A new iterative method in Waring's problem

by
R. C. VAUGHAN

Imperial College
London, England, U.K.

Contents

1. Introduction 1
2. The reduction of the auxiliary equation 8
3. A variation on the main theme 19
4. Bounds for the number of solutions of the auxiliary equation 40
5. The estimation of $G(k)$ when $4 \leqslant k \leqslant 8$ 47
6. Sums of three k th powers 57
7. A simplified estimation and an exponential sum 57
8. The estimation of $G(k)$ when k is large 59
9. The estimation of $G(k)$ when $9 \leqslant k \leqslant 20$. 62
10. Another exponential sum 65
References 70

1. Introduction

As is usual in Waring's problem we take $G(k)$ to be the smallest number s such that every sufficiently large natural number is the sum of at most $s k$ th powers of natural numbers.

In this memoir we introduce a new iterative process to Waring's problem. We are thereby able to improve all previous upper bounds for $G(k)$ when $k \geqslant 5$.

Hitherto the best upper bounds for $G(k)$ for smaller $k \geqslant 4$ have been obtained by variants of the iterative method of Davenport (see [D3], [T3], [Va4] and [Va5]).

When $5 \leqslant k \leqslant 8$ we obtain
Theorem 1.1. We have $G(5) \leqslant 19, G(6) \leqslant 29, G(7) \leqslant 41, G(8) \leqslant 58$.
This may be compared with the respective bounds $21,31,45$, and 62 contained in [Va4] and [Va5].

The methods described here also improve the known upper bound in the case of biquadrates provided that an obviously necessary local condition is satisfied.

Theorem 1.2. Suppose that $1 \leqslant r \leqslant 12$. Then every sufficiently large natural number in the residue class r modulo 16 is the sum of at most 12 biquadrates.

This compares with Theorem 2 of [Va4] in which 13 appears in place of the 12 .
For cubes, although we are unable to reduce the known upper bound 7 for $G(3)$ (see [L], [W] and [Va6]) we are able to make progress with a quite closely related problem.

Theorem 1.3. Let $\mathcal{N}(N)$ denote the number of natural numbers not exceeding N which are the sum of three positive cubes. Then for $N \geqslant 3$ we have

$$
\mathcal{N}(N) \gtrdot N^{\frac{11}{12}-\varepsilon}
$$

where the implicit constant depends only on the positive number ε.
This can be compared with Theorem 6 of [Va6] in which a similar lower bound occurs but with the exponent $19 / 21$ in place of $11 / 12$, and the final theorem of Hooley $[\mathrm{H}]$ in which a conditional lower bound is given with $18 / 19$ in place of $11 / 12$.

It is perhaps not without some interest that our methods give a new lower bound in general for the number $\mathcal{N}_{k}(N)$ of different natural numbers not exceeding N which are the sum of three k th powers.

Theorem 1.4. Suppose that $k \geqslant 4$ and

$$
\alpha_{k}=\frac{3}{k}-\frac{1}{k^{2}}
$$

Then for $N \geqslant 3$ we have

$$
\mathcal{N}_{k}(N) \gg N^{a_{k}-\varepsilon}
$$

Previously the smallest known exponents α_{k} were

$$
\begin{array}{ll}
\alpha_{4}=\frac{19}{28} & \text { (Davenport [D1]), } \\
\alpha_{5}=\frac{5}{9}, \quad \alpha_{6}=\frac{59}{126} & \text { (Davenport [D2]) }
\end{array}
$$

$$
\begin{array}{ll}
\alpha_{7}=\frac{65}{161}, \quad \alpha_{8}=\frac{77}{216} & \text { (Davenport's methods), } \\
\alpha_{k}=\frac{3}{k}-\frac{1}{k^{2}}-\frac{2}{k^{3}} \quad(k \geqslant 9) & \text { (Davenport and Erdős [DE]). }
\end{array}
$$

Consider the exponential sum

$$
\begin{equation*}
S(\alpha)=\sum_{x \leqslant P} e\left(\alpha x^{k}\right) \tag{1.1}
\end{equation*}
$$

Then the methods based on Vinogradov's mean value theorem give

$$
\begin{equation*}
\sup _{\mathfrak{m}}|S(\alpha)| \ll P^{1-o(k)+\varepsilon} \tag{1.2}
\end{equation*}
$$

where \mathfrak{m} is the canonical set of minor arcs associated with the k th powers and where

$$
4 \sigma(k) k^{2} \log k \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

For an account of this see Chapter 5 of [Va2].
In many applications of (1.2) it is of no importance that the sum is over all the members of $[1, P] \cap \mathbf{Z}$. The next theorem shows that one can do considerably better than (1.2) when the sum is over a certain restricted but quite dense subset of $[1, P] \cap \mathbf{Z}$.

Theorem 1.5. Let m denote the set of real numbers α with the property that whenever $\alpha \in \mathbf{Z}, q \in \mathbf{N},(a, q)=1$ and $|\alpha-a / q| \leqslant q^{-1} P^{1 / 2-k}$ one has $q>P^{1 / 2}$, and let

$$
\varrho(k)=\max _{\substack{s \in N \\ s \geqslant 2}} \frac{1}{4 s}\left(1-(k-2)\left(1-\frac{1}{k}\right)^{s-2}\right)
$$

Then for each positive number ε there is a subset \mathscr{B} of $[1, P] \cap \mathbf{N}$ such that

$$
\operatorname{card} \mathscr{B} \gg P / \log P
$$

and the exponential sum

$$
T(\alpha)=\sum_{x \in \mathscr{B}} e\left(\alpha x^{k}\right)
$$

satisfies

$$
\sup _{m}|T(\alpha)| \ll P^{1-\varrho(k)+\varepsilon}
$$

Moreover $4 \varrho(k) k \log k \rightarrow 1$ as $k \rightarrow \infty$.

It is quite easy to construct examples in which for suitable subsets B of $[1, P] \cap \mathbf{Z}$ one has

$$
\begin{equation*}
\sup _{m}\left|\sum_{x \in \mathscr{B}} e\left(\alpha x^{k}\right)\right| \gg P^{1-1 / k} \tag{1.3}
\end{equation*}
$$

See, for example, Lemma 4.4 of [Va2]. Thus the exponent $\varrho(k)$ is quite close to the best that one might hope to establish. For much of the purposes of this memoir the nature of \mathscr{B} is not of great importance. Later we will see that a result of the same strength holds for a very natural set \mathscr{B}.

Vinogradov [Vi2] has shown that when k is large

$$
\begin{equation*}
G(k)<k(2 \log k+4 \log \log k+2 \log \log \log k+13) \tag{1.4}
\end{equation*}
$$

By a somewhat different method Karatsuba [K] has improved this by replacing the $4 \log \log k+2 \log \log \log k+13$ by $2 \log \log k+12$ and increasing the domain of validity to $k>4000$. For smaller values of k, Balasubramanian and Mozzochi [BM], in an amalgam of an earlier version of Vinogradov's methods ([Vi1]) with those of Davenport and Erdős [DE], Vaughan [Va1] and Thanigasalam [T1], [T2], have shown that

$$
\begin{equation*}
G(k) \leqslant \frac{3 \log k+\log 108}{\log \frac{k}{k-1}}-4 \tag{1.5}
\end{equation*}
$$

The proof of (1.4) depends, in particular, on an application of Vinogradov's mean value theorem to give an estimate for a complicated exponential sum on the minor arcs. By using Theorem 1.5 instead we are able to establish

Theorem 1.6. Suppose that $k \geqslant 9$ and $\varrho(k)$ is as in Theorem 1.5. Then

$$
G(k) \leqslant 7+\min _{\substack{v \in \mathbb{N} \\ v \geqslant k-1}} 2\left(v+\left[\frac{k-2}{2 \varrho(k)}\left(1-\frac{1}{k}\right)^{v}\right]\right) .
$$

Theorem 1.6 gives a smaller bound than any previously known when $k>13$, and as $k \rightarrow \infty$ it gives

$$
G(k)<2 k\left(\log k+\log \log k+1+\log 2+O\left(\frac{\log \log k}{\log k}\right)\right)
$$

For intermediate values of k the method can be refined. Thus we are able to establish the following upper bounds for $G(k)$.

k	$F(k)$	k	$F(k)$	k	$F(k)$	k	$F(k)$
9	75	12	125	15	171	18	217
10	93	13	141	16	187	19	232
11	109	14	156	17	202	20	248

Table 1.1

Theorem 1.7. When $9 \leqslant k \leqslant 20$ we have $G(k) \leqslant F(k)$ where $F(k)$ is given by Table 1.1.
This may be compared with the respective bounds 82 ([Va4]), 103 ([T3]), 119, 134, $150,165,181,197,213,229,245,262$ ([T2]).

We remark that a deeper treatment of the major arcs that arise in the proof of Theorem 1.7 enables one to replace the upper bound $F(k)$ for $G(k)$ by $F(k)-1$ when $k \neq 9$ or 15 .

There is one aspect of the work in this memoir which may well have consequences outside additive number theory, namely the realisation of an estimate for exponential sums of the kind contained in Theorem 1.5. In many applications it may not be possible to accommodate the somewhat artificial set \mathscr{B} that is provided by the proof of that theorem. However, by only slightly weakening the hypothesis it is possible to establish a conclusion of the same strength in which the set \mathscr{B} is replaced by one of great familiarity in multiplicative number theory.

