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Introduction 

In [B1] we showed that the Dirichlet problem for the prescribed mean curvature (PMC) 

equation in a Lorentzian manifold is solvable, provided the boundary surface has 

bounded mean curvature and admits a strictly spacelike spanning hypersurface. For a 

more precise statement see [BI] Section 4; when the spacetime is conformal to a 

product, this result is due to Gerhardt [G]. However, in the special case of Minkowski 

space much more is true [BS]: the only condition on the boundary data is that it admit a 

weakly spacelike spanning hypersurface (which could be the graph over a domain with 

arbitrarily rough boundary), and then the solution of the associated variational problem 

is a (classical) solution of the Dirichlet problem, except for a singular set consisting of 

light rays within the solution surface and extending between boundary points. 

In this paper we show that this situation holds in general; the Dirichlet problem is 

solvable for rough boundary data and the variational problem has a solution which is 

strictly spacelike away from a singular set consisting of null rays. Although the 

solutions cannot be unique in general, we do have uniqueness "in the small", or if 

some curvature conditions are satisfied. This latter situation is well-known ([BF], [CB], 

[MT]). Using these results and an idea of Klaus Ecker [El, we will show elsewhere [B2] 

an improvement of the Hawking singularity theorem ([HE] p. 272, see also [GeL [Ga]), 

based on an existence result for constant mean curvature surfaces in cosmological 

spacetimes. In [B3] we give a fairly complete survey of the regularity theory and 

describe the major applications of these results. 

In some early physics papers concerning maximal surfaces [A], [Ge], it was 

assumed that a variational extremal surface, if it existed, would be smooth. Our results 

show that this assumption is only half-way correct: as well as showing that the 

10-888289 Acta Mathematica 161. Imprim~ le 27 d~cembre 1988 



146 R. BARTNIK 

variational solution is a priori bounded (and thus exists), it is necessary to show that it 

does not contain entire null lines (i.e. the singular set (3.13) is empty). Verification of 

these conditions generally relies on suitable a priori conditions on the geometry of the 

problem, such as existence of barriers or causality conditions on cI(D(S)). This 

amounts to controlling the nature of the singularities of the spacetime, since the 

existence of barriers says the singularity is crushing [ES], whilst the "standard data 

set" condition on D(S) (see Section 2) implies H(S) does not have bad causality 

structures such as closed null loops. This is essential for the treatment of the Dirichlet 

problem in Sections 3 and 4. However, the treatment of the variational problem in 

Section 6 already assumes the existence of a locally extremal hypersurface and thus 

sidesteps these singularity problems. 

The approach taken is quite different from that of [BS], primarily because there is 

not the direct relationship between the Dirichlet and variational problems that holds in 

Minkowski space. Thus, we first solve the Dirichlet problem in general (Section 4) 

using an interior gradient bound based on [BI] Theorem 3.1 and appropriately con- 

structed time functions (Section 3). This construction involves some delicate estimates 

on the Lorentz distance function l(p, q) and leads naturally to the singular set X. The 

interior gradient estimate is new even for Minkowski space, although a simplified 

version can be derived from the estimates of Cheng and Yau ICY]. This is described in 

Section 3. When the linearisation of the PMC operator is invertible we can construct 

local foliations with prescribed curvature and a resulting integral identity can be used to 

relate solutions of the Dirichlet and variational problems when the boundary data is 

smooth. The main result of Section 5 is an eigenvalue estimate for the linearised PMC 

operator over small domains with arbitrary (smooth) boundary, which implies inverti- 

bility. A corollary is that classical solutions are locally unique and locally maximising. 

In the final section we use all the above results to show the regularity of a weakly 

spacelike hypersurface which is locally extremal for some variational problem. Be- 

cause this surface may have rough boundary, the foliation results of Section 5 do not 

apply immediately; it is possible that the local foliation may develop a "gap" and most 

of the work is devoted to handling this case. 

The final results for the variational problem require only that the metric be C 2 and 

the manifold be time-orientable, since we work only locally. However, the preliminary 

results on the Dirichlet problem require also that D(S) be properly contained in a 

compact globally hyperbolic set. This is only mildly restrictive because of [HE] 6.6.3 

(see also [O'N] 14.38): intD(S) is globally hyperbolic for an achronal set S. Although 

the basic existence theorem for the Dirichlet problem, Theorem 4.1, requires the 
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hypersurface be achronal and the spacetime metric C 2, we show that this can be 

weakened to (essentially) C ~ metric (Theorem 4.3), assuming a condition on the 

distributional components of the curvature, and to immersed hypersurfaces (Theorem 

4.2). This last generalisation is based on the simple idea of "T-homotopy" which 

should be useful elsewhere. In particular, it allows us to generalise some results of 

Quien [Q]. The final results for the variational problem are completely local and thus 

should be widely applicable. As in [B1], we have to assume the mean curvature 

function is C ~, whereas the estimates of [BS] and [G] required only bounded mean 

curvature since they relied on integral methods. It may be that the maximum principle 

method extends to this case also. 

I would like to thank Greg Galloway and Joel Hass for some useful comments. 

2. Notation and basic concepts 

Let ~ a smooth (n+ 1)-dimensional manifold with C 2 Lorentz metric g, connection V 

and curvature tensors Riem and Ric. We use the notations ds 2 and ( ' , ' )  for g, and the 

summation convention with ranges O<~a, fl<~n, 1 <~i,j<~n. Constants depending only on n 

will be denoted c, and those depending on geometric quantities by C. We suppose that 

o//.is time-orientable and that T is a C 2 unit timelike vector field on o//.. Both 'F and T will 

remain fixed throughout this paper. 

From T we construct a reference Euclidean metric 

ge = g + 2 T |  (2.1) 

(in local coordinates, geo~=go~+2Ta Ta), which we use to measure the size of tensors 

and their covariant derivatives. Thus, we define the supremum norms, for any ten- 

sor ~ ,  

II ll(x) = I/2, 

I1 11-- sup(ll ,ll(x): x ~ (2.2) 
k 

jz0 

and use the notation [[. [[k;~ to indicate the supremum taken over a subset ~c~ The 

Riemannian geodesic distance function d(x, y) of ge makes 0//" a metric space; using 

d(x, y) we can define the (Caratheodory) distance between two sets A, B by 

d(A, B) = inf{d(x, y): x E A ,  y EB} 
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and their Hausdorff distance, 

dry(A, B) = max(sup (d(x, B): x E A}, sup(d(A, y): y EB}). 

We use l(x, y) to denote the Lorentzian distance function. Convergence of sets will be 

taken in the sense of Hausdorff distance, unless specified otherwise. For e>0 we define 

the e-subset A (') of A by 

A ~)= (xEA, d(x ,~-A)  > e}. (2.3) 

We use cl(A) and int(A) to denote the topological closure and interior of A and then 

b(A)=cl(A)-int(A) is the topological boundary. The closure, interior, boundary with 

respect to a subset ~ /c~wi l l  be denoted cl(A; q/), etc. Recall A is precompact if it has 

compact closure and A c c B  (A strictly contained in B) means A is precompact and 

cl(A)cint(B). 

A time function tE Cl(~ allc~ has everywhere past-timelike gradient Vt. Using 

the integral curves of Vt to transport coordinates from a fixed level set of t, we obtain 

the zero-shift coordinates (t, x) of t, in which the metric becomes 

ds2 = - ~ + g~i dxi dr/, (2.4) 

where a=a(x, t) is the lapse function of t. Unlike [B1], we do not need to assume 7/'has 

a global time function. 

We shall use the notations of Hawking and Ellis in describing causal relationships 

and refer there for terms not defined here. Recall a set A is achronal (resp. acausal) if 

no pair of points p, q EA, p~q  can be joined by a timelike (resp. nonspacelike) curve. 

The future domain of influence of A is 

I§ = {pE ~ : 3 q E A  such that q < < p } ,  

where q<<p if there is a future timelike curve from q to p, and the future domain of 

dependence of A is 

D§ = {p E ~: every past-inextendible nonspacelike curve ~ with 

~,(0) = p intersects A }. 

The past domains of influence and dependence, I-(A) and D-(A), are of course defined 

dually. We also set 

D(A)=D+(A)UD-(A), I(A)--I+(A)UI-(A). 
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Note that in general Ar but always AcD(A). Recall ([HE],[O'N]) that if A is 

globally hyperbolic, the time separation function 

l(p, q) = sup{length(y); 7 is a nonspacelike curve from p to q} 

is defined and continuous for p, q 6 A, and l(p, q) is realised by a nonspacelike geodesic 

(timelike if l(p, q)>0). 

