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1. Introduction 

As is usual in Waring 's  problem we take G(k) to be the smallest number  s such that 

every sufficiently large natural number  is the sum of  at most s kth powers of  natural 

numbers. 

In this memoir  we introduce a new iterative process to Waring's  problem. We are 

thereby able to improve all previous upper bounds for G(k) when k~>5. 

Hitherto the best  upper  bounds for G(k) for smaller k~>4 have been obtained by 

variants of  the iterative method of  Davenport  (see [D3], [T3], [Va4] and [Va5]). 

When 5<~k~<8 we obtain 

THEOREM 1.1. We have G(5)~<19, G(6)~<29, G(7)~<41, G(8)<~58. 

This may be compared with the respective bounds 21, 31, 45, and 62 contained in 

[Va4] and [Va5]. 
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The methods described here also improve the known upper bound in the case of 

biquadrates provided that an obviously necessary local condition is satisfied. 

THEOREM 1.2. Suppose that l~<r~<12. Then every sufficiently large natural number 

in the residue class r modulo 16 is the sum of  at most 12 biquadrates. 

This compares with Theorem 2 of [Va4] in which 13 appears in place of the 12. 

For cubes, although we are unable to reduce the known upper bound 7 for G(3) 

(see [L], [W] and [Va6]) we are able to make progress with a quite closely related 

problem. 

THEOREM 1.3. Let AffN) denote the number o f  natural numbers not exceeding N 

which are the sum of  three positive cubes. Then for N>~3 we have 

2(( N ) ,> AP ~-~ 

where the implicit constant depends only on the positive number e. 

This can be compared with Theorem 6 of [Va6] in which a similar lower bound 

occurs but with the exponent 19/21 in place of 11/12, and the final theorem of Hooley 

[H] in which a conditional lower bound is given with 18/19 in place of 11/12. 

It is perhaps not without some interest that our methods give a new lower bound in 

general for the number Yk(N) of different natural numbers not exceeding N which are 

the sum of three kth powers. 

THEOREM 1.4. Suppose that k~4 and 

3 1 
ak= k k 2. 

Then for N>~3 we have 

•,(N) -> N ~ - '  

Previously the smallest known exponents a ,  were 

19 (Davenport [DID, 
a 4 -  28 

5 59 
ix5 = 9- '  a6 = 126 (Davenport [D2]), 
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65 77 
a 7 -  161' a s -  216 

3 I 2 
ak= k k 2 k 3 (k~9)  

(Davenport's methods), 

(Davenport and Erd6s [DE]). 

Consider the exponential sum 

S(a) = ~ e(axk). (1.1) 
x<~P 

Then the methods based on Vinogradov's mean value theorem give 

suplS(a) I ~ pl-o~k)+~. (1.2) 
111 

where m is the canonical set of minor arcs associated with the kth powers and where 

4or(k)/,:2 log k--~ 1 as k ~ oo. 

For an account of this see Chapter 5 of [Va2]. 

In many applications of (1.2) it is of no importance that the sum is over all the 

members of [1,P]nZ. The next theorem shows that one can do considerably better 

than (1.2) when the sum is over a certain restricted but quite dense subset of [1, P] n Z. 

THEOREM 1.5. Let at denote the set of  real numbers a with the property that 

whenever a E Z, q E N, (a, q)=l  and [a-a/ql<~q-lp 1/2-k one has q>p1/2, and let 

s~2 

Then for each positive number t there is a subset ~ of  [1, P] n N such that 

and the exponential sum 

satisfies 

card ~ -> P/log P 

T(a) = ~ e(ax k) 
xE~ 

supl T(a)l ~ pl-0<k)+~. 

Moreover 40(k) klog k--* 1 as k---~ oo. 
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It is quite easy to construct examples in which for suitable subsets B of [1,P] NZ 

one has 

supl x e(axk)l ,> p,-Vk. (1.3) 

See, for example, Lemma 4.4 of [Va2]. Thus the exponent Q(k) is quite close to the best 

that one might hope to establish. For much of the purposes of this memoir the nature of 

is not of great importance. Later we will see that a result of the same strength holds 

for a very natural set ~.  

Vinogradov [Vi2] has shown that when k is large 

G(k) < k(2 log k+4 log log k+2 log log log k+ 13). (1.4) 

By a somewhat different method Karatsuba [K] has improved this by replacing the 

4 log log k+2 log log log k+ 13 by 2 log log k+ 12 and increasing the domain of validity to 

k>4 000. For smaller values of k, Balasubramanian and Mozzochi [BM], in an amalgam 

of an earlier version of Vinogradov's methods ([Vii]) with those of Davenport and 

Erd6s [DE], Vaughan [Val] and Thanigasalam [T1], IT2], have shown that 

G(k) ~< 3 logk+log 108 -4 .  (1.5) 
k 

log 
k -1  

The proof of (1.4) depends, in particular, on an application of Vinogradov's mean 

value theorem to give an estimate for a complicated exponential sum on the minor arcs. 

By using Theorem 1.5 instead we are able to establish 

THEOREM 1.6. Suppose that k>~9 and o(k) is as in Theorem 1.5. Then 

v ~ k -  I 

Theorem 1.6 gives a smaller bound than any previously known when k>13, and as 

k---~ it gives 

G(k)<2k(logk+loglogk+ l +log2+O(. lOglOgk "~'~ 

For intermediate values of k the method can be refined. Thus we are able to 

establish the following upper bounds for G(k). 
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k F(k) k F(k) k F(k) k F(k) 

9 75 12 125 15 171 18 217 
10 93 13 141 16 187 19 232 

11 109 14 156 17 202 20 248 

Table 1.1 

THEOREM 1.7. When 9~<k~<20 we have G(k)<~F(k) where F(k) is given by Table 1.1. 

This may be compared with the respective bounds 82 ([Va4]), 103 ([T3]), 119, 134, 

150, 165, 181, 197, 213,229, 245,262 ([T2]). 

We remark that a deeper treatment of the major arcs that arise in the proof of 

Theorem 1.7 enables one to replace the upper bound F(k) for G(k) by F(k ) -  1 when k~9 

or 15. 

There is one aspect of the work in this memoir which may well have consequences 

outside additive number theory, namely the realisation of an estimate for exponential 

sums of the kind contained in Theorem 1.5. In many applications it may not be possible 

to accommodate the somewhat artificial set ~ that is provided by the proof of that 

theorem. However, by only slightly weakening the hypothesis it is possible to establish 

a conclusion of the same strength in which the set ~ is replaced by one of great 

familiarity in multiplicative number theory. 

THEOREM 1.8. Suppose that 0<6<l/2k,  let m denote the set o f  real numbers a 

with the property that whenever a E Z, q E N, (a, q)=l  and 

l a -  a/ql <~ q - iel/2+6k-k 

one has q>pV2+6k, and let 

o ( k ) = m a x l  ( 1 - ( k - 2 ) ( 1 - k ) S - 2 )  4s 

s>~2 

Further let M(P, R) denote the set o f  natural numbers not exceeding P with no prime 

divisor exceeding R. Then for each positive number e there is a positive number r l such 

that whenever 2<~R<<.P ~ the exponential sum 

S(a)= ~ e(ax k) 
xE~(P,R) 
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satisfies 

suplS(a)[ ,~ pl +,(p-,~ + p-otk)). 

As in Theorem 1.5 we have 

4Q(k)klogk---~ 1 as k---~ ~. 

Moreover, for each fixed r/we have 

card M(P, p,1) ~ c, 1P as P ~ 

where c~ is a positive number. 

The proof of Theorem 1.7 in w shows inter alia that the exponent ~)(k) in 

Theorems 1.5 and 1.8 can be refined to one that is superior to that provided by Weyl's 

inequality whenever k~>8. 

The methods of this memoir apply equally well to diagonal forms. Let G*(k) denote 

the least number t such that whenever s>-t the equation 

e , ~ + . . . + c , ~  = 0 (1.6) 

has a non-trivial solution in integers x~ . . . . .  x, when the coefficients c I . . . . .  Cs 

(i) are not all of the same sign when k is even and 

(ii) are such that for every q (1.6) has a solution modulo q with (xj, q)=l  for 

some j. 

Then G(k) may be replaced by G*(k) in each of the bounds. Thus it follows that 

G*(k)<.k2+ 1 for all k~>4, in particular settling the stubborn case k= 10, and so complet- 

ing a programme initiated by Davenport and Lewis [DL]. The bound k2+l is of 

particular interest, since as Davenport and Lewis show, when k+ 1 is prime and s=k 2 

there are c~,..., c, and a prime p for which (1.6) has no non-trivial p-adic solution. 

After the seminal work of Hardy and Littlewood on additive number theory, and 

Waring's problem in particular (see [HL]), the best upper bounds for G(k) when k~>4 

have been based, in essence, on prior estimates for the number of solutions of auxiliary 

equations of the form 

~ + . . . + ~  = y~+...+y~ (1.7) 
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with the xj and Y1 lying in ranges of the kind 

Pj<xj<2Pj, Pj<yi<2Pj 

where PI~P2~ .... The use of diminishing ranges in this context was refined and 

perfected by Davenport (see [D3]) and Vinogradov (see [Vi3] and [Va2]), and the recent 

work of Thanigasalam [T3] and Vaughan [Va4], [Va5] is largely based on a variant of 

the case l=k-2 of Theorem 1 of Davenport [D2]. 

The use of diminishing ranges in (1.7), whilst conferring a number of benefits, has 

one serious drawback, namely that the homogeneity of (1.7) is lost. 

The underlying theme of this memoir is the conservation o f  homogeneity in 

equations such as (1.7). Thus we consider (1.7) with xjE ~, yjE ~ where ~t is a fairly 

dense subset of [1, P] n Z. For a suitable ~ we relate the number of such solutions to the 

number of solutions of 

xk +mk(z~ +... + Zk s) = yk +mk(t~ +... +~) (1.8) 

with x<.p, y<.p, M<m<.M', zjE ~, tjE ~ where ~ has similar properties to ~t, but 

~ [1, P/M] I3 Z. Then by the use of ideas stemming from the diminishing range circle of 

ideas combined with H61der's inequality and the homogeneity of 

we are able to estimate the number of solutions of (1.8) in terms of the number of 

solutions of (1.7) with s replaced by a number not exceeding s and with ~ replaced by 

~. This enables an iterative procedure of an entirely new kind to be created. In a 

certain sense this does for a single equation what the arguments underlying the proof of 

Vinogradov's mean value theorem do for the corresponding system of equations. 

It transpires that our technique puts no serious obstacle in the way of methods that  

have been developed in the context of diminishing ranges. Thus the technique has great 

flexibility. 

An important role is played throughout this work by the set ~(P,  R) of natural 

numbers not exceeding P with no prime factor exceeding R. Other sets could be 

substituted in some of the arguments described herein, but no alternate seems to 

provide the same general degree of flexibility. This observation allied with a perusal of 

the methods used to establish Theorem 2 of [Va6] and Theorem 2 of [Va7] suggests that 

the greatest barrier to procuring improved estimates for the number of unrestricted 

solutions to (1.7) is the presence of x i and yj having large prime factors. 
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In w 2 we establish the basic relationships between the solutions of (1.7) and (1.8) 

for various choices of M, ~ and s. In w 3 we analyse various exponential sums that 

arise. This leads to another relationship between (1.7) and (1.8) that is particularly 

effective when s is large. 

The conclusions of w167 2 and 3 are applied in w 4 to obtain general bounds for the 

number of solutions of (1.7) and then Theorems 1.1 and 1.2 are established in w 5 and 

Theorems 1.3 and 1.4 in w 6. 

A simplified bound for the number of solutions of (1.7) is given in Theorem 7.1. 

This is used to establish Theorem 1.5 in w 7 and Theorem 1.6 in w 8. 

In w 9 various methods from earlier sections are brought together to establish 

Theorem 1.7, and finally Theorem 1.8 established in w 10. 

1.1. Notation 

In general we use upper case Latin letters to denote real numbers which exceed 2 

unless otherwise stated, lower case Latin letters to denote integers and lower case 

Greek letters to denote positive real numbers. In particular k, m, n, q, r, s, t E N with 

k~>3, and p denotes a prime number. Implicit constants may depend on k, s, t, e. 

Throughout we think of k as being fixed. Therefore in explicit constants such as the Dr 
and Cr(e) of Theorem 4.1, and the P0(r/, s) of Theorem 4.2, the k is suppressed. 

Let 

2. The reduction of the auxiliary equation 

M(P, R) = {n: n <~P, pln =>P <~R}, (2.1) 

let S,(P, R) denote the number of solutions of 

~+...+~=yk+...+y~ (2.2) 

with 

xjEM(P,R), yjE~t(P,R), (2.3) 

and for a given real number 0 with 0<0< 1 let T~(P, R, O) denote the number of solutions 

of 

xk+mk(x~l +...+Xsk_l) ---- yk+mk(Ylk+... +y~,l) (2.4) 
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x<~p, y ~ p ,  x=_y(modmk), P~ <m<~min(P,P~ (2.5) 

xjE M(Pl-~ yj~ s~(Pl-~ (2.6) 

The lemma below relates Ss to T~. 

LEMMA 2.1. Let O=O(s, k) satisfy 0<0<1 and suppose that 

I <.D<~P. 

