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1. Introduction 

Suppose that F is a finite simplicial complex and k a field. Let f=(f0,f l  . . . .  ) and b= 

(bo, b I .... ) be the f-vector and Betti sequence of F, i.e., f i=card{FEFldimF=i} and 

bi=dimkH,(F,k), i>~O. The well-known 1899 theorem of Poincar6 [PI,P2] (usually 

called the Euler-Poincar~ formula) states that 

~ ( -  l)'fi = ~ ( -  1)' b,. (1. l) 
i~o i~>o 

It was later shown by Mayer [M] that no other linear relation holds between f a n d  b. 

In this paper we introduce d (where d=dim F) non-linear relations which f and b 

are shown to satisfy. Also, we prove that (1.1) together with these new relations 

completely characterize the pairs (f, b) of numerical sequences which arise as f-vectors 

and Betti sequences of finite simplicial complexes. Several related results are discussed 

concerning such (f, b)-pairs for simplicial complexes, and a characterization is given of 

those integer sequences which can arise as Betti sequences of simplicial complexes on 

at most n vertices. 

In recent years f-vectors of various classes of simplicial and polyhedral complexes 

have been intensively studied. We refer the reader to the surveys [Bj, BK, St]. A basic 

result is the Kruskal-Katona theorem, which characterizes the f-vectors of arbitrary 
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simplicial complexes. This theorem and the Sperner theorem--two cornerstones of set- 

theoretic combinatorics--are reviewed in Section 2. While the Kruskal-Katona theo- 

rem can be said to characterize the projection onto the first coordinate of all (f, b)- 

pairs, it follows from our work that the Sperner theorem and its relatives characterize 

the projection onto the second coordinate of all (f, b)-pairs with fo<~n. The character- 

ization of (f, b)-pairs given here was previously known in one special case, namely for 

acyclic complexes [K2]. 

We now proceed to give precise statements of the main results. Proofs and further 

details will be found in later sections. 

All simplicial complexes F in this paper are supposed to be finite. For the usual 

definitions of complexes and their homology, see [LW] or [Sp]. Some special combina- 

torial properties are briefly reviewed in Section 2 to fix terminology and notation. 

Here/ / j (F,  k) will denote/-dimensional reduced simplicial homology of F over a 

field k. Also fli=dimk//,(F, k) is the ith (reduced) Beni number of F over k. The 

reduced Betti numbers fli differ from the ordinary Betti numbers b i only in dimension 

zero: b0=fl0+ 1 (assuming that F is nonempty, in which case b 0 counts the number of 

connected components). For the rest of this paper we will consider only reduced Betti 

numbers, and therefore prefer this reformulation of the Euler-Poincar6 formula (1. I): 

1 i E ( -  ) f~= E ( -  l)ifli+ 1. (1.2) 
i;DO i;~O 

The following number-theoretic function will be of importance. If n, k~> 1 there is a 

unique expansion 

n = ( a t ~ + ( a k - ' ~ + . . . + ( a i )  
\ k /  \ k - l /  i ' 

such that ak>ak_ I >...>ai>~i~>l. This given, define 

() 0k-](n)= k - I  + + " ' +  all " \ k - 2 /  i 
(1.3) 

Also, let 0k_l(0)= 0. 

Let N(0 | denote the set of ultimately vanishing sequences of nonnegative integers. 

For a = ( a  0, a] .... )6 N(0 | we call a-wedge of  spheres the topological space obtained by 

wedging together a~ copies of the/-dimensional sphere for i~>0. The 0-wedge of spheres 

is just a point. 
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THEOREM 1.1. Suppose that f= ( fo , f l  . . . .  ), fl=(flo,fll . . . .  )EN~o ~) are two given se- 

quences and k is a field. Then the following conditions are equivalent: 

(a) f is the f-vector and fl the Betti sequence over k o f  some simplicial complex, 

(b) let Zk-I = Ej;,k(-- 1)J-k(fj --flj), for  k~>0; then 

(i) Z-~ = 1, (1.4) 

(ii) Ok(Zk +ilk) <<-Xk-l, for  all k>,l, (1.5) 

(c) f is the f-vector o f  some simplicial complex which is homotopy equivalent to the 

fl-wedge o f  spheres. 

One observes that in the numerical characterization (b) of  (f, fl)-pairs of  d-dimen- 

sional complexes condition (i) is the Euler-Poincar6 formula (1.2) and condition (ii) 

gives d additional non-trivial relations. Also, just  as the original Euler-Poincar6 formula 

the new relations and therefore the entire characterization is independent of field 

characteristic. 

The relations (1.5) have a homological interpretation which is discussed in Remark 

4.4. The formulation of condition (c) can be sharpened from homotopy class to a 

combinatorially defined class of "nea r -cones" ,  see Section 4. For f l=0 these near- 

cones are ordinary cones, and Theorem 1.1 specializes to the characterization o f f -  

vectors of acyclic complexes given in [K2]. 

Let us call a pair f, f i e  Nt0 | compatible if f is the f-vector  and fl the Betti sequence 

of some simplicial complex. This is, by Theorem 1.1, a purely combinatorial relation, 

independent of  field characteristic. Every subset of  N~0 | will be considered partially 
t t �9 ~ t ordered by the componentwise ordering: (n 0, n I . . . .  ) -.~(n 0, n I . . . .  ) tf ni~n i for all i~>0. 

THEOREM 1.2. (a) Suppose that f is the f-vector o f  some simplicial complex. Then 

the set Bf o f  all compatible Betti sequences has a unique maximal element. Define 

~p(f)= max Bf. 

(b) Suppose that fl E Nt0 | The set F# o f  all compatible f-vectors has a unique 

minimal element. Define q0(fl) = min FO. 

(c) Suppose that (f, fl) is a compatible pair. Then qg(fl)=f i f  and only i f  conditions 
(1.5) hold with equality everywhere. 

(d) ~0(q0(fl)) =fl, for  all fl E Nt0 | 

(e) cp(v/(f))<~f, for  all f-vectors f .  

More detailed observations can be made about the combinatorics of compatible 

(f, fl)-pairs. For  this see Section 5. 
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Our next result gives a characterization of Betti sequences of simplicial complexes 

on a bounded number of vertices. Sperner families and their f-vectors are defined in 

Section 2. 

THEOREM 1.3. Let  n>-O be a f ixed integer, fl=(flo,fll . . . .  ) E N~ | and let k be afield.  

Then fl is the Betti  sequence over k o f  some simplicial complex with at most n + l  

vertices i f  and only i f  fl is the f-vector o f  some Sperner family o f  subsets o f {  1,2 . . . . .  n}. 

