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w O. Introduction 
0.I.  Background 

The theory of  Whit taker functions (vectors) for reductive groups is significant for not 

only number theory but also representat ion theory of  real semisimple Lie groups. 

Whittaker functions for reductive algebraic groups have been studied mainly from the 

viewpoint of  number  theory,  as in the Hecke theory of automorphic forms ([Jc], [JL], 

[Shl], [Shd], etc.). However,  recently the relation between Whittaker functions and 

some micro-local properties of  representations of  real semisimple Lie groups (or 

reductive groups over finite fields) has come to be recognized ([Ko], [Ha2], [Ly],  

[GW], [Kal ,  2, 3], [Mce], [Y2], [Ma2]). I expect  the study of  Whittaker functions to lead 

us to a better  understanding of  such deep micro-local structures in representat ions of 

real semisimple Lie groups. 

This inquiry assumes the following notation and operating definitions. Let  G be a 

connected real semisimple linear Lie group. We fix an Iwasawa decomposit ion G -- 

KAmN,, and a minimal parabolic subgroup P,~ with the Langlands decomposit ion 

P,,=M,,,A,,Nm. Let  t]0 be the (real) Lie algebra of G and let fi, f, am, n,,, 

Pro, and m,~ be the complexified Lie algebras of G, K, Am, Nm, Pro, and M,, respectively. 

Let  U(~) be the universal enveloping algebra of ft. We denote by ~ the positive system 

of the restricted root  system corresponding (rim,am). 

We fix a parabolic subalgebra p of  fi such that la_~p,~ and a Levi decomposit ion 

l~=][+n such that l_~m,~+am. 



WHITTAKER VECTORS AND THE GOODMAN-WALLACH OPERATORS 185 

Let tm be a Cartan subalgebra of mm and let ~)=tm+am. We denote by A the root 

system with respect to (~, ~). We fix a positive root system A + compatible with E~ and 

denote the simple root system of A § by H. Let  a be the center of [ and define 

s=  (a nlal =O). 

We denote by (R) the following condition on ~. 

(R) p N g0 is a real form o f  p. Namely, there exists a parabolic subgroup P o f  G 

whose complexified Lie algebra coincides with I~. 

It is easy to see that p may not satisfy this condition (cf. 5.4, Example). 

We denote by ~t(G) the space of real analytic function on G. For X, YE .q0 and 

f E  ~(G),  we put 

f(g: X+iY)  = d ( f ( g  exp(tX)) + if(g exp(tY)))[t= o, 

f (X+iY:  g) = d ( f ( exp ( tX)g )  + i f  (exp( t Y) ))[t=o, 
t i t  

Let ~p be a character (namely, a one-dimensional representation) on n. If a function 

f on G satisfies f ( g :X)=-vd (X) f (g )  for all g E G  and X E n ,  then f is called a (real 

analytic lp-) Whittaker function on G. We denote by ~r n; q,) the space of Whittaker 

functions. We can introduce a left U(~)-module structure on ~r n; ~p) by 

X. f (g)  = f ( - X :  g), 

for a l l fEM(G,  n;lp), X E n ,  and gEG.  

If la satisfies (R), then ,d(G, n; ~p) coincides with the following space of an induced 

representation. 

M(G/N; ~p) = {fE M(G) [ Vg E G, Vn E N, f (gn) = ~p(n) -I f(g)}.  

Here, we denote by N the nilradical of  P and by the same letter ~p the character on 

N corresponding to the character ~0 on the Lie algebra n. If ~p is contained in the 

Richardson orbit with respect to ~, then we call ~p admissible. Here, we regard ~p as an 

element of g via the Killing form of 0. 

Let V be an arbitrary left U(0)-module. According to [Ha2], if there exists an 

embedding (namely, an injective U(g)-homomorphism) t: V,-* sg(G, n;qJ), then we say 

V has a (algebraic) Whittaker model. 
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Remark.  Here, the usage of the word "model"  is different from the original usage 

of Gelfand-Graev. 

Then we can ask: 

PROBLEM O. When does V have a Whittaker model? 

In order to apply algebraic methods, such as the homological algebra, we introduce 

the notion of Whittaker vectors. For a left U(g)-module V, we denote by V* the dual 

vector space over the complex field. Then V has a natural right U(,q)-module structure. 

We define the space of (dual) Whittaker vectors as follows. 

Whn, ~(V) = {v E V I V X  E n , X .  v = ~fl(X) v} , 

Wh* v,(V) = {v e V* I VX E n, v. X = ~o(X) v}, 

For a right U(.q)-module M, we also define Whn,w(M) and Wh* ~o(M) in the same 

way. 

Let V be an irreducible left U(,q)-module. For FEHomu~o)(V, sg(G,n, v2)), we 

define G(F) E V* by 

[F(F)](v) = [F(v)](e) (rE V). 

Here, e is the identity element of G. Immediately, we see F(F)EWh* ~(V) and F is 

injective. Put 

Wh* ~(V) = Image(F). 

We call an element of Wh,a~(V) a global Whittaker vector. Clearly, the following is 

equivalent to Problem O. 

PROBLEM 1. When is Wh~,~,(V)*0? 

We can also ask: 

PROBLEM 2. When is Wh*.~(V):~0? 

G - -  * 9 PROBLEM 3. When is Whn, w(V)-Whn,~(V). 

PROBLEM 4. When is Wh~,~(V) (or Wh,* v)(V)) finite-dimensional? 

PROBLEM 5. Determine dim Wh,~ and dim Wh* ~0(V). 
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First result with respect to these problems are ascribed to Kostant [Ko]. He has 

proved that if n is the nilradical of some Borel subalegebra of .q and ~p is admissible, 

then Wh*,~(V)~=0 implies the annihilator of V is a minimal primitive ideal. We assume 

G is quasi-split. Kostant has also proved (the case of Sl(n,R) is ascribed to Casselman 

and Zuckerman) if G is quasisplit, V is a Harish-Chandra module (cf. 1.4), and the 

annihilator of V in U(g) is minimal, then Wh*,w(V)*0. He also gave a solution to 

Problem 5. (Theorem K [Ko]). 

At the almost same time, Hashizume considered Whittaker models for Harish- 

Chandra modules with highest weight vectors ([Ha2]) and introduced Whittaker models 

with respect to more general class of nilpotent subgroups. Recently, Yamashita ([Y2] 

Part 2) studied Whittaker models of highest weight modules precisely. 

In his thesis [Ly], Lynch generalized important properties of Whittaker vectors, 

which had been shown by Kostant, to the case that ~p is an arbitrary admissible 

character. 

In [GW], Goodman and Wallach gave the solution of Problem 3 for the case G is 

quasisplit, n=n  m, and V is a Harish-Chandra module, using some differential operators 

of infinite order. 

From these results, it is suspected that the solution of Problem l or 2 is described 

in terms of some micro-local conceptions, such as the associated variety (for example 

see IV2], [Ma2]) or the wave front set (cf. [KV], [Ho], [BV]). In fact, Kawanaka (cf. 

[Kal, 2, 3]) has shown corresponding results for the generalized Gelfand-Graev repre- 

sentations of reductive algebraic groups over finite fields. 

Let ~0 be a character of n. Using the Killing form we regard ~p as an element of the 

dual space fi* of ft. 

In [Ma2], it is proved that Wh* v,(V)#:0 implies that the associated variety of the 

annihilator of V in U(fi) contains ~p. 

0.2. Main results 

First, we assume that V is a finitely generated left U(n)-module. Then we easily see the 

Gelfand-Kirillov dimension Dim(V) (cf. 1.2) is not more than dim n. Put d=dim r~, and 

let ce(V) be the multiplicity of V (cf. 1.2). 

Then, using the vanishing theorem of Kostant-Lynch (cf. 2.1), we can get the 

following solution of Problem 5 (D. A. Vogan gave the author a crucial suggestion (cf. 

the remark after the proof of Theorem 2.2.1)). 
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THEOREM A. (Theorem 2.2.1.) Let  V be a left U(g)-module which is f initely gen- 

erated as an U(rt)-module. Le t  7) be an admissible character on n. Then 

dim Wh*,w(V) = Cd(V). 

As a corollary of this result, we can generalize a result of Kostant ([Ko] Theorem 

K) to an arbitrary real (not necessary quai-split) semisimple Lie group. 

COROLLARY B. (Corollary 2.2.2.) Let  G be an arbitrary semisimple Lie group and 

let ~p be an admissible character  on the nilradical n m o f  the complexi f ied Lie algebra o f  

a minimal parabolic subgroup o f  G. Le t  M be a Harish-Chandra module.  Then 

0 if Dim (M) < d, 
dim Wh*m,~(M) = Cd(M ) if d = dim rtm = Dim(M). 

For Problem 3, we will show the following generalization of a result of Goodman 

and Wallach. 

THEOREM C. (Theorem 6.2.1.) Let  M be an irreducible Harish-Chandra module 

and let v 2 be an admissible character on n,,. Then 

Wh.Cm, ( M )  = Wh* ,w(M) .  

This theorem is proved by the same method as [GW] from Theorem E below. 

An aim of this paper is to construct many global Whittaker vectors on an irreduc- 

ible Harish-Chandra module. Especially, in order to prove Theorem C, we should 

construct sufficiently many global Whittaker vectors. 

Hereafter, we do not assume n=n , .  any more. Let tp:n--~C be an admissible 

character. 

Now we introduce some notations. 

Define 

P~+ = {2E ~* I V a E S , 2 ~ E N } .  

we denote by L(~,2) the highest weight left U(.q)-module with a 
++ 

For 2 E Ps , 

highest weight 2. 

Let V be an irreducible Harish-Chandra module and we assume there is some non- 

singular pairing between L(10,2) and V compatible with the .q-actions. The existence of 
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a pairing between V and some highest weight module implies the existence of an 

embedding of V into some principal series representation. 

Let 7: be a non-trivial character on ft. If we found some non-trivial to E 

Whn_ ~ (L(~, 2)), we could easily construct a non-trivial global Whittaker vector on V. 

Unfortunately, always Wh,,_w(L(la,2))=0 holds. The idea of Goodman and Wallach 

[GW] is to consider some completions of L(la, 2) instead of L(IJ, 2) itself. 

First, we consider the formal completion s 2) (cf. 3.2). 

Then we have: 

THEOREM D. (Corollary 3.4.6.) For 2 E P++ and an admissible character 7:, S, 

dim Wh, _~(s 2)) = cd(L(p, 2)). 

Here, d=dim n. 

This result is a generalization of that of Kostant [Ko] (for irreducible Verma 

modules) and Lynch [Ly] (for irreducible generalized Verma modules). 

We also prove an conjecture of Lynch concerning the dimension of the space of 

Whittaker vectors in the formal completion of (reducible) generalized Verma modules 

(Theorem 3.4.7). 

The formal completion is too large for our purpose. Hence, according to Goodman 

and Wallach, we introduce the Gevrey completions L~(I~,2) for 1~<• (cf. 4.2). 

We prove: 

++ 
THEOREM E. (Theorem 4.2.1.) For an arbitrary character v/, 2 E Ps , and I ~x<2 ,  

Wh.,_w(s 2)) ~_ L~(p, 2). 

First, Goodman and Wallach [GW] have proved this result for the case that n is the 

nilradical of some Borel subalgebra. (Hence G should be quasi-split.) 

Wallach also announced in his lecture at Katata 1986 (and personal discussion 

1987), that Goodman and Wailach had proved a corresponding result for the case n is a 

2-step nilpotent Lie algebra. 
++ 

Fix 2 E Ps �9 

Using Theorem D and Theorem E, we can prove: 

THEOREM F. (Theorem 5.5.1.) Let V be an irreducible Harish-Chandra module 

which has a non-singular pairing with L(I~,2). 
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For an arbitrary character e~ on It, there exists some discrete subset D of C such 

that 0 (~D and for  all z E C - D  there exists some injective map: 

Wh,,, _z~(/_](O, 2)) ~ Wh~, z,(V). 

Moreover, i f  ~p is admissible and Dim(V)=dim It, then Wh~,zw(V)*O for  all z •D. 

