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1. Introduction 

In this paper ,  we cons ide r  the p r ob l e m of  s teady  Nav ie r -S tokes  flow past  a p re sc r ibed  

body in the plane.  Le t  K be a compa c t  set in R 2 wi th  F, the b o u n d a r y  of  K, cons i s t ing  of  

n smooth  c o m p o n e n t s .  G iven  the set K,  a n u m b e r  v > 0 ,  and  a c o n s t a n t  vec to r  
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w = 0  --, 

Figure I. A picture of the physical problem represented by (i.l)-(1.4). 

tO| 6 R2~{0}, the mathematical problem is to find a velocity w: O--->R 2 and a pressure 

p: ~--*R, where f l = R 2 \ K ,  satisfying 

-vAw+(w. V) W =oVp) (I.I) 
V .w=  in f~, (1.2) 

w = 0  on F, (1.3) 

and 

w(x,y)---~to| as [(x,y)l--- ,~.  (1.4) 

The function w is to have finite Dirichlet norm, that is, 

ffo ]V/../)I2 ~ {Ux-~-Uy.~I-Vx--~Vy> < 00, (1.5) 

where u and v denote the horizontal and vertical components of w, respectively. Such 

an estimate ensures that p and w are smooth in Q; indeed, they are real-analytic. In the 

famous and still open problem of unsteady three dimensional Navier-Stokes flow in, 

say, a bounded domain, the problem is to show the presence or absence of singularities 

in the flow. Since any solution of (1.1)--(1.5) is steady and smooth in ~ ,  this problem of 

regularity does not arise. Rather, the problem is one of regularity at infinity, that is, the 

existence of a solution to (1.1)-(1.3) attaining a prescribed limit to| 2 at infinity. 

When to| we always have at least the trivial solution w-0 .  

The study of (1.1)--(1.5) began with Leray [18] who sought the solution as the limit 

of certain approximate solutions. For all sufficiently large R, let flR=Q n {(x, y): r<R}. 
Here r denotes distance from the origin which we may assume, without loss of 

generality, lies in the interior of K. Upon rescaling, we may also always assume that 
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Kc{r< l} .  Leray sought a solution of (I. 1)-(1.2) in f~R with w=O on F and w(x, y)=tb| 
on the circle of radius R. Leray was able to prove the existence of a solution (wR, PR) 

such that the Dirichlet norm has a uniform bound 

ffnR IVwR[2 ~< const., (1.6) 

where the constant is independent of R. Upon taking a suitable subsequence as R~o0,  

a solution (WL, pL) of (1.1)--(1.3) was found. (Here the subscript 'L' denotes a Leray 

solution, that is, one constructed by the scheme given above.) The a priori bound in 

(1.6) is inherited by wL, but the behaviour of wL at infinity was not found. Indeed, it 

was not even apparent that wL was non-trivial. 

The problem (1.1)-(1.5) may also be posed in R 3 with K compact and other obvious 

changes, The Leray construction gives rise to a solution satisfying the three-dimension- 

al version of (1.6). Functions with finite Dirichlet 

certain imbedding estimates: 

norm in three-dimensions allow 

 c~ f f lVwRI 2 (1.7) 

In particular, the Leray solution satisfies 

fff ( f f (1.8) 

These estimates ensure that wL is non-trivial, and were the basis for the proof, due to 

Finn [6] and Ladyzhenskaya [16], that (1.4) is satisfied. In addition, Babenko [2] has 

shown that any solution of (1.1)-(1.3) with VwEL2(Q) satisfies (1.4) for some tb| and 

the flow field has the expected wake properties. All of the results mentioned above 

were for the three-dimensional problem, and follow by fairly straightforward energy 

and potential-theoretic arguments. 

The difference between the two-dimensional problem considered in this paper and 

the analogous three-dimensional one lies in the absence of estimates of the form (1.7). 

In two dimensions, we have 

IwR-a)~12 ivwRf2}, ffo r (l+:ogr:'C~ 
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whence 

fr { ffo ) jur2(l+llogrl)z~<const. 1 +  [~TWL[2 <00. (1.9) 

Unfortunately, (1.9) gives little information about the behaviour of ws at infinity. 

Indeed, if (I .9) holds, then it is also valid if tb= is replaced by any other constant vector. 

Unlike (1.8), this estimate allows ws to be trivial. If we had a better estimate on wn, 

such as, say, (log r)VwR uniformly bounded in L2(~R), then (1.9) could be improved, 

and the problem solved. Unfortunately, the form of the nonlinear term in (1.1) appears 

only to allow (1.6), and so that is the information we must work with. The failure of 

energy methods for (1.1)-(1.5) forces us to use the more precise structure of the 

equations. 

Before we discuss the results of Gilbarg and Weinberger [14], [15] in the next 

section, we note that (1.1)-(1.5) have been shown to have a solution by Finn and Smith 

[11] whenever I~l/v is sufficiently small. The solution is not constructed by the Leray 

method, but begins with (1.1) replaced by 

-vAw+(~ |  w +  Vp = ( g v ~ - w ) .  V w .  

The linear operator on the left is inverted with the addition of (1.2)-(1.4), and the 

resulting nonlinear equations solved with the aid of the contraction mapping principle. 

Additional results on the two and three-dimensional problem may be found in [1], [5], 

[7], [8], [9], [12], and [21]. 

1.1. Results of Gilbarg and Weinberger 

A considerable step towards understanding (I. 1)-(1.5) came in two important papers of 

Gilbarg and Weinberger, who exploited certain maximum principles for two physical 

quantities. If w = ( u , v ) ,  then the vortici ty co is defined by w = u y - v x .  Equations 

(I. 1)-(1.2) yield 

- v A w + w .  Vco = O, (1.10) 

whence ~o satisfies a two-sided maximum principle: The maximum and minimum values 

of co on the closure on an open set U are taken on aU, the boundary of U. (If U is 

unbounded, we need to know something about co in a neighborhood of infinity.) 

Equation (1.10) holds in both ~n and ~ .  
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A second quantity is the total-head pressure d~ defined by ~=p+�89 2. A calcula- 

tion from (I. 1)-(1.2) yields 

- v A ~ + w . V ~  = - v w  2, (1.11) 

whence ~ takes its maximum value on OU. Equation (1.1 I) also holds in f2R and f2. In 

the first part of [14], Gilbarg and Weinberger considered the 'approximate' solutions 

(wR, PR) and used (1.11) in g2R and other arguments to show that 

[wR(x,y)[ , [pR(x,y)[~<const. if I(x,y)[<.R/2, (1.12) 

where the constant is independent of R. We hasten to add that any solution (wR, PR) of 

(1. I)-(1.5) in QR has PR determined only up to an additive constant. We assume that the 

pressures have been prescibed at some fixed point, say a point in F = a ~ .  (The 

arguments which prove (1.12) may be extended so that it holds on all of f2R, but there 

will be no need for them here.) 

The important conclusion from (1.12) is that the Leray solution has WLEL=(f~). 

This is not surprising in view of our desire to show that (1.4) holds, but it is far from 

obvious. Indeed, one can easily construct solenoidal velocity fields in f2 with finite 

Dirichlet norm which become unbounded like (log r) a, 0<a<�89 as r--.oo. In addition, it 

was shown that the pressure PL has a limit at infinity, which may be taken to be zero 

after subtraction of a suitable constant. The main result of [14] was the use of (1.11) in 

f~ along with other estimates to show that the mean-value of WL on circles attains a limit 

at infinity. Since we shall refer to these results and others, they are summarized in the 

following 

THEOREM 1 (Gilbarg and Weinberger [141, [15]). I f  (PL, Wt.) is a Leray solution 

(satisfying (1.1)--(1.3) and (1.5)), then 

(a) WL E L| 

(b) there exists a constant vector w| R z such that 

f[ ~lwiJr, O)-woddO-- .O as r - - ~ ;  (1.13) 

(c) i f  wo,=O, then wt.---~O at infinity; 

(d) pL---*O at infinity; 

ffo,o <o ; 
(f) Iw(r, 0)1=o(r-3/4), IVw(r, O)l=o(r-3/41ogr) as r---,oo, uniformly in O. 
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In (b), we have written w(r, O) for what should correctly be termed w(rcosO, 

rsin0); however, there is little chance of confusion. We note that VwEL2(V2) easily 

implies oJEL2(f3). Despite the very positive results represented in Theorem 1, a 

number of questions remain. Is wL non-trivial, does woo equal the desired ~| and can 

the convergence in (1.13) be improved to pointwise convergence? We shall return to 

these questions in the next section. 

In [15], Gilbarg and Weinberger considered properties of any solution to (I. 1)-(1.3) 

with VwEL2(f~). We know that the Leray solution has this property, and so their 

results were intended for 'solutions' constructed by some other method. 

THEOREM 2 (Gilbarg and Weinberger [14], [15])'. Let (w,p) be a solution o f  

(1.1)-(1.3) with VwEL2(f2). Then 

(a) Iw(r, O)12=o(logr) as r---,oo, uniformly in O; and 

(b) p has a limit at infinity, say p---,O at infinity. 

(c) The quantities ~o and [Vw[ satisfy estimates similar to those o f  Theorem 1 (e) 

and (f). 

(d) I f  w6L| then the estimates o f  Theorem 1 (b)-(f) hold. 

The difference between this theorem and the previous one lies in the absence of an 

estimate like (1.12) to ensure that w E L| If one assumes this, then the methods for 

Theorem 1 give Theorem 2(d). Since we shall show later that wEL| we have not 

stated precisely what is meant in (c). A typical estimate would be 

f f n  r ivo,12<const.  foo; < 
X/l+{logr I 

with similar small changes in the estimates for oJ and IVwl. 

1.2. Methods and results 

The results in this paper follow from the introduction of a new quantity 7 which 

satisfies a two-sided maximum principle and is such that 7+iv~ is a pseudo-analytic 

function. The equations we shall display are derived solely from (1. I)-(1.2) and hold in 

any bounded domain, such as ~n, or in any unbounded domain, such as ff~. Fix any 

point (x0,Y0) on F = a Q  and define a Stokes stream-function by 

-(x,y) 

~O(x, y) = u d y - v d x ,  
d (x o, Yo) 
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where we have integrated over any simple arc in Q or f~R connecting the point 

(xo,Yo) to (x,y). Since w=(u, v)=0 on F, the function V is well-defined. If  we define 

y=cl,-~oto=p+�89 then a calculation from (I. 1)-(1.2) yields 

)'x = vtoy-Vtox, (I. 14) 

yy = -vto~-Vtoy (1.15) 

or, equivalently, 

to ,  = - (V~,y + W~, , ) l (v  2 + ~ 2 ) .  (1.16) 

toy ~--- (~x--~/37y)/(V2"~-//)2). (1.17) 

Another calculation from (1.1)-(1.2) yields 

- v A y + ( w + q ) "  V~ = 0 (~.xs) 

where 

q = (-2v2w+2v~O(--V, U)}/(v2+~O2). 

Equation (1.18) ensures that y satisfies a two-sided maximum principle, but it is the 

system (1.14)-(1.15) which is of  the most interest. Standard theory [3] shows that (to, y) 

correspond to an elliptic system in the plane, and therefore should have many of the 

properties of conjugate harmonic functions. For example, let ()?, 37) be a point at which 

Vto(s 37)~0. Since ~0, ~,, to, and all of our quantities are real-analytic (in t2R or ~) ,  the 

level-set of to = to()?,37) is locally a real-analytic curve passing through ()?, 37). The 

maximum principle applied to (1.10) ensures that to-to0?, 37) changes sign as the curve is 

crossed. The strong maximum principle ensures that the normal derivative of to is one- 

signed on the curve. Equations (1.14)-(I. 15) then show that the tangential derivative of 

y is one-signed, whence y is monotone as the curve is transversed. 

The quantity 7 is useful because it contains the speed Iwl, but it is difficult to 

estimate, at first, because of the term ~to. Since we expect the velocity w to have a 

limit at infinity in f2, the stream function V should be of order r at certain points a 

distance r from F. The estimates of Theorems 1 and 2 only give us, roughly, that 

to=o(r-3/4), so that the product Vto cannot be estimated. We shall get around this 

difficulty by using the monotonicity of 7 along suitable level-sets of co. Note that Vto 

vanishes on the level-set of to=0, and that y = ~  there. 
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In section 2, we give results for any non-trivial solution of (1.1)-(1.3) with 

Vw EL2(f~). Note that any non-trivial Leray solution (wt., PL) satisfies these conditions. 

In section 2..1, we give various properties of the vorticity and ,its level-sets. In 

particular, we show, roughly speaking, that there are at least two arcs connecting aQ to 

infinity on which to=0 and on which ~=p+�89 z is monotone increasing and decreas- 

ing, respectively, as the arcs are transversed from af~ to infinity. We shall use this in 

Theorem 12 to show that wEL| In particular, the results of Theorem 2(d) are 

applicable, and there exists a constant vector w~E R 2 such that 

lim 12~ Iw(r, O)-w~12dO = 0. (1.19) 

In Theorem 14, we use the monotonicity of y along level-sets of ~o to prove the 

important estimate 

7 = * - ~  = p+llwl2-vdto---~Ilw,[2 (1.20) 

at infinity, where the pressure is always normalized to vanish at infinity. The rest of 

section 2 is devoted to the behaviour of w and other quantities at infinity. If w| then 

Theorems 1 (c) and 2(d) show that w---~0 at infinity. For the moment, we restrict 
attention to the case w**=t=O, and may assume that w| after a suitable rotation 

and scaling. For each e E (0, zd2), define the sectors 

A, = {(r, 0): r/> 1, [0[ E It, ~ - e ] ) ,  

where 0E(-a~, ;t]. The estimates (1.19)-(1.20) and others are used to show that ~p=y 

and to=o(r -t) near infinity in A,. These estimates then give w(x, y ) ~ w ~  as (x, y) tends 

to infinity in the sectors At. The pointwise convergence of w to w~ in the remaining 

sectors of angular width 2e along the positive and negative x-axis is much more 

difficult. In these regions, we cannot expect the crucial estimate ~o=o(r-~) proved in the 

At. We get around this difficulty with the aid of (1.20). Since Iwl=lWpl, to=ur-vx=A~ p, 

and p ~ 0  at infinity, equation (1.20) gives 

(1.2t) 

near infinity. On a set where W>0, this yields 

a ( v % - )  = - 
4~3/2 ' 

(1.22) 



LERAY'S PROBLEM OF STEADY NAVIER-STOKES FLOW 79 

and similarly where ~0<0. Since V) is defined in terms of a line integral involving w, and 

(1.19) gives some information about integrals of w, the right-hand side of (1.22) may be 

estimated in a suitable manner. We then invert the Laplacian to derive the desired 

information about w=(~0 r, -~0x) near infinity. This is done rigorously in section 4.1 for 

the case of symmetric flow (that is, for flow symmetric about the x-axis), but the 

method does not hold for asymmetric flow. Notwithstanding the difficulties of asym- 

metric flow, we show in section 2.4 that the speed Iwl always converges to Iw| at 

infinity, whence (1.20) yields I  ol--,0 at infinity. We conclude section 2 by showing 

that la~l and lT-�89 tend to zero exponentially at infinity away from the positive x- 

axis. 