Since we will be talking a lot about hypersurfaces, some definitions will help: 

S,-- o//. is a weakly spacelike hypersurface (WSH) if for each p fi S there is a neighbour- 

hood p E q / such  that 

S n ~ = b(l+(S n ~ ;  q/); q/). (WSH) 

By [HE] 6.3. I. this is equivalent to 

S n r an embedded, achronal, C O, i hypersurface which is closed in q/. (WSH') 

A useful consequence of this definition is that S is locally separating: for each p E S 

there is a neighbourhood p E q/such that q/= r U q/- O (S n ~ )  is a disjoint union where 

ql • =I• n 0//; w/t), and for any curve 7: [0; I]---,~ with ~(0) E q/-,  y(1) 6 q/+, there is 

0 < s <  1 such that y(s) E S N ~.  

We define the boundary of a WSH S by 

aS = cI(S)-S;  (2.5) 

then since S is locally separating it is easy to show that if S is achronal then 

OS = edge(S) 

where edge(S) is defined in [HE] p. 202. This boundary is clearly more general than a 

classical manifold-with-boundary. Two examples which are included are (a) aS con- 

tains isolated points (so we do not want S to be closed) and (b) aS is a graph over the 

boundary of an arbitrary bounded set Q c R " c R " '  t. The second example shows that 

this definition generalises the boundary data definitions of [BS]. 

A C k'a regular hypersurface M is a WSH which is locally C k'a for some k~>l and 

0 < a < l  and has everywhere timelike normal vector. (By regular we shall mean C 2' ~ 

regular.) We say M is uniformly regular if MUaM is a C 3 submanifold with boundary 

(in the classical sense) and has timelike normal vector on MUaM. For a C 2'~ regular 

hypersurface M we can define the following quantities: 
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- future unit normal vector N 

- tilt factor v = -  ( T, N )  

- second fundamental form A(X, Y)=(X, VrN) ,  for X, Y tangent to M 

- mean curvature H=trMA 

- induced gradient V M 

- induced Laplacian AM 

- volume form dVl~. 

As in [B1], we say that a regular hypersurface M satisfies the mean curvature 

structure conditions (MCSC) if there is a constant A such that 

IHMI <~ Av (MCSC1) 

IVMHMI ~ h(v2+v~l)  (MCSC2) 

where 1. I measures length on M. For example, if q~E cmcv), XE CI(T~) and F: T%- ,R  

is defined by 

F(p, v) = q~(p)+ (X, v) (2.6) 

and the mean curvature HM of M satisfies 

H~p)=F(p ,N(p ) )=cp(p )+(X ,N)  for all pEM,  

then M satisfies the MCSC with constant A=[[q~I[I+I[X[[~, independent of M. (If M is 

uniformly regular and there is a suitable time function then by [BI] Theorem 3. I, there 

is a global bound on v, depending only on A, I[HoM[[ and the time function.) 

From the triangle inequality in the unit hyperboioid we have 

L~MMA 2.1. Suppose T~, T2, 1"3 are unit future timelike vectors. Then 

arcosh} (T2, 7"3) ] ~< arcoshl(T,, T2)l+arcoshl(T , , T3) ] 
(2.7) 

1 ~<-(T 2, T3) <~ 2(T,, T2}(T ,, T3}. 

Motivated by graphs, we make the definition: 

the WSH's So, St are T-homotopic, 

S O ~- SI, 

if there is a (continuous) map 

h: S0x[0; 1] ~ 
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such that 

S, = h(S0• {t}) is a WSH, for all t E [0; 1], 

h: S0• {t} ~ St is a homeomorphism, 

h(x, .): [0; I] ~ ~ has image in an integral curve of T. 

If in addition 0St=0S0 for all tE [0; 1] then we say So, S~ are T-homotopic rel0S0; 

So~-SI rel aS0. 

The equivalence classes of this relation are natural spaces in which to consider the 

Dirichlet and variational problems. This will become clear in Section 4, especially with 

the generalisation to immersed WSH in Theorem 4.2. If the boundary is fixed and the 

surfaces are precompact, we see that the T-homotopy class does not depend on the 

choice of reference timelike vector T. The following useful lemma is a fairly straightfor- 

ward consequence of the definitions of WSH and T-homotopy and the causal geometry 

results of [HE] (see also [O'N] Chapter 14): 

LEMMA 2.2. I f  S is a WSH such that S is achronal in K, 

D(S) == K = 7,  

where K is compact and globally hyperbolic, and M is a WSH with 

then M=cI(D(S)). 

Proof. Let H+,H - 

M ~- S relOS 

denote the future, past horizons of S in K, and let 

H(S)=H § UH- ([HE], [O'N]). Now b(D(S)) consists of null geodesics, with endpoints 

(past for H +, future for H - )  on aS. Thus if StnH(S)ac(~, then S, must contain a null 

geodesic ending on aS, and since St is weakly spacelike, the T-homotopy cannot push 

this ray out of cI(D(S)). The proof follows by following St, t--, 1. [] 

Remark. The condition involving K is fundamental to our work on the Dirichlet 

problem, saying roughly that b(D(S)) is bounded and does not meet any "singularities" 

(metric/curvature or causal, such as closed null loops) of % Any weakening of this 

condition will need to be balanced by additional information about the singular struc- 

ture of b(D(S)) and/or a priori height bounds from barrier surfaces (e.g. the cosmologi- 

cal problem [G], [B 1]) or pde height estimates (e.g. maximal surfaces in asymptotically 

fiat spacetimes IBID. 
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Motivated by this lemma we made the definition: (S, K)  is a standard data set  if S 

is a WSH, K is a globally hyperbolic, compact set with 

D(S) = ~  K 

and S is achronal with respect to K. Note that this definition implies that aSPCa: the 

case where S is a compact Cauchy surface (with aS=Q) has been quite adequately 

treated in [G], [B1]. 

3. Interior gradient estimates 

The basic estimate (3.1) follows from a maximum principle argument similar to that in 

[BI] Theorem 3.1 and the full interior estimates (Theorem 3.7) follow in turn from the 

basic estimate and the existence of "approximating time functions", which are con- 

structed in Corollary 3.3. This construction is nearly optimal since the singular set Y 

((3.13), see also [BS] Corollary 4.2) arises naturally. As straightforward consequences 

of the interior estimates we get the convergence Theorem 3.8 and the contained light 

ray Corollary 3.9 (compare [BS] Theorem 3.2). 

TaEOR~M 3.1. Let  M be a regular hypersurface satisfying the structure conditions 

(MCSC) and suppose r E C2(~) is a t ime funct ion in the region {r>~0} such that 

M ~  ois  compac t  and a M n { r > 0 }  = ~ ,  

where Mr;,o= {r~>a} n M for  a E R. Further suppose there are constants  C I, C 2, C 3 such 

that 

(Vr, Vr) ~<-Ci -2 

Ilrlh ~< C, 

Ilrlh ~< C~ 

IIRicll ~< C3, 

where the norms I1" II are taken ooer the region {r~>0}. Then there are constants  r0>0, 

C such that in Mr> 0, 

log v+f(r) ~< C(1 +rma x) (3.1) 

where 

rmx = max{r(p), p E M} 
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and f E  C I' I(R+) is defined by 

n log(r) for 0 <  r <  r 0 

n(r/r0+log(r0)-l)  for r >- r o. 

In particular, for any e>0,  there is a constant C(e -I, A, C 1, C2, C3, rmax) and the a priori 

estimate 

v(p) <. C(e -1, A, C l, C 2, Cs, rmax) for all p E M~, .  (3.2) 

Proof. Note that, in contrast to the situation in [BI], the vectors Vr and T are not 

linearly dependent. I f  we let T~ be the future unit normal to the r-foliation and define 

v , = - ( r , , T ) ,  v 2 = - ( T 2 , N ) ,  

then we can estimate 

v, IVrl-'llrlh 

v2 <<- 2vv~, 

using the triangle inequality. In the following calculations we use the fact that the 

components of  N and unit tangent vectors to M, with respect to a T-adapted orthonor- 

mal frame, are estimated by v. 

We now apply the maximum principle argument of [Bl] Theorem 3.1 to the 

function 

~(v, r) = arcosh(v)+f(r).  

Since f (0 )= -oo ,  ~0 attains its maximum in M~> 0 and at the maximum point we have 

V M arcosh(v) +f ' ( r )  VUr = 0 
(3.3) 

AMarcosh(v)+f'(z) AMZ+f"(r)IvMTI 2 ~ 0.  

For the purposes of estimation, define ek=k/4n 2, k= l . . . . .  4, and let ~ =arcosh(v). Using 

[B1] Proposition 2.1 and estimating IIs by [ITII2, we have 

A M ~/, I> cotanh0p) (( 1 - e i/2n) IA ]2_ iVuW]2_ Cv2), (3.4) 

where C=C(Cb 6'2, Cs, A). The Schwarz inequality gives 

]AI 2 t> (1 + I / (n-  1 ) -e l ) ,~ -cH 2 
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where 21 is the eigenvalue of A with greatest magnitude. Now T M, the projection of T 
tangent to M, has length ITMI2----~'2-- I, SO as in [B1], 

IV~'~,l 2 =-A(VMv, TM) - (N, VVM v T) 

~< IvMvlx/TrZ-f- 1(1~,1 + vii TIh). 