If  the condition (R) holds, we have a stronger result: 

THEOREM G. (Theorem 5.5.2.) We assume the condition (R) holds. Let  V be an 

irreducible Harish-Chandra module which have a non-singular pairing with L(p, 2). 

For an arbitrary character ~o on n, there exists some injective map: 

Whn, _~(/,OP, 2)) ~ Wh,~, w(V). 

Moreover, i f  ~O is admissible and Dim(V)=dim n, then Wh~,~o(V)* O. 

0.3. A working hypothesis 

Let V be a left U(,q)-module and let ~p be an arbitrary character on n. 

In [Ma2], it is proved that Wh* ~(V)* 0 implies that the associated variety of the 

annihilator of V in U(g) contains ~0. Here, using the Killing form, we regard ~0 as an 

element of the dual space ,q* of ,q. 

I suspect that "under  some good condit ion" the converse of the above result 

holds. Specifically, we consider the following situation, which is a special case of 

Kawanaka's generalized Gelfand-Graev representations ([Kal ,2,3] ,  [YI]). Let t? be an 

even nilpotent orbit of ,q and let u E (7. We assume u is contained in n,, n ,% and there 

exists a Lie algebra homomorphism 

such that 

~O:sI(2,C) ~ ~q 
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and we also assume 

o,)) 
is contained in the center of ~m N ,% and all the eigenvalues of ad(H)ln m is non-negative. 

Put g(k) = (XE gl ad(H)X = kX) for all even integer k. Since u is even, 

P. = Z g(2k) 
kEN 

is a parabolic subalgebra of g such that ~ u ~ p  m. We assume ~, satisfies the condition 

(R). Let ft, be the nilradical of p, and let a, be the center of g(0). Clearly, a, c_ (3. Put 

s.= 

It is known that ~p. is admissible, namely there exists some admissible character on 

n,. (Cf. [SS].) 

The following conjecture could be regarded an algebraic version of Kawanaka's 

conjecture ([Ka3] (2.5.2)). 

CONJECTURE H. Let V be an irreducible Harish-Chandra module such that 

Dim(V)~<dim ft, and let ~p be an admissible character on ft,. We denote by I the 

annihilator of  V in U(g). Under the above condition, the followings are equivalent. 

(HI) The characteristic variety of  l coincides with the closure of (7. 

(H2) Wh* ,~(V) =1=0. 

(H3) Wh~., ~o(V) =I= 0. 

We remark that clearly (H3) implies (H2), and we see, from [Ma2] Theorem 2, (H2) 

always implies (HI). Corollary B and Theorem C means Conjecture H holds when 

I~,=P,,. 

Theorem G gives a sufficient condition for (H3) in terms of"minimal"  embeddings 

into principal series. 

Hence we can easily see the following working hypothesis implies the above 

conjecture. 

WORKING HYPOTHESIS I. The condition (HI) implies that V has a ,q-invariant 

pairing with L(13,, 2) for some 2 E P~+. 
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At present, this hypothesis is mere wishful thinking. However, even if it were 

false, counter examples to "Working Hypothesis I"  would, I believe, be interesting. 

I fancy that the deep analysis of the structure of principal series representations by 

Casian and Collingwood ([CC1], [CC2], [CC3]) enable us to say something about the 

above hypothesis. In fact, they establish an algorithm to compute "minimal embed- 

dings" which are distinguished by the weight filtration (cf. [CC1]). For example, for 

G=Sp(2,R) (real rank two), if V has an integral infinitesimal character, the above 

working hypothesis is true ([CC1], [CC3]). 

It is interesting, I think, to re-interpret the results of Casian and Collingwood in 

more geometrical terms. "Working Hypothesis I"  is a candidate of the beginning of 

such reinterpretation. 
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w 1. Notations and preliminaries 

1.1. Notation 

In this article, we use the following notations. 

As usual we denote the complex number field, the real number field, the rational 

number field, the ring of integers, and the set of non-negative integers by C, R, Q, Z, 

and N respectively. 

For a complex vector space V, we denote by V* the dual vector space. Let 9 be a 

complex semisimple Lie algebra, U(~) the universal enveloping algebra of .q, D a Cartan 

subalgebra of 9, and A the root system with respect to (9, ~). We fix some positive root 

system A + and let H be the set of simple roots. Put 
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~ = (X6 gl V I l E  ~, [ H, X] = a (H)X} ,  

a E A  + 

f t= E g ~ . 
- a E A  + 

Let ( , )  be the Killing form of ~. 

Next we fix notations for a parabolic subalgebra. Hereafter, through this article, 

we fix a subset S of YI and the following notations for the parabolic subalgebra 

determined by S. Let S be the set of the elements of A which are written by linear 

combinations of elements of S over Z. Put 

a = {Ha blVaaS, ~(~Z) = 0}, 

~= ~+ ~'~a, 
aE,r  

n =  E ~a, 
a E A + - $  

f i= E g~' 
- a E A + - $  

m = {XaI IVHa a, (X, Y) =0}, 

= m + a + n = [ + n ,  

9 =  m + a + f i = [ + f i ,  

t = b n m .  

Hence [9 is the direct sum of t and a, which are othogonal with respect to the Killing 

form. For each 2E [~*, we denote the restriction of 2 to t (resp. c0 by 2 t (resp.Aa). Using 

the Killing form, we can regard t* and a* as subspaces of [9". Then we immediately 

have ;t = 2t+2 ~. 

For all 2Eh*,  we define HaE[~ by 

rHEIm, (H,H~)=2(H). 

Put 

Z += {/~Ea*l/~* 0 and =laE A+,al .  =/~}. 

13-888289 Acta Mathematica 161. lmprim~ le 27 d~cembre 1988 
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For aEY +, put 

HISAYOSI MATUMOTO 

rt,~ = { X  E n I V I I  E a, [H, X] = a ( H )  X }  , 

fi-a = {XE n lVHE ct, [H,X]  = - a ( H ) X } ,  

We define �9 ~_ X + by 

~ =  { f l E a * ] f l * O  and a a  El-I, al~ =fl}. 

We denote by H o the dement  of a which satisfies: 

f l (H0)=l  for all f l e O .  

Put 

(t(i) = {XE {~1 ad(Ho)X = i l l } .  

These define a Z-graded structure on ~. 

Put 

Q+ = { a ~ + . . . + a t l i E N  , aiEE + (l~<i~<l)} U {0}. 

For/~ E CI~ +, we define 

U(n)~, = {PE U(r0IVHE a, H P - P H  =/z(H)P}, 

U(fl)_~, = { e E U(fi)t V H  E a, H P - P H  = - i z ( H )  P} .  

Let G c be the simply-connected connected complex algebraic group corresponding 

to ~ and let Pc (resp. Pc) be the parabolic subgroup corresponding to lJ (resp. 9). 

1.2. Gelfand-Kiriilov dimension and multiplicities 

We recall two important invariants for finitely generated U(~)-modules, namely Gel- 

fand-Killirov dimension and multiplicity (Bernstein degree). For details, see [VI]. 

Let gl be an arbitrary Lie algebra over C. Let M be a finitely generated 

U(gl)-module and v I . . . . .  v h its generators. Fix a non-negative integer n. Let Un(~ I) be 

the space of the elements in U(~t) which are written by a products of at most n 

elements of ~r  Put Mn = El<~i~hU,,(gl)V i. Then, there exists some polynomial g(x) in 

one variable over Q such that dimcM ~ =x(n) for sufficiently large n. The Gelfand- 
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Killirov dimension Dim M is the degree of g(x). Let d be any integer such that 

d~>DimM. Then the multiplicity c d ( M )  of M is defined by 

J'the coefficient of d!z(x) at x Dirnu if d = Dim m 
C d(m) Io if d>Dim M. 

Multiplicities are always non-negative integers. The definitions of Gelfand-Killirov 

dimensions and multiplicities do not depend on the choice of generators. 

Let M I, M2 ,  and M 3 be finitely generated U(gt)-modules such that 

max (Dim(M/)) ~< d,  
i= 1,2,3 

and there exists a short exact sequence of U(g~)-modules 

O - ~  M I .--~ M 2 --~ M 3 ---~ O . 

Then we have 

c d(M2) = c d (Mi)  + c d(M3). 

1.3 Whittaker vectors 

Let ~p:n-~C be any character. We denote by the same letter the algebra homomorphism 

~p:U(n)-~C induced from ~p. 

Using the Killing form, we can identify the space of characters on n and g(-1).  

Thus, hereafter we regard a character ~p as an element of fi(- l). 

Let M be a left U(g)-module. Then the dual vector space M* has a natural right 

U(g)-module structures. 

We define the space of (dual) Whittaker vectors (cf. [Ma2]) as follows. 

Wh., w(M) = {v E MI VXE n, X.  v = W(X) o }, 

Wh* v,(M) = {v E M* I VXE n, v-X = ~(X) v }, 

For a right U(g)-module M, we also define Wh.,~(M) and Wh* ~(M) in the same 

way. Namely, 

Wh.,v(M) = {v E M I VXE n, v.X = ~(X) v }, 

Wh*, w(M) = {v E M* I VX e n, X . v  = W ( X )  v }. 
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A wmodule M is called a Whittaker module if there exists a cyclic element of M 

which is contained in Whn, ~(M). 

Next, according to Lynch [Ly], we introduce the following notions. Let y; be a 

character on n. We call ~p admissible when ~p is contained in the Richardson orbit (7~ 

with respect to ~. (Namely, (~p is a unique Gc-orbit such that ~7, n n is open dense in n.) 

Here, we regard v2 as an element of g(-1) .  

If there exists an admissible character, we call ~ an admissible parabolic subalge- 

bra. It is known that there exist non-admissible parabolic subalgebras. (Cf. [Ly].) But, 

for example, the complexification of the minimal parabolic subalgebra of a real form of 

g is admissible. 

Let L c be the complex analytic subgroup of G c corresponding to L Then L c acts 

on g(-1)  by the adjoint action. If W is admissible, then ~p E g(-1)  is admissible if and 

only if ~ is contained the open Lc-orbit in g ( -  I). 

If M is a finitely generated n-module, then the Gelfand-Kirillov dimension of M is 

clearly less than or equal to dim n. 

1.4. Harish-Chandra modules and global Whittaker vectors 

We fix a real form g0 of g and a connected real semisimple linear Lie group G whose 

Lie algebra is g0. We also fix an Iwasawa decomposition: 

G = K A , , , N , , .  

Here, K is a maximal compact subgroup of G, A m is a maximal real-split toms, and N m 

is the nilradical of the minimal parabolic subgroup of G. We denote by L am, and n,~ the 

complexified Lie algebras of K, A m, and N m respectively. Let Mm be the centralizer of 

A m in K and let m m be the complexified Lie algebra of M,,. Put 

P,, ,=M,, ,A, , ,Nm, 

[.1 = m.~+a,., 

D,n = nlm+am+nm �9 

We denote by log the inverse of exp: a,, fl g0---~A,~. 

Let I~,~ be the opposite parabolic of I~,, and let tim be the nilradical of ~m. 

We assume am~_b. Put S, ,= { f l ~ H ] V H e c t , , ,  fl(H) = 0 ) .  Put O,, =Osm. 
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A compatible left (g, K)-module (for example see [BW]) of finite length is called a 

Harish-Chandra module. 

Next we introduce the notion of global Whittaker vectors. We denote by ~d(G) the 

space of real analytic functions on G. For X, YE ~0 and fE  ~r we put 

f ( X  + i Y: g) = d ( f  (exp( t X)  (g) + i f (exp( t Y) g))l, o, 

f ( g  : Y+i Y)= 4 ( f ( g  exp(t X))+i f ( g  exp(t Y)))lt= o. 
a t  

Let ~o be an arbitrary character on n. Put 

~r n; ~p) = {fE M(G) I Vg E G, VXE rt, f (g  :X) = -~p(X)f(g)). 

M(G, rt;~p) has a structure of U(g)-module by the left action. Let M be a left U(~)- 

module and let Homvr ~r rt; ~p)) be the space of U(~)-homomorphisms of M to 

~/(G, n; ip). For F E Homu(~)(M, M(G, n; ~p)), we define F(F) E M* by 

[F(F)](v) = [F(v)](e) for all v EM. 