Then 

S,(P, R) ~ (S,(P/d, R)) 1Is +S,(DI-~ ~ R)+P" ((P/d)~ 2-3/~ (Ts(P/d, R, 0)) 1/" . 
\d<.~D 

When s>k and R is not too small by comparison with P we expect that S,(P, R),>P ~ 
and T~(P, R, O),>P ~ with o>s, r>s.  Thus for a suitable choice of D the first two terms on 

the right of the above inequality can be expected to be small compared with the left 

hand side and the third term will be dominated by the term in the sum with d= 1. Thus 

in principle the lemma says that either 

Ss(P,R)<P ~ 

o r  

Ss(P, R) ~ (P~ R, 0). 

Proof of Lemma 2.1. For a given solution of (2.2) satisfying (2.3) let 

dj=(xj, yj) (1 ~<j~<s). 

Now let S' denote the number of those solutions for which dj>D for at least one j ,  let S" 

denote the number for which 

dj<~D (2.7) 

for every j and 

I - 8  8 max{xj, yj} <~ dj P (2.8)  
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for at least one j ,  and let S" denote the number for which dj~<D for every j and (2.8) 

holds for no j. Then 

Ss(P, R) <<. 3 max { S', S", S"}. 

First suppose that S'~> max{S", S"}, so that 

Ss(P, R) <~ 3S'. 

Let 

Then 

f(a; Q, R) = Z e(axk)" (2.9) 
xE.~Q,R) 

f0 
1 

s' < Iffadk;e/d, m2ffa',e, 
d>D 

Hence, by H61der's inequality, 

S,(P, R) <{ Z (S~(P/d, R)) 1/~ (S~(P, R)) l-vs 
d>D 

and the lemma now follows in the first case. 

Secondly suppose that S">~ max{S', S'}, so that 

S~(P, R) <~ 3S". 

Then for a solution counted by S" we have (2.7) for a l l j  and (2.8) for some j,  say j=i .  

Thus 

di<~D and max{xi, Yi}<--d~-~ ~ 

so that 

Hence 

max{x/, Yi} <~ Dl-~176 

f0 
1 

S"~ If(a; DI-~ ~ R)2f(a; P, R)2S-2l da. 
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Therefore, by H61der's inequality once more, we have 

Ss(P, R) <~ (Ss(Dl-~ ~ R)) l/S (Ss(P, R)) l-I/s 

and so the result ensues in the second case. 

Lastly suppose that S">~ max{S' ,  S"}, so that 

Ss(P, R) <. 3S". 

Then for a given solution of  (2.2) counted by S" we have, for every j ,  

djEM(D,R) 

Let uj=xJdj, vj=yjldj, so that 

(uj, vj) = l 

1-0 0 and max{x r, Yr} > dj P . 

and max{u r, or} > (P/dr) ~ 

11 

(2.1 O) 

(p/@O < % <~ min(e/dr ' (p/d)OR). (2.11) 

S "  ,~ E "'" E siV(712 . . . . .  77s) (2.12) 
T/I ~/s 

where the summation is over r/l . . . . .  ~/s with ~/j=+__l and where sIV(rh . . . . .  r/s) is the 

number of  solutions of  

k k k rljd~ (x~ -m~ y~ _ 
j=l 

with 

dj E M(D, R), 

xjEM(P/dj, R), (xj, m j ) = l ,  yjE~(P/(djrr~),R) 

and mj satisfying (2.11). 

Thus 

and let mj denote the smallest divisor of  max{uj, vj} exceeding (P/dj) ~ Since none of  the 

prime divisors of  max{uj, oj} exceed R we have 
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fm(a; Q,R) = E e(axk)" 
x E , ~ ( Q , R )  

(x,m)ffil 

F/a) = &(~A'  ~;P/a,,R):-,~,:, m: a;P/(4m),R). 

j=l d j E , ~ ( D , R )  m j  

where E'j  denotes summation over mj, satisfying (2.11). 

Let 

x~<a) = I f,.,(~ a;P/dj, R)2f(d] m; a;P/(~.mj),R)2S-21 

and 

Then, by (2.12), 

Y(a) = a; , R) 
.= 

, f l  , - 2 ~  / I "~ 
s'~E...E E ...E' Jo r(~176 

d I d s m I m s j=l 
d:,~D,R) 

By H61der's inequality we have 

y(a)~-I I-[ ~Xj(a)2Z-2,] da<~ Y(a)2da 2s-2I-- [ Xj(a)da 2s-2 
j=l / j=l 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

fo' Y(a) 2 da <~ Z(ct) 2 da 

and by (2.9), (2.13) and (2.15), and by considering the underlying diophantine equation, 

we have 
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where 

z(~)= I-I~d~a;P/dj, R) 
jffil 

(2.17) 

Therefore, by H01der's inequality and (2.14), 

where 

fO s-2 s (Xj(  ) E'...E' ~(a).-'lI ~)2-~ ~o 
m I m s j= 1 

r( a)2da ~ ""E 1 E ""E 
m s m I m s 

I 

So' ) I-I Xj(a)da 2~-2 
jffil 

1 , - 2 (  ) 1  
~(foZ(~)2da)2.- 2 ~i( (e /d j )OR)2s_3u(e /d j ,  R , O  ) 2s-2 

j=l 

U( Q, R, O) is the number of solutions of (2.4) with "] 
x<~Q, y<.Q, (xy, m ) = l ,  QO<m<~min(Q,Q~ 

xjE sl(Ql-~ yjE sd(Ql-~ 
(2.18) 

Therefore, by (2.16) and H61der's inequality, 

( I0 n ) , \ ~ /  \~,-~ 
s,,,< E. . .E  z~o)~eo E..-E v(r 

d 1 d s d I d s j=l 
dj E M.(D, R ) dj E .~(D, R) 

By (2.17) 

where 

is the number of solutions 

V(d) = ((P/d)~ z'-3 U(P/d, R, 0). 

fo 
~ ,  ... ~ z(.) 2 d~ 
d I d s 

k k k dlX~l+...+dsxs k k k k = dtYa+...+dsY s 

(2.19) 
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with dj E M(D, R), xj E M(P/d i, R), yj E M(P/dj, R). Hence it it 

�9 ~ P~S~(P, R). 

Therefore, by (2.10), ( )s 
Ss(R, P) "~ P" E V(d)l/s �9 

\dEM(D,R) 

Hence, in view of (2.19) it remains to show that 

U(Q, R, O) ~ Q~T~(Q, R, 0). 

For a given m let ~(u) denote the set of solutions of the congruence 

z k -  u (rood ink). 

Then 

(2.20) 

and 

where 

Then, by (2.18), 

gin(a, Z) = e(ax*). 
x<~Q 

x=-z (rood m k) 

U(Q, R, O) <~ E Um 
Q~ <m<~ rain(Q, Q~ 

fO 
U m = Gm(a) lf(mka; Q, R)12'-2da 

= z E ~(u) 
(u, m)=  1 

card ~(u) ~ m E ((u, m) = 1). (2.21) 

Clearly in (2.4), x~----y k (mod ink). Thus each solution of (2.4) can be classified according 

to the common residue class modulo m k of  x k and yk. Let  
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Hence, by Cauchy's inequality and (2.21), 

m k ra k 

Gm (a)~m~ Z Z Ig,,,(a'z)l 2=m` ~-~ Ig,,(a'z)l 2" 
uffil z E ~ ( u )  z=l  

(u, m)= 1 (z, m) = 1 

Therefore we have (2.20) as required. 

This completes the proof of Lemma 2.1. 

and put 

Henceforward we shall suppose that 0 satisfies 

15 

Obviously 

M = pO, H = pl-kO, Q__ pl-O. (2.23) 

We shall normally suppose that P is large and that R is at most a fairly small power of P, 

so that in particular 

R 2k-2 <~ Pk-SM (k >~ 5) and 2MR <~ pV2. (2.24) 

Consider equation (2.4). We put z=x+y and h=(x-y)m -k. Thus 2x=z+hm t' and 

2y=z-hm k. Hence, by (2.5), 

Ts(P, R, O) <~ U0+2U ~, (2.25) 

where U0 is the number of solutions of (2.4) with (2.5), (2.6) and x=y, and U1 is the 

number of solutions of 

k k  k k k k k  k (z+hm) +(2m) (xi+...+Xs_l)=(z-hm) +(2m) --k+ + k , tYl ... Y~-I) (2.26) 

with 

z<_2P, h<~H, M<m<~MR, xjEM(Q,R), yjEM(Q,R). (2.27) 

Uo <~ PMRSs- l(Q, R). (2.28) 

We now wish to relate UI to Ss(Q, R) and Ss_l( Q, R). One line of attack is through 

an argument of Davenport [D2]. However the homogeneity of the x~ and y~ in (2.26) 

enables significant improvements to be made. 

1 0 < 0 ~< - -  (2.22) 
k 
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Let AI denote the forward difference operator 

Al(f(x); h) = f (x  + h)-j~x) 

and define Aj recursively by 

Aj+,(f(x); h, ..... hj+,) = A,(Aj(f(x); h, ..... hi); hj+l). 

Now let 

~Pj = tIJ (z; h, h2 .. . . .  hy, m) = m-kAj(f(z); 2hm k, h2 ..... hi) 

where f(z)=(z-hm~) k, let R(n) denote the number of solutions of 

~ j = n  

with 

and let 

m<~MR, h<~H, h~<~2P, z<~2P 

Nj = E g(n)2" 
/1 

We now introduce the exponential sum 

M<m<~MR h<~H hz<~2P 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

�9 - .  E E ,(o+;) (2.35) 
hj~<2P zE~ 

where ~--~(h2 ... . .  hj) is the set of z satisfaying O<z<~2P-h2-...-h~. Thus, by (2.9), 

(2.26) and (2.31), 

UI <~ Fl(a)lf(2ka;Q,R)12S-2da. 

Hence, by (2.25) and (2.28), 

Ts(P,R,O)<gPMRS,_I(Q,R)+ f l(a)lf(2ka; Q,R)lE*-2 da. (2.36) 

By the standard Weyl technique for estimating exponential sums (see Lemma 2.3 

of [Va2]) we have 
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Fl(a) ~ pI-2JHMR + pI-2~(HMR ) I-2J [Fj(a)[ 2J 

where the implicit constant depends at most on j and where 

J =  2-J. 

17 

(2.37) 

(2.38) 

The next lemma relates Ts to Ss and Ss_ 1 and is particularly useful when S,_1=P a 

with 2 large compared with 2 s - 2 - k .  

LEMMA 2.2. Suppose that O=O(s, k) satisfies (2.22), and j satisfies l<~j<.k-1 and 
2J>-s. Then 

T,(P, R, O) ~ (PMR + p1-2JHMR) Ss_~( Q, R) 

+ (HMR) I-2sPI-2jJNJ Ss-l(Q, R) I-ssS~(Q, R) (s- l)s. 

Proof. By (2.34) and (2.35), 

fo ~ IF~(~)I 2 da <<. Nj. 

The lemma now ensues from (2.36) and (2.37) via H61der's inequality. 

We require an estimate for Nj. By (2.29) and (2.30) we have 

/ 1+01 l+Oj \k 
..... h;= E . . . .  +--y-h 0 

01=--+i Oj=+.l 

By writing ~=2x+h~+... +hi and employing the multinomial theorem this becomes 
6 

E "'" E E " " E  kT'Ol'"OJ(~ )uj 
01=_+1 Oj=+l ~o~O .j~o Uo[ ... u/[ 2 ~ 

Uo + . . . + uj=k 

k! 2i-kht ... hj~ u 

= E E ' " E  u!(2Vl+l)!...(2vr ! 
U~0 I/i~0 oj~O 
u+2vl +... +2vj=k-j 

h 2 O l  h2OJ 
1 " " " j  " 

Therefore, by (2.31), 

k! 2t+j-khh2... hj 
tttJ = E E "'" E U!(2VI-~I. ~.. "~O? I)! ~u(2hmk)2~176 "'" "'J h2~ 

u+ 2vl +... + 2vj=k- j 

(2.39) 

2-898282 Acta Mathematica 162. Iraprim6 le 8 mars 1989 
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where 

= 2z+h2+...+hj. (2.40) 

In particular 

k! . . . .  + hk_2). Wk-2 __~hh2.. .  hk_2(3~E+(2hmk)2+h~+ 2 (2.41) 

LEMMA 2.3. Suppose that j< .k -1 .  Then 

Nj ~ Pi+~HM2R 2. 

Moreover, i f  k - j  is odd and j<~k-3, or j = k - 2 ,  or j = k - 4 ,  then 

N i <~ PJ+~HMR. 

Proof. By (2.39) 

tIJj = 2l+J-khh2 ... hy~(~;2hm k, h 2 .... , by) 

where s is a polynomial of degree k - j  in ~ with integer coefficients and leading 

coefficient k Y ( k - j ) k  Thus, for each given m the equation (2.32) has <~n ~ solutions in 

h, he . . . . .  hj, ~, and hence, by (2.40), in h, h2 . . . . .  hi, z. The first part of the lemma now 

follows from (2.34). 

