolds and for homogeneous K/ihler manifolds associated with 

effective j-algebras. He obtained the above result by using techniques developed in [26] 

and [ 16]. 

The second string of investigations allows flat homogeneous K~ihler submanifolds 

but uses "solvability conditions". The following results were proven by Dorfmeister 

[6], [8]: (a) If a homogeneous K~ihler manifold admits a solvable transitive group of 

automorphisms, then the Fundamental Conjecture holds, and (b) (Radical Conjecture) 

If an effective K~ihler algebra (~, f,j, Q) contains a solvable ideal r such that ,q=r+jr+L 

then there exists a solvable K~ihler subalgebra ~ of g satisfying g=~+f  and ~ n~=0. 

This latter result is particularly important for our proof of the Fundamental 

Conjecture and is used frequently in this paper. Especially, it plays an essential role at 

the starting point of our investigation of K~ihler algebras. 

We now explain our method more precisely. After some preparations in w 1, we 

introduce in w 2 the notion of a quasi-normal K~ihler algebra and prove that for every 

homogeneous K~ihler manifold M, one can find a quasi-normal K~ihler algebra (,q, f,j, O) 

which generates a transitive subgroup of Aut(M) (Theorem 2.1). This can be done by 

using the Radical Conjecture and modifications [6]. The major part of our paper is 

devoted to proving: Every quasi-normal K~ihler algebra (~q,f,j,o) is decomposed as 

~=a+tS, where a is an abelian K/ihler ideal and b is a K~ihler subalgebra such that the 

homogeneous K/ihler manifold corresponding to [~ is a holomorphic fiber space over a 

homogeneous bounded domain and the fiber is a compact simply connected homogene- 

ous K~ihler manifold (Theorem 2.5). 

Let (g,f,j ,  ~9) be an effective K/ihler algebra and n the nilpotent radical of .q. 

Consider the subalgebra f i '=n+jn+f .  By the Radical Conjecture together with [6], we 

can decompose fi' as g '=a+t+][ ,  where a (resp. t) is a K~ihler subalgebra correspond- 

ing to a flat homogeneous K~ihler manifold (resp. to a homogeneous bounded domain). 

We consider the two cases where t--0 and where ta~0 separately. 

In w 3 we study the first possibility. Using arguments like in Case 1 of [8] we show 

that if t=0 thenjrad(g) c rad(.q)+f where rad(g) denotes the radical of fi (Theorem 3.2). 

Then the orthogonal complement [~ of rad(g) relative to 6) is aj-invariant subalgebra. If 

we further assume that g is quasi-normal, then rad(g) becomes abelian and D is semi- 
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simple. Now the decomposition ~=rad(.q)+[~ satisfies the desired properties of Theo- 

rem 2.5. 

w167 4, 5 and 6 are devoted to the study of the case t4=0. In this case, we denote by e 

the maximal idempotent of t and let g~ denote the weight spaces of the real part of adje. 

We then have g=g_ln+g0+~q~/2+gl and .q0=jg~+~, where ~ is aj-invariant subalgebra 

containing f (Theorem 4.4). Proofs and techniques are similar to those of [7]. In the rest 

of w we follow [16] in our setting and prove that adg01.q ~ is the Lie algebra of a 

transitive group of automorphisms of a homogeneous convex cone in .q~ (Proposition 

4.8). 
Next, in w we show that .q_ln+.qj/2 c rad(~) (Theorem 5.1). To do so, we first 

reduce to the case dim ~=1 .  This is an improvement over a similar reduction used in 

[8]. To prove that (under our assumptions) a maximal semisimple subalgebra of .q has to 

be contained in g0, we use a second weight space decomposition. It is determined by an 

element EE .% which is more convenient in the present situation than the element f0 E ~0 

used in [8]. 

In w we first study the structure of ~q0 in great detail under the additional 

assumption that .q is quasi-normal. To obtain the description of ~q0 that we need, we use 

the results obtained in the previous sections and in addition the knowledge of the fine 

structure of homogeneous cones (Theorem 6.2) which will be proven in Appendix I. 

Finally, set h=g_tn+rad(~0)+[e, .q~n], where ~0={xE ~; [x, .ql]=0}. We show that 

h is an abelian K~ihler ideal of ,q (Theorem 6.5). Let ~ be the orthogonal complement of 

h relative to 0. Then from the arguments of [17] the decomposition .q = h+ ~ satisfies the 

properties of Theorem 2.5. 

In w 7, we construct a fibering of the homogeneous K/ihler manifold M and prove 

the Fundamental Conjecture. Let G be as in Theorem 2.1. Then M=G/K for some 

subgroup K. Taking the universal covering group instead of G, we may assume G is 

simply connected. Let a and n be as in Theorem 2.5. Denote by L the connected 

subgroup of G corresponding to a+tt.  One can show that L is a closed subgroup of G 

containing K and obtain a fibering: M=G/K--oG/L. We show that this fibering has the 

desired properties of the Fundamental Conjecture. Here we use properties of the 

decomposition of a quasi-normal Kiihler algebra and construct a G-equivariant holo- 

morphic imbedding of M onto an open set of a complex homogeneous space of a 

complex Lie group. This last part of our proof follows an idea of [25]. 

In Appendix 1, as is mentioned before, we give a proof of Theorem 6.2 which 

describes a decomposition of a homogeneous convex cone C according to an arbitrary 
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transitive algebraic subalgebra ~ of  Lie AutC.  Here  we use the results of  [26] on 

j-algebras, regarding ~ as a subalgebra of  Lie AutD(C),  where D(C) denotes the Siegel 

domain associated with the cone C. 

In Appendix 2, we state and prove a result involving Levi decomposit ions of  a Lie 

algebra, which is used frequently in this paper. We would expect  that this result is well 

known; but we were unable to find a reference for it. 

w 1. Preliminaries 

1.1. Let  G be a connected real Lie group and K a closed subgroup of  G. Then the 

homogeneous manifold M=G/K is called a homogen'eous Ki~hler manifold if it is 

endowed with a G-invariant Kiihler structure. 

Let  fl and f be the Lie algebras of  G and K respectively. Then the G-invariant 

K~ihler structure induces an endomorph i smj  of  g and a skew-symmetric bilinear f rom 

on g such that for all x, y, z E g and k E f the following conditions hold [9]. 

j ~ c f ;  j 2 x - - x ( m o d f )  (1.1.1) 

[k,jx] --j[k, x] (mod f) (1.1.2) 

[jx,jy] - [x, y] +j[jx, y]+j[x,jy] (mod f) (1.1.3) 

o(jx,jy) = O(x, Y) (1.1.4) 

o(k,x) = 0 (1.1.5) 

O([x, y], z)+o([y, z], x)+~([z, x], y) = 0 (1.1.6) 

o(jx, x )>O if x ~ f .  (1.1.7) 

Conversely,  let ,q be a Lie algebra equipped with an endomorphism j and a skew- 

symmetric bilinear from 0 and let f be a subalgebra of .q. Then the system (g, f,j, 0) or 

simply g is called a Kiihler algebra if the above conditions are satisfied. 

PROPOSITION. Let (g, f , j ,o)  be a Ki~hler algebra. Let G be the connected and 

simply connected Lie group with Lie algebra ~q and let K be the connected subgroup of  

G corresponding to f. Then K is closed in G and the homogeneous space M(g)=G/K 

admits a G-inoariant Kiihler structure corresponding to j and ~. 

Proof. If K is closed in G, then M(.q) is a manifold and it is straightforward to 

define on M(.q) a G-invariant Kiihler structure which corresponds t o j  and Q. Therefore  
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it suffices to show that K is closed. Set ~=fi0)R and ~=~0)R and define an algebra 

structure on ~ by 

[[x~a,y~b]]=[x,y]O)Q(x,y) for x, y6~, a ,b~R.  

Then ~ is a Lie algebra relative to [[ , ]] and R~0~3R is an ideal of .~. Extend j to an 

endomorphism f of ~ by putting f(R)=0 and define a linear form a) on ~ by setting 

to(x~a)=a for xEg,  aER.  Then to([[xGa, yO)b]])=Q(x,y) for x, yE~ and a, bER. 
Therefore we know that (~, ~,j,-dto) is a K~ihler algebra. Let t~ be the connected and 

simply connected Lie group with Lie algebra ~ and consider the subgroup 

I~'={gEG;to(Adgx)=to(x) for all xE ~} of (~. Clearly, /~' is closed in t~ and the Lie 

algebra $' of /~ '  consists of all yE ~  satisfying to(ly, x])=-d~o(y,x)=O for any xE ~. 

Therefore ~'=~, whence the connected subgroup /~ of (~ corresponding to ~ is the 

identity component of/~' .  In particular,/~ is a closed subgroup of (~. Since 0~)R is an 

ideal of ~, fi----~ mod (0~R) and t~ is simply connected, the canonical homomorphism 

from ~ onto ~ induces a homomorphism ~r of (~ onto G. The kernel t~ of ~r is the closed 

and connected subgroup of t~ corresponding to 00)R. Since 0~)R is contained in the 

center of ~, C acts trivially on M(,~)=(~//~. Hence, from G=G/C and K=I~/C it follows 

that G acts on M(.~) in a natural manner and that the isotropy subgroup of G at the 

origin/~ of M(~) is the group K. Therefore K is a closed subgroup of G proving the 

proposition. 

From now on, we denote by M(.q) the homogeneous Kiihler manifold associated 
with the Kiihler algebra (~ by the proposition above. 

1.2. A K/ihler algebra (~, f,j, O) is called of flat type, of domain type, or of compact 
type if M(g) is a flat K/~hler manifold, or a homogeneous bounded domain with a 

G-invariant K/ihler structure where G is the Lie group associated with ~, or a compact 

simply connected homogeneous K~ihler manifold, respectively. 

Let j '  be another endomorphism of ~ satisfying jx=j'x (mod ~) for all x E g. Then 

(~, t,J', O) is also a K~ihler algebra and its associated homogeneous Kahler manifold is 

the same as one associated to (g, f,j, ~9). Such a change o f j  will be called an inessential 
change of j. 

Let g' be a subalgebra of g satisfyingj.q'c .q'+f. Hence, after an inessential change 

of j,  we can a s s u m e j g ' c  fi'.Then (.q', .q' N f,j, O) is also a K~ihler algebra. We call such a 

subalgebra ~q' of ~ a Kiihler subalgebra. The notion of a Kiihler ideal is defined 

similarly. 

It is easy to see that for any ideal r of 9, g ' = r + j r + f  is a K/ihler subalgebra of g. 
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1.3. A Ki~hler derivation of a K/ihler algebra (.q, f,j, ~) is a derivation D of the Lie 

algebra ~q satisfying the following conditions: Df c f, Djx=jDx (mod f) for all xE ~ and 

Q(Dx, y)+Q(x, Dy)=0 for all x, yE ,q. Clearly, the set of all K/ihler derivations of the 

K/ihler algebra ,q is a Lie algebra. We will denote this Lie algebra by Der r (,q). 

Let  9/ be a subalgebra o f  Derr(,q) and consider the sum of vector spaces 

~(92)=,qG92. We introduce an algebra structure on `q(92) by 

[x Q) D l, y ~) D2] -- [x, y] +D lY-D2 x G [D 1 , D2] 

where x, yE ,q and D~,DzE 92. 

It is easy to see that ,q(92) is a Lie algebra. Set f(92)=f~)92 and extend j and (~ to 

8(92) by putting j92=0 and 0(,q(92), 92)=0. Then (~(92), ff92),j, Q) is also a K~ihler algebra. 

Clearly, M(,q(92))=M(,q). 

1.4. For a Lie algebra ,q we denote by rad(.q) the radical of ,q and by nil(,q) the 

nilpotent radical of ,q, i.e. nil(`q)=[.q,.q]Nrad(,q)=rad([~q, .q]). We note that for any 

representation r of  ,q on a finite dimensional vector space V, r(x) is a nilpotent 

endomorphism of  V for all xE nil(.q) ([2]). 

A K~ihler algebra (,q, f,j,  Q) is called effective if f contains no non-trivial ideal of ~. 

LEMMA. Let ,q' be a Ki~hler subalgebra o f  the effective Kiihler algebra ,q and let fo 

be the largest ideal o f  ,q' contained in f'= ,q' N f. Then there exists an effective Kiihler 

ideal, ~' o f  ~' such that ,q'= ~'~fo .  

Proof. Let [9 be a maximal semi-simple subalgebra of .q'. Then 

fo=rad(,q ') N foO[~ N fo- 

We set 

I0 = (x E rad(.q');ad x has only real e igenvalues on .q}. (1.4.1) 

Then 10 is an ideal of ,q' containing nil(,q'). From the effectiveness of q̀ we derive 

10 n f=0. Thus we can find a subspace r of rad(,q') so that rad(,q')=100)rad(,q')N f0~c. 

Since [9 is semi-simple, there exists a semi-simple ideal [~' of [~ satisfying [~=[~'~[~ n f0. 

We set ~'=10~c0)[~'. Then ,q '=~'0)f  0 and ~' is an effective K~ihler ideal of .q'. 

Remark. By the result above we can treat ,q' as an "effect ive"  K~ihler algebra. 
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1.5. In this subsection and the following ones we recall some facts on symplectic 

representations. 

Let W be a real vector space together with a complex structure J and skew- 

symmetric bilinear form Q. We say W is a symplectic space if the following conditions 

are satisfied 

~-'2(Jw, Jw ' )  = ff2(w, w')  for w, w' E W 

f2(Jw, w) > 0 for w E W, w:r 

An endomorphism p of W is called symplectic if p satisfies 

f2(pw, w')+f2(w, pw')=O for w , w ' E W .  

The following fact is used frequently in this paper. 

LEMMA ([19]). Let p and q be symplectic endomorphisms satisfying 

[p ,q]=q and p o J - J o p = q + J o q o J .  

Then p is semi-simple and W is decomposed into the sum of  subspaces 

W=W_I/2+ Wo+ WI/2 such that for 2=0,+1/2 

(a) p leaves W a inoariant and every eigenvalue o f  p on W~ has real part A, 

(b) JWa=W_~, 

(c) qlWo+ Wv2=O and qw=jw f o r w 6  W_I/2. 

1.6. For a symplectic space W with complex structure J let ~ (W) denote the Lie 

algebra of all symplectic endomorphisms of W. We also set f ( W ) = { f E ~ ( W ) ; f o J =  

go f} .  

LEMMA. Let (,q, f,j, Q) be a Kiihler algebra of  flat or compact type and let r be a 

homomorphism of  ~ to ~p(W). Assume that r (Dcf fW)  holds and assume that 

r ( jx)oJ-Jor( jx)=r(x)+Jor(x)oJ  for all xfi ,q. Then r(x)oJ=Jor(x) for all xfi ,q, i.e. 

r(~) c f(W). 