Here, e is the identity element of G. We immediately see F(F)E Wh*.~0(M). Since any 

real analytic function is determined by its Taylor expansion, we can easily see F is an 

injective linear map. Put 

Wh, c, ~(M) = Image(F). 

We call an element of Wh,C ~0(M) a (G-) global Whittaker vector on M. 

We remark that if there exists a parabolic subgroup P of G and the complexified 

Lie algebra of the nilradical N of P coincides with n, then sO(G, n; ~p) coincides with the 

following space of an induced representation. 

M(G/N; ~p) = {fE M(G)[ Vg E G, Vn E N, f(gn) = V/(n)-~ f(g)  }. 

Here, we denote the character on N induced from the character ~ on n by the same 

letter. 

1.5 Generalized Verma modules 

Define 

P++ = {2 E ~*lVaES, 2 ~ E  {0, 1,2 .... }}. 
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Let o h be an irreducible finite-dimensional ~-representation whose highest weight is 
+ +  2 E Ps �9 Let Va be the representation space of o h and we fix a non-trivial highest weight 

vector va of o h. 

V~ has a natural right U(D-module structure. Let v]' be a non-zero 2-weight vector 

of 

We define a left (resp. right) action of n (resp. fi) on V~ (resp. V~) by X . v  = 0 

(resp. v.X=O) for all X E n  and vEV~ (resp. XEfi  and vE V~). Then we can regard 

V~ (resp. V~'~) as a left U(10)-module (resp. a right U(I~)-module). 

Let 2 E P++. We define the generalized Verma modules (Lepowski [Le]) as follows. 

M(p,2) = U(g) | 

M(I~,2) (resp. M(~,2)) is a left (resp. right) U(~)-module. 

As left U(f0-modules (resp. right U(n)-module) we have M(p,2) -~U( fO|  

(resp. A/(~,2) ~ V~a| c U(n)). 

Let L(p,2) (resp. s 2)) be a unique irreducible quotient U(,q)-module of M(p, 2) 

(resp./14(~, 2)). 

Let qx : M(p, 2)--->L(10,2) and 0x : 34(~, k )~s  2) be the canonical projections. Let 

K(p,A) (resp./~(~,2)) be the kernel of qa (resp. 0x). 

Now we consider the situation in 1.4, namely G is a real semisimple Lie group with 

the complexified Lie algebra .q and amC_Ig. 

We also assume S,,~_S. 
r - t++ t - t++  Then clearly we see r" s ~rs~  and lmc_[. For 2EV~, we put 

Ex = U(im). v~c_ Va. 

Then Ea is an irreducible representation of l,, with highest weight 2. 

For 2EP~ +, we have 

M(~,,,, 2) = U(.q)| 

~4(~m, 2) = ~ | v~ )  U(,q). 

1.6 Functions of Gevrey class and differential operators of infinite order 

Now we refer to the (ultra-differentiable) functions of Gevrey class introduced in [Gv]. 
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Let  U be an open set of  R ~ and let 1~<~. We denote by C~(U) the space of  the 

functions of  class C ~ on U. We call cpEC~(U) a function of  Gevrey class of  order  x if 

for any compact  subset K of  U there exist some h >0  and C>0  such that 

Va E Nn, sup IDaq0(x)l ~ChIal(la I !)". 
x E K  

Here,  for a=(a I . . . . .  a,)EN" we put  

[0~1 = (21-'k.. .+Ctn, 

D a 
s ~n ~x I ... axn 

We denote by ~ ( U )  the space of  the functions of Gevrey class of  order  ~. Since the 

definition of  Gevrey class is local and invariant under  any real analytic coordinate 

transformation, we can define qd~(X) for any real analytic manifold X. 

From Pringsheim's result, we have ~ l ( x ) =  ~I(X). 

Next  we consider differential operators which acts ~ ( U ) .  We assume 

c a E C (a E N n) satisfies 

Ical tlal(lal !) ~<~176 (1) 
aENn 

for all t>0. 

Put 

P = Z ca Da" 
a E N  ~ 

LEMMA 1.6.1 (cf. [Km] Theorem 2.12, also see [Ro]). Under the above assump- 

tion, P is a continuous linear endmorphism of  ~ ( U ) .  

If we introduce the topology on C~(U) as usual, then the inclusion map 

L:~"(U)~C| is continuous. 

1.7 Gevrey vectors 

We use the notation of 1.4. Here  we refer to the Geverey vectors in Banach representa- 

tions. (For details, see [Gdl] w [GW].) 
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Let  ~ be a strongly continuous representat ion of  G on a Banach space H = H ( ~ ) .  

We denote the space of  C~176 for ~ by H| and we also denote  the associated 

representation of  U(g) by d~. 

We fix some basis X I , . . . , X  t of  ~. 

We define continuous semi-norms Qn on H~ by 

Q0(v) = Ilvll, 

pro(V) = max IId:r(Xj ... X 2 )  vii. 
k<h~d 

For  ~>0,  we put 

S~(z) -- {v E H| 1 3M, t>O, Vn E N, @n(v)~Mf(nO~}. 

An element of S~(z) is called a Gt,verey vector  of order  x. 

Put 

IlvL,, = sup{t-"(n !)-~,(v)}.  
n~O 

We topologize S~(z) as the inductive limit of  the normed spaces 

S~r = { vEH| 

as l--, oo. 

Then the natural inclusion S~(z)~H| is continuous. 

w 2. Dimensions of the space of dual Whittaker vectors 

2.1. The cohomology vanishing theorem of Kostant-Lynch 

In this section 2.1, we only consider left modules. However, the argument in this 

section is applicable to the right modules. 

First we define twisted n-actions (cf. [Ko], [Ly]). We fix an arbitrary character  

on n. Let  V be a n-module. For  o E V and X E n, we define 

X-~v = X.  v -~(X)v .  

We call the above action the ~p-twisted action. Immediately we see * defines another  

n-module structure on V. We call this n-module the ~p-twisted n-module of V. 
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We define an n-module structure on C by 

X ' z = - ~ ( X ) z  (XEn,zEC) .  

We denote this n-module by C_~. Then, for every n-module V, the ~p-twisted n-module 

is identified with V | 

For an n-module V, we put 

H~ V) = {vE V I V X E n , X . v  = 0}. 

The functor V,~H0(n, V) from the category of n-modules to the category of C-vector 

space is left exact, and we can define the ith right derived functor H/(n,.). For a g- 

module M, clearly we can see 

Wh. ,~ (M)  = H~ M| 

Now we can quote the vanishing theorem, which is first proved by Kostant [Ko] 

for Borel subalgebras and generalized by Lynch [Ly] to the case of admissible parabol- 

ic subalgebras. 

THEOREM 2.1.1. ([Ly] Lemma 4.3.) Let ~p be an admissible character on n, and let 

a left g-module M be a Whittaker module (see 1.3) with respect to v 2. Then 

Hi(n,M| ~)=O for all i>0. We also have the same result for a right g-module. 

Let V be a n-module. We define 

V, = {n E V I dimc(U(n)-x-v)<~ }. 

If M is a g-module, then we can easily see M, is a ,q-submodule of M. 

LEMMA 2.1.2. ([Ly] Proposition 4.5.) Let M be a g-module such that 

dimcWhn,w(M)<~. Then M~ has a finite composition series and each irreducible 

constituent is a Whittaker module. 

COROLLARY 2.1.3. (Cf. [Ly] Theorem 4.3.) Le t  M be a ,q-module such that 

dimcWhn, ~(M)<oo. Then Hi(K, Mq| v) =0 for i>0. 

2.2. Dual Whittaker vectors of an n-finitely generated g-module 

Now, we are going to prove the following our first main result. 
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THEOREM 2.2.1. Let  M be a left U(~)-module which is finitely generated as an 

U(~)-module. Let  V 2 be an admissible character on n. Then 

dimc(Wh* ' ~0(M)) = Cd(M). 

Here, we put d = dim n. (Since M is finitely generated, Dim(M)<d.)  

Proof. Let  M be a finitely generated U(n)-module. Since U(n) has finite global 

homological dimension, V has a finite projective resolution. On the other hand, every 

finitely generated projective U(n)-module is stably free ([Qu] Theorem 7, also see 

[Mc]). From [No] 3.3, Lemma 7, we have the following finite free resolution. 

Here, U(n) *rj means 

0 *-- M ~ U(n) ~q ~-- ... ~-- U(n) @'m ~ 0. (2) 

v(.)G .?, v(.). 

Taking the dual of (1), we have 

0 ~ M* ~ (U(n)*) ~q ---~ ... --o (U(n)*) ~'m ~ 0. (3) 

From the Artin-Rees lemma for U(n) (cf. [Ko] Lemma 4.5), we easily have 

0 --~ ( M * ) ~  --~ ( U ( n ) * ) t "  --~ ... --~ ( U ( n ) * ) t "  --~ O. (3) 

We can regard the left U(n)-module " U ( n ) "  as the image of a generalized Verma 

module of with a lowest weight U(,q) under the forgetful functor. On the other hand, 

dim H~ | = dim Wh,,  9((U(n)*)~) 

= dim Wh,,  9((U(n)*) (5) 

= dim Wh* 9(U(n)) 

From Corollary 2.1.3, we have 

From (2), we have 

=1 .  

/T(n,(U(,q)*), |  for i > 0 ,  (6) 

O--.Whn,~(M*)--,Wh.,~((U(n) ) ). 
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Especially, we have dimWhn.~0(M*)<oo. Hence from Corollary 2.1.3, 

/T(n,(M*)q| for i > 0 .  

From (4), (5), and (6), we have 

dim Wh*, ~0(M) = dim Wh*, ~0((M*)~) 
m 

= Z (--1)i+lri" 
i=l 
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(7) 

(8) 

dim Wh*, ~(s = Cd(s it)) < ~. 

C O R O L L A R Y  2 . 2 . 3 .  

2 6 P~ +, we have 

Let  ~0 be an admissible character on n. Put  d = dim n. For all 

On the other hand, from (2) we have 

m 

cd(M) ---- Z ( - -  1)i+lri . (9) 
i=l 

(7) and (8) imply the desired result. Q.E.D. 

Remark.  D. A. Vogan suggested the author that the multiplicities relate to the 

dimensions of the space of dual Whittaker vectors via free resolutions. 

We fix a connected real semisimple Lie group G and its Iwasawa decomposition as 

in 1.4. Let M be an arbitrary Harish-Candra module. Then M is finitely generated as a 

U(n,,)-module ([CO] 2.3), and the multiplicity of M as a U(.q)-module coincides with the 

multiplicity of M as a U(nm)-module ([Jo] 5.6). Hence, we have the following generaliza- 

tion of a result of Kostant ([Ko] Theorem K). 

COROLLARY 2.2.2. Let  ~ be an admissible character on n m and let M be a Harish- 

Chandra module (with respect  to (,q, K)). Then 

0 if Dim(M) < d, 
dimWh*,~.~(M)= Cd(M) i f d = d i m  rim=Dim(M). 

Here, ca(M) means  the multiplicity o f  M as a U(~)-module. 

Since we can easily see that the multiplicity of s it) as a U(,q)-module coincides 

with the multiplicity of s as a U(n)-module, we have another corollary. 
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Here, Cd([,(~, ~.)) means the multiplicity of/:(~,)[) as a U(g)-module. 

Especially, i f  Dim(s 2)) = d, then 

0 < dim Wh*, ~0(/](D, 2)). 

The following result is the special case of the formula (7) in the proof of Theorem 

2.2.1. 

COROLLARY 2.2.4. Let  ~ be an admissible character on n,~ and let M be a Harish- 

Chandra module (with respect to (g, K)). Then, for  all i > O, 

Hi(nm,(M*)q| = 0. 

w 3. Whittaker vectors in the completions of highest weight modules 

3.1. Canonical pairings for irreducible highest weight modules 

Accordings to [Shp] (also see [Ko], [Ly], [GW]), we introduce a pairing between 

hightest weight modules. 