Theorem 1.8. Suppose that $0<\delta<1 / 2 k$, let m denote the set of real numbers α with the property that whenever $\alpha \in \mathbf{Z}, q \in \mathbf{N},(a, q)=1$ and

$$
|\alpha-a / q| \leqslant q^{-1} p^{1 / 2+\delta k-k}
$$

one has $q>P^{1 / 2+\delta k}$, and let

$$
\varrho(k)=\max _{\substack{s \in N \\ s \geqslant 2}} \frac{1}{4 s}\left(1-(k-2)\left(1-\frac{1}{k}\right)^{s-2}\right)
$$

Further let $\mathscr{A}(P, R)$ denote the set of natural numbers not exceeding P with no prime divisor exceeding R. Then for each positive number ε there is a positive number η such that whenever $2 \leqslant R \leqslant P^{\eta}$ the exponential sum

$$
S(\alpha)=\sum_{x \in \mathscr{A}(P, R)} e\left(\alpha x^{k}\right)
$$

satisfies

$$
\sup _{m}|S(\alpha)| \ll P^{1+\varepsilon}\left(P^{-\delta}+P^{-\varrho(k)}\right) .
$$

As in Theorem 1.5 we have

$$
4 \varrho(k) k \log k \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty .
$$

Moreover, for each fixed η we have

$$
\operatorname{card} \mathscr{A}\left(P, P^{\eta}\right) \sim c_{\eta} P \quad \text { as } \quad P \rightarrow \infty
$$

where c_{η} is a positive number.
The proof of Theorem 1.7 in $\S 9$ shows inter alia that the exponent $\varrho(k)$ in Theorems 1.5 and 1.8 can be refined to one that is superior to that provided by Weyl's inequality whenever $k \geqslant 8$.

The methods of this memoir apply equally well to diagonal forms. Let $G^{*}(k)$ denote the least number t such that whenever $s \geqslant t$ the equation

$$
\begin{equation*}
c_{1} x_{1}^{k}+\ldots+c_{s} x_{s}^{k}=0 \tag{1.6}
\end{equation*}
$$

has a non-trivial solution in integers x_{1}, \ldots, x_{s} when the coefficients c_{1}, \ldots, c_{s}
(i) are not all of the same sign when k is even and
(ii) are such that for every q (1.6) has a solution modulo q with $\left(x_{j}, q\right)=1$ for some j.

Then $G(k)$ may be replaced by $G^{*}(k)$ in each of the bounds. Thus it follows that $G^{*}(k) \leqslant k^{2}+1$ for all $k \geqslant 4$, in particular settling the stubborn case $k=10$, and so completing a programme initiated by Davenport and Lewis [DL]. The bound $k^{2}+1$ is of particular interest, since as Davenport and Lewis show, when $k+1$ is prime and $s=k^{2}$ there are c_{1}, \ldots, c_{s} and a prime p for which (1.6) has no non-trivial p-adic solution.

After the seminal work of Hardy and Littlewood on additive number theory, and Waring's problem in particular (see [HL]), the best upper bounds for $G(k)$ when $k \geqslant 4$ have been based, in essence, on prior estimates for the number of solutions of auxiliary equations of the form

$$
\begin{equation*}
x_{1}^{k}+\ldots+x_{s}^{k}=y_{1}^{k}+\ldots+y_{s}^{k} \tag{1.7}
\end{equation*}
$$

with the x_{j} and y_{j} lying in ranges of the kind

$$
P_{j}<x_{j}<2 P_{j}, \quad P_{j}<y_{j}<2 P_{j}
$$

where $P_{1} \geqslant P_{2} \geqslant \ldots$. The use of diminishing ranges in this context was refined and perfected by Davenport (see [D3]) and Vinogradov (see [Vi3] and [Va2]), and the recent work of Thanigasalam [T3] and Vaughan [Va4], [Va5] is largely based on a variant of the case $l=k-2$ of Theorem 1 of Davenport [D2].

The use of diminishing ranges in (1.7), whilst conferring a number of benefits, has one serious drawback, namely that the homogeneity of (1.7) is lost.

The underlying theme of this memoir is the conservation of homogeneity in equations such as (1.7). Thus we consider (1.7) with $x_{j} \in \mathscr{A}, y_{j} \in \mathscr{A}$ where \mathscr{A} is a fairly dense subset of $[1, P] \cap \mathbf{Z}$. For a suitable \mathscr{A} we relate the number of such solutions to the number of solutions of

$$
\begin{equation*}
x^{k}+m^{k}\left(z_{2}^{k}+\ldots+z_{s}^{k}\right)=y^{k}+m^{k}\left(t_{2}^{k}+\ldots+t_{s}^{k}\right) \tag{1.8}
\end{equation*}
$$

with $x \leqslant P, y \leqslant P, M<m \leqslant M^{\prime}, z_{j} \in \mathscr{B}, t_{j} \in \mathscr{B}$ where \mathscr{B} has similar properties to \mathscr{A}, but $\mathscr{B} \subset[1, P / M] \cap \mathbf{Z}$. Then by the use of ideas stemming from the diminishing range circle of ideas combined with Hölder's inequality and the homogeneity of

$$
z_{2}^{k}+\ldots+z_{s}^{k}-t_{2}^{k}-\ldots-t_{s}^{k}
$$

we are able to estimate the number of solutions of (1.8) in terms of the number of solutions of (1.7) with s replaced by a number not exceeding s and with \mathscr{A} replaced by \mathscr{B}. This enables an iterative procedure of an entirely new kind to be created. In a certain sense this does for a single equation what the arguments underlying the proof of Vinogradov's mean value theorem do for the corresponding system of equations.

It transpires that our technique puts no serious obstacle in the way of methods that have been developed in the context of diminishing ranges. Thus the technique has great flexibility.

An important role is played throughout this work by the set $\mathscr{A}(P, R)$ of natural numbers not exceeding P with no prime factor exceeding R. Other sets could be substituted in some of the arguments described herein, but no alternate seems to provide the same general degree of flexibility. This observation allied with a perusal of the methods used to establish Theorem 2 of [Va6] and Theorem 2 of [Va7] suggests that the greatest barrier to procuring improved estimates for the number of unrestricted solutions to (1.7) is the presence of x_{j} and y_{j} having large prime factors.

In § 2 we establish the basic relationships between the solutions of (1.7) and (1.8) for various choices of \mathscr{A}, \mathscr{B} and s. In $\S 3$ we analyse various exponential sums that arise. This leads to another relationship between (1.7) and (1.8) that is particularly effective when s is large.

The conclusions of $\S \S 2$ and 3 are applied in $\S 4$ to obtain general bounds for the number of solutions of (1.7) and then Theorems 1.1 and 1.2 are established in $\S 5$ and Theorems 1.3 and 1.4 in $\S 6$.

A simplified bound for the number of solutions of (1.7) is given in Theorem 7.1. This is used to establish Theorem 1.5 in $\S 7$ and Theorem 1.6 in § 8.

In $\S 9$ various methods from earlier sections are brought together to establish Theorem 1.7, and finally Theorem 1.8 established in § 10.

1.1. Notation

In general we use upper case Latin letters to denote real numbers which exceed 2 unless otherwise stated, lower case Latin letters to denote integers and lower case Greek letters to denote positive real numbers. In particular $k, m, n, q, r, s, t \in \mathbb{N}$ with $k \geqslant 3$, and p denotes a prime number. Implicit constants may depend on k, s, t, ε. Throughout we think of k as being fixed. Therefore in explicit constants such as the D_{r} and $C_{r}(\varepsilon)$ of Theorem 4.1, and the $P_{0}(\eta, s)$ of Theorem 4.2, the k is suppressed.

2. The reduction of the auxiliary equation

Let

$$
\begin{equation*}
\mathscr{A}(P, R)=\{n: n \leqslant P, p \mid n \Rightarrow p \leqslant R\}, \tag{2.1}
\end{equation*}
$$

let $S_{s}(P, R)$ denote the number of solutions of

$$
\begin{equation*}
x_{1}^{k}+\ldots+x_{s}^{k}=y_{1}^{k}+\ldots+y_{s}^{k} \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
x_{j} \in \mathscr{A}(P, R), \quad y_{j} \in \mathscr{A}(P, R), \tag{2.3}
\end{equation*}
$$

and for a given real number θ with $0<\theta<1$ let $T_{s}(P, R, \theta)$ denote the number of solutions of

$$
\begin{equation*}
x^{k}+m^{k}\left(x_{1}^{k}+\ldots+x_{s-1}^{k}\right)=y^{k}+m^{k}\left(y_{1}^{k}+\ldots+y_{s-1}^{k}\right) \tag{2.4}
\end{equation*}
$$

with

$$
\begin{gather*}
x \leqslant P, \quad y \leqslant P, \quad x \equiv y\left(\bmod m^{k}\right), \quad P^{\theta}<m \leqslant \min \left(P, P^{\theta} R\right) \tag{2.5}\\
x_{j} \in \mathscr{A}\left(P^{1-\theta}, R\right), \quad y_{j} \in \mathscr{A}\left(P^{1-\theta}, R\right) \tag{2.6}
\end{gather*}
$$

The lemma below relates S_{s} to T_{s}.
Lemma 2.1. Let $\theta=\theta(s, k)$ satisfy $0<\theta<1$ and suppose that

$$
1 \leqslant D \leqslant P
$$

Then
$S_{s}(P, R) \ll\left(\sum_{d>D}\left(S_{s}(P / d, R)\right)^{1 / s}\right)^{s}+S_{s}\left(D^{1-\theta} P^{\theta}, R\right)+P^{\varepsilon}\left(\sum_{d \leqslant D}\left((P / d)^{\theta} R\right)^{2-3 / s}\left(T_{s}(P / d, R, \theta)\right)^{1 / s}\right)^{s}$.