Section 3 is devoted to the 'approximate' solutions (wR, PR) due to Leray. We first 

show that the unique solution (w~,p~) of the Stokes problem in f2R (obtained by 

omitting (w. V) w in (1.1)) satisfies 

f f n  ] s 2 const. VwRI ~< l-i-0-~-g R la~12, (1.23) 

This is a frightening result since one might expect the same to hold for wR in which case 

Leray's solution WL would be identically zero. However, we show in Theorem 23 that if 

there are level-sets of to=0 connecting (roughly) a• to {r=R}, then (1.23) does not 

hold, and 

lim i n f l (  ,V/./)R,2 > 0 .  (1.24) 
R ---. | ./ . /fl R 

Finally, we show that if (1.24) holds for a general flow (that is, one that is not 

necessarily symmetrical), then Leray's solution is non-trivial. 

In section 4, some of the results of sections 2 and 3 are improved for the case of 

symmetric flow. The equations (1.21)-(1.22) are analysed in section 4.1, and give the 

desired pointwise convergence w(x,y)---~w| at infinity in f2. The inequality (1.24) is 

shown to hold, whence Leray's solution is non-trivial. Hence, for symmetric flow, 

Leray's construction gives rise to a non-trivial solution of (I. 1)-41.3), (1.5) which has a 

pointwise limit at infinity. The remaining great question is to show that the limiting 

value w| equals the desired value tO| in (1.4). 

A brief and preliminary version of this paper appeared in [I]. Many of the initial 

results were found during the author's visit to the Institute for Mathematics and its 

Applications in Minneapolis during the autumn of 1984, while this paper was written 
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during a visit to the Centre for Mathematical  Analysis in Canberra.  The author is 

grateful for the kind hospitality shown in both cities, and also to Professor  Weinberger 

for his remarks on some of  the preliminary results. The author was supported in part by 

the Sloan Foundat ion and the National Science Foundation.  

1.3. Notation 

We shall assume throughout  this paper that F, the boundary ag2 of  f2, consists of  n 

smooth closed curves.  We denote  points as (x, y) or z=x+iy, when convenient.  The  

symbol r=lzl will denote  distance from the origin, which is assumed to lie in the interior 

of  one of the components  of  F. We represent  a function, say w, at a point in f~ by either 

w(x, y) or w(z) or w(r, O) in polar coordinates.  We use w(r, 0) as notation for w(rcos  0, 

rs in0) .  We assume that Fc(Izl<l ). 
Standard regularity theory ensures that all functions which occur  in the problem 

are real-analytic in their open domain of  definition, be it f~ or fiR. These functions are 

suitably smooth up to F and real-analytic up to {{zl=R}. 
When F is symmetric  about  the x-axis and the desired boundary data is tb~=(a,  0) 

at infinity for the case ~ or at {Izl=R} for QR, one can seek a solution (w,p)=((u, u),p) 

with p and u even in y and o odd in y. The functions �9 and y will then be even, while ~p 

and to will be odd functions of  y. Such solutions will be referred to as ' symmetr ic '  or 

'symmetric flow'. If F and tb~ are symmetric  (as described above), then the construc- 

tion of  Leray in f~R will refer to symmetrical  solutions. (Since there need not be unique 

solutions in t2R, we cannot  ensure that any solution is necessarily symmetric.  Howev- 

er, the construction allows us to assume there is at least one.) Unless stated otherwise,  

the results in this paper  hold for general flows, and results for symmetric flow will be 

carefully noted as such. 

2. Flow in the unbounded domain $2 

Throughout  this section, we assume that (w, p) satisfy (1.1)-(1.3) in ~2 with Vw E L2(~). 

In addition, we assume that w is non-trivial. The results of  Theorem 2 are then 

applicable, so that ]to(z)], [p(z)]--,0 as Iz]-->oo. Section 2.1 is concerned with level-sets of  

to and the open sets on which to exceeds or is less than zero. Since we have assumed 

that w is non-trivial, the following lemma gives the same for the vorticity to. 

LEMMA 3. I f  to--O in f2, then w=(u, v)--O in f2. 
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Proof. The hypothesis and (1.2) together ensure that u and v are conjugate 

harmonic functions in Q. Since u = v = 0  on F by (1.3), it follows that u=Su/an=O on F, 

where n denotes a normal to F. Standard theory then proves that u=0  in ff~, and 

similarly for v. q.e.d. 

2.1. Properties of the vorticity and its level-sets 

The representation y = ~ - ~ t o  in (1.14)-(1.15) yields 

(I) x = $P(,Oy "t- ~ x  (.O = lP(/.)y - -  U(.D, (2.1) 

qby = -v tox+~y to = -Vtox+Uto. (2.2) 

On a suitable level-set of to=0, we expect  from (1.10) and the strong maximum 

principle that the normal derivative of  to to the curve will be one-signed. The use of  this 

in (2.1)-(2.2) shows that the tangential derivative �9 is one-signed. Our aim is to find 

level sets of  to=0 which go from infinity to points near to F, and on which �9 is 

monotone. Since we have estimates on �9 near F (indeed, on compact  subsets of  ~) ,  the 

monotonicity will provide some valuable information about ~(z) for large Izl. We shall 

need the following technical result about  certain level-sets of  functions. 

LEMMA 4. Let r be a real-analytic function in Q. Let zl E ff~ by such that Vr(z0:t:0, 

and let L denote the component o f  {zErO: r(z)=r(z0,  Vr(z)~:0} containing zj. Then 

there exists an injective, real-analytic function q~ defined on I = ( - M , N ) ,  where 

M, NE(0 ,  oo] with q0(0)=Zl, and q~(l)cL. Moreover, as t-*N, exactly one of  the 

following hold 

(i) ]~p(t)]--, ~ ,  

(ii) q~(t)---,F= aQ,  

(iii) q~(t)~z2 E f~, Vr(z2)=O, 

o r  

(iv) qo(t)---~z2 E ~ ,  Vr(z2)*0. 

/ f( i ) ,  (ii), or (iii) occur, then L=qo( I ) . / f  (iv) occurs, then M, N<oo and qo(t)---*z2 as 

t---~-M, N, L=qo(1)O {z2}, and L is a closed, simple real-analytic curve. As t---~-M, 

exactly one of  (i)-(iv) hold. 

Proof. Since Vr(Zl)*0, we know that in a neighborhood of Zl, L has a representa- 

tion (x(s), y(s)), where (x(0),y(0))=Zl and s E ( - e ,  e). Here s denotes arc-length along L 

6-888288 Acta Mathematica 161. lmprirn~ le 10 novembre 1988 
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measured from zl with the obvious meaning for negative values. The function 

(x(.), y(. )) is a real-analytic function of its arguments and is a solution of the equations 

Zx(X(s),y(s)) Yc(S)+ ry(x(s), y(s)) ~(s) = O, Yc(s) 2 + ~(s) 2 = 1. 

We may assume that the maximal interval of existence is ( - M ,  N), where M, NE (0, 00] 

and that q~(. ) - (x( .  ), y(. )) is injective there and that Vr(x(. ), y(. ))=4=0. This yields the first 

part of the lemma. 

Let {t,) denote a sequence increasing to N as n-ooo. Assume that Iqg(tn)[---~~176 as 

n-ooo. We claim that I~(t)l---,~ as t -oN.  If  not, there would exist a circle {]z[=S} such 

that q0(l)N <lzl=S> contains an infinite number of distinct points. Since r is constant on 

tp(I) and is real-analytic, it follows that  r(z)=r(zO for all z with ]zl=S. It is immediate 

that L =  (Izl--S> and this contradicts I~0(tn)l---,oo as n-ooo. The claim is therefore proved. 

If q~(t,)-oOf2 as n-ooo, then we claim that cp(t)-oOQ as t -oN .  To see this, one 

encloses the components of af~ by suitable closed, real-analytic curves, and then 

argues as above. 

Assume that qg(tn)"-*z2E~ as n-ooo. If  ~7"t'(z2):l=0, then clearly ~(t)-oz2 as n-o  oo. 

Assume that V'r(z2)=0. As shown in Lemma 6, the level-set of r=r(z2)=r(z0 in a 

punctured neighborhood of  z2 consists of a finite number of real-analytic arcs emanat- 

ing from z2. In addition, it is shown in Remark 1 following Lemma 6 that they each have 

finite arc-length as the point z2 is approached. It follows that cp(t)--*z2 as t -oN .  

Assume that either (i), (ii), or (iii) occurs. It is then trivial to show that q~(l) is both 

open and closed in the relative topology of L, whence qo(l)=L by connectedness. 

Assume that (iv) occurs, so that qg(t)-oz2E ~ as t - o N  where Vr(z2)::l=0. Clearly 

N<oo, and we know that we cannot extend beyond N by the maximality of ( - M ,  N). 

Upon considering the possibility of (i)-(iv) as t - o - M ,  we are led to the conclusion that 

M<oo and q~(t)---~z2 as t - o - M ,  N.  It is immediate that L=~(1)U {z2} is a simple, closed 

real-analytic curve, q.e.d. 

THEOREM 5. The funct ion to is not one-signed near infinity in Q; that is, there exist 

sequences {z,}, {s with Iz l, I nl -o~176 as n---~oo such that to(z,)>0 and to(s for  all n. 

Proof. Assume that contrary, so that for some S>2,  to>~0, say, for all Izl>~S - 1. 

Since to-o0 at infinity by Theorem 2, we may assume that to>0 for ]z[>~S. Set 

m=minlzl=Sto(z)>O. Lemma 6 shows that Vto vanishes at only isolated points in f~, so 

there exists d E (0, m) such that Vto(z)~:0 if [z[>~S and to(z)=d. Let  z~ satisfy Iz,[>S and 

be such that to(z0=d. If  L denotes the level-set of to passing through z~, then Lemma 4 

ensures that L is a closed, simple, real-analytic curve in Izl~S. 
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Let int L denote the open, bounded component of R 2 \ L .  Since to=to(z1) on L, the 

strong maximum principle proves that the outward normal derivative of to on L is one- 

signed. But then equations (1.14)-(1.15) show that the tangential derivative of) ,  is one- 

signed on L. Hence,  as L is transversed from zl back to itself, the function y is 

monotone increasing or decreasing. This is clearly impossible, q.e.d. 

The following lemma gives some useful information about the local structure of the 

level-sets of  to. 

LEMMA 6. (a) The zeros of  Vto in ~ are isolated. 

(b) For every 2E Q, there exists e>0 and a family of  injective, 

functions {(x,(.),y,(.) }i~l, each defined on some interval (O, ei), such that 

k 
(Z E ~'~: 0 < I z - z l  < e,  to(z) = to(~)} = I.j Li ,  

i=l 

real-analytic 

where Li=((x,(s), y,(s)): s • (0, ei)}. In addition, Li f~Lj=(~ if i*j. 

Proof. (a) It is immediate from (1.18) that the pair of functions (-Yx, ~y) satisfy a 
linear elliptic system of  two first-order equations: 

(-Fx)x = (Fy)y- 1 (w+q)" Vr, 
Y 

- ( - r ' x ) y  = (r~)x. 

Standard theory [3; pp. 255-261] then proves that the zeros of V~, are isolated in f2. The 

equations (1.14)-(1.15) show that the same holds for Vto. 

(b) The Weierstrass Preparation Theorem [4] applied to to-to(D allows us, after a 

suitable rotation of  the axes, to assume that the zero set of this function coincides with 

the zero set of the function 

n--I 

P(x, y) = (y-y)"+ ~ ai(x) (y_p)i 
i=0 

in the set Here, a; is real-analytic on (2,-e,.f+e) and ao(2)=...=an_l(2)=O. 
We may take n >  1 since the case n=  1 is trivial. Standard theory [4; p. 40] together with 

(a) completes the proof, q.e.d. 

Remark 1. (a) If  ao(x)=-O near x=2,  then y=37 is a root of P(x, y)=0.  Lemma 6(a) 

ensures in this case that al(x)~O near x=2.  Hence, upon replacing P by P=P/ty-p), we 
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may always assume that ao(x)~O near x=~. Note that P(x, y)*O on the axes {x=$} and 

{y=~} for small e. Standard theory [4], [17], [19], [20] shows that each root in the 'first 

quadrant' (that is, where x>$ and y>37), if there are any, lies on a curve given by 

y-p=(x-$)af((x-$)~). Here a>0,  fl>0, and f is real-analytic in an open neighborhood 

of zero with f(0)4=0. Now a, fl and f depend on the root, but there are only a finite 

number of distinct triples (a, fl,f). A similar representation holds in the other quad- 

rants. If follows immediately that each arc defined by {(xi(s), yi(s)): s E (0, el)} has finite 

arc-length as the point s is approached. 

(b) The maximum principle proves that to-to(2) changes sign as each arc Li is 

crossed, and so it is clear that k is an even positive integer. 

As noted earlier, y=O on level-sets of to=0, and it is natural to seek these sets as 

part of the boundary of the open sets where to is one-signed. For z E f2 with to(z)>0, let 

U+(z)c~ denote the maximal, open connected set containing z on which to>0. We 

define U_ similarly. The symbols U+(z) or U_(z) are only defined when to(z)+0. Recall 

from section 1.3 that F=0f2~{lzl<l }. 

LEMMA 7. Ifls I and to(•)>0, then aU+(~) fl (Izl-- 1)*~ ,  and similarly for U_(f) if 
to(~)<0. 

Proof. Assume that the result is false so that aU+(~)N (Izl---l)---O for some ~ with 

I~1>1 and to(~)>0. It follows that U+(~)c(Iz[>l ). Since to then vanishes on aU+(~) and 

also at infinity by Theorem 2, the maximum principle for to yields to=0 in U+(s This 

yields to-0 in Q which contradicts our assumption that the flow is non-trivial, q.e.d. 

The following lemma is important and shows that U+(~) is unbounded for some 

E f~. Since Lemma 7 ensures that a U+(~) must intersect (lzl--1 }, this suggests there 

should be at least two unbounded arcs in aU+(~) on which o)=0 and which connect 

infinity to points near F. The strong maximum principle and Lemma 6 suggest that the 

normal derivative of to on these arcs is one-signed (except possibly at isolated points 

where it may not be defined). Equations (1.14)-(1.15) will then be used to show that 

�9 =p+�89 z is monotone decreasing and increasing, as these two arcs are transversed 

from near F to infinity. These statements will be made rigorous shortly. 

TrIEOREM 8. There exists ~E~ such that U+(~) is unbounded, and similarly 
for U_. 