Let ( ( , ) ) ,  be the canonical pairing on ~ x  V~, that defines a C-linear map 

P ;  ~ |  ---, C. 

Let Qa be the canonical projection: 

Qx:/r 2)| M(p, 2) ~ A:/(~, 2) | M(p,2) = V~ |  Vx. 

The composition PzoQx defines a pairing on/V/(~,~.)xM(~,2), which we denote by the 

same letter ( ( , ) ) .  

From the definition, we have: 

LEMMA 3.1.1. For all PE U(.q), v* EA:/(~,2), and vEM(p,2), 

( (v*.P,  v>) = (<v*,p.v>>. 

Then we easily have: 

COROLLARY 3.1.2. For all )t E P~'+, the followings hold. 

K(~, ~.) = (P E M(IJ, VQ E AI(~, ).), (( Q, P)} = 0}, 

/((~,2) = {Q EA:/(~,2)I VP E AI(~,).), ( (Q,P) )  = 0}. 
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Especially, ( ( , ) )  induces a non-singular pairing on s (We denote this 

pairing by the same letter ( ( , ) ) , )  

Since the irreducibility of M(p, 4) implies that of M(~, 4), we have: 

COROLLARY 3.1.3. I f  M(p,4) is irreducible, then (( , )) is non-degenerate. 

For/~ E O~ +, put 

L03,4)_ u = {P E L(~3,4) I v n  E ct, H - e  = ( 4 ( n ) - # ( n ) ) e } ,  

s 2)u = {Q E s 4) I VHE a, Q . n  = (4(H)-/~(H))P}. 

We also define M(p, 4)_ u, ,~t(~, 4)u, K(p, 4)_u, and/(7(~, 4)~, in the same way. 

Hence we have 

L(p, 4)_u = qa(M(p, 2)_u), 

L(~, 4)~ = O~(M(~, 4)~). 

Immediately, we have the following direct sum decomposition of irreducible heigh- 

est weight modules. 

L(p,3.) = | L(p,2)_u, 
uEQ; 

L(~, 4) = | L(~,4)~. 
~,~o; 

Especially, these are finite-dimensional as C-vector spaces. 

We easily have: 

LEMMA 3.1.4. (1 )Le t  p , v E O  + be distinct. Then the restriction o f  ( ( , ) )  to 

s 4) u xL(I3,4)_ v is zero. 

(2) For/x E 0 +, the restriction o f  ( ( , ) )  to s 4)~ x L(D, 2)_~, is non-degenerate. 

3.2. Formal completions and algebraic duals 

We define the formal completion of L(I~, 4) by 

s 4) = H L(p, 2)_u. 
~EQ~ 
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We also define ,~/(p,;t) and/((p ,2)  in the same way. From the same argument of the 

proof of [GW] Lemma 2.2, L(la, 2),/~t(~, 2), and/~(p, 2) coincide with the fi-completion 

(cf. [GW] 2) of L(~,2), M(~,~.), and K(1o,2) respectively. Especially, these have g- 

module structures. The natural embedding L(la, 2)~s  2) is a U(g)-homormorphism. 

We have [,(p, 2) = ,~/(p, 2)//((la, 2). 

We can extend ( ( , ) )  to/~(9, 2)xs 2) in the obvious way. If Q E s 2) satisfies 

((P, Q)) = 0 for all P E/_',(~, 2), then we easily have Q = 0. 

Next result is obvious. 

LEMMA 3.2.1. Let V i (iEN) be a family o f  finite dimensional complex vector 

spaces. Put V=~ie  N V i. Then the algebraic dual V* coincides with [I/es(Vi)*. Here we 

define f(v)=O for all f E  (Vj)* and vE V i such that j *  i. 

From Lemma 3.1.4 and Lemma 3.2.1, we immediately have 

PROPOSITION 3.2.2. The algebraic dual [,(9, 2)* of/~(~, 2) is isomorphic to f~(~, ;t) 

as a g-module via the canonical pairing ( ( , ) ) .  

Namely, for all P E U(g), v* E s 2), and v E s 2), 

((v*. P, v)) = ((v*, P.  v)).  

Remark. Though/~(IJ,2) and .Q(~,2)* are isomorphic as m+ct-modules, they are 

not isomorphic as g-modules if M(I~, 2) 4= L(13,2). 

3.3. Dual Whittaker vectors on an irreducible highest weight module 

Let ~p : n --~ C be any character. 

From Proposition 3.2.2 and Theorem 2.2.3, we have 

PROPOSITION 3.3.1. 

Wh., ~(s 2)) = Wh*,,p(s ~)). 

Especially, i f  ~p is admissible, then we have 

dimc(Whn. ~(L(la, ~.))) = ca(f~(~, 2)). 

Here, d = dim 11 and cd(s 2)) is the multiplicity of/~(~, 2). 

Remark. we can easily see that for/Z(~, 2), the Gelfand-Kirillov dimension and 

multiplicities as a g-module coincide with those as an n-module. 
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COROLLARY 3.3.2. I f  ~o is admissible, 

Wh.,v,(/_.(p,4)) 4=0 i f  and only i f  Dim(/~(O,4))=dimn. 

We write any element co of Whn,r(s 4)) as the following formal sum. 

where w_~, E L(IJ, 4)_~,. 

Next we consider the 

v |  E Whn*,,p(~:/(~p, 2)) by 

W =  E W #, 
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case that s  For v EV a, we define 

( v |174  ) = (( v*, v)),l,(P), 

where v*EV~ and PE U(n). We denote the corresponding element in Wh,,~(/~/(~,4)) by 

~pv(4). Then we can immediately see 

~o(4)o = I | 1 7 4  c V~. 

([Ly] Chapter 5.) We assume h;/(l~,2) is irreducible. Then 

Wh., v(/l~/(lo, 2)) = {)/'o(,;-)l v E V~). 

We easily get: 

PROPOSITION 3.3.3. 

3.4. A eonjecture of Lynch 

Fix 2 E P~'+ and an admissible character ~p : n --* C. From Lemma 2.1.2, and Proposition 

3.3.1, we have: 

LF.MMA 3.4.1. For all i > 0 ,  we have 

Hi(n, s174 = 0. 

The following result is proved just the same way as [HS] Lemma 2.37. 

PROPOSITION 3.4.2. For every finitely generated U(n)-module V, the inclusion 

(V*)~ ~ V* induces isomorphisms 

Hi(n, (V*)~| C_ r) ~ Hi(n, V*| 
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From Lemma 3.4.1, Proposition 3.4.2, and Proposition 3.2.2, we have: 

PROPOSITION 3.4.3. For all i > 0 ,  we have 

Hi(n, s 4)| C_,/,) --- O. 

Now we prove: 

LEMMA 3.4.4. There exists an increasing sequence o f  sub-U(g)-modules o f  

ir 4) (namely a filtration) 

o= Mo 4) 

such that for each l<~i<~l there exists some 4 i such that 

z~li/Mi_ 1 ~ Jff~(~), 4i). 

Proof. It is well-known (and can be easily seen) that there exists a filtration of 

MOo, 4) 

0 =  M 0~_Ml... ~_M I= M(t),4) 

such that for each l<~i<<,! there exists some 4 i such that 

Mi/Mi_ I -- L(~, 4). 

Let Mi he the fi-completion of M~ (cf. [GW] 2). From [GW] Proposition 2.1, (2), we can 

easily see (,gl~lO<~i<~l) satisfies the desired conditions. Q.E.D. 

LEMMA 3.4.5. Put d=dim rL Then 

ca(s 4)) = cd(L(13,2)). 

Proof. Let r be the complexified Caftan involution with respect to the normal real 

form of g corresponding to the decomposition 

{1= ~+t~+u. 

Then we have r(fi)=n. For vEL(~,4), if we define a left U($)-action "-x-" by 

X * v  = v .  (-r(X)), 

then as a left U(~)-module immediately we see 

(s 2), ~-) ~ L(10,2). 
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Since we can easily see 

for all m>~0, we have the desired conclusion. 

From Proposition 3.3.1, we have: 

COROLLARY 3.4.6. For every 2 E P~+ and every admissible character ~ ,  

dim Wh,, ~(s 2)) = cd(L(l~, 2)). 

Here, d= dim n. 

Now we prove the following result which is conjectured by T. E. Lynch. 

THEOREM 3.4.7. For every 2 E P~'+ and an admissible character ~o, 

dim Whn. v,(A?/(13,2)) = dim V~, 

Proof. Proposition 3.4.3 and Lemma 3.4.4 implies: 

I 

Wh,. ~(27/(10,2)) = E dim Wh,, ~(s A)). 
i=1 

On the other hand, from Corollary 3.4.6, and 1.2, we have 

I I 

E dim Whn, ~0(s 2 i )  ) = ECd(L(~, 2i)) 
i=1 i=1 

= Cd(M(D, 2)) 
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Q.E.D. 

= dim V~. 

Here, we put d=dim n. Hence we have the desired result. Q.E.D. 

w 4. Whittaker vectors in Gevrey completions 

4.1. Unitary structures in root spaces 

For a E ~ ,  we put 

A + ( a )  = = 

14-888289 Acta Mathematica 161. Imprim~ le 27 d6cembre 1988 
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Considering the normal real form .ql of .q with respect to the decomposition 

.q=ft+b+u,  we see there exists an involution r of .q such that rl~=-id~ and r(f t)=u.  Let  

a: .q~ g be the complex conjugation with respect to .ql. Put 0 = o o r  (=roa) .  Then, if we 

regard .q as a real Lie algebra, 0 is a Cartan involution of .q. 

We define an Hermitian product on .q by 

(X, r ) =  - (X, 0 ( r ) ) .  

Fix a E Z +. For simplicity, we denote the restriction of ( , )  to n~ by the same letter. 

For each fl E A +, we choose a non-zero element X~ of g~ n .ql such that (X~, X~)= 1. 

Put ..~'_s Then .~'flfi g_~ and for fl, TEA+ we have 

(X~,)?_~) = {~ i f f l =  7, 
otherwise. 

Then {X-~lfl E A+(a)} is an orthonormal basis of f i~ .  Let  M c be the connected simply- 

connected complex Lie group corresponding to m. Since m is invariant under 0, we can 

consider the compact real form M of M c corresponding to the Cartan involution 0],,. 

Since M is simply-connected and connected, we can define an action o a of M on V a 

which is compatible with the action of Lie algebra In. We also consider the adjoint 

action Ad(m) (m E M) on fi_~. 

LEMMA 4.1.1. For each a E Z  +, (Ad, fl_~, ( , ) )  is a unitary representation of  M. 

Proof. For m E M, X, YE f1_~, we have 

(Ad(m)X, Ad(m) Y) = - (Ad(m) X, 0(Ad(m) Y)) 

= - (Ad(m) X, nd(0(m)) 0(Y)) 

= - (nd(m) X, Ad(m) 0(Y)) 

= - ( X , O ( Y ) )  

= (X, Y). Q.E.D. 

4.2. Gevrey completions 

Now we introduce Gevrey completions of generalized Verma modules. First we define 

a family of seminorms on generalized Verma modules which are essentially introduced 

in [GW] (also see [Ra], [Gd2]) for Verma modules. Hereafter we fix a positive real 

number x. 
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Let S(fi) be the symmetic algebra of ft and let 

be the symmetrization map. We fix 

h =dim ft. Put Xi=X~i. 

For I=(ij . . . . .  i h) E N h, put 

r: S(fi) --* U(fi) 

a numeration (ill . . . . .  flh) of A + - S .  Here, 

.~(I) v(~" I' -'h = . . . x i ) ,  

h 

fl(I) = 2 ik ilk, 
k=l 

h 

k=l 

We fix some 2 E P~+ and put d=d im V~. Since M is compact, there exists some 

positive definite Hermitian inner product (,)~ on V2 which unitarizes the action of M on 

V z. We can assume (v~, vx)z= 1. We fix an orthonormal basis v t . . . . .  v d of V, such that 

Vl=V ~. 

Then we can write each PE~iT/(~,2) uniquely as follows. 

d 

P= ~ ~ P(j,I)X(I)| (formal sum). 
j= l  IEN h 

Here P(j, I) E C for all I <~j<~d and I E N h. 