Thus 

212 ~ (1 -em)]VM~12--Cv 2, 

and from the structure conditions we have 

IAI 2 I> (1 + 1/(n-  1 ) - e 2 ) I V ~ I 2 -  Cv 2. 

From [B1] 2.8, the structure conditions and C~ we have 

AM r >I - Cv 2. 

Substituting everything into (3.3) we find at the maximum point of q~ 

( ( 1 - e 3 ) f ' e  +tanh(~o) f") lvMT:12 <~ Cv2(l +f'). (3.5) 

Now, the triangle inequality for hyperbolic angles (Lemma 2.1) gives 

v ~< 2v I v 2 

and since [vurl2=[Vtl 2 (v~-1) and v I is bounded we have 

d ~< c(IVUrl~+ 1). 

Substituting this into (3.5) gives 

( (n l--~_ l -e3)f'Z +tanh(tP) f")  lVMrl2 <~ C(l +f')(l + lVMr[ 2) 

and since e3<n -z, the choice o f f  shows that 

IvMwI 2 ~< C(r0+F o) (1 + IVMr[2), 

Thus, choosing ~0 sufficiently small will bound IvMrl and hence at the maximum point 

of tp we have 

v~C.  
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Since f(r)--<Cr, this means 

~(1,', T) ~ ~max ~ C(1 +rmax) 

155 

which gives the required estimates. [] 

Remarks. (1) By analysing the curvature terms more closely [BI] we see the 

conditions on Ric and V2T can be weakened to 

Ric(N, N) >~-C 3 v 2, II~rgll~ ~< C2, 

where Ze r is the Lie derivative. 

(2) From (3.1) and the definition o f f ( r )  we see v=O(r  -n) as r $ 0 and it is clear 

from the proof that this can be improved to O(r -tn-~§ for any e>0. This is nearly 

optimal, as can be seen from the spherically symmetric solutions in [BS]. 

The following approximation result constructs time functions adapted to a given 

hypersurface; we have in mind in particular the case where S is a null surface. In that 

case the estimates are optimal, but if S is a regular hypersurface then of  course much 

better is possible. 

PROPOSITION 3.2. Let (S, K)  be a standard data set and let 

o~ = Knl+(S).  

Since K is globally hyperbolic we can define 

l (x )=sup{ l (y ,x ) :yES}  for x E ~  

where l(y, x) is the Lorentzian distance function ([HE] 6.7). Then l(x) is Lipschitz and 

satisfies 

II(x)-l(y)l <. Cd(x, y)/min(l(x), l(y)) (3.6) 

for x, y E ~ such that d(x, y)<~C -I rain(/(x), l(y)) 4, and 

l(y(s))-l(y(O)) >- s for  s >-- O, (3.7) 

for any future directed unit speed geodesic y c  ~.  

Proof. Let fl=flx(s) denote the geodesic from cl(S) to x which realises l(x). Since K 

is globally hyperbolic it admits a time function, t say, with lapse a and normalised 
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gradient T l = - a V t .  We can reparameterise fl by t, since along fl, 

dt _ (fl ' ,Vt) = - a - l  (fl ', Ti) >~min(a-l) >0.  
ds 

By the triangle inequality, 

�89 Ti) -I (fl', T) ~< (fl', TI) ~<2(T, Tl)(fl', T) 

so that (setting A=- ( f l ' ,  T)~>I), 

C-l;~-I <~ -~t <" C~-1 

where C=C(a,I (T,  Ti)l) depends only on the (fixed) time function 

to=t(fl(O)), h=t(x), we have 

fto ' dS dt 
l(x) = dt 

and by (3.9) it remains to estimate (fl', T) along ft. Since V#,fl'=0, 

-~ t  ~< d--~-t I(fl', V#, r) l  

cl,ll IIVTII, 

(3.8) 

(3.9) 

t. Now letting 

so by Gr6nwalls inequality, for any Sl, s2 E [0;/(x)], 

~.(sl) ~< exp(CIIVTII (tl-t0)) g(s2) 

~< C~.(s2), 

where C is independent of x and ft. From (3.9) and this estimate, there is a constant C 

independent of x E ~ such that 

C -I <. l(x)I(fl', T)l (x) c,  (3.10) 

We now use this to show (3.6). We may assume l(x)>l(y). Introduce g-geodesic 
normal coordinates (z a) in a convex normal neighbourhood o/r of x so that a : =  T(x), and 

let s A E S O ( n ,  1) be Lorentz-transformed g-geodesic coordinates such that 



a:l,=p'(x), 
kowski metric by r/, in ~r we have 

IIg-'fll ~< IIRiemll Izl 2 ~< C :  

if d(x, z)<~e. Defining the distance function on W, 

/ n \1 /2  

d(x,p)=l~o(~a)2 ) where p = (~),  

from (3. lO) we have the estimates 

C-rid(x, p) <<. d(x, p) <~ Cl-t d(x, p). (3.11) 

Letting ~ be the Lorentz metric in the (~) coordinates, we have 

IIg-~ll = IlAg'A-r/ll ~< IIAII 2 IIg-r/l[ 

<~ C,~2e 2 <~ Cl(x)-2 e2 

in B,={pE ~4/': d(x,p)<.e}. We suppose e chosen small enough that [l~-r/[l~<lO -4 (say). 

Let x I=fl(s0), so<l(x), be null-separated from y so that 

d(x, x 0 <~ 2d(x, y) 

for x~, yEB, .  The existence of x t in the almost-Minkowski neighbourhood B, is en- 

sured if d(x, y)<~e;t -2 (calculation) and we then have 

l(x) <~ l(xl)+l(x I, x) 

<~ l(y)+d(x, x 0 

<~ l(y)+ 2d(x, y) 

which gives, using (3. I 1) and (3.10), 

l(x)-l(y) <~ Cl(x) -I d(x, y) 

for d(x, y)<~e2-2<~C-II(x) 4. This gives (3.6), and (3.7) is just the reverse triangle inequal- 

ity. [] 

By smoothing we now have 
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SO that I[AIl~cl(D', T)I~cA. Letting IZ[2=(~,~(za)2) 1/2 and denoting the Min- 
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COROLLARY 3.3. In the setting o f  Proposition 3.2, let e>0 be given. With K ~) 

defined by (2.3), there is rE COO(K ~)) satisfying 

(1) r is a time function for r~>0, 

(2) dn({z=0}, S')~<2e, where S'=b(I+(S)) n K ~>, 

(3) l(x)/2<~r(x)+e<.21(x)for z(x)~>0, 

(4) IlVrll (x)<.C/(r(x)+e)<-Ce-'. 

Proof. By (3.6), l is differentiable almost everywhere in I§ with -Vl(x)=fl'(x) a 

uniformly timelike unit vector in l(x)~>6>0 by (3.7) and (3.10). Standard causality 

results show that l(x)=0 exactly when x E b(I+(S)), so setting l(x)=0 for x E K-I§  

makes l E C~ Mollifying ! with parameter sufficiently small (depending on e and K) 

produces r+e,  a function approximating I and with uniformly timelike gradient for r~>0. 

Now (2) follows by noting that d(x, S)<.l(x) for all xEI+(S). [] 

Remarks. (1) Since the interior gradient bound (3.1) depends on IIV2rll, it would be 

helpful to estimate IlV2lll . This appears to be rather more difficult than the IlVlll estimate, 

but fortunately such a bound is not essential to the arguments to follow--we just have to 

deal with non-explicit interior estimates. 

(2) By adapting the construction of [B1] Proposition 3.2, we could combine a 

sequence of such time functions r, to construct r*, a time function for r*>0 and such 

that S={r*=0}. We will not need this result. 

(3) Similar constructions give time functions in I-(S)n K. 

(4) The level sets {r=0} give C O* regular (spacelike) hypersurfaces which approxi- 

mate S, even when S is a null surface. 

From these time functions we derive 

PROPOSITION 3.4. Suppose (S, K) is a standard data set. For any e>0 there are 

functions r +, r-~, in C| time functions in {r+(x)>0}, {r~(x)<0} respectively, 

such that the sets 

IE = {x E K('): r+(x) > 0 o r  r~-(x) < 0} (3.12) 

form an exhaustion (relative to K) o f  

I = F ( s )  o I - (S)  u ( s - x )  

(in the sense that there is a sequence e k ~, 0 such that I, jccI~k for j<k  and l=U,>ol,). 
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Here Z=Y.(S) is the singular set of  S, defined by 

Y = (x E S: x = y(so) for some 0<s0<l ,  where 

y: [0; 1]--* ~ is a null geodesic such that y(s) E S (3.13) 

for all sE(0; 1) and {y(0),7(1)}raS }. 