Proof. Assume the contrary so that every U+(z) is bounded. If we combine this 

with Theorem 5, then there exists a sequence {zn), with Izn[>2, lz~l ---*~176 as n---~oo, such 
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that U+(Zi)f) U+(zj)=(~ if i~:j. Lemma 6 gives the existence of a number c E (1,2) such 

that Vw(z):~0 it Izl=c. Lemma 7 shows that aU+(zi)r) {Izl=e}:~ for all i. We claim that 

aU+(zi) n au+(z9 n {Izl=c)=  if i~j. If not, then for some i and j,  there would exist a 

point ~ in this intersection. Now to(~)=0 and Vto(~)4:0, so the level-set of to=0 in a 

neighborhood of ~ is given by a real-analytic arc passing through L Since to changes 

sign as the arc is crossed, we have to>0 on one side, whence the contradiction that 

U+(z;) n U+(z~)*~. 

The argument above gives the existence of disjoint points ~iESU+(zi) n {Izl=c} at 

which to vanishes. Since to is real-analytic, it follows that to=0 on {Izl=c}. Since to 

vanishes at infinity, this gives the contradiction that w-0 .  q.e.d. 

Recall the choice of c E (1,2) such that Vto*0 on {Izl=c}. For each point ~ with 

I~l>c, to(~)>0, and for which the component of U+(~)n {]zl>c} containing ~ is unbound- 

ed, let V+(~) denote this unbounded component. The arguments for Theorem 8 ensure 

that such sets exist. We define V_(g) similarly if to(~)<0. The proof of Theorem 8 

suggests there are only a finite number of distinct V+, and this is the case. The most 

important part of the following lemma is that V+ is simply-connected, which we shall 

use in Theorem 10 to show that av+, with the point at infinity added, is a closed Jordan 

c u r v e .  

LEMMA 9. (a) There exist at most a finite number of  distinct sets V+ and V_. 

(b) Each V+ and V_ is simply-connected. 

Proof. (a) The proof of Theorem 8 yields (a). 

(b) Let J be a closed Jordan curve in V+. Either {[zl=c}c intJ  or intJc{Izl>c }. 

The first case would imply that to>0 in extJ  which contradicts Theorem 5. The second 

case implies in tJcf2 ,  whence to>0 in intJ  by the maximum principle. Since J was 

arbitrary, we have shown that intJcV+ for all closed Jordan curves in V+. This implies 

that V§ is simply-connected, q.e.d. 

Since V+ is simply-connected, av+ is a connected set. The following theorem 

shows that it is homeomorphic to the interval (0, 1). 

THEOREM 10. For each set V+, there exists a continuous, injective, piecewise real- 

analytic map q~ defined on R, and such that aV+=tp(R). Moreover, I 0(s)l   as Isl  . 
Here s denotes arc-length along cOV+ measured from some point in aV+. A similar 

result holds for V_. 
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Figure 2. The  level-set o f  w = 0  in a neighborhood of  z2. The  case  m = 2  has  been shown,  and the label i refers 
to Li, i=1 . . . .  ,4. 

Proof. Fix a set V+ and choose z~ EOV+ such that Vog(z~)#:0. As in the proof of 

Lemma 4, we can parametrize OV+ in a neighborhood o'f zl by {(x(s), y(s)): s E ( -e ,  e)}, 

whence s denotes arc-length measured from zl. Let ( -M,  N), M, NE (0, ~] denote the 

maximal interval in which (x(.), y(. )) has an extension as a subset of aV+, and such that 

the map is injective, continuous, and piecewise real-analytic. The independent variable 

s E ( -M,  N) measures arc-length from zj. 

Assume that one of the numbers, say N, is finite. Since s measures arc-length, we 

may assume that (x(s),y(s))--~z2EOV+ as s---~N. If Vog(z2)*0, then the maximality of 

( -M,  N) is contradicted unless (x(s),y(s))--*z2 as s---~-M. In this case, 

L={(x(s),y(s)): s E( -M,  N)} U {z2} 

is a closed Jordan curve in OV+. Clearly intLcV+ since V+ is simply-connected, and 

we claim that V+~ intL. If not, then there would exist a point z3E V + \ i n t L ,  and we 

can connect it by a Jordan arc in V+ to some point z4 E int L. However, by connected- 

hess, this arc must intersect LcaV+. This contradiction gives V+=intL whence 

aV+=L. However, this is impossible since aV+ is unbounded. 

If N is finite, then we have shown that Vog(z2)=0; in particular, ]z2[>c. Lemma 6 

and the Remark after it give the level-set of w---0 in a punctured neighbourhood of z2 as 

the union of an even number of real-analytic arcs L~ . . . . .  L2,, emanating from z2, and 

each with finite arc-length as z2 is approached (see Figure 2). 

Although the figure shows the case of four arcs emanating from z2, any (even) 

number can be handled by the arguments to follow. Without loss of generality, we may 

assume that (x(s),y(s))ELI for all s sufficiently near to N. If there were only two arcs, 

say L~ and L2, instead of the four shown, then o9>0 on one side of L113 L213 {z2}, whence 

L2cOV+. The only way for the maximality of ( -M,  N) to remain inviolate is that 

(x(s),y(s))--*z2 along L2 as s -* -M.  As in the case Vog(z2)4=O, this implies that 8V+ is 

bounded, which is impossible. 
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It follows that there are at least four arcs emanating from z2 for the case N < ~  

being considered. Let  UI denote  the open region 'between'  Ll and Lz . . . . .  and U4 that 

between L4 and LI as shown in Figure 3. 

Since L~caV+, it follows by the maximum principle that either UIcV+ or U4cV§ 
We assume without loss of  generality that the former  holds. Then L2caV+.  We claim 

that aV+ in a neighborhood of  z2 is given by L~ U L2 U {z2}. If  not, then there would exist 

a point o n  L 3 o r  L4  belonging to aV+. Since ~o>0 in U~ U U3 and oJ<0 in U2 U U4, it 

follows that U3cV+. Fix points ~1E U~ and ~3E/-I3. Since V+ is connected,  they may be 

joined by an arc LocV+. The points ~t and % may be joined by an arc Lb, disjoint from 

Lo, lying in Ul U U3 U {z2} (see Figure 4). 

Now L=LaULb is a closed Jordan curve on which w~>0, whence w>0  in intL. It 

follows that either U2 or U4 lie in intL,  but this is impossible since ~o<0 on these sets. 

This contradiction implies that aV+ equals L~ U L2 O {z2} in a neighborhood of  z2. Since 

( - M ,  N) was maximal and (x(s),y(s))~.Li for all s sufficiently near N, we arrive at a 

contradiction unless (x(s),y(s))--,z2 as s ~ - M .  But then 0V+ is bounded,  and we have a 

contradiction. Hence,  we have shown that N =  oo and a similar argument gives M =  oo. 

We claim that [(x(s), y(s))[--, oo as s--, oo. Indeed, the proof  of Lemma 4 ensures that 

we need only prove that {(x(s),y(s)): s~>0} is unbounded.  If this were false, then for 

some unbounded sequence {s,}, we would have (x(s,), y(s , ) )~z3 E aV+ as n ~o o .  How-  

2 

Figure 4. The arc L b c U I U U 3 O {z2} connect ing zl to z3- 
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ever, 0V+ is given by a rectifiable Jordan arc in a neighborhood of z3, and this is a 

contradiction. A similar result holds as s---~-oo. 

Define cp(s)=(x(s), y(s)), s E R. In the extended R 2 plane (R 2 plus the point {~}), 

tp(R) U {~} in a closed Jordan curve on which w~>0. It follows that to>0 in the interior, 

which is easily seen to equal V+. This implies that (p(R)=aV+. An equivalent argument 

is to first apply the reflection z ~ I / z  in {[z[~>c}, and then add {0} to the image of q~(R). 

This yields a closed Jordan curve in the unit disc on which the function &(z)=to(1/z) is 

non-negative. Since a3 satisfies an equation of the form (1.10) in the interior of this 

curve, t3>0 there. It again follows easily that (p(R)=aV+. q.e.d. 

Since V+ is simply-connected and 0V+U{0O} is a closed Jordan curve in the 

extended plane, there is a conformal m a p f o f  the unit circle D onto V+ such tha t fhas  a 

continuous and injective extension from/5 onto V+ U (OV+ U {oo}). We may assume that 

f (1)= {oo}. With (r, 0), 0 E [0, 2~r), denoting polar coordinates in D, there exist numbers 

01, 02 with 0<01<02<2er such that f(C~)uf(C2)cOV+ n {Iz[>c}, where 

C I = {ei~ O<O<Oi}, C 2 = {ei~ 02<0<2:t }. 

In addition, we may assume that If(ei~ j = l , 2 .  If we define o3 in D by cb(~)= 

w(f(r then 

A&+fl .Vo)=0 in D, (2.3) 

where fl is real-analytic in D. Since aV+ is real-analytic except possibly at discrete 

points converging to infinity (Lemma 6), it follows that o5 is real-analytic across aD 

except possibly at discrete points which converge to ~= 1. Since o5>0 in D and tb=0 on 

C~ t.I C2, the strong maximum principle applied to (2,3) gives 

ar (eie) < O, e iO E C I U C 2 (2.4) 
ar 

except possibly at a sequence tending to ~=1. At these points, the radial derivative 

need not exist. 

If we define #(~)=),(f(~)) and ~=~+ir/, ~,r/ER, then a calculation based on 

(1.14)-(1.15) shows that 

~ = vo~-~,(f(~))o~, 

~,~ = - vcb~- ff/(f ( ~) )@ r 

(2.5) 

(2.6) 
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If we combine these equations with (2.4) and the fact that o5=0 on C~ UC2, then 

d ~,(eiO) = _v_~_(eiO) > 0  
dO or 

for all ei~ Cl U C 2 except possibly at a sequence tending to ~= I. 

Let us restate what has been found; as one moves from {]zl=c) to infinity along the 

Jordan arc {f(ei~ 0 E (02, 2~)}, the function y=~-~0to  in monotone increasing. Since 

to=0 on this arc, it follows that @ is monotone increasing as one goes from {Izl=c} to 

infinity along this arc of OV+. By considering Y alongf(Cl) ,  we see that �9 is monotone 

decreasing as one goes from {Izl=c} to infinity along it. 

THEOREM 11. Le t  V deno te  a se t  V+ or V_. 

(a) The set cOVN {Izl>c} has precisely two unbounded components which may be 

parametrized as {(xi(s),yi(s): s E (0, oo)), i-- 1,2. In addition, (xi(0),yi(0)) E (Izl=c}, s 

denotes arc-length measured from these points, and the functions xi(') and Yi(') are 

real-analytic on (0, oo) except possibly at isolated points which may accumulate at 

infinity. The function to vanishes on these arcs, and I(xi(s), yi(s))l---,oo. 

(b) The maps s~-~@(xi(s),yi(s)) are monotone decreasing and increasing on (0, oo), 

respectively, for i-- I, 2. 

2.2. Boundedness of the velocity, convergence of 7, and additional properties of the 

vorticity 

We now have the necessary machinery to improve the results in [15] by showing that 

wEL| 

THEOREM 12. Let (w,p)  be a solution o f  (1.1)-41.3) with VwEL2(Q). Then 

wEL| and parts (b)-(f) o f  Theorem 1 hold for (w,p).  

Proof. Since Vw E L2(~), we know that 

f2 2"*'drfo 2~ 0 O) 2dO . r - ~ w ( r ,  ~ 0  as n ~ o o .  

The integral mean-value theorem gives the existence of R, E (2", 2 "+l) such that 

f0 2It 0 2 I -z-~w(R"'d~ O) dO--,O as n--,oo. (2.7) 
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Consider any domain V which is a V+ or V_. Then q~(x~(s), y~(s)) is monotone  decreas- 

ing on (0, o~) whence 

1 iW(Xl(S) ' yl(s))l 2 ~< _p(xl(s) ' yl(s))+d~(Xl(O) ' Yl(0)). 
2 

Since the pressure vanishes at infinity it follows that Iwl is bounded on the curve 

{(xl(s), yl(s)): s E (0, ~)}.  

By connectedness ,  there exists 0, E [0, 2x) such that Iw(R,, 0,)l~<const., independently 

of n. Combining this with (2.7) yields 

max Iw(R,, O) I <. const. ,  
0 E [0, 2~] 

independently of  n. Hence ,  ~=p+~lwl  2 satisfies 

max ~(z)  <~ const. ,  
7. E O A  n 

where A,={zf i f~:R,<{z{<R,+l} .  The maximum principle for �9 from (1.11) yields 

�9 (z)~<const., z f iA, ,  where the constant  is independent of  n. Since p vanishes at 

infinity, the theorem is proved, q.e.d.  

COROLLARY 13. Let V denote a set V+ or V_, and {(xi('),yi('))}, i=1 ,2  be as in 

Theorem 11. Then 

Iw(x,(s), yi(s))l --" Iw=l,] 
I 

~(xi(s)' Yi(S))' Y(xi(s)' Yi(S)) ~ 2 Iw| 
a s  s-----~ 

where w| is as in (1.13). 

Proof. Let  Li= {(x,(s), yi(s)): s E (0, ~)},  i= 1,2, denote  the unbounded components  

of avn{ lz[>c } as in Theorem 11. Since wEL|  by Theorem 12, we may use 

Theorem 2 (d) to conclude the existence of  a constant vector w= E R 2 such that 

o2~lw(r,O)-w~12dO~O as r - - - ~ .  

We may combine this with (2.7) to conclude that 

max Iw(R,, O)-w=[ ---, 0 as n ~ ~ .  
0 E [0, 2~1 

(2.8) 
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Let s, E (0, oo) denote the first value such that (xi(s), yi(s)) E {Izl =Rn}. The sequence {s,} 

is monotone increasing. Since O(xi('), y;(')) is monotone on (0, oo) and p vanishes at 

infinity, equation (2.8) implies that ~(xi(s), yi(s))~�89174 2 as s---~. Since to vanishes on 

Li, the result for ~, is immediate, q.e.d. 

We have shown that ),=O-~pto tends to �89 2 if we approach infinity along suitable 

curves on which to vanishes. We now prove that 

1 2 ~,(z)---~-~-Iw| as Izl---~ oo. (2.9) 

/ f  we knew that V 7 E L2(Q), then such a result would be immediate. Indeed, if we use 

(2.7) with w replaced by 7, then it is immediate that I),(r, 0)-�89 uniformly in 0, 

for suitable r---~ ~. Since y satisfies (1.18), the maximum principle would then give (2.9). 