When k - j  is odd, andj~<k-3,  (2.39) gives 

Wj = 21+i-khhe ... hj~f~(2hmk; ~, h2 . . . . .  hi) 

where f~ is a polynomial of degree k- j -  1 in 2hm k with integer coefficients and leading 

coefficient k! / (k- j )L Hence the equation (2.32) has <n ~ solutions in h, h2 . . . . .  hj, ~, m 

and so in z, m, h, he . . . . .  hi. 
The number of solutions of 

3x2+y 2 = m 

in integers x, y is O(m9 (see, for example [E]). Hence, by (2.41), when j = k - 2  the 

number of solutions of (2.32) in z, m, h, he,. . . ,  hj is again <~nL 

Now suppose t h a t j = k - 4 .  Then, by (2.39), 

k~ 
qJJ = 8640 hh2 ... hk_4(O2+OE -v-2+'I') 
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where 

O= 6~2+6(2hmk)2 +6h2 + . . . . .  + 6 h 2 ,  E = 3~2_3(2hm~)2_2h2_. _2hk_ 42 

and ~ is a form in h2 . . . . .  hk-4 of degree 4 with integer coefficients. By (2.39) and (2.4), 

Ws>0 for all choices of z, h, m, h 2 .....  hk_ 4 satisfying (2.33). Moreover, by the theory of 

Q(X/-5-) (or see [E]), the number of solutions of 

X 2 + x y - - y  2 = b 

in integers x, y is ,~ 1 + Jbl*. Hence the number of solutions of (2.32) in z, h, m, h2 .. . . .  hk_ 4 

is a n  * in this case also. 

This concludes the proof of the lemma. 

3. A variation on the main  theme  

By (2.35) and (2.41), and Cauchy's inequality, we have 

Jf,_2(a)J 2 ~< D(a) E(a) (3.1) 

where 

2 

D ( a ) =  X X "'" X ~'~ e(lak!hh2...ht_2~52) (3.2) 
h<~H h2<~2p hk_2<~2p ~ \ 4 

and 

E X ... X s e . 
h<~H h2<~2P hk_2~<2P M<ra<~MR 

As an alternative to the estimation given in the previous section of the integral of 

the right of (2.36) we use a form of the Haxdy-Littlewood method. Thus we require 

estimates for Fk-2 that depend on the nature of the rational approximations to a. This is 

most readily accomplished through estimates for D and E. The first of these two 

exponential sums can be estimated quite easily. 

Note that throughout this section implicit constants depend at most on k and e. 

LFMMA 3.1. Suppose that (a, q)=l  and Ja-a/ql<~q -2. Then 

D(a) ~. P~ I / Pk-IHk +Pk-2H+q+Qklaq--aJ) 
\q+Q laq-al 
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Proof. We square out the innermost sum in (3.2). This gives a double sum over zl 

and z2, say. We put hk_l=Zl--Z2 and j=k! 2hh 2... hk_21hk_ll, and sum over Zl. By (2.40) 

we obtain 

D(a) ~. Hpk-2 + P E min(P, Ilajll-b, 
1 ~<j~2k! H(2P) k-2 

where ]lOll denotes the distance of 0 from a nearest integer. Thus, by Lemma 2.2 of 

[Va2], if la-b/rl<.r -2 with (b, r )=l ,  then 

D(a) ,~ P*(Hpk-lr-I + Hpk-E + r). (3.4) 

Therefore, by (3.4), 

Therefore ]a-a/q]>~- 1/(qr)-la-b/r] >I I/(qr)-]aq-a]/(2r)~ 1/(2qr). Thus 

1 - -  << 2laq-al. 
r 

D(a) ~ P~(Hpk-llaq--a]+ Hpk-2 +laq--a]-l). 

Moreover, by (2.23), HPk-I=Q k. This gives the lemma. 

The estimation of E is harder, and requires special arguments when k=3 or 4. We 

first of all treat the case k~>5. 

L~MMA 3.2. Suppose that k>~5, that (2.24) holds, that Mk<~X<<-QkM-k, and that 
(a, q)=l, q<-~X and ]a-a/ql<<.q-IX-l. Then 

pk-3+eHM2R2 
E(a) ( q + Qk]aq-- a{) l/k 

Proof. By (3.3), we obtain 

E(a)~'~L, ~ P~ ~_l e(ajh3m2k)] 2 
h<~H j<~k!(2p) k-3 M<m<~MR 

~_pk-3+rHMR2" 

<~ pk-3+~HMR +PEEo, 

When Qk]aq-a]<...q the lemma is immediate on taking b=a, r=q. 
When Qklaq-al>q, choose b, r so that (b, r)= 1, r<~2/laq-a I, la-b/rl<~laq-al/(2r). 

If Mr=a/q, then O<la-a/ql<~la-a/ql/2 which is impossible. Hence 

1>_lqr 
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on squaring out and summing over j ,  where 

,o=Z ZZ 
h~H m I m 2 

M<ml <m2 <..~.MR 

min(P k-3, Ilah3(m2k-m~k)ll-b. 

21 

and 

where 

Hence 

Thus 

I(a-b/r) h3(m~*-m~k)l <<. 1/(2r). 

Ilah3(m~k-m]e)ll >I [[bh3(m~k-m]k)/rll- 1/(2r) >I I ilbh3(m~k_m]k)/rll 

unless 2k 2 rl(m 2 -talk),  in which case 

I l a h 3 ( m ~  k - m~bll = h3(m~ k - m~ k) [a - b/rl. 

E o ~. E 1 +E 2 

EI--Z ZZ 
h<~H M<mI<m2 <~MR 

r{h3(m~k--m~) 

II bha(m~ k- m~e)/rll -~ 

ZZ 
h<~H M<ml<m2<~MR 

rlh3(m~-m~) 

min(pk-3,(h3M2k-l(m2--m,) a - - b  ) - l ) .  

Whenha(m2k_m]k)=jeachofh, m2_ml k m~+m~isadivisorofj,  andthusthenumberof  

solutions in h, m2, ml is ~ f .  Therefore 

El ~P~ ~ I lbj /r l l  -~ ~.P~(H3(MR)2kr:'l+l)rlog2 r 
j~H3(MR) ~ 

rlj 

Choose b, r with r<~2H3(MR) 2k, (b, r ) = l ,  la-b/rl<~l/(2H3(MR)2kr). Then for h<~H and 

M<m~<m2<.MR we have 
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and so 

E 1 <~ P ~ H 3 ( M R )  2k. 

Now 

H3(MR ) 2k = pk-3 HMR2pS-kM-I R 2k-2 <. pk-3 HMR2 

by (2.24). Therefore we can concentrate  on E2. 

In E2 we write (m2, ml)= j, ni=mi/j, so that j~MR,  (n2, nl)= 1, M/j<nl<n2<~MR/j, 
rl h3j2k(n2k--n~ k) and me-m~=j(n2-nl). 

For a given h<.H we put (r, h3)=e and write e=ele~e ~ where e~ is the largest cube 

divisor of e and e22 is the largest square divisor of e/e~. Hence eleEe3lh. Let ho--- 

h/(ele2e3), so that 

( r ,  h032el e x ) = l  and r~2t(n~-n~k).e 

tr/e ~ -  ~ ' -  r ,02 r that j=jofl.., f2k Now given h<~H andj<-.MR we put similarly ~ ,J , - J - J I J  2...J2k, so 

for a suitable Jo, and 

~,Jo :~ ...fek-i = 1 and -~ 

Let g=r/(ef) and put n=nt, l=n2-nl, go=(/, g), lo=l/go, gl=g/go �9 Thus 

e f o o 

efg=r 

with 

ho <~H/(ele2e3) Jo<-~MR/(fl ""f2k) 

and 

( ( E~= E E E E rain p~-3, h3oe~ e23 e3M2k-,.-3 JoJi ""feklogo a-- r 
go g! 1o n 
gog~=g 
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whence 

Hence 

((n+logo)2k n2k) gffl _ 0 (mod gl). 

( ( l+ logoX)2*- l )go  I =--0 (modgl), 

Therefore 

(l+logoX) 2k= 1 (modg). 

Now the congruence yEk_~ 1 (mod g) has v solutions modulo g, say y~ .. . . .  yv, where v ~ g  ~. 

Hence l + l o g o x - y  i (modg) for some i<~v. Thus yF-1 (modg0) and i o x - ( y i - 1 ) / g o  

(modg0. Therefore there are at most v choices for x, and so for n, modulo g~. 

go gl 
goglfg 

with 

E5 = ~ (MR( jo f l  "f2k gt)- l+ 1) min(P *-3, [h 3 e 3 e 3 e 3 M 2.-!" " 
1o 

,) 
and 10 satisfying lo<~MR/(goJof~...f2k). The total contribution to E2 from the " +  1" part is 

~. (rp)2rH ~ (MR/jo) pk-3 ~ pk-3(rp)3~ H M R .  
Jo~MR 

and with lo and n satisfying 

(lo, gi) = 1, l 0 <~ MR/(goJof i . . . f2 , ) ,  

g / (  A A  ... f2k) < n <<. g R / ( j o f ~  ... f2k), 

(n, n + l  o go) = 1, 

(n+logo) 2k-~ n 2k (modg). 

The last two conditions imply that (n, g)= I. For a given n satisfying the last three 

conditions, choose x so that nx=-I (modgl). Obviously this establishes a bijection 

between the residue class of n modulo gl and that of x. We also have 
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Summing the rest over l0 gives a contribution to E5 

4( MR ~2P~min(ek_3,(h3e~e~e]MZ, a _ b l ) - ' ) .  
\Jofl...Ak/ g 

Clearly fl  ...fEk>-f l/2k. Hence  on performing the summation over go, gl and j0 we obtain a 

contribution to E3 of  

~ (fg)-l/'p~M2RZmin(Pk-3, (h30e: e~ e]M 2' a - b  )-1) 
ho<~Hl(ete2e 3) 

. (ele2e3)-l (fg,-l/k pk-3+eHM2R2 min( l, (pk-3H3M 2k a- b[)-1/3). 

Obviously eleEe3>~el/3>~e l/~ where e is as above and, by (2.23), 

pk-3H3M2k = Qk. 

It follows, therefore,  that 

where 

E 2 ~ Eo+Pk-a+eHMR 

E o = Pk-3+~HM2R2(r+ Oklar- bl)-t/k. 

To summarise, we have shown that 

E(a) ~ Eo + I~-3+~HMR 2. 

If r+Qklar-b[>>.�89 k, then we are done,  so we may suppose that 

r+Qklar-bl < I Mk. 

Therefore 

rq a _ b  <lqMkQ_k+rX_l 
q r 

<  XMke -k+ Mkx -' 

<~1. 
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Hence a=b, q=r and the lemma ensues. 

When k=4 we require a modified argument and obtain a slightly weaker conclu- 

sion. 

LEMMA 3.3. Suppose that k=4, that (2.24) holds, that 

1 <~ Z <~ min(PZ/3M-19/6R -7/6, MI2p-2), 

that Z4<.X<.Q4Z -4, and that (a, q)=l ,  q<-~X and la-a/ql<~q-lX -1. Then 

E(a) ~ PI+eHMER2 F PI+~HMEREZ -l. 
(q+Q4laq-al) TM 

Proof. By (3.3), 

h<~H j<~4P 

We note that 

Z e(ah3j ms) 2 
M<m<~MR 

"~ PHMR+ Z Z Z min(P, Ilah3(m~-m~)ll-'). 
M<ml <m2 <~MR h<~H 

Z ~< M (3.5) 

since otherwise M<pE/3M -19/6 and M<MI2P -2 which leads to a contradiction. Hence 

E(a) ,~ PHM2R2Z-' + Z Z 
M<mI <m2 <~MR 

Ilah3(m~-m~)lt<~Z/P 

min(e, Ilah3(m~-m~)l1-1. (3.6) 
h~H 

For a given pair ml, m2 with M<ml,m2<~MR choose s, c with (c,s)-l, s<-2H 3, 
la(m~-m~)-c/s[<~l/(ZsH3). In addition, for h with h<~H and Ilah3(m~-m~)ll<~Z/P choose 

b so that lah3(m~-m~)-bl<�88 Then 

_~ c h3s<lsZp_l+h3/(2H3) 

< I  H3zp-% 1 
2 2 
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since H3ZP -1 =Zp2M-12~<l. Hence  bs=ch 3, whence slh 3. Let  s] denote  the largest cube 

divisor of  s, let s 2 denote  the largest square divisor of  s/s] and let sl=ss22s~ 3. Thus 

sls2s31h. Let  ho=h/(stSzS3). Then b=ch3o s~ s 2. Thus the multiple sum on the right of  (3.6) 

is 

Therefore  

where 

8 8- C - 1 \  
"~ ~ .  ~ min(P,(hoslS2S3)-3a(m2-ml'- 7 } 

M<mI <m2 <~MR ho <~Hl(sls2$ 3) 

~ (sls2s3)_lmin(PH, p213 a(m~_m~)_c-1/3) .  
~. s 

M<ml <m2 <~MR 

E(a) ~ PHM2R2Z - 1 + E ~ 

E0= ~ ~ enmin(s-l/3,(eHala(m~-m~)s-cl)-1/3), 
M<mt <m2<~MR 

s<~z 3 , ett31a(m~ -m~) s - c1<~2 z3 

Put (m2, toO=j, n=mi/j, l=(m2-mt)/j. Then 

j<.MR, I~MR/j ,  

M/j < n <~ MR~j, 

M/j < n + l <~ MR~j, 

(n, n+l) = 1, 

and now s and c will depend on j, l, and n. 
Given j<~MR and I<.MR/j, choose 'd ,  t with (d, t ) = l ,  t<~16(MR)TZ 3, iafll-d/tl<~ 

1/(16t(MR)TZ3), and for brevity write 

D = ((n + l)S- nS)/l. 
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Then 

I c d sD 4 tZ3 
- - ~ -  tsD < 16(MR) 7Z3 32PH 3 

<~I  + I (MR)7 Z6p-IH-3 
2 2 

<~I 

since Z6<~P4M-19R-7. Thus ct=dsD, so that sit. Let to=t/s. Then cto=dD. Hence tolD. 