Furthermore, there is a constant C such that, for x E aS O Z we have the estimates 

C - I f 2  ~ d(x, It) ~< 2e. (3.14) 

Remarks. (1) The singular set Z also appeared in [BS] Theorem 4.2 and is a natural 

construction, especially in view of the contained light ray result, Corollary 3.9. Note 

that the motive (and the method) for introducing Z here is quite different from that in 

[as].  

(2) The definition (3.13) makes sense even if S is not achronal. 

Proof. All sets are defined relative to K. Let 

oil+ = I + ( D - ( S ) )  

S+ = b(~ 

so by [HE] 6.3.1, int(K)fl S§ is an achronal WSH with OScS+. Applying Corollary 3.3 

to S+ gives an approximating time function r~ +, with e normalised by condition (2) of 

Corollary 3.3. Now define 

I + = {x E Kr r~+(x) > 0} 

and note dn(S +, {r~+=0})~0 by Corollary 3.3. Since I~ + n S+ = ~  the I, + form an exhaus- 

tion of q/+ in the sense described. We now have 

LEMMA 3.5. If x E S  and x $  ql+, then there is a future-directed null geodesic 

y: [0; 1]--*K such that 7(0)=x and 7(I) EaS. 

Proof. Let ykEl-(x) be chosen so that yk--~x. Since ykSD-(S) (because 

x $  qI+=I+(D(S))), there are future-inextendible nonspacelike curves ~'k(S) such that 

7k(0)=yk and ~'k n S=~.  Let 7: [0; s l ] ~ K  be the affinely-parameterised future-inextendi- 
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ble limit curve, with 7(0)=x. Since K is compact and globally hyperbolic, 0<s~<oo. By 

reparameterising ~'k we may assume 7k(s)---'7(s) for s<-sv Define So E [0; s~] by 

s o = inf(s > 0; 7(s) ~ S}, 

so that 0~<s0<sl because S ~ K .  If y=y(s0)~ S then y E aS by definition and we are 

done, since 7 is nonspacelike and S is weakly spacelike. Thus, suppose y=7(s 0) E S. 

Since S is locally separating, there is a neighbourhood ~7~ of y separated by S N ~1 into 

disjoint open sets (7~1 = 6  ~ NI-+(S). Since SN ~?t is achronal and 7 is nonspacelike with 

7(s') ~ S N ~7 t for s '>s  o, we must have ~k(S') E ~ for some s '>s o and k>~k o. Since 

7([0; s0])cS is compact it can be covered by finitely many locally separating neighbour- 

hoods ~ and then ~?=LIj~. is separated by ~TNS into ~?~=t.lj~:j. Then 7~(s')E (7 + and 

)'k(0) E ~7- SO 7k(S)6 S for some 0<s<s ' ,  by the separating property. This contradicts 

the construction of 7k and finishes the proof. [] 

Now define 

Z+ = (xES:  3 future-directed null geodesic 7: [0; 1] --*K 

such that 7(0) =x ,  ~,(1) E aS and 7[0; 1) c S} 
(3.15) 

and ~ ,  S_, r~-, I~ and E_ dually. Then Z = Z + N Z  and l=q/+ U q/_, so the I, form an 

exhaustion of I. 

Let d(x), l(x), xE~ denote the Riemannian, Lorentzian distance to S+ respec- 

tively. The estimates (3.14) follow by noting firstly that d(x)<~l(x) for x• ~+, by the 

Riemannian and Lorentzian triangle inequalities, and secondly that by (3.6), IIV!2[I~C 

and thus 

C-II2(x) <~ d(x) ~ l(x). 

Applying similar inequalities to q /  gives (3.14) for x E S+ N S_ =aS u X. [] 

The following lemma summarises some basic properties of the singular set E. 

LEMMA 3.6. Let S, K, Z, I~ be as in Proposition 3.4. 

(1) Suppose M is a WSH such that M-~S rel aS. Then 

Z(M) = Z(S) and M c  cI(D(S)). 
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(2) Z(S) is a disjoint union of  null geodesics which do not have conjugate points. 

(3) Suppose M is a WSH satisfying 

M = S '  for some S' c S  (3.16) 

where the T-homotopy satisfies D(Mt )ccK and 

d~OM t, OS) <~ C-le 2, (3.16') 

where C-le 2 is the constant of(3.14). Then 

aM N cl(M n I,) = 0,  
(3.17) 

M = (M fl I~) U {x E M: d(x, aS u Z) ~< 2e}. 

Proof. The arguments of Lemma 2.2 give (1) directly. To show (2) suppose 7 c Z  is 

a null geodesic with a pair of conjugate points, so there are points p, q E ~ such that 

p<<q. Then y may be perturbed to give a smooth future-timelike curve ~ with p=~(0), 

q=)7(1). Since S is locally separating we can find a neighbourhood ff of ), with ~cf f  and 

such that S separates ~7 into 0 +, ~7-. There is 6>0 such that r ~7 + for 0<s-~<6 and 

~(s)E~7- for 1-6<-~s<I, so there is s0E(6; 1-6)  which is the first point with ~(s0)ES. 

Then ~(s)E ~7" for 0<s<s0, contradicting ~(s)El-(r for s<s0. If )'l, y2~Z are null 

geodesics with p E ~  N ~2, then in any neighbourhood of p there is a broken null 

geodesic in S, which contradicts locally achronality. The first part of (3.17) follows 

from (3.14) and (3.16) and the second from the fact that M lies in I(S) U S U (e-neighbour- 

hood of aS). [] 

Combining these results gives the full interior gradient bound: 

THEOREM 3.7. Let S, K, Y~, I~ be as in Proposition 3.4. There is eo=eo(S, K) such 

that for any 0<e<eo and A<oo there is a constant C=C(e, A, K, S) such that if  M c c K  

is any regular hypersurface satisfying the structure conditions (MCSC) with constant A 

and the conditions (3.16), so that in particular 

d~aM,  aS) < C-le 2, 

then M satisfies the interior gradient estimate 

v(x)<<.Cexp{-max(f(r+(x)),f(r-/(x)))} <~C(e -j) for x E M n l , ,  (3.18) 

where f(r)  is defined in Theorem 3.1. 

11-888289 Acta Mathematica 161. Imprim~ le 27 d~cembre 1988 
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Proof. Lemma 3.6 (3) shows that if xEMnI~ then x~OM and either xEq/+ or 

x E ~_, so the basic interior estimate applied with r~ + or r~- (or both) gives the gradient 

estimate. [] 

Notice that this estimate does not depend on the precise form of OM, requiring 

only that aM be close to OS. Lemma 3.6 also shows that if M-~S relaS then we get 

interior estimates on M - Z ,  since l~flM is an exhaustion of M - Z .  There is an 

alternative way of viewing the interior estimate (3.18), based on the "gap" at the 

boundary. We can illustrate this with an easy estimate derived from the gradient 

estimate of [CY]. If M=graph u u has constant mean curvature A in R n+~, then the 

Cheng-Yau estimate gives ([CY], [El) 

IVMt~l <~ c~(1 +(LA) 2) 

where (for this discussion) 

/y(x) = (Ix--yl 2-  (u(x)- u(y))2) I/2 

and {x: ly(x)<L}c,--Q,--R". 

Now suppose x E Q  and Bu~(x)=Q. Applying the IVUll estimate at xEB~(y),--g2 

gives 

C,(1 +(RA) 2) ~ IVM/y(x)l z 

>- 1 +l,(x) -2 ( (X-  r), N(x)) 2 

where X, Y are the position vectors in R"' ~ and N(x) is the normal vector to M at x. 

Defining the gap parameter 6 of x at aBR(x) by 

we see that 

1 - 6 =  sup R-Ilu(x)-u(y)l (3.19) 
y E aOR(x) 

( X -  Y, N ( x ) )  2 = v(x) 2 ( ( x - y ) ' D u ( x ) - ( u ( x ) - u ( y ) ) )  2 

v(x) 2 Ix -y l  2 ( IDul(x)- (1  _~))2 

ify E aBR(x) is chosen so that (x-y) and Du(x) are parallel. Since ly(x)2<.lx-Yl 2, we have 

either IDul(x)<~l-r/2 (and then v(x)<~V 2/6 ) or 

IW~(x)l 2 ~ 1 + v(x) 2 ~2/4 



REGULARITY OF VARIATIONAL MAXIMAL SURFACES 163 

which gives the interior estimate 

v(x) <. Cn(1 +(RA)2)/c~, (3.20) 

when B3s(x)ct2. Thus the gradient is bounded in terms of the gap 6, which measures 

the "distance" from the graph to the lightcone over OBR(x). The estimate (3.18) has 

similar qualitative behaviour, with the decay estimate of Corollary 3.4 for IlVrll playing 

the role of the gap. 