The f-vectors of Sperner families have a known characterization (see Theorem 

2.5), which in conjunction with Theorem 1.3 gives a complete numerical characteriza- 

tion of the possible Betti sequences of complexes on at most n+ I vertices. 

For a simplicial complex F and field k, let fl(F)=2i>~Ofli(F). Clearly, Iz(F)I<~fl(F), 

where z(F) = Ei~ 0 (-1)ifli (1-') is the reduced Euler characteristic (1.2). The following is a 

direct consequence of Theorem 1.3 and the well-known theorem of Sperner (see 

Theorem 2.4). 

THEOREM 1.4. Let  F be a simplicial complex with at most n+ l  vertices, and let 

/~(F) be the sum o f  its Betti  numbers over k. Then 

(~ 
Iz(v)l [n/21 " 

Furthermore, the following conditions are equivalent: 

(n) 
(i) Ixfr)l= [n/2] ' 

(n) 
(ii) ~ ( F )  = [n /2 ]  ' 

(iii) F is the k-skeleton of  an n-simplex, where k=n/2-1  i f  n is even and k=(n-1) /2  

or k=(n-3) /2  i f  n is odd. 

The Euler-Poincar6 formula (1.2) is true for all finite topological cell complexes. In 

an appendix we discuss the pairs of f-vectors and Betti sequences which arise from cell 

complexes and regular cell complexes. For such pairs some rather obvious necessary 

conditions turn out to also be sufficient. This way a characterization result similar to 

Theorem 1.1 is obtained, see Theorem 6.1. In view of its simplicity this result may well 

be known, however we have failed to find any reference to it in the literature. 
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Viewed in the larger setting of cell complexes, it is tempting to speculate about the 

exact domain of validity for the stringent "simplicial" relations (1.5). We conjecture 

that relations (1.5) are satisfied by the (f, fl)-pairs of all regular cell complexes such that 

any nonempty intersection of two closed cells is a closed cell, and hence in particular 

are valid for all polyhedral complexes, cf. Remark 6.3 and the Note added in proof. 

2. Shifting and compression 

Let N={1,2 .... }, N0=(0, 1,2 .... ), and [hi ={1,2 .. . . .  n}. The cardinality of a set A is 

written IAI or  cardA. For a set A, let (~) denote the family of all k-element subsets of A. 

In the sequel, S = ( i  1, i 2 . . . . .  ik} < will denote an ordered set S = ( i  l, i 2 . . . . .  ik} such that 

il <i2 <.. .  <i k. 

We will consider three orderings of the k-subsets of N. They are defined as follows 

for S, TE (~), S =  {i~, i 2 . . . . .  ik} < and T= (j~,j2 . . . . .  J~) <: 

partial order: S<<.pT if ie<<.je for all l<<.e<.k, 

lexicographic order: S<<. L T if S = T  or min(SAT) E S, 

antilexicographic order: S~<AL T if S= T or max(SAT) E T, 

where S A T = ( S \  T ) U ( T \ S ) .  Thus for instance, {I,2}<L{1,3}<L{I,4}<L{2,3} and 

( 1,2)<AL { 1,3}<AL{2, 3)<AL { I, 4}. Both the lexicographic and the antilexicographic 

orderings are extensions of the partial ordering to a total order. 

A family Ac_(~) is compressed if it is an initial set with respect to the antilexicogra- 

phic order, meaning that S<AL T E A  implies SEA. A is shifted if it is an initial set with 

respect to the partial order <v. Note that a compressed family is shifted, but not 

conversely. 

Let F be a finite simplicial complex whose vertex set is contained in N. Denote 

F k = { S E F : d i m S = k } ,  where d i m S = c a r d S - 1 .  The complex F is compressed if F k is 

compressed for every k~>0, and F is shifted if F k is shifted for all k~>0. 

Let Ac_(~). The shadow aA of A is defined by 

For n e N0, denote by ~ the compressed family in (2) of size n. It is easy to show (see 

[GKI) that OI~ is a compressed subset of (k~_l), and that [OI~l=O,_~(n). (The function 

O,_l(n) was defined by (1.3) in the previous section.) 
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We are ready to formulate the Kruskal-Katona theorem [Kr, Ka], which gives a 

complete characterization off-vectors of simplicial complexes: 

THEOREM 2.1. A sequence f=(fo,fl  .... ) E N~0 | is the f-vector of  some sim/Tlicial 

complex if and only if 

ak(fk)<~fk_ 1, # revery  k ~ l .  (2.1) 

Note that the Kruskal-Katona theorem implies (and is in fact equivalent to) that for 

every simplicial complex F there is a (necessarily unique) compressed complex with the 

same f-vector. For an f-vector f,  let K f be this compressed complex: 

A Kf= t.J /k+l" (2.2) 
k~0 

We will need the following combinatorial lemma in Section 5. 

LEMMA 2.2. Let a~_(~) be a shifted family, Ial=n. Then 

card{S EA: 1 ES} I> card{SE ~:  1ES}. 

Proof Put X = { S r  (~): 1ES}. Let B~_X be a shifted family, and define 

ap(B) = card { S r B: m i n ( S \  { 1 }) =/7}, 

bp(B) = card{S EB: m i n ( S \ {  I}) --->/7} = ap(B) +ap+l(B) + .... for 17 >~ 2. 

Claim. There is a unique maximal (with respect to inclusion) shifted family 

D=D(B) ~_(~), such that D fl X=B. Moreover, IDI = Ep, 2 (/7- I) ap(B) = Ep~, 2 bp(B). 

To verify this claim, just take 

D = { {i, j2,j 3 ..... L }<: { l,j2,J3 ... . .  L } < E B}. 

We now prove Lemma 2.2 by induction on k. It is clearly true for k= 1. 

Let C t, C 2 _~X be shifted families such that ICl I-<1C2[ and C 2 is initial with respect 

to <AL restricted to X. Observe that C~ is shifted and C~ compressed as families of 

(k-D-subsets of {2,3 .... }, where C~={S \ { I } :SECi} .  Hence, from the induction 

hypothesis it follows that bp(C I ) 6bp(C 2) for all/71>2, and therefore I D ( C O I ~ I D ( C 2 ) I  . 
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a contradiction. 