Proof. Let Sp(W) and K(W) be the connected subgroups of GL(W) corresponding 

to ~10(W) and ffW) respectively. The homogeneous space Sp(W)/K(W) is well known as 

"Siegel's upper half plane". Here the endomorphism I of 6~(W) corresponding to the 

invariant complex structure is given by l(g)=�89 [J, g] for g 6 ~10(W) (cf. [18]). Let M(,q) be 

the homogeneous K/ihler manifold associated with ,q. From the assumptions, we obtain 
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r(~) c t~(W) and r(jx)=--l.r(x) (mode(W)) for any x E 9. This means that z induces a 

holomorphic mapping of M(9) to Sp(W)/K(W). Since M(9) is biholomorphically equiv- 

alent to C N or compact, the image of M(9) must be a single point. This implies that 

r(9) c ~(W) holds, proving the lemma. 

1.7. Let x be an element of a real Lie algebra g. Consider the endomorphism adx. 

There exist pairwise commuting derivations R, ! and N of 9 such that R has only real 

eigenvalues, I has only imaginary eigenvalues, N is nilpotent, R and I are semi-simple 

and adx=R+I+N.  We note that R, I and N are polynomials in adx without constant 

term [3]. We call R , I  and N the real part, imaginary part and nilpotent part of adx 

respectively and write Re(adx) for R and also Im(adx) for I. 

w 2. Quasi-normal K~ihler algebras 

2.1. Let M be a homogeneous K~ihler manifold and let Aut(M) be the group of all 

biholomorphic isometries of M. For the study of M, we have to find a transitive 

subgroup of Aut(M) which has nice properties. 

We say a K/ihler algebra ~ is quasi-normal if adx has only real eigenvalues for all 

x E rad(9). 

We want to prove 

THEOREM. For every homogeneous Kgthler manifold M, there exists a connected 

subgroup G of  Aut(M) satisfying 

(a) G acts transitively on M, 

(b) The Lie algebra 9 of  G is quasi-normal. 

This theorem will be proven in section 2.4. 

2.2. We show the following 

LEMMA. Let (g,f ,J,o) be a Kiihler algebra and let xErad(9). Assume that 

Im(adx) is a Kiihler derivation of  the subalgebra 9'=rad(9)+jrad(9)+f of  9. Then 

Im(adx) is also a Ki~hler derivation of  9. 

Proof. Let R, I and N be the real, imaginary and nilpotent part of ad x respectively. 

We can decompose g as g=O~,0 9~ so that 121ga=a2. Since 19~.q', ~qa is contained in .q' 

if a4:0. We want to show 

0(90,~%)=0 for a * 0 .  (2.2.1) 
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Let u0E % and o~E ,%, a#:0. Then we have 

d . t a d x  --~o~e Uo, e tadx on) = O(x, e tadx [u0, on] ). (2.2.2) 

Since [u0, v~,] E ,q' and since I is a Kahler derivation of  g', we have 

Q(X, e tadx [u0, on] ) =Q(x, etR" e tN [t/0, oa] ). 

For the proof  of (2.2.1), it is sufficient to show p(u0, va)=0 under the additional 

assumption that u 0 and v~ are eigenvectors for R. This implies that (2.2.2) is of type 

d e  st (X(t) at+ Y(t) sin at) = e'tZ(t), (2.2.3) COS 

where X(t), Y(t) and Z(t) are polynomial functions of t. An integration of (2.2.3) yields 

e s' (X(t) cos at+ Y(t) sin at) = e"W(t)+const . ,  (2.2.4) 

where W(t) is also a polynomial. Since a4:0, the equation (2.2.4) implies X(t)= 

Y(t)= W(t)=0. This proves (2.2.1). 

From our assumption we k n o w / f c f  and Q(Ix, y)+p(x, ly )=0  for all x, y E @a.0 .%. 

Using (2.2.1) we obtain p(Ix, y)+Q(x, ly )=0  for all x, y E ,q. Hence it remains to show 

that I commutes  with j modulo f. Consider the set u={xE,q;p(x ,  ,q')=0}. Then 

l u c u N , q ' = L  Since It is j-invariant, we also have l j u - O  (modf).  Therefore loj~- 

j o l ( m o d f )  on u. On 9' this identity holds by assumption; hence it also holds on 

~ '+u=,q.  This finishes the proof  of  the iemma. 

2.3. Let (,q, f,j, p) be an effective K~ihler algebra. We set 

p0 = {xE rad(,q);adx has only real eigenvalues}, 

191 = {x E rad(,q); p(jx, y) = 0 for all y E I90}. 

Since [~q, rad(,q)]cnil(,q)c190, the space 190 is an ideal of  ,q. Moreover, f leaves 190 and 191 

invariant, whence [3,191]=0. 

LEMMA. Let  x E 191, then Im(adx) E Derx(,q). 

Proof. By Lemma 2.2, it is sufficient to show that Im(adx) is a Kahler derivation of  

~q'=rad(~)+jrad(.q)+f. From the Radical Conjecture (see Introduction) together with 
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the consideration in section 1.4, we can find a solvable K~hler subalgebra ~ such that 

~=rad(~) and ~ '=8+f .  Here d n f may not be zero but we know that ~ N f is abelian. Let 

us set ~'={xE~; adx has only real eigenvalues in .q}. Then [ ~ , ~ ] ~ '  and ~' N f=0. Let c 

be a complementary subspace of 6' + ~ N f in ~ and put ~"= ~' + c. Then ~" is an ideal of 

satisfying ~=~"~)8 N f. By construction we have .q'=6"@f hence #" is a K~ihler subalge- 

bra of ~. Therefore we may assume that ~" is j-invariant. By [6], every solvable K~ihler 

algebra with vanishing isotropy subalgebra is a modification of a split solvable K~hler 

algebra. Therefore there exists a linear map D (called a modification map) of ~" to 

Der/~(~") satisfying the following properties (1) and (2): 

(1) [D(x), D(y)]=0, D([x, y])=0, D(D(x)y)=O for x, y E ~". 

Define a product ( , ) :  ~"• by 

(x,y)=[x,y]+D(x)y-D(y)x for x,y~6". 

From the properties (1) it follows that the product ( , ) also defines a Lie algebra 

structure on ~" and that (d", 0,j, O) together with the product ( , )  is a K~ihler algebra. 

Moreover, this new Lie algebra has the additional property 

(2) the adjoint representation relative to ( , )  has only real eigenvalues. 

We define the set ~'~={xE~";D(x)=O} and ~'~={xE~"; o(jx, y)=O for all y E ~ } .  

Then ~ " = ~ ' ( .  Using the properties (I) and (2) we can easily show 

(3) D(~")~'~=0. 

(4) If xE ~" and D(~")x=0, then D(x)=- Im (adx)[~". 

Therefore, for any x E ~", D(x) can be expressed as a polynomial without constant 

term of adz for a suitable z E ~". Next we show for x E ~", 

(5) D(x)=0 if and only if Im(adx)l~"=0. 

First we note that both endomorphisms are semi-simple and map ~'~ into ~ and 

leave ~ invariant. Therefore it suffices to prove (5) for the restrictions to ~.  We note 

that on ~ we have D(x)y=(x, y)-[x, y]. Assume now D(x)=0, then adxl~ ~ has only real 

eigenvalues, whence Im(adx)l~=0. Assume on the other hand that Im(adx)l~=0 

holds. Then adx has only real eigenvalues on ~. Since ~" is solvable, it is easy to see 

that the map y---,(x,y)-[x,y],yE~'~, has only real eigenvalues. Hence D(x)l~=0, 

proving (5). From (5) we obtain ~ ' c ~ .  Hence [~, ~]cn i l (~)=~ 'c~ .  Therefore ~'~ is an 

ideal of 8. Noting that ~" is an ideal of B, and that ~ n ~ leaves invariant B~ and ~'~, we 

then have [~'~, ~ N t~]=0. In particular, Im(adx)[~ N ~=0 for all x E ~'(. Now let x E ~1 and 

z~rad(fi). Then x=x~+x 2 and z=z~+z2, where x~,z~ ~ ~" and xz, z2~BN~. For yfi ~'( we 
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thus obtain o(Im(ady)x,jz)=-Q(D(y)xl,JZl)=Q(x~,jD(y)zl)=~(x,jlm(ady)z)=O, be- 

cause Im(ady)z ~ D0. Hence we have D(y)xl=Im (ady)x=0 for all y E ~'(. Then, by (4), 

Im(adxl)l~"~DerK(~"). Since [3, ~01]=0 and ~N3 is abelian, we have [x~, ~N~[]=0. This 

implies Im(adx~)EDerr(d)and Im(adx)=Im(adxl)+Im(adx2). Hence we also have 

Im(adx) EDerr(~). Consequently, Im(adx)~Der~(.q') because g '=~+3 and Im(ad 

x)13=0. Thus we have proved the lemma. 

2.4. In this section we prove Theorem 2.1. Take a subgroup G satisfying (a). Let K 

be the isotropy subgroup of G and 3 the Lie algebra of K. Assume that rad(~)N3*0. 

We can find a subspace c of rad(g) so that rad(g)=nil(fi)O(rad(.q)fl3)~c. We set 

9'=nil(g)0)c~)~, where t~ is a maximal semi-simple subalgebra of ~. Clearly fi=~'+3 

and rad(g') fl 3=0. Therefore, by taking the subgroup corresponding to g' instead of G, 

we may assume rad(g)n 3=0. 

Let D0 and DI be as in section 2.3. Take aED�91 and set l=Im(ada).  Then, by Lem- 

ma 2.3, IE DerK(.q). Consider the K/ihler algebra .q(9~) constructed in section 1.3, where 

9.I=RI. We also write ~=DoORa~D'~)[3, where (3 is a maximal semi-simple subalgebra 

of g and D'cDl. Define a linear map ~: fi~q(9~) by ~(x)=x if xED00)D'0)t~ and ~(a)= 

a-l. Set O=~(g). Then ~ is an ideal of ~(~) since [.q(9.1),.q(gA)]=[fi,~]= 

nil(.q)+[~cD0+[~c~ holds. Moreover, rad(.q(gA))=rad(.q)~R/ because [l,~(~)]cnil(~q). 

This implies rad(~)=rad(.q(~))N~=~(rad(~)) and we also obtain rad(~)nf(gA)= 

~(rad(g) I13)=0. It is important to note that Im(ad x)=0 in ~ for all x E ~(D0 + Ra). We thus 

have dim 130>dim D0 where ~30 is defined for .~ as D0 is for .q in section 2.3. A repetition of 

this procedure will therefore yield the assertion if we are able to find a subgroup 

GcAut(M) which acts transitively on M and has ~ as its Lie algebra. 

Assume first that M is simply connected. In this case it is straightforward to see 

that our assertion holds. With this all assertions in the rest of this paper hold under the 

additional assumption that M is simply connected. In particular the Fundamental 

Conjecture holds in this case. Let now M be arbitrary. Let G* and G~ be the simply 

connected Lie groups corresponding to .q and .q(gA) respectively. We denote by W the 

l-dimensional connected subgroup of G,~I generated by 9.I=RI. We then have G~i=G*W 

(semi-direct product) and both G* and W are closed subgroups of G,a. Let :r denote the 

projection G*--->G and K*=er-~(K). Then M=G*/K* and M*=G*/K'~=G~JK*oW is the 

universal covering space of M, where K~ is the identity component of K*. As is 

3-888288 Acta Mathematica 161. Imprim~ le 10 novembre 1988 
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mentioned above the Fundamental  Conjecture holds for M*. Therefore  M* is a holo- 

morphic fiber bundle over a homogenous bounded domain D and the fiber is CnxN,  N 

denoting a compact  simply connected homogenous K/ihler manifold. Then D=G*/L*, 

CnxN=L*/K*o, N=L*/F* and Cn=F*/K*o for some connected closed subgroups 

L*mF*~K~. We can see K*~L* in a similar way as in the proof  of Lemma 7.6. Then 

using the arguments of  [28; Appendix] we have K*cF*. We also have D =  G~t/L*W and 

N=L*W/F*W. Therefore  f + R I  is a K~ihler subalgebra of  g(N), where f is the Lie 

algebra o f F * .  We can find a K~ihler ideal a of  f such that f=a+~  (cf. section 3.3) and a 

is decomposed as a=%+a~ ,  where ao=[a,a] and aj is the orthogonal complement  

of a 0 in a ([6]). Here  we can assume that a~nil(f) .  But then a, a 0 and a I are invariant 

under I. 

We want to show that A d k I = l  for all kEK*. Since Adga=a (modnil(g)) for all 

gEG*, AdK*a=a follows. Therefore  we have A d k o l o A d  k-l=l for all kEK*. This 

means that Ad k I - I  is in the center  of  g. Recall that both a 0 and a I are abelian ([6]). 

We have 

K*=(K* N exp a0.ex p al).K ~. 

Therefore we may assume that k =ex p  x 0. exp x~, where x i E ai. Then Ad k l - l =  - I x o - I x  ~ 

- I x  0, Ix~]. Since Ix=O for  any x contained in the center  of  ~, we have IXo=Ix ~ =0. Hence  

Adkl=l ,  proving our  assertion. But then K~I=K*W is a closed subgroup of  G~t. 

Therefore G~ acts on M=G*/K*=G~I/K~I. Clearly this action is holomorphic and 

isometric. 

Let  t~ be the connected  subgroup of  G~I generated by ~. From the above arguments 

it follows that G acts transitively on M. Since rad(.q) N f=0  we obtain ~ N f(Pl)cf, whence 

acts almost effectively on M. Therefore ,  after dividing by a discrete subgroup (if 

necessary), we can assume t ~ A u t ( M ) .  As mentioned before,  from this the theorem 

follows. 

2.5. From Theorem 2.1 it follows that for the study of homogeneous Kfihler 

manifolds we only have to know the structure of  quasi-normal Kfihler algebras. 

The following theorem is a fundamental result of  our  paper. 

THEOREM. Let (fi, f,j, ~) be an effectioe quasi-normal Ki~hler algebra. Then g is 

decomposed as 

g = a+~, where a N ~ =0 and p(a, b) =0 ,  

and where a is an abelian Kiihler Meal of  .q and ~ is a quasi-normal Ki~hler subalgebra 
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containing L Moreover, there exists a reductive Kiihler subalgebra u of  ~ which 

satisfies the following properties: 

(a) u contains 3, the semi-simle part o f  u is compact, the center o f  u is contained in 

3, and [u,jx]-j[u, x] (mod u) holds for all u E u, x E ~. 

(b) Let H be the connected simply connected Lie group with Lie algebra ~ and U 

the connected subgroup o f  H corresponding to u. Then U is closed in H and the 

homogeneous space H/U, equipped with the H-invariant complex structure induced 

from the operator j, is biholomorphically equivalent to a homogeneous bounded 

domain. 