When $s>k$ and R is not too small by comparison with P we expect that $S_{s}(P, R) \gg P^{\sigma}$ and $T_{s}(P, R, \theta) \gg P^{\tau}$ with $\sigma>s, \tau>s$. Thus for a suitable choice of D the first two terms on the right of the above inequality can be expected to be small compared with the left hand side and the third term will be dominated by the term in the sum with $d=1$. Thus in principle the lemma says that either

$$
S_{s}(P, R) \ll P^{s}
$$

or

$$
S_{s}(P, R) \ll\left(P^{\theta} R\right)^{2 s-3} T_{s}(P, R, \theta)
$$

Proof of Lemma 2.1. For a given solution of (2.2) satisfying (2.3) let

$$
d_{j}=\left(x_{j}, y_{j}\right) \quad(1 \leqslant j \leqslant s)
$$

Now let S^{\prime} denote the number of those solutions for which $d_{j}>D$ for at least one j, let $S^{\prime \prime}$ denote the number for which

$$
\begin{equation*}
d_{j} \leqslant D \tag{2.7}
\end{equation*}
$$

for every j and

$$
\begin{equation*}
\max \left\{x_{j}, y_{j}\right\} \leqslant d_{j}^{1-\theta} P^{\theta} \tag{2.8}
\end{equation*}
$$

for at least one j, and let $S^{\prime \prime \prime}$ denote the number for which $d_{j} \leqslant D$ for every j and (2.8) holds for no j. Then

$$
S_{s}(P, R) \leqslant 3 \max \left\{S^{\prime}, S^{\prime \prime}, S^{\prime \prime \prime}\right\}
$$

First suppose that $S^{\prime} \geqslant \max \left\{S^{\prime \prime}, S^{\prime \prime \prime}\right\}$, so that

$$
S_{s}(P, R) \leqslant 3 S^{\prime}
$$

Let

$$
\begin{equation*}
f(\alpha ; Q, R)=\sum_{x \in \Delta \alpha Q, R)} e\left(\alpha x^{h}\right) . \tag{2.9}
\end{equation*}
$$

Then

$$
S^{\prime} \ll \sum_{d>D} \int_{0}^{1}\left|f\left(\alpha d^{k} ; P / d, R\right)^{2} f(\alpha ; P, R)^{2 s-2}\right| d \alpha .
$$

Hence, by Hölder's inequality,

$$
S_{s}(P, R) \ll \sum_{d>D}\left(S_{s}(P / d, R)\right)^{1 / s}\left(S_{s}(P, R)\right)^{1-1 / s}
$$

and the lemma now follows in the first case.
Secondly suppose that $S^{\prime \prime} \geqslant \max \left\{S^{\prime \prime \prime}, S^{\prime}\right\}$, so that

$$
S_{s}(P, R) \leqslant 3 S^{\prime \prime}
$$

Then for a solution counted by $S^{\prime \prime}$ we have (2.7) for all j and (2.8) for some j, say $j=i$. Thus

$$
d_{i} \leqslant D \quad \text { and } \quad \max \left\{x_{i}, y_{i}\right\} \leqslant d_{i}^{1-\theta} P^{\theta}
$$

so that

$$
\max \left\{x_{i}, y_{i}\right\} \leqslant D^{1-\theta} P^{\theta}
$$

Hence

$$
S^{\prime \prime} \ll \int_{0}^{1}\left|f\left(\alpha ; D^{1-\theta} P^{\theta}, R\right)^{2} f(\alpha ; P, R)^{2 s-2}\right| d \alpha .
$$

Therefore, by Hölder's inequality once more, we have

$$
S_{s}(P, R) \ll\left(S_{s}\left(D^{1-\theta} P^{\theta}, R\right)\right)^{1 / s}\left(S_{s}(P, R)\right)^{1-1 / s}
$$

and so the result ensues in the second case.
Lastly suppose that $S^{\prime \prime \prime} \geqslant \max \left\{S^{\prime}, S^{\prime \prime}\right\}$, so that

$$
\begin{equation*}
S_{s}(P, R) \leqslant 3 S^{\prime \prime \prime} \tag{2.10}
\end{equation*}
$$

Then for a given solution of (2.2) counted by $S^{\prime \prime \prime}$ we have, for every j,

$$
d_{j} \in \mathscr{A}(D, R) \quad \text { and } \quad \max \left\{x_{j}, y_{j}\right\}>d_{j}^{1-\theta} P^{\theta}
$$

Let $u_{j}=x_{j} / d_{j}, v_{j}=y_{j} / d_{j}$, so that

$$
\left(u_{j}, v_{j}\right)=1 \quad \text { and } \quad \max \left\{u_{j}, v_{j}\right\}>\left(P / d_{j}\right)^{\theta}
$$

and let m_{j} denote the smallest divisor of $\max \left\{u_{j}, v_{j}\right\}$ exceeding $\left(P / d_{j}\right)^{\theta}$. Since none of the prime divisors of $\max \left\{u_{j}, v_{j}\right\}$ exceed R we have

$$
\begin{equation*}
\left(P / d_{j}\right)^{\theta}<m_{j} \leqslant \min \left(P / d_{j},\left(P / d_{j}\right)^{\theta} R\right) \tag{2.11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S^{\prime \prime \prime} \ll \sum_{\eta_{1}} \ldots \sum_{\eta_{s}} S^{\mathrm{IV}}\left(\eta_{2}, \ldots, \eta_{s}\right) \tag{2.12}
\end{equation*}
$$

where the summation is over $\eta_{1}, \ldots, \eta_{s}$ with $\eta_{j}= \pm 1$ and where $S^{\text {IV }}\left(\eta_{1}, \ldots, \eta_{s}\right)$ is the number of solutions of

$$
\sum_{j=1}^{s} \eta_{j} d_{j}^{k}\left(x_{j}^{k}-m_{j}^{k} y_{j}^{k}\right)=0
$$

with

$$
\begin{gathered}
d_{j} \in \mathscr{A}(D, R), \\
x_{j} \in \mathscr{A}\left(P / d_{j}, R\right), \quad\left(x_{j}, m_{j}\right)=1, \quad y_{j} \in \mathscr{A}\left(P /\left(d_{j} m_{j}\right), R\right)
\end{gathered}
$$

and m_{j} satisfying (2.11).

Let

$$
\begin{gather*}
f_{m}(\alpha ; Q, R)=\sum_{\substack{x \in ふ \alpha(Q, R) \\
(x, m)=1}} e\left(\alpha x^{k}\right) . \tag{2.13}\\
F_{j}(\alpha)=f_{m_{j}}\left(\eta_{j} d_{j}^{k} \alpha ; P / d_{j}, R\right) f\left(-\eta_{j} d_{j}^{k} m_{j}^{k} \alpha ; P /\left(d_{j} m_{j}\right), R\right) .
\end{gather*}
$$

Then

$$
S^{\mathrm{IV}}\left(\eta_{1}, \ldots, \eta_{s}\right) \leqslant \int_{0}^{1} \prod_{j=1}^{s}\left(\sum_{d_{j} \in \alpha \alpha(D, R)} \sum_{m_{j}}^{\prime} F_{j}(\alpha)\right) d \alpha
$$

where $\Sigma_{m_{j}}^{\prime}$ denotes summation over m_{j}, satisfying (2.11).
Let

$$
\begin{equation*}
X_{j}(\alpha)=\left|f_{m_{j}}\left(d_{j}^{k} \alpha ; P / d_{j}, R\right)^{2} f\left(d_{j}^{k} m_{j}^{k} \alpha ; P /\left(d_{j} m_{j}\right), R\right)^{2 s-2}\right| \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
Y(\alpha)=\left|\prod_{j=1}^{s} f_{m_{j}}\left(d_{j}^{k} a ; P / d_{j}, R\right)\right| \tag{2.15}
\end{equation*}
$$

Then, by (2.12),

$$
\begin{equation*}
S^{\prime \prime \prime} \ll \sum_{\substack{d_{1} \\ d_{j} \in \operatorname{AN}(D, R)}} \ldots \sum_{\substack{d_{s}}} \sum_{m_{1}}^{\prime} \ldots \sum_{m_{s}}^{\prime} \int_{0}^{1} Y(\alpha)^{\frac{s-2}{s-1}} \prod_{j=1}^{s}\left(X_{j}(\alpha)^{\frac{1}{2 s-2}}\right) d \alpha \tag{2.16}
\end{equation*}
$$

By Hölder's inequality we have

$$
\int_{0}^{1} Y(\alpha)^{\frac{s-2}{s-1}} \prod_{j=1}^{s}\left(X_{j}(\alpha)^{\frac{1}{2 s-2}}\right) d \alpha \leqslant\left(\int_{0}^{1} Y(\alpha)^{2} d \alpha\right)^{\frac{s-2}{2 s-2}} \prod_{j=1}^{s}\left(\int_{0}^{1} X_{j}(\alpha) d \alpha\right)^{\frac{1}{2 s-2}}
$$

and by (2.9), (2.13) and (2.15), and by considering the underlying diophantine equation, we have

$$
\int_{0}^{1} Y(\alpha)^{2} d \alpha \leqslant \int_{0}^{1} Z(\alpha)^{2} d \alpha
$$

where

$$
\begin{equation*}
Z(\alpha)=\left|\prod_{j=1}^{s} f\left(d_{j}^{k} \alpha ; P / d_{j}, R\right)\right| . \tag{2.17}
\end{equation*}
$$

Therefore, by Hölder's inequality and (2.14),

$$
\begin{aligned}
\sum_{m_{1}}^{\prime} & \cdots \sum_{m_{s}}^{\prime} \int_{0}^{1} Y(\alpha)^{\frac{s-2}{s-1}} \prod_{j=1}^{s}\left(X_{j}(\alpha)^{\frac{1}{2 s-2}}\right) d \alpha \\
& \leqslant\left(\int_{0}^{1} Y(\alpha)^{2} d \alpha\right)^{\frac{s-2}{2 s-2}}\left(\sum_{m_{1}}^{\prime} \cdots \sum_{m_{s}}^{\prime} 1\right)^{\frac{2 s-3}{2 s-2}}\left(\sum_{m_{1}}^{\prime} \cdots \sum_{m_{s}}^{\prime} \prod_{j=1}^{s} \int_{0}^{1} X_{j}(\alpha) d \alpha\right)^{\frac{1}{2 s-2}} \\
& \ll\left(\int_{0}^{1} Z(\alpha)^{2} d \alpha\right)^{\frac{1}{2 s-2}}\left(\prod_{j=1}^{s}\left(\left(P / d_{j}\right)^{\theta} R\right)^{2 s-3} U\left(P / d_{j}, R, \theta\right)\right)^{\frac{1}{2 s-2}}
\end{aligned}
$$

where

$$
\left.\begin{array}{c}
U(Q, R, \theta) \text { is the number of solutions of (2.4) with } \\
x \leqslant Q, \quad y \leqslant Q, \quad(x y, m)=1, \quad Q^{\theta}<m \leqslant \min \left(Q, Q^{\theta} R\right), \tag{2.18}\\
x_{j} \in \mathscr{A}\left(Q^{1-\theta}, R\right), \quad y_{j} \in \mathscr{A}\left(Q^{1-\theta}, R\right) .
\end{array}\right\}
$$