For x>~l and t>0,  put 

d 

IIPIL,  = I P ( J , I ) I : ( I I I ! )  
j= l  I E N  a 

M~(I~, 2 )=  {pE M(~,;L)IVt > 0  ' ilell~,, < o~}. 

Next we define Gevrey completions of irreducible heighest weight modules. 

Let ~ : M(~, 2) ~ s 2) be the natural projection. We define 

L~(r = 4~(M~(p,2)). 

Now we can state one of the main results of this paper. 
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++ 
THEOREM 4.2.1. For all 1 ~ < 2  and 2rE Ps , we haoe 

Whn, ~(s 2.)) ~_ L~(p, 2.). 

4.3. Recursion formula 

In this section we fix an arbitrary character  ~ on n and w E Wh,,~(s  A)). 

Put n = d i m a  and m = d i m t .  Let  H 1 . . . . .  H ,  (resp. T 1 . . . . .  T m) be an orthonormal  

basis of a (resp. t). 

We denote  by f~ the Casimir element in U(,q). Namely 

~= ~ Hi2q-~ Tj2-{ - ~ (S, flXfl+Xfl.J(._fl). 
i=1 i=1 SEA + 

Put 

~'~M=~ Ti2"4- E (.J(,_flXfl-l-Xfl~[_fl). 
j=l flEA+n,~ 

Then, up to scalar factor f2 M coincides with the Casimir element for m. 

Put 

!E 

1 t* [~*. 

~Ea+n.r 

2 2 es  = f l E a * c  
2~Ea+-$ 

We fix 2E P~+ and /zEOa  +. 

Then, we have 

i=l j= l  flEA + 

= ff2M+ ~ Hi2+H2os+2 ~ .'Y_flX~. 
i=l f l E a + _ $  
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LEMMA 4.3.1. For all vfis  

n ' v  = ((2, 2) + (J., 2~)))v. 

Proof. Let u be any element of/-](D, 2). We have only to show the statement of the 

lemma for u. Since g] is contained in the center of U(fi), the lemma follows from the 

following formula, which we can easily deduce. 

(v~'| 1). Q = ((2, 2) + (2, 20))(v~'| 1). Q.E.D. 

From the lemma, we have 

((2, 2) + (2, 20)) w_~= ff2w_ u 

=aMW_.+ ZHiE+HEo, w_~+2 Z f(-zXzw-u" 
\i=l ~36A+-$ 

w =  Z w_~ (formal sum), 

Here 

w_,6t(V,2)_~ (U60D. 

Hence we have: 

LEMMA 4.3.2. (Recursion formula.) 

( (2 ,2+2Q) -  (2a-/~, 2a-/~ +2es ) --QM)' w- ,=2  E Z 
ctfir flfih+(a) 

Here, if l~-a ~ O+a, then we define w_u+ ~ = O. 

We define T~(/D 6 U(m) by 

T~(/~) = (2, 2+20)  - ( 2 . -~ ,  2.-~+2~o s) --QM. 

(W(Xp2_~- w_. + 2. 
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4.4. Some unitary representations of M 

Let r be a positive integer. For a=(aj . . . . .  at) 6 D r, put 

W(a) = W(a, . . . . .  a )  = f~-a |  ... |  n-a, |  V~. 
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For a E qb ~ we put 

a ( i ) = a , + . . . + a  i (1 ~<i~<r). 

We define a positive definite Hermitian product  ( , )4 on W(a~ . . . . .  %) such that 

{"f[-,~r |  | X-&| fli C:. A+(ai) (1 ~ i ~< r), 1 ~<j ~< d} 

is an orthonormal basis of  W(a I . . . . .  ar). We can immediately see W(a I . . . . .  %) is a 

unitary representat ion of  M with respect  to (,)4. Put 

IIxL-- (xe w(a)). 

Let at+ I E r  We regard X_Z (fl E A+(ar+l)) as an operator  

.eY fl: W(o~ 1 . . . . .  •r) ~ W(O~l . . . . .  a r+ l )  

P |  

Then the operator  norm of  this operator  ".~'_~" is less than or equal to 1. Then 

immediately we have: 

LV.MMA 4.4.1. There exists a positive constant Cn which does not depend on 

a I . . . . .  at+ I such that 

c ,  
flEA+(%~0 

Next we consider the action of QM on W(ct I . . . . .  %). Since QM is contained in the 

center of U(m) and W(a~ . . . . .  %) is completely reducible, we have: 

LEMMA 4.4.2. QM acts on W(a  I . . . . .  %) as a diagonalizable linear operator and 

moreover distinct eigenspaces are orthogonal to each other. The eigenvalues o f  Q M are 

all non-negative. 

4.5. An estimate of [[Y~(~) 11l 

Let ,ql be the normal real form of  ,q defined in 4. I. and let a be the complex conjugation 

with respect to gl. We denote  the induced conjugation on a*, b*, and so on by the same 
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letter o. For ~ E a*, put 

Put 

~ + o ( O  
' ~ -  2 ' 

2i 
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Y(2)= {~EO+ (2~,2t+2PM)+2(~t,~2~-0s) > ( # , # )  1 } .  

LEMMA 4.5.1. Y(2) is f in i te .  

Proof.  Put 

ctg' = {~E a* I ~(,qo N a)_cR}. 

The lemma is deduced from the fact that 

is compact set of a~ ~ R n. Q.E.D. 

Hereafter we fix a non-negative integer s(2) such that 

{** ~ o21Lal-< s(~)} =g(~). 

Then we have: 

P R o v o s m o ~  4.5.2. Le t  r be a posi t ive integer.  We  f ix  et=(a~ .. . . .  a , )EO r. Put  

/ ,=a ( r )=a l+ . . .+a  ,. l f  r >  s(2), then Tx(u) acts  on W(cq . . . . .  a r) as an inversible linear 

operator.  

Moreover  we have 

IlZz(/*)-'ll < 2 ( ~ , , , )  - '  

Here  IITaO,)-'ll is the norm as a opera tor  on the Hilbert  space  W(aj . . . . .  a ) .  

Proof .  We have 

(2,, 2+20) - (2..-/x,)-.-/~ +2Os ) 
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= ( 2 , 2 t + 2 0 M ) + ( 2 , v 2 ~ , + 2 0 s ) - ( p , / u )  

+ (/~, 2a+ 20s) + (2~, kt) - 2  a, 2~+20 s) 

= (2 , ,2 t+20M)+ (p, 2 2 ~ + 2 0 s ) - ( / ~ , p ) .  

T~(k t) = Q,t, ~,t+ 2OM) + (P, 22a+20s) - (/~,P) -g)M. 

Let 77 be an eigenvalue of  T~(/z) as a linear operator on W(cq . . . . .  ar). 

From Lemma 4.4.2, we have 

9it] ~ (~t,,~t+2QM) + (/.~, 2 ~ a + 2 O s ) - -  (#,k~). 

Since/z~Y(2),  from Lemma 3.5.1 we have 

< - � 8 9  

The proposition is easily deduced from this fact. Q.E.D.  

Next we introduce a new positive definite inner product {, } on ct~' as follows. For  

al ,a2 E ~ ,  

{01 if a , * a 2 ,  
{ a t ' a 2 } =  if a I = a  2 

Then there exist positive constants C 2 and c 2 such that 

for all x E a~'. 

Immediately we have: 

COROLLARY 4 .5 .3 .  

c;'{x,x} < (x,x) c2{x,x}, 

We f i x  (a I . . . . .  a r ) E ~  r. Pu t  p = a l + . . . + a  r Then we  have 

IITA )-'ll < 2c2{/z,p}- ' .  

4.6.  Proof  of  Theorem 4.2 .1  
++ 

We use the notations of  sections 3.1-3.5. Hereafter  we fix 2 E P s  , an arbitrary 

character ~p on n, and wE Wh~,,~,(s Then we have the following formal expres- 

sion. 
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W---- ~ W_/z, 
/~EQ + 

where w_~ E L(~, 2)_~. 

Let H 0 be the element of a such that ct(H0)= 1 for all c tE~  (cf. 1.I). Put Ivl = 

v(Ho) for v E (2 +. For  v E (2 +, we define. 

l(v) = {(a 1 . . . . .  alvl) I ale dp (1 ~< i ~  < [vl), v = a l + . . . +  alvl}. 

Let /~ E 0 + and ot = (al,  ..., a~l)E I(#). Put ct(r)= a l+ . . .+c t  r for 1 ~< r <~ ~1. We de- 

fine a [-homomorphism Pa.r from W(aj ..... a)  to M(p,2)_a(~) as follows. 

p Q , r ( X l ( ~ . . . @ X r ( ~ O )  = X I X 2 . . .  X r �9 o.  

Here X i E ft_~, (1 <~ i <~ r) and u E V. 

Let qu be the natural projection from M(la, ).)_, to L(p, 2)_~,. 

For/~ E O~ +, we define 

W(~)= | W(~t), 
,1 E l(~) 

P/, = ~ P~.~,I" 
eEl(/~) 

W(/~) has a unitary structure induced from (W(~t), n H~). We denote 1111~ the norm of the 

unitary structure on W(#). We can easily see p ~ : W ( ~ ) ~  M(~,A)_, is a surjective 

t-homomorphism. Put r~ = q opt. 

For/~ such that Lul~<s(;t), we hereafter fix tb_, E W(/~) such that r~(W_,) = w_~,. Since 

r~ intertwine the action of T~(/~), Proposition 4.5.2 implies : 

LEMMA 4.6.1. Let/~ E O~ satisfy [Ul>s(2). Then T~(I~) is inuersible on L(I~, 2)_~, and 

M(~, 2)_~,. 

Now we introduce some notations. Let/~ E O~ + satisfy Lul>s(,~). Put 

D(u) = { v E O +l - s(A), Q+ }. 

For a E ~ ,  put 

Y =  ~ v/(x,)2_,. 
~ea+(a) 
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We denote by I? a the lifting of  Ya to a linear map of W ( a  1 . . . . .  a l) to W(a~ . . . . .  a;, a)  

or of W(~) to W ( ~ + a ) .  (Cf. 4.4.) Here a I . . . . .  a t C ~  and ~CO +. 

Then Lemma 4.6.1 and Lemma 4.3.2 imply : 

LEMMA 4.6.2. L e t  p C 0 + sa t i s f y  Lu[-s(ft)=r>O. T h e n  

w-z= 2~ E E Ta(r . . .  Ta(a(l)+v)-lY~, w_.. 
v E D(,u) a E l (u-v)  

H e r e  ~ = (a  I . . . .  , Ctr) a n d  ct(i) = ~ l + . . . + c ~ i .  H e n c e  # = a ( r )+  v. 

For pC O~ + such that ~ul-s(ft)=r>0, we define an element of  W(p) by 

a,,, = 2 r ~ ~ T~(,~(r)+,,)-' ~'o, r~(,~(r- ~)+,,)- '  ~'o,_, ... r~(,(~)+,,) ~',~, a,_~. 
v ED(,u) a E l ( u - v )  

Clearly we have 

r/,(w_ z) = w_ z. 

Next  we are going to estimate [lib zll,. First we introduce some positive constants 

which only depends on ~p and ft. Put 

C 3 = m a x  (ll~-vll,,I vc O.  +, Ivl = s(ft)}, 

Ox = {vC O.+11vl = s(ft)), 

Fix p E O~ such that ~ul-s(ft)=r>0. From the definition, we have 

4 r ( ) I l a : - . l l . < C 3 ( c , G )  ~ ~ I-I { ~ t ( i ) + v , a ( i ) + v } - '  
v E D(p) a E l o t -  v) k I <~i<~r 

(1) 

We fix a numeration {71 . . . . .  7,} of  q~. Then every p C O~ + is represented as follows. 

= s rni ~/i, 
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where m i (l~<i~<n) are non-negative integers. From the formula in [GW] (4.9), we have 

{a(i),0t(i)} -1 = (mi!) -2. 
~x E l(~u) \ l ~ ' ~ u  I / "= 

We easily have 

m l ! . . . m n !  