Remark. Let K be the connected subgroup of U corresponding to 3 and consider 

the homogeneous K~hler manifold U/K. From (a) we also know that a connected 

compact semi-simple subgroup of U acts on U/K transitively. Therefore, by [I], U/K is 

compact and simply connected. But then from the proof of [17; Theorem B], we know 

that there exists a linear form to on ~ so that (~9, L j, to) becomes a j-algebra in the sense 

of [18]. Therefore our decomposition f i=a+~ is a generalization of a result of [25] and 

[9] which is obtained under the additional assumptions that ~q is solvable and 3=0. 

2.6. In order to prove Theorem 2.5, we divide effective K~hler algebras (~q, L j, 9) 

into two classes as follows. Consider the K~ihler subalgebra .q '=n+jn+L where 

n=nil(.q). By the Radical Conjecture [8], there exists a solvable Kahler subalgebra m of 

.q' such that .q' =rn+3 and m N 3=0. In view of [7; 4.7], we can assume that m contains n. 

Hence after an inessential change o f j  we can assume m=n+ jn .  By [6] every solvable 

K~ihler algebra with vanishing isotropy subalgebra is decomposed into the sum of 

K~ihler algebras of flat type and of domain type which are orthogonal to each other. 

Hence we can write m = a + t  where a n t = 0  and Q(a,t)=0 and where a (resp. t) is a 

K~ihler algebra of flat type (resp. of domain type). We will consider the following two 

c a s e s :  

Case I: t=0 (containing the case where n=0). 

Case II: t4=0. 

Clearly, in the first case, .q' is of flat type and in the second case ~' is not of flat type. 

From the next section on, we will investigate Kiihler algebras of type Case I and of 

type Case II separately and prove Theorem 2.5 in both cases. 

w 3. Kiihler algebras of type case I 

3.1. In this section, we shall study the structure of a Kiihler algebra .q for which the 

subalgebra nil(g)+jnil(g)+3 is of flat type. We first show 
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PROPOSITION. Let (g , f , j ,q)  be an effective Kiihler algebra. Then nil(g)+ 

jnil(g)+f is o f  f lat type i f  and only if rad(.q)+jrad(.q)+f is o f  flat type. 

Proof. Set ~= rad(g)+jrad(g)+~ and g'=nil(.q)+jnil(g)+L It is easy to see that g' 

is an ideal of ~ and that ~/9' is abelian. Consider the K~hler subalgebra b given by 

b={xE ~; Q(x, y)=0 for all y E 9'}- Then ~ is an ideal of b. Therefore, by Lemma 1.4 we 

can find a K~thler ideal 13 of b such that b=130~. But then ~=q'O13, [13,f]=0 and 

0(g', 13)=0. Since ~/g' is abelian, we know that 13 is abelian. We may assume that 13 is 

j-invariant. Then 13 is a K~ihler algebra of fiat type. 

Let x E 1~. Consider the action r(x) on V= .q'/~ induced from the adjoint representa- 

tion. The vector space V equipped with the skew-symmetric bilinear from Q induced by 

Q and with the complex structure J induced by j is a symplectic space. Then r(x) is a 

symplectic endomorphism. From (1.1.3), we have r(jx)oJ-Jor(jx)=r(x)+Jor(x)oJ.  

Therefore, by Lemma 1.6, we have r(x)oJ=Jor(x) for any xEl3. This means 

[x,jy]=-j[x,y] (modf) for any xE13 and y E g ' .  Since also [13, f]=0 and O([x,a],b) 

+o(a,[x,b])=O(x, [a,b])=0 for all a, bE~ we have adxlt~EDerK(~)for any xEl~. Set 

~ =  {adx[~;x E 13}. By section 1.3, ~(~)= ~@~ is a Kahler algebra and M(~(~))=M(~). 

Let b '={x-adx[g ;  xE 6}. Then b' is abelian and both b' and .q' are K/ihler ideals of 

~(~). Moreover, t ~ ( ~ ) = q ' ~ b ' @ ~  holds. Therefore, M(~)=M(g')xM(b').  Since M(b') 

is fiat, M(~) is flat if and only if M(~') is fiat. This finishes the proof of the proposition. 

3.2. In the following five sections we will prove the theorem below. Our argu- 

ments are similar to the ones used in [8] for the corresponding (fiat) case. 

THEOREM. Let (g , f , j ,o)  be an effective Kiihler algebra o f  type Case I. Then 

rad(fi) is a Kiihler ideal o f  ~ o f  f lat  type. 

3.3. Let (g, f,j, Q) be an effective K/ihler algebra of type Case I and let a = n + j n  

where n=nil(g). As in [8], we can choose j  so that a is a K/ihler ideal of g '=n+ jn+f .  In 

fact, since g' is of fiat type, every semi-simple subalgebra of .q' is compact. Therefore 

we can assume that a maximal semi-simple subalgebra of .q' is a subalgebra of f. But 

then g '= rad(g')+f. Let V be defined as in (1.4.1). Then we can find an ad f-invariant 

subspace c so that rad(g')=~(~rad(g')N f~c .  Then ~ '= ~OcG~ and ~Gc is an ideal of 

g' containing n. We can assume that l~Gc is j-invariant. But then n + j n = w ~ c ,  whence 

n+jn is an ideal of .q'. We then have [k,jx]=j[k,x] for kEf  and xEa.  Set ao=[a,a]. By 

[6; 3.3], % is an abelian K~hler ideal of a and its orthogonal complement a~ in a relative 
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to Q is an abelian Kahler subalgebra. We also know from [8; 1.2] that rt=n0+n ~ holds, 

where n~=rt n a~, 2=0,1. We would like to point out that a is regarded as the Lie algebra 

of a transitive subgroup of euclidian transformations of some C r. Therefore, if adx I a is 

nilpotent, then x generates a translation. As a result, [x, y] =0 holds for x, y E a if both 

adxla  and adyla are nilpotent. Using this we have 

LEMMA ([8;1.3]). (1) rt+jn 0 is abelian and for any xEn+jr t  0, adx is a nilpotent 

endomorphism of  ~. 

(2) [n 1, a] =0. 

(3)in I is an abelian ideal of  jn l+f  and we have 

Im(adjx)ljrh+f=O for any x E n  I. 

3.4. In this section we show that sections 1.5 and 1.7 of [8] are still valid in our 

context. The first part of the lemma below can be proven as in [8; 1.5] and will therefore 

be omitted. The proof of the second part is a simplification of the proof of 

[8; 1.7]. 

LEMMA. For every xE nj, adx has only imaginary eigenvalues and 

Im (adjx)oj=jo Im (adjx) (modf). 

Proof. Since [Lnl] is ad~-invariant, we can find a subspace n I such that 

nl=[~, rh ]~n  I and [f, I11]=0. Then j[L nl]=[~,jrh]c nil(a), whence Im(adj[f,x])=0 for 

xE hI. Therefore it is sufficient to show the assertion for every element x satisfying 

Ix, f]=0. But then [jx, f]=0. Hence both adx and adjx, induce an endomorphism of ~/f, 

which will be denoted by q and p respectively. We also denote by J the complex 

structure of ~/f induced by j. We then have 

po J - J o p  = q+ Joqo J (3.4.1) 

because of (1.1.3). We also know from Lemma 3.3, 

[ p , q ]=0 ,  q2=0 and qoJoq=O.  (3.4.2) 

Let Pl denote the ./-linear part ofp.  From (3.4.1) and (3.4.2) we can easily see that the 

semi-simple part of p coincides with the semi-simple part of Pl (see [6; p. 173]). This 

implies the assertion, because p has only imaginary eigenvalues. 
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3.5. Set Lt={Im(adjx);xE nl}. Then 1.I is an abelian space of semi-simple deriva- 

tions of g. Let U denote the closure of the connected subgroup of GL (.q) generated by 

H. Then U is a compact group. Define a skew-symmetric bilinear from 0 on .q by 

0(x ,y)= fvQ(ux, uy)du for x, yE g, 

where du denotes the normalized Haar measure of U. By Lemma 3.4, (g, f,j, ~) is a 

K~ihler algebra and l lcDerr (g ;  0)- Consider the K~ihler algebra (fi(Lt), f(lI),j, ~) where 

g(H) and f(LI) is defined in section 1.3. We can perform an inessential changej '  o f j  so 

that j 'x=jx for xErt  0 and j ' x=jx - Im(adx)  for xEn l . 'We  set a '=n+j ' rL  From the 

construction, it is clear that a' is a solvable subalgebra of g(lI) and that adx is a 

nilpotent endomorphism of g(H) for all x E a'. Moreover a'N f(Lt)=0 and [a', f(lI)]ca' .  

Since a' is of flat type and ad a' consists of nilpotent endomorphisms, we can conclude 

that a' is abelian. Then the arguments in sections 1.11 to 1.16 of [8] are still valid for our 

g(H) and a'. In particular, we have 

j'r~ = rad(.q(11)). (3.5. I) 

3.a. Since [~(1t), g(lt)]=[g, g], n coincides with nil(g(lt)). But then, a' is an abelian 

K~ihler ideal by (3.5.1). Let [) be the orthogonal complement of a' in .q(ll) with respect 

to O- Then t~ is a K~ihler subalgebra containing [(ll). Since a'Nf(lI)=0, we have 

g(It)=a'0)[3. Clearly nil([3)=0 and hence [9 is reductive. Let c and [)' be the center of [] 

and the semi-simple part of [3 respectively. By [14], 0(c, [3')=0 and both c and t)' are 

K/ihler ideals of [3. Clearly [3'c fi and rad(g(lI))=a't~e. This implies that [~' is maximal 

semi-simple in .q, whence .q=rad(.q)0)b'. Moreover, since O(rad(.q(H)),[3')=0 and 

rad(g)=rad(g(H))fl g we also have O(rad(g),[3')=0. Since j'[3'~[3'+f(l.l) and J[3'-J'b' 
(modf(H)) we obtain j[3'c[3'+f. Therefore the orthogonal complement of [~' in .q 

relative to # is j-invariant and it coincides with rad(g)+f. Thus we have j r ad (~)c  

rad(g)+L Therefore rad(g) is a K~hler ideal. Now Theorem 3.2 follows from Proposi- 

tion 3.1. 

3.7. As a final preparation for the proof of Theorem 2.5 we remark 

LEMMA. Let (g, f,j, Q) be a Kiihler algebra. Assume that rad(.q) is a Kiihler ideal of  

~. Then there exists a semi-simple Kiihler subalgebra [3 satisfying 

(a) ~=rad(~)+[3, Q(rad(g),{))=O, 

(b) ~=~nrad(~)+~n ~. 
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Proof. Let ~ be the orthogonal complement of rad(g) in ,q relative to 69. From the 

assumptions it follows that ~ is a K/ihler subalgebra containing L Since ~+rad(g) 

(mod r a d ( ~ ) ) ~  (mod ~ N rad(,q)) is semi-simple we obtain rad(~)=rad(g) N ~c~. Let ~9 be 

a maximal semi-simple subalgebra of 3. Then ~=rad(~)Ob. Since rad(~)cL ~ is a 

K~ihler subalgebra satisfying (a). Let k=kj +k 2 be an element of L where k I E rad(,q) and 

k2E b. Then 69(kl, rad(~))=69(k, rad(fi))=0. Therefore 69(k I, fi)=0, whence kj E L proving 

(b). 

3.8. In this section we prove Theorem 2.5 for Case I. Let ~q be an effective quasi- 

normal Kfihler algebra of type Case I. By Theorem 3.2, rad(~q) is a Kfihler ideal of flat 

type. Let ~=rad(fi)+D, be a decomposition of b as in Lemma 3.7. Since ,q is quasi- 

normal, rad(,q)N~=0. Therefore rad(fi) is the Lie algebra of a transitive group of 

eluclidian transformations on M(rad(fi)). Hence adx has only imaginary eigenvalues for 

any xErad(g). But ~ is quasi-normal, whence adx is nilpotent and rad(g) is abelian. 

From rad(~q)N 3=0 we also know t~=f by Lemma 3,7. Since ~ is a semi-simple Kfihler 

algebra, we know from [1] (see also [21]) that a maximal compact subalgebra u of ~9 

containing ~ satisfies the properties (a) and (b) of Theorem 2.5. This completes the 

proof of Theorem 2.5. 

w 4. The canonical decomposition of Kiihler algebras in Case II 

4.1. Let (~, L J, 69) be an effective Kfihler algebra of type Case II and let n, ,q', m, a, and 

t be as in section 2.6. 

In the sections 4.1 to 4.4, we essentially assert that the statements 4.8 to 4.32 of [7] 

still hold with minor changes in our setting. (Recall that we use n=nil(,q) here.) 

Note that t is the Lie algebra of a Lie group which acts simply transitively on a 

homogeneous bounded domain. Let e be the principal idempotent of the maximal 

abelian ideal of t of the first kind. (For the definitions of an abelian ideal of the first kind 

and its principal idempotent, see [26].) We call e the maximal idempotent of t. By [26] 

we have 

t = t0+tln+ h, (4. I. 1) 

where ta is the eigenspace of R=Re(adje)  for the eigenvalue )t. 

Jtl/2=tz/2, j t  0 = f  I and e E t  I. (4.1.2) 

[jx, e ]=x  for xE h. (4.1.3) 
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It is not hard to see that e is the unique element of t having the properties (4.1.1) to 

(4.1.3). We decompose the Lie algebra g into the sum of eigenspaces fix of R. From the 

properties of modifications [6; 3.1] it follows immediately that adje and ad e leave a 

invariant. Clearly m and n are adje-invariant. Hence ct, m and n are also invariant 

under R and decompose into eigenspaces aa, mx and rtx respectively. Using Lemma 1.5 

we have ([6]) 

a = a,/E+ao+a,/2, jax = a_ x, (4.1.4) 

[e,x]=jx for x E a  ,/2 and [e,%+al/2]=O. (4.1.5) 

We can use the proofs of  4.10 and 4. I 1 of [7] without change in our setting and 

obtain 

n I = t I (4.1.6) 

hi/2 = avz+(tv2 N nv2) 

rll/2 + j l l l l  2 = 1Tll/2+m_l/2.  

4.2. The following result has been stated in [7] without proof. 

(4.1.7) 

(4.1.8) 

LEMMA. []~, e] = 0. 

Proof. Let M(g') denote the homogeneous K~ihler manifold associated with .q'. By 

[6], the Fundamental Conjecture holds for M(g').  Thus M(.q') is a holomorphic fiber 

bundle over a homogeneous bounded domain whose fiber is a complex euclidian space. 