The first consequence of this estimate is a local convergence theorem for se- 

quences of regular hypersurfaces. A corollary of this convergence theorem is a version 

of the "contained-light-ray" Theorem 3.2 of [BS] for Dirichlet problem solutions. In 

[BS] this was proved using comparison surfaces and applied to variational solutions: 

the proof here is quite different. 

THEOREM 3.8. Suppose Mk, k= 1,2 .... is a sequence o f  C 3 regular hypersurfaces 

with mean curvatures Hk satisfying (MSCS) with constant A, and that p is an 

accumulation point o f  the Mk with neighbourhood all, precompact, connected and 

simply connected, such that 

a Mk n q/ = o ,  

Mknq/ is connected for  k= 1,2 . . . . .  

Then there is a subsequence, also denoted Mk, and a WSH M c q /  such that p E M, 

aMn q/=f~ and du(MkNq/,M)--~O as k---~oo. Furthermore, M - Y ( M )  is a C 2,a regular 

hypersurface with mean curvature HE C O' a(M) and Hk---~H in C~ where the singu- 

lar set Y.(M) is defined by (3.13). 

Proof. The conditions on Mk and q/imply that Mk separates q/into two disjoint 

connected open sets, q/k+, q/k- say. (This is an elementary homotopy argument.) 

Cover cl(q/) by a finite number of coordinate neighbourhoods. Since each Mk is locally 

a Lipschitz graph, we can apply Ascoli-Arzela to get a uniformly convergent subse- 

quence Mk---~M. The limit surface M also separates q/(take the limits of q/k+, q/k-) so 

aMN q/=@ and hence M is a weakly spacelike hypersurface. Let x E M - Y , .  From the 

interior gradient bound, Theorem 3.7, applied to Mn q/', where q/' is a neighbourhood 

ofx such that q/' t3~=@, there is a neighbourhood xE q/" such that Mkfl q/" is uniformly 

spacelike (since x E I~ for some e>0, setting q/",-cl~). Thus Mk t3 q/" is the graph of a 

function satisfying a uniformly elliptic equation with Hk E C ~, uniformly, so satisfying 
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uniform C 2' a estimates by elliptic regularity ([GT] Chapter 8). The remaining conclu- 

sions follow immediately. [] 

Remark. The connectedness conditions on q/ are imposed for simplicity only: 

since we're only interested in applying this when ~ is a local coordinate neighbour- 

hood, this causes no problem. Notice this result does not require that Mk be achronal. 

COROLLARY 3.9. ("Contained-light-ray", cf. [BS] Theorem 3.2.) Suppose M is a 

weakly spacelike hypersurface, relatively compact, such that there is a curve 

y: (0; 1)-*M which is a null geodesic. I f  there is a sequence Mk, k= l, 2 .... o f  C 3 regular 

hypersurfaces satisfying the mean curvature structure conditions with constant A and 

such that Mk--*M, then there is a null geodesic extension 

y*:[So;Sl]-->MUOM, s0~<O, sl~>l, 

of  y such that {~*(So), y*(sl)}=OM. 

Proof. By the convergence theorem, y((0; 1))c~:, and 57 consists of null geodesics 

between points of aM. El 

4. The Dirichlet problem 

We are now ready to give general conditions under which the Dirichlet problem, 

given a WSH S with boundary set aS and a mean curvature 

function F(x, v) satisfying (MCSC), find a regular (DP) 

hypersurface M with aM = 0S and HM = F(x, N)IM, 

is solvable. Unlike [BS] which proceeded from the solution of the variational problem, 

we use the solvability for smooth data [B1] and the interior estimates of the previous 

section to obtain the solution, by approximation. In the following sections we will use 

these results to show regularity for local variational extremal surfaces, which in turn 

allows us to sharpen some DP results. As noted in [B1], the solution need not be 

unique. 

We start with a basic existence theorem for achronal data, followed by two 

generalisations. The first generalisation deals with immersed WSH's  and is based on a 

simple extension of the idea of T-homotopy equivalence. The construction of the 

auxiliary spacetime ~ there indicates that the T-homotopy approach is the natural one 
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for this problem. It was recognised in [BS] and [B1] (see also [Q]) that the gradient 

estimates require only local achronality, and the result is the logical completion of this 

observation. Technical requirements prevent us from getting the strongest possible 

result here, but these can be overcome by invoking the variational regularity result of 

Section 6. Although this result will cover the case of boundary branch points (e.g. take 

an immersed surface spanning a double loop in R 2' l), it does not allow for (moveable) 

interior branch points, and such solutions have been constructed using the Weierstrass 

representation ([K], see also [T]). It may be that an analogue of Osserman's theorem on 

branch points for minimal surfaces ([O]) holds here also. 

The, second generalisation concerns spacetimes with rough metric, g E C O, 1. Such 

metrics have been considered in the literature (e.g. [DH], [Tb]) with distributional 

curvature representing some idealised matter distribution. Rather than take the metric 

to be C | except across some surface of discontinuity, as is usually done, it is more 

natural here to work with a sequence of C | approximating metrics with some additional 

control on components of the distributional curvature (RM2,3). As a consequence the 

statement of Theorem 4.3 is technical, although the hypotheses are physically rather 

natural. 

THEOREM 4.1. Suppose that (S, K) is a standard data set and that F(x, v) satisfies 

MCSC. Then there is an achronal regular hypersurface M ~ K  with singular set Z=Z(S) 

(see (3.13)) such that 

(1) M-~S rel OS (so OM=OS) 

(2) M - Z  is a C 2"~ regular hypersurface, for any aE(0; 1) 

(3) Hl~(x)=F(x, N(x)) for all x E M - Z  

where N(x) is the future unit normal to M at x. 

Remarks. (1) If FE C k'a then elliptic regularity shows that M - E  is C k+2'a for k>~l. 

(2) There is no condition on the regularity of the boundary aM: compare [BS] 

Corollary 4.2. 

(3) If there are barrier surfaces present, then the condition that D(S) be precom- 

pact can be relaxed, along the lines of [B1] Theorem 4.3. Instead we need that the 

"accessible domain" A(M)cD(M),  bounded by the barrier surfaces and pieces of the 

Cauchy horizon H(M), be compactly contained in a globally hyperbolic set. 

(4) It is an interesting pde question to determine the regularity of M across the 

singular set Y(M). I fp  Ey, a null geodesic in Z, then by comparing M with light cones 
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based at points of ~, near p we see that M has a (null) tangent plane at p and the second 

difference quotient of  M is bounded, so it is reasonable to conjecture that M is C l'a 

near p. 

Proof. Proposition 3.4 constructs sets Ij and comparison time functions r f ,  r f  

where e=ej satisfies 

< j = 0 , 1  . . . .  

and t h e / j  form an exhaustion o f I = # / +  U q/_ U(S-Z),  satisfying (3.17) of  Lemma 3.6. 

Choose SF{rf+~=O } such that aSj is a smooth submanifold satisfying 

dFl(OSi, OS) < 2ej+, 

and Sj satisfies (3.17) of  Lemma 3.6, so that D(Sj)c,--K. Since K is globally hyperbolic 

and has a time function, we can apply [B1] Proposition 3.2 to construct a time function 

having Sj as a level set. Then the argument of [B1] Theorem 4.2 gives a regular 

hypersurface Mj~Sj rel0Sj with mean curvature Hj(x)=F(x, Nj(x))for x EMj. Since 

Mjcr compact, and OMj n lk=~ forj~>k, we can apply the convergence Theorem 3.7 

to construct a limiting regular hypersurface M with boundary aM=limOMj=OS, with 

smoothness determined by elliptic regularity. [] 

In order to extend this to immersed surfaces, we need a definition: 

An immersed WSH is a pair (f, S) where S is a C | open n-manifold and f :  S~~  

a C o. I map which is locally weakly spacelike. That is, 

Vx E S, 3 neighbourhood x E 0//c S such that f(~ is an achronal WSH. (4.1) 

The boundary, denoted ~S, is defined in the usual way 

bS = cl(f(S))-f(S). (4.2) 

For short we will say that S is an immersed WSH, the map f is understood, and the 

immersed WSH's  So, S~ are T-homotopic, So-St, if there is a homotopy 

h: S• 1]---~ ~ 

where h,: S x {t}--, 0//" is an immersed WSH for 0~t<~ 1, such that S0=(S, h0), S I =(S, h0 

and h(x): [0, 1]---~~ image in an integral curve of T. Again, if ~St=~S for 0<~t<~l then 

So, S~ are T-homotopic relative to OS, So=S~ rel aS. 
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This clearly includes the previous definition of T-homotopy as a special case while 

preserving the idea of graphs. In fact this can be reduced to the previous (graphical) 

situation by the following standard construction. 