Since 17toELE(Q) by Theorem 2, equations (1.14)-(1.15) show that V~,EL2(f2) if and 

only if ~0Vto EL2(fl). However, we expect that V2(z)=O([z[), and Theorem 2 only gives 

Vto E L2(~), not IzlVto (~ L2(Q). (One can show that ~pVto E L2(g)) with the aid of the 

identity v~2[Vto]2=v~p2A(to2/2)-div(wVd2to2/2) which follows from (1.10) and the identi- 

ties div w=0, w.V~p=(~oy,-~ox)'(~0x, ~oy)=0. The idea of the proof is as follows: For 

suitably small d>0, one integrates this equation over Bd = {Z E V+: to(z)>d}: 

d d Bd J OBd 

On the subset P of aBd where to=d, the term 

-feVJ2to2(w'n)ds=-d2 fp ~~ ~ ~p2a~ as 

may be integrated exactly. The maximum principle ensures that the other boundary 

term 

Vfp~PZ-~n(to2)ds, 

is negative. The remaining part of aBd, that on which to<d, is necessarily a subset of 

{]z]=c}, and the boundary integrals on this set are estimated easily. One arrives at an 

inequality 

2vff  s c,vto,2 -4vff B ~0wV~p.Vto+const., 
d d 
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where the constant is independent of d. Since V~0 E Loo(f2) and to E L2(Q), the Schwarz 

inequality bounds ~pVto in L2(Bd), independently of d. Letting d-*O yields ~pVto E 

L2(V+) , and similarly ~TtoELE(V_) .  The proof of the following theorem could be 

simplified considerably if we used the fact (now known) that Vy E LE(ff2), but we have 

not done so since certain of the techniques developed will be needed in later results.) 

THEOREM 14. (a) Le t  V denote  a set  V+ or V_. Then 7(z)~�89 2 as Iz[---~o% zE V. 

(b) r(z)~�89 z and �89 to(z)-,�89 2 as Izl--,~, z ~ ~.  

Proof.  (b) Assume that (a) holds. Lemma 9 ensures that there exists R>2  such that 

any point z with Izl>R belongs to either a V+, V_, or their boundary. Corollary 13 

shows that y has the desired limit as infinity is approached along aV+ or aV_, and so (a) 

implies y(z)--,�89174 2 as Izl~oo. Since p vanishes at infinity, the other result is immedi- 

ate. 

(a) We shall assume that v is a V+ since similar arguments hold for a V_. We adopt 

some of the notation from the proof of Theorem 11. Let D denote the unit disc, and l e t f  

be a conformal map of D onto V+ such that f (1)= { oo }. The functions a)(O=to(f(O) and 

?(O=y(f(O) satisfy (2.3) and (2.5)-(2.6), respectively. To prove (a), it suffices to show 

that ~(r189 2 as r ~ED. 

Assume that this is false. Then there exists e>0 and a sequence {~n} with Cn---* 1 as 
n---, oo and 

~(~2- �89 2 ~>4e for all n. (2.10) 

Corollary 13 proves ~(ei~189174 as 101---,0, where now 0E (-~r, :r], and so there exists 

03 E (0, ~r) such that 

~(eiO)----~lto| ~e. if [0l<~03. (2.11) 

We may assume without loss of generality that Vto(f(e•176 whence (2.4) shows that 

-~- (e  •176 (2.12) O. 

By continuity, there exists r~ E(0, 1) such that 

f,,_+_io~, l lw| ~re )----~ <<, 2e, rE [r,, 1], (2.13) 
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and 

005 (re+-io3)<0, rE [rj, 1]. (2.14) 
cqr 

Define 

�9 ~ r - i O ~  , -  ,, M]=(re'~ M 3 ~re : re~r l ,1)  }, 

iO~ - i O  3 
and let M2cD denote the straight line containing and connecting r~e to r~e . Let  

WcD denote the interior of M1 U M2 U M3 U {ei~ 101~<03}, so that unity belongs to if" (see 

Figure 5). 

Since 05>0 in D, we have 

m=min05(~ )>O,  M=max05(~)>O.  (2.15) 
~ M  z ~M~ 

We may assume that r W for all n, and may use Lemma 6 to construct a new 

sequence (~,} contained in W and converging to unity such that 

~(~,)---1 Iw~12 ~>3e for all n, (2.16) 
2 

and V05(~):~0 if ~ED and 05(~)=05(~n). Fix a value of n, and write ~ for ~,. Since 05(~) 

may be made as small as we need, we may assume that 05(~)E (0, m). Let L denote the 

component of {~E 1~': 05(0=05(~)} containing ~. The arguments for Lemma 4 ensure 

that L intersects aW. The intersection cannot be where ]~1= 1 since 05=0 there, nor on 

M2 since 05~>m there. It follows from (2.14) that L intersects MI at one point and 

similarly M3. Hence, we may represent L as 
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W",,X 

Figure 6. The regions X and W \ X .  

L = {qo(s): sE[O, I]}, 

where qo is real-analytic, qo(s) E W, s E (0, 1), and qo(O) E MI, qo(1) E M3. 

Let XcD denote the interior of the closed curve formed by L, M2 and the straight 
eiO3 lines connecting r I to ~(0) and tie -i~ to q)(1) (see Figure 6). 

By construction, 05 E [05(~), M] on aX, whence 05>05(~) in X. Since 05=05(~) on L, 

the strong maximum principle gives 

a05 (~)<0,  ~E/:, (2.17) 
an 

where/~ denotes the interior ~0((0, 1)) of L and n is the outward normal to X. If we 

combine (2.17) with (2.5)-(2.6) and use the fact that 05 is constant on L, then 

d 
~(q~(s)) < O, s E (0, 1). 

ds 

In particular, ~(q~(O))>~(~)>~(q~(l)). Since q~(O)EMi, and cp(1)EM3, we may use (2.13) 

and there results 

~ ( ~ ) - 1  [w~12 ~<2e. 

However, this contradicts (2.16), and so the theorem is proved, q.e.d. 

Theorem 14 will have important applications in the sections to come. Before 

proceeding to them, we consider in more detail the relationship between co and ), in •. 

Define a=7+ivw, and let 

1 1 
Oz=T(~x-iay ) and a~=--~(ax+iay). 



LERAY'S PROBLEM OF STEADY NAVIER-STOKES FLOW 95 

Then a calculation based on (1.14)-(I. 15) gives 

where 

O-~-a = N(z)-~O, (2.18) 
0s 

N = (~2-2iv~)/(4v2+~z). (2.19) 

Although IN(z)[<I, z E ~ ,  one cannot expect an upper bound strictly less than unity, 

since we expect ~ to be unbounded at infinity. This prevents us from using standard 

theory [3; p. 259] to examine (2.18) in a neighborhood of infinity. We now show that 

7to(z)+0 whenever Izl is sufficiently large, say Izl>~s. Although we have been unable to 

exploit this result in future sections, it does have two curious implications. Firstly, if 

Izl>S, the level-sets of to are locally real-analytic arcs; in particular, the functions 

((Xi('),yi(')) describing the unbounded components of aV_+ n {Izl>c} in Theorem 11 are 

real-analytic for all large values of their argument. Secondly, equation (2.18) may be 

rewritten as 

- -  cr = .~/(z) a in Iz[/> S, (2.20) a~ 

where 1Q=NO~/o z. Since Vto~O there, the same is true for Vy (cf. (1.14)-(1.15)), whence 

(2.20) is a Beltrami equation [3] with real-analytic coefficients in a neighborhood of 

infinity. 

We begin the proof that Vto(z):t=0 near infinity with the case to(z) =& 

THEOREM 15. There exists S>~2 such that V~o(z)*O if IzI>~S and to(z)=O. 

Proof. Assume the contrary and let {z,} denote an unbounded sequence for which 

to(z,)=lvto(z,)l=O. By Lemma 9, we may assume that ZnEaVi for all n, where Vi is a 

specified V+ or V_. We shall assume that Vl= V+, and also, without loss of generality, 

that 

z.E {(x~(s),y~(s)): se(O, ~)}, 

one of the two unbounded components of aV+ N {[zl>c}. After taking a suitable subse- 

quence, we may assume that z.=(xl(s.),y~(s.)), where {s.} is monotonically increasing 

to infinity. 

The proof consists of two natural steps: (i) we show that the level-set of to=O in a 

neighborhood of z. is a Jordan curve passing through z. and (ii) that this implies 

7to(z.)~O. This contradiction proves the theorem. 
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Fix n, set ~=z, ,  and assume that the level-set of w=0 is not a Jordan curve through 

2. It follows from Lemma  6 that there are at least four arcs emanating from ~ on which 

co=0. We shall consider the case of  just  four arcs since the general case is analogous. 

Referring to Figures 2 and 3 in the proof  of Theorem 10, we shall assume that 

Lic{xj(s),yl(s)): s>sn} while L2c{(xj(s),yl(s)): 0<s<sn}.  Now OlCZV 1 s o  that to>0 in 

UI, whence to>0 in U3. Now U3 lies in some V+. It is not contained in Vj since the 

proof  of Theorem 10 showed that OV+ is locally a Jordan curve. Hence ,  U3c V3, where 

V3 is a V+ and V1nV3=~. Now OV3N{]z[>c} has an unbounded component  

{ (x3(g), Ya(g)): s E (0, ~)  } where ~= (x3(g.), Y3(gn)). Consider the unbounded arcs 

{(xl(s),yj(s)):s>~s.} and {(Xa(g),y3(g)):~f~>g.}, 

and recall that to vanishes on these sets. If they do not intersect other  than at ~, then 

w=0 on their union plus {~},  whence w=0  in the interior of  this closed Jordan curve in 

the extended plane. If  they do intersect at (first) points corresponding to s=a>s, and 

~=b>~.,  then 

{(xl(s), yl(s)): s.  ~< s ~< a} 13 {(x3(i), y3(~)): i .  < g < b} 

is a closed Jordan curve on which co=0. This yields the contradiction w---0. 

We have shown that if to(D=0, g=z. ,  then the level-set of  to=0 through ~ is locally 

a Jordan curve. We claim that Vw(D~0, and to prove this, we now assume that 

Vto(g)=0. After a suitable rotation of the coordinate axes, the Weierstrass Preparation 

Theorem [4] shows that 

to(x,y) = g(x,y) (y-r ai(x)(y-~) i 

where g is real-analytic in a neighborhood of  g, g(D*O, the ai are real-analytic in a 

neighborhood of  x=  J?, and a,.(.O =0,  i=0 . . . . .  n - 1 .  Since to(g)=lWo(g)l =0, we have n >  I. 

We also have ao(x)*O else the line {y=y} would constitute the level-set of  to=O near 

z = L  Since to vanishes on this line and changes sign as it is crossed,  the strong 

maximum principle would give c~w/Oy(~, y)*O. Hence,  a0*O. The use of  this fact gives 

the existence of e>O such that w(x,y)4=O for all points (x,y), O<lx-2[<e, and points 

(~?, y), O<[y-~fl<e. Since the level-set of  w=O is locally a Jordan curve passing through 

g, there are precisely two arcs LI and L2 emanating from g. We assume without loss of  

generality that L1 lies in the first quadrant: 

LI = {z=(x ,y ) :x> Yc, Y> ~9 and Iz -s  
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We claim that L2 lies in the third quadrant, that is, where x<.f and y<)~. Indeed, if L2 

was in the first quadrant, then to would be one-signed below the line {y=)~) and would 

vanish at (.f, 3~). The strong maximum principle then gives c~to/ay(.f, 3~)*0. A similar 

argument holds if L2 is in the second or fourth quadrant. If we use Remark 1 after 

Lemma 6, then we may assume (after choosing e smaller if need be) that 

L I = {(x, y): y=y+(x-.~)~'fj((x-.f)&), x E (.f, .f+e)}, 

L 2 = {(x, y): y=~-( . f -x)a~(( . f -x)~2) ,  x E ( . f-e,  .f)} 

where thef .  are real-analytic on ( . f - t ,  .f+e) and positive there. Here ai, fli>0 for i-- 1,2. 

If a l > l ,  then the function 

y(x) = ~ (x-.f)a'fl((x-yO&)' x E ( f c ,  Yc +e), 

10, x E (.f-e,.f] 

is of class C I+~ for some oE(0,  1). Since to is one-signed near s in the region {(x,y): 

x E ( . f - t ,  .f+e), y>~+39(x)} and vanishes at ~, the strong maximum principle for domains 

with C ~+~ boundaries [13; p. 49] gives Vto(.f,3~)=r The case a~ E(0, 1) is similar: one 

first solves for x as a function of y, say x=x~(y), and then defines 

X(y) = ~x~ty), y>Y 

L0, y~Y. 

The function .~EC ~§176 for some o>0,  and the argument proceeds as before. Similar 

arguments hold if a2E(0,1) or if a2>l .  Hence, we may assume that a t = a 2 = l .  If  

ft(0)*f2(0), then we can put a straightline through ~ such that to is one-signed on one 

side of it. This yields Vto(~)*O again. Iff~(O)=J~(0), then it is straightforward to check 

that 

~ ; + ( x - ~ ) f l ( ( X - . f ) ~ ' ) ,  x E ( . f , . f + e )  

is of class C I§176 The usual argument yields the contradiction that Vto(D:#0. q.e.d. 

THEOREM 16. There exists S ~ 2  such that Vto(z):~0/flzI~>2. 

Proof. Because of Theorem 15, it suffices to show this for all points z with IzI large 

and z E V, where V is a V§ or V_. We assume that V is a V+, and use the methods and 

notation from the proof of Theorem 14. It suffices to show that Vo)*0 in the region 

7-888288 Acta Mathematica 161. [mprim~ le 10 novembre 1988 
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W\.("  shown in Figure 6. Assume that Vo5 vanishes at a point ~ in that domain. Note  

that 

aS(~) < max oS(z) = oS(L). 
z E O ( W - f O  

If we apply the arguments in the proof  of  Theorem 15, then for some small 6>0 ,  the set 

(z6- w \ x :  0<  Iz- l <6, = 

consists of at least four arcs Lt  . . . . .  L4 emanating from s 

Now L i  may be parametrized locally by L i  = {rl(s): s 6- (0, 61)}, where s denotes arc- 

length measured from ~. I t  is easy to see that there is an extension r l  to a maximal 

interval (0, NO such that r l  is injective there, 05(rl(.))=aS(s and r l ( ' )6-  W\X. Indeed, 

i f  rl(s)--)zl, with VaS(z0=0, as s~M<NI, then one can use the local structure of 

{z: o)(z)=o)(~)=oS(Zl)} near zl to extend r beyond M. We claim that rj(s) approaches a 

point on cO(W-X) as s-->N~. If not, then r~(s)---~zj 6. W - X ,  and the maximality of  (0, N~) 

is contradicted unless that set r~((0, NO) U {Zl} contains a closed Jordan curve on which 

o5=0. This is impossible, and so we may assume that r~(N06-cO(W-X). Set 

/-]1 = rl((0, Nil). 

In a similar manner,  we can construct  arcs /:i=ri((0, Ni]), i=2, 3,4. We may also 

assume that s s  if i+j. Indeed, if s n s  then upon increasing s from zero, we 

would have a first point of intersection, say z2=r~(sO=r2(s2). But then 

rl((O, sl]) U r2((O, s2)) U {7~} 

is a closed Jordan curve on which o5 vanishes. Since the s are disjoint, we know that 

the points ri(Ni) are distinct. Since tb(ei~ 101~<03, and o)(L)>th(r l(N0)= 

... =oS(r4(N4)), the four points r~(N~) must lie on the straight lines connecting q~(0) to e ~~ 
- iO 3 

and qg(l) to e . However,  equation (2.14) shows that & is monotone on these lines, 

and so there cannot  be four distinct points at which o) is equal, q.e.d. 