Then a + f  corresponds to the group that leaves the fiber invariant. In particular 

a + f  is a subalgebra. Clearly t+~={xE.q';o(x,a+f)=O} by [6]. Then we obtain 

o([t, f], a)=0(t ,  [f, a])=0. Hence t+~ is also a subalgebra. Since a d j x - j o a d x  induces an 

endomorphism of (t+l~)/f, we can define a linear form ~0 on t+ f  by ~p(x)= 

Trace(adjx-jox)l(t+f)/ f  for x E t + f .  From [13] we know W([jx,jy])=~p([x,y]) and 

~p([x, f])=0 for any x, y E t + L  Moreover, the form ~p([jx, y]) corresponds to the Berg- 

man metric of the homogeneous bounded domain M(t+f).  Therefore ~p([jx, x])~>0 for all 

x E t+ f  and equality holds if and only if x E f. Since (t+ f)n n = t N n, we see that t N n is an 

ideal of t + f  which contains e. It is straightforward to show ~p(tl/2)=0 and ~P(t0n n)=0. 

This together with (4.1.3) yields 

Vd(x)=Vd([je, x]) for any x E t N n .  
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For any k E f and x E t n n we thus obtain 

~p([j[e, k], x]) = ~0([je, k], x]) = ~p([je, [k, x]]) = ~p([k, x]) = 0. 

This implies [e, k]=0, because [e, k] E t N n, and finishes the proof  of the lemma. 

4.3. From Lemma 4.1 we obtain ~,-g~. Therefore, by (4.1.1) and (4.1.4) we have 

g' g'_t/z+g~+g'l/2+gl, .q~- n.qa. 

Then the results of  4.13 to 4.25 of  [7] still hold in our setting. In particular for all u, v E g 

there exist a, b, c E R such that 

Q(eta'li~u, et~di%) = eta+e-~b+c (4.3. I) 

holds. Moreover, we have 

Q(ga,,qu)=0 if 2+/~4:0 ,+1 (4.3.2) 

g a = 0  if 3.r (4.3.3) 

j f inc ,q ,+g ' l+q~  foral l  nEZ. (4.3.4) 

~9 ,qn is a K~ihler subalgebra. (4.3.5) 
nEZ 

The following result is [7; 4.28]. We give here a somewhat shorter proof. 

LEMMA. ,qX=0 i f2~  {0,--+1/2, _1 ,  -+3/2, --2}. 

Proof. First note that by (4.3.2) we have p(.q~, .q')=0 if 2+{0 ,+1 /2 ,  1} does not 

contain any of  the numbers 0, +1, i.e., if 3.r where ~ = { 0 ,  +1/2, +1, + 3 / 2 , - 2 } .  

Since j f l ' c q '  this also implies Q(jgx, .q')=0. But j .qacqa+q '  by 4.15 and 4.18 of [7]. 

Therefore even j ,qac~a+f holds for 3. r J/.  Hence,  from (4.3.2) we obtain Q(j.qx, .%)=0 

since 224=0, + 1 if 3. r . / / and  ,qa =0  follows. 

4.4. We prove in this section that the eigenvalues 3 .= -1 ,  + 3 / 2 , - 2  do not occur. 

First we note that rad(g) n ~ = n a  if 3.*0. Therefore 

r ad (g ) f lgx=0  if 3. r {0, +1/2,1}. (4.4.1) 
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Since R=Re(adje) is a semi-simple derivation of ~q, by Appendix 2, we can find a 

maximal semi-simple subalgebra ~ of 9 which is invariant under R. Then all eigenvalues 

of R in b occur together with their negatives. This implies that - 2  does not occur in ~9, 

whence 9_2crad(~). This means 9_2=0 by (4.4.1). 

By (4.3.4), ~=%+91 is a K~ihler subalgebra. Consider the subspace 

~= {x E 8; [e, x] = [e,jx]=O}. 

Then ~ is a j-invariant subspace containing f. Moreover ~ is adje-invariant, whence 

~=~0+~1, where ~=~Ng~.  Using (4.1.3) and (4.1.6); we have x- j [x , e] - [ j x ,  e]E~ 

for any xE~.  Therefore ~=#+n l+ j r  h. Clearly ~n(nl+jrh)=0. From (1.1.3) we 

have [je,jx]=-j[je, x] (modf) for any xE~. This implies j~ lc~ l+f .  Then by (4.3.2), 

@(j~, ~1)=0. Therefore ~l=0 and hence ill=n1. But this shows that R has not the 

eigenvalue - 1  in ~). Hence we get 9_l~rad(9) and g_l=0 follows. We have also proved 

%=j91+~ and ~={xE %; Ix, el=0}. In particular, ~ is a joinvariant subalgebra of %. 

Since 9_1=0, we derive from [7; 4.19] that the term in (4.3.1) involving e -t does not 

occur. Thus (4.3.2) holds if 2+k~4:0, 1. Therefore Q(9-3/2, 9') =0. But then we obtain 

9_3/2=0 as  in the proof of Lemma 4.3. It follows 93/2crad(9), whence .q3/2=0. 

Since Q(9_~/2+91/2, .q0+ql)=0 and since 90+91 is a K~ihler subalgebra, we know 

j(.q_l/2+91/2)=.q_l/2+.qt/2+f. Thus we have proved 

THEOREM. Let (9, f,J, @) be an effective Ki~hler algebra of  type Case II. Let ,% be 

the weight space of  Re(adje) in ,q, where e is the idempotent given in section 4. I. Then 

(1) 9 = q_ 1/2 + ~o-~- 91/2-1- q i , 

(2) j(,q_ i/2+ 91/2)C ~_ 1/2+ ~ql/2 + k, 

(3) .qo+91 is a Kiihler subalgebra and 9o=J.% +~, where ~={xE 9o; [x, e]=O} is also 

a Ki~hler algebra containing f. 

Remark. The choice of t in 9' is not unique. But the subalgebra t+f  is uniquely 

determined in 9'. Lemma 4.2 shows that t I is the maximal abelian ideal of the first kind 

in t+f  and e is its principal idempotent. As is stated in [26], the maximal abelian ideal of 

the first kind is unique. Consequently, e is obtained uniquely from 9. We can easily see 

that Re(adje)=Re(adj'e) for any inessential change j '  o f j .  Indeed, as in [26], from 

[e, f]=0 and (1.1.2) we derive [je, f]cf.  Hence f is an ideal of the Lie algebra Rje+f .  
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Since ad~ acts completely reducibly, there exists a one-dimensional subspace I of 

Rje+~ satisfying R j e + f = I + f  and [[, f]=0. It is easy to see that the I-component x o o f j e  

coincides with the I-component o f j ' e .  Clearly Re(adje)=Re(ad Xo)=Re(adj 'e) .  There- 

fore the decomposition g=~)gz is obtained in a unique way from .q and it is even 

independent of the choice o f j .  

4.5. In the following sections we will study the structure of .q0+gj somewhat 

closer. It turns out that also in the present setting one can proceed along the lines of 

[26] and [16]. Recall that we can choose j so that j g j = t  o holds. The following lemma is 

well-known. 

LEMMA ([26], [5], [16]). There exist  c 1 . . . . .  c m E q. 1 and  a decompos i t ion  

I~ I = t ~  I <~i<~k<~m rik 

satisfying 

(a) rii = Rc  i and  q +. . .  +Cm=e, 

(b) [jci , jc ,]=O and  [jc i, ck] =d/k, 

(c) Le t  Ri=Re(adjc i ) ,  then Ri=(di,+Oit)/2 on L, and  Ri=(di , -di t ) /2  on j r ,  f o r  all 

s<~t. 

By [5], we also have 

D(c i) = 0  for all DEDerK(j.ql+.ql). (4.5.1) 

Since the family {R i ; i= l  . . . . .  m} is abelian, we can consider the corresponding 

"root  space" decomposition .q=q)-Irl t~ . Clearly .q~=~g~rl, where .q~rl--.qtrln. - -  .q~. Let  us 

denote by A i the root defined by Ai(Rk)=d/k. Then we have 

nl(Ai+Ak)/2] l(Ai+Afl/2] 
~1 ~--- 1~} ~1 a n d  ,~1 =r'ik" (4.5.2) 

i<~k 

Remark .  An element c of .ql is called an i dempoten t  if it satisfies [jc, c]=c. An 

idempotent c is called minimal  if c can not be written as the sum of two idempotents. 

One can prove that the set {q . . . . .  cm) is nothing else but the set of all minimal 

idempotents of  g~. Note that this definition of  an idempotent depends on the choice of  

the operator j.  
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4.6. From now on, we restrict our investigation to the subalgebra ~=,q0 +,q~. First 

we consider the eigenspace decomposition ~=E)ael~ ~(~) for fixed R i. Note that (1.1.3) 

implies j,~(")c~(a)+q '', where ,q"=,q~+j,ql+f. We will use Lemma 4.2 of [16] in the 

following section. For  the convenience of the reader we state this result here. 

LEMMA ([16]). Let u E ~  (a) and put ,q]b)=~(b)N,q I. Then ju=v+x+jy+k ,  where 

v E ~(~), x, y E g~a)"{-,qla+l) and k E ~. 

4.7. We need to know which eigenvalues of Rg can occur in go- The following result 

is [16; Lemma 4.3]. Our proof follows the spirit of the proof there but is adjusted to the 

present setting which is somewhat different from the one in [16]. 

LEMMA ([16]). ,q(a)=[=0 only i f  - 1/2<~a<<. 1/2, where ,q(o a)= ~(a) ['1 .q0' 

Proof. Assume a >  1/2 is the maximal eigenvalue of R~ in 'q0. Let  u E ,q(o a). Then 

j u=v+x+jy+k  as in Lemma 4.6. Note .qla+l)=0, whence x, yE  .ql ~. Then j ( u - y ) - k =  

v + x E ~  ~) and [ j ( u - y ) - k , u - y ] E ~  ~2~). Since 2 a > l ,  we have ~{2a)=,q~02~), whence 

~t2o)=0 by the maximality of a. Note that for 

a(t)=o(etadjq(j(u-y)-k) ,  etadjq(u--y)), 

we have 

dA(t)/dt = o(jc i, etadj'"[j(u--y)--k, u - y ] ) = 0 .  

Hence A(t)=A(O)=Q(j(u-y),  u - y ) .  But A(t) grows like e 2'", whence A(0)=0 follows. 

This implies u - y  E ~. Since u E %, f c  % and y E ,ql, we obtain y=0  and u E f. But ad u is 

_~a) Thus we get u=0. nilpotent, because u ~ t~0 . 

Assume now b < -  1/2 is minimal among all eigenvalues of R~ in ,%. Then for u E ,qt0b~, 

we have ju=v+x+jy+k ,  where vE ~th), x,y~, ,qlb+~)and kEf  by Lemma 4.6. Then 

and 

j ( u - y )  - k  = v+x E ~tb)+ ~{b+ I) 

[ j (u-y)  - k ,  u - y ]  = [v, u] - [v ,  y] +[x, u] E ~r q~Zb+l~. 

We have  .q]2b+l)--0,. -- since 2 b + l < 0 .  Moreover, 2b<0 implies ~(2b)__q(2b). - ,  . But the mini- 

mality of b now implies .q(02b)=0, whence .~2b)--0. -- . Using the same argument as above we 

arrive at .q~ob)=0. Hence the lemma follows. 
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4.8. By virtue of Lemma 4.7, we can carry out the proofs of Lemma 4.4 to 4.6 and 

the proof of Proposition 4.1 of [16] without changes. In particular, we have 

.qt0Vl=(j~,)nqt0rJ+~nq~ rl for F=(Ai-Ai) /2 ,  i<-j. (4.8.1) 

Trace(adsl~q 1) = 0  fora l l  sE ~. (4.8.2) 

It follows from [26; w 1] that jg  j + ,q ~ is a Lie algebra of affine transformations of the tube 

domain over some homogeneous convex cone C in ,qx. In such a realization we have 

e E C and adj,q~[ g~ is a subalgebra of Lie Aut C, the Lie algebra of the group of all linear 

transformations of C. By (4.8.2) we can apply [24; IV, Proposition 4] and obtain 

PROPOSITION. ad g0lgt is a subalgebra of  Lie Aut C and its isotropy subalgebra at 

e is ad ~l,q.. Therefore, ad 6[,ql acts by skew-adjoint endomorphisms (relative to some 

inner product on the vector space ,q~). 

w The subspace ~_1/2+,ql /2  �9 

5.1. Let , q = q _ l / 2 + q 0 + q l / 2 + f l l  be the decomposition of the effective Kfihler algebra of 

type Case II given by Theorem 4.4. We keep the notations used in w 4. The purpose of 

this section is to prove 

T H E O R E M .  ,q_ i /2+ q l / 2 c  t a d ( , q ) .  

5.2. By Theorem 4.4, after an inessential change of j ,  we can (and will) assume 

j(,q_l/2+q112)=q_l12+,ql12. Then it is easy to see [J,ql,J,ql/2]=J,qv2. We set 

roy2={ xE ,qv2;J xE ,qv2} and 111/2={ xE ,qll2;J xE ,q-l/2}, (5.2.1) 

and show as in [8; 3.7] 

(,'~1/2 = 1"01/2+111/2 , 111/2 = t]l/2 C 111/2 

[J,q~, 1~/2] = lu,/2. 

By (5.2.3), ~l+j,ql+l'ol/2 is a Kfihler subalgebra of ~. 

(5.2.2) 

(5.2.3) 
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LEMMA. The homogeneous Ki~hler manifold associated with the K(thler algebra 

.ql +j.ql +l~v2 is biholomorphically equivalent to a homogeneous bounded domain. 

Proof. Since .q~+j.q~ is a solvable K/ihler algebra it is easy to see that gl+j.%+m~/2 

is a solvable K/ihler algebra with vanishing isotropy subalgebra. Therefore  by [6], it is 

the sum of a K/ihler algebra of  flat type and of a K/ihler algebra of  domain type. 

Suppose that the flat summand is not zero. Then there exists x +0  such that [ix, x]=0 

([6; Lemma 3.5.1 ]). We write x = x I +jx z + w, where x l, x 2 E .ql and w E Iv 1/2. Consider the 

function A ( t ) = Q ( e ' ~ x ,  e~a~ex). By (4.3.2) and (1 .I .4) we have 0 = O(gl, .q0=o(Jgl,J.ql) 

and O(rD1/z,j~l)=O(pol/2, gl)=0.  Therefore  

A(t) = e,~('~ L':'tadje''~l/ -~',w]'~t~(~ '~" , etadjew)+Q(etadjejx2 , etadjex2 )" 

Since [je,jw]=j[je, w], we get etadjejw=jetadjew. We also have for yE  .ql, [je,jy] = 

j[je, y]+j[e,jy]=j[je, y ] - j y ,  whence (ad je+id) jy=joadjey .  Therefore  

etadjejy = e - t  et(adje+id) j y  = e-tl'eradjr for yE ,ql" 

We then have 

A(t) = e-'o(je' adJexl, e' adJ~x l ) + o(je tad ~ew, e' adje W) -1- e- 'o(je t adJ~x 2, e t a6j~ xz). 