S u p p o s e f ( S ) c c K ,  a compact globally hyperbolic set, and let 7x(s) denote the unit 

parameterised integral curve of T with y~(0)=f(x), for xEK.  Define the auxiliary 

Lorentz manifold 

~ =  {(x, t): x E S, t-(x) < t < t+(x)} (4.3) 

where t -+ E C~ satisfy 

t + (x) = sup{s: 7f(,)(s) E K} 

for xES ,  and t-  is dual. 'f" is equipped with the Lorentz metric 

=f*(g) 

where f :  ~---~~ is the smooth immersion 

f (x ,  t) = yf~x)(t). (4.4) 

Note that, although ('f',~) is naturally a C 2 Lorentz manifold, (x,t) are not good 

coordinates in ~ (since they are only Lipschitz with respect to ~) and t need not be a 

time function. However, if Sl is an immersed WSH and S~-~S in K, then S ~ S  in ~ in 

the sense of the original definition (Section 2) since S~ can be written as a graph over S 

in ~. 

The direct application of the existence Theorem 4.1 to the immersed WSH S, 

considered as a WSH in ~,  meets with the difficulty that ~ may not have a (precom- 

pact, globally hyperbolic) neighbourhood ~ in some larger Lorentz manifold, since 

b(~),  defined via the metric space completion of ~, can be quite bizarre (e.g. if S has a 

boundary branch point). The following result sidesteps this problem, at the cost of 

excluding such examples; the full result can be derived from the regularity for vari- 

ational extrema in Section 6. 

PROPOSITION 4.2. Let ( f ' ,  S') be an immersed WSH and 37 the auxiliary Lorentz 

manifold constructed from ( f ' ,S ' ) .  Suppose that S c S '  is a WSH with a S c S '  (with 

respect to r and such that D(f'(S)) is precompact. Let F(x, v) satisfy the MCSC in ~. 

Then there is an immersed hypersurface (f, M) such that M-E(S)  is regular, aM=~S, 
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M~SrelOS,  and with mean curvature HM(x)=F(f(x),f,(N(x))), x E M - Z ,  where 

f: ~-*~" is the immersion defined by (4.4)from (f ' ,  S'). 

Proof. The hypotheses ensure that D ( S ) c c  f', so the previous existence theorem 

gives M as a regular hypersurface in ~ with immersion f :  M ~  ~ defined by f=f[M. [] 

The second generalisation of the basic existence theorem is to the case of merely 

Lipschitz-continuous metric, g E C O' i(~/). Clearly some restrictions on g are needed in 

order to carry through the previous arguments: rather than phrasing these in their weak 

(integral) form and then using mollifiers, we work directly with a sequence of approxi- 

mating metrics. This is not an unnatural approach physically, since a metric with 

distributional curvature should be regarded as an idealisation of smooth metrics. 

We say that g E C o, l(0g), q/precompact, satisfies the rough metric conditions if 

there is a sequence of metrics gkE C2(q/) and a constant C such that 

gk---)g in C~176 (RM1) 

llagkll ~ c ,  

for any future unit (w.r.t. gk) vector N, 

Rick(N, N) >I-Cv~ 

(RM2) 

(RM3.1) 

where vk=-g,(N,  T) and RiCk=Ricci(gk), 

}lLergkll + IIV'k)Ler g,II ~< C (RM3.2) 

where V (k) is the covariant derivative of gk. 

Roughly speaking, the second condition says that the delta-function components of 

Ric(g) satisfy the timelike convergence condition, and the third says that T satisfies 

KiUing's (isometry) equations up to non-distributional terms. Note that if g E C I' i(0//) 

then the sequence gk can be constructed by mollification. 

THEOREM 4.3. Suppose that g E C O, 1(70 satisfies (RM), F(x, v) satisfies (MCSC) 

and that (S, K) is a standard data set with S a uniformly regular hypersurface. 

Then there is a C I'a regular hypersurface M such that M ~ S  relaS with (weak) 

mean curvature 

HM(X)= F(x,N(x)), x E M .  
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That is, for  all cp E i C~(M), 

fM{ CP(v-'F(x, N ) - d i v  M T ) -  (vMq0, T) } dVM(X) = O, (4.5) 

using [B1] (2.7). 

Proof. Since S is uniformly strictly g-spacelike, by passing to a subsequence we 

can assume S is also strictly gk-spacelike, k~>l, and that there is an e>0 such that the 

metric 

= g ~ - t T |  

satisfies 

[gk(X,X)>O f o r k t > l ,  and 
~(X,X)>O =~ [g (X ,X)>O any vector X (4.6) 

and S is strictly ~-spacelike. 

Using Corollary 3.3 we can thus construct ~-approximating upper and lower time 

functions r~ for S, which by (4.6) are also time functions for all the gk. As in Theorem 

4.1, we can solve the Dirichlet problem for mean curvature F(x, N) in the metric gk with 

smooth boundary manifold in the level set {r~ =0}, giving a sequence (Mk, OMk) of C ~, 

g,-spacelike hypersurfaces with OM,--.OM in Hausdorff distance. Since the rf are 

time functions with respect to all the gk, Proposition 3.4 and the rough metric condi- 

tions (RM) give uniform interior gradient bounds in M k fl 1~. To see this we observe that 

(RM2) and (RM3) allow us the control the terms in the gradient estimate (3.1) which 

involve Ric k and T and its derivatives, while (RMI) controls the terms [[Wk)zr~[ l, since 

r;  are already C 2 functions by construction. 

Since gk--*g in C~ we have a subsequence M k converging to a g-spacelike 

hypersurface M with OM=OS, satisfying an interior gradient estimate 

v(x)<.Cj for xEMNIj ,  

and taking the limit of the weak form of the mean curvature equations satisfied by the 

Mk (notice the Mk satisfy uniform interior C I' a bounds), we see that M satisfies (4.5), as 

required. [] 
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5. Foliations and the eigenvalue condition 

We intend to show regularity for variational extrema by comparing such surfaces with 

foliations by smooth surfaces of prescribed mean curvature; in this section we describe 

conditions under which such foliations can be constructed. This becomes an exercise 

using the implicit function theorem, once we can show that the linearised operator is 

invertible. Thus, the main result here is Theorem 5.2, which shows invertibility for 

surfaces given as graphs over sufficiently small domains. It is somewhat curious that 

this holds regardless of the boundary values, and that this is exactly the form in which 

the result will be required in the next section. Using the resulting foliation and its 

integral uniqueness identity, we can easily show (Corollary 6.3) that DP solutions are 

locally maximising for their associated variational problem. This integral identity is the 

key to showing the regularity of variational extrema in general, although the argument 

is more delicate than in the case of regular hypersurfaces. 

If X is a timelike vector field and M is a regular spacelike hypersurface, then the 

variation of the mean curvature of M when deformed by X is given by ([CB], [B1]) 

X(Hx) = -~s H(s) s=O 

= -AM(X, N) + (X, N) (IAI2 +Ric(N, N))+ (X, VMH). 

Now suppose M has prescribed mean curvature, HM(x)=F(x), x E M where F E C t(~ 

Then the variation having mean curvature F implies 

AM(X, N)  = (X, N)  (IAI2+Ric(N, N))+(X, VMF)-X(F) 

= (X, N)  (IAI2+Ric(N, N)+(N, VF)) 
(5.1) 

so the linearised prescribed mean curvature operator is 

LMq~ = -  AM qg+(ial2+Ric(N, N)+ (N, VF)) qo 

and we say the regular hypersurface M satisfies the eigenvalue condition if LM>0; 

A,(LM) = �9 r fMq~LMg/fM q~2>O" (5.2) 

Note that the constant mean curvature foliation equation has a slightly different 

linearisation, determined by the condition X(Hx)= - 1 rather than X(Hx) = (X, VF). The 
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standard situation satisfying the eigenvalue condition is where the timelike conver- 

gence condition, Ric(T', T')~>0 for all timelike T', holds and F is nondecreasing to the 

future. 

From the eigenvalue condition and the implicit function theorem we readily have 

PROPOSITION 5.1. Let { Q ~ , - l < r < l }  be a C l family of  uniformly regular hyper- 

surfaces considered as graphs over if2= Qo with height defined by the lengths o f  T- 

integral curves through ~,  of  functions cb~ fi C3'~(g2) with boundary values qg ~lan, (Thus 

r~--~r is in C l(( - 1;1), C 2,~(Q))). Suppose that F fi C I(QxR) is such that L M satisfies 

the eigenvalue condition for all M with boundary values q~ and mean curvature FIM. 
Then there is a foliation with leaves M~=graphn(u~) such that H(r)=HM=FiM" and 

OM~=OQ~=graphan q~. Furthermore, the relation 

t = u~(x) (5.3) 

intrinsically defines a time function r fi C I(f2 x R). 