From (1), (2), and (3), we have: 

(2) 

LEMMA 4.6.3. There exists  s o m e  posi t ive  cons tan t  C 5 such that  f o r  all/~ E 0 + 

IIw_,G ~ c~t+'(l~l !)-2. 

Put ~b_u=pu(~b ~) for/~ E 12+. Next we are going to estimate [Iw-ull~,, for 1 ~<~<2 and 

t>0. 

First we introduce some notations. Put 

~ =  U A+(a). 
aE@ 

For/x = G +, we put 

J(~') = {(r . . . . .  r r c ,i, (1 <~ i ~< Lul), ~, = q3, + . . .  + G i ) , } .  

If we put C6=card O, then we have 

card J(/~) ~< C~ '1. (4) 

For any positive integer r and II=(fll . . . . .  13r) E + ' ,  put 

G = s &, ~ u( ,~ ) .  

We choose an orthonomai basis v I . . . . .  v d of V~ as in 3.2. Then Lemma 4.6.3 can be 

rewritten as follows. 

LEMMA 4.6.4. For  each  ixE G +, L b ,  has the fo l lowing  express ion.  

d 

E 
j = i  ~ E Jtk~) 

~< n ~'1. (3) 
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where Q(j, O)EC (l<~j<~d; I~EJ(~t)) satisfy 

d 

~] ~] IO(J, ~)I ~ ~ (c~+'(~1~)-2) 2. 
j = l  [~ E J(/x) 

Especially, for  l <~j<~d and ~EJ(#), we have 

IQ(J, I~)l ~<c~l+l(t~l !)-2. 

We quote: 

LEMMA 4.6.5. ([Gd2] (2.3), (2.4).) Put h=dimfi. For /~E (2 + and ~EJ(/~), we have 

the following expression. 

1 ~.1~ = E '1 c~X(I)' 
Lul! ~EN~ IIl! 

where c~i E C satisfies the fol lowing conditions (A), (B). 

(A) c~ = 0 / f  III > Lul- 

(B) There exists some constant C 7 which only depends on the structure o f  fi and 

satisfies 
141-< c~l. 

Put 
K(p) = (I E Nhl Ill ~ I~1). 

Then there exist some constant C s such that 

card K(p) ~< Cs ~1. 

From Lemma 4.6.4 and Lemma 4.6.5, we have 

d 

j = l  IE K(p) l~6J(p) ' 

We fix l~<x<2 and t>0. Then we have 

d 

IIw_.ll~,,~ !~t! ~ ~. ~, IO(J, [1)l Ict~[:([ll!) x-I 
j = l  IlEJ(,u) I E K(p) 

<<~ d65(C5 C6 CTt)U'l(~ul !)-I E (lII !)~-' 
Itl~<l/,i 

<~ A (Bt )~,I(Lul !)~- 2. 

(5) 
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where A =dC 5 and B=C5 C6 C 7 C s. 

Put 

Now we have 

~E ~,  t~_~. 
,uEO~ + 

#EOa + 

~<A ~ ((Bt)L"I(~I!)"-2 

< ~ .  

This implies tbEM~(~,2). Since O(d:)=w, we get the desired conclusion. 
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(6) 

Q.E.D. 

4.7. Whittaker vectors in the Geverey completion of a generalized Verma module 

The following results is deduced from just the same argument of Theorem 4.2.1. 

THEOREM 4.7.1. For all l~<u<2 and ,~E P~+, we have 

Wh,~. ~,(A~Op, 2)) ~_A~(lo, 2). 

For the later use, we slightly generalize the above result. 
++ 

Fix 2 E Ps �9 We define 

O(2.) = {~ E a*l~7/(~, 2.+~) is irreducible}. 

As a finite dimensional m-module, we identify V~ and V~+~ (~ E a*). 

From Proposition 3.3.3, we have: 

LEMMA 4.7.2. For all ~EO(2.), 

Wh.,  ~(M(~, ~+~)) = (,pv(~.+ ~) I v ~ v~}. 

The following result is easily deduced from the proof of Theorem 4.2.1. 

LEMMA 4.7.3. Let T be a compact subset of  0(2). We fix vE V~. Then, for all 

1~<~<2 and t>0, we have 

sup I I~v(~+~)ll~,,< 
~ET 
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Put CP==UrENCP r, where we put ~b~ For all a = (a I . . . . .  a,) E cP=, put 

lal = a , + . . . + a r  . 

Fix ;rE P~-+ and ~Ea*.  We write 

~pv(2+~)= ~ V)~(2+~)_~, 
~EQ + 

where ~pv(2+ ~)_~, E M(p, 2)_,. 

PROPOSITION 4.7.4. Fix ).EP~ -+ and fix ~Ea* such that 

?zEQ+~. Then there exists some e>0 such that z~.*~po(2+z~)_~, 

{z E C t 0<[zl<e} for all l~ E 0+~. 

(~,~):~0 for all 

is holomorphic on 

Proof. From the proof of Proposition 4.5.2, we have 

Ta+z~(p) = (2,, 2,+20M) + (p, 22,+20s) + (p, 2z~) - (p,p} - f2  M. 

Tx+z~(/z) is inversible for Lu]>>o, O<]z]<<l. On the other hands, there exists some 

discrete subset U of R such that all the eigenvalues of f~M on W(a) contained in U for all 

a E O  =. Therefore, Tx+z~(a=+...+ar) is inversible on W(a) for all r I . . . . .  a r )EO =. 

Hence, we get the desired conclusion from Lemma 4.3.2. Q.E.D. 

w The Goodman-Wallach operators 

5.1. Principal series 

Hereafter throughout w 5, we fix some S c H  such that Sm~S and use the notations of 

1.4. and 1.5. Namely,  G is a connected real semisimple Lie group with finite center, .q is 

the complexified Lie algebra of G, Ex~_ V~ . . . .  etc. 

Let M 0 be the connected component of M m containing the identity element. Put 

Po=MoA,,N,,. Then P0 is the connected component of P,, containing the identity 

element. 

Hereafter we denote by * either " m "  or " 0 " .  Hence (M,,  P , )  is either (Mm, Pro) or 

(M0, P0)" Let  o be a finite dimensional irreducible unitary representation of M,  and let 

Eo be the representation space of o. 

For any real analytic Lie group X, we denote by ~(X)  the space of measurable 
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functions with respect  to the (left) Haar  measure. Let fobe  ~ (l~<x), C =, M or M. Let 

o%(G; Eo) (resp. ~:(K; Eo)) be the space of  Eo-valued functions on G (resp. K) belonging 

to the class ~-. 

Let  ~f={X I . . . . .  X,} be a basis of  a real vector space f n .%. For t>0,  x > l ,  and 

fE  C| Eo), put 

f K k E K  "" [[ [[k,t = inf{C > 0[ Vn E N, VXi, . . . . .  Xi, E ~, sup[[f(Xi~ .Xi, :k)[[eo<~Ct"([n[ !)~}. 

Here, [[ [[eo is the norm of Eo. Put 

(K, Eo) t = {fE C'~176 Eo)I Ilfll~,, < oo). 

From [GW] Corollary 1.2, we have 

x . ~(K; Eo) = 0 ~ (K, Eo),. 
t>0  

Moreover, the topology of cg~(K;Eo) coincides with the direct limit of those of the 

normed spaces ~3"(K;Eo)r 

Let H.(o)  (resp. cg.(o)) be the space of Eo-valued square-integrable functions 

(resp. ultradifferential functions of  Gevrey class of order x) f on K which satisfies 

f(km)=o(m)-lf(k) for all k E K  and m E M . .  Since q3,(o) is a closed subspace of 

~J"(K;Eo), we introduce the subspace topology on q3.(o). 

Let v E a*.  We define 

J;(G/P,; Lo, ~) = {fE ,~(G; Eo)[ Vg E G, Vm E M*, Va E A,,, Vn E N m, 

f(gman) = e ~-~)~l~ ")o(m)-i f(g) }. 

We regard ~(G/P,;Lo, v) as a G-module by the left action. Namely,  put 

Jr*v(gOf(g) = f (g l  I g), 

for all f E  J;(G/P.; Lo, v) and g~, g E G. 

For f E  H o (or f E  ~3,(o)), we define ev(f) E ~(G/P,;  Lo, ~) by 

ev(f)(kan ) = e(V-0m)(l~ a) f(k) ' 
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for kEK, a EA,,, nEN,, .  Put 

H,(o ,  v) = {e . ( f )  E J/fiG~P.; Lo,,)I f E  H.(o)}. 

We can immediately see 

e~(~.(o)) = ~ (G/P,,Lo,) .  

Since H, (a ,v)  is isomorphic to H , (o )  as vector spaces, we can easily see that 

(z* ~, I-I,(o, v)) is a strongly continuous representation of G on a Hilbert space. 

Clearly, we can see H0(o, v) is a direct sum of a finite number of principal series 

representations in the usual sense. Namely, we have 

H0(o, v) = ~ [o :Z'[M~]Hm('t', V). 
r E ~/,. 

Here, M,~ is the set of  equivalence class of finite-dimensional irreducible representa- 

tions of um and [o :riM0] is the multiplicities. 

From the same argument as the proof of [GW] Lemma 5.1, we see the space 

S,,(ero v) of Gevrey vectors of order 1 ~<n in * �9 , (z . . . .  H,(o,  v)) coincides with ~(G/P . ;  Lo, v), 

and is also isomorphic to ~d.(o) as topological vector spaces. We simply denote 
f K x , tl Ixtl~., by Ilfll~t for a l l f E  qd,(G/P,,Lo.v) and t>0.  

We denote by Mx(G/P,;Lo,~) (resp. H,(o) x) the space of K-finite elements of 

I-I,(o, v) (resp. H,(o)). 

MK(G/P,;Lo. ~) has a structure of a (.q,K)-module induced from the G-module 

structure of H,(o, v). Mx(G/P,;Lo, ~) is a Harish-Chandra module. We can easily see 

Mx(G/P,;Lo.,) is isomorphic to H,(o) K as a K-module via e,. 

Hereafter throughout w 5, we fix some S~_FI such that Sm~S. 
+ +  

Let 2 E Ps �9 We denote by o~ the finite dimensional unitary representation of M 0 

with the highest weight )~t with respect to (t, u N ram). Then we can identify Eoz with E~. 

Let o~' be a contragradient representation of o~. Namely,  Eo;=E~. Put 2'=2~m. 

Define 

~"(G/P o, ~.) = ~d~(G/Po; LoT a,+eM), 
~r 

MK(G/Po, 2) = M (G/P o, Lo.,.V+eM ), 
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Since ~"(G/Po,2) is the space of the Gevrey vectors in H ( ~ ,  2a) ,  hereafter we regard 

~(G/P  o, 2) as a topological vector space (cf. 1.6). 

5.2. Embeddings into principal series 
+ +  

Let V be an irreducible Harish-Chandra module. We fix 2 E Ps �9 

Put 

Emb (V; 2) = Hom~, K(V, MK(G/P o, 2)). 

We remark that the highest weight vector v~ of V~ is also a highest weight vector of 

Ea. For tEEmb(V;2),  we define 6, E V* by 

6,(v) = [[t(v)](e)](v~) (vE V). 

Here, e is the identity element of G, and we remark that [t(v)(e)] E E~. 

We define t X = - X  f o r X E  .q. Then we can extend X,,,*tX to the anti-automor- 

phism of U(,q). 

Now we consider 

YE U(,q), we define 

V* as a left U(,q)-module, namely for v*EV*, vEV,  and 

[ Y" v*](v) = v*(' Y" v). 

For tEEmb(V; 2), we can easily see 

LEMMA 5.2.1. The map 

E,:M(IOm,)t)gYQva,,,'~ Y'6, E V* (YE U(.q)) 

is a well-defined U(,q)-homomorphism. 

Put 

Emb~ 2) = {t E Emb(V; 2)1 Image(E) is irreducible}. 

Let sg~(G/P o, 2) (resp. ~o(G/Po,)t)) be the space of the elements f o f  MK(G/Po,2)(resp. 