From this it is clear that A(t) grows like e' if it does not vanish identically. But 

dA(t)/dt=o(je, e'aaje[jx, x])=0,  whence A(t) is constant.  This is a contradiction,  proving 

the lemma. 

5.3. Let  c I . . . . .  c,, be as in Lemma 4.5. Consider the decomposit ion 

g _ ~  ,,trl _@~lr] introduced in section 4.5. Since F0t/2 is invariant by adjc i for -1 /2- -  ~,'.- 1/2' ~112-- ~1/2' 

~ [ r l  all i, we also have ro~/2=~wl/z. From Lemma 5.2, one can derive the usual root space 

decomposition of  r01/2 (see e.g. [16; p. 280]), 

[a,/2] . [a,/z] [a~/2] 
to1/2= ~Orol/2 , Jml/Z = ~1/2 �9 (5.3.1) 

i 

A similar decomposi t ion holds for  the subalgebra a of  .q' defined in section 2.6. 
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By (4.5.1), we know from [6; 3.3] that a is invariant under adjc i and ad c i for all i. 
[ r ]  r ,  _ _  ~ , ~ [ r )  In particular, we also have the decomposit ions a _ l / 2 = ~ ) a _ l / 2  and ~1/2--,,~.,,,.41/2. 

[a/2] ~ i-a/z] , .  I-A/2] [a/2] 
L E M M A .  ~ 1 / 2 =  ~c~/C[1/2 , (I_1/2~---~_)1I_1/2 anajR_l/2 =Oil/2 . 

i i 

Proof. Since Q(ct, t )=0,  adjc i and ad c i are symplectic endomorphisms of  a_l /2+al /2  

(relative to ~ and j )  satisfying the conditions of  Lemma 1.5. Therefore  if ~,[rl-4-n then "1/2 T M ,  

F(Ri)E {0,+1/2). Suppose F(Ri)=-I /2 .  . [r] Then jay2 = [ei, "v2j"tr]] =0, a contradiction. There-  

fore F(Ri)=0 or 1/2. Since Eiml F(Ri)= 1/2, there exists exactly one i such that F(R~)= 1/2 
[a,/21 ,~. . [a/z] [-z~/2] 

and F(Rk)=0 if k+i. Thus we have au2=+~av2 . alnce jay2 c a r 2  , the remaining 

assertions also hold and the lemma is proven. 

5.4. Since {R 1 . . . . .  Rm) is a commutat ive family of semi-simple derivations of  .q, 

Appendix 2 assures the existence of  a maximal semi-simple subalgebra b invariant by 

R,. for all i. Hence  we have the decomposit ion f)=@~rl ,  where ~)~rlcq~H. From (5.2.2), 

(5.3.1) and Lemma 5.3, we already know 

[aJ2] 
�9 ql/2 = ~ )  ~1/2 " (5.4. l) 

Therefore,  " [rl If bv2=l=0, then F=A,./2 for some i. Since ~ is semi-simple, b~rJ=l=0 if and only 

if t~r_~rl4=0. Hence we have 

~[a~/2l = hi-a,/z] ~)v2= ~ -t/2 , fg-j/2 G -I/2 �9 (5.4.2) 
i i 

Recall that rad(.q)n .q_l/2cn i/2cfi_1/2. Thus by Lemma 5.3 and (5.4.2), we have 

[-aJ2] 
�9 q-I/2 = ~ ~-1/2 �9 (5.4.3) 

Next we show 

[-aj2]+ [a#2] 
L E M M A .  ,q-  1/2 .ql/2 isj-inoariant. 

. . f A J 2 ]  f - A l l 2 1  I'A J21 
Proof. We already KnOW Jgl/2L �9 C -q-1/2L ' + ,%/2' '. For  an element x of  ,q_~/2 + ,ql/2, we 

[ -a i /2]  denote by x [rl the ,qtr]-component, o fx .  Let  xE ,q-~/2 and decompose jx  as j x= E(jx)qr]. 
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[jci,jx ] = [c i, x] +j[jc i, x] +j[ci,Jx], 

[r e 

[Ai/2] [-Ai/2] J[ci,jx ] =j[c i, (jx) t-a/zl] E ~,/2 +,q-,/2 , 

[-ai/2 l we have [jc,, (jx)trl]=(j[jci, x]) trl for F=I=+A~/2. Denote by a r the mapping of g-J/2 to 

girl defined by ar(X)=(jx) tn. Then adjcioar=aroadjci for F * + A i / 2 .  This implies 

Rioar=arORi for F * + A / 2 .  As a consequence we obtain a r=0 ,  because Ri=-1/2 on 

t-a,/2] .lrl ~_~,[r] if F=~_+Ai/2. Hence  the lemma follows. g-~/2 and g i=o  o n  D-ItE--DI/2 

5.5. Recall the decomposi t ion ,q0=jgt+~ given in Theorem 4.4. From (4.8.1) we 

derive 

i=l 

Set 
-IOl ~' = ~N t~ 0 . (5.5.1) 

In the following sections we investigate ~'. We start by showing 

LEMMA. j ~ ' c ~ ' + f .  

Proof. By (4.5.2), (5.4.1) and (5.4.3), the equality ,q(ol= q~O~ holds. Since 

[jci,jx]=-j[jc,, x] (rood ,ql +J,q, +f) 

for any i and for any xE ,qo+ q,, we have j 6 ' c  qlo~ We also k n o w j 6 ' ~ .  Let 
-101, x E 6'. Then jx=x'+y+jz+k for some x 'E  % y, z E ,q, and k E L Further x'=x"+jr for 

some x"E 6' and rE ~lt- Since jxE  e we obtain jx=x" +k, proving the lemma. 

5.6. In this section we show 

LEMMA. (1) ~ '={XE ,qto0J; [X, q]=Ofor all i}. 

(2) ~'+Rjci={xe ,q~Ol; [x, Ck]=O for all k , i } .  

(3) Both, ~' and ~'+Rjc i, are ideals of  ,qEo~ 
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Proof. Clearly, [~', c i ]cRc  i. By Proposition 4.8, adxl.q I has only imaginary eigen- 

values for any x E 3. Therefore, [d' ,  ci] =0 for all i. Now the lemma follows immediately 

from the equations ~t0~ I Rjci~)~' and [jc i, Ck]=6ikCk. 

5.7. The following result provides an important piece of information on ~'. 

LEMMA. rad(~') is a Kiihler ideal o f  ~' o f  f la t  type. 

Proof. Let  ~ be as in section 5.4. It is easy to see that ~9~ ~ is reductive. From 

this we obtain rad(~t0~176 where c 0 is the center of ~t0~ Therefore 

nil(~~ Since 3' is an ideal of gt0~ nil(~')cnil(~~ By Lemma 5.5, we 

can assume that 3' is j-invariant. Hence ~' is a Kahler algebra, whence by the Radical 

Conjecture we may assume that nil(~')+jnil(~') is a solvable subalgebra of ~'. Recall 

that ~q~=t0+a0+L t0=jfi I and [%,e]=0 .  Therefore ~ n ~ = a 0 + f .  Consequently, nil(~')+ 

jn i l (~ ' ) c~+f .  This shows that nil(~')+jnil(~') is of flat type. An application of Proposi- 

tion 3.1 and Theorem 3.2 to 3' yields the assertion. 

5.8. For every i we consider the subspace 

t-All21 [A J2] -- 
,q(i) = ,qLl/2 '+~'+Rjci+,ql/z +Rci. (5.8.1) 

Lemma 5.4 and Lemma 5.5 show that, after an inessential change of j, we can assume 

r [-~/2] Ck]= 0 if i*k ,  we have that ,q(i) isj-invariant. Since [,q-I/2 , 

l-All2] [AII211 
�9 q-i/2 , ,ql/2 J c 6 ' + R j c  i 

by Lemma 5.6. Therefore ,q(i) is a subalgebra of ,q. It is easy to see that 
-Ail2 -A./2 

2 th/2 ]+th/2 is a semi-simple subalgebra of ,q(i). Therefore in order 

to prove Theorem 5.1, it is enough to show for all i 

[Ai/21 [-A,/2] 
.qt/2 +.q-1/2 ~rad(~(i)). (5.8.2) 

In what follows, we only consider the K~ihler algebra .q(i) for fixed i and prove (5.8.2). 

To simplify the notation, we use .q,f,c, .q~/2, .q0, ~ and .q-v2 instead of .q(i), fn .q(i), c i, 
[a/2] [-A/2] 

~1/2 , d '+Rjci ,  ~', and .q-~/2 respectively. We also denote by r the radical of .q(i). 

Then r=E)rz, where rz=rn  .qz, 2=0,  +1/2, 1. 

5.9. The purpose of this section is to prove 

4-888288 Acta Mathematica 161, Imprim6 le l0 novembre 1988 
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LEMMA. After an inessential change of j we obtain rad(%)=rad(~)+Rjc. 

Proof. By Lemma 5.7 and Lemma 3.7, we can find a semi-simple Kahler subalge- 

bra ~' of d satisfying d =rad(~)+ [~', Q(rad(d), ~')=0 and f= f N rad(~)+ t~ N [~'. Since ~ is an 

ideal of %, adjc leaves ~ invariant, Hence there exists a unique element h of D' such 

that ad(jc-h) maps (9' into rad(~). Then for any kEfN b', we obtain [h, k]=[jc, k] =- 

j[c, k]=0 (modrad(~)+f). This implies that adh leaves fn [~' invariant. It is well-known 

that the normalizer of the isotropy subalgebra of a semi-simple K~ihler algebra coin- 

cides with the isotropy subalgebra (see, e.g. [14]). Therefore hE~. Consider the 

inessential change o f j  given by j 'c=jc-h.  Note that Re(adj'c)=Re(adjc) by Remark 

4.4 and [j'c,~']crad(d) by construction of h. From this it is easy to derive 

rad(%)=rad(~)ORj'c, proving the lemma. 

5.10. Let t~ be a maximal semi-simple subalgebra of ~ invariant under Re(adjc). 

Then ,q=r+~ and [~=t~_j/2+D0+~t/2, where [~c %. There exists a unique element E of t~ 

such that ad EI[~x=2. Clearly E is in the center of ~0, whence E E rad(,q0). From Lemma 

5.9, we obtain 

E=ajc+s o, a E R  and s0Erad(~). (5.10.1) 

Since E is a real diagonal element of the semi-simple Lie algebra I~, adE is a semi- 

simple endomorphism of ,q with only real eigenvalues (see, e.g. [15]). 

An important property of the element EE b is proven in 

LEMMA. adE=O on %. 

Proof. By Lemma 5.7, ads0I,q 0 has only imaginary eigenvalues. The same is true 

for adjcl%. Noting that jc  and s o are contained in the solvable subalgebra rad(%), we 

obtain that also adEl% has only imaginary eigenvalues. But as mentioned above, adE 

has only real eigenvalues on ,q and the lemma follows. 

5.11. Denote by P~ (resp. Qa) the eigenspace o f a d E  in r_l/2 (resp. rl/2) correspond- 

ing to the eigenvalue a. 

LEMMA. r_~/2=P~ -t/2. 

Proof. If [pa, t~t/2].0 ' then a+  1/2=0 by Lemma 5.10. In this case a = -  1/2. Assume 

[ea, DI/2]_0" Then P~ is ad b-invariant. Therefore Trace (ad EIPa)=0, whence a=0.  
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5.12. In the remaining sections of this w 5 we discuss the possibilities a =  1, a = 0  and 

a~=0, I for the coefficient a in (5.10.1). 

LEMMA. The case a= 1 does not occur. 

Proof. First we note that if a =  1, then [E, c]=c holds, because [c, sol=0. Therefore 

P-~/2+ro+Q~/2+g ~ is ad~-invariant. Then the trace of a d E  restricted to this space is 

equal to zero, whence dimP-l/2>dimQ 1/2. On the other hand, jP-I/2=[c, p-J/2]~QJ/2. 

Therefore dimP-~/2~<dim Q~/Z, a contradiction. Hence the case a = l  does not occur. 

5.13. Next we will discuss the case a=0 .  To do this we need a generalization of  a 

result of Matsushima. Our proof follows the corresponding arguments of  [14] in our 

setting. 

PROPOSITION. Let (~, f,j, Q) be a Kiihler algebra and let ~ be a semi-simple ideal 

o f  ~. Denote by f: the centralizer o f  ~ in ~. Then ~ and ~ are Ki~hler ideals o f  ~ and the 

following equations hold. 

~=f:E)~,  O(f: ,~)=0 and ~=~n~n~. 

Proof. The first equation follows immediately from the complete reducibility of ~. 

Further we have 0(~, t~)=O(e, [t~, ~])=O([t', t~], fi)=0. Let k=k~+k 2 be an element of f, 

where k I E ~" and k2E ~. Then Q(kt, f:)=o(k, f:)=0, whence Q(k L, .q)=0. This means k I E T. 

Hence we obtain T--T N f:~T N ~. Since ~ is semi-simple, there exists a linear form o9 on 

such that dto=O on t~. Moreover, there exists a unique to0E ~ so that ~o(x)=B(too, x)for 

any x E ~, where B denotes the Killing form of ~. It is easy to see that f N ~ coincides 

with the centralizer of w 0 in t~. In particular, to 0Efn~ .  We can decompose fi as 

~=~'~T0, where T 0 is the largest ideal of ~ contained in ~Nf and ~' is an ideal of  ~. 

Clearly, w 0 E ~' n T. The ideal ~' can be regarded as the Lie algebra of a Lie group which 

acts effectively and isometrically on a certain Riemannian manifold with ~'n~ as its 

isotropy subalgebra. Therefore ad to o is a semi-simple endomorphism of ~' and hence of 

~. Let n denote the normalizer of ~ n T in ~. Since ad to o is semi-simple, there exists an 

ad w0-invariant subspace n'  such that rt = ~ N ~ rt'. But then [w0, n'] c rt' n (~ N T) =0. This 

means n ' c ~  fiT, whence rt=~ N 3. 

Let  x E f: and decompose jx=x~ +x 2, where x t E f: and x 2 E ~. Let  k E f N ~. Then 

[x2, k] =[jx, k]=0 (rood f). Therefore [x 2, k] E f N t~, whence x 2 E f N ~. This shows that f: is 
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a K~hler ideal of g. Finally ~ + f= {x E g; O(x, f:)=0} yields j ~ c ~ + ~, proving the proposi- 

tion. 

5.14. In the following two sections we discuss the case a=0.  Here we have 

[E, c]=0. In this section we show 

LEMMA. / ) c a = 0 ,  then P-1/2=QP2=O. 