Therefore, by (2.16) and Hölder's inequality,

$$
S^{\prime \prime \prime} \ll\left(\sum_{\substack{d_{1} \\ d_{j} \in \operatorname{sa}(D, R)}} \ldots \sum_{\substack{d_{s}\\}} \int_{0}^{1} Z(\alpha)^{2} d \alpha\right)^{\frac{s-2}{2 s-2}}\left(\sum_{\substack{d_{1} \\ d_{j} \in \operatorname{sad}(D, R)}} \ldots \sum_{\left.d_{s}\right)} \prod_{j=1}^{s} V\left(d_{j}\right)^{1 / s}\right)^{\frac{s}{2 s-2}}
$$

where

$$
\begin{equation*}
V(d)=\left((P / d)^{\theta} R\right)^{2 s-3} U(P / d, R, \theta) \tag{2.19}
\end{equation*}
$$

By (2.17)

$$
\sum_{\substack{d_{1} \\ d_{j} \in \mathscr{A Z}(D, R)}} \ldots \sum_{\substack{d_{s}\\}} \int_{0}^{1} Z(\alpha)^{2} d \alpha
$$

is the number of solutions

$$
d_{1}^{k} x_{1}^{k}+\ldots+d_{s}^{k} x_{s}^{k}=d_{1}^{k} y_{1}^{k}+\ldots+d_{s}^{k} y_{s}^{k}
$$

with $d_{j} \in \mathscr{A}(D, R), x_{i} \in \mathscr{A}\left(P / d_{j}, R\right), y_{j} \in \mathscr{A}\left(P / d_{j}, R\right)$. Hence it it

$$
\ll P^{\epsilon} S_{s}(P, R) .
$$

Therefore, by (2.10),

$$
S_{s}(R, P) \ll P^{\varepsilon}\left(\sum_{d \in e_{d(D, R)}} V(d)^{1 / s}\right)^{s} .
$$

Hence, in view of (2.19) it remains to show that

$$
\begin{equation*}
U(Q, R, \theta) \ll Q^{\ell} T_{s}(Q, R, \theta) \tag{2.20}
\end{equation*}
$$

For a given m let $\mathscr{B}(u)$ denote the set of solutions of the congruence

$$
z^{k} \equiv u \quad\left(\bmod m^{k}\right)
$$

Then

$$
\begin{equation*}
\operatorname{card} \mathscr{B}(u) \ll m^{\varepsilon} \quad((u, m)=1) \tag{2.21}
\end{equation*}
$$

Clearly in (2.4), $x^{k} \equiv y^{k}\left(\bmod m^{k}\right)$. Thus each solution of (2.4) can be classified according to the common residue class modulo m^{k} of x^{k} and y^{k}. Let

$$
g_{m}(\alpha, z)=\sum_{\substack{x \leqslant Q \\ x \equiv z\left(\bmod m^{k}\right)}} e\left(\alpha x^{k}\right) .
$$

Then, by (2.18),

$$
U(Q, R, \theta) \leqslant \sum_{Q^{\theta}<m \leqslant \min \left(Q, Q^{\theta} R\right)} U_{m}
$$

where

$$
U_{m}=\int_{0}^{1} G_{m}(\alpha)\left|f\left(m^{k} \alpha ; Q, R\right)\right|^{2 s-2} d \alpha
$$

and

$$
G_{m}(\alpha)=\sum_{\substack{u=1 \\(u, m)=1}}^{m^{k}}\left|\sum_{z \in \mathscr{R}(u)} g_{m}(\alpha, z)\right|^{2}
$$

Hence, by Cauchy's inequality and (2.21),

$$
G_{m}(\alpha)<m^{\varepsilon} \sum_{\substack{u=1 \\(u, m)=1}}^{m^{k}} \sum_{z \in \mathscr{G}(u)}\left|g_{m}(\alpha, z)\right|^{2}=m^{\varepsilon} \sum_{\substack{z=1 \\(z, m)=1}}^{m^{k}}\left|g_{m}(\alpha, z)\right|^{2}
$$

Therefore we have (2.20) as required.
This completes the proof of Lemma 2.1.
Henceforward we shall suppose that θ satisfies

$$
\begin{equation*}
0<\theta \leqslant \frac{1}{k} \tag{2.22}
\end{equation*}
$$

and put

$$
\begin{equation*}
M=P^{\theta}, \quad H=P^{1-k \theta}, \quad Q=P^{1-\theta} . \tag{2.23}
\end{equation*}
$$

We shall normally suppose that P is large and that R is at most a fairly small power of P, so that in particular

$$
\begin{equation*}
R^{2 k-2} \leqslant P^{k-5} M(k \geqslant 5) \quad \text { and } \quad 2 M R \leqslant P^{1 / 2} \tag{2.24}
\end{equation*}
$$

Consider equation (2.4). We put $z=x+y$ and $h=(x-y) m^{-k}$. Thus $2 x=z+h m^{k}$ and $2 y=z-h m^{k}$. Hence, by (2.5),

$$
\begin{equation*}
T_{s}(P, R, \theta) \leqslant U_{0}+2 U_{1} \tag{2.25}
\end{equation*}
$$

where U_{0} is the number of solutions of (2.4) with (2.5), (2.6) and $x=y$, and U_{1} is the number of solutions of

$$
\begin{equation*}
\left(z+h m^{k}\right)^{k}+(2 m)^{k}\left(x_{i}^{k}+\ldots+x_{s-1}^{k}\right)=\left(z-h m^{k}\right)^{k}+(2 m)^{k}\left(y_{1}^{k}+\ldots+y_{s-1}^{k}\right) \tag{2.26}
\end{equation*}
$$

with

$$
\begin{equation*}
z \leqslant 2 P, \quad h \leqslant H, \quad M<m \leqslant M R, \quad x_{j} \in \mathscr{A}(Q, R), \quad y_{j} \in \mathscr{A}(Q, R) \tag{2.27}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
U_{0} \leqslant P M R S_{s-1}(Q, R) \tag{2.28}
\end{equation*}
$$

We now wish to relate U_{1} to $S_{s}(Q, R)$ and $S_{s-1}(Q, R)$. One line of attack is through an argument of Davenport [D2]. However the homogeneity of the x_{i} and y_{i} in (2.26) enables significant improvements to be made.

Let Δ_{1} denote the forward difference operator

$$
\begin{equation*}
\Delta_{1}(f(x) ; h)=f(x+h)-f(x) \tag{2.29}
\end{equation*}
$$

and define Δ_{j} recursively by

$$
\begin{equation*}
\Delta_{j+1}\left(f(x) ; h_{1}, \ldots, h_{j+1}\right)=\Delta_{1}\left(\Delta_{j}\left(f(x) ; h_{1}, \ldots, h_{j}\right) ; h_{j+1}\right) \tag{2.30}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\Psi_{j}=\Psi_{j}\left(z ; h, h_{2}, \ldots, h_{j}, m\right)=m^{-k} \Delta_{j}\left(f(z) ; 2 h m^{k}, h_{2}, \ldots, h_{j}\right) \tag{2.31}
\end{equation*}
$$

where $f(z)=\left(z-h m^{k}\right)^{k}$, let $R(n)$ denote the number of solutions of

$$
\begin{equation*}
\Psi_{j}=n \tag{2.32}
\end{equation*}
$$

with

$$
\begin{equation*}
m \leqslant M R, \quad h \leqslant H, \quad h_{i} \leqslant 2 P, \quad z \leqslant 2 P \tag{2.33}
\end{equation*}
$$

and let

$$
\begin{equation*}
N_{j}=\sum_{n} R(n)^{2} \tag{2.34}
\end{equation*}
$$

We now introduce the exponential sum

$$
\begin{equation*}
F_{j}(\alpha)=\sum_{M<m \leqslant M R} \sum_{h \leqslant H} \sum_{h_{2} \leqslant 2 P} \ldots \sum_{h_{j} \leqslant 2 P} \sum_{z \in \mathscr{B}} e\left(\alpha \Psi_{j}\right) \tag{2.35}
\end{equation*}
$$

where $\mathscr{B}=\mathscr{B}\left(h_{2}, \ldots, h_{j}\right)$ is the set of z satisfaying $0<z \leqslant 2 P-h_{2}-\ldots-h_{j}$. Thus, by (2.9), (2.26) and (2.31),

$$
U_{1} \leqslant \int_{0}^{1} F_{1}(\alpha)\left|f\left(2^{k} \alpha ; Q, R\right)\right|^{2 s-2} d \alpha
$$

Hence, by (2.25) and (2.28),

$$
\begin{equation*}
T_{s}(P, R, \theta) \ll P M R S_{s-1}(Q, R)+\int_{0}^{1} F_{1}(\alpha)\left|f\left(2^{k} \alpha ; Q, R\right)\right|^{2 s-2} d \alpha \tag{2.36}
\end{equation*}
$$

By the standard Weyl technique for estimating exponential sums (see Lemma 2.3 of [Va2]) we have

$$
\begin{equation*}
F_{1}(\alpha) \ll P^{1-2 J} H M R+P^{1-2 j J}(H M R)^{1-2 J}\left|F_{j}(\alpha)\right|^{2 J} \tag{2.37}
\end{equation*}
$$

where the implicit constant depends at most on j and where

$$
\begin{equation*}
J=2^{-j} \tag{2.38}
\end{equation*}
$$

The next lemma relates T_{s} to S_{s} and S_{s-1} and is particularly useful when $S_{s-1} \approx P^{\lambda}$ with λ large compared with $2 s-2-k$.