Now, let A=_(N) be shifted and IAl=n. Put 

B 1 = { S E A : I E S  }, B 2 = { S E ~ : I E S }  

and assume to the contrary that IB, I<IB2 I. Let B 3 be obtained from B E by deleting the 

last element with respect to <AL" It is easy to see that D(B3)~I ~. Since A~_D(B I) 

and IBI I~<IB31, we have 

IAI <<-ID(B,)I ID(B3)I < n; 

[ ]  

Remark 2.3. Lemma 2.2 is implicit in Frankl [FI]. In fact, from the last page of [F1] 

one can extract a proof of the equivalence of Lemma 2.2 and the Kruskal-Katona 

theorem 2.1. A simple inductive proof of the Kruskal-Katona theorem is obtained from 

Lemma 2.2 as follows: 

First note that ifA~_(~) is shifted and A~={S\{1}:  1ESEA}, then 

Thus, 

aA = A  1U{RU{1}:REaAI}. 

laAl = IA, l+laA, I. (2.3) 

Now, let Ac_(, s) and IAl=n. By a standard combinatorial shifting method (see 

[EKR, F2]) there exists a shifted k-family B, such that Inl--n and laBl~<laAI . By Lemma 

2.2, formula (2.3) and an induction hypothesis we get that la~l~<laB I. [] 

A Spernerfamily S is a family of nonempty subsets of a finite set with no proper 

containment relations (i.e., if T~, T 2 E S, T~ ~ T 2, then T I = T2). The fundamental result of 

Sperner [Spe] is: 

n THEOREM 2.4. Let S be a Sperner family of subsets of  [n]. Then IS]-.~([n/2]). 

Furthermore, equality holds if and only if "--~.n/2]f--ttnlX for n even and c-r ~ or 

S=((n_t~/2) for n odd. 

The definition off-vector  f=(fo,fl .... ) can be directly extended to arbitrary fam- 

ilies S of nonempty subsets of a finite set: f, =card{ TE S: I TI--i+ 1), i~0. The following 
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characterization of f-vectors of Sperner families follows from the Kruskal-Katona 

theorem. It was found by Clements [C] and independently by Daykin, Godfrey and 

Hilton [DGH]. 

THEOREM 2.5. A sequence f=( fo , f l  . . . .  )ENd0 =) is the f-vector o f  some Sperner 

family o f  subsets of[n] i f  and only i f  either f=O or else 

(n) fk+Ok+l(fk+l +Ok+2(fk+2+'"+Ot-l(ft- '  +0t(ft))" '))  <~ k+ l  ' (2.4) 

where k and I are the smallest and largest indices i for  which f i fO.  

3. Algebraic shifting and homology 

A shifting operation is a map which assigns to every simplicial complex F a shifted 

simplicial complex A(F) with the same f-vector. A well-known combinatorial shifting 

operation, introduced by Erd6s, Ko and Rado [EKR], has been of great use in extremal 

set theory. See the survey IF2]. We will need a shifting operation which does not 

change the Betti numbers of F. Such an operation is introduced in [K1, K3] and will be 

described in this section. 

THEOREM 3.1 (Kalai [K3]). Given a simplicial complex F on n vertices and a f ie ld 

k, there exists a canonically defined simplicial complex A=A(F,k)  on vertices 

{ l, 2 ..... n} such that 

(i) f ( A )  =f/(F), for  i>~O, 

(ii) fli(A) =fli(F), for  i>~O, (Betti numbers with coefficients in k) 

(iii) A is shifted. 

We will give here a selfcontained proof of Theorem 3. I which differs from the one 

in [K3]. First a few algebraic preliminaries are needed. 

Let E be an n-dimensional vector space over the field k with a distinguished 

basis e={el ,e  2 .....  e,}. Let AE be the exterior algebra over E, of. [Bo]. Thus 

AE=~=0AkE is a 2"-dimensional graded algebra over k with exterior product " ^ " .  

As a vector space, AKE is spanned by the basis {es:SE(C]J)}, where e ~ = l  and 

e s =ei, ^el2 ^.. .  Aeik for S= {i 1, i z . . . . .  ik} <. 

Suppose that f={ft , fz  ..... f,} is another basis of E, f =E7: l ave i, l<-i<.n. We use 
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analogous notation f s  =fi, ^ fii 2 ̂ . . .  ^ f~ E AkE for S= {i I , i 2 . . . . .  ik} <, etc. If  S, T E (t7,1), let 

as. r =detAs,  r, where As. r is the submatrix ofA=(au)  with rows S and columns T. Then 

clearly f s =E as, re  r, sum over all TE (I~1). 

Proof  o f  Theorem 3. I. By an arbitrary labeling we may assume that the vertex set 

of F is [n]. Let  

( [n] ~ , S ~ F  C k ( F ) = s p a n l e s : S E \ k + l  / }" 

Then (~(F)=~kCk(l") is a homogeneous graded ideal in AE. Define the face  algebra 

A(F) of  the simplicial complex F by 

Air] =AE/O(F). 

For x E AE, denote 5c=x+(~(F) E A[F]. Let  

Ak[F] = {k: x E Ak+lE} ---- Ak+lE/(~k(F). 

_ ~ d i m r  Ak[F ] is a graded algebra whose Hilbert function is the f -vector  Note that A [ F ] -  k=- 

of F, i.e., dim Ak[F] =card F k =fk(F). 

Let f={f l , f2  . . . . .  f ,} be a basis of  E. Define 

At(r) = (S=_[.I :L  r span{fR : R <LS}} �9 (3.1) 

k-subsets of  [n] in The set family At(F) can be assembled by inspecting the 

lexicographic order and deleting those whose f-representative in A[F] is in the span of  

earlier ones. (The different cardinalities may be taken in arbitrary order.) It follows that 

{fs : S E At(F)} is a basis for A[F], so At(F) and F have the same f-vector.  

In the following we need to consider a basis f which is "gener ic"  with respect to e. 

For this, let a0, l<~i,j<~n, be n 2 transcendentals,  algebraically independent over k, and 

replace k by its extension I~=k(ail . . . . .  a, ,) .  Let  f, =an e I +OliEe 2 -1-... +ainen, 1 <~i<.n, and 

consider the "gener ic"  basis f=( f l , f2  . . . . .  f~). Define A=At(F). 

Claim 1. The set family A is a shifted simplicial complex. It is independent of  the 

choice of generic basis f and independent of  the labeling of  the vertices of  F. 

Claim 2. ilk(F) =ilk(A) =card{S E A k : S U { I } ~ A}, for k/> 0. 
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We first show that A is a simplicial complex. Suppose that S ~ A and T = S. Then 

fS= E {~Rfle:R<L S}' 

fr = +fr\s ^ f s  = E {+YRfRo(r\S): R <L S and R n ( T \ S )  = ~}. 

As is easily seen, if R<L S and R fl ( T \ S )  = ~ ,  then R tJ (T\S) <L T. Hence, Tr A. 