Proof. First we assert 

In fact, if [Q%t~_,n]~e0, 

rt/2 = QO+Qi/2. (5.14.1) 

then by Lemma 5.10, we have a=l/2.  Assume 

[Qa, ~_~/2]=0. If also [Q% [9j/2] =0, then Qa is adb-invariant, whence 0=Trace (ad EIQ ~) 
and a=0 follows. If [Q% ~1/2]*0, then a+  1/2=0 since a=0.  Moreover, Q-l/2+ .% is ad [3- 

invariant. Therefore 0=Trace (ad EIQ-~/2+ ,ql) = - d i m  Q-~/2/2, proving (5.14.1). We then 

have jP-l/2=[c,P-1/2]cQ-l/2=O, whence P-l/2=0. On the other hand, P-I/2+ro+Ql/2 
is ad t~-invariant. Hence dim Ql/2=dimP-~/2=O, proving the lemma. 

5.15. In this section we finish the case a=0.  

LEMMA. / )Ca=0 ,  then .q_l/2+%/2crad(.q). 

Proof. Put t~={xEt~;[x,r]=0}. Then ~ is an ideal of .q. Moreover, from a=0  we 

obtain r=P~176 by Lemma 5.11, (5.14. I) and Lemma 5.14. This implies that 

adE vanishes on r. Hence [b-in, r]=0, [~1/2, r ]=0 and b_l/2+~l/2cf~ follows. Let f be 

the centralizer of ~ in .q. Then c E rcf:. By Proposition 5.13, f i : c f+L  Therefore there 

exists kEf such tha t jc -kEL But then [jc-k, b_ln+fiv2]=0, whence 

Re(ad(jc-k)) b-in = Re(ad(jc-k))  hi/2 = 0. 

As in Remark 4.4, Re(ad(jc-k))=Re(adjc) holds. Therefore b_ln=bj/2=0, proving the 

assertion. 

5.16. In this section we exclude the cases a4:0, 1. It is obvious that this finishes the 

proof of Theorem 5. I. 

LEMMA. The case a~0 ,  1 does not occur. 
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Proof. Under our assumptions we have [b-i/2, c ]#0 .  In fact, if [~3-m, c ]=0 ,  then .ql 

is invariant under ad t~, whence a = 0  follows. Since a4: l ,  [Qa-J/2, ~)_1/2]=0. Therefore 

Qa-l/2+ fil is ad t~-invariant. It follows that ( a -  1/2) dim Q~-~/2+a=0. In particular, 

0 < a < l / 2 .  Let Qa be any eigenspace of  a d E  in rl/2. If [Q~, ~)_1/214:0 then a = l / 2  and if 

[aa, ~_1/2]=0 then a = 0  or a-l~2 corresponding to [Qa, ~1/2]= 0 or [O~, ~1/2]*0. There- 

fore r~I/2=Q~ ~-1/2. It follows jP~176 because 0<ct<l /2 .  Hence  

P~ Since jP-m=[c,p-l/2]cQ~-l/2, we have [jP-m,P-1/2]=O. Therefore for any 

xEP-I/2,0(eadtejx, eadtEx) is constant.  But  • eadtEx) grows as e t(~-I) if it is not 

identically zero. Therefore it must vanish. Hence  we get Q(jx, x)=O and P-t/2=0 

follows. But then r_m=0  and r0+Q 1/2 is invariant under b. Therefore 

0 = Trace (ad Elro+Q 1/2) = dim QI/2/2 

and Q1/2=0 follows. Thus we have 

r_l /2=0 and rj/2 = QO+Qa-l/2. (5.16.1) 

Let l~l/2 and u~/2 be the subspaces of ~1/2 defined by (5.2.1). Note  that ut/2 is 

contained in r m. But then [.q-t/z, ul/2] =0  because of Lemma 5.10 and (5.16.1). From 

this the usual argument shows that the function A(t)=o(e ad rex, e ad tEy), x E .q-i/2, Y E u j/2, 

is constant. On the other hand, A(t) grows exponentially if it does not vanish identical- 

ly. Therefore o(.q_l/2, ul/2)=0, whence ul/2=0. Consequently j.ql/2=ql/2 . Then ~1/2 is a 

symplectic space relative to O andj .  Since we know O(~, .q~)=0, ad xl.ql/2 is a symplectic 

endomorphism for any x E ~. Therefore,  from Lemma 1.6 and Lemma 5.7, it follows 

that ad s[ ~1/2 commutes  with j for any s E rad(~). In particular, ad ~0 has only imaginary 

eigenvalues in ~q~/2. From this and [s 0, ajc]= [s 0, E ]=0  it follows that every eigenvalue of  

adE in fi~/2 is equal to a/2. This is a contradiciton, since a#:0, 1, and finishes the proof 

of the lemma. 

w 6. Quasi-normal Ktihler algebras of type Case II 

6.1. We continue the investigation of  the effective Kfihler algebra ~ of type Case II. We 

keep the notations used in w 4. 

Recall the decomposit ion ~0=j~l+~ (see Theorem 4.4). From Theorem 5.1 we 

derive 
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rad(.q0) c rad(.q). 

Set 

~0 = {xE ~;[x, g~] =0}. 

Clearly d0 is an ideal of %. Therefore rad(~0) ~ rad(9). 

(6.1.1) 

(6.1.2) 

LEMMA. rad(~) is a Ki~hler subalgebra o f  f lat type. 

Proof. Let xEnil(d), then adx is nilpotent. But by Proposition 4.8, adxlg ~ is a 

semi-simple endomorphism with only imaginary eigenvalues. Therefore adxl9~=0. 

Hence nil(~)c~0. Consequently nil(~)crad(~0)=rad(g)', whence nil(~)cnil(g). Then 

nil(~)+jnil(~) is a solvable subalgebra of m=nil(g)+jnil(g). By [6], we can decompose 

nil(~)+jnil(~)=a'+t ' ,  where a' (resp. t') is a K/ihler subalgebra of flat type (resp. of 

domain type). If t ' *0 ,  then t' contains a maximal idempotent e'. As before, we can see 

e' E nil(~). Recall that m0=t0+a0, t0=jg~ and that [a0, e]=0. Therefore we get e 'E a0, 

because [e', e]=0. But then Re(adje')la=O, because a is of flat type. This is a contradic- 

tion since [je', e ' ]=e ' .  Hence nil(~)+jnil(~) is of flat type and the lemma follows from 

Proposition 3.1 and Theorem 3.2 

6.2. In order to obtain more detailed information about the structure of the 

subalgebra d we need some knowledge of the fine structure of homogeneous convex 

cones. 

Let C be a (open) homogeneous convex cone in the real vector space V containing no 

entire line and let ~ c L i e  Aut C be an algebraic subalgebra which generates a transitive 

subgroup of Aut C. The following fact will be proved in Appendix 1. 

THEOREM. Let e E C and let ~ be the &otropy subalgebra at e. Then there exist 

pairwise commuting elements fl . . . . .  fq o f  ~, decompositions 

v-- ~ v U, ~=  ~ ~ j |  
I ~ i ~ j ~ q  I ~ i ~ j ~ q  

and irreducible self  dual cones Cic Vii such that fi E ~ii and 

(1) fi=(6u+6iD/2 on Vjk, ad fi=(6iF6iD/2 on ~jk. 

(2) ~o={gE ~; go=O for any vE ~=lVii}. 

(3) [~o, ~ii] =0 for i= 1, ..., q, [~ii, ~jjl =0 i f  i . j ,  ~ii V~=0 ifi~=j. 

(4) The spaces Vj. k are invariant under ~ii and the restriction o f  ~ ,  to Vii gives an 

isomorphism between ~ ,  and Lie Aut C;. 
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(5) C i x . . . X C q = f n ( ( ~ q l V i i  ) and e=Zq=l e i where eiE C i. 

(6) ~e = 0)q=l (~e fl ~ii) O) ~o, ~,  N q~ii = { f ~  ~ii; fei=O}. 

This theorem is obtained in [4] and [24] for the case ~=LieAu tC .  

From (4) it follows that each ~ii is reductive and its semi-simple (9i is a simple 

Lie algebra. Set lli=~efl ~ii. Then 

We also have 

~ii=Rfi 0 ~)i and Hi is a maximal compact subalgebra of ~)i" (6.2.1) 

q 
rad(~ )= ~ ~ti+i~ R f / ~  ~(~o) 

nil (~ )=  @ ~/, 
i<j 

(6.2.2) 

where ~(~o) denotes the center of/~0- 

Recall that ~ii is the Lie algebra of the automorphism group of the irreducible self 

dual cone Ci. The study of selfdual cones is mostly due to Koecher and his school. 

These cones and the corresponding Lie algebras have been completely classified and 

are listed in the table below (see e.g. [20; I, w 8]). 

cone Lie algebra isotropy center 

Pos (n, R) d i (n ,R)+Rid,  no(n) n=2, do(2) 

Pos (n,C) d[(n, C)+Rid.  dn(n) - 

Pos(n,H) ~u* (2n)+Rid. d~(n) - 

Pos (3, O) e6(-26)+ Rid. ~4 -- 

Light cone no(n, 1)+Rid. n0(n) n=2, ~0(2) 

Note that the two cases above with non-trivial center in the isotropy algebra are 

actually identical. From the table above we obtain immediately 

H i has non-trivial center if and only if ~ii "~-'~ ,q[ (2, R). In this case dim H i =  1. (6.2.3) 

6.3. In what follows, we assume that the K~ihler algebra fi under consideration is 

quasi-normal (see section 2.1 for a definition). 

We set V=g~ and 2B=ad g0[g~. Denote by ~ the algebraic hull of 2B. Let C be the 

cone associated with the Kfihler algebra g~+jg~. (See also section 4.8.) From Proposi- 
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tion 4.7 we obtain ~}cLie Aut C and ~e ~ ~9=ad dl V. Since [~}, ~} ]= [~i3,~], we obtain in 

view of (6.2.1) and (6.2.2) 

~ =  ~ R f i ~ ( ~ o )  n~dt-(~ij.at-i~=l~'~i-.~[~o,~Q~o ] . (6.3.1) 
i= 1 i<j 

Here the first term is contained in rad(~i~)=ad(rad(%))lV. Therefore it is equal to 

(~q=lRf,.) N ~i~, because adx has only real eigenvalues for x E rad(%)crad(~) by assump- 

tion. Hence we have 
q 

ad ~[V= (~ 1I i @) [~0, ~}0]. (6.3.2) 
i=1 

Let I be the subset of {1 ... . .  q} consisting of all i such that }~ii=gI(2,R). From 

(6.2.3) we have 

ad rad(~)lV = (~ 1I;. (6.3.3) 
i E l  

For the subalgebra d0 of ~, defined by (6.1.2), we show 

LEMMA. rad(d0) is an abelian Ki~hler subalgebra of .q. 

Proof. Set ~*=(~q=z (Vi~+jV~i)+~. Then .q* is aj-invariant subalgebra of ~q because 

ad(jVii+$)lVc--~ii+~e, [~//+~e, Vii]~Vli and [jV~, ~] =-j[Vii, ~] (mode). 

Clearly rad(g0)+ ~q=lvi~ is a solvable ideal of .q*. Therefore, by the Radical Conjecture, 

there exists a solvable K~ihler subalgebra b of .q* such that [3+f=t~q=l(Vii+jVii)+ 
rad(d0)+jrad(~0)+l. We can assume that b~O)q=tV,+rad(%) holds. Since b is a K/ihler 

subalgebra, after an inessential change of j, we can assume j b c b .  For any xE .q*, 

we set oi(x)=adxIV~i. Then o~ is a homomorphism of .q* to LieAutCv Let iEl. 

Clearly ~ i i l V i i = o i ( b ) + l ~ i l V i i  . Since b is solvable, we have }iilWii~oi(b). Therefore 

o,.(b)N(lt;IV~;)=0, because dim lIi=l. We also obtain from (6.3.2), cri(jrad(%))cltilVii. 

Therefore oi(jrad(do))Ctri(b) N (lI,IVi;)=0. By Lemma 6.1 and Lemma 3.7, there exists a 

semi-simple K/ihler subalgebra 1~ of ~ such that d=rad(~)+[9 and f=rad(~)Nf@)[~Nf. 

Clearly o~(t~)=0 for i~l .  Let xE rad(~0)~rad(~). Then jx=y+z, where y~rad(g) and 

zE[~. Since Lemma 6.1 implies jxErad($)+fn[9, we have zEfN~. Then tri(Y)=0 

because cr,(jx)=oi(z)=O as shown above. It follows from (6.3.3) that even adylV=0 

holds, whence y ~ rad(~0). This shows that rad($ 0) is a K~ihler subalgebra of ~. Since 
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rad(~o)crad(d), we know that rad(~ o) is of flat type. However, since ad x has only real 

eigenvalues for x E rad(~ o) by assumption, we conclude that rad(d o) is abelian. 

6.4. Let g*~ be the orthogonal complement of rad(g 0) in g0+g~ relative to p, 

fi~* = {xE go+qi;0(x, rad(do)) = 0}. 

By Lemma 6.3, g# is a K/ihler subalgebra of ~q0§ and gO+gl=g~+rad(~o) holds. 

Since g is quasi-normal and rad(~o)crad(fi), we have fnrad(~o)=0. Therefore 

g~nrad(~o)=fNrad(~o)=0. It is easy to see that 0(~o,,qi)=0 holds. Therefore 

g#D,ql+jgl+L whence, putting ~*=,q~* n 8, we have 

g#= gl+jgl+~**, j~*c~  # and ~=~*+rad(~o). 

It follows nil(~*~)cnil(d)n g*~  rad(~0)n g~*=0. This shows that ~*~ is a reductive 

K/ihler subalgebra containing L Letd*=rad(d**) denote the center of ~* and let 

[~#=[~*, ~*]. By [14], both c ~* and t~** can be assumed to be j-invariant and f= 

~n d*0)fn [~#. We want to prove 

LEMMA. C # is contained in ~. 

Proof. Since ~=~*~+rad(~o), we have rad(~)=d*+rad(~0). Therefore adrad(~)lV= 

ad d*[V follows. Then from c#n rad(~o)=0 and (6.3.3) we have 

d*~01I i. (6.4.1) 
iEI 

Consider the j-invariant subalgebra .q~-- Oi~ ~ (V.§ + ~ ~. We will show that b ~ is 

a K~ihler ideal of gr More precisely we claim 

To verify this we denote by b t the right hand side of (6.4.2). Then b~ is an ideal of 

gr Moreover, Ix, e;]=0 for all i E I  implies b~c~ ~. Since ad 10*~lVi/=0 for iEI ,  we obtain 

[~cb  r To prove the converse inclusion we consider xE b t and write x=h+u  where 

hE I~**, uE c *. Then [x, vi]=[u, vi] for all vie Vii, iEl .  The assertion follows now from 

(6.4.1). 



58 J. DORFMEISTER AND K. NAKAJIMA 

Let r ~* be the centralizer of  the j-invariant semi-simple ideal ~* in .qr Then 

g1=~:~*~*~ and Q(r ~*, D**)=0 (cf. Proposition 5.13.). Moreover, r ~* is a K~ihler ideal of  ~i. 