Thus (n+l)8-n 8 (modt0). Since (n,n+l)=l we have (n, t0)=l. Let tl=(l, to), t2=to/t l, 

lo=l/t v Thus (lo, t2)=l. Since told we have 

8n 7 =- ((n+l o tl)S-nS/lo t I = D = 0 (mod tl). 

Hence tllS. Moreover (n+lotl)s-n 8 (mod to). An argument allied to one in the previous 

lemma shows that n lies in one of ~t~ residue classes modulo t2. Since s=t/to and t2>>to it 

follows that 

t,//MR...+I) (~),'3PHmin(1, (pH3(M)7 [afll_d )-,/3). 
EO<~'j~R I..~R/j Etot O~ jt 0 

The " + 1 "  part can be bounded trivially. Thus, by (3.5), 

Eo ~ p1+EHM2R2Z - 1 +pl +~HMRE l 

where 

E 1 

t<~Z3j - 3, pH3(MIj) 7 IqjSlt-dl< lZ3j -3 

Since t<.Z3j -3 we have j<~Z. 
For a given j with j<.Z, choose e, u so that (e, u )=l ,  u~2Z3MRj -4, lafl-e/ul<-~ 

fl/(2uZ3MR). Then 

- ~ - - ~  ult< l t f  uZ3j -3 
2Z3------ ~ + 4PH3(M/j)7 

<1_~ Z6MR 
2 2PH3M 7 

~<1 
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since Z6MRp-IH-3M-7=Z6p-4M6R<,I. Therefore  du=elt, so that tlu. Let  Uo=U/t. Then 

uoll. Let  lo=l/uo. Then 

E, , E j - I  E -o min .MR 1 
j<~z uoj~ \ u / \ ju o ' u o 

Therefore  

where 

- -  - - (~ - )2" t3  (pn3(M]j)71aj'8--~ )-l13 ) . 

E 1 <<  P*MRZ- 1 +P,MRE2 

E2=Ej u-1/3j-2mill(l,(PH3(m/j)81ctj's-e])-v3 ) 

and the sum is over the j with j<~Z, u<~Z3/j 3 and pH3(M/j) 8 [aflu-el<~Z3/j 3. 

Now choose f ,  v with (f,  o ) = l ,  v~<2Z 8, la-flo[~l/(2oZ8). Thus 

-•U 
~8 e _ f  fluo<J_~.~ vZ3j 5 

o 2Z ~ 4PH3M 8 

~ l__~ Z~6M 4 
2 2P 4 

16 4 14 4 19 14 4 since Z M4P - ~Z6M P -  ~ p 4 M -  M P -  --<1. Hence  eo=ff~u, so that ulv. Let  Vo=V/u. 
Then Volfl. Write Vo=VlO ~ ... v~ where vl is the largest eighth power dividing Oo, v 7 is the 

largest seventh power dividing Vo/V88, and so on. Thus v I ... v81j. Letjo=j/(v I ... v8). Then 

Vl ... v8~o~/8, UVlO~ ... o~=v and j<.MR/(ol ... v8). Hence  

E2"~E  E " ' E  Eu-l/3vo'/4jo 2min 1, PH3m 8 a -  
u o I 08 Jo 

o .4m,o(1 o L )"3 

Therefore,  collecting together our  estimates,  we obtain 

pI+eHM2R 2 E(a) "~ ~- Pt+~HM2R2Z-1. 
(o+Q4lao-fl) 1/4 
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If v+Q4lav-fl>~l~,Z 4, then we are done, so we may suppose that 

v+a41av-fl < 1Z4. 

Therefore 

a f z "~--"-~ qv< 1-~.-qZ4O-4+vX-I 

<--~ XZ4Q-4 +--~ Z4X -1 

~<1. 

Hence a=f, q=v, and the lemma follows. 

The case k=3 requires yet another variant of our argument. 

29 

E(a) <~ PeHM2R2 ~-P~HMR 2. 
(q+Q31aq-al)l/3 

Proof. Since M<.pI/TR -1 and H=PM -3 we have 

H 3/4 <~ HM- 5. (3.7) 

By (3.3), 

E(a)~HMR+ I Z E E e(2a(m~-m~)h3)] �9 
M<ml<m2<~MR h<~H I 

For a given pair m s, m 2 with M<~m~<m2<~MR we choose b, r so that (b, 0=1, r~<6H 2, 

12a(m~-m6)-b/rl<~ 1/(6rH2). If r>H, then by Weyl's inequality (Lemma 2.4 of [Va2]) we 

have, by (3.7) 

E e(2a(m62-m~ ) h3) '~ H~+E "~ P~HM-I" 
h<~tt 

LEMMA 3.4. Suppose that k=3, that MR<~P 1/7, that M3<~X<~Q3M -3, and that 
(a, q)=l ,  q<~X and la-a/q[<~q-lX-1. Then 
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If r<~H, then, by Theorem 4.1 and Lemma 4.6 of [Va2], 

~<_He(2a(m~-m6)h3~r-V3min(H, 12a(m6-m~)-b I 

Hence 

where 

E(a) ~ Eo + PEHMR 2 

E0= Z Z  r-V3min(H'12a(m~-m~)-b[-V3 ) 
M<mI <mT"~MR 

and ~ is the set of ordered pairs ml, m2 for which r<~M 3 and 12a(m~-m~)r-b[< 
�89 -3. 

Given such a pair mr, m2 put j=(mt ,  me), n=ml/j, [=(m2-mO/j. Thus 

j I n 

where j, I and n satisfy 

j<~MR, 

I ~ MR/j, 

(n, n+l) = 1, 

M/j < n <~ MR~j, 

M/j < n+ l <~ MR/j, 

jn, jn+jl E M. 

and we have written D for ((n+l)6-n6)/l. 
Given j<~MR, I<~MR/j, choose c, s so that (c , s )=l ,  s<~H3M -3 and [2aj'Sl-c/sl<~ 

s-'M3IT -3. Thus, for any n in the innermost sum we have 
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-~--r--~ sDr<DrM3H-a+IsM3H-3 

~-~(MR~SMOh-3+ I 
\ J /  

<<.1 

31 

since M~PIiTR-I~p3/2OR -1/4. Hence crD=bs, so that rls. Let So=s/r. Then solD. Hence 

the innermost sum in E0 is 

(s-2)l/3~min(H,(12afSl--~ (M/j)5) -1/3) 
"~'~sds \ s / n 

where the sum over n is now over n with n<~MR/j, (n, n+l)--1 and ((n+l)6-n6)/i=O 
(modso). Now, much as in the proof of the previous lemma we find that the number of 

such n is 

4(\MRjso + I )  s~. 

Therefore 

where 

E(a) ~ P~HMR2 + p~MREI 

E,=  ,s-"3j-lmin(H,(12 :l-- (7)5) -1'3) 
j~MR IE~ 

and 5r is the set of l for which I~MR/j, s<~M 3 and 

[2aj, Sls_ cl (M/j)5 < 1 M3H_3. 

Now givenj<~MR choose d, t so that (d, t )=l ,  t<.M4Rj-~ and 

laj'S-d/tl <.j/(tM4R). 
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Then 

-~sl - d 2sit < tM3H-3 2slj 
2(M/j---------- T + M4R 

+ • 
< 2H 3 2 

~<1 

since M<~p1/TR-I<.PI/SR -u3. Therefore ct=2dsl so that sit. Let to=t/s. Then t0121. Put 
lo=21/to. Then 

El<~ Z 2 (~)v3 2 J-lmin( H' ( aJ~-d  lo to['-j-)/M\5\ ) 
j<~MR tolt lo~2MRl(jt o) 

j<~MR ~5 d 

Therefore 

where 

E( a ) ~ P~ HMR2 + p~ M2 R2 E2 

E2= ~ t-lc3j-2min( H' l a j ~ - :  (M)6) -1/3 

and ~ is the set ofj<~M for which t<�89 3 and 

laj~t-d[ (M/J3 6 < �89 M3H -3. 

Now choose e, u so that (e, u)=l, u~<M 9, la-e/ul<.u-tM -9. Thus forjE~, 

e d uM3H -3 kj6tM-9 
u - ~ t  uJ~t< 2(M/j) 6 

< 1Mt2H--3+I 
2 2 

~<1 

since M<<.PI•R-I. Therefore etj~=du, whence tlu. Let Uo=U/t. Then Uolj ~. Let u~ denote 
the largest sixth power dividing u0, u~ the largest fifth power dividing Uo/U ~, and so on. 
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Thus Uo=UlU~ ... u~, UlU2 ... u6~ and UlU 2 ... u~>~u~ '6. Therefore 

E 2 a ~ ( u o / u ) V 3 ~ j o 2 U o ' / 3 m i n ( H . ( a - e  M6) -In) 
Jo~M 

P~H(u + Q3[au-el) -1/3. 

Hence 

E(a) <~ P*HM2R2 4-P*HMR 2. 
(u+Q3lau-el) !13 

33 

The proof of the lemma can now be concluded in the same manner as that of Lemma 

3.2. 

The previous four lemmas are of greatest utility on minor arcs. Whilst they do give 

some information on major arcs it is important to establish a more precise estimate. We 

do this in the next lemma. 

LEMMA 3.5. Suppose that (a, q)= 1, fl=a-a/q, and 

(3.8) 

Then 

Fl(a) 

k(k-  1) 3k qpk-2HRk(k-2)~3l <~ 1. 

- -  '+e 
(3.9) 

k-2  
PHMRq ~ + HMRqk- 1 

( q + Qklaq-- a ll l/(k-1) 

Proof. By (2.35) and (2.31), 

where 

Fl(a) = E E S(a, h, rn) (3.10) 
h<~H M<m<~MR 

(3.11) S(a, h, m) -- E e(am-k(z+hmk)k--am-k(z--hmk)k)" 
z<~2P 

Hence, on writing a=a/q+fl, sorting the terms in S(a, h, m) according to the residue 

class r of z modulo q, and using the fact that 

E e(b(r-z)/q) 
-~<b<~ 

3-898282 Acta Mathematica 162. Imprim~ le 8 mars 1989 
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is q or 0 according as r-z  (rood q) or r~z (mod q), we obtain 

S(t~,h,m)=q -l ~ o'(q,a,b,h,m)T(fl, b,h,m) 
-~<b~ 

where 

and 

o(q, a, b, h, m) = ~ e(qm-k(r+ hmk)k-am-k(r-hme)* + b r )  
r= I q 

T(fl, b, h, m)= ~ elflm-*(z+hmk)k--flm-k(z--hmk)k--b Z~. 
~<~ze q I 

When k is even, let d denote the greatest common division of 

q, 2akh, 2a(~)h3m zk ..... 2a(kk3)  hk-3 mk(k-4), 2akhk-lm~k-2) + b 

and when k is odd, let d denote the greatest common divisor of 

q, 2akh, 2a(~)h3m z~, ... ,2a(kk2) hk-2mk(k-3)' b. 

Then by Theorem 7.1 of [Va2], 

k - 2  
m + e  

o(q, a, b, h, m) ~. d(q/d) k-l 

(3.12) 

If k is odd, then d,~(q, h, b), and if k is even, then d~(q, h, 2akhk-~mt~k-Z)+b)= 
(q, h, b). Thus 

Let 

Then 

o(q,a,b,h,m)<~q k-' (q,h,b) k-l. (3.13) 

r = f lm-kfy+hmk)kf lm-k(y--hmk)~--by. 
q 

(3.14) 

fy+hm k 
b +q~'(y) = k(k-  1)tim -~ ~p*-2d~p, 

J y - h m  k 
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so that when ]7,]~<2P we have 

h I 2 
q + ~'(y)[ ~< 2k(k-1)lfl[ h(2P + hmk)k-2<~ 

9q" 

Thus, when - � 8 9  and 1~,I~<2P we have 

lr ~<�89 +-2<3 9 4 

and if moreover b:#0, then 

Ibl 
lr > 2q" 

Therefore, by Lemma 4.2 of [Va2], we have 

1 
T(fl, b , h , m ) =  ~a l(fl, b ,h ,m,u)+O(1)  

u=--I 

where 

fO P l(fl, b, h, m, u) = e(dp(y)-yu)dy. 

It follows by integration by parts that 

l(fl, b, h, m, + l).~. l 

and, when b*O, that 

Therefore 

and, when b*O, 

q 
l(fl, b, h, m, O) ,~ Ibl" 

T(fl, O, h, m) = l(fl, O, h, m, 0)+0(1) 

T(fl, b , h , m ) ~  q 
Ib l  " 

35 

(3.15) 
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Hence, by (3.12) and (3.13), 

- - ' t - E  - -  

S(a, h, m) = q-lo-(q, a, O, h, m) I(fl, O,h ,m,O)+O Ibl-~q k-~ (q,b) k-I 

e 1 1 k - 2  + 2 e 

�9 ~q k-l(q,h)k-I II(fl, O,h,m,O)[+q k-! 

By (3.14), (3.15) and Theorem 7.3 of [Va2], we have 

l(fl, O, h, m, 0) '~ P(1 +LSI hpk-l) -l/(k-l). 