2.3. Convergence and decay rates in sectors 

As noted earlier, Theorem 12 allows us to use the result of  Gilbarg and Weinberger 

[14], [15] that 

fo 2~[w(r,O)-w~[ZdO---~O as r - - - ~  (2.21) 
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for some constant vector w=. In addition, equation (2.8) gives 

max Iw(R.,O)-w=l---,O as n ~ o o  (2.22) 
0 6 [0, 2:r] 

for suitable R,  E (2", 2 n+l) (cf. (2.7)). Our wish is to strengthen (2.21)-(2.22) by showing 

that w tends to w~ pointwise at infinity. If  w~=0, then Gilbarg and Weinberger showed 

that (2.22) and the one-sided maximum principle for r give 

Iw(z)l ~ o as Izl ~ oo. (2.23) 

We conjecture that if (2.23) occurs, then w=0 in g2. This can be seen formally by taking 

the inner product of (1.1) with w, and then using (1.2) to show that 

-vlVwl2 = - 2 A(IwlZ)+div(w~)" 

Integrate this over Q n{Izl<S} and use (1.3), let S~oo ,  and conclude that I r w i n 0 ,  

whence w=0. The problem with this argument is the boundary term 

~O 2;z S ~(S,  0) {u(S, O) cos O+v(S, O) sin 0} dO. 

Although ~=p+�89 2 tends to zero at infinity by (2.23) and the term in brackets has 

mean-value zero on (0,2~r) by (1.2)--(1.3), there are no estimates to show that the 

integral is o(S-i) as S---~ oo. Notwithstanding this difficulty, we believe that the results and 

structure of the equations shown in the previous section may make the conjecture true. 

Assume for the moment that the conjecture is true, at least for the case of  symmetric 

flow. Since we show in section 4.2 that Leray's  solution is non-trivial when the flow is 

symmetric, it would then follow that w~:r 

We shall assume in the rest of this section and in sections 2.4-2.5, that w=*O, and 
may assume after a suitable rotation and scaling that w==(l ,0) .  Throughout this 

section, we shall let the polar coordinate 0 vary over [0, 2:r) or [-~r, x) as convenient. 

Since ~p is given as a line integral involving w and we have some such information in 

(2.21), it is plausible that V(x,y)=y in some sense near infinity. We now make this 

rigorous, and begin with some preliminaries. Let 6~, 62 6 (0, Jr/2) with 61<62. Now 

oo> (~2dOl~r a-w--(r,O) 2dr=(62-61)ft~r 8-~rr(r,O) 2dr (2.24) 
Ja, Ji  I a r  
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for some 0=0(61,62) 6 (61,62). If r E (R,, R,+ 0, then 

,w(r, d)-w| 6J)--W| ~r (r. O)dr 

<~ [w(R,, 0)-w| 2JR .fR"+' r -~rr 2 dry']1~2. 

The use of (2.22) and (2.24) gives 

[w(r,~)-w| as r ~ o r  

A small variation on these arguments ensures that for each 61,62 E (0, z/2) with 61<62, 
there exists @ E (6~, 62) such that 

Iw(r, +O)-w| +(zc-0))-w=l---~0 as r---~oo. (2.25) 

Since w=(u, v)=(~py,-~Px), it is immediate from (2.25) that 

V/(r,O)_l ~ 0  as r ~ o o ,  (2.26) 
r sin 0 

if 0=+0,  + (z -0 ) .  The use of (2.21) with (2.26) gives 

~p(r, 0 ) _ l ] ~ 0  as r ~ o o ,  (2.27) m a x  
qol~[o.~-ol rsin 0 I 

where 0E [-~r,~r). For any 6=,62E(O,~r/2) with ~1<62, let 

B. = B.(O) -- {(r. 0): rfi(R.,g.+�91 10[ fi(tJ. Jr-0)}. 

Note that B. has two components---one in {y>0} and the other in (y<0}. Now p 
vanishes at infinity, and if we combine this with (2.22) and (2.25), then 

max r  ---*0 as n---*~. 
zEOBn A 

Since I ,(z)-�89189162189 as Izl by Theorem 14, we have 

max  [V(z) w(z)l --~0 as n ~ oo. (2.28) 
zEaB. 
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Note that IW(z)l~lzllsinOllW(x, y)/yl on OB, and that the final absolute value tends to 

unity as n---~ by (2.26) or (2.27). The use of  this in (2.28) yields 

I I 1  z x l  0 (2.29) max Izllto~z)l ~ as n 0 0 .  

z E cOB n 

THEOREM 17. Let  e ~ (0, zr/2). Then 

max ' "[to(r, 0) I=o(1/ r )  as r ~ o o .  
101 ~ It, ~-e] 

Proof. Given e, choose 6~=e/4 and 62=e/2. Any two points Z l , Z 2 ~ J B n  have 

[z~l/Iz21<~4, and the theorem then follows from (2.29) and the maximum principle for w. 

q.e.d. 

COROLLARY 18. Let  eE(0,er/2). Then 

max IIw(r,O)l-lw~ll = max I I w ( r , O ) l - l l ~ O  as r - - - ~ .  

Proof. Since w=(~py,-~0x)EL| we always have I~p(z)l~<const Iz[, and so Theo- 

rem 17 gives ~(z ) to (z )~O at infinity in these sectors. Since 

I ,<z)- l=Lo(z)-w(z)to(z)+klw(z)12- l O a s  

by Theorem 14, the result follows, q.e.d. 

Remar k  2. We shall show in Theorem 21 that [w(z)l~lw~l=l as Iz[--*~. 

Note that Corollary 18 does not show that Iw(z)-w~l tends to zero at infinity in 

these sectors. This is done in the following theorem. The proof  depends on a represen- 

tation theorem for w in a domain in terms of its value on the boundary and the vorticity 

in the interior. 

THEOREM 19. Let  eE(0,~t/2). Then 

max I w ( r , O ) - w |  as r--> ~176 
IO[ E [e, n - t ]  

Proof. Given e>0,  let 61=e/4, 62=e/2 and 0=0(61,62) be as before. Define 

A n = An(e) = {(r, 0): r E (Rn_ 2, Rn+3), [0[ E (0, : t -0 )} .  
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For each s  we use the following representation theorem in [15; p. 388]: 

1 ~ u(z)-io(z)-ldz+2~if~ to(Z) dxdy ' 
u(~)-iv(s =-~i An Z------~ An Z- -Z  

(2.30) 

where w=(u, v), s  and z=x+iy. Throughout the rest of this proof we shall restrict 

attention to points ~ E C, = {z: Izl 6 [R,, g,+ d, 101E [~, ~r -d  }. 
The first term on the right of (2.30) gives 

~ u(z)-iv(z)-I dz 
2:t .]aa. z - s  

I max{w(z)-w=[ laA.I 
~-22"I aa n ' dist(L 8A,)' (2.31) 

where w| laA,I denotes the length of aA,, and the denominator is the distance 

from s to aA,.  The form of  A, and the assumptions on ~ ensure that the ratio in (2.31) is 

bounded by a const./e, where the constant is independent of e and n. The use of (2.22) 

and (2.25) in (2.31) yield 

max <~ u(z)-iv(z)-I dz ~0 as n ~ ~.  (2.32) 
~EC..JaA. Z--Z 

The final term on the right of (2.30) is estimated with the aid of Theorem 17: 

f f  [~(Z)ldxdy<~max{izllto(Z)l}ffA dxdy 
J~o Iz-~l ~A, n Izllz-~l 

~< const, maxlz I I~o(z)l ~ 0 as n ~ ~.  
zEA n 

(2.33) 

The use of (2.32)-(2.33) in (2.30) gives the desired result 

maxlw(z)-w~l--->O as n - - - ~ ,  q.e.d. 
z~c. 

Theorem 19 shows that we only need to show the convergence at infinity of w to 

w| in sectors about the x-axis of the form {(x, y): lyl<alxl} where a > 0  and may be taken 

as small as we need. (We shall do this in section 4.1 for symmetric flow.) One cannot 

expect that the estimate of Theorem 17 holds everywhere in ~ ,  that is, Izl I~o(z)t~0 as 

Izl--,~. Indeed, one expects from [5] that I~o(z)l=o(1/Izl) and that Izl IoJ(z)l tends to a 

positive limit at infinity within the wake along the positive x-axis. If we knew that 

I~o(z)l=O(l/Izl) in Q, and set A,={(r ,  0): rE(R,_,,R,+2), 101<a}, then the term in (2.33) 
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could be shown to be O(a[loga[). This would give w-->w~ in sectors along the positive 

x-axis, and a similar result would hold along the negative x-axis. 

Remark 3. The convergence in small sectors of w to w~=(1,0) for general flow 

remains open. However, there are sufficient conditions which give this: 

(i) r 2 to2(r, O)dO-->O as r-->~; 
J0 

o r  

(ii) u(z)>0 for all large Izl. 

Since we cannot prove either of these conditions, we merely remark how they imply 

the desired convergence. Since 

~| | 2=  0) < ~,  f dr  ?~o2(r, dO 
r .10 

condition (i) is at least plausible. The use of (i) in the proof of Theorem 19 gives 

w(z)--,w~ as Izl--,~. If (ii) holds, one sets r(z)=tan-l[v(z)/u(z)] E(-:r/2,:r/2), and de- 

rives an equation for Vr from (1.1)-(1.2). This may be analyzed to give r(z)---~0 as 

Izl--,oo, whence v(z)~O. It is shown in the next section that Iw(z)l--,Iw~l, whence 

lu(z)l--,lu~l. Since u is one-signed at infinity by (ii), we are led to u(z)---~uo~. 

2.4. Convergence of the speed 

In this section, we shall prove that the speed 

Iw(z)l = Iv~0(z)I--,I w~l as Izl --, ~. (2.34) 

(This is immediate for symmetric flow due to the stronger result Iw(z)-w=[--~O to be 

established in section 4.1 .) We can easily derive some information about the speed from 

the one-sided maximum principle (cf. equation (1.I1)) for the total-head pressure 

~P=p+�89 2. We know that 

max (p(z)+ �89 max (p(z)+ �89 
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and the right-hand side tends to  �89 2 by (2.22) and since p vanishes at infinity. Hence,  

we have the upper bound 

lira suplw(z)[ 2 ~< Iw=[ 2. (2.35) 
Izl~| 

Since 7(z)=~(z)-~O(z)w(z)--,�89 2 as [z[~oo (Theorem 14), it follows that 

lim sup ~p(z) w(z) <. O. (2.36) 
Izl--,| 

When we prove that Iw(z)l--,Iw| we shall be able to strengthen (2.36) to 

I~O(z)(o(z)l=l~p(z)Aq,(z)l~O as I z l ~ .  

From (2.22), (2.27), and Theorem 19, we have very good information about  ~p and 

its gradient on the circles {[z[--R.) and in the regions ((x,y): lyi>alxl, Izl>-R.}, where 

ct>0. If we combine this information with (2.34), then quite precise information can be 

found about the level-sets of  ~p near to infinity. This is always useful since the 

representation w=(u, v)=(~r,  -~x )  gives the velocity tangent to level-sets of  ~0. 

In the study of  symmetric flow in section 4, it will be shown that [~p(x,y)/y-l[---,O 

as Izl--,~, whence the level-set of  ~p=0 near infinity, {z: ~p(z)=0, Izl>-N}, consists of  

{(x, y): y=0,  ++_x>~N} for all large N. For  general flow, we know that 

whence 

y(z) =p(z)+ ~lw(z)12-W(z) co(z) ~ �89 2 as Izl ~ ~ ,  

Iw(z)l ~ Iw~l if Izl ~ ~ and ~p(z) = 0. (2.37) 

Our intention is to infer from (2.37) the desired result (2.34). First, we need some 

information about  the level-set of  ~p=0 near infinity. 

LEMMA 20. There exists S > I  such that {(x, y): ~p(x, y)=0,  Izl>~S) has precisely two 

components C• where 

C• = {(p• q+(s)): s E [0, oo)}. 

Here p• and q• are real-analytic on [0, oo], Lo• -p_(s) ,  p +(s)--. oo as s---, oo, and 

[q•177 as s---~oo. In addition, Iw(p• q•174 I as s--,oo. 

Proof. Let a > 0  be small and choose N such that �89 whenever 

Izl>~Ru, and lip(x, y)ly-11<~ ~ if ly]>alxl and Izl>~Ru. This is possible by Theorem 14 and 
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equation (2.27), respectively. Define F.={r.O):rE(R.,R.+ O,OE(-/~,kt) }, where 

tan/~=a. Since a~p/OO(r, 0)=r{sin 0 v(r, 0)+cos 0 u(r, 0)}, we may use (2.22) to choose N 

so large that O~2/O0(R., 0)>0, 0 E [-/~,/~], n>~N. 
Since ~0(r, kt)>0 and ~p(r, -/~)<0, r>~RN, there are obviously points in F.  where ~p 

vanishes. Let ;~ be such a point, and let L. denote the component of {z E Fn: ~P(Z) =0} 

containing ;~. Since IV~(z)12~>�89 z E L., it follows that L. is locally a real-analytic curve. 

The arguments for Lemma 4 show that L. is either an arc in F'. or a closed curve. The 

proof of Theorem 25 shows that the latter is impossible whenever n is sufficiently large. 

Since ~0 is one-signed on lyl=ax, L. must intersect OF. where Izl=R.,R.+l. Since 

av2/OO(R., 0)>0, 0 E [-/~,/~], it follows that L. intersects these circles in at most one 

point. Since L. is maximal, it intersects Iz[=R. and [zl=R.+t. Hence, L. is a real- 

analytic arc i n / e  which intersects OF. only at its endpoints. The monotonicity of ~2 on 

Izl=R., R.+ ~, ensures that L .=  {z E F.: ~p(z)=0}. The set C+ is just the union of the L. for 

n>~N, and may be parametrized by arc-length measured from Izl=Ru. Since a > 0  may 

be taken arbitrarily small, we have Iq+(s)/p+(s)l--.O as s~oo.  All of the arguments 

presented above are applicable to the case of x large and negative, q.e.d. 

Our main result in this section is 

THEOREM 21. (a) The speed Iw(z)l satisfies 

Iw(z)l = IV~0(z)l--, Iw~l as Izl---' ~.  

(b) The quantity I~(z) to(z)i=i~o(z) aW(z)l--,0 as tzl---'~. 
(c) t f  Iw(z)-w~l--,O as Izl--'~ for  z E C+ tJ C_, then Iw(z)-w~l-- ,o as Izl---'~. 

Note that (b) follows immediately from (a) and Theorem 14. The proof of (a) is 

quite technical, and appears in the Appendix. Part (c) follows immediately from the 

construction needed in (a), and shows that the pointwise behavior at infinity of w is 

determined by its behavior on the level-sets of q)=0. 