To prove that A is shifted we need the following. 

PERMUTATION LEMMA. Let ~ be a family of subsets of [n] and suppose that for 
some S ~_ [n] we have 

TE $; 

If:r: [n]---~ [n] is a permutation, then 

for some coefficients ~'rE k. 

T E ~  

Proof of lemma. Expand the given relation, 

fs = YTfT+  
TEY= Y~F 

in the e basis: 

E as,jej= E ~'r E ar, rer  + E 6rer. 
J TE~; K Y~F 

(3.2) 

This is equivalent to a collection of polynomial relations in the au's over the ground 

field k (recall that the coefficients Yr and 6 r are rational functions of the ao.'s over k). 

Being algebraically independent over k, the transcendentals a o can be freely permuted 

in these relations. Let :r permute the rows of the matrix (ao). Then :r: as, j---~ a~s,j, etc. 
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We get 

Za~s, sej=27~Za~r, xer+X6'rer, 
J TE,~ K Y~F 

which implies (3.2). [] 

We now show that A is shifted. Suppose that S ~ A and S<p T for equicardinal 

subsets S, T_c [n]. Define a permutation z: [n]-* [n] such that ~t(S) --T and the restric- 

tion of zt to S and to [ n ] \ S  is order-preserving. Since S ~ A, we have 

L = 2 {~RL: R <L S}. 

The permutation lemma shows that 

f r  = L s ,  = Z {Y,~Lm : R <L S}. 

It is easy to see that if R <  L S then ~(R) <L T. Hence, T~ A. 

We have now proven all parts of Claim I. The independence of choice of generic 

basis is clear from the construction, and independence of labeling of vertices of F 

follows at once from the permutation lemma. 

It is left to prove Claim 2, i.e., the fact that the generically shifted complex A has 

the same Betti numbers as F with respect to the field k, or equivalently, over the field i~ 

(since chark=charl~). We first show that 

f l k (F )=card{SEAk:SO{ l }~A} ,  k>~O. (3.3) 

Since we are working over a field, we may regard ilk(F) as the dimension (as a i~-vector 

space) of the (reduced) cohomology group/ i f (F,  I~). 

Note that i f f = a l e  I +ct2e 2 + . . . + C t n e  n then f ^ .  is a "weighted" coboundary opera- 

tor on A[F]: If SE F k and [ n ] \ S = { i  I, i 2 . . . . .  i,_k_t} then 

? A es ~'~ 2 q"Olijesu{ij} ' (3.4) 

with summation over all j such that S0(i j}EFk+ I and with signs as in the usual 

"unweighted" cohomology (which is the a I . . . .  = a ,  = 1 case). We will compute Betti 

numbers with respect to a weighted coboundary operator f ^ .  and need to first observe 

19-888289 Acta Mathemmica 161. Imprim~ |e 27 d~cembre 1988 
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that if a i :~0 for all 1 <.i<~n, then these weighted Betti numbers are the same as the usual 

unweighted Betti numbers. To see this, use that the Betti numbers of a simplicial 

coboundary operator (3.4) are determined by the ranks of the weighted incidence 

matrices M~k, where M~k has rows indexed by F k and columns indexed by Fk+ I and the 

row corresponding to a k-face S give the coefficients in the expansion of f ^  es as in 

(3.4). By multiplying the rows and dividing the columns by appropriate products of the 

a/'s, it is easy to transform M~ to the unweighted incidence matrix M k without affect- 

ing the rank. Hence, the corresponding Betti numbers are also the same. 

Now, define weighted k-cocycles and k-coboundaries: 

z*= (XeAk[r]:f~ ̂ x=O) and Bk=f~ ̂ Ak_,[F]. 

By the preceding discussion we have that i lk(F)=dimZk-dimB k. We claim that 

B k= s p a n ( f  s: I E S E A  k}. (3.5) 

Let M ~ = { s E ( t ~ ) : I E S } .  Since M~ is initial with respect to the lexicographic 

ordering of (t+J,) it follows from the construction (3.1) of A that ( fs :  1ESEAk} 

is a basis of span{fs:SEM~}.  If I E S E A  k, t h e n f s = f  I ^ f s \ o ) E B  k. Conversely, if 

xEAk_l[F] and x=EyRfR, then 

fl ^ x =  X q-YRfRo~,~ E span{fs : SE M~ } = span{fs : 1E S E A k }, 

and (3.5) follows. 

We have shown that dimBk=card{S E Ak: 1 E S}. Therefore, 

dim Z k = dim Ak[F]-dim B k+l = card Ak-card{S E Ak+ 1 : 1 E S} 

= c a r d { S E A k : l ~ S  orSO{1}~Ak+t}. 

These facts together with ilk(F)=dim Zk-d imB k imply (3.3). 

To conclude the proof of Theorem 3.1 it remains to show that 

ilk(A) =card{S E A k : S U { 1 } ~ A}. 

Since A is shifted this will follow from Theorem 4.3, which proves a stronger fact for a 

somewhat larger class of complexes. [] 
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Remar k  3.2. It can be shown that if f - ( f l  . . . . .  f,) is a basis of E such that f~ is 

generic with respect to e (i.e., i f f  I =Eaie  i then a 1, a2, ..., a n are algebraically indepen- 

dent over k), then Ar(F ) is a "near-cone" in the sense of Definition 4.1. 

The construction given in the next section (proof of (b) =~ (c) in Theorem 1. l) will 

associate to each simplicial complex F and field k another simplicial complex D which 

satisfies assertions (i), (ii) and (iii) of Theorem 3.1. In fact, D depends only on the pair 

(f, fl), where f is the f-vector and fl the sequence of Betti numbers of F with respect to 

k. 

The algebraically shifted complex A(F, k) associated with a simplicial complex F, 

carries many topological and combinatorial properties of F (beyond those given by 

Theorem 3.1). Results and conjectures in this direction can be found in [BK, K1, K3]. 

It is worth noting that the operation F--~ A(F, k) depends only on the characteristic of k, 

and also that if F itself is shifted then A(F, k) =F. 

4. Proof  of  the main theorem 

We begin by describing some properties of an auxiliary class of simplicial complexes 

called "near-cones".  

Let F be a simplicial complex, and let v be a vertex not in F. Recall that the cone 

over F with apex v is the simplicial complex 

v-x-F = F U { S U { v } : S E F } .  

Iff(v-x-F) =(f0,fl,f2 .... ), then clearly 

fk-,(r)=fk--fk+, +fk+2-..., k~>0. (4.1) 

Definition 4.1. A simplicial complex A on [n] is a near-cone if for every S E A, if 

1 ~S a n d j E S  then S \ { j }  O {1} E A. For a near-cone A define 

B(A) A: SU (l} CA}. 