Thus 

! I k - 2  
- - ' t ' e  s 

S(a, h, m),~ q k-l(q, h)k-lp(1 +~81 he~-l)-l/(k-l)+qk-I 

Therefore, by (3.10), 

1 1 1 k - 2  

Fl(a) <~ MRq ~-TS~ ~ (q, h) k-I min(P, (1 1 h) k-l)+ HMRq k-I 
h<~H 

B - I - ~  

On writing d=(q, h) and recalling that Pk-IH=Qk we obtain 

1 1 ! k - 2  I 

(q, h) k-I minfP, (LSI h) k-l) ~ d k-, minfPHd-l,Hk-l~l k-l d-1 ) 
h ~ H  v~q 

1 

qEPHmin(l, (Qk[B I) k-~). 

The lemma now follows. 

Having established suitable estimates for the underlying exponential sums we are 

now in a position to establish a relationship between T~, and Ss_ 1 and S, that is 

particularly valuable when S ,~P ~ with ;t close to 2s-k. 

LEMMA 3.6. Suppose that k~>4, s~k -1  and (2.22), (2.23) and (2.24) hold. Then 

Ts(P, R, O) << (PMR + PHMR4(ZP)-2~-~ Ss_l( Q, R)+ PI+~ R) l-l/s 

where 

12 2 p 2 / 3  7/6 19/6 Z =  min(M P - ,  R-  M- ) (k=4) ,  
(k I> 5), 



A NEW ITERATIVE M E T H O D  I N  W A R I N G ' S  PROBLEM 

[ ~  0 (s ~> 2k-2),  
tr= 1 

- k - 1  (2k -2>s>'k -1 )"  

37 

Proof. Let m denote the set of points in [0, 1] with the property that whenever 

there are a, q with (a, q)= 1 and 

k(k-  1) 3kqpk-2HR kfk-2) a -  q <~ 1, 

then q>P. Further, let 

= [0,  l ] \ m .  

First of all suppose that a Em. Choose b, r with 

( b , r ) = l ,  r<~Pk-ZH and lar-blPk-2H<.l. 

Then, by Lemma 3.1, 

D(a) pk-l+e F l i p  k-2+e. 
r+Qklar-bl 

Since a E m, either r>P or Qklar--al>>PR-~k-2). Thus 

D(a) ~ Pk-2HR k~k-2). 

Z k <~ pk-2 H <~ QkZ-k 

Clearly when k~>4 we have 

(recall that when k=4 we have (3.5)). Hence, by Lemmas 3.2 and 3.3, 

pk-3HM2R 2 
E(a) ,~. ~ ~- Pk-3+~HM2R2Z-I ,~ Pk-3+~HM2RkZ-I. 

(r+ Qklar-bDVk 

Hence, by (3.1), (3.17) and (2.37), 

l+e l+k(k 1)2 2 k 2 2 k F~(a) ,~ P HMR - - (PZ)- - ,  

(3.16) 

(3.17) 

whence 

Fl(a) ~PI+~HMR4(pz)-22-k (ctE m). (3.18) 
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Now suppose that a E ~ .  We note that, by Dirichlet's theorem on diophantine 

approximation, there are q, a with (a, q)= 1 and satisfying (3.16). Moreover since a is 

not in m, there are a, q with (a ,q )= l ,  q<<.P and satisfying (3.16). Furthermore, as 

0~<a~<l we have O<<.a<~q. Thus, by Lemma 3.5, 

pl+eHM R k-__32 +~ 
Fi(a ) <~ .I-P k-I HMR. (3.19) 

(q+Qklaq-al)l/o'-l) 

Let ~TC(q, a) denote the set of a in [0, 1] for which (3.16) holds. Note that the 

~I~(q, a) with O<.a<~q<~P are disjoint. We now define F*(a) on [0, 1] by taking F*(a) to 

be 0 when a E m and to be 

pi+~HM R 
(q+ Qklaq--al)i/(k-1) 

when a E~f~(q, a) with O<~a<~q<~P. 
As Z < ~ M ~  vk and k~>4 we have 

(pz)22-k ~< pl/(k-l). 

Therefore, by (3.18), (3.19) and (2.36) 

T,(P, R, O) .r (PMR + Pi+~HMR4(PZ) -2~-~) S,_1(Q, R)+ I 

where 

By HOlder's inequality, 

I = f F*(a)If(2ka; Q, R)I 2.-2 da. 

I "r Jl/sS,(Q, R) 1-1Is 

where 

J = f F*(a) s da. 

A straightforward calculation shows that 

J 'g" (PI+eHMR)SpEQ-k E qi-S/(k-D 
q~P 
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When k=3 we can obtain a more precise result. In principle such a result could be 

obtained for larger k but it would be valid only when s>2 k-2, which is too large to be 

useful when k~>4. 

LEMMA 3.7. Suppose that k=3, M R ~ P  In and (2.22) and (2.23) hold. Then 

- , 7 + e  _ 3  

T3(P, R, 0) ~ P~+~M-'R+P ~ M 2RS3(Q, R) ~. 

Proof. Let m denote the set of points a in [0, 1] with the property that whenever 

there are a, q with (a, q)= 1 and 

then q<P, and let 

Pl-l~ttq-a I <~ 1, 

~IR = [0, 1 ] \ m .  

Let a E m and choose a, q so that (a, q)= 1, [aq-a[<~H-IP -l and q<~PH. Then q>P. 
Hence, by (3.1) and Lemmas 3.1 and 3.4 we have 

Fi(a) < Pe(PH)l/2 (HMR2) v2 = I~ HR(PM) rE. 

By (2.32), (2.34), (2.35) and Lemma 2.3 with j = l  we have 

Thus 

fo I ]Fl(a){ 2 da "~. PI+~HMR. 

m ]F l ( a)]3 da ~ I~ H2 RZ(PM )St2. 

Now suppose that a E ~R. Then a is in an interval of the form 

~0~(q, a) = {a: laq-al ~ H-IP -l } 

with (a, q)= l, O<~a~q<<.P. Hence, by Lemmas 3.1 and 3.4, we have 

F,(a) ~.i~(" Hp2 ~ ,rz ( HM2R2 I-HMR 2\'t2| 
\q+QJlaq-a[/  \(q+Q31aq-al)V3 / 

o 

(3.20) 
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Thus 

Therefore 

R. C. VAUGHAN 

L iF (a)l da  ff ( q.a) \ (q+Q3q~)2 t- ~ / dfl 

p3 + ~ H3 R3 Q- 3 ( M3 q- 2 + M3/2 q- 3/2) . 

f [Fl(a)13da ~. p3+eH3M3R3Q-3(1 + pI/2M-3/2). 

Hence, by (3.20) and (2.23), 

~01 I+E -17 iFl(a)13dct ~ p2 M 2R 3. 

Now, by (2.36) and H61der's inequality, 

g+e _a 2 
T3(P, R, O) .~. PMRSe(Q, R)+P ~ M 2RS3(Q, R)?. 

The lemma is a consequence of this and the classical estimate 

Se(Q, R) 

(see, for example, Lemma 2.5 of [Va2]). 

4. Bounds for the number of solutions of the auxiliary equation 

We now investigate the consequences of the reduction relations contained in Lemmas 

2.1, 2.2 and 3.6. The aim is to establish bounds of the form 

S,(P, R) ,~ 1 #`+* 

when R is no larger than a small power of P. The reduction relations contained in 

Lemmas 2.1, 2.2 and 3.6 can be interpreted as inequalities between the permissible 

choices for ).s. It is useful, therefore, to summarise below the corresponding inequal- 

ities. 

( j l)  For some j with ~>~t and l~j<~k-1 there is a 0 satifying O<O<.l/k such that 

A t/> (2t-2) 0+ 1 +2,_~(1-0), ( j l .  1) 
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2 r ~> (2 t -2 -k )  O+2--21-J+,~t_l(1 --0), (jl.2) 

(2 t -2-k+k2-?)  0 + 2 - ( j +  1) 2-J+2,_~(1-0) (1-t2-?) 
2 t ~> (j1.3) 

1 - ( 1 - 0 )  ( t -  1) 2 -j 

(j2) For some j with T>-t and with 

(i) j = k - 2 ,  or 

(ii) j = k - 4 ,  or 

(iii) l<~j<~k-3 and k - j  odd, 

there is a 0 satisfying 0<0~< 1/k such that 

2t ~> (2t-2) O+ 1 +2t_~(1-O), ( f t .  1) 

~'t ~> (2 t -2 -k )  O+2-2~-J+2t_~(l-O), (j'2.2) 

( 2 t - 2 - k + ( k -  1) 2 -?) O+2- ( j+  1) 2-J+2t_~(1-0) (1 - t2-?) 
2~, ~ ( f t .  3) 

1 - ( 1 - 0 )  ( t -  1) 2 -j 

(k-2) We have t>~k-1 and there is a 0 satisfying O<O<-l/k such that 

2 t ~> (2t-2) 0+ 1+2,_~(1-0), 

)]'t ~> (2 t -2-k-22-e)  O+2--22-k+'~t-l(1--0), 

where 

0 
tr= 2 I 

t k - 1  

when t >~ 2k-2, "~ 

when 2 k - 2 > t ~ k - l . J  

THEOREM 4.1. Suppose that 

k~>5, 21=1, 22=2 

(k-2.1) 

(k-2.2) 

(k-2.4) 

(k-2.4) 

og + 

St(P, R) <. (C,(e)R D') ,ogR p~, 

and that for each t=3,4 . . . . .  s at least one o f  ( j l) ,  (j'2) or (k-2) holds. Then there are 

positive real numbers DI .. . . .  Ds such that for each positive number e there are real 

numbers Cl(e) .....  Cs(e) such that whenever P ~ R  we have 
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for t=l ,2 ,  . . . ,s.  

Proof. This is by induction on s. The cases s= 1,2 are classical. We may suppose, 

therefore, that s~>3 and that the case s - 1  holds. Then, on hypothesis, there is a 0 

provided by ( j l ) ,  (j2) or (k-2)  with t=s. 

We now prove by (sub)induction on n that for suitable D*, C~ (e) we have 

D~sn s +f S,(P,R)-~(~(~)R ) (4.1) 

whenever R~176 

We observe that if ;ts~>2s, then the conclusion is trivial. Moreover it follows easily 

by induction on t from (j l .1),  (j2.1), (k-2.1)  that ;ts>s. Hence we may assume that 

S < ;l s < 2S. (4.2) 

The bound (4. I) is trivial for n<~no(k) provided we take 

D* i> 2s(1 - 0)-"~ (4.3) 

Therefore we may suppose that 

n > n0(k) 

and that (4. I) holds for n replaced by n - 1 .  

Clearly it suffices to establish (4. I) when 

0 < e < Co(S). 

By Lemma 2.1 with D = P  ~ we have 

r,* n-I/ ,  p \O,+~)/s\ s 

d>e e 
2s-3 ) s 

\d<~e o 

(4.4) 

Suppose first of  all that 0 is provided by ( j l )  or Q2). For  brevity we write 

X = P / d ,  J = 2  -i. 
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where 

T~(X,R, O) '~ (Xl+~ + X2-Zl+(l-k)~ R(C~_l(e) RO'-~)l~ X ~'-~+~)0-~ 

+XUR((C~ - l(e) Ro,_ ,)log ~z~k X~ "- t+ ~)o- 0))l-sJ((C_~ (e) Rot) "- IX~a'+')o -o))(~-l)J 

kt = 2 - ( j +  1) J+(1 - k )  O + ( k - 2 + v )  JO+e 2. 

Hence, by (jl)  and (fi), 

. xl § log 1_-~o pa l  x,~, +z(I-O) X~ R,  O) "~ t.,_d.e) ~ A 

where 

kq = l+D~-l+D,_~nlog 1 
i - 0 '  

kt2= l + ( D s _ , + D s _ , n l o g l - - ~ ) ( 1 - s J ) + D * ( n - 1 ) ( s - 1 ) J ,  

/~3 = 2 - ( j +  1 ) J + ( 2 s - 2 - k + ( k - 2 + v ) J )  0+2,_~(1- 0) (1 - s J) +2,(1-0) ( s -  1)J. 

By (jl.3) and (ft.3), 

Therefore 

X~ O)'~" \ s-r. s-P. / s', , ] �9 

By Lemma 2.2, 

T~(X, R,  O) ~ (xI+O + x2-2J+(I-k)O) RSs_I(XI-~ 

..I.xE-2(j+I)J+(I-21)(I -k) ORl-ZSN] Ss_l(X l-~ ' R)l-sSSs(X l-~ , R)(S-l) J" 

Let v=2 when 0 is provided by (j l)  and let v= l  when 0 is provided by (fl). In the latter 

c a se j=k -2 ,  o r j = k - 4 ,  or l<~j<_k-3 and k - j  is odd. Thus, by Lemma 2.3, the case n -  1 

of (4.1) and the case s - 1  of the theorem we have 
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Hence, by (4.2), 

'~ (Cs -l  (g)n log l_-~oRU 1 + Cs-! (e)n(l-sJ)log i-~_oc$s(E)( n -l)(s- l).l~U2)R2S -3p~s +'(l-0). 

Thus, by (4.2) and (4.4), and provided that C~*(t) and D* are large enough in terms of the 

implicit constant and Cs-l(t), and D~-I, 0, s respectively, we have (4. l) as required. 