Lemma 2.2. Suppose that $\theta=\theta(s, k)$ satisfies (2.22), and j satisfies $1 \leqslant j \leqslant k-1$ and $2^{j} \geqslant s$. Then

$$
\begin{aligned}
T_{s}(P, R, \theta) \ll & \left(P M R+P^{1-2 J} H M R\right) S_{s-1}(Q, R) \\
& +(H M R)^{1-2 J} P^{1-2 j J} N_{j}^{J} S_{s-1}(Q, R)^{1-s J} S_{s}(Q, R)^{(s-1) J}
\end{aligned}
$$

Proof. By (2.34) and (2.35),

$$
\int_{0}^{1}\left|F_{j}(\alpha)\right|^{2} d \alpha \leqslant N_{j}
$$

The lemma now ensues from (2.36) and (2.37) via Hölder's inequality.
We require an estimate for N_{j}. By (2.29) and (2.30) we have

$$
\Delta_{j}\left(x^{k}, h_{1}, \ldots, h_{j}\right)=\sum_{\theta_{1}= \pm 1} \ldots \sum_{\theta_{j}= \pm 1} \theta_{1} \ldots \theta_{j}\left(x+\frac{1+\theta_{1}}{2} h_{1}+\ldots+\frac{1+\theta_{j}}{2} h_{j}\right)^{k}
$$

By writing $\xi=2 x+h_{1}+\ldots+h_{j}$ and employing the multinomial theorem this becomes

$$
\begin{aligned}
\sum_{\theta_{1}= \pm 1} & \ldots \sum_{\theta_{j}= \pm 1} \sum_{\substack{u_{0} \geqslant 0 \\
u_{0}+\ldots+u_{j}=k}} \ldots \sum_{\substack{u_{0} \geqslant 0}} \frac{k!\theta_{1} \ldots \theta_{j} \xi^{u_{0}}}{u_{0}!\ldots u_{j}!2^{k}}\left(\theta_{1} h_{1}\right)^{u_{1}} \ldots\left(\theta_{j} h_{j}\right)^{u_{j}} \\
& =\sum_{\substack{u \geqslant 0 \\
u+2 v_{1}+\ldots+2 v_{j}=k-j}} \sum_{\substack{v_{i} \geqslant 0}} \ldots \sum_{v_{\geqslant} \geqslant 0} \frac{k!2^{j-k} h_{1} \ldots h_{j} \xi^{u}}{u!\left(2 v_{1}+1\right)!\ldots\left(2 v_{j}+1\right)!} h_{1}^{2 v_{1}} \ldots h_{j}^{2 v_{j}} .
\end{aligned}
$$

Therefore, by (2.31),

$$
\begin{equation*}
\Psi_{j}=\sum_{\substack{u \geqslant 0 \\ u+2 v_{1}+\ldots+2 v_{j}=k-j}} \sum_{\substack{v_{2} \geqslant 0 \\ u!\left(2 v_{1}+1\right)!\ldots\left(2 v_{j}+1\right)!}} \frac{k!2^{1+j-k} h h_{2} \ldots h_{j}}{\xi^{u}\left(2 h m^{k}\right)^{2 v_{1}} h_{2}^{2 v_{2}} \ldots h_{j}^{2 v_{j}}} \tag{2.39}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=2 z+h_{2}+\ldots+h_{j} . \tag{2.40}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\Psi_{k-2}=\frac{k!}{12} h h_{2} \ldots h_{k-2}\left(3 \xi^{2}+\left(2 h m^{h}\right)^{2}+h_{2}^{2}+\ldots+h_{k-2}^{2}\right) . \tag{2.41}
\end{equation*}
$$

Lemma 2.3. Suppose that $j \leqslant k-1$. Then

$$
N_{j} \ll P^{j+\varepsilon} H M^{2} R^{2} .
$$

Moreover, if $k-j$ is odd and $j \leqslant k-3$, or $j=k-2$, or $j=k-4$, then

$$
N_{j} \ll P^{j+\varepsilon} H M R
$$

Proof. By (2.39)

$$
\Psi_{j}=2^{1+j-k} h h_{2} \ldots h_{j} \Omega\left(\xi ; 2 h m^{k}, h_{2}, \ldots, h_{j}\right)
$$

where Ω is a polynomial of degree $k-j$ in ξ with integer coefficients and leading coefficient $k!/(k-j)$!. Thus, for each given m the equation (2.32) has $<n^{\varepsilon}$ solutions in $h, h_{2}, \ldots, h_{j}, \xi$, and hence, by (2.40), in $h, h_{2}, \ldots, h_{j}, z$. The first part of the lemma now follows from (2.34).

When $k-j$ is odd, and $j \leqslant k-3$, (2.39) gives

$$
\Psi_{j}=2^{1+j-k} h h_{2} \ldots h_{j} \xi \Omega\left(2 h m^{k} ; \xi, h_{2}, \ldots, h_{j}\right)
$$

where Ω is a polynomial of degree $k-j-1$ in $2 \mathrm{hm}^{k}$ with integer coefficients and leading coefficient $k!/(k-j)!$. Hence the equation (2.32) has $<n^{\varepsilon}$ solutions in $h, h_{2}, \ldots, h_{j}, \xi, m$ and so in $z, m, h, h_{2}, \ldots, h_{j}$.

The number of solutions of

$$
3 x^{2}+y^{2}=m
$$

in integers x, y is $O\left(m^{\varepsilon}\right)$ (see, for example [E]). Hence, by (2.41), when $j=k-2$ the number of solutions of (2.32) in $z, m, h, h_{2}, \ldots, h_{j}$ is again $<n^{\varepsilon}$.

Now suppose that $j=k-4$. Then, by (2.39),

$$
\Psi_{j}=\frac{k!}{8640} h h_{2} \ldots h_{k-4}\left(\Theta^{2}+\Theta \Xi-\Xi^{2}+\Phi\right)
$$

where

$$
\Theta=6 \xi^{2}+6\left(2 h m^{k}\right)^{2}+6 h_{2}^{2}+\ldots+6 h_{k-4}^{2}, \quad \Xi=3 \xi^{2}-3\left(2 h m^{k}\right)^{2}-2 h_{2}^{2}-\ldots-2 h_{k-4}^{2}
$$

and Φ is a form in h_{2}, \ldots, h_{k-4} of degree 4 with integer coefficients. By (2.39) and (2.4), $\Psi_{j}>0$ for all choices of $z, h, m, h_{2}, \ldots, h_{k-4}$ satisfying (2.33). Moreover, by the theory of $\mathbf{Q}(\sqrt{5})$ (or see [E]), the number of solutions of

$$
x^{2}+x y-y^{2}=b
$$

in integers x, y is $\ll 1+|b|^{2}$. Hence the number of solutions of (2.32) in $z, h, m, h_{2}, \ldots, h_{k-4}$ is $<n^{\varepsilon}$ in this case also.

This concludes the proof of the lemma.

3. A variation on the main theme

By (2.35) and (2.41), and Cauchy's inequality, we have

$$
\begin{equation*}
\left|F_{k-2}(\alpha)\right|^{2} \leqslant D(\alpha) E(\alpha) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
D(\alpha)=\sum_{h \leqslant H} \sum_{h_{2} \leqslant 2 P} \ldots \sum_{h_{k-2} \leqslant 2 P}\left|\sum_{z \in \mathscr{P}} e\left(\frac{1}{4} \alpha k!h h_{2} \ldots h_{k-2} \xi^{2}\right)\right|^{2} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\alpha)=\sum_{n \leqslant H} \sum_{h_{2} \leqslant 2 P} \ldots \sum_{h_{k-2} \leqslant 2 P}\left|\sum_{M<m \leqslant M R} e\left(\frac{1}{3} a k!h^{3} h_{2} \ldots h_{k-2} m^{2 k}\right)\right|^{2} . \tag{3.3}
\end{equation*}
$$

As an alternative to the estimation given in the previous section of the integral of the right of (2.36) we use a form of the Hardy-Littlewood method. Thus we require estimates for F_{k-2} that depend on the nature of the rational approximations to α. This is most readily accomplished through estimates for D and E. The first of these two exponential sums can be estimated quite easily.

Note that throughout this section implicit constants depend at most on k and ε.
Lemma 3.1. Suppose that $(a, q)=1$ and $|\alpha-a / q| \leqslant q^{-2}$. Then

$$
D(\alpha) \ll P^{\varepsilon}\left(\frac{P^{k-1} H}{q+Q^{k}|\alpha q-a|}+P^{k-2} H+q+Q^{k}|\alpha q-a|\right) .
$$

Proof. We square out the innermost sum in (3.2). This gives a double sum over z_{1} and z_{2}, say. We put $h_{k-1}=z_{1}-z_{2}$ and $j=k!2 h h_{2} \ldots h_{k-2}\left|h_{k-1}\right|$, and sum over z_{1}. By (2.40) we obtain

$$
D(\alpha) \ll H P^{k-2}+P^{\varepsilon} \sum_{1 \leqslant j \leqslant 2 k!H(2 P)^{k-2}} \min \left(P,\left\|\alpha_{j}\right\|^{-1}\right)
$$

where $\|\theta\|$ denotes the distance of θ from a nearest integer. Thus, by Lemma 2.2 of [Va2], if $|\alpha-b / r| \leqslant r^{-2}$ with $(b, r)=1$, then

$$
\begin{equation*}
D(\alpha) \ll P^{\ell}\left(H P^{k-1} r^{-1}+H P^{k-2}+r\right) . \tag{3.4}
\end{equation*}
$$

When $Q^{k}|\alpha q-a| \leqslant q$ the lemma is immediate on taking $b=a, r=q$.
When $Q^{k}|\alpha q-a|>q$, choose b, r so that $(b, r)=1, r \leqslant 2 /|\alpha q-a|,|\alpha-b / r| \leqslant|\alpha q-a| /(2 r)$. If $b / r=a / q$, then $0<|\alpha-a / q| \leqslant|\alpha-a / q| / 2$ which is impossible. Hence

$$
\left|\frac{b}{r}-\frac{a}{q}\right| \geqslant \frac{1}{q r} .
$$

Therefore $|\alpha-a / q| \geqslant 1 /(q r)-|\alpha-b / r| \geqslant 1 /(q r)-|\alpha q-a| /(2 r) \geqslant 1 /(2 q r)$. Thus

$$
\frac{1}{r} \leqslant 2|\alpha q-a| .
$$

Therefore, by (3.4),

$$
D(\alpha) \ll P^{\varepsilon}\left(H P^{k-1}|\alpha q-a|+H P^{k-2}+|\alpha q-a|^{-1}\right)
$$

Moreover, by (2.23), $H P^{k-1}=Q^{k}$. This gives the lemma.
The estimation of E is harder, and requires special arguments when $k=3$ or 4 . We first of all treat the case $k \geqslant 5$.