Every shifted complex is a near-cone. 

LEMMA 4.2. Let  A be a near-cone. Then, 

(i) every S E B(A) is max imal  in A, 

(ii) B(A) is a Sperner fami ly .  
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Proof. Clearly (i) implies (ii). If S E B(A) and S tJ {j} E A for some j ~ S, then from 

the definition of a near-cone we get S t.I { 1 } E A, a contradiction. [] 

THEOREM 4.3. Let A be a near-cone. Then A is homotopy equivalent to the 

f(B(A))-wedge o f  spheres. In particular, 

ilk(A) = fk(B(A)) = card {S E A k : S 0 { 1 } ~ A }, k I> 0. 

Proof. Represent A as a disjoint union A=B(A)tJ (1-x-C). Now, use the fact that if 

A' is a contractible subcomplex of a complex A then the quotient map I AI--, I AI/IA'I is a 

homotopy equivalence. This follows from the well-known homotopy extension property 

for simplicial pairs; a simple direct proof is given in [BW]. 

Since the cone 1-x-C is contractible, we get that IAI=IAI/II-x-CI. Now, 

A\(1-x-C) =B(A) is, by Lemma 4.2, a family of maximal faces. So, contraction of the 

subcomplex 1-x-C to a point turns each k-face in B(A) into a k-sphere, and these spheres 

of various dimensions are wedged together at the point corresponding to their identified 

boundaries. [] 

We are now ready to prove the main result. 

Proof o f  Theorem I. 1. (a) ~ (b). Let F be a simplicial complex. Let A=A(F, k) be 

the associated shifted complex with respect to a field k. By Theorem 3.1, for every 

k>~0, 

fk =fk(F) =fk(A), and ilk = ilk(F) = ilk(A) =fk(B(A)), 

where B(A)={SEA: SU {1} ~A}. Represent A as a disjoint union A=B(A) 0(1-x-C). 

Now, f ( l , C ) = ( f o - i l o , f ~ - i l ~  .... )= f - i l ,  hence by (4.1)f(C)=(X0,X~ .... ). For k~0, 

gk +ilk is the number of k-faces in E=COB(A), which is a simplicial complex obtained 

by restricting A to {2 .. . . .  n}. By the Kruskal-Katona theorem la(Ek)l~ak(Xk +ilk)" By 

Lemma 4.2 every SEB(A) is maximal in A, hence also in E. Thus we have a(Ek)~_Ck_ j. 

Therefore, 

ak(Zk +ilk) --< I~(Ek)l --< ICk-~l = Zk-1, for every k ~ 1. 

(b) =~ (c). Condition (b) clearly implies that, for every k~0, Zk >10 and that for every 

k>~l, ak(Xk+ilk)~Zk_~+ilk_l and ak(Xk)<~Zk_r Let E be the compressed complex 

on N \ { 1 } ,  with fk(E)=Xk+ilk, k ~ - l .  Let C be the compressed complex on N \ { 1 }  
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with fk(C)=Xk, k~>-l. C is a subcomplex of E. Define D=(1-x-C)UE. Since 

ak(Xk+flk)~<Xk_l, we havethat  O(Ek)~_Ck_ l, for every k~>0. Thus, for every SEE 

and iES, S \ { i }EC,  hence S \ { i }  U{1}ED. D is therefore a near-cone. (It is easily 

seen that D is actually a shifted complex.) Now, B(D) = E \ C  and hence for every k~>0, 

ilk(D) =lEkl-lCkl=ilk. Since fk(C) =Zk, by (4.1) we obtain thatfk(1-~C) =fk --ilk" There- 

fore fk(D) =fk -ilk +fk(B(D)) =f~ -ilk +ilk =fk" The implication (b) =~ (c) now follows 

from Theorem 4.3. 

The implication (c)=,, (a) is clear. This completes the proof of Theorem I. 1. [] 

Proof of Theorem 1.3. Necessity: Let F be a simplicial complex with vertices in 

[n+l] and let A be the associated algebraically shifted complex. By Theorem 3.1, 

fli(F)=ili(A)=fi(B(A)). By Lemma 4.2, B(A) is a Sperner family of subsets of 

(2 ..... n+l} .  

Sufficiency: Let S be a Sperner family of subsets of {2 .. . . .  n+l} .  Let E be the 

simplicial complex generated by S and let C = E \ S .  Define D=(I-x-C) U S. For TE S and 

i E T, T \ { i }  E C hence T \ { i }  U { 1} E D. Therefore D is a near-cone and, as is easily 

seen, B(D) =S. Therefore for every k>~O, ilk(D)=fk(S). [] 

Remark 4.4. The homological interpretation of relation (1.5) is that the space of k- 

cycles and the space of (k-1)-boundaries of a simplicial complex must satisfy 

ak(dim Z k ) ~ dim B k_ i (4.2) 

for all k~> I. (See formula (6.5).) 

Here is a brief sketch of a different proof of this relation. One needs the following 

two facts: (a) Let A ~_ Ak+IE, B ~_ AkE be subspaces and assume that for every fEE* 
and mEA, f t_mEB.  (Here f t_m,  is the left interior product, cf. [Bo, Kl]). Then 

ak(dim A)~<dim B. (This inequality implies that the Kruskal-Katona characterization of 

f-vectors of simplicial complexes applies to Hilbert functions of [_-submodules of AE.) 

(b) For every fE  E* and z E Z k, f l _  z E Bk_ I. 

To prove (a) one has to define algebraic shifting for arbitrary subspaces of AiE, in a 

similar way to the definition in Section 3, and then the proof of Claim 1 in Section 3 

extends directly. 

To prove (b), consider a basis element e i E E and notice that for every z E Zk,e* L_ Z 

is a cycle supported in lk(i,F) (the link of vertex i in F). But Zk_~(lk(i,F))~ 
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Bk_l(st(i, F)), since st(i, F) is a cone and hence acyclic. (st(i, F) = i-x-lk(i, F) denotes the 

star of i in F.) Thus e * l z  E B/~_l(l") for every i and every zEZk(F) and the claim follows. 

The definition of  cohomology and the characterization of  (f, fl)-pairs apply to any 

quotient algebra of  AE. 