Now suppose that 0 is provided by (k-2). Then we proceed as above but use 

Lemma 3.6 in place of Lemmas 2.2 and 2.3. Note that since n>n0(k) the hypotheses of 

Lemma 3.6 are satisfied. We thereby obtain 

.~2s-3)Ts(X, R,  O) 

~. 1" C , ..nlogl~_e~4+Ds_l+O,_,nlogl~_o+C,_..ff.(n-l)(l-l)Rl+D*(n-l)(l-l)'$ XA,+e(I-O) 
i t  - K t, s-I ) - s t )  J �9 

Therefore (4.1) follows from (4.4) as before. 

The theorem is immediate from (4.1). 

We now state a cleaner version of the above theorem. 

THEOREM 4.2. Suppose that k>~5, 21=1, 22=2, and that for  each t=3 ,4  . . . . .  s at 

least one o f  (jl),  ( f l )  or (k-2) holds. Suppose further that 2>2s. Then, provided that 

0<r/<r/0(2-2s) and P>P0(r/, s) we have 

Proo f  In Theorem 4.1 take 

Ss(p ' l:m) < pa. 

e -- 2 ( 2 -  2s) 

and choose ~/0 so small that whenever 0<r/<r/0 one has 

r/Ds log-~ < 1 (2-2,). 

This gives Theorem 4.2. 

In Table 4.1 are listed the optimal values of 2, for those s with 2 s > 2 s - k  that arise in 

Theorems 4.1 and 4.2 when 5~<k~<8. Also listed are the corresponding values of 0. 

Moreover in the column headed by j ,  (k-2) indicates that (k-2) gives the optimal value, 

and otherwise ( j l)  is satisfied with the indicated value o f j  unless k - j  is odd o r j = k - 2  
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k s j 

3 2 
4 2 
5 (k-2)  

3 2 
4 2 
5 3 
6 3 
7 3 
8 4 
9 4 

l0 (k-2)  
11 (k-2) 
12 (k-2)  
13 (k-2) 

3 2 
4 2 
5 3 
6 3 
7 3 
8 4 
9 4 

l0 5 
11 5 
12 5 
13 6 
14 6 
15 6 

0.1250000000 
0.1338305414 
0.1818181819 

0.0833333334 
0.0833333334 
0.1250000000 
0.1305160302 
0.1449861282 
0.1500798248 
0.1545352505 
0.1546391753 
0.1546391753 
0.1546391753 
0.1546391753 

0.0625000000 
0.0625000000 
0.0937500000 
0.0937500000 
0.1004741178 
0.1104129144 
0.1142072185 
0.1175704127 
0.1190184991 
0.1204379548 
0.1213892533 
0.1219220239 
0.1224238007 

k s j 

3.250000 5 3 2 
4.618034 4 2 
6.232937 5 3 

6 3 
7 (k-2) 
8 (k-2) 

9 (k-2)  

3.166667 7 3 2 
4.402778 4 2 
5.852431 5 3 
7.393755 6 3 
9.061597 7 3 

10.802752 8 4 
12.605910 9 4 

14.440048 10 5 
16.299834 11 5 
18.181303 12 5 
20.081102 13 (k-2)  

14 (k-2)  
15 (k-2)  
16 (k-2)  
17 (k-2)  
18 (*-2)  
19 (k-2)  
20 (k-2) 

3.125000 8 16 (k-2) 
4.304688 17 (k-2)  
5.651124 18 (k-2)  
7.058831 19 (k-2)  
8.555290 20 (k-2)  

10.156457 21 (k-2)  
11.823832 22 (k-2)  
13.549966 23 (k-2)  
15.317640 24 (k-2)  
17.122450 25 (k-2)  
18.9573i0 26 (k-2)  
20.815969 27 (k-2)  
22.695466 28 (k-2)  

Table  4.1 

O. I0000000(~ 

0 . I ~  
0.1500000000 

O. 1635321106 
O. 1707317074 

O. 1707317074 
O. 1707317074 

0.0714285715 
0.0714285715 
0.1071428572 
0.1078205829 
0.1195745911 
0.1276289272 
0.1318261785 
0.1347204930 
0.1361941573 
0.1375951109 
0.1377777778 
0.1377777778 
0.1377777778 
0.1377777778 
0. i377777778 
0.1377777778 
0.1377777778 
0.1377777778 

0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 
0.1228070176 

3.200000 
4.480000 
6.008000 
7.660821 
9.401656 

11.186739 
13.008516 

3.142858 

4.346939 
5.738339 
7.197834 
8.772051 

10.439288 
12.172336 

13.957442 

15.780403 
17.636189 

19.512981 
21.406748 

23.315152 
25.236175 

27.168080 
29.109367 

31.058743 
33.015094 

24.592514 
26.502205 
28.422987 
30.353498 
32.292542 
34.239072 
36.192168 
38.151025 
40.114934 
42.083276 
44.055505 

46.031145 
48.009776 
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k 

9 28 
34 

12 44 
52 

15 60 
71 

18 78 
90 

R. C. VAUGHAN 

2, k s 2, 

47.182765 t0 32 54.229641 
59.051094 39 68.087768 

76.204964 13 48 83.231405 
92.095892 58 103.100212 

105.210117 16 66 116.202593 
127.097342 77 138.099089 

138.191614 
162.096361 

k s 

11 38 
46 

14 54 
64 

17 72 
84 

19 84 149.187721 20 90 
97 175.092876 104 

Table 4.2 

2s 

65.215856 
81.088361 

94.219572 
114.102752 

127.196419 
151.094612 

160.184757 
188.090061 

or j = k - 4  in which case (j2) is satisfied. The listed values were calculated to 16 

significant figures by means of an electronic computer. However, once obtained it is 

relatively easy to check, if necessary by hand, that the corresponding ( j l ) ,  (j2) or (k-2)  

are satisfied. Note that in each case when (k-2)  is satisfied the optimising choice of 0 is 

2 k - 2 - 1  
0 = (4 .5)  

k2k-2 + 1 

and then As is given by 

A s = (2s-2)  0+ I +2s_1(1-0). 

The values given are all rounded up in the last decimal place. 

We remark that for each k one further iteration will give 

(4.6) 

210 = 15 (k = 5), 214 = 22 (k = 6), A21 = 35 (k = 7), 229 = 50 (k = 8). (4.7) 

In Table 4.2 we extend Table 4.1 for selected values of  s when 9<~k~<20. We make 

use of  this in w 9. 
We now treat the special cases k=3 and k=4.  

THEORE~i 4.3. Let k=4,  21=1,  ,,!.2=2, 23=13/4. 

04 = 2 / (6+X/ '~) ,  24 = 604+1+23(1-04)  -- 4.618033 . . . .  

2 25 = 805+ I+24(1-05)  = 6.232936 . . . .  05=  11'  
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and suppose that l~<s~<5. Then, provided that 2>Zs, 0<r/<r/0(;t-)~s) and P>Po(rl, s) we 
have 

S,(P, P~) < e~. 

Proof. When s= 1 or 2 the result is classical. When s=3 or 4 the proof follows that 

of Theorem 4.1. Thus for s=3 we note that (j2) holds with j=2  and 0=1/8 and for s=4 

(j2) holds with j=2  and 0=04. 

When s=5 we begin by following the proof of Theorem 4.1. Thus (4.4) holds. Then 

we estimate T~(X,R, 0) through the use of Lemma 3.6 with 0=05. Hence 

Ts(X, R, O) ~ XI+oR4S 4(X 1-~ R) +X ~5-0 us) 0+ ms+~2RS5(XI-0, R)4/5. 

Therefore we may conclude the argument by following the proof of Theorem 4.1 in the 

case (k-2). We need only check that 25 satisfies 

~,5 ~ 6+ = 6 +  + 11 

THEOREM 4.4. Let k=3 and suppose that 
0<r/<r/o(2-13/4) and P>Po(r/) we have 

S3(P" p,) < pa. 

2 
55 )" 

2>13/4. Then, provided that 

Proof. We again follow the proof of Theorem 4.1, so that (4.4) holds, but we take 

0= 1/8 and estimate T3(X, R, 0) through the use of Lemma 3.7. Thus 

X3~ R, O) ~. X3+2~176 +.I~ +~2~ l-~ R) ]. 

Again the proof is completed as before. We need only note that 

3 7 +  3 0 + 2 { 1 3 " 1 - 0  "'~ 3+2o---14 and -C ') 13 =--~-. 

5. The estimation of G(k) when 4~<k~<8 

We establish Theorems 1.1. and 1.2 through the medium of the Hardy-Littlewood 

method. We consider the representation of a large natural number n in the form 

k k ~+... +~,+yl +--. + y u  = n 
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where each xi has the property that it has no prime factor exceeding n ~ where r/is a 

sufficiently small but fixed positive number. This enables us to combine Theorem 4.2 

with Weyl's inequality on the minor arcs. 

The restriction on the xi is unlike any condition that has been used hitherto in 

connection with Waring's problem. Moreover u is usually too small for a direct 

application of classical methods on the major arcs. Thus it is necessary to develop a 

new technique for dealing with the major arcs. 

We suppose now that n is large, and P and W satisfy 

P = n  vk, 2<~W<~P. (5.1) 

Let 

~lR(q, a) = (a: la-a/q} <- (2kq) -IPl-k} (5.2) 

denote a typical major arc, let ~ denote the union of the ~2(q, a) with l<~a<~q<~P, 

(a, q)= 1, and let 

111 = ((2k)-lP l-k, 1 +(2k)-lpl-k]~[Y~ (5.3) 

denote the corresponding minor arcs. Clearly the ~02(q, a) are disjoint and contained in 
((2k)-tP l-k, 1 +(2k)-lPZ-e]. 

It is not possible to estimate precisely the bulk of our generating functions 

throughout ~ without developing considerable machinery to handle the distribution of 

the elements of M(P, P~) in arithmetic progressions to relatively large moduli, at least in 

mean. We therefore adopt a procedure for pruning the major arcs. 

Let 

and let 92 denote 

92(q, a)c~ffl(q, a) and 92cY.~. 

Let 

92(q, a) = {a: la-a/ql <~ (2kq)-' WP-k}, (5.4) 

the union of the 92(q, a) with l<-a<~q<~W, (a ,q)=l .  Evidently 

rt = ((2k)-lP l-k, 1 +(2k)-lPl-k]\92 (5.5) 

so that 

n = (~\~) u m .  
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We first record some useful information regarding the standard generating function 

f(a) = E e(axe)" (5.6) 
x ~ P  

By Theorem 4.1 of [Va2], for a 6 ~ (q ,  a) we have 

f(a) = V(a, q, a)+O(q �89 (5.7) 

where 

and 

V(a, q, a) = q-iS(q, a) v(a-a/q), (5.8) 

S(q, a) = s e(ark/q) (5.9) 
r= I 

1 1-1 
v(fl)=E---~x k e(flx). 

x<~n 

Moreover, by Lemma 2.8 of [Va2] we have 

v(fl) ~ min(P, 

We will find the following lemma particularly useful. 

LEMMA 5.1. Suppose that k>~3 and s>>-k+2. Then 

f ]f(a)l,da ~ p~-k 

and 

Let 

f~ ~ W~-~/ke ~-k. lf(a) Vda 

Proof. By (5.7), for aEYs a) we have 

If(a)l'-W(a,q,a)V~I,q ) +q lv(a,q,a)l s-'. 

V(a) = V(a, q, a) (a E ~R(q, a), 1 ~< a ~< q ~< P, (a, q) = 1) 

(5.10) 

(5.11) 

4-898282 Ac ta  Mathemat ica  162. Imprim6 le 8 mars 1989 
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and dt=~ll~ or ~ \ 9 2 .  Then the argument of Theorem 4.4 of [Va2] establishes that 

f lf(a)l'da=flV(a)lSda+O(P'-l-'+'). 
Moreover, by (5.11) and in the notation of Lemma 4.9 of [Va2] we have 

: ,V(a, r d a , P ~ - k ~ S * ( q ) m i n ( ( q ) - ~ - ' , l )  
q~.~.P 

where Y=I when d ~ = ~  and Y=W when ~=~1~\92. By a variant of the argument of 

Lemma 4.9 of [Va2] we have, for s>~k+2, 

q~'- I-k)/k S*( q) .~. Z ~. 
q<~Z 

Therefore 

and 

q<S-k)/kS.(q ) .~. y~+ I/k 
q~Y 

S*(q) "~ y~-r 
q>~Y 

The lemma now follows easily. 

It is also useful to record the standard estimate f o r f o n  m that is a consequence of 

Weyl's inequality (Lemma 2.4 of [Va2]), namely that 

f(a) <~ pl-o+, (a E m) (5.12) 

where 

cr = 2 I-k.  

Henceforward we suppose that r/is a sufficiently small but fixed positive number, 

that n>n0(r/), and take 

R = P~ (5.13) 
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and 

k t(k) u(k) v(k) 

4 5 1 
5 9 1 
6 13 2 
7 20 1 
8 28 1 

Table 5.1 

g (a )=  E e(axk)" 
xEs~(P,R) 

When 4~<k~<8 we suppose that t=t(k),  u=u(k)  and v=v(k)  are given by Table 5.1. 

LEMMA 5.2. Let  t, u, v be as in Table 5.1, and  let 

and 

Then 

fo 
L = If(a)2Ug(a)2' Ida 

I(~) = f~ If(a)~ g(a)2' Ida. 

L <~ p2t+2u-k, 

I([0, 1]) ,~ p2t+o-k 

and there is a positive number  6 such that 

l(n) ,~ P2t+v-kW-~. 