Therefore after an inessential change of j ,  we can assume that jr*~c--r ~*. We note also 

r#--~)i~l(Vii+jVii)+c ~*. Finally we consider the map :r from (~)i~ljVii)+c ~* t o  (~iEl~C~ii 

which is given by the equation :r(x)=adxl@~et Vii. From (6.4.1) and the choice of I it 

follows that :r is an isomorphism. Therefore, to the ideals Y)ic~,, there correspond 

ideals Di of (~)ietjVii)+c ~*. Since l~i~'~i w e  obtain c*~=@iet(~in c *~) and dim(Di N c~*)=l 

for each iEl.  Since e([gi, D~)=P([9~, [t~, ~i])=~([t~, [%], D~)=0 if i:kj, we have 

~)(C # ,  C#) : (~ e(~i ~ C #, ~ifl C~*)=O. 

From this the lemma follows, because jc~*c c *~. 

6.5. In this section, we show the following. 

THEOREm. Set (t= ~_l/2+rad(%)+[e, ~q-i/2]. Then (t is an abelian Kiihler ideal o f  .q. 

Proof. From Theorem 5.1, we obtain .q_l/2=ct_l/2, [e, .q_l/2]=a1/2 and lvl/2=tl/2, 

where rol/2 is the subspace given by (5.2.1). From the description of solvable K~ihler 

algebras in [6], we have [a~, t~]caa+, i f 2*0 .  (Recall that D(a~)=0 if ;t*0, where D is a 

modification map.) In particular, [J.ql, a l/2] = [t0, a I/2] c a i/2. We also have 

[4, Ctl/2]= [e, [4, .q_l/2]]~[e, .q_l/2]=a1/2. 

Therefore [%, ~t]c~t. We also have [.q-,/2, .q,]=[ct-l/2, tl]ca,/2, whence [~, .q,]c~. Next 

we prove [.%2, ~ ]c~ .  We already know that [ill/2, al/2]=[tr/2, a~/2]+[aa/2,a~/2] =0. Since 

g~/2 = oh/2+ rol/2 and since [,q0, al/2] c al/2, we know that for any x E rad(%) there exists an 

endomorphism r(x) of to1/2 such that Ix, w]=-r(x)w (mod ch/2) for any w E to1/2. The space 

lvl/2, equipped with @ and j,  is a symplectic space. Hence,  from Q(%, .q0=0, Q(al/2, ~1/2) 

=0 and from Lemma 6.3 it follows that r is a symplectic representation satisfying the 

conditions of Lemma 1.6. Therefore r(x) commutes with j and its eigenvalues are all 

imaginary. On the other hand, since rad(%)crad(~),  r(x) has only real eigenvalues. This 

implies r(x) =0, whence [rad(~0), ~ i/2] c ctl/2. Moreover, 
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shows that [,q-l/2, ~l/2]c~0nnil(g)crad(~0)holds. Therefore [(t, gv2]c~. From [6] we 

also know [g_~/2, av2]=[ctl/2, avz]=O, whence [(t,g_v2]c(t follows. Thus we have 

proved that (t is an ideal. Since [c~_~/z, av2]=O the adjoint representation of 

rad(~ 0) on Ctl/2+av2 is also a symplectic representation satisfying the conditions of 

Lemma 1.6. Therefore, as before, [rad(~0), a~/2+Ctl/2]=O follows. This together wi th ,  

Lemma 6.3, implies that (t is abelian. It is clear that (~ is j-invariant. Hence we have 

shown that (t is an abelian K/ihler ideal of 9. 

6.6. We are now in a position to prove Theorem 2.5 for the effective Kiihler 

algebra (g,f,j,Q) of type II. 

We set  ~=~t+j~t+~t/2+~ *t. It is clear that ~=fi+~, fin ~=0 and Q(~, ~)=0 holds. 

Therefore by the theorem above, ~ is a j-invariant subalgebra. We show that the 

decomposition g=r satisfies the desired properties of Theorem 2.5. It remains only 

to show that in ~ there exists a Kiihler subalgebra u satisfying the properties (a) and (b) 

in Theorem 2.5. Recall that ~** is a reductive Kiihler subalgebra containing f and the 

center c # of ~** is contained in f by Lemma 6.4. At this point we can follow the 

arguments of w 4 to w 5 in [17]. Note that to this end we only have to change the letters ~, 

~1, r0v2 and 6~ to ~, r, to, and 6. Now putting u=c~+u  ~* where u ~ is a maximal 

compact subalgebra of b *~ (= [~**, ~**]) containing b ~* n f, we know from the proof of [17; 

Theorem 11] that u is a reductive K~ihler subalgebra of 6 satisfying (a) and (b). This 

completes the proof of Theorem 2.5 in Case II. 

w 7. Proof of the Fundamental Conjecture 

7.1. Let M=G/K be a homogeneous K~hler manifold and let (,q,t,j,0) be the corre- 

sponding K~.hler algebra. By Theorem 2.1 we can assume that ,q is effective and quasi- 

normal. Moreover, by replacing G by its universal covering group we can assume that 

G is simply connected. Let ,q=a+i) be the decomposition of ,q given by Theorem 2.5. 

Denote by A and H the connected subgroups of G corresponding to a and ~). These are 

closed simply connected subgroups of G and G=AH is a semi-direct product. Let u be 

the subalgebra of 0 as in Theorem 2.5 and denote by U the connected subgroup of H 

corresponding to It. Then UDK o, where K 0 denotes the identity component of K. We 

already know that 

(i) H/U is a homogeneous bounded domain and the projection from M(b)=H/K o 

onto H/U is holomorphic. 
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(ii) U/K o is a compact  simply connected homogeneous K~ihler manifold. 

We set [ = a + u ,  which is a j-invariant subalgebra. Let  L denote  the connected 

subgroup of G corresponding to L Clearly L=A U and L is closed in G. 

7.2. The homogeneous space G/K o is the universal covering space of  M and it has 

the natural G-invariant K~ihler structure. 

L E M M A .  G/L admits a natural G-invariant complex structure, with respect to 

which G/L is a homogeneous bounded domain and the projection :r*: G/Ko-,G/L is 

holomorphic. 

Proof. Recall that [u,jx]=-j[u, x] (mod u) for u E u and x E ~. Since a is an ideal of  ~, 

we obtain the relation [l,jx]-j[l, x] (mod [) for l E [ and x E 9- This combined with (1.1.3) 

and with j [  c [ implies that G/L admits a G-invariant complex structure so that :t* is 

holomorphic. Since G = A H  and since H N L = U ,  we have G/L=H/U. It is clear that the 

invariant complex structure of  G/L coincides with the one of  H/U. This finishes the 

proof of the lemma. 

7.3. The spaces L/K o, U/K o and A have, as complex submanifolds of  G/K o, invari- 

ant K~ihler structures. Since L=A U and A N U-- {e}, we have the natural decomposit ion 

L/Ko=A• o as real analytic manifolds. Here the action of f E L  on A x U / K  o is 

expressed as f (gl ,gEKo)=(f l f2gl f2t , f2g2Ko) for (gj ,gEKo)EA• where f=fl f2,  

fl  E A, f2 E U. Note that (u, L j ,  Q) is a K~ihler algebra of  compact  type. Then the adjoint 

representation of  u on the abelian ideal a is a symplectic representation satisfying the 

conditions of  Lemma 1.6. This implies that the map g~--.f2 g~f21 is an automorphism of  

the flat K~ihler manifold A. Consequent ly ,  L acts on A•  U/K o as a holomorphic and 

isometric transformation group. It is now clear that the Kfihler algebra structure of  [ 

induced from the holomorphic isometric transformation group L of  the K~ihler manifold 

A•  o coincides with the K~ihler structure of [ as the K~ihler subalgebra of 9. 

Therefore we obtain 

LEMMA. L/Ko = A•  U/K o as Kiihler manifolds. 

7.4. We introduce some notation which will be used in the rest of  this paper. For  a 

Lie algebra 3, we denote  by ~c the complexification of ~ and if t c ~c, we write n(~ c, t) 

for the normalizer of  t in ~c. 
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7.5. In this subsection, we collect some remarks on homogeneous bounded do- 

mains and compact simply connected homogeneous K~ihler manifolds. 

Let S/B be a homogeneous K~hler manifold of a connected Lie group S by a closed 

subgroup B. (We do not assume the effectiveness of the action of S here.) Let (4, b,j, 0) 

be the corresponding K/~hler algebra. Set 

4 -- { x + V  - 1  j x ; xE~}+~  c. 

It is easy to see that ~ c = ~ + ~  and ~ fl~=b hold. Moreover, 4 is a complex 

subalgebra of ~c. We define a closed subgroup B' of S by 

B' = { g E S ; A d g ~ _  = 4_}. 

It is easy to see that an element gES belongs to B' if and only if the following 

conditions are satisfied 

A d g b = b  and A d g . j x - j A d g x ( m o d b )  f o r a n y x E ~ .  (7.5.1) 

Clearly B ' ~ B .  Denote by b' the Lie algebra of B'. From (7.5.1) we derive that b' is 

j-invariant and that the following relations hold (cf. [11]). 

b ' = n ( ~ c , ~ _ ) n ~  and n(~c ,~_)=~_+b ' .  

LEMMA. Assume that S/B is a homogeneous bounded domain or a compact simply 

connected homogeneous Kiihler manifold. Then B '=B and n(~ c, ~_)=~_. 

Proof. From our assumption it follows that the Ricci tensor of S/B is negative 

definite or positive definite. As in the proof of Lemma 4.2, we define a form ~p on ~ by 

~p(x) = Trace(adjx- j  o ad x)]~/~. 

By [13], the symmetric bilinear form -vd([jx, y]), x, yEe_,, corresponds to the Ricci 

tensor of S/B. As a result, (4, f,j, r/) is a K/ihler algebra, where 17= -d~p or d~p. A simple 

computation shows 

vd(adgx)=vd(x) for a n y g E B ' a n d x E ~ .  (7.5.2) 

This implies ~p([b', 4])=0. Therefore b '=b and hence n(~ c, ~_)=~_. 

Since S/B is simply connected, B is connected. Therefore B is the identity compo- 

nent of B', whence S/B is a covering space of S/B'. By (7.5. I) and (7.5.2) we know that 
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there exists an S-invariant Kiihler structure on S/B' so that the projection S/B onto S/B' 

is holomorphic.  In the case where S/B is a homogeneous bounded domain, the equation 

B = B '  follows from a result of  [12]: Every  homogeneous complex manifold which has a 

homogeneous bounded domain as universal covering space is simply connected.  In the 

latter case, S/B' is a compact  homogeneous  Kiihler manifold with positive definite Ricci 

tensor. Therefore  a semi-simple group acts transitively on S/B' as an automorphism 

group. Hence by [1], S/B' is simply connected and we get B ' = B .  

Remark.  In [11], the equation n(~ c, ~_)=6_ is proved in a more general setting. 

7.6. We return to the investigation of  the homogeneous K~ihler manifold M. 

Consider the homogeneous  K/ihler manifild H / K  o and the homogeneous bounded 

domain H / U  discussed in section 7.1. As in section 7.5, we set 

[~_ = { x + X / - 1  j x ; x E w  c, 

(3* = {x+V ~ - I  j x ;xCI?}+l lc ,  

K ' =  { g E H ; a d g ~ l  = ~_}. 

We already know from Lemma  7.5, 

n(t)c, (9*) = D*. (7.6.1) 

We want to show 

LEMMA. (a) K ' =  K o- 

(b) n(~c, b_) = t~_. 

Proof. Let k be an element of K' .  From (7.5.1) we derive that k induces a 

holomorphic transformation ~'k of H / K  o given by yk(gK0)=gkK o for gK o E H/K  o. Con- 

sider the map zr* o Yk, where n* denotes the projection H/Ko---,H/U. Then n* o 7k (U/Ko) 

consists of  a single point, because U/K o is compact.  This implies that k U k - ~ = U  

holds, whence Ad k u = u. Clearly Ad k j x - j  Ad kx (mod u) for any x E ~. Therefore  an 

application of  Lemma 7.5 to the homogeneous bounded domain H / U  yields k E U. Now 

we apply Lemma 7.5 to U/K o and obtain k E K  o. We thus infer K ' = K .  Hence we also 

have n(bc, b_)=b_ and the lemma is proved. 

7.7. In this section we obtain the Fundamental  Conjecture up to the fact that the 

fiber bundle is holomorphicaily locally trivial. This property will be established in the 

following section. 
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LEMMA. K = FK0, where F is a discrete subgroup of  A contained in the center o f  

G. In particular K c L. 

Proof. Let  k be an element  of  K. We can write k in the form k=kjk 2, where 

k~EA andk2EH.  Since a is an abelian ideal of .q and since ~ is the orthogonal 

complement of  a, we have A d k a = a  and Adkt~=~. Moreover A d k l x = - x ( m o d a ) f o r  

any x E g. This implies Adkx=-Adk2x(mod a) for all x E b. It follows that Adk2x= 

Ad k x = Ad k I Ad k 2 x holds for all x E ~). Consequently,  Ad k ll~) is the identity map. From 

this we conclude that k~ is in the center  of  G. It is clear now that k 2 has the following 

properties: Ad k 2 f= f  andAd k2 jx - jAd  k2x (mod ~) for any x E b. Therefore  by Lem m a  

7.6, k 2 is an element of K 0. Putting F = K N A ,  the assertion of the lemma follows. 

Combining Lemmata  7.2, 7.3 and 7.7, we have shown 

PROPOSITION. The homogeneous Ki~hler manifold M=G/K is a real analytic fiber 

bundle over the homogeneous bounded domain D=G/L with a holomorphic projection 

~r : M---~D and the typical fiber F=L/K is, with the induced Kiihler structure, the direct 

product o f  the flat homogeneous Ki~hler manifold A/F and the compact simply connect- 

ed homogeneous Ki~hler manifold U/K o. 

7.8. The final step of the proof  of the Fundamental  Conjecture is to show that the 

fiber bundle obtained in Proposit ion 7.7 is holomorphically locally trivial. 

Let  G c be the simply connected Lie group with .qc as its Lie algebra. We denote by 

A c and H c the connected subgroups of G c corresponding to a c and bc respectively. 

We also denote by o the natural homomorphism of  G into G c. It is clear that a is 

injective on A and that G c = A c H  c is a semi-direct product.  We denote by H_ and 

H*_ the connected subgroups of  H c corresponding to b_ and b* defined in section 7.6. 

By (7.6.1) (resp. Lemma 7.6), the group H*_ (resp. H_) is the identity component  of the 

normalizer of  ~* (resp. b_) in H c. Therefore  both H* and H_ are closed complex 

subgroups of  H c. 