5. Combinatories of (f ,  fl)-pairs 

In this section we will prove Theorem 1.2 together with some additional results. Recall 

that we say an ordered pair (f, fl) of  sequences from N(0 | is compatible if f is the f- 

vector and fl the Betti sequence of  some simplicial complex. By Theorem 1.1 this is a 

purely combinatorial relation, independent of  field characteristic. This relation will be 

denoted by furl.  

and 
LEMMA 5.1. Suppose that f~fl ,  f = ( A , ~  . . . . .  fd), fl=(flo, fll ..... fld). Fix j, l<~j<~d, 
let e=(e0, el . . . . .  ed) with ej_l=ej = 1 and ei=O for all i:~j- 1,j. 
(i) If Oj(~j'~j)<Zj_I, then ( f - e ) - f l .  
(ii) I f  a~(Zj+flj+ 1)<Z/_l, then f - ( f l+e) .  
( i i i ) / f f l j - i>0  and flj>0, then f~ ( f l - e ) .  

Proof. The two first parts will be proven in tandem with the argument for (ii) in 

square brackets. 

We pass f r o m f t o f ' = f - e ,  [from fl to fl'=fl+e], by subtracting 1 from, [by adding 

1 to], the ( j - l ) -  and j-coordinates.  Hence,  we pass from X=(X_~,X0 . . . . .  Xd-~) to 

%'=(X'-I,%~ . . . . .  Z~-~) by in both cases subtracting 1 from the ( j - l ) - coo rd ina t e  only. 

Since (%,fl) satisfies equations (1.5) for all k, then so does automatically (X',fl), 
[(Z',fl')], for all k:~j. But also 

aj(zj +#) = aj(xj+#j) z j - , -  1 = z}-,, 

[Oj(Zj+flj) = c~j(Xj+flj+ 1) ~ Z j - I -  1 = Zj-,], 

so (1.5) is satisfied also for k=j. 
The reasoning for part (iii) is similar. We omit the details. [] 

A few definitions are needed in preparation for the next result. Fix a sequence 

fl=(flo,fl�91 ..., fld) E N(o | fld=l=O. Let ad=O, and define recursively 

ai=Oi+l(ai+j+fli+O, d - l ~ > i ~  > - I .  (5.1) 
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Let D=Uai=o "a~ -a~ _ 1;+ I, where Ii+1 is the initial segment of size a~ in the antilexicographic 

order of (i+ D-element subsets of  {2, 3 . . . .  }. Equivalently, D is the compressed complex 

with f-vector (ao, a~ . . . . .  ad), as defined in Section 2, translated by the map n ~ n + l .  

Similarly, let A = U~= 0 "~:~' l i+ 1 , and define the near-cone (of. Definition 4.1) 

A s = A O (1 . D ) .  (5.2) 

By construction, B ( A s ) = A \ D  is the compressed Sperner family on {2, 3 . . . .  } with f-  

vector equal to ft. In particular, A s has Betti sequence fl and x-vector a. 

T H E O R E M  5.2. For fl E N(o | let F # = ( f E  N~| f--fl}. 

(a) The set F~ has a unique componentwise minimal element q~(fl)=(q~0, q~t .. . .  ); 

namely q~i=fli+ai+ai_l, with a i defined by (5.1). 

(b) For sequences f ,  fl E N~o | the following conditions are equivalent: 

(i) f=q~(fl), 
(ii) 0k(Xk+flk)=Xk_p for  all k>~l, and X_1 = 1, (of. (1.5)) 

(iii) f is the f-vector o f  the near-cone A s (cf. (5.2)). 

(c) The mapping cp from Betti sequences to f-vectors is injective and order- 

preserving. 

Proof. Suppose fEF~. If aj(gj+flj)<Xj_l for some j, then by Lemma 5.1 there 

exists f~)EF~ such t h a t f > f  ~l). Repetition of this leads in a finite number of steps 

f=f~o~>f~l)>...>f~q), to an f-vector  f~q)EF~ such that 

Ok(X~q~+flk)=X~U)_. I, for all k~>l. (5.3) 

Since X~q)=flk=0 for k sufficiently large, equations (5.3) together with fl determine 

the sequence z~q)=(Z~q),Z] q) . . . .  ) uniquely, and with fl this determines )aq). 

The preceding paragraph shows that there exists a unique f-vector  ep(fl)=f<q)E F,, 

characterized by (5.3), such that f~q0(fl) for all f E  F s. 

Since z ( A , ) = a  and fl(A,)=fl, equations (5.1) show that (5.3) is satisfied by the f- 

vector of  the complex A s. Hence,  q~(fl)=(q~0, cpl .... )=f(As). From the construction of  

A s one can read off its f-vector: 

~[9 i = O~i_l q -a i " r '~ i ,  i>~O. (5.4) 

From the explicit description (5.1) and (5.4) of  q0(fl) it is easy to see that fl4:fl' 

implies q~(fl)+q~(fl') and fl<~fl' implies qXfl)<~q~(fl'). [] 
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For n, k~> 1, let 

(kk) (a;) 
n - -  + 

\ k - l ~  i ' 

where ak>ak_~>...>ai~i>~l. Recall the definition (1.3) of Ok_[(n). We will here need 
also the following function 

a ~ - l ( n ) = ( a ~ ; 1 ) + ( a k - ' - - l ) + ' " + ( a i ~ l )  k -1  (5.5) 

and ~-~(0)=0. 

THEORI~M 5.3. For an f-vector f ,  let By= {fl E N~=): f - f l } .  

(a) The set By has a unique componentwise maximal element ~0(f)=(7)0, ~Pl, .-.); 
namely 

V)i = ai(fi)-{-oi+l(fi+l)--fi+l, i>>-O. (5.6) 

(b) For f,  t~ E N~o | the following conditions are equivalent: 

(i)/~=7)(f), 
(ii) Ok(Xk +t~k)<~Zk_l<<-ak(Xk +t~k + 1), for all k >>- I, and Z-i = 1, 

(iii) fl is the Betti sequence o f  the compressed complex Kf (cf. (2.2)). 
(c) For an f-vector f, let V/i be as in (5.6). Define ~,_l=0 and then recursively 

?'k=min(~pk+l,~pk--~,k_~), k>-O. Let 6k=~Ok--yk--~k_l, for k>~O. Then (6o, 6~ .... ) E By, and 

rain E / 3 i =  E b, = E 0Pk-2Y* )" (5.7) 
/3EBf i~0 k~0 k~>0 

Proof. Let/3EBf. Ifxj_~>ai(Z/+/~j+ 1) for some j, then by Lemma 5.1 there exists 
/~)EBy such that/~</~<1) So in a finite number of steps (since the set By is obviously 
finite)/3=/~<~ <q) we reach a Betti sequence/~q)E By such that 

a t,~,(q).a_lsl(q)~ ~ , ( q )  ~ z ( , , (q) . .Lt~(q)_l -  1), for all k~ > 1. (5.8) 
k ~, l~ k ~ lJ k ,' ~ k -  I "r" ~ k ~ ,~ k - -  I-" k - -  

Knowledge o f f  and equations (5.8) uniquely determines the sequence/3 ~q). To see this 
we use the following simple observation. 