Lemma 3.2. Suppose that $k \geqslant 5$, that (2.24) holds, that $M^{k} \leqslant X \leqslant Q^{k} M^{-k}$, and that $(a, q)=1, q \leqslant X$ and $|\alpha-a / q| \leqslant q^{-1} X^{-1}$. Then

$$
E(\alpha) \ll \frac{P^{k-3+\varepsilon} H M^{2} R^{2}}{\left(q+Q^{k}|\alpha q-a|\right)^{1 / k}}+P^{k-3+\varepsilon} H M R^{2} .
$$

Proof. By (3.3), we obtain

$$
E(\alpha) \ll \sum_{h \leqslant H} \sum_{j \leqslant k!(2 P)^{k-3}} P^{\varepsilon}\left|\sum_{M<m \leqslant M R} e\left(\alpha_{j} h^{3} m^{2 h}\right)\right|^{2} \leqslant P^{k-3+\varepsilon} H M R+P^{\ell} E_{0},
$$

on squaring out and summing over j, where

$$
E_{0}=\sum_{h \leq H} \sum_{\substack{m_{1} \\ M<m_{1}<m_{2} \leqslant M R}} \sum_{\substack{ \\ }} \min \left(P^{k-3}, \| \alpha h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k} \|^{-1}\right)\right.
$$

Choose b, r with $r \leqslant 2 H^{3}(M R)^{2 k},(b, r)=1,|\alpha-b / r| \leqslant 1 /\left(2 H^{3}(M R)^{2 k} r\right)$. Then for $h \leqslant H$ and $M<m_{1}<m_{2} \leqslant M R$ we have

$$
\left|(\alpha-b / r) h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right)\right| \leqslant 1 /(2 r) .
$$

Thus

$$
\left\|a h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right)\right\| \geqslant\left\|b h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right) / r\right\|-1 /(2 r) \geqslant \frac{1}{2}\left\|b h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right) / r\right\|
$$

unless $r\left(\left(m_{2}^{2 k}-m_{1}^{2 k}\right)\right.$, in which case

$$
\left\|\alpha h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right)\right\|=h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right)|\alpha-b / r| .
$$

Hence

$$
E_{0} \ll E_{1}+E_{2}
$$

where

$$
E_{1}=\sum_{\substack{h \leqslant H}} \sum_{\substack{M<m_{1}<m_{2} \leqslant M R \\ r / h^{2}\left(m_{2}^{2 k}-m_{1}^{2}\right)}}\left\|b h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right) / r\right\|^{-1}
$$

and

$$
E_{2}=\sum_{h \leq H} \sum_{\substack{M<m_{1}<m_{2} \leq M R \\ r \mid h^{3}\left(m_{2}^{k}-m_{1}^{2}\right)}} \sum_{\substack{ }} \min \left(P^{k-3},\left(h^{3} M^{2 k-1}\left(m_{2}-m_{1}\right)\left|\alpha-\frac{b}{r}\right|\right)^{-1}\right) .
$$

When $h^{3}\left(m_{2}^{2 k}-m_{1}^{2 k}\right)=j$ each of $h, m_{2}^{k}-m_{1}^{k}, m_{2}^{k}+m_{1}^{k}$ is a divisor of j, and thus the number of solutions in h, m_{2}, m_{1} is $<j^{f}$. Therefore

$$
E_{1} \ll P_{\substack{\varepsilon} \sum_{\left.j \leqslant H^{3}(M R)\right)^{2 k}}^{r 1 j}<}\|b j / r\|^{-1} \ll P^{\varepsilon}\left(H^{3}(M R)^{2 k} r^{-1}+1\right) r \log 2 r
$$

and so

$$
E_{1} \ll P^{\varepsilon} H^{3}(M R)^{2 k}
$$

Now

$$
H^{3}(M R)^{2 k}=P^{k-3} H M R^{2} P^{5-k} M^{-1} R^{2 k-2} \leqslant P^{k-3} H M R^{2}
$$

by (2.24). Therefore we can concentrate on E_{2}.
In E_{2} we write $\left(m_{2}, m_{1}\right)=j, n_{i}=m_{i} / j$, so that $j \leqslant M R,\left(n_{2}, n_{1}\right)=1, M / j<n_{1}<n_{2} \leqslant M R / j$, $r \mid h^{3} j^{2 k}\left(n_{2}^{2 k}-n_{1}^{2 k}\right)$ and $m_{2}-m_{1}=j\left(n_{2}-n_{1}\right)$.

For a given $h \leqslant H$ we put $\left(r, h^{3}\right)=e$ and write $e=e_{1} e_{2}^{2} e_{3}^{3}$ where e_{3}^{3} is the largest cube divisor of e and e_{2}^{2} is the largest square divisor of e / e_{3}^{3}. Hence $e_{1} e_{2} e_{3} \mid h$. Let $h_{0}=$ $h /\left(e_{1} e_{2} e_{3}\right)$, so that

$$
\left(\frac{r}{e}, h_{0}^{3} e_{1}^{2} e_{2}\right)=1 \quad \text { and } \left.\quad \frac{r}{e} \right\rvert\, j^{2 k}\left(n_{2}^{2 k}-n_{1}^{2 k}\right)
$$

Now given $h \leqslant H$ and $j \leqslant M R$ we put similarly $\left(r / e, j^{2 k}\right)=f=f_{1} f_{2}^{2} \ldots f_{2 k}^{2 k}$, so that $j=j_{0} f_{1} \ldots f_{2 k}$ for a suitable j_{0}, and

$$
\left(\frac{r}{e f}, j_{0}^{2 k} f_{1}^{2 k-1} \ldots f_{2 k-1}\right)=1 \quad \text { and } \left.\quad \frac{r}{e f} \right\rvert\,\left(n_{2}^{2 k}-n_{1}^{2 k}\right)
$$

Let $g=r /(e f)$ and put $n=n_{1}, l=n_{2}-n_{1}, g_{0}=(l, g), l_{0}=l / g_{0}, g_{1}=g / g_{0}$. Thus

$$
E_{2} \ll \sum_{e} \sum_{\substack{f \\ e f g=r}} \sum_{g} E_{3}
$$

with

$$
E_{3}=\sum_{h_{0} \leqslant H /\left(e_{1} e_{2} e_{3}\right)} \sum_{j_{0} \leqslant M R /\left(f_{1} \ldots f_{2 k}\right)} E_{4}
$$

and

$$
E_{4}=\sum_{\substack{g_{0} \\ g_{0} g_{1}=g}} \sum_{\substack{g_{1}}} \sum_{l_{0}} \sum_{n} \min \left(P^{k-3},\left(h_{0}^{3} e_{1}^{3} e_{2}^{3} e_{3}^{3} M^{2 k-1} j_{0} f_{1} \ldots f_{2 k} l_{0} g_{0}\left|\alpha-\frac{b}{r}\right|\right)^{-1}\right)
$$

and with l_{0} and n satisfying

$$
\begin{gathered}
\left(l_{0}, g_{1}\right)=1, \quad l_{0} \leqslant M R /\left(g_{0} j_{0} f_{1} \ldots f_{2 k}\right) \\
M /\left(j_{0} f_{1} \ldots f_{2 k}\right)<n \leqslant M R /\left(j_{0} f_{1} \ldots f_{2 k}\right) \\
\left(n, n+l_{0} g_{0}\right)=1 \\
\left(n+l_{0} g_{0}\right)^{2 k} \equiv n^{2 k} \quad(\bmod g)
\end{gathered}
$$

The last two conditions imply that $(n, g)=1$. For a given n satisfying the last three conditions, choose x so that $n x \equiv 1\left(\bmod g_{1}\right)$. Obviously this establishes a bijection between the residue class of n modulo g_{1} and that of x. We also have

$$
\left(\left(n+l_{0} g_{0}\right)^{2 k}-n^{2 k}\right) g_{0}^{-1} \equiv 0 \quad\left(\bmod g_{1}\right) .
$$

Hence

$$
\left(\left(1+l_{0} g_{0} x\right)^{2 k}-1\right) g_{0}^{-1} \equiv 0 \quad\left(\bmod g_{1}\right)
$$

whence

$$
\left(1+l_{0} g_{0} x\right)^{2 k} \equiv 1 \quad(\bmod g)
$$

Now the congruence $y^{2 k} \equiv 1(\bmod g)$ has v solutions modulo g, say y_{1}, \ldots, y_{v}, where $v \ll g^{\varepsilon}$. Hence $1+l_{0} g_{0} x \equiv y_{i}(\bmod g)$ for some $i \leqslant \nu$. Thus $y_{i} \equiv 1\left(\bmod g_{0}\right)$ and $l_{0} x \equiv\left(y_{i}-1\right) / g_{0}$ $\left(\bmod g_{1}\right)$. Therefore there are at most v choices for x, and so for n, modulo g_{1}. Therefore

$$
E_{4} \ll \sum_{\substack{g_{0} \\ g_{0} g_{1}=g}} \sum_{\substack{g_{1} \\ g^{\varepsilon}}} E_{5}
$$

with

$$
E_{5}=\sum_{l_{0}}\left(M R\left(j_{0} f_{1} \ldots f_{2 k} g_{1}\right)^{-1}+1\right) \min \left(P^{k-3},\left(h_{0}^{3} e_{1}^{3} e_{2}^{3} e_{3}^{3} M^{2 k-1} j_{0} f_{1} \ldots f_{2 k} l_{0} g_{0}\left|\alpha-\frac{b}{r}\right|\right)^{-1}\right)
$$

and l_{0} satisfying $l_{0} \leqslant M R /\left(g_{0} j_{0} f_{1} \ldots f_{2 k}\right)$. The total contribution to E_{2} from the " +1 "' part is

$$
<(r P)^{2 \varepsilon} H \sum_{j_{0} \leqslant M R}\left(M R / j_{0}\right) P^{k-3} \ll P^{k-3}(r P)^{3 \varepsilon} H M R .
$$