~ ( G / P  o, 2)) which satisfy 

I 

Zf(g:Yi ) (e i )=O (gEG), 
i= I 

15-888289 Acta  Mathemat i ca  161. Imprim~ le 27 d~cembre 1988 
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for Y1 . . . .  YI E U(fi,,) and e 1, etEE ~ such that t . . . . .  Ei = 1Yi~)ei E K(~3m, ~). Clearly, 

sg~c( G/Po, ~,)~ ~o( G/Po, 2). 

Put 

Emb s (V )=  U Emb~ 
,~EP~ + 

We call an element of  Embs(V) a minimal S-embedding. 

We have: 

LEMMA 5.2.2. For all t E Emb~ 2), we have 

ffV)~_M~(G/P o, ).). 

Proof. Let  Y1 .. . . .  YtE U(~lm) and e I . . . . .  etEE z satisfy Eti=lYi~eiE K(pm,2). 

Then there exist Zj . . . . .  ZtE U(mm) which satisfy e i = Zi' v~. Let  Q be an arbitrary 

element of  U(~). 

Since l E Emb~ 2), we have 

I 

E QYiZi'O, (v) = O. 
i= I 

for all vE V. If we putf=t(v), then we have 

I 

0 = E f ( Q Y i Z  i :e)(v~) 
i=1 

I 

t e = E [  Z i ' f (  : Q Y i ) ] ( v ~ )  
i= I 

I 

= E [ f ( e  :QYi)](Zi. V~) 
i=l 

I 

= E [ f ( e  :QYi)](ei) 
i= I 

Since QE U(.q) is arbitrary and the function 

I 

G E g ~ E [f(g : Yi)](ei) 
i= I 

is a real analytic function on G, we have the desired conclusion. 
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5.3. The definition of the Goodman-Wallach Operators 

Fix an arbitrary character  ~p:rt--,C, l~<x<2, and 2 EP ~  +. Let  w be an element of  

L~(p, 2). From the definition of  L~(10, 2), we can choose ~0 E M~(p, 2) such that qa(w). 

Then we can write as follows (cf. 4.2). 

d 

t~ = Z Z W(j, I) .~'(I)| vj. 
j= l  IEN h 

Here W(j, I) E C for all 1 <~j<~d and I E N h, and X(I) and v~ ..... v d are defined in 4.2. We 

fix Z;E U(m) such that v~ = Z~.v~ for all l<_i~d. 

We define 6 i E cg~(G/P o, 2.)* (1 <~i<~d) by 

6i(f) = [ f ( Z  i :e)](vx) ( fE q3'~(G/Po,2)). 

~"(G/P o, 2)---~(o~) as topological vector  spaces and the natural embedding 

~J~(~*~) ~ C=(K; Eo~) 

is continuous. Hence  we can see 6 i is continuous linear functional on ~(G/P  o, 2) since 

6i clearly defines a continuous linear functional on C| Eo~). Namely,  we have: 

LEMMA 5.3.1. Fix arbitrary t>0  and some I<~i<~d. Then, there exists some posi- 

tive number 16L., such that for every fE~"(G/Po,2) which satisfies Ilfll~,<~. the 

following estimate holds. 

iOi(f)[<~[6i[~ f K 

Put 161~., = maxl_<i_< d 16i[~,,. 

F o r f E  cg"(GlPo, 2) we define 

d 

= w ( / ,  i)if x( ) zj 
j= l  IEN h 

From Theorem 4.2.1, and [GW] (2.2), we see w w is a continuous linear functional on 

~g~(G/P o, 2). 

Namely,  we have: 
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PROPOSITION 5.3.2 Fix arbitrary t > s > 0 .  Then, for  all f E ~ ( G / P o ,  2) which satisfy 

]]fll~s<~, the fol lowing estimate holds. 

where e=r~(t-s)  -~ and ~ is an element o f  M~(~,4) such that q~(t~)=w. 

Moreover we easily see the definition of ~w does not depend on the choice of t~ if 

we restrict ~ to ~3~(G/P0, 2). 

Hereafter we assume w E Wh. _~(s 4))___L~(~, 4). 
We denote the restriction of o~ w to ~r o, 2) by the same letter. We have: 

PROPOSITION 5.3.3. For all f E  ~ (G/Po ,2 ) ,  we have 

a~w(X.f) = ~fl(X)Cow(f) (X E n). 

Especially w ~ E W h  * ~o( sg~ G/Po, 4)). 

Proof. We define tb E M"(p, 4) as in 4.6. This proposition is directly deduced from 

the following fact. 

X. t0 = -~p(X)~b mod/~(~, 4) N M~(p, 4). Q.E.D. 

Remark. The Whittaker vector ~o~ is introduced by Goodman and Wallach in [GW] 

when G is a real quasi-split semi-simple Lie group. 

Put 

:r~(g)f(g 0 = f ( g -  l gl) ' 

[ ~ w ( f  ) ](g) = t~ w(~(g l) f ), 

f o r f E  ~*o(G/Po,4) and g,g~ E G. 

From Theorem 4.2.1, Lemma 1.6.1, [Gdl] (2.6), we can easily see f lw( f )E  ctd~(G), 

since f E  q3*(G). 

We put 

~3*(G, n; ~p) = {fE ~3~(G)[ Vg E G, V X E  n , f ( g  :X) = -~p(X) f (g)} .  

Especially ~3'(G, n; ~p) = ~r n; ~p). Using the left action we can regard ~3*(G, n; qJ) as a 

left G-module. From Proposition 5.3.1, we can easily see ff]w(f)E qd*(G, n;~p). 



WHITTAKER VECTORS AND THE GOODMAN-WALLACH OPERATORS 

We call the G-homomorphism 

f2~ : ~ (G/P  o, 2) ~ ~'(G, n, ~0) 

the Goodman-Wallach Operator (attached to w E Wh~ _w(i~/(p,2))). 
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5.4. The injectivity of the Goodman-Wallach Operators 

We fix 2 E P~'+ and w E Whn, _~(s 2)). 

Then w is uniquely written as 

/13= Z W-, u 

where w_u E L(~,2)_~,. We define a;_, such that q~(t~_~)= w_~,, as 4.6, for all/~E Q~ +. 

First we prove: 

PROPOSITION 5.4.1. w~O if and only if  wo:~O. 

Proof. We assume w o= 0. Then, via the canonical pairing of 3.1, w defines 

w* E Wh*_ ~(s 2)) such that w*(1 | V~)=0. However, since s is generated by 

(I| as U(n)-module, we have w*=0. This means w=0. Q.E.D. 

For z E C we put 

~(z) = Z z~'ltv-~, ' 

w(z) = q~(tb(z)). 

We can easily see w(z) E Wh.. _:~,(s 2)). 

Then we have: 

LEMMA 5.4.2. For all ~I~ 2), wwl~(f) is an entire holomorphic function in z. 

and t>0 such that Ilfll~,<~. Proof. FixfE M~(G/Po,2) 

We have 

oJ~(z)(f) = Z z~4w~ ,(f)" (11 
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From 4.6 (5), there exist some A, B > 0  such that 

iicv_~,ll,,. ' <~ a (Bt)~,[(~u[ !),,-2, 

for all t>0  and/z E O +. Hence,  from Proposition 5.3.2 we have 

Iww (f)l  <~ Ilw-i,I[~, zk+,,[Ol~, 2tt[ftl~r,, 

(2) 
< ~ A[6[~,2/lf[l~,([u[!)'-2(B2"-EtlzJ)~l. 

~,eo; 

Hence the right hand side of (1) converges uniformly on Izl<R for all R>O. 

Next we prove: 

THEOREM 5.4.3. We assume wEWhn_~(/~(~,).)) is non-zero. Then there exists 

some discrete subset D o f  C such that 0 ~ D and for all z E C - D ,  

f2w(z) :M~ 2) --9 M(G, n; z~p) 

is injective. 

Proof. Put 

Q.E.D.  

Clearly, 6z=Ww(0). 

Since V~ is an irreducible U(m)-module,  there exists some YE U(m) such that 

YZ.vx=v ~. We can easily see 

[' Y'Q. f~w0(f)](e) = [f(e)](Q.vx), 

for all QE U(m,,). Hence  f2wc0~ :M~ ~ eg(G, II;~p) is injective. 

Next we assume U has a limit point. Since kernel of f2~t~) is (.q, K)-submodule of  

M~(G/Po,2) and M~(G/Po,2) has finite length, there exists some non-trivial (fl ,K)- 

subrnodule of  M~(G/P o, 4) such that 

W = {zE C] V_DKer(~w(z)} 

U = {z E CI f~w(z):M~ 2) ~ M(G, n; z~p) is not injective}. 

First we show 0 ~ U .  There exist some ZE U(m) such that Z |  w~). We define 

6zE Mr(G/P o, 2)* by 

6z( f )  = [f(e : Z)](v a) ( fE  Mx(G/P o, 4)). 
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also has a limit point. Choose a non-trivial element h E V. Then we can immediately see 

that there exists some k E K  such that [h(k:Z)](v~)*O. Since V is K-invariant, there 

exists s o m e f E  V such that [f(e:Z)](V~)*O, namely towt0)(f)*0. On the other  hand, we 

have 

~Ow(z)(f) = 0 (z E W). 

Since W has a limit point, Lemma 5.4.2 implies ow(z)(f)=0 for all z EC. This is a 

contradiction. Q.E.D.  

Next  we consider the following condition on S. 

(R) pNg 0 is a real form of  l~. 

Example 1. If  G=SU(n, 1) ( n > l )  and 13 is a maximal parabolic subalgebra of .q 

which contains the complexification of  the minimal parabolic subalgebra for G, then the 

condition (R) does not hold. 

Example 2. If G is real-split, then the condition (R) always holds for all S~_S m. 

Under the assumption (R), we can prove a stronger result than Theorem 5.4.3. 

Hereafter ,  we assume (R) holds. 

Put a~, =am N a N .q0. Let  A~, (resp. N)  be the analytic subgroup of  G corresponding 

to a~, (resp. nN .q0 and let M** be the centerizer  of A n in G. Let  P be the normalizer of 

I0 N .% in G. Then P has a Langlands decomposit ion P=M,~A~ N. 

Let n=d ima~ .  Let E + the restricted root system with respect to (n,,,a,~) 

and let H m be the set of simple roots of  E~. Put 

{ a e n m l a l . o . 0 }  

= { a ,  . . . . .  

We denote the restriction of a i (l~<i~<n) to a~, by the same letters. 

Then, we can easily see 1-I s forms a basis of the dual vector space of  a real vector 

space oh,. Let  {Hi, . . . ,H,} be the dual basis of  a~,. 

Put R~. = { ( x  I . . . .  , x,) E R" I xi>O (1 <~i<~n)}. For x=(x  t . . . . .  x,) E R~., we define 

) a~ = exp - E  l~ EA~,. 
\ i=1 
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Then we see x,,~.a x is an isomorphism of R+ to A. .  

For 2 E t~* and x = ( x  1 ..... x,) E R+, we define 

t x = exp 3. Iog(xi) H i . 

Fix l<x<2.  Let wEWh,,_~(s According to the proof of Theorem 4.2.1, 

there exists some Lb~, E M(0,2)_~ (u E 13~+) such that 

\F, e a 2 

and there exist some A, B>0 such that 

IIw- L,, ~ A(Bt)t~l(~ul !)~-2, 

for all t>0 and/~ E 13 +. 

Put W_u =Z~a=, gA'~ | vx, where W<_'~ E U(fi)_z and Z, E U(m) for (1 <~i<.d). 

We consider ww(z~a(a-~Jf) for fE  Ud~o(G/Po, 2) and x E R%. Put w_~,=%(W,). We have 

d 

ww_,(z~a2 I ) f )  = Z [f(ax: W'~ Zi)](v ~) 
i=1 

d 

= Z [ f ( x  u W (i) Zi: ax)l(va) 
i= 1 

= x . - X  co w ( f ) .  

For x=(x  I ..... x,) E R+, put 

Ixl = Ix , l+ . . .+ lx . l .  

Then, we get: 

THEOREM 5.4.4. We assume the condition (R). Let  1~<~<2 and let 3. E P+f~. We f ix  

w E Whn, _v,(s ~)). We choose O~_l, for /u  E O, + as above. 