Proof. Let ~ be the Banach manifold of uniformly regular C z' a hypersurfaces with 

boundary aQ~, - l < v < l ,  with local charts modelled on Rx{wfiCZ'a(Q),wlon=O} 
about u fi.~, ulan=q%, by the map 

(s, w) ~ graph(u+ q~,+s-q3,+ w). (5.4) 

The existence results of [B1] show that .~ contains hypersurfaces h4, (not necessarily 

unique) with prescribed mean curvature FIM ,, for each - l < r < l .  Now define the C ~ 

map ~:  ~ C ~  by 

~(M) = HM-FIM. 

The previous calculation shows that in the chart (5.4) about M such that ~(M)=0,  

has linearisation 

D 2 ~(M) w =--LM(vw), 

where the tilt function v of M is bounded by the gradient estimates of [BI], so that 

D 2 ~(M) is invertible, by the eigenvalue condition. The implicit function theorem then 

gives a C l map s~us,  Isl < , graph(u0)=M, such that 

~(graph us) = O. 
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Thus, starting with M0=h~t0, this family of surfaces can be extended to r~-~u,, 

- l < z < l ,  since the gradient estimates of [BI] and elliptic regularity ensure that 

a=lim~_,~0 u~ gives also a uniformly regular hypersurface with mean curvature F. Now 

~(u~)=0 implies that it~=au~/ar satisfies 

f 
L%(v/~) -- 0 

u~la~ = -~-~ ~ > O, 

so by the eigenvalue condition and the Hopf maximum principle,/t,>0. Thus the level 

sets of r define a foliation and by differentiating (5.3) we get 

ar 
1 =//3 at 

O= au +/~, ar 
Ox Ox ' 

SO rE CI(~• [] 

The next result shows that the eigenvalue condition holds on sufficiently small 

regions. It will be somewhat simpler to describe this using the blowing up procedure to 

normalise the region of interest. Thus, consider geodesic normal coordinates (x, t) 

about a fixed point p E Wand suppose for simplicity that T(p)=a,. Given the parameter 

eE(0; l ] ,  we define the blow-up metric go(X,t) on the cylinder ~--Bl(0)x(-2;2)  in 

Minkowski space by 

go(x, t) = o-2 g(ox, or), (5.5) 

so that go is just a rescaling o fg  in a o-cylinder neighbourhood ~r ofp.  Thus, with a 

representing derivatives with respect to the standard (x, t) coordinates in ~, we have 

Ilgo-~ll+llagoll+llaZgoll <. c o  ~ (5.6) 

where 7/is the standard Minkowski metric and C is a geometric constant depending on 

curvature bounds near p. 

TnEORI~M 5.2. There is an e0>0 (computable and depending only on n) such that, 

i f  M is any uniformly regular hypersurface defined as a graph in ~ equipped with 

metric g satisfying 

IIg-r/ll+ Ilagll+llaZgll ~< e (5.7) 
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and with mean curvature HI~=FIM, where FE Cl(~) satisfies 

Ilfll2+llafl[ ~< e, (5.7') 

such that e<<,eo, then LM satisfies the eigenvalue condition. Furthermore, the first 
eigenvalue of LM defined by (5.2) satisfies 

2,(M) ~> �89 > 0 (5.8) 

where 2(n) is the first Dirichlet eigenvalue of  the flat Laplacian on the unit ball in R n. 

Proof. We refer to [B1] for any notation used here without explanation. Deriva- 

tives in spatial directions (with respect to x-coordinates) will be denoted by D, and c 

denotes any constant depending only on n. 

Suppose qo • C~(M) and let u be the height function of M, so M=graphnt(0 ) u. By 

extending q0 constant along the t-coordinate lines, we can also consider q~ E C~(B~(O)). 

An integration by parts followed by the Schwarz inequality shows that, for any a E R, 

fMIV~uI2q~2<-4 f (u--o)21VM~OJ2+2 fMlu--alIAMUI~o 2. 
Since u~-umi.<~2(l+e), by (5.6) and [Bl] (2.8), we have 

so the identity v2=dlVMulZ+ I implies 

fMq~2V2 . ( l +ce) fM(41VMq~12 +q~2). (5.9) 

Now, by the definition of :t(n), 

:M~2=fn~o2(x)v-'(x)X/g(x,u(x))dx 
j (0)  

( 1 + e) ~(n)-I JB, ID(q~v- ~)12 dx 

I(1 + ~) ;t(n)-' Jnf, (IDq~lZ+ q~2v-21OvlZ) v-' dx. 
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A standard computation (see [B 1] Theorem 3. I) shows that 

and thus 

~l  2 I> (1 + 1/n) v-21VMvl2-cev 2 

>I (1 + 1/n) v-21Dvl 2- c e v  2 

o 2 ~< ~(1 + ce),Z(n) -~ y(IVMq~I2+IAI 2 qo2+ceqo2v2). 

Using (5.9) to absorb the final term gives 

fn~o2 <~( l +ce) A(n)-I fn(IVM~12 +lal2 ~2), (5. lO) 

and we can now estimate 21(M): 

f u  qgL~t q~ ~> fM (IVMogI2+IAI2 q92--ceq)2v2) 

> / L  {(1 -ce)  (IVM~I2+IAI 2 ~02)- ct~o 2} 

(}( l-ce)  2(n)-ce) ~ 2 .  
JM 

The conclusion follows for e~<eo where eo is chosen so that the RHS coefficient is 

>~2(n)/2. [] 

Notice that this result does not require any a priori estimate on the tilt of M, but 

only that M be smooth enough for the calculations to be sensible. 

Now, if M=graphu is a regular hypersurface through p with mean curvature 

HM=FIM for FE Cl(~),  the rescaling defined by 

uo(x) = u(ax), xEB,(O) 

Fo(X, t) = aF(ax, at), (x, t) E 

puts us in the situation of Theorem 5.2, with e=Co 2. Thus, for all cr sufficiently small, 

and any regular hypersufface il4 with mean curvature F1M (and OMN c~o(p)=~) the 

eigenvalue condition is satisfied on M N qgo(P). 
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6. The variational problem 

Given a mean curvature function F E C '(~),  we define the variational functional IF(S) 

for S a WSH by 

IF(S) = ISI- / Fdvr,  (6.1) 
J V(S o, S) 

where [SI is the induced area of S and V(So, S) denotes the (signed) (n+l)-volume 

bounded by the reference surface So and S, with S~So. If as~aSo then the remaining 

component of bV(So, S) is taken to be foliated by T-integral curves between aS0 and aS. 

Given a connected T-homotopy class ~: with So E ~:, we have the associated variational 

problem 

(VP)~: maximise le(S) amongst S E ~. 

It is well-known ([A], [AB], [Go]) that if ~ satisfies some boundedness condition, 

then the extremal of (VP)~ is attained by a WSH. (For completeness, we describe a 

basic existence result below.) In this section we will show (Theorem 6.4) that these 

extremals are in fact regular hypersurfaces. More generally, we show that if M is a 

WSH which is locally extremal for Ir in the sense that for every p E M there is a 

neighbourhood p E q/, '-~ such that I~M)>~I~M') for any M' such that V(M, M')call, 

then M is a regular hypersurface away from the singular set Z=Z(M) defined by (3.13). 

The existence of extremals for the variational problem can readily be deduced 

from the following basic result. 

PROPOSITION 6.1. Suppose Sk, k = l , 2  .... is a sequence of  weakly spacelike 

hypersurfaces, p is an accumulation point o f  the Sk and �9 is a cylinder neighbourhood 

of  p such that OSkn~ll=~ and SkNall is connected for k = l , 2  . . . . .  Then there is a 

subsequence, also denoted Sk, and a WSH S c ~  such that pES ,  a S N ~ = ~  and 

dH(Skn all, S)--*O as k - - ~ .  Furthermore, i f  we set 

= IS[-fnt-ts)3~ Fdv~, l~(S) 

then 

l~(S) ~> lim sup l~(S k N ~). 
k--~  

Proof(compare [BS]). The hypotheses ensure we can write Sk as a Lipschitz graph 

in ~,  and Ascoli-Arzela provides a subsequence converging strongly in C O and weakly 
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in H I. Now Serrins theorem ([M] 1.8.2) and concavity of the area functional gives the 

inequality on I~. [] 

Thus, if {Sk) is a maximising sequence for IF, this shows that if {S~} has a 

pointwise convergent subsequence, then the limit surface S is at least locally maximis- 

ing. The main regularity Theorem 6.4 will show that S is a regular hypersurface, except 

for its singular set Y(S). 

Associated with any C l foliation with mean curvature F there is an integral identity 

involving I t  and based on Stokes theorem applied to F=div(N), where N is the unit 

timelike normal to the leaves. Precisely, we have 

LEMMA 6.2. Suppose that 3EC1(~ is a time function with level sets Q, having 

mean curvature HQ =FIQ, for some FELl(~ and that M is a WSH which is T'- 

homotopic to Q'=Qo where T'=-V3/IVrl. Then 

It(M) = IF(Q')+ fM (1 - v , )  do M (6.2) 

where v , = - ( T ' , N )  and we interpret the term v, dv M by (6.3) below if  M is not a 

regular hypersurface. Furthermore, the term ( l - v , ) d o  M is nonpositive and identically 

zero only i f  M is contained in a level set o f  3. 