Proof. By Table 4.1, 

At+v(1-2 l-k) < 2 t + v - k .  

Therefore, by Theorems 4.2 and 4.3 and (5.12) we have 

fm 2u 2t 2t+2u k 6 If(a) g(a) Ida ,~ e - - , l(m) ,~ p2t+o-k-~. 

51 

(5.14) 

(5.15) 
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Note that, by Table 5.1 we have v<~2u. 
By H61der's inequality 

By replacing the last integral over ~ by one over [0, I] and interpreting the result in 

terms of the underlying diophantine equation we see that 

f lg(a)12t+2"da <. L. 

Moreover, by Table 5.1 we have 2t+2u>-k+2. Therefore, by (5.15) and Lemma 5.1 we 

obtain 

u t 
L '~ p2t+2u -k + ( p 2 t + E u - k )  t+u L t+u 

and so secure the first part of the lemma. 

Let d ~ = ~  or ~2\92.  Then, by Hflder 's  inequality once more, we have 

(f"-(t+,,,\'--/c )-- I(dd) ~< I f ( a ) ]  u dot)t+u~Llg(oOl2t+2Udat+u. 

As before the last integral here is bounded by L. By Table 5.1, v>-u and t+u>-k+2. 
Hence, by Lemma 5.1 and (5.15), 

_ . { - - ~  ~ 
I([0, 1]) <~ pzt+o-x + \p ~ ] t+u (p2t+2u-k)'7"+'~u 

,~ p2t+o-k 

and 

-%t+u)-k ~ ttu 
i(ll) <~ e2t+v-k-6.b (p  u we-llk) t+u (p T M )  

l~+o-kW -~ 

as required. 

The next step in our argument is to estimate 

f f(a)~ -an) da 
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asymptotically for a suitable choice of W. We achieve this through the approximation 

for g embodied in Lemma 5.4. Before starting this we introduce some notation. Let O(x) 
denote Dickman's function, defined for real x by 

e(x) = 0 when x<0, 

O(x) = 1 when 0<~x~< 1, 

O continuous for x>0, 

0 differentiable for x>  1, 

x~'(x) = -O(x-  1) when x> l .  

For an extensive study of the properties of 0 see [B1]. Note that for x~>0, O(x) is 

positive and decreasing. 

We further define 

1 _ k -  l ̂  { l og  m 
w(fl)= Z - ~ "  ~kl-]-~gR] e(flm) (5.16) 

Rk <m<~n 

and 

W( a, q, a) = q-IS(q, a) w(a-a/q). (5.17) 

At several stages in our arguments we require some knowledge of the asymptotics 

of M(P, R). This is summarised in 

LEMMA 5.3. Let r be a fixed positive number and suppose that R<-~X<.R ~. Then 

logX X 
c a r d ( M ( X , R ) ' = X O ( l ~ g R ) + O ( ~ )  �9 

Proof. The lemma is immediate from (1.3) and (1.4) of [B2] and standard estimates 

from prime number theory. 

LEMMA 5.4. Suppose that q<.R, (a, q)= 1 and fl=a-a/q. Then 

g(a)= W(a, q, a)+o(,q--P (l+nlfll)~ 
\ l o g / - ' /  

and 

W(a, q, a) ~ q-l/kmin(P, ILSll-  k). 
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Proof. Let H denote the product of all primes p with R<p<.P, and suppose that 

R<rn~P. Then 

xEM(m,R) a]n y~mld 
xmr (mod q) d~m yd~r (rood q) 

Since din and q<~R we have (d, q)= 1. Hence 

xE s~(m,R) a~n 
x~-r (mod q) d<~m 

Off_<rim a ~ : L  ) 

Hence, by the case q= 1, we obtain 

0 xr q xE.s~m,R) 
x=-r (mod q) \ d~m 

The error term here is bounded by the number of natural numbers not exceeding m 

which are coprime with IIp<~ p. Hence, by Theorem 2.2 of [HR] and elementary prime 

number theory we have 

E 1=1 E 1+0(~)(R<m<~P). 
xe,~m,R) q xE~(m,R) 
x=-r (rood q) 

Therefore 

x6,r~ra, R) x E ~ m , R )  

Let 

Sy = E (e(ax~/q)- q- IS(q" a)) 
x E ~Vk, R) 

so that for Rk<y<~n we have 

S . ~  qP �9 Y logP 
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Then, by partial summation 

Z (e(ax*)-q-'S(q, a) e(/~xk)} 
xE.~P,R)  

x>R 

= Z Sy(e(fly)-e(fl(y+l)))+S.e(fl(n+l))-S[R q e(fl([R k]+ 1)). 
Rt~<y<~ n 

Hence 

x>R 

X (e(axk)--q-lS(q'a)e(flxk))~~3l q qP 
log P" 

(5.18) 

Let 

Ty= X 1. 
xE a~yuk, R) 

Then, by the previous lemma 

//k 

whenever R*<y<~n. Hence, by partial summation 

Z e(flxe)= Z Ty(e(flY)-e(fl(Y+l)))+T.e(fl(n+l))-T[Rqe(fl([Rk]+l)) 
x E ,.~P, R), x>R Rk<y<~n 

R,<y_. Ly ~kl-i~gR]-~y-,, o~ -~ - / / e (~y )  

+O(~(l+n[#,)). 

When y>R*+ 1, an application of the mean value theorem shows, since O' is bounded, 

that 

r ~ L ~ j - , y - ,  ~L kl---g--g~gR ; -TY o L ~  J ~,lo-~- 
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Thus, by (5.16), 
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e(flxt) = w ( f l ) + O ( ~ ( l + n l f l l ) ) .  
xE~C(P,R) 

x > R  

This with (5.18) establishes the first part of the lemma. 

The second part of the lemma follows by the methods of Lemmas 2.8 and 4.6 of 

[Va2] and the monotonicity of Q. 

By imitating the usual method of estimation on the major arcs, where necessary 

using Lemma 5.4, we obtain when W<.R 

(5.19) 

with 

and where 

J(n) = ~_~ ... ~_, ~ ... ~ k-~ l_, �9 "" Y v X I  "'" X2t  )k QI  "'" O2t  

Yl Yo xi x2t 

logxj 

and the multiple sum is over Yl .. . . .  Yo, xl . . . . .  x2t satisfying 

y ~ n ,  ..., yo<~n, Rk<x~<~n, ...,Rk<x2t<~n, 

y l + . . . + y o + x l + . . . + X 2 t  = n .  

By Lemma 5.2 and (5.19) with W a suitable power of logP we obtain 

R(n) = ~(n) J(n) + O(p2t+~ p)-v) 

where C and 6 are positive constants that depend only on t, v and k, where ~(n) is the 

usual singular series in Waring's problem 

~ ( n ) =  ~ ~ (S(q,a)/q)2t+~ 
q = l  a=l  

(a, q)= 1 
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where v is a positive constant and R(n) is the number of solutions of 

k k Y l +"" + Y o + X~l + " " " "~- xk t  = n 

with xj E ~(P, R). 

A simple counting argument combined with the fact that 

log xj. 

when Rk<xj<~n establishes that 

J(n) >> p2t+o-k. 

57 

Moreover, by Theorem 4.6 of [Va2] and Table 5.1, 

~(n) >> 1 

when k~>5. This conclusion is also evident when k=4 and n--r (mod 16) with l~<r~<12 by 

the argument in the penultimate paragraph on page 87 of [Va2]. 

This establishes Theorems 1.1 and 1.2. 

6. Sums of  three kth powers 

Theorem 1.3 follows immediately from Theorem 4.4 via Cauchy's inequality and the 

lower bound 

card(~f(P, P~)) >> P 

that is a consequence of Lemma 5.4, for example. 

Theorem 1.4 follows likewise from Theorems 4.2 and 4.3 on observing that in 

Theorem 4.2 ifA3=3+l/k, then ( j l )  holds with j=2 ,  O=l/2k. 

7. A simplified estimation and an exponential sum 

We obtain Theorem 1.5 by combining our method with an idea of Vinogradov. We first 

state a bound for S,(P, P~) that avoids an excess of calculation when k is large. 

THEOREM 7.1. Suppose that k>-5, ~,1=1 and that for  s>~2, As is given by 

~s = 2s ~ k + ( k - 2 )  ( 1 - k )  ~-2. 
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Suppose further that 2>2,. Then, provided that 0<r/<r/o(2-2s) and P>Po(r/, s), we have 

S,(P, P~) < pa. 

Proof. The theorem follows from Theorem 4.2 on observing that ( j l)  is satisfied 

with O=l/k when t~<2 k-~ and that (k-2) is also satisfied with O=I/k when t>>.2k-2. 
Let 

X = pl/2 (7.1) 

and for a sufficiently small positive number r/let 

~= {x: x = p y , l  x < p <~X, yE ~(X,X~)} (7.2) 

and 

h(a) = E e(o.x~. (7.3) 
xE~ 

By H61der's inequality, 

I Ih(a)12"~X ~'-~ ~. bye(apky) (7.4) 
1X <p-~  

where Y=sX k and by is the number of solutions of 

y 

with yj E ,~(X, X~). We note for future reference that 

E = s,(x, (7.5) 
Y 

Let m be as in the hypothesis of Theorem 1.5, and let aEm.  Choose a, q so that 

(a, q)= 1, q~<2X k, la-a/q[<.�89 q-lX"k. Then, by the definition of m, either q>X, or q<~X 

and [a--a/q[>q-lXl-Z~q-~Xl-kY -I. Thus the hypothesis of Lemma 5.4 of [Va2] is 

satisfied. Hence we may estimate the right hand side of (7.4) in the same way that (5.44) 

of [Va2] is estimated. Thus 

Ih(a)l 2' ~ X  ~- '  Y~+~ ~'~ Ibf.  
Y 
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Therefore, by (7.5) and Theorem 7.1, when 0<r/<r/o(e) and P>Po07, s), we have 

Ih(a)l 2s ,~ x2s-l+k+2s "bE" 

This means that 

where 

h(a) ,~ p,-o+,~ 

s, I 

In addition, by (7.1), (7.2) and Lemma 5.3 we have 

x 2 e 
card ~-> -> 

logX logP" 

This establishes the main part of Theorem 1.5. 

The maximum of o(k, s) as s varies is attained for a value of s satisfying 

where 2 is the larger root of the transcendental equation 

(~ -- k2(k-2) = e ~. 
+ 1) " ( k -  1) 2 

Thus 

and 

log k+lo lo  k+o(l k) 

59 

(7.6) 

(7.7) 

log k k 1 

Q(k)= 4 ( A + l ) ( l + O ( k l ~ g k ) ) "  (7.8) 

This completes the proof of Theorem 1.5. 

8. The estimation of  G(k) when k is large 

We now investigate the possibility of combining Theorems 1.5 and 7.1 through a variant 

of the argument developed in w 5 to establish Theorem 1.1. 
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Let ~ ,  92, m, n be as in w and let f, g, h be as in (5.7), (5.14) and (7.3). 

We suppose that 0<~/<r/o(e), that 

u>>.k+l, 

/1 1 \~-2 
2to(k) > (k-2)  [ --~-)  

where ~)(k) is as in Theorem 1.5 and define 

L = If(a)2g(a)2"h(a)2tl da 

and 

t" 
I = J. If(a) g(a)2"h(a)2'l da. 

By Hflder 's  inequality and Theorem 1.5 (note that mcm) ,  

L ~. fmP2+2t-2totk)+~,g(a),2Uda+(f~ ,f(a),k+2da)*-~(f o' 'g(a)2Uh(a)2tlk+2' k k  ) k~2. 

By Theorem 7.1 and (8.2) the first integral on the right is 

,~ p2+2t+2u-k. 

By (8. I). 4u/k~2 so that the last integral on the right is bounded by 

f0 
1 4u 2+4t 
ig(a)2+ 2~h(a)2tl p T -  -s da <~ LP (4u+4t-2k)/k. 

Hence, by Lemma 5. I, 

whence 

2 k 
L ~ p2+2t+2u-k+(p1)k+2(Lp(4u+4t-Zk)/k)k+2, 

L ~ e2+2t+2u-k. 

Now a cognate argument gives 

\ J ~ \ ~  

(8.1) 

(8.2) 
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where 6 is a suitable postive number. Since u>~k+ 1 the last integral on the right is 
bounded by 

2u 2t -2+ 
Lpk+l k+l 

By applying our bound for L and appealing to Lemma 5.1 we obtain 

I ~ pl+2t+2u-kw-6. 

The process developed for dealing with the contribution from 92 in w 5 now shows 
that every large n can be written as the sum of l+2t+2u kth powers. We take 

+ [ k - 2  (1 I~ ~ 
v=u-2 ,  t = l  L ~ ( - ~ \ - - k - / J "  

Thus 

The remark after Theorem 1.6 can be justified by observing that the optimising 

choice of v occurs with Iv-al<l where 

# l o g k k l =  1 [ k - 2  1 k \ ogt2- 

Thus 

[ k - 2 ,  k \  
2 1 ~ 1 7 6  ] 

G(k) <~ 
k 

log k -  1 

= 2klog(2-~(k))+O(logk), 

I- O(log k) 

and by (7.6), (7.7) and (7.8) 

log 1 =log(k(~+ 1) )+O(k ) 
4p(k) 

= log(klog k)+O( log lOglogk k ). 
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k s(k) k s(k) k s(k) k s(k) 

8 22 
9 28 

10 32 

11 38 

12 44 

13 48 
14 54 

15 60 

16 66 

17 72 

18 78 

19 84 
20 90 

Table 9.1 

9. The estimation of G(k) when 9~<k~<20 

When k is of moderate size we may vary the argument of the previous section by using 

Theorem 4.2 with optimal choices for the :t, to establish improved versions of both 

Theorem 1.6 and Theorem 1.7. A further improvement can be brought about by 

employing a more precise form of the proof of Theorem 1.6. 