Summing the rest over l_{0} gives a contribution to E_{5}

$$
<\left(\frac{M R}{j_{0} f_{1} \ldots f_{2 k}}\right)^{2} \frac{P^{\varepsilon}}{g} \min \left(P^{k-3},\left(h_{0}^{3} e_{1}^{3} e_{2}^{3} e_{3}^{3} M^{2 k}\left|\alpha-\frac{b}{r}\right|\right)^{-1}\right)
$$

Clearly $f_{1} \ldots f_{2 k} \geqslant f^{1 / 2 k}$. Hence on performing the summation over g_{0}, g_{1} and j_{0} we obtain a contribution to E_{3} of

$$
\begin{aligned}
& \ll \sum_{h_{0} \leqslant H /\left(e_{1} e_{2} e_{3}\right)}(f g)^{-1 / k} P^{\ell} M^{2} R^{2} \min \left(P^{k-3},\left(h_{0}^{3} e_{1}^{3} e_{2}^{3} e_{3}^{3} M^{2 k}\left|\alpha-\frac{b}{r}\right|\right)^{-1}\right) \\
& \ll\left(e_{1} e_{2} e_{3}\right)^{-1}(f g)^{-1 / k} P^{k-3+\varepsilon} H M^{2} R^{2} \min \left(1,\left(P^{k-3} H^{3} M^{2 k}\left|\alpha-\frac{b}{r}\right|\right)^{-1 / 3}\right)
\end{aligned}
$$

Obviously $e_{1} e_{2} e_{3} \geqslant e^{1 / 3} \geqslant e^{1 / k}$ where e is as above and, by (2.23),

$$
P^{k-3} H^{3} M^{2 k}=Q^{k}
$$

It follows, therefore, that

$$
E_{2} \ll E_{0}+P^{k-3+\varepsilon} H M R
$$

where

$$
E_{0}=P^{k-3+\varepsilon} H M^{2} R^{2}\left(r+Q^{k}|a r-b|\right)^{-1 / k} .
$$

To summarise, we have shown that

$$
E(\alpha) \ll E_{0}+P^{k-3+\varepsilon} H M R^{2} .
$$

If $r+Q^{k}|\alpha r-b| \geqslant \frac{1}{2} M^{k}$, then we are done, so we may suppose that

$$
r+Q^{k}|\alpha r-b|<\frac{1}{2} M^{k}
$$

Therefore

$$
\begin{aligned}
r q\left|\frac{a}{q}-\frac{b}{r}\right| & <\frac{1}{2} q M^{k} Q^{-k}+r X^{-1} \\
& <\frac{1}{2} X M^{k} Q^{-k}+\frac{1}{2} M^{k} X^{-1} \\
& \leqslant 1 .
\end{aligned}
$$

Hence $a=b, q=r$ and the lemma ensues.
When $k=4$ we require a modified argument and obtain a slightly weaker conclusion.

Lemma 3.3. Suppose that $k=4$, that (2.24) holds, that

$$
1 \leqslant Z \leqslant \min \left(P^{2 / 3} M^{-19 / 6} R^{-7 / 6}, M^{12} P^{-2}\right)
$$

that $Z^{4} \leqslant X \leqslant Q^{4} Z^{-4}$, and that $(a, q)=1, q \leqslant X$ and $|\alpha-a / q| \leqslant q^{-1} X^{-1}$. Then

$$
E(\alpha) \ll \frac{P^{1+\varepsilon} H M^{2} R^{2}}{\left(q+Q^{4}|\alpha q-a|\right)^{1 / 4}}+P^{1+\varepsilon} H M^{2} R^{2} Z^{-1} .
$$

Proof. By (3.3),

$$
\begin{aligned}
E(\alpha) & \ll \sum_{h \leqslant H} \sum_{j \leqslant 4 P}\left|\sum_{M<m \leqslant M R} e\left(\alpha h^{3} j m^{8}\right)\right|^{2} \\
& \ll P H M R+\sum_{M<m_{1}<m_{2} \leqslant M R} \sum_{h \leqslant H} \min \left(P,\left\|\alpha h^{3}\left(m_{2}^{8}-m_{1}^{8}\right)\right\|^{-1}\right)
\end{aligned}
$$

We note that

$$
\begin{equation*}
Z \leqslant M \tag{3.5}
\end{equation*}
$$

since otherwise $M<P^{2 / 3} M^{-19 / 6}$ and $M<M^{12} P^{-2}$ which leads to a contradiction. Hence

$$
\begin{equation*}
E(\alpha) \ll P H M^{2} R^{2} Z^{-1}+\sum_{\substack{M<m_{1}<m_{2} \leqslant M R \\\left\|h^{3}\left(m_{2}^{8}-m_{1}^{8}\right)\right\| \lll<1 \\ 4}} \sum_{h \leqslant H} \min \left(P,\left\|\alpha h^{3}\left(m_{2}^{8}-m_{1}^{8}\right)\right\|^{-1}\right. \tag{3.6}
\end{equation*}
$$

For a given pair m_{1}, m_{2} with $M<m_{1}, m_{2} \leqslant M R$ choose s, c with $(c, s)=1, s \leqslant 2 H^{3}$, $\left|\alpha\left(m_{2}^{8}-m_{1}^{8}\right)-c / s\right| \leqslant 1 /\left(2 s H^{3}\right)$. In addition, for h with $h \leqslant H$ and $\left\|\alpha h^{3}\left(m_{2}^{8}-m_{1}^{8}\right)\right\|<\frac{1}{4} Z / P$ choose b so that $\left|\alpha h^{3}\left(m_{2}^{8}-m_{1}^{8}\right)-b\right|<\frac{1}{4} Z / P$. Then

$$
\begin{aligned}
\left|\frac{b}{h^{3}}-\frac{c}{s}\right| h^{3} s & <\frac{1}{4} s Z P^{-1}+h^{3} /\left(2 H^{3}\right) \\
& \leqslant \frac{1}{2} H^{3} Z P^{-1}+\frac{1}{2} \\
& \leqslant 1
\end{aligned}
$$

since $H^{3} Z P^{-1}=Z P^{2} M^{-12} \leqslant 1$. Hence $b s=c h^{3}$, whence $s \mid h^{3}$. Let s_{3}^{3} denote the largest cube divisor of s, let s_{2}^{2} denote the largest square divisor of s / s_{3}^{3} and let $s_{1}=s s_{2}^{-2} s_{3}^{-3}$. Thus $s_{1} s_{2} s_{3} \mid h$. Let $h_{0}=h /\left(s_{1} s_{2} s_{3}\right)$. Then $b=c h_{0}^{3} s_{1}^{2} s_{2}$. Thus the multiple sum on the right of (3.6) is

$$
\begin{aligned}
& \leqslant \sum_{M<m_{1}<m_{2} \leqslant M R} \sum_{h_{0} \leqslant H /\left(s_{1} s_{2} s_{3}\right)} \min \left(P,\left(h_{0} s_{1} s_{2} s_{3}\right)^{-3}\left|\alpha\left(m_{2}^{8}-m_{1}^{8}\right)-\frac{c}{s}\right|^{-1}\right) \\
& \leqslant \sum_{M<m_{1}<m_{2} \leqslant M R} \sum\left(s_{1} s_{2} s_{3}\right)^{-1} \min \left(P H, P^{2 / 3}\left|\alpha\left(m_{2}^{8}-m_{1}^{8}\right)-\frac{c}{s}\right|^{-1 / 3}\right)
\end{aligned}
$$

Therefore

$$
E(\alpha) \ll P H M^{2} R^{2} Z^{-1}+E_{0}
$$

where

$$
E_{0}=\sum_{\substack{M<m_{1}<m_{2} \leqslant M R \\ s \leqslant Z^{3}, P H^{3}\left|a\left(m_{2}^{8}-m_{1}^{8}\right) s-c\right|<\frac{1}{32} Z^{3}}} P H \min \left(s^{-1 / 3},\left(P H^{3}\left|\alpha\left(m_{2}^{8}-m_{1}^{8}\right) s-c\right|\right)^{-1 / 3}\right),
$$

Put $\left(m_{2}, m_{1}\right)=j, n=m_{1} j, l=\left(m_{2}-m_{1}\right) / j$. Then

$$
\begin{gathered}
j \leqslant M R, \quad l \leqslant M R / j \\
M / j<n \leqslant M R / j \\
M / j<n+l \leqslant M R / j \\
(n, n+l)=1
\end{gathered}
$$

and now s and c will depend on j, l, and n.
Given $j \leqslant M R$ and $l \leqslant M R / j$, choose d, t with $(d, t)=1, t \leqslant 16(M R)^{7} Z^{3},\left|\alpha j^{8} l-d / t\right| \leqslant$ $1 /\left(16 t(M R)^{7} Z^{3}\right)$, and for brevity write

$$
D=\left((n+l)^{8}-n^{8}\right) / l .
$$

Then

$$
\begin{aligned}
\left|\frac{c}{s D}-\frac{d}{t}\right| t s D & <\frac{s D}{16(M R)^{7} Z^{3}}+\frac{t Z^{3}}{32 P H^{3}} \\
& \leqslant \frac{1}{2}+\frac{1}{2}(M R)^{7} Z^{6} P^{-1} H^{-3} \\
& \leqslant 1
\end{aligned}
$$

since $Z^{6} \leqslant P^{4} M^{-19} R^{-7}$. Thus $c t=d s D$, so that $s \mid t$. Let $t_{0}=t / s$. Then $c t_{0}=d D$. Hence $t_{0} \mid D$. Thus $(n+l)^{8} \equiv n^{8}\left(\bmod t_{0}\right)$. Since $(n, n+l)=1$ we have $\left(n, t_{0}\right)=1$. Let $t_{1}=\left(l, t_{0}\right), t_{2}=t_{0} / t_{1}$, $l_{0}=l / t_{1}$. Thus $\left(l_{0}, t_{2}\right)=1$. Since $t_{0} \mid D$ we have

$$
8 n^{7} \equiv\left(\left(n+l_{0} t_{1}\right)^{8}-n^{8} / l_{0} t_{1}=D \equiv 0 \quad\left(\bmod t_{1}\right)\right.
$$