2.5. Some monotonicity results and decay rates for the vorticity 

Recall the number c E (1,2) which appeared in Theorem 11. If r>~c, equation (1.10) 

shows that the quantity max0r to(r, 0) is either monotone decreasing on (c, ~), or is 

initially decreasing to some value of r, and thereafter is monotone increasing. Since to 

vanishes at infinity, and is not one-signed in a neighborhood of infinity, only the first 
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possibility occurs.  If  we apply the maximum principle to to on all of ~2, we easily see 

that to takes its maximum value on  ~ at a f l = F .  A similar argument shows that 

min0~t0.2~] to(r, 0) is monotone  increasing on (c, oo), and to takes its minimum value on 

at O~. 

Now y(z)=~(z)-V2(z)w(z)---~�89 2 as [ z l ~ ,  and Theorem 11 gives the existence 

of  an arc connecting {Izl--c} to infinity on which 7 is monotone decreasing. It is 

immediate that max0~ [0, 2~] 7(r, 0) is monotone decreasing on (c, ~).  A similar argument 

shows that min0~t0,z~lT(r, 0) is monotone increasing on (c, oo). Finally, we note that y 

takes its maximum and minimum values on (~ at a ~ .  

The function �9 satisfies a one-sided maximum principle, and ~(z)---~�89 as 

[z[~oo by Theorem 21. With the aid of  Theorem 11 we see that maxoeto,2=]~(r, O) is 

monotone decreasing on (c, oo). It is immediate that �9 takes its maximum value on a f t ,  

whence 

m a x O  = m ax p  > ~lw| 2. 
O~ OQ 

This can be improved slightly if 8f~ has only one component  so that ~p=0 on as The 

fact that 7 takes its minimum on af~ yields 

�89 2 > rainy =minp .  

We now give some more precise information about the vorticity to in the case that 

w(z)--+w| as Izl--~oo. As usual, we may then take w~=(1,0) .  Let  us begin with the 

case x<0.  Equation (l.10) is easily seen to imply 

lpA(to 2) = div(wto2)+2vlAtol 2 in  Q .  

If we integrate this over ( - ~ , x ) •  ~),  then 

u(x,y)to2(x,Y) " f_ilvtol2, 

where 

S(x) = -~- to2(x, y) dy. 
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For every small e>0, let M(e)<0 be such that u(x, y)>~l-e if x<.M(e), yER. It follows 

that 

(1-e)S(x) <~vS'(x), x<~M(e). 

Integrating this equation yields 

S(x)<~const.exp[-~--~lxl], x<~M(e). 

It is then easy to derive the same bound for IS' I and for 

f_~[Vw(x,y)12dy �9 

(2.38) 

The use of the equation (1.10) for to and standard regularity estimates yield 

_< [ \ ( I  - e )  
Ito(x,y)l, Nto(x,y)l.~const.exp[-Tlxl], x<~M(E), yER. (2.39) 

Since NY(z)[, [V~(z)l<-const.lzl(lto(z)l+lvto(z)[), this yields 

lY( x, Y)- �89 ~o(x, y)+ �89 w(x, Y)I:- �89 IVr x, Y)I, IVY( x, Y)I 
(2.40)  <c~ ' 2 v  x<~M(e)' yER. 

Fix a small number a>0 ,  let e>0 be small compared to a, and note that 

[w(x,y)-(l,O)l<~e for all points (x,y) in the region y>~ax+M(a,e), for some large 

number M(a,e). The same arguments as before give (2.38)-(2.40) in this region, but 

with the exponential replaced by 

exp( - ~ ( a/ ~ -  e) [y-axl/~/T-+'~ } . 

An analogous result holds if y<~-ax+M(a, e). These estimates on the vorticity greatly 

improve those of Theorem 17, but become less useful in a sector centred about the 

positive x-axis. For that case, let us take v= l .  Equation (1.10) gives 

Aog-~Ox=(u-l)tox+Vtoy=div(to(u-l,v)) in g2. (2.41) 

The operator Ato+to~ has a fundamental solution [5] in R 2 given by 

G(Z; g)= -e(~-x)/2 Ko( Z-~2s ), 
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where K0 denotes the usual Bessel function. If this is applied to (2.41), then an equation 

for w(~) may be given in terms of a boundary integral involving w, IVo~l, and the 

fundamental solution, and an integral involving the right-hand side of (2.41). If lu-ll ,  
Iv], and IV,ol (or integrals involving them) have suitable decay at infinity, then the 

important term in ~o(~) should be the boundary terms. If this is the case, then one 

expects 

r +l)e-r~ ) 

when r is large and 101 is small. This would give the expected estimate to=O(1/r). The 

sets {(r, 0): ~/-7-101<<.a} are obviously of importance, and define the familiar 'parabolic 

wake'. 

3. Flow in the bounded domain fir 

In this section, we return to the bounded domains f2n=g2n{lzl<R }, and Leray's 

'approximate' solutions (wn, pn) of (1.1)-(1.2) in f2n with wn=O on F and wn=t~| on 

{Izl=R}. We know that the Dirichlet norm of wn is bounded independently of R, and 

may assume that (wn, Pn) and its derivatives converge as R--,oo on compact subsets of 

to a solution (WL, PL) of (1.1)--(1.3). Since the convergence is only on compact sets, 

the information provided by wn=tb| on {Iz[=R} may be lost. We show how this 

information is transmitted to compact subsets with the aid of our maximum principles. 

An important role is played by the level-sets of wn=O, along which yn=pn+ ~lwnl 2. 

In Theorem 23, we assume there are two arcs connecting {IzI=R} to points near to F 

along which ~n is monotone increasing and decreasing, respectively. We prove that 

/ft~ IVwRI2~ m >0'  
R 

(3.1) 

where m is independent of R. We then prove in Theorem 24 that if (3.1) holds for a 

sequence {R,}, with Rn---~ as n---~, then Leray's solution (WL, PL) is non-trivial. In 

section 4.2, we show that (3.1) holds for symmetric flow in f2n: 

inf fro IVwRIZ>0. 
R~>2 n 

(3.2) 
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3.1. Stokes flow 

Before we consider the Navier-Stokes equations in f2m let us make 

about those for Stokes flow: 

--yAw = -Vp~ 
V . w = O  J 

w = O  on 

w =  tb| on 

some remarks 

in f~R (3.3) 
(3.4) 

r ,  (3.5) 

Izl = R.  (3.6) 

Standard theory [16] ensures that this problem has a unique solution (w~, p~), where the 

superscript denotes Stokes flow. 

THEOREM 22. If  (w~,p~), satisfies (3.3)--(3.6), then 

ffo c~ IVw~12< logR , R 1>2 (3.7) 

where the constant depends only on F, and is independent of R, tb| and v. 

Proof. Let r EC| with r(r)=0 for r~<�89 and r(r)=l for r~>l. Define p(r)= 

r(logr/logR), so that/~(r)=0 when r~<X/R-. After a suitable rotation of the axes, we may 

assume without loss of generality that tb| Define a solenoidal vector-field 

A=(AI,A2) by 

0 {a, y~(lzl)}. A ,=  {fi| a 2 -  -~x 

Set W=w~-A, and note that tb=0 on 0QR. Now -vAtb-vAA=VpR, whence 

and so 

f fOR IVtbl 2= - f f ~ R  Vtb'VA, 

const. Iw l 2 

An explicit calculation gives 

IVA(z)l 2 ~< 
izl2(logR)2 ' 

zE t) R, 
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where the constant is independent of R and tb=. It follows that 

f fo f fo c~ lib| IV/'~f2 ~ IVAI2 ~< log g ' 
R R 

and the representation w~=tb+A completes the proof, q.e.d. 

This result is not at all surprising in view of the result [10] that the only solution 

(w,p)  of (3.3)-(3.4) in f2 with w=0 on F and [w(z)l--o(log[z]) at infinity is the trivial 

solution w--0. The result in Theorem 22 is frightening at first thought, because our 

solution (wR, pR) of the Navier-Stokes equations might satisfy a similar estimate. If this 

were the case, then the Leray solution wt.-0. (Such a result would not contradict the 

proof by Finn and Smith [11] of a non-trivial solution of (1.1)-(1.4) when I =l/v is small 

since the solution in [11] is not constructed as the limit of our (wR, PR).) However, we 

shall prove in section 4 that (3.1) is true for symmetric flow, so that (3.7) does not hold 

for Navier-Stokes flow. The difference between Stokes and Navier-Stokes flow is 

partly due to the different maximum principles present in the two cases. Equations 

(3.3)-(3.4) show that for Stokes flow p+ivo9 is (complex) analytic in f~R or Q, whence p 

and vw are conjugate harmonic functions. However, for Navier-Stokes flow, it is 

y+ivto, ~,--P+�89 which is a pseudo-analytic function. 

3.2 Special level-sets of the vorticity 

T H E O R E M  23. Assume  that there exist continuous, injective maps 

((xi(s; g), yi(s; g)): s E [0, Li] } c f2 R t3 {[zl = R}, i = l, 2, 

such that the following hold 

(a) dist(F, (xi(0; R), yi(0; R)))<~ l, i= l, 2, 

(b) (xi(Li; g), yi(Li; R)) E {Izl =R}, i= 1,2, 

and 

(c) 

�9 R((XI( �9 R), Yl(', R))) 

is monotone decreasing on [0, Lt] while 

~R((x2( �9 R), Y2(" n))) 

is monotone increasing on [0,L2]. 
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Then 

f r o  IVWR] 2 >~ m > O, 
R 

(3.8) 

where the constant m is independent of  R>-2. 

Proof. We shall assume that (3.8) is false, and then derive a contradiction. Let  

{R,} be a sequence with R:-,Qfi[2,  oo] as n--.oo, and such that 

f : •  IVWR.] 2 --~ as n ---* ~.  
i i 

0 
R n 

(3.9) 

If Q < ~ ,  then standard theory ensures that wR. and its derivatives converge on (2Q to 

wQ. In particular, WQ=O on F, WQ=~= on {[zl=Q} and [VwQ[L2(Qe)=0. Since we are 

always assuming that W| this is impossible, whence R . ~  as n ~ .  

It follows that if (3.9) holds, then wR. and its derivatives converge on compact 

subsets of (2 to wL-=0. After adding a suitable constant to PR., we may assume that 

same convergence to zero of the pressure and its derivatives. 

In the calculations to follow, we write w. and p.  for wR. and PR., respectively, and 

~ .  for QR.. For a function fir, 0), let 

_ 1 fEn 
f(r) - ~ ~o f(r, O) dO. 

Equations (I. 1)-(1.2) give 

0 _ v 0 w . + l { u _ ~ O V  _V.~oU.} r 6 ( l  R.), 
ar pn r c30 ' ' 

where w.=(u., v.). It follows that 

d _ _ 1 : | 2 ~  

drr p" 2err J0 
_ 1 f02~ 

2:rr 

-•0 a u.} dO ( u .  o. - o 6 

u.} dO. 
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The use of Wirtinger's inequality gives 

i~,,, / 

1 /-2~ 
2-gJ0 IVwfdO, rE(1,Rn). 

Integrating this yields 

~(r)-pn(1) I ~< d r  <~ T ~  

n 

as n---+oo by assumption. 

As noted earlier, p~---~0 on compact subsets of ~ as n--+oo, and so 

(3.10) 

max IPn(r)l ---, 0 as n --o ~. (3.11) 
I < ~ r ~ R  n 

We now show that 

f fv~ IVwnlZ ~ 0 
as n ~ ,  (3.12) 

where U .=Qn { l z } < R ~ / 2 ) .  Let rEC| be such r(r)=l for r~<0 and r(r)=0 for r>~I. 

Define/a.(r)=r(r-R./2). A calculation yields 

fro =vffo 2A/~+{B.T. ' ,  
n n 

(3.13) 

where {B.T.} denotes an integral around F of oj. and its normal derivatives. As noted 

before, wn and its derivatives tend to zero on compact subsets of ~ ,  whence the 

boundary term {B.T.} tends to zero as n---~. Since vAw.=div(w.w.) by (1.I0), we 

have 

- -  v f,t ~ o2 ~ A ~ ~ = - -  - - ~  = to  N 

n n 
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Equating this to (3.13) yields 

(3.14) 

A result of Gilbarg and Weinberger [14] ensures that Iw,I is bounded on 

f2, n {Izl<~3Rfl4}, independently of n, while we also have 

ffo  ffo (1) n ~ 2 ] V w . / 2  ~ 0 a s  n ~ oo 

n n 

by assumption. The use of this with the vanishing of {B.T.} as n--.oo proves (3.12). 

Equations (1.1)-(1.2) give 

8 O 0 0 
sx p.=V y ..-O~ .~ 
0 0 0 O 

a y P " = - v O--'~ wn - u .  O----'~ v .  - v .  --~y O. . 

The use of these equations with (3.9) and (3.12) yields 

f lu [Vp"[2 ---' 0 as n ~ o0. 
n 

(3.15 a) 

Equations (3.9) and (3.15a) prove that 

R./2drf2~ 0 2 
./, rio {(-~P"(r'O)) +(-~o W"(r'O))Z} dO-'*O as n ---~ oo, (3.15b) 

and so there exists/~.  E (Rfl4, R./2) such that 

fo z ' f [  O R,O))2+(-~o W.(l~.,O))2}dO-.O as n ~ oo. (3.15 c) 

Say that the c u r v e s  {xi(. ,Rn, Yi(" ;R,)} intersect the circle {lzl=/~,} at zi=zi(n), i= 1,2. 
Let s163 R,), Yi(0;R,)), i= 1,2. By (c) of the hypotheses,  we know that 

% % )  = p.(zO + �89 Iw.(z,)l = ~ p.(~O+ �89 Iw.(~,)l =, (3.16) 

% % )  = p.(z2)+ �89 Iw.(z gl 2 ~ p.(~9+ �89 w.(~2)l 2, (3.17) 

8-888288 Acta Mathematica 161. Imprim~ le 10 novembre 1988 
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Since dist(s F)~<I by (a) and IP,[, [w,[---~0 on compact  sets of  ~ ,  the right-hand sides of  

(3.16)-(3.17) tend to zero as n---~.  Equations (3.11) and (3.15c) give 

m a x  Ip . (z) l  ~ o 
Izl=n. 

and the use of  this in (3.16) yields 

Iw,,(zl(n) )l "--' 0 

If we combine this with (3.15 c) there results 

as n --> oo, 

as n --->~. 

max lw.(z)l  ---> 0 as n ---> ~ .  
Izt=n. 

(3.18) 

N o w  

2n ~ Rn dr 
foZ~]wn(Rn, O)]dO-fo Iwn(l~,O)ldO= fo2~r]W~(r,O)] dO 

I/2 

---,0 as n --~ oo 

by (3.9) and since/~,  E(RJ4, R./2). If we combine this estimate with (3.18) there results 

fo 2'~lw,,(R,,,O)ldO~O as n--* oo. 