LEMMA. Suppose that g, h: N-+N are functions such that x<y implies g(x)~g(y) 

and h(x)>h(y), for all x, y E N. Then the inequalities g(y)<-h(y)<-g(y+ 1) have at most 

one solution. 
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Now, assuming that fl)q) is known for j~>k+l, so that ,v(q) ,u,(q) ,,~,k ' / , k + l ,  " ' "  are already 

determined numbers, we have that fl~q) is a solution to the inequalities 

c3k(z~q) + y) <~ fk--y--x~q)<~ c3k(z~q) + y + 1). 

By the lemma, y=fl~q) is the only solution. 

We have shown that there exists a unique Betti s e q u e n c e  ~(f)=fl(q)E nf, charac- 

terized by (5.8), such that fl<~w(f) for all fl EBf. 
Consider the class Sh(f)  of all shifted complexes with a given f-vector f. By 

Theorem 3.1, Bf={fl(A): AESh(f)},  and by Theorem 4.3 

flk(A)=card{SEAk: 1 ~S}-card{SE Ak+l: 1ES}, (5.9) 

for all AESh(f).  Lemma 2.2 then shows that ilk(A) is maximized among all shifted 

complexes A, if Ak and Ak+l are the compressed families. Hence, the compressed 

complex Kf maximizes flk for all k~>0, which means that ~p(f) =fl(Kf). The proof of parts 

(a) and (b) is then completed by observing that 

card{SE(Kf)i: 1 r = ai(f), i>~O, (5.10) 

and then using (5.9). 

Equation (5.10) is immediately clear by inspection of the "cascade form" of 

compressed families: (Ky)i=l~+ ~ consists of all (i+l)-subsets of [ai+l], all /-subsets 

of [ai] augmented by {ai+j+l }, all (i-1)-subsets of [a~_l] augmented by 

{ai+l,ai+l+l }, and so on, where 

fi=(ai+l~+(ai~+(ai-l~+... 
\ i+I /  \ i /  \ i - I /  

as in (5.5). 

It remains to prove part (c). This will be done following Lemma 5.5 below. [] 

By other methods Sarkaria [Sa] has independently identified the compressed 

complex Kf as the complex which maximizes Betti numbers among all simplicial 

complexes with a given f-vector f. 

In contrast to tp, the mapping ~p is not injective or order-preserving. E.g., 

~p(3, l)=~p(4, 2)=(1,0) and ~p(3, 3)=(0, 1). About the compositions of these mappings the 

following can be said. 
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COROLLARY 5.4. (a) ~p(tp(fl))=fl, for  all fl E N~0 | 

(b) q~Op(f))<<.f, for  all fovectors f .  

These relations follow from Theorems 5.2 and 5.3 most easily by comparing 

condition (ii) of  part (b) in each theorem. 

Whereas the minimal element of F ,  and the maximal element of By are unique, the 

complexes which realize the corresponding (f, fl)-pairs are in general not unique. For  

instance, there are two complexes with f=(5 ,  8) and fl=(0, 4), and f=q0(fl), fl=~p(f). 

If c=(c  0, c~ . . . .  ) E N(0 | and %-1, %>0, we will say that the sequence 

C' = (C0, C 1 . . . . .  Cj_2, Cj_l-1, Cj-1, Cj+ 1 . . . .  ) 

is obtained from c by a j-collapse. Also, c is collapsible to c' if a sequence of such 

collapse steps (for different j )  lead from c to c'.  Using the notation of Theorem 5.3 we 

have that 

Bf = {fl E N~o~): ~p(f) is collapsible to fl}. (5. I 1) 

The forward inclusion ~_ was shown in the proof of Theorem 5.3, the reverse inclusion 

follows from part (iii) of  Lemma 5.1. 

To minimize the sum of Betti numbers over the set B I we are therefore led to the 

following combinatorial problem: Given c E N~0 ~,  find the longest collapsing sequence 

starting with c. 

LEMMA 5.5. An optimal collapsing sequence is obtained by making all possible 

j-collapses first  for  j=  l ,  then for  j=  2, and so on in order o f  increasing j. 

Proof. Suppose that in a collapsing sequence of maximal length a j-collapse 

immediately precedes in /-collapse, and j>i .  It is clearly legal to transpose this pair 

(first do the /-collapse, then the j-collapse), and this way one obtains a collapsing 

sequence of the same length but with fewer inversions. Hence a sequence of the same 

length with no inversions exists, as claimed. [] 

Starting with c=(c0, c I . . . .  ) the number of possible l-collapses is g0--min(c0, c0, 

and c collapses to ctl)--(co-go, c l-go,  c2, c3 . . . .  ). The number of possible 2-collapses in 

c CL) is gl=min(c l -go ,  c2), andc ~) collapses to c~2)--(Co-go, c t - g o - g  ~, c2-g  1, c s . . . .  ). Re- 

cursively define gk=min(ck-gk_l ,  c~+O, for k~>l. Then the number of k-collapses in the 
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optimal collapsing sequence of Lemma 5.5 is gk- ~. This together with (5.11) implies part 

(c) of Theorem 5.3. 

6. Appendix: Cell complexes 

By a cell complex X we shall mean a finite CW complex as defined in the literature, see 

e.g. [LW] or [Sp]. A cell complex is regular if the closure of each cell is homeomorphic 

to a ball. The f-vector (f0,J] . . . .  ) and Betti sequence (flo,fll . . . .  ) of a cell complex have 

the obvious meaning: f equals the number of /-dimensional  cells and fli equals the 

dimension over a field k of the/-dimensional  cellular (or singular) homology. 

The Euler-Poincar6 formula (1.2) is true for all cell complexes. Some rather 

obvious additional necessary conditions on (f, fl)-pairs of cell complexes turn out to 

also be sufficient. We shall state and prove here for the sake of completeness the 

description of  such (f, fl)-pairs. 

THEOREM 6.1. Suppose that f=(fo, f l  ..... fa), fl=(flo,fll ..... fld) E N g+~ are two given 

sequences and k is a field. Then the following conditions are equivalent: 

(a) f is the f-vector and fl the Betti sequence over k of  some cell complex [or, 

regular cell complex], 

(b) let Zk-l =FT~k(-- 1) "/-t' (fj--flj), for O<~k<.d; then 

(i) Z_~=I 

(ii) Xk >/0, for O<.k<.d- 1 (6.1) 

[or, Zk t>1, for O<.k<~d - I]. (6.2) 

(c) f is the f-vector o f  some cell complex [or, regular cell complex] which is 

homotopic to the fl-wedge of  spheres. 