Next we define subspaces a_+ and subgroups A_+ by 

a• = {aEC~c;ja = + X / - 1  a}, 

A+ = { e x p a ; a E  a• 
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where exp denotes the exponential  mapping from a c to A c. We put 

G_ = cr(F)A H and G* = AcH*_. 

Note that [ a ,  { ) _ ] c a .  Therefore  both, G and G*, are closed complex subgroups of  

G c and G*~G.  From the definitions of G and G* it follows that c r ( K ) c G  and 

a(L)cG* hold (recall I[=a+u). Therefore  o induces G-equivariant mappings 

d~: G/K-->Gc/G - and q~: G/L-->Gc/G*. Clearly nc o ~=q~ o n, where nc denotes the pro- 

jection of Gc/G_ onto Gc/G* and n: M-->D was defined in Proposition 7.7. The Funda- 

mental Conjecture will be a direct consequence of  the 

PROPOSITION. The mappings d~ and q~ are holomorphic imbeddings of G/K and of 

G/L onto open sets of Gc/G and of Gc/G*_ respectively. Moreover dp maps L/K onto 

G*/G. 

Proof. Clearly jx -~r  r - 1  x (mod  a_+b_)  for any xE ,q. This implies that �9 and q~ 

are holomorphic. Let  g be an element of  G. We decompose  g as g=g~g2, where gl EA 

and g2EH. Assume that cr(g)EG_. Then o(gl)Eo(F)A_ and a(g2)EH_. Since cr is 

injective on A and since cr(A)nA_={e}, we have gl EF. From o(g2)EH, we obtain 

Ad g2 ~)- = {)-. Therefore ,  by Lemma 7.6, we know g2 E K 0, whence g E K by Lemma 7.7. 

This implies that ~ is an imbedding. 

Next we assume that o(g) E G*. The Lie algebra ,q* of  G* is given by 

,q*_ = { x + V ~ - I  j x ; x E  ,q}+lc. 

Therefore an application of  Lemma 7.5 to the homogeneous bounded domain G/L 

yields g E L. This shows that also q0 is an imbedding. 

Clearly, dim G/K--dim Gc/G and dim G/L=dim Gc/G*. From this it follows that 

~(G/K) and q~(G/L) are open sets of  Gc/G and of  Gc/G* respectively. Hence  

~(L/K) is also an open set of  G*/G =Ac/o(F)A X Hc/G*. Since Ac=A + A_, we obtain 

O(A/F)=Ac/o(F)A_. We also have ~(U/Ko)=Hc/H*, because U/K o is compact .  There-  

fore d~(L/K)=G*/G_, completing the proof  of  the proposition. 

Remarks: (l) From the proposition above it follows that the fiber bundle 

(M, Jt, D ,F )  is the restriction of  the holomorphic fiber bundle (Gc/G_,~rc, Gc/G*, 

G*/G_). Therefore  it is also a holomorphic fiber bundle. This finishes the proof  of  the 

Fundamental Conjecture.  
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(2) Moreover, in the above fibering the structure group can be taken to be the 

complex Lie group G*. Therefore, as is mentioned in [25], this bundle is holomorphi- 

cally trivial by a result of [10] because the base space is topologically trivial. Thus we 

get. 

THEOREM. Every homogeneous Kiihler manifold is as a complex manifold, the 

product of  a homogeneous bounded domain and Cn/F and a compact simply connected 

homogeneous complex manifold, where F denotes a discrete subgroup of translations 
ofC n. 

Appendix 1: Description of algebraic transitive Lie algebras 

on homogeneous convex cones (Proof of Theorem 6.2) 

AI.1. We will give here the proof of Theorem 6.2. 

Recall that C is a homogeneous convex cone in a real vector space V, ~ is an 

algebraic Lie algebra which generates a transitive subgroup of AutC, and that ~C~e 
denotes the isotropy subalgebra o f F  at a point eEC. Consider the sum (s~= V ~ .  We 

can introduce in 65 a Lie algebra structure as follows. 

[v,~fl,v2~f2] =f lv , - f2vz~ [L,f2] for v,,vzE V, f l , f2E~. 

Then 65 can be regarded as the Lie algebra of a transitive subgroup of Aut D(C), where 

D(C)= {x+X/ -1 y;xE V,y E C} denotes the Siegel domain of the first kind associated 

with the cone C and ~e is the isotropy subalgebra at the point V - I  e E D(C). Let j 

denote an endomorphism of 65 corresponding to the complex structure of D(C) and 

satisfyingJ~eC~e Then (65, ~ , j )  is a j-algebra. It is clear that V is an abelian ideal of 

the first kind [26] and e is its principal idempotent. Since ~ is algebraic, we can 

decompose ~ as ~ = ~ + ~ e ,  where ~: is a split solvable subalgebra [23]. Then for any 

fE ~, adfhas  only real eigenvalues in (~3. By a suitable change of j,  we can assume that 

jV=~ holds. 

We note that if rE V satisfies [v, ~e]=0, then [jr, ~,]=0. Indeed, as in Remark 4.4, 

we can write jv=x+y, where yE ~ and Ix, ~ ] = 0 .  Then adjvl~=adyl~ ~. Since adjv 

has only real eigenvalues, we have adjol~e=O. In particular, we infer [je, ?r 

AI.2. Let c~ .. . . .  c m be the elements of V used in Lemma 4.5 and consider the 

decomposition V=~i_<krik. Since �9 is split solvable, V+Z is a normal j-algebra. 

5-888288 Acta Mathematica 161. Imprim6 le 10 novembrc 1988 
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Therefore we have the following 

LEMMA (Takeuchi [22]). Let c be an element of  V satisfying [jc, c]=0. Then c= 

Ei~zc i, where I is a subset of  {l . . . . .  m}. 

We also note that from the description of normal j-algebras in [19] we know 

adjci=Re(adjc i) for all i. Therefore we have adjc=Re(adjc) for every element c E V 

satisfying [jc, c]=c. 

A1.3. Let V u be an ~-invariant subspace of V of minimal dimension. Then V u is 

an abelian ideal of the first kind in ~ .  Let e I be its principal idempotent. Then 

[el,~e]=0 ([26]) and hence [jel,~e]=O. By Lemma AI.2, there exists a subset 

I~ of{1 ... . .  m} such that el=Eietc  i. Recall that by [26] the equality V11={xE~; 

adjelx=x } holds. Therefore we have Vu=~)i.kehrik. Set Vl/2=@iet.kel;rik and 

~=~i.k~1~ rik, where Ii={1 . . . . .  m}\ll .We note that rik=0 i f /E / land  kE1 I. Indeed, for 

such i, k we have [ck,Jrik ]cV j l ,  because V u is ~-invariant. But [ck,jrik]=--rik, whence 

rik=O. Therefore we have V = V ~ V ~ ( 2 ~ .  Clearly, V~, VI/2 and V~ are ~e-invariant 

and [jV~ + V t t , j ~ +  ~ ]  =0 and [jVl~/2, V 11] =0 holds. In particular, the group generated 

by jV  H +~e acts irreducibly on Vtj. 

Set e i=e-e i ,Cl=exp( jVl l+~e)e  I and Ci=exp(jV~l+~e)e' I. Then C I and C' I are 

homogeneous cones in Vii and ~ .  Moreover, C I • C' t cC.  

Consider the j-invariant subalgebra ( ~ ' = V ~ + j ~ + ~ .  If there exists a (J~+~e)" 

invariant subspace of ~ ,  then by the same arguments as before we find subsets 

12,1~cI' I, a decomposition V~I=V22.~t-V~/2q-V~2 a n d  cones C 2, C~. 
t t Repeating the procedure above, we obtain I~-la+~ 13 I~+~ and subspaces 

= / I / 2 _  vOa__ (~i, kEl:rik. V~ ~i,k~So~ik, ~ ~ -- ~ , ~ r o r i ~  and 

Thus we get 
q 

{I . . . . .  m} = LI I a (disjoint union) (AI.1) 
a = |  

and a decomposition 

ea = Z ,  ei 
iEI a 

V= ~ a ~ V ~ ,  where Vow= ~i~.la,kEl#rik. 
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Note that V'.~/2= ~) ~<# V,r and V~ = ~ ,<~<.~ V~ holds. Set f~=j%.  By construction, we 

have 

We also have 

adf~lV,~ = (6or and adfaljV,~ = (6o~-6a~)/2. (AI.2) 

[jVaa+ Vaa, jV,  a+ V/3#]=O if ag:fl. (AI.3) 

A1.4. We have chosen e a so that [e,, 3~]=0 holds. Therefore [je a, 3~]=0. Hence 

all V~r are invariant under 3e" Set 

C a = exp (jVaa+3e)ect. 

We already know that C a is a homogeneous convex cone in Vaa and 

C ~ C  1 x ... x Cq. (AI.4) 

Consider the subalgebra ~=O)q=l jVaa+3e  . The correspondence oa:f---~flVii gives a 

homomorphism of ~ to Lie Aut (Ca). Then 0a is an irreducible representation. There- 

fore Aut (Ca) acts irreducibly on V~a. But then the following facts are well-known: 

(i) C a is an irreducible self dual cone. 

(ii) Lie Aut (C a) is reductive, its semi-simple part is simple, its center is 1-dimen- 

sional and generated by o(jea).  

We decompose ~ into the sum of root spaces of {jc I . . . . .  jcm} ' ~ = ~ r .  Let 

3 o = { f E 3 ; f [ V ~ = O  for all a}. Then 30c3e,  because e~.O)V~a. Moreover, 30 = 

ha= I q  Kernel O~ and it follows that 30 is an ideal of ~. It is easy to see that 3 0 c ~  ~ Since 

~/30 is identified with a transitive subalgebra of ~ = l  Lie Aut (Ca), we know from [26] 

that every root F is of the form (A~-A)/2 and for i < k, ~(A'-AP/2=jl:ik holds. For each a 

we set 

i, k E l a  i, k E I  a 

i~-k i~-k 

3oa = :Oa+nfa" 

It is obvious that Qa(3aa) = 0 if a * f l  and [30, 3~ ]  =0. 
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LEMMA. Qa is an isomorphism of  q~a a onto LieAut C a. 

l t �9 Proof. Let ~=LieAutCa and etfi=o~(jci) for iEI~. We decompose ~ into the sum 

of root spaces of {f~; i E la}, ~=~)~r .  Clearly, for i, k E I~ we have 

We also know from [26] that if ~r@0, then F is of the form (Ai-Ak)/2 for some 
c ~ ( A i - A k ) / 2  ~ �9 

i, k E Ia and that ~ =9~tjr~k) for i, k E I~ satisfying i<k. From the irreducibility, it 

follows that L%(~) is reductive. Therefore Q~(~r)*0 if and only if 9~(~-r):~0 and 

dim0~(~r)=dimQ~(~-r). The same assertions also hold for ~r and ~-r .  We thus obtain 

that pa(~)~) is an ideal of ~ contained in the semi-simple part [~ ,~] of ~, whence 9~(~),) 

=[~, ~]. It is now clear that 69~ is injective on ~ .  This implies the lemma. 

A1.5. By Lemma A1.4, we have 

q 

= ~ ~a~ ~) ~0 (direct sum of ideals). (AI.5) 
a = l  

It is clear that ~ e = ~ q = l ( ~ N ~ ) ~ 0  and that ~<n~o=(fe~a;fe~=O). Now we set 

~ = j V ~  for a<fl and get the decomposition ~ = 0 ) ~ ) ~ 0 .  Theorem 6.2 now 

follows from (Al.l) to (AI.5). 

Appendix 2. On maximal semi-simple subalgebras of Lie algebras 

Let ~ be a Lie algebra over R or C. It is well known that there exists a maximal semi- 

simple subalgebra b such that g=rad(,q)+b. In this Appendix 2, we shall prove the 

theorem below by using ideas similar to the ones used in [15]. We remark that this 

theorem can also be proved by using [8; Appendix]. 

THEOREM. Let D be an abelian family o f  semi-simple derivations o f  a Lie algebra 

,q. Then there exist a semi-simple subalgebra ~ of  ,q such that ,q=rad(,q)+t~ and Dbcb.  

Proof, We prove this theorem by induction on dim ,q. Let r=rad(.q) and r '=[r ,  r]. 

Assume that r'4=0. Consider ~=g/r ' .  Clearly rad(~)=r/r ' .  Since every element f E D  

induces a der ivat ionfof  ~/r', we can apply the induction hypothesis and obtain a semi- 

simple subalgebra ~ of ~ such that ~=rad(,q)+~ a n d f 6 c ~  for a n y f ~ D .  Set ,q'=zc-I(~), 

where zr denotes the projection of g onto ~. Then dim .q'<dim ,q and rad(,q')=r'. By 
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construction D ~ ' c  g'.  Therefore, applying again the induction hypothesis, we can find 

a semi-simple subalgebra [~ which is invariant under D such that ~ '= r '+D holds. But 

then ~ = r + ~  and we obtain the assertion in this case. 

Now assume r '=0 .  We consider the semi-simple Lie algebra ~=gh:. For every 

f E  D, we denote by f the induced derivations of ~. First we consider the complex case. 

Then ~ and ~ are decomposed into the sum of " root  spaces"  g= ~r~  r and ~= O)r~ r, 

where ~r={xE ~ ; f x = F ( f ) x  for any f E D )  and ~r={xE ~ ; f x = F ( f ) x  for any fED} .  

Take a semi-simple subalgebra ~ so that ~=r+[~. Since ~ is isomorphic to ~, ~ is 

decomposed as D = 0)rt~ r, corresponding to the decomposition of ~. Let  x E t~ r. We write 

x=Ex A, where xAE~ A. Then xAEr ifA:4=F. The correspondence x--->x r gives an 

injective map Q r o f ~ r t o ~ .  Let  x E ~ r a n d y E ~  r'. Then [x,y]ED r+r'. We write 

x=Y.x r and y E Ey r, where x r, yr E gr. Since r is abelian, the ~r+r'-component of [x, y] is 

equal to [x r,yr']. Therefore Qr+r'([x,y])=[Qr(x), pr'(y)]. This shows that O=~)p r is an 

injective homomorphism of D to g. Then Q(D) has the desired properties. 

It remains to consider the case where .q is a real Lie algebra. In this case we take a 

semi-simple subalgebra ~ so that ~=r+[~ holds and consider the complexification 

gc, Dc and (g/r) c. As before, we have gc=~)gc  r, (g/r)c=~)(g/r)c r, [~c=~)[~c r and define 

a map O=~)O r. We must prove that O([3)c~ holds. It is clear that ,qc-~cr- t and "fff--[9 t ' - j c  - c 

hold. Hence every element of [~ is a sum of the form x+~f, where xE [9~ and ~fE [1 t .  Let  

x r be the gr-component of x. Then the t~ct-component of ~ is equal to x --r'. Therefore 

0(x+,f)=xr+x--rE g and the assertion follows. 
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