Proof. Using the flow lines of T' we construct zero-shift coordinates (x, 3) with 

metric 

ds2 = - ct2 dT2 + go dXi d'~j' 

and consider M as a graph of u E C o, I(Q,) over Q'. Then a standard computation gives 

V T =  "Q = o V T  F 

so integrating over (x, r) we have 

fv e, F dx d3 = fe V g(x, u(x) ) dx- fa V g(x, O) dx 

= fMv, dvM-LQ'I. 
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This last equality uses the identity 

vrdvM = X/ g(x, u(x)) dx, (6.3) 

which holds for regular hypersurfaces M, and will be valid for general weakly spacelike 

M if we use (6.3) to interpret v~dvM. The definition of I r now gives (6.2), for all WSH 

M. The final assertion follows from the expression for the volume form ([B1] (5.16)) 

dolt, t = ~r 1-a2[Dul 2 V g(x, u(x)) dx. [] 

As an immediate corollary we have that Dirichlet solutions are locally extremal: 

COROLLARY 6.3. Suppose M is a regular hypersurface which has mean curvature 

HM=F[M for F E Cl(~). Then M is locally extremal for I F in the sense described above. 

Proof. Since M is regular, the conditions of Theorem 5.2 can be met by blowing up 

a o-cylinder neighbourhood ~o(p) of any p E M ,  for o sufficiently small, so that 

Mfl ~o(p) satisfies the eigenvalue condition. Then Theorem 5.1 constructs a C j folia- 

tion with mean curvature F in cr with boundary data given by the level sets of any 

C I time function with M as a level set. Such time functions can be constructed either by 

Proposition 3.2 or by [B1] Proposition 3.2. Let r be the time function of the mean 

curvature F foliation. If now M'~(MO ~go(p))rela(MN ~o(p)) then M' and MN Cr 

are also T'-homotopic since they have common boundary and Lemma 6.2 shows that 

Iv(M N ~o(p))>~IF(M'), with equality only if vr-1 on M'. This implies that equality holds 

only if M'=MN qgo(p) and shows that M is locally extremal. [] 

Directly applying this argument to a variational extremal M encounters two 

difficulties, both related to the fact that Mnqgo(p) can have rough boundary: the 

foliation may have a "gap"  or " lens"  spanning O(MN qgo(p)) because the conditions of 

Theorem 5.3 are not met and secondly, if the lens can be foliated, the normal vector to 

the foliation degenerates along O(M f3 ~o(p)) and Lemma 6.2 does not apply. Fortunate- 

ly, the integral identity (6.2) is robust enough to deal with these problems. 

THEOREM 6.4. Suppose that FECl(~ r) and that M is a WSH which is locally 

maximising for ( VP) ~. I f  p E M then either p E Z(M), the singular set defined by (3.13), 

or M is a regular hypersurface in a neighbourhood o f  p. 

Remark. Since this result is purely local it applies also if M is an immersed WSH, 

thus providing an alternative approach to Theorem 4.2. More generally it will apply to 

12-888289 Acta Mathematica 161. lmprim~ le 27 d~cembre 1988 



178 R. BARTNIK 

any (constrained) variational problem which produces a WSH which is locally maxi- 

raising on some subset, which subset will then be regular away from the singular set. 

Hence these results will apply to variational problems involving obstacles or barriers or 

free boundaries, for example. However, in such cases it may be necessary to slightly 

modify the definition of the singular set. 

Proof. There is o0>0 such that M is maximising for (VP)~ in the cylinder 

neighbourhoods trio(p) for 0<o<o0.  Suppose first that p ~ Y.(MN c~a(p)); i.e. p does not 

lie in a piece of null geodesic in M. By choosing a still smaller we may assume 

Y,(MN cr and that Co2<eo, where e0 and C are given in Theorem 5.2. By the 

blowing-up procedure described in Section 5 we may reduce our considerations to the 

case where M is a WSH in the unit cylinder ~=B~(0)x[ -2 ;  2] equipped with metric g 

and mean curvature function F satisfying the estimates (5.7), (5.7') of Theorem 5.2, and 

with p = (0, 0) E c~. 

Let M=graph(u),  w h e r e  uEc~ and set tP=ulaB. By Corollary 3.3 we can 

construct a sequence q0 k E C| of smooth, spacelike spanning boundary data such 

that qgk>tp, q0k--~q~ as k--,oo. Let  Mk=graph(uk), ukEC2'a(BI), be a solution of the 

Dirichlet problem with boundary q0 k and mean curvature F, given by [B l] Theorem 4.3. 

The convergence Theorem 3.8 shows that 

u+ = lim inf u k 

exists, u+E 2.a Clo c (Bj), and solves the Dirichlet problem with boundary data q~. We claim 

that u<~u+ in B I. For if not, there is k such that u(x)>uk(x) for xE g)kccBi, U(X)=Uk(X) 

for x E col2 k and f2k=t=O. By Theorem 5. l we can construct a C l foliation of ~r with mean 

curvature F and including M k as a leaf, and now Lemma 6.1 shows that 

le(ulu)<Ir(uklt~). This contradicts the locally maximising property of u. 

Let M+=graph(u+). In a similar manner we construct the lower surface 

M =graph(u ), a regular hypersurface with mean curvature F and boundary 

OM=aM, and we have 

u_(x)<~u(x)<,u+(x) for all xEB I. 

By the strong maximum principle, either u+=-u_ and M is a regular hypersurface, or 

u_(x)<u+(x) for all xEB I. 
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Thus we suppose M+>M_ and proceed to foliate the lens-shaped region 5f 

between M+ and M_. (It is somewhat surprising that despite the uniqueness for 

smooth boundary data in c~, we cannot immediately exclude non-uniqueness for rough 

boundary data.) By [B 1 ] Proposition 3.2 we have a time function in B j -6 x [ -  2; 2], 6 >0, 

which includes M+, M_ as level sets. Over B~-6, M_ satisfies the eigenvalue condition 

so we can construct a C 1 time function r 6 in ~ over B1_ 6 with level sets having mean 

curvature F and such that M+,M_ are level sets of r 6. We can normalise r 6 by a C l 

change to have r6(0, t)=t , so the level sets of r 6 are prescribed mean curvature 

hypersurfaces over B1_6, parameterised by their intersection with the central axis 

{(0, t): - 2 < t < 2 ) .  These level sets (and thus r6) satisfy uniform interior estimates so we 

have a converging subsequence r6k---~r, where r E Cl~oc(~) is a time function foliating the 

lens with prescribed mean curvature hypersurfaces Mr=graph(u~), for u_(0)~<r~<u+(0). 

For 6>0 define M0(6)= {q E M0: d(q, aM0)>6 } and the region 

~6 = {q E ~; the Vr-integral curve through q intersects Mo(6) }. 

Since ~cD(Mo), the sets ~6, 6 $ 0 form an exhaustion of ~. Let M ( b ) = M n ~  6. Since 

p E M n M  o and M~Mo, there is e>O and 60>0 such that for all 0<6~<60, 

fMo) ( 1 - v~) dv M <. - e 

since vr>~l with equality only if M is tangent to a level set of r. As noted previously, if 

M is a WSH we interpret v~dv~ by (6.3). 

Now by (6.2), since M(6)~-Mo(6) along Vr, for all 6<~6o, 

16(M(6)) = 16(Mo(O))+ fM (1--v~) dv M 
(6) 

where 

<- Iv(Mo)- e 

l~(S) = Isl- f 
d V(Mo(6), S) 

F dv• 
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for S~Mo(6) by Vr, and I F is measured  f rom M 0. But 

IF(M)-I,~(M(6)) = IM-LeoI- f Fdvv  
J V(Mo, M) - . ~  

=o(1 )  as 6 5 0  

since L~ gives an exhaust ion of  &P. Thus choosing 6 sufficiently small we have 

Ie(M) <~ I~(M(6))+e/2 <~ IF(Mo)-E/2 

which contradicts  the locally maximising proper ty  of M. Thus M=--Mo and hence M is 

regular about  p. 

I f  p • ~ (M fl ~,,(p)) then p lies on a piece of  null geodesic  y lying in M. We claim 

y fl M does not have an endpoint  q E M, for if such a q E M existed we could apply the 

above argument  to MAYo(q), which has empty  singular set, Y.(MnCEo(q))=| ( I f  

Y~(MA ~ o ( q ) ) . ~  for all o > 0 ,  then either M is not locally achronal  at p or p is not an 

endpoint of  yAM.)  Thus MNqCo(q) is regular, contradict ing the fact that 

y n M n ~ o ( q ) . ~ .  Thus y n M can have endpoints  only on aM, so p E X(M). [] 
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