However, w, (z )=tb=*0 on {IzI-R.), and so we have a contradiction. q.e.d.  

3.3. A condition implying wr is non-trivial 

For an unbounded sequence {R,}, we let {wL,PL} denote the limit on compact  subsets 

of ~ of  a suitable subsequence of  (ws., Pn,)- We know that (wL, PD satisfies (1.1)-(1.3), 

(1.5) and has the various propert ies shown in section 2. The following theorem gives a 

necessary and sufficient condition for wL to be non-trivial. We shall show in section 4.2 

that the condition is satisfied for symmetric flow. 

THEOREM 24. Let {Rn} denote an unbounded sequence such that (wn, pn) =- 
(wn ,pn ) and their derivatives converge on compact subsets of ~ to a pair (WL, PL). 
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Then wL is non-trivial if and only if 

liminff f. IVw.{2>0, 

where Qn=• 91 {Izl<R.}. 

Proof. I f  the limit infimum is zero, then clearly wL--0. To prove the converse,  

assume that WL--0. We may then assume that w. and p .  converge on compact  subsets of  

s to zero. If  we set w.=v.+tb| then our  equations become 

-vAv" +(w"" V) V" = v. in Q.,  

V n = - ~  on [', 

v . = 0  on {Izl=R.}.  

If we take the inner product  of  the first equation with v., then 

- vlVv"12+ 2 A(Iv"12) = vv. Av. 
= �89 div(w.lv.I  2) + div(p, v.). 

Integrating this over Q.  yields 

where ~ denotes the outward unit normal to f2. on F. By hypothesis,  [Vv.[, [p.[--*O on F 

as n ~ ,  whence 

ffa [Vwnl2=ffn [VVn[2~O as n---*~, q.e .d .  
n n 

4. Symmetric flow 

4.1 Symmetric flow and convergence of the velocity 

Throughout  this section, we shall consider symmetric flow as defined in section 1.3. In 

particular, ~0, w, and v are odd functions of  y, while p, u, y, and (P are even. As before,  

we take w| We shall prove in Theorem 27 that w(z)--*w| as [zl--> oo. Because of  
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Theorem 19 and the symmetry,  it suffices to show this in a region {(x, y): O<y<alx]} 
where a is as small as we wish. The main idea is to first show that 7:(x, y)=y near 

infinity and then use the result �89189 near infinity (Theorem 14 (b)). 

On the set where 7:>0, this gives 

1 1 
A(V'~-) ~ -  47:3/2 4y3/2 , 

and this equation will be analysed, and found to give the desired results. 

THEOREM 25 (Symmetric flow). The stream-function 7: satisfies yT:(x, y)>0,  y#:0, 

whenever Izl=l(x, Y)I is sufficiently large. 

THEOREM 26 (Symmetric flow). With the convention that 7:(x,y)/y equals 

7:r(x, 0)=u(x, 0) when y=0 ,  there holds 

7:(y 'Y)-l l---~0 as Izt---~ oo. 

THEOREM 27 (Symmetric flow). The velocity w satisfies 

Iw(z)-w l O a s  Izl---~ oo. 

Proof of  Theorem 25. We shall restrict attention to y~>0 and x large and positive. A 

similar argument holds for negative x. Now to(x, 0)=0 and Theorem 15 or 16 ensures 

that toy(x, 0)*0 for all large x. Equations (1.14)--(1.15) then show that y(x, 0)= 

p(x, O)+~u(x, 0)2 is monotone for all large x. If we combine this with (2.22) and the fact 

that p vanishes at infinity, then 

~r~y(X, O) = U(X, 0) ---> 1 a s  x --* oo. ( 4 . 1 )  

For each n, let D,={(x,y):O<y<txI,R,<lzl<Rn+l }. Equation (2.26) shows that it is 

enough to prove that 7:>0 in D, for all large n. Note that (2.22), (2.26), and (4.1) give 

max g,(x, y) _ I I ---> 0 as n ----> oo. (4.2) 
zEOD n Y I 

Assume that the theorem is false, so that 7:(z,~)=0 for some unbounded sequence 

{zm}. We may assume that each ZmEDn where n=n(m). Since 

y(z)=p(z)+ �89 7:(z)l 2-7:(z) to(z)-->�89 
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at infinity, we may restrict attention to large enough m and n such that 

IV~0(z)l~>�89 if z E D  n and V/(z)=O. (4.3) 

Let Lm denote the component of {W=0} in Dn, n=n(m), containing Zm. Note that 

LmcDn by (4.2), and that Lm is locally a real-analytic arc by (4.3). Using the arguments 

from Lemma 4, we conclude that Lm is a closed, real-analytic curve in Dn. Let U,~ 

denote the (bounded) interior of Lm. Since the tangential derivative of ~0 on aUm=Lm is 

zero, it follows from (4.3) that IOv//Onl~�89 o n  L m, where here n denotes the outward unit 

normal. Now 

]ff  axayl--{ff oAwdxay = fL 
where ILml denotes the length of Lm. On the other hand, 

where IUml denotes the area of Urn. Combining these inequalities yields 

 lLml2<-Iu lf '~ 2 

However, the isoperimetric inequality gives 4~rlUml-<lLml 2, whence 

Since to EL2(s the right-hand side tends to zero as n---, oo, and provides the desired 

contradiction, q.e.d. 

Proof o f  Theorem 26. It suffies to show that 

maxlg ' (x 'Y.)- I - - - ,0  as n--~oo. 
ze~n [ Y 

We shall use the fact from Theorem 14 that 

�89 ~ �89 as [z[ ~ ,0. (4.4) 
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Set ~O(x, y)=y(1 +S(x, y)) in D,; note that I +S>0  by Theorem 25. If we substitute this in 

(4.4), there results 

-yE(I+S)AS-y(I+S)Sr+�89 �89 as [z[---,oo. (4.5) 

Recall from equation (4.2) that 

max[S(z)[~0 as n ~ .  
z ~ D  

If S has a local positive maximum at s E D,, then (4.5) gives 

whence 

�89 +S(~)) 2 ~< M(~), 

0~<S(s as n---,~. 

A similar argument holds at any local negative minima, q.e.d. 

Proof of Theorem 27. Since ~'(z)--*~ and p(z)~O as Izl--,~, the following holds 

whenever y>0 and Izl is sufficiently large, say Izl~S: 

A(@-~-X/ -y - - )  = N(z) (4.6) 
4y3/2 ' 

where N(z)=1-2(y(z)-p(z))(y/~O(z))~[2--~,O as Izl---,~. Fix a point s y) with p>0 and 

such that the disc E=E(s {zE •: Iz-s Standard theory [13; p. 40] 

applied to (4.6) yields 

1 _[_~ , IV~(s I-:-maxlr(z)l+ymax 3,2 } 
I. Y z~s z~s y J 

where r = V ~ - - - V ~ .  In particular, 

[~oy(s 1[ 6 [~/~P(s - 1[ +coast. max ~ I ~  - II 
ze~ (4.7) 

+const. max(y/y) 3/: IN(z)l, 
zE~ 
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where y E [p/2, 3~9/2] if z=(x, y) ~. E. The use of Theorem 26 and the fact that N(z)---~O as 

[zl--> ~, yields 

[u(~)-ll=l~0y(~)-l[~0 as I~ l - - ,~ .  

A similar argument gives Iv(~)l=l~px(~)l---~O as I~1---~. q.e.d. 

4.2. Leray's solution wL is non-trivial 

In this section, we shall prove that the hypotheses of Theorem 23 are satisfied for 

symmetric flow in f~R. The use of this with Theorem 24 shows that the Leray solution 

wL is non-trivial in this case. 

In our arguments, R~>2 will be fixed, and it will be assumed as usual that 

F=0Qc{[z[<I}. We shall write (w,p) for the solution (wR, PR) in ~R, and similarly for 

other quantities. The sets on which to is one-signed played an important role in section 

2, and they will do so here also. Set 

t)R = QR n {Izl > 1} = (I < Izl < R ) .  

Since to(x, y) is an odd function of y, to is not one-signed in OR. 

For each z E ~)R at which to(z)>0, let U+(z) denote the maximal connected subset 

of OR containing z and on which to>0. We define U_(z) similarly. Note that U+(z) or 

U_(z) are only defined when z E OR and to(z)*O. 
If V denotes a U+(z) or U_(z), then 

V is simply-connected. (4.8) 

Indeed, say V is a U+ and let J be a closed Jordan curve in V. Since the flow is 

symmetric, w=0 on {y=0}, whence Jc{y>0} or Jc{y<0}.  It follows that in t Jc~R,  

whence to>0 in intJ  by the maximum principle. This gives i n t J c  V for any J so that V is 

simply-connected. 

Remark 4. As we shall see later, (4.8) is the crucial result needed to satisfy the 

hypotheses of Theorem 23. If it holds for a problem involving general flow, then the 

following results of this section hold. For example, if F=0f~ has only one component 

and there is a level-set of to=0 connecting F to {Izl--R}, then (4.8) holds. 

We wish to prove the existence of Jordan arcs Mic~R, i= 1,2, such that 

M i = {(xi(s), yi(s)): s E [0, Li] } and (xi(O), yi(O)) 6- (Izl = 1 } 



120 CHARLES J. AMICK 

while (xi(Li),yi(Li))E (Izl=R}. In addition, o~(M3=0 and the maps s~-*~(xi(s),yi(s)) are 

monotone decreasing and increasing, respectively, on [0, Ld for i= 1,2. We shall allow 

Mi flM2~=~. The proof of Theorem I0 ensures that aV, V a U+ or U_, is locally a Jordan 

arc, and since V is simply-connected, it follows that aV is a closed Jordan arc in (2 R. 

Assume that for some ~, aVN(Izl=R}ff=~) and avn(Izl=l},~, where V is either a 

U+(~) or U_(g). There are then two disjoint arcs of aV contained in ~e  which approach 

{Izl = 1} and {Izl=R} as their endpoints are approached, and on which to vanishes. The 

arguments in the proof of Theorem ! 1 then give the existence of the desired Mi, i= l, 2. 

Hence if there exists V, a U+ or U_, such that 

OVN(IzI=R}=t=~ and a V N { I z l = l } ~ = ~  (4.9) 

then the hypotheses of Theorem 23 are satisfied. 

The remaining problem is to prove the existence of the arcs Mi when (4.9) is false 

for all ~E ~e  with to(~)4=0. We shall assume this is the case unless stated otherwise. We 

begin by noting that there are only a finite number of distinct sets U+ or U_. If not, then 

there would exist a sequence {z,}, z,E U,, with to(z,)>0, say, and U,N Uk=~ if n~=k. 

Here U.=U+(z.). Without loss of generality, we may assume that the sequence 

converges to a point ~ E ~ e  at which to vanishes. However, Lemma 6 shows that the 

level-set of to=0 in a neighborhood of ~ consists of a finite number of arcs emanating 

from ~, and this is a contradiction. 

Let 

A = {z E ~R: aU+(z) N (Izl = 1} =i= ~ or aU_(z) n {Izl -- 1 } �9 ~ } ,  

and 

B = (z ~ r aU+(z) n (Izl = R}  * ~ or coU_(z) n (Izl = R}  * ~ } .  

( I f  z E ~R and to(z)>0, say, then z belongs to either A or B. Indeed, i f  this were not the 

case, then to=0 on coU+(z), whence to---0 in U+(z) by the maximum principle.) Clearly 

AfIB=(~ by our assumption above. Since we know the structure of { to=0} in a 

neighborhood of any point in aC~.--(Izl--I} u (Izl---R}, it is immediate that (Izl= 1}c,~, 

{IzI=R}=B, and that 

dist({[zl = 1 }, B), dist({iz I = R}, A) > 0. (4.10) 

LEMMA 28. (a) A N/~ =t= ~ and A NiBble.  

(b) I f  ~EA f)B, then to(~)=0, and there is a Jordan arc Ji emanating from ~ such 

that J1cA nB. 
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Proof. (a) Since ~R is connected and equals A UB, it follows that A N/t4:~. If 

zIEANB and z~E(Izl=l), then /~N{Izl=l)~:~,  which contradicts (4.10). A similar 

argument holds if zl E (Izl=R). 
(b) If 09(D4:0, then either gEA or ~EB, whence gCAN/1. Hence, oJ(g)=0. We 

consider two cases; first, assume that the level-set of co=0 through ~ is locally a Jordan 

arc J2. The function 09 changes sign as J2 is crossed, and since g E A N B the points on 

one side belong to A and those on the other to B. Hence, J2~A N/~. 

We now assume that the level-set of o9=0 cannot be represented as a Jordan arc 

through ~ in a neighborhood of g. We necessarily have V~o(g)=0. Lemma 6 ensures that 

in a punctured neighborhood N about g, the set (~o=0} consists of 2m, r e> l ,  real- 

analytic arcs emanating from g. We may assume that N is so small that {z E N: 09(z)*0} 

has 2m components.  Each of  these components is either in A or B, and the assumption 

that g~.ft N/~ shows that at least one component  is in A and at least one in B. Since ~o 

changes sign across the arcs, there is at least one arc belonging to A N/~. q.e.d. 

Since the zeros of IV091 are isolated in f~R (Lemma 6), it follows from Lemma 28 

that there is a point gEfi, N/~ such that V~o(g)*0. We shall take y~>0 in the representa- 

tion g=($,y) since a similar argument holds if y~<0. The level-set (09=0} is locally a 

real-analytic arc J through g in some small neighborhood N centred at g. The set 

{zEN: ~o(z)4:0} has precisely two components NI and N2 in N, and we may assume 

that 09>0 in N~ and w<0 in N2. Since g E,2, N/~, one of the components is a subset of A 

while the other belongs to B. Assume that N~cA so that N2cB. (The arguments to 

follow also hold if NIcB and N2cA.) It follows that NI~U+(z I) and N2~U_(z 2) for 

some points z~ EA and z2 E B. Note that JcaU§ N aU-(z2). 

Now U-(z2) is simply-connected and 8U-(z2) is a closed Jordan curve in ~R. The 

component -/3 of 8U_(z2) containing J and lying in OR has a representation 

J3 = {(x3($), y3(s)): s E (0, L3) ) . 

Note that (xa(s),y3(s))~{Izl=R} as s--*O, L3. We extend J3 to  be defined on the closed 

interval, set pl=(x3(0), y3(0)), p2=(x3(L3), Y3(L3)), and may assume that the independent 

variable s measures arc-length along J3 from pl. As in the proof of Theorem 1 I, the 

strong maximum principle for to on J3 combined with (1.14)-(1.15) ensures that 7 is 

monotone as the arc J3 is transversed from p~ to P2. Upon replacing s by L3-s if 

necessary, we may assume that 7 is monotone increasing as J3 is transversed from p~ to 
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P2. Note that 7 = ~  on J3 since w=0  on (2RNaU-(z2). Choose a reference point m E J  

such that ~,(m)=~(m)>~,(g)=q~(g). 