Let 
k 

X = P2k- 1, (9. I) 

Z = P X  -1 (9.2) 

and define the generating function h by 

c~ = { x: x = pz, I x<p<.~X, z E ~(Z ,  Z~) } , (9.3) 

h ( a ) = 2 e ( ~  ) (9.4) 
xEqg 

We now define s=s(k) as in Table 9.1. 

Then, by Lemma 4.2 and Tables 4.1 and 4.2 we have 

Ss(Z, Z ~) < Z ~ 

whenever 2 > 2 ,  0<r/<r/0(g-ft,) and P>P0(r/). 

Since s is even we may write 2r=s. By H61der's inequality 

Ih(a)l*~<X~-~ 1 ~ ~ e(aPkZk)] 2" 
=XS-' E Ecye (apky)  

ff X<p~X ~yl~r 

(9.5) 

(9.6) 
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k o(k) k o(k) k o(k) k o(k) 

8 0.01008306 
9 0.00791794 

10 0.00652403 
11 0.00553974 

12 0.00481491 
13 0.00425964 
14 0.00382220 

15 0.00346504 
16 0.00316742 
17 0.00291609 

18 0.00270010 
19 0.00251303 
20 0.00234894 

Table 9.2 

where cr is the number of solutions of  

k k k k _ _  
Zl~Z2"I". . ."~Z2r_l--Z2r- y 

with zi E M(Z, Z ~) and 

Y = rZ k. (9.7) 

Let  n denote the set of real numbers a such that whenever a E Z, q E N, (a, q) = 1 

and la--a/ql<~q-lXI-kY-I one has q>X. 
Let a E n  and choose a, q so that (a, q ) = l ,  q~<2(2X) k and la-a/ql<~q-12-1(2X) -k. 

Then, by the definition of  n, either q>X, or q < ~  and la-a/ql>q-~X~-kY -~. We now 

appeal to a variant of  Vinogradov's estimate for sums of  the kind on the right of (9.6). 

The most effective form for the purpose at hand is that contained in the main Lemma of 

[T2]. Thus, as Cy=C_y, 

2 E Cy e(apky)= Z ( c0+2Re  2 cy e(apky)) 
~X<.p<~_,y [yl<~ y _~ X<p<.~,. X X, O< y~Y 

[ \ 1/2 

\ !yl~r / 

Hence, by (9.1), (9.2), (9.6) and (9.7) 

Ih(a)l 2' .~X2S+k-2+~S tZ Z~ $1, , r 

Therefore, by (9.5), 

h(a) ~ pl-o+~ (0<r/<rh(e), p>pl(r /)  ) 
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k u(k) t(k) k u(k) t(k) k u(k) t(k) k u(k) t(k) 

9 34 6 12 52 20 15 71 28 18 90 36 
10 39 14 13 58 24 16 77 32 19 97 37 
11 46 16 14 64 27 17 84 33 20 104 39 

Table 9.3 

where 

(k-  1) (2s-2~)-k(k-2) 
o = o ( k )  = 

2s(2k - 1) 

The values of a that arise from Tables 4.1 and 4.2 by taking s as in Table 9.1 are listed 

below in Table 9.2. The values given are rounded down in the last decimal place. 

Now let u=u(k) and t=t(k) be given by Table 9.3. 

We take ~R, 92, m, n as in w 5, so that m c n  and define to=to(k) by 

to-1 < l t ~ <  t o. 

By Tables 4.2, 9.2 and 9.3 

Au+t(1-a) < 2u+ t - k  (k*9 or 15). 

Therefore, by a variant of the argument of w 8, and wi th fand  g as in (5.7) and (5.14) we 

have 

fo If(a)2g(a)2Uh(a)2'~ da <~ P 2+zu+2'~ 

and 

fn  2u t 1+2u+t k 6 If(a) g(a) h(a) Ida <~ e - W- . (9.8) 

When k=9 or 15 we observe that by Lemma 2.4 and Theorem 5.3 of [Va2] 

f (a)  << pl-~ (a E m) 



where 

Thus 
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r = 0.00390625 (k = 9), r = 0.000347551 (k = 15). 

1-r+Au+t(1-o)  < 1 +2u+t -k  

and our argument may proceed as before. Thus (9.8) holds in this case also. 

It now follows by a kindred method to that used in w 5 for dealing with ~2 that 

G(k) <~ l+2u+ t  

and this establishes Theorem 1.7. 

65 

10. Another exponential sum 

We now proceed with the proof of Theorem 1.8. Let a 6 m  and choose a, q so that 

(a ,q )=l ,  q<~pla2, la_a/ql<q-ip-~/2. (10.1) 

We desire to convert S(a) into the kind of sum considered in the proof of Theorem 1.5. 

However the possibility that (q, x k) may be large is a nuisance. We deal with this by first 

removing the common factors that may arise by writing 

Z 
qo[q xEs~P,R)  

~q, ~ = qo 

Let ~ be the largest kth power dividing q0, qkq-~ be the largest (k-1)st power dividing 

qoq-i k, and so on. Then ql ... qklx. Hence 

S(a) = Z Z e(ay~q~ "'" ~)" 
qolq Yql ...qk E~(P,R) 

(q/qo, ykq~l-t ... qk- 1 )= 1 

= Z * T(ctq~... q~, P/(q~... qk), R, r)+O(qee '-~) 
qo r=q 

(10.2) 

w h e r e  ~qor= q *  indicates a sum over q0 with 

qor=ql qo=qjq~...q~, q,. . .qk<~e 6, q , . . .qkE~(P,R) ,  ( f ,q~-l . . .qk_j)=l,  

(10.3) 

5-898282 Acta Mathematica 162. Imprim~ le 8 mars 1989 
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ql ... qk squarefree, a n d  

T(~,, Q, R, r) = Z e(YYk)" (10.4) 
yEM(Q,R) 

(r,y)=l 

The next lemma provides a convenient method of factorising the elements of 

~t(Q, R). 

LEMMA 10.1. Suppose that 2<~R<~M<y<~Q and y E ~t(Q, R). Then there is a unique 

triple (p, u, v) with 

(i) y=uv, 

(ii) u E M(Q/v, p), 

(iii) M<v<~Mp, 

(iv) ply, 
(v) p']v =~ p<~p'<~R. 

Proof. We first show the existence of the triple (p, u, v). Write y=Pl ...Ps where 

R~pl~p2>~ ... and let 

d j =  I - I p  i. 
i<~j 

Then 1 =d0<dl< ... <ds=y and, since y>R and y E .d(Q, R) we have s~>2. Since l < M < y  

there is a t such that dt<~M<dt§ ~. Since M>~R we have t~>l, and since M<y we have 

t<s. Therefore M<dt+l=dtPt+l<~Mpt§ . We take P=Pt+l, v=dt+l, u=y/v. Clearly each 

of (i) .... .  (v) is satisfied. 

Now we show the uniqueness of the triple (p, u, v). Suppose that there is another, 

say (p', u', v'). Without loss of generality we may suppose that either p'<p, or p'=p 

and v'>o. Let w and w' denote the largest divisors of y which have all their prime 

factors exceeding p and p'  respectively. Then o=phw a n d  U ' = ( p ' ) h ' w  ' where h~>l and 

h '~ l .  

I fp '<p,  then vlw' so that 

v' >~p'v>p'M. (10.5) 

I f p '=p ,  then w=w'.  Therefore, as v'>v, we have h'>h. Therefore (10.5) holds in this 

case also. 

Clearly (10.5) contradicts the definition of (p', u', v'). 



A N E W  ITERATIVE M E T H O D  I N  W A R I N G ' S  PROBLEM 67 

We now apply Lemma 10.1 to T. Note that for any triple (p, u, v) satisfying (ii)-(v) 

we have uv E .d(Q, R) and M<uo<~Q. Thus, there is a bijection between the y and the 

(p, u, o). Hence, by (10.4), 

T(y,Q,R,r)= E e(yyg)+O(M)=EU(Y'Q'M'R'r'p)+O(M) (10.6) 
M<y<~Q p<~R 

y E M(Q, R) plr 
(r ,y)=l  

where 

U(~, Q,M,R,r,p)= ~ e(yukv k) 
vE ~(M,p,R) uE.ff.(QIv, p) 

(v, r)= 1 (u, r)= 1 

(10.7) 

and 

~(M,p,R) = {v: M <  v<~Mp, ply, p ' lv  ~ p <.p'<.R}. (10.8) 

For o>M we have 

So( E e(?ukvk)= E 
u 6 sg(Q/v, p) u ~ ~(Q/M, p) 

(u, r)= 1 (u, r) = 1 

Therefore 

f0' U(7, Q, M, R, r, p) ,~ V(7, Q, M, R, r, p, 0) rain , dO 

,~ (log Q) sup V(y, Q, M, R, r, p, 0) 
0 

(10.9) 

where 

V(y,Q,M,R,r,p,O)= e Ou§ I M<o<~MR 
(o, r)=l  (u ,r)=l  

(lO. lO) 

Now we take 

y= aq~.. q'k, Q= P/(ql qk), M= n l / 2 n - - l - ~  k - I  k - 2  . . . .  r • tzql q2 ...qk_l) -ilk. (10.11) 

Note that y and Q agree with the choices forced upon us when we substitute (10.4) into 

(10.2). 
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By (10.2), (10.6) and (10.9), 

S(a)'~Pl-O+%(l~ E *  E sup V(y 'Q'M'R'r 'p 'O)" (10.12) 
qor=q p<-~R 0 

When (h, r)= 1, the number J of solutions of the congruence xk--h (mod r) satisfies 

J<~r'. Hence there is an L ~ r  ~ such that the v with M<v<<.MR and (v, r)= 1 can be 

divided into L classes ~ ... . .  ~t. such that for two distinct elements vl, v2 in a given 

class ~ we have Ok--V k (modr) if and only if vl=-v2 (modr). Therefore, by (10.10) and 

H61der's inequality, 

E by e(Yvky) 2 V(y, Q, M, R, r, p, 0) 2` ,~ P~(MR)2S-lma x E (10.13) 
.I v E ~j  y<~ Y 

where 

Y = s(Q/M) k 

and [byl<<.Cy with Cy being the number of solutions of 

with ui E s~(Q/M, p). 
By (10.3), 

uk+...+u~ = y 

a k k k - I  k - 2  - -q l  "" qic= aql q2 ... q~_l/r = a'/r, q 

say, with (a',r)=l. Thus, by (10.1), (10.3) and (I0.11), 

), a_~r I -~< q,k-I q2k-2 "" qk-I/(r P~) = 1/(2r MkRk)" 

Hence, if vl, v2E ~ and vl~vz (mod r), then we have 

II (v -o ll > 

~>Ir-~" 
2 

(10.14) 

(10.15) 
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When r>MR the elements of ~. are distinct modulo r. Thus for v E ~ the yv k are spaced 

at least �89 -! apart modulo 1. Therefore, by the large sieve inequality (see, for example, 

w 27, Theorem 2 of [D4]), 

2 

2 2 by e(~vky) <<(Y+r)Ss(Q/M,R)" (10.16) 
vE~ yEY 

When r<~MR we have to consider what happens when o1=o2 (modr) but o14=o2. Then, 

by (10.15), 

Since vl-v2 is a non-zero multiple of r and vl>M, v2>M we have 

IIr(v -@ll  > Mk-lr. 

Now, by (10.11) and (10.3) 

q = rqtq~'" q~ <~ MRqI~"" q~ <" e�89 qk) k <~ # +~" 

Thus, by the definition of m, we have [a-a/q[>q-lP arz)+~-k. Therefore 

a I~ _�89 q~'"q~ 
~---~[ = a - q [  qk ... qk>l., rqlq2 ... qk 

so that, by (10.11), 

> 

Thus in this case, for v E ~ the ~v k are spaced at least 

- m i n ( r -  l, ek,~ - �89 k R 1 - k) 

apart modulo I. Therefore, by the large sieve and (10 .16) ,  in either case 

e@vkY) 2 2 y~<~rby "~(r+r+p�89 (Q/M'R)" 
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By (10.14) and (10.11), Y=s(Q/M)k=2sP~ERk/(q~q~...qkk), by (10.1) and (10.3), 
k ~  r<~p~2/(qlq~...qkk), and, by (10.3), ql~. . .qk-~I  ~ .  Thus,  by (10.13) and Theorem 7.1, 

V(y, Q, M, R,  r, p,  O) 2s ~. Pe(MR)2S-I(Q/M)k(Q/M) 2s-k+~ 

where 

Hence,  by (10.12) and (10.11), 

I o I 
* 1 - - -  - -  

e(e/M) M S(a) ,~. pl-~+~ + 2~ 2~ 2~ 

qor=q p<,~R 

1 2+ ~ 1 -  l -a+e - - -1  
,~pt-~+~+R 2~p 4~ E (ql""qk)2~ 

qor=q 

and the theorem follows. 
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