Then for  all qd~(G/P o, 2) and x E R+ we have 

x~w~(rt(a* f )  = 2 w~.  (f)x~'" (4) 
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Moreover for all R>0 ,  the above series is unformly convergent for ]xi<R. 

Proof. We have only to show the uniform convergence. This is showed by the same 

argument of  the proof  of  Lemma 5.4.2, using (3). Q.E.D.  

Since Q~0) is injective (cf. the proof  of  Theorem 5.4.3), we have: 

COROLLARY 5.4.5. We assume that (R) holds. Then for all non-zero wE 

Whn,- ~(s 2.)), 

Qw: ~(G/Po, )~) ~ ~"(G/N; ~p) 

is injective. 

5.5. Existence of a global Whittaker vector 

Let V be an irreducible Harish-Chandra module and 2EP~  +. We assume 

Emb~ Fix a non-trivial t E Emb~ and an arbitrary character ~p: n--~ C. 

For w E Whn,_~(s ;(.)), we define qJ,. v,(w)E Wh~/, ~(V) by 

[qJ,.~(w)l(v) = oJw0(v)) ( rE V). 

From IV l ], we have Dim(V) = Dim(L(~.~, ):)) when Emb~ ~.)=1=0. 

Hence, from the Theorem 5.4.3 and Corollary 2.2.3, we immediately have: 

There exists some discrete subset D of C such that Oq.D and for THEOREMb.5.1. 

all z E C - D  the map 

u2,, ~'v,: Wh,, _ :~,(s 2)) -=. Wh,~; :v(V) 

is injective. 

Moreover, i f  q~ is admissible, Dim(V)=dim n, and Embs(V)=l=0, then Wh~[,zr 

I f  the condition (R) holds, from Corrollary 5.4.5, we have a stronger result: 

THEOREM 5.5 .2 .  

is injective. 

We assume the condition (R) holds. Then the map 

qJ,, ~: Wh,._ ~,(s ---. Wh~, ~,(V) 
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Moreover, i f  Dim(V)=d imr t  and ~p is admissible, then E m b s ( V ) + 0  implies 

Wh~.,p(V)=t=O. 

w 6. Whittaker vectors attached to an admissible character 

on the nilradical of a minimal parabolic subgroup 

6.1. Whittaker vectors on principal series 

In w 6, we use the notat ion in w 1 and w 5 freely. We also assume hereaf ter  in w 6 S =  Sm. 

Hence we have p=lam, n = n  m, I=[  m . . . .  etc. However  l l l=m m and a=a m may not hold. 

Let  W be the little Weyl group with respect  to (.q, am). Put tm=b f] mm. Hence  we 

have b=tmO)am and t m and a m are orthogonal  with respect  to the Killing form. Using 

Killing form, we can regard t* and a* as subspaces  of  b*. Since t=_t m, and the restric- 

tion of each element  of  a* to t m is zero,  we have 

p++ 
t"t* c Sm . 

First, we consider  the Whit taker  vectors on spherical principal series with unique 

quotients. 

Let id m be the trivial representat ion of  M m. 

Let ~ be ~", M r, or C ~. For  v E a*, we put 

~(G/Pm; L,,) = ~(G/P,,,; Lidm, v)" 

Then we have natural embeddings:  

MK( G/P m; L,,),---~ MK( G/P o, v-ore), 

q3~( G/Pm; L,,)'-, q~(G/P o, v -  O,n), 

Put 

(a*,)_ = {HE a,,*,] V a E H,,,, ,q~(a(H))>O}. 

We quote: 

THEOREM 6.1.1. ([Ly] Theorem 6.2.2, Corollary 6.2, also see [Ko] Theorem 5.2.1, 

L e m m a  5.2.) We assume v E (a*)_ and ~: U(rt m) --~ C is an admissible character. Then, 
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MK(G/Pm; L v) is a free U(n,.)-module with card W generators. Hence we have 

dim Wh*,  ~(JK(G/P m; L~)) = card W. 

Remark. The dimensions of dual Whittaker vectors on non-spherical principal 

series are also known ([Ko] Theorem I, [Ly] Theorem 6.4). Namely, 

dim Wh~.  v.(sgK(G/Pm; Lo. v)) = card Wdim Vo. 

F o r f E  C=(K/Mm), we define e , ( f )  E C~ by 

e.( f )(kan) = e("-e")~176 f ( k  Mm). 

For each wE W, we fix a representative w* E G. We put fi~=Ad(w*)nn ~. Let 

Nw=fi lnw*-~Nw * be the corresponding analytic subgroup of.~.  

We define for fC C=(G/Pm;Lv) and wE W, 

~, w(f) = fNf(w,  ) dh~. 

We denote the restriction of b~, w to ~g~(G/P.,;L v) by the same letter. 

We also define fo r fE  C=(K/M,.), 

Put 

6w(V,f) = b~,w(ev(f)). 

THEOREM 6.1.2. ([He], [Sch], cf. [Wa].) 

(1) For all v 6 ( a * ) _ _ a n d w E W ,  cS., w is a continuous linear functional on 

C~(G/Pm;Lv). Hence 6~, w is also continuous on ~g"(G/Po; L v) (x~>l). 

Especially, for  each t>O there exists some positive number ]Sv,.:l~,t such that for  

every f 6 ~"(G/P,.; L.) which satisfies I[fIIxt<~, the following estimate holds 

fK 16~, w(f)] <~ 16v, wl.,,ll ]ix,,. 

Moreover if  T is a compact subset of(a*.)__, then we can choose Dv, wl.,,for v E T  such 

that 

sup 16v. wl,~,, < ~ .  
v E T  
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(2) For all f f i  C=(K/M), w'*dw(v,f) is a holomorphic function on (ct~)__. 

We fix v E ( a * ) .  Then we can easily see there exist some ~ E a* which satisfies the 

assumption of Proposition 4.7.4. (Even " + + ff Y #:Y,,, we can easily see this fact.) We may 

aslo assume v+z~E(ct*)__ for all 0<]zl<<l .  We fix some non-zero vE Vid ~. Let  e be a 

sufficiently small positive integer. For z EC such that 0<[zl<e, we consider 

(--~I)v(W(V~-Z~)--Qm) E Wbn~ ' _v(h;/(l), W(2q-Z~)--Om)) defined in 3.3. 

There exist unique P_~u(z) E U(ft)_, for all/~ E (l~ and w E W such that 

(--/~)v(W(~'"~-Z~)--~)m) = 2 P~_u(z)| 

//3 and z~,P_u(z ) is holomorphic on 0<[z[<e for all/~ E O, + and w E W. 

Fo r f f i  ~(G/P,,;  L~+z,), we define 

Here, d~t~+zr is the differential representation of ~(G/P,,;  L~+z~). 

From Proposition 4.7.4, Theorem 6.1.2, and [GW] (2.2), we have: 

LEMMA 6.1.3. Let 1~<• Fix (ct*)_. We choose ~ as above and let e be a 

sufficiently small positive number. Then, o)w, z satisfies: Put V: = ~g"(G/P,,; L,,+.~). 

(1) a~,:  is a continuous linear functional on V: and contained in Wh,* ~(V z) for  all 

0<[zl<e. Especially, for each t>0 there exists some positive number I6v.~l~,t such that 

for every f E  ~(G/P,,;  L~) which satisfies I lfll~ r, , < ~ ,  the following estimate holds 

~~ z( f ) l~ l l ( -~~  z~)ll~. 2~,16v+~.~. wl~. 2,1lfll~ K ,. 

(2) For all f E  ~g~(K/M), z,~,o)w.z(ev+z~(f)) is holomorphic on O<lzl<e. 

E * Put r=card  W. Fix 2 E ((t*)_ and choose ~ a,n as above. From Theorem 6.1. I, for 

all z such that [zI<e, dimWh,~,,,,u,(sgr(G/P,,;Lv+.r 

Let sgK(K/M m) be the space of K-finite functions on K/M,n. 

Now, we can prove the following result in just the same way as [GW] Lemma 5. l 1. 
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LEMMA 6.1.4. For all z such that Izl<e, we can define a basis 

:( 1 ) (r) 
z ,  ...,Yz 

* " t  ~ v+z~)) such that for all f 6  S4lg(K/M m) and l<~i<<-r, the map 

Z ~ �9 ( i ) t e  t ' e ~  
J z  \ V+Z~ \ d ' t ]  

is holomorphic on Iz[<e. 

We have: 
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PROPOSITION 6.1.5. Fix l~<x<2 and fix an arbitrary v6(a*)_. Then, every element 

of Wh*m,~(MK(G/Pm;Lv)) can be extended to a continuous linear functional on 

~ (  G/P m; Lv). Especially, 

W h * ,  ~(sgK(G/P,,; Lv)) = Wh~,,. p(sfIK(G/Pm', Lv)). 

Proof. Now we can apply the same method as the proof of [GW] Lemma 5.12. 

Clearly, we have only to extend y~0 i) (l~<i~<r) to a continuous linear functional on 

q~( G/Pm; L~). 

We fix t>0,  16i<<-r, and fEsgK(K/M m) which satisfies I l f l l~,<~.  From Lemma 

6.1.3 and Lemma 6.1.4, we can write 

Y"~(e~+z~(f)) = Z di.w(z)~~ 
w E W  

for all 0<]zl<e. Here, di, w(z) (wE W) is homorphic functions defined on 0<lzl<e. 
From Theorem 6.1.1, and [GW] (2.2), we have 

lYr <~ Z Ida. w(z)l II(-P)v(w(v+z~)-~m)ll~, Z't I(~v, wl~r Ilfll~ K,,. 
w E W  

From Lemma 4.7.3, and Theorem 6.1.4, we have 

sup ~ ]  Id, ~(z)l II(-~)~(w0'+z~)-om)tl~ ~.,I,~=+~,~l.,,< ~.  
Izl=t/2 w s w ' 

We denote by M the above constant. 
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Hence by the maximum principle, 

ly~)(ev(f))[ <, max [y~)(ev+z~(f)) [ <~ M[[fll,, t. 
Iz[=~/2 

Since e~(AK(K/Mm))=sgK(G/Pm; L~) is dense in q~U(G/Pm; Lv) , we have the desired result. 

Q.E.D. 

Now that we have proved Proposit ion 6.1.5, we can prove, using Corollary 2.1.3 

and Corollary 2.2.4, the following theorem in just  the same way as the quasi-split case, 

namely [GW] Theorem 5.2. 

THEOREM 6.1.6. We assume ~p is an admissible character on nm. Let  a be an 

irreducible finite dimensional representation o f  M m and v E ct*. I f  

y E Wh ~m' ~ (scK(GIPm; Lo, ~)), 

then w extends to a continuous functional on ~(G/P,,;Lo, v). 

Especially, 

W h *  v(sgK(G/Pm; Lo, ,)) = Wh.C,., q,(sEK(G/P m ; Lo, v)). 

6.2 Global Whittaker vectors 

As a corollary of Theorem 6.1.6, we have one of the main results of  this paper. 

THEOREM 6.2.1. Let V be an irreducible Harish-Chandra module, and let 

~p: U(n m) ~ C be an admissible character. Then, 

G , Wh.~.~(V) = Wh,,~. ~(V). 

Remark. dimWh* ~(V) is given in Corollary 2.2.2. 

Proof. From Casselman's  embedding theorem, there exists some irreducible repre- 

sentation cr of  M,, and vCa* such that there exists some embedding 

t:  V ~--~Mr(G/Pm; Lo. ~). 

For simplicity, put M=sgK(G/Pm; Lo, v). Hence we have an exact sequence 

0 --* (M/V)* --, M* ~ V* --, O. 
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From [KO] Lemma 4.5, the following is exact. 

0 ~ (M/V)~ M~ ~ V~ ~ O. 

From Corollary 2.2.4, we have an exact sequence 

O---~Wh*,w(M/V)---~Wh,m,w(M) Who*m. ~(V) ---~ 0. 

This means every Wh* ,~(V) extends to an element of Wh*m,W(M). Hence, by 

Theorem 6.1.6, we have the desired result. Q.E.D. 
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