We may apply the arguments above to U+(zO. We let the component  of  

aU+(z0 n O R containing J have the representat ion 

"/4 = ((X4(S), y4(s)): S E (0, Z4)}, 

and may assume that (x4(s), y4($)) converges to qn, q2 E {Izl= 1 } as s--~0, L4, respectively. 

The function ~, is monotone  as J4 is transversed from ql to qx. Assume that as we go 

from ql to q2, the point ~ is reached before m. Since y(m)>~,(~), it follows that ~,=cl, is 

monotone increasing as we go from ql to q2. On the other, hand, i fm is reached before ~, 

then we replace s by L4-s  to reverse the direction. Hence ,  we may assume * is 

monotone increasing as J4 is transversed from q~ to q2. We set 

r(x3(s3), y3(s3)) for some s 3 E (0, L3) , 

= '~[(x4(s4), Y4(S4)) for some s 4 E (0, L4). 

Then the function 

~'(X4(S), Y4(S)): S E [0, S4], 
(X2(S)' Y2(S)) = t (X3(S--S4 + S3), Y3(S--S4+S3)): S ~ [S4, Z3 + s4-s3] 

defines a Jordan arc going from ql~{Izl=l) to pzE{Izl=R} along which ) , = ~  is 

monotone increasing. 

The function 

~ (x4(L4-s), Y4(t4-s)): s E [0, L4-s4] ,  
(Xl(S)' YI(S)) = L (x3(s3+L4-s4-s), Y3(s3+L4-s4-s): s ~ [ L 4 - s  4, L4-s4+s3) 

defines a Jordan arc going from q2 E {Izl = 1 } to p~ ~ {Izl=g} along which ~ is monotone 

decreasing. 

We have shown that if the flow is symmetric,  then the hypotheses of  Theorem 23 

are satisfied whether  or not (4.9) holds. We summarize this in the following 

THEOREM 29 (Symmetric  flow). (a) For each R>~2, the hypotheses of  Theorem 23 

are satisfied. 

(b) infR~ 2 SS IVwRI 2 > 2. 

(c) I f  {R,,} is an unbounded sequence such that (wR ,pR ) converges on compact 

subsets of  O to (wL, PL), then the Leray solution (wL, pL) to (1.1)--(1.3) is non-trivial, 

and there exists a constant vector w~ such that Iw(z)-w~l---~o as Izl---, oo. 
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c+-:---J 
Figure A 1. The solid circle is that of radius R centred at Zo=(0, R), and the dotted circle that of radius R~, 
centred at 0. The points a and b have polar coordinates (R t, 0 t) and (R~, 0z), respectively, in the ( r ' ,O ' )  

system. 

Proof. Part (a) was shown before the statement of the theorem, and (b) follows 

from Theorem 23. Theorem 24 proves that (wL, PL) is non-trivial, and the pointwise 

behavior of wL at infinity was proved in Theorem 27. q.e.d. 

Appendix 

The proo f  o f  Theorem 21. Let S be as in Lemma 20 and for each T > S  set 

{ x } 
G(T)= (x, y): x > 2T, lyl <--~, ~p(x, y) > O . 

We shall prove that 

sup IIw(z)l-lw| ~ 0  as T ~  o~, (A 1) 
z ~ G(T) 

where w| A similar argument holds if ~p(x,y)<O or if x < - 2 T .  Let 6>0 be 

sufficiently small, but fixed. For any Zo E G(T), let R=R(zo)=dist(zo, {z E f~: ~p(z)=0}). 

Lemma 20 and our assumption that x0>2T ensures that R=lz0-~ I for some ~ E C+, this 

set being defined in Lemma 20. Since Iw(~)l-lw~l--,0 as Iz01~oo by Lemma 20 and 

IVw(z)l=O(Izl-3/41oglzl) by Theorem 2, we may restrict attention to R~>I. 

We take new coordinates z' =(x', y') centred at Z and such that z0 has the represen- 

tation (0, R) in this coordinate system. Let (r', 0') be polar coordinates, and let us write 

tb(x',y'), t~(z') or tb(r', 0') for w represented in this coordinate system (see Figure A 1). 

We do the same for other functions. We claim that there exists 

R l =R l(z0) E (3R/4, (3/4 + 6) R) 
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such that 

fo 2~ ~0'  0') 2 tb(Rl, dO' <<. c), Zo E G(T) .  (A 2) 

Indeed, if we choose T so large that 

then 

~2>~ foRr' dr' ~o 2~ 19~-tb(r"O')12dO'r 00' 

f(3/4+6)Rdr'f02~ a_~Ttb(r,,O,)2dO, 
>'~ r' d 3R/4 

for some Ri E (3R/4, (3 /4+6)R) .  This implies (A2) w h e n 6  is sufficiently small. 

We assume that 0' varies on the interval (-3zd2,~r/2], so that 0'=Jr/2 corresponds 

to the positive y'-axis. Let 01,02E(-3:r/2,er/2) be the largest and smallest numbers, 

respectively, such that ~b(Rl, .) vanishes. Set 

a = a(Zo) = f~(Ri, Oi), 

and let rE(-3:d2, : t /2]  be such that 

COS ~" = ~ / ~ r ~ - ~ ,  

fl = fl(Zo) = O(Ri, Oi), 

sin r = - f l / V ~ - ~ .  (A 3) 

Since p(Ri, 01)=0 and IVpI2-2pAp---,Iw~] 2= 1 at infinity (Theorem 14), we may choose 

T so large that 

I V ' d Y e - 1 1  ~< x/--6, zoEG(T) .  (m4) 

Next we must estimate the variation of ~(Rj, 0') with respect to 0': 

~ ;  ~O(R I, O')-cos(r+O') = I(sin r+O(Rt,  0')) sin O' +(~(R I, O')-cos r) cos O' I 

<~ IW(R l, O')-(cos r, - s i n  r)l 
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I~(R,, O')-~(R,, 0,)l+l~(g,, 0,)-(cos r, - s in  r)l 
f zt/2 

J - 3zr/2 

~< V'2-~ V'--6-+ 1 ~ f 1 2 - 1 1  ~< 4V"6- (A5) 

by (A2) and (A4). Since ~(RI, 01)=0, equation (A5) yields 

[--~i (O(Rl'O')-sin(r+O"+sin(r+01' 1 <~ 2zr'4V'--6-~< 26V'-ff' 0 ' E ( 3 ~ r 2 , 2 ~ r ] . ( A 6 )  

We again choose new coordinates z"=(x",y") centred at z0 with x"=x' and 

y"=y'-R. For ease of notation, we shall write z=(x,y) for z"=(x",y") and (r, 0) for 

(r", 0"). We shall revert to the z" coordinate system at the final important estimates. The 

type of estimate which gave (A 2) allows us to assume that 

.1~i/2 ~ w(R2' O) z dO <~ 6 (A7) 

for some R2=R2(zo)E (R/4, (1/4+6)R). The circle of radius R2 centred at z=z"=0 inter- 

sects that of radius RI centred at z '=0 at some point (R2, ~J) in the (r, 0) coordinate 

system. Equation (A 5) gives [w(R2, 0)- (cost r, - sin r)[~<4 ~ and combining this with 

(A7) yields 

]w(R 2, 0) - (cos  r, - s in  r)[ ~< W"ff (4+ V~--~) ~< 7V"6 (A8) 

for all 0E (-3~r/2,vr/2]. Hence, if we define the disc 

D = D(zo) = {z: Izl < R2}, (m 9) 

then Ilw12-11<~49a+ 14V'-ff~< const. ~ on OD. 
Before proceeding, let us recall the size of certain terms: 

R(zo)=dist(zo, C+), R~E(3R/4,(3/4+6)R), R2E(R/4,(1/4+6)R ). (AI0) 

Since we have a good estimate for w on aD by (A 8), we can derive an estimate for ~p 

there after first estimating ~(R2, 0). 

Equation (A6) gives 

[~(x', y')-x' sin r - y '  cos r+R I sin(r+0~)] ~< 26RIV'-6- 
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and setting x=x', y = y ' - R  and restricting this estimate to the point of intersection 

yields 

[/p(R 2, 0 ) - R  2 sin(r+ 0 ) - R  c o s  z ' + R  1 sin(r+00[ ~< 26X/-3- R 1. (A I I) 

Equation (A 8) gives 

1 0 R ~--~2-~-d~o(2,0)-cos(r+o) ~<7x/-3-, 

and combining this with (A 11) proves the estimate 

[~o(R 2, O)-J(R z, 0) I ~< 70V-6- R, 

where 

( ] 0E 3~r zr 
2 ' 2 ' (A12) 

0 E (  3:r2,2zr], (A13) 

J(r, O) = rsin(O+ r)+R cos r -R1 sin(r+00. 

In the z=z"=(x,y) coordinate system, we have 

J(x, y) = x sin r+y  cos r+R cos r -R1 sin(r+01). 

(A 14) 

The main technical problem facing us is the need for a lower bound on /5  for the 

complicated expression J. We shall show that J(z)>-R/16, z E/5 whenever 6 is sufficient- 

ly small. The use of this in (A 13) yields [~p/J-11~ < const. ~ on OD, and we shall then 

use the type of argument for Theorem 26 to show that [W/J-1[~ < const. ~ on/5.  The 

method of proving Theorem 27 will then be used with J playing the role of y. Equation 

(A 14) shows that 

(A 15) 

minJ(z) = -R2+R cos T-R~ sin(r+0 0 
zE/5 

f R I R 2 "1 
-- R l c o s  

> ~ R { c o s r - 3 s i n ( r + O , ) - l - 2 6 }  

by (A I0). In order to show that the term in brackets is bounded by 1/16, we shall need 

the following technical 

LEMMA A1. For each sufficiently small 3>0, let sE(3/4,3/4+6) and set 
/ , = t a n - I ( s / ~ ) .  Assume that 

0 <~ s in(r+0 ' ) -s in(r+00+28X/ 'Y (A 16) 
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for all O' E (/a, : r -p) ,  where 01 ~ (p, :r-p) and r are given. Then 

cos r - ]  s i n ( r + 0 0 - ] - 2 6  I> �89 ---> ~ as 6 ---, 0. 

Proof. Set 

B(r)= min sin(r+0'). 
0' E [~, :r-~] 

so that 0<~B(r)- sin(r+ 01)+28X/-6-, whence 

cos r - ]  sin(r+ 0j)-41-26/> cos r - ~ -  2di-4~(B(r) + 28X/-3-) 

I> cos r-4~B(r)- �88 23X/-~" -- q)(r). 

Note that 

f s in(p-r) ,  

B(r) = J - I, 
Lsin(p+r), 

r E (0, Jr/2 +p), 
r E [~r/2+p, 3:r/2-p], 
r E (3~r/2-p, 2er]. 

For the case r E[vr/2+p, 3:r/2-p], equation (A 16) yields sin(r+0~)<~-l+28X/--ff, 

whence r+01E[ -v r /2 -0 , - : r / 2+0]  where 0=cos-t(1-28X/-ff).  Since 01~(p, : r -p) ,  it 

follows that r can only belong to [:r/2.p, :r/2+p+0] or [3zr/2-p-Q, 3:r/2-p]. Define I to 

be the union of [0,:r/2+p+Q] and [3:r/2-p-0,2:r] ,  and note that we may restrict 

attention to r E I. An easy calculation gives 

min w(r) = ~- sinp+O(X/-ff) 
rEI 

and this proves the lemma, q.e.d. 

In order to apply this lemma to (A 15), we must show that (A 16) is satisfied. In the 

(x',y') coordinate system, we know that ~ > 0  by construction in the disc 

D--{(x',y'):(x')2+(y'-R)2<R2). If we take a circle of radius RtE(3R/4,(3/4+6)R) 

centred at z '=0, then points (RI,0') will belong to /) if 0 'E(p ,  ar-p), where 

tanp=(4R2/R~ - 1)-~/2. Indeed, at the points of intersection of these two circles, we have 

R 2 _- (x')2+(y ' - R )  2, (x')2+(y') 2 = (RI) 2, 

whence ly'/x'l=tanp. Hence, ~(Ri, 0')>0, 0' E(p, ~r-p), and the use of this in (A6) 

yields 

0 ~< sin(r+0')-sin(r+00+26X/-3-,  0' ~ (p, ~r-p). 
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This shows that (A 16) holds. Since ~(R1, 00=0, we know that 01 ~ (fl, ~'~--fl), and so we 

have proved 

LEMMA A2. I f  6>O is sufficiently small, then 

min J(z) t> R/16. 
zED 

THEOREM A 3 . / f  S>0 is sufficiently small, then 

max ~p(z) 1[ zr J-~z) - ~< const. V"-6-. 

Proof. If we set ~(x, y)=J(x, y) (1 +S(x, y)), then a calculation yields 

IV~pl2-2~pA~ = (1 +S)2+j2IVS]2+~(I +S) (S x sin v+Sy cos r) 

-2~p{2S x sin r+2Sy cos r+JAS}. 

(A 17) 

Upon choosing T sufficiently large in G(T), we may ensure that IIV~Pl2-2v, m~p-ll~6 in 

/). If S has a local positive maximum at ~ E D, then (A 17) gives (1 +S(~))2<~ 1 +5, whence 

0<S(~)<~6/2. If S has a local negative minimum at ~ E D then 0>S(~)~ > - 5 .  If we combine 

these estimates with (A 13) and Lemma A2, then the proof is complete, q.e.d. 

We return to the equation [V~Pl2-2~pA~p = 1+O(6) in D(zo) and recall that the left- 

hand side equals -4~p3/2AV'-~-. It follows that 

A ( X / ~ - - X / 7 )  = 1+0(6) l _  
_4~p3/: 4j3/2 

_ -1  //p \3/2) 
4/p3,2 [1+O(6'-~--)-) / 

N(Z) in D(zo). i 

4R 3/2 

where 

max IN(z)l ~ const, x/-S . 
z E D  

The proof of Theorem 27 is now applicable, and we conclude that 

[~x(0, 0)-s in  r I, I~py(0, 0) -cos  r I <~ const. X/'-5-. (A 18) 
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If we write this in terms of  the z' coordinate system, then 

~ (0, R ) -  sin ' a ~  ' ( 0 ' R ) - c ~  ~<const. X/--6-. 

Returning finally to the physical coordinate system, we have 

whence, 

IIw(z0)l-11 const.  X/--6--, 

lim sup sup Ilw(z)l-lw~ll ~ const. X/-6. 
T--,ao zEG(T) 

Since 6 may be taken arbitrarily small, we have proved (A 1) and thereby Theorem 

21 (a). 

We now prove Theorem 21(c). If u(z)-->l, v(z)--->O as [z[-->oo, zEC+,  then the 

rotation necessary to go from the physical coordinates to the z' coordinates tends to 

zero as [z0[---~oo, zoEG(T).  It follows from (A3) that cosr(z0)-->l and sinr(z0)-->0 as 

]z0]---~oo, and the desired result follows immediately. 
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