Proof. Before entering any specific details let us record the following elementary 

observation: If 

d e d e , do 
O-->Cp--~ Cp_, --~ ...--~Co--~ C_,--~O (6.3) 

is any sequence of finite-dimensional k-vector spaces and linear maps such that 

d~odj+l=0 for all j ,  and i f f j=dim Cj and flj=dim(KerdJIm dj+~), then 

dim(Im d k) = E ( -  1)i-k (fJ-fl~) (6.4) 
j~>k 

for - 1 ~k<-p. 
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(a)=~(b). Let X be a p-dimensional cell complex with f -vec to r f  and Betti sequence 

fl (over k), and suppose that (6.3) is the augmented cellular chain complex of X over k. 

So, do is surjective and d imC_l=l .  By (6.4), 

dimBk-i = ~k-I, (6.5) 

so clearly X-~ = 1 and Xk I>0 for k~>0. I fX  is regular, then the boundary of any (k+ 1)-cell 

is non-zero and hence dimBk~>l for 0~<k~<p-1, cf. [LW, p. 168]. 

(b)=~(c). Suppose that we are given sequences f, fl E N~ | such that X-I = l and )~,~>0 

for k~>0. By definition, 

f i ' ~  ~i_l-lC-~i'~t-)~i , i >~O. (6.6) 

For each i, let Ei=AiUBiU C i be a partitioned set of f/ /-dimensional cells, such that 

card A i=Zi_ i, card B i=fli and card C i=Zi. 

We now construct a cell complex X as follows. E0 is a set of vertices with 

distinguished base point e0, where A0 ={e0}. Suppose the (i-1)-skeleton Xi-i has been 

constructed. To obtain X,  attach the /-cells in Ai so that they fill the interior of the 

(i-1)-spheres determined by the (i-1)-cells from C~_ j. Then attach the cells in B i U C i 

with their whole boundary to e0. 
The complex X is homeomorphic to a wedge of spheres and balls, with fl~ spheres 

and X~-~ balls of dimension i, i~>0. Contraction of the balls shows that X is homotopical- 

ly equivalent to the fl-wedge of spheres. 

Suppose next that 

p=max{j : f j*0}  

and that Xk ~> 1 for O<.k<.p- 1. Let E i =A i U Bi U C~ be as before, i~>0. Then a regular cell 

complex Y is constructed in the following way. 

Again start with the vertex set E0. It has two distinguished vertices e~EA0 and 

e0 2 E C 0, where e~ is arbitrarily chosen in Co. Attach the l-cells in A1 with one endpoint 

i by the Al-cell connecting e I and e0 z. to e0 ~ and the other to distinct vertices in Co. Let e~ 

Then attach the 1-cells in BI U C~ regularly to the 0-sphere {e~, e~}, and choose arbitrari- 

ly e]ECj. 

Suppose that the ( i -  l)-skeleton Yi-~ has been constructed and is a regular complex 

with two distinguished cells e ) E A j a n d e ~ E C j  in each dimension j<~i-I  so that 
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Zk=Ll~=o(e~Ue 2) is homeomorphic to the k-dimensional sphere, for k<~i-1, and all 

( i -  1)-cells in B;_ l U Ci_ l are regularly attached to Zi_ 2. To obtain Yi, attach the cells of 

Ai regularly to the (i-1)-spheres formed by e~_ I and the distinct cells in C;_ 1. Let e~ be 

the unique Arcell thus attached to Zi-~. Then regularly attach all the cells in 

B i U C i to Z i_ 1, and arbitrarily choose e~ E C r 

We omit the verification that the regular complex Y= U Yi is homotopic to the fl- 

wedge of spheres. [] 

Remark  6.2. Suppose fl=(0 ... . .  0, I) is the Betti sequence of the d-dimensional 

sphere S d. Iff=(~,J~ . . . . .  fd) satisfies Z- 1 = 1 and Zk~ 1 for O<~k<-d - 1, then by the above 

construction there exists a regular cell complex X with f-vector f which is homotopy 

equivalent to S d. Bayer [Ba] has shown that such X can be found which is even 

homeomorphic to S d. 

Remark  6.3. As mentioned in the Introduction, we conjecture that the character- 

ization of (f, fl)-pairs of simplicial complexes given by Theorem 1.1 extends to all 

regular cell complexes whose face poset is a meet-semilattice (i.e., any nonempty 

intersection of two closed cells is a closed cell). In particular, this includes the 

polyhedral complexes. 

The following can be cited as supporting evidence for this conjecture. Wegner [W] 

proved that the Kruskal-Katona conditions are satisfied by a large class of graded meet- 

semilattices, which includes all meet-semilattices arising as face posets from regular 

cell complexes. Also, by triangulating the faces of a polyhedral complex without 

introducing new vertices, one shows that Theorem 1.3 is valid for all polyhedral 

complexes. Thus, these characterization results for each component of simplicial (f, fl)- 

pairs, taken alone, extend to all polyhedral complexes (and beyond). 

In order to prove the above conjecture it would be desirable to find a way of 

extending the notion of shifting to classes of non-simplicial complexes. 

Note  added in p roo f  (July 1988): 

(1) The conjecture made in Remark 6.3 has now been verified. Details will appear 

in a subsequent paper. 

(2) Theorem 1.3 can be given the following more detailed formulation (same 

proof): fl E Nt0 | is the Betti sequence o f  some simplicial complex F such that IF0l~<n+ 1 

and dimF~<d i f  and only i f  fl is the f-oector o f  some Sperner family  S o f  subsets of[n] 
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such that IAl<~d+ 1 for all A E S. This leads to a corresponding sharpening of  Theorem 

1.4: I f F  is a simplicial complex with [r'0l~<n+ 1 and dimF~<d, then 

d ' 

I. \[n/2]}' 

if  d+ 1 < [n/2] 

otherwise. 

The cases o f  equality occur only for the expected skeleta as in Theorem 1.4. 

The information about the Euler  characteristic [z(r)l contained in this improved 

version of  Theorem 1.4 was previously known and is due to J. Eckhof f  (see Hilfsatz 2 

and 3 in J. Eckhoff ,  "Die  Euler-Characterist ik von Vereinigungen konvexer  Mengen im 

R d'', Abhandl. Math. Sem. Univ. Hamburg,  50 (1980), 135-146). 
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