Hence $t_{1} \mid 8$. Moreover $\left(n+l_{0} t_{1}\right)^{8} \equiv n^{8}\left(\bmod t_{0}\right)$. An argument allied to one in the previous lemma shows that n lies in one of $<t_{0}^{\varepsilon}$ residue classes modulo t_{2}. Since $s=t / t_{0}$ and $t_{2} \gg t_{0}$ it follows that

$$
E_{0} \ll \sum_{j \leqslant M R} \sum_{l \leqslant M R / j} \sum_{t_{0} \mid t} t_{0}^{\varepsilon}\left(\frac{M R}{j t_{0}}+1\right)\left(\frac{t_{0}}{t}\right)^{1 / 3} P H \min \left(1,\left(P H^{3}\left(\frac{M}{j}\right)^{7}\left|\alpha j^{8} l-\frac{d}{t}\right|\right)^{-1 / 3}\right)
$$

The " +1 " part can be bounded trivially. Thus, by (3.5),

$$
E_{0} \ll P^{1+\varepsilon} H M^{2} R^{2} Z^{-1}+P^{1+\varepsilon} H M R E_{1}
$$

where

$$
E_{1}=\sum_{\substack{j \leqslant M R \\ t \leqslant Z^{3} j^{-3}, P H^{3}(M / j)^{\prime}\left|\alpha j^{8} \delta t-d\right|<\frac{1}{2} z^{3} j^{-3}}} j^{-1} t^{-1 / 3} \min \left(1,\left(P H^{3}\left(\frac{M}{j}\right)^{7}\left|\alpha j^{8} l-\frac{d}{t}\right|\right)^{-1 / 3}\right)
$$

Since $t \leqslant Z^{3} j^{-3}$ we have $j \leqslant Z$.
For a given j with $j \leqslant Z$, choose e, u so that $(e, u)=1, u \leqslant 2 Z^{3} M R j^{-4},\left|\alpha j^{8}-e\right| u \mid \leqslant$ $j^{4} /\left(2 u Z^{3} M R\right)$. Then

$$
\begin{aligned}
\left|\frac{d}{l t}-\frac{e}{u}\right| u l t & <\frac{l t j^{4}}{2 Z^{3} M R}+\frac{u Z^{3} j^{-3}}{4 P H^{3}(M / j)^{7}} \\
& \leqslant \frac{1}{2}+\frac{Z^{6} M R}{2 P H^{3} M^{7}} \\
& \leqslant 1
\end{aligned}
$$

since $Z^{6} M R P^{-1} H^{-3} M^{-7}=Z^{6} P^{-4} M^{6} R \leqslant 1$. Therefore $d u=e l t$, so that $t \mid u$. Let $u_{0}=u / t$. Then $u_{0} \mid l$. Let $l_{0}=l / u_{0}$. Then

$$
E_{1} \ll \sum_{j \leqslant Z} j^{-1} \sum_{u_{0} \mid u}\left(\frac{u_{0}}{u}\right)^{1 / 3} \min \left(\frac{M R}{j u_{0}}, \frac{1}{u_{0}}\left(\frac{M R}{j}\right)^{2 / 3}\left(P H^{3}(M / j)^{7}\left|\alpha j^{8}-\frac{e}{u}\right|\right)^{-1 / 3}\right)
$$

Therefore

$$
E_{1} \ll P^{\varepsilon} M R Z^{-1}+P^{\ell} M R E_{2}
$$

where

$$
E_{2}=\sum_{j} u^{-1 / 3} j^{-2} \min \left(1,\left(P H^{3}(M / j)^{8}\left|a j^{8}-\frac{e}{u}\right|\right)^{-1 / 3}\right)
$$

and the sum is over the j with $j \leqslant Z, u \leqslant Z^{3} / j^{3}$ and $P H^{3}(M / j)^{8}\left|\alpha j^{8} u-e\right|<\frac{1}{4} Z^{3} / j^{3}$.
Now choose f, v with $(f, v)=1, v \leqslant 2 Z^{8},|\alpha-f f v| \leqslant 1 /\left(2 v Z^{8}\right)$. Thus

$$
\begin{aligned}
\left|\frac{e}{j^{8} u}-\frac{f}{v}\right| j^{8} u v & <\frac{j^{8} u}{2 Z^{8}}+\frac{v Z^{3} j^{5}}{4 P H^{3} M^{8}} \\
& \leqslant \frac{1}{2}+\frac{Z^{16} M^{4}}{2 P^{4}} \\
& \leqslant 1
\end{aligned}
$$

since $Z^{16} M^{4} P^{-4} \leqslant Z^{6} M^{14} P^{-4} \leqslant P^{4} M^{-19} M^{14} P^{-4} \leqslant 1$. Hence $e v=f_{j} u$, so that $u \mid v$. Let $v_{0}=v / u$. Then $v_{0} \mid j^{8}$. Write $v_{0}=v_{1} v_{2}^{2} \ldots v_{8}^{8}$ where v_{8}^{8} is the largest eighth power dividing v_{0}, v_{7}^{7} is the largest seventh power dividing v_{0} / v_{8}^{8}, and so on. Thus $v_{1} \ldots v_{8} \mid j$. Let $j_{0}=j /\left(v_{1} \ldots v_{8}\right)$. Then $v_{1} \ldots v_{8} \geqslant v_{0}^{1 / 8}, u v_{1} v_{2}^{2} \ldots v_{8}^{8}=v$ and $j \leqslant M R /\left(v_{1} \ldots v_{8}\right)$. Hence

$$
\begin{aligned}
E_{2} & \ll \sum_{u} \sum_{v_{1}} \ldots \sum_{v_{8}} \sum_{j_{0}} u^{-1 / 3} v_{0}^{-1 / 4} j_{0}^{-2} \min \left(1,\left(P H^{3} m^{8}\left|\alpha-\frac{f}{v}\right|\right)^{-1 / 3}\right) \\
& \ll P^{\varepsilon} v^{-1 / 4} \min \left(1,\left(Q^{4}\left|\alpha-\frac{f}{v}\right|\right)^{-1 / 3}\right) .
\end{aligned}
$$

Therefore, collecting together our estimates, we obtain

$$
E(\alpha) \ll \frac{P^{1+\varepsilon} H M^{2} R^{2}}{\left(v+Q^{4}|\alpha v-f|\right)^{1 / 4}}+P^{1+\varepsilon} H M^{2} R^{2} Z^{-1} .
$$

If $v+Q^{4}|\alpha v-f| \geqslant \frac{1}{2} Z^{4}$, then we are done, so we may suppose that

$$
v+Q^{4}|\alpha v-f|<\frac{1}{2} Z^{4}
$$

Therefore

$$
\begin{aligned}
\left|\frac{a}{q}-\frac{f}{v}\right| q v & <\frac{1}{2} q Z^{4} Q^{-4}+v X^{-1} \\
& <\frac{1}{2} X Z^{4} Q^{-4}+\frac{1}{2} Z^{4} X^{-1} \\
& \leqslant 1
\end{aligned}
$$

Hence $a=f, q=v$, and the lemma follows.

The case $k=3$ requires yet another variant of our argument.
Lemma 3.4. Suppose that $k=3$, that $M R \leqslant P^{1 / 7}$, that $M^{3} \leqslant X \leqslant Q^{3} M^{-3}$, and that $(a, q)=1, q \leqslant X$ and $|\alpha-a / q| \leqslant q^{-1} X^{-1}$. Then

$$
E(\alpha) \ll \frac{P^{\varepsilon} H M^{2} R^{2}}{\left(q+Q^{3}|\alpha q-a|\right)^{1 / 3}}+P^{\varepsilon} H M R^{2}
$$

Proof. Since $M \leqslant P^{1 / 7} R^{-1}$ and $H=P M^{-3}$ we have

$$
\begin{equation*}
H^{3 / 4} \leqslant H M^{-1} \tag{3.7}
\end{equation*}
$$

By (3.3),

$$
E(\alpha)<H M R+\left|\sum_{M<m_{1}<m_{2} \leqslant M R} \sum_{h \leqslant H} e\left(2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right) h^{3}\right)\right| .
$$

For a given pair m_{1}, m_{2} with $M \leqslant m_{1}<m_{2} \leqslant M R$ we choose b, r so that $(b, r)=1, r \leqslant 6 H^{2}$, $\left|2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right)-b / r\right| \leqslant 1 /\left(6 r H^{2}\right)$. If $r>H$, then by Weyl's inequality (Lemma 2.4 of [Va2]) we have, by (3.7)

$$
\sum_{h \leqslant H} e\left(2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right) h^{3}\right) \ll H^{\frac{3}{4}+\varepsilon} \ll P^{\varepsilon} H M^{-1}
$$

If $r \leqslant H$, then, by Theorem 4.1 and Lemma 4.6 of [Va2],

$$
\sum_{h \leqslant H} e\left(2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right) h^{3} \ll r^{-1 / 3} \min \left(H,\left|2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right)-\frac{b}{r}\right|^{-1 / 3}\right)+r^{\frac{1}{2}+\varepsilon}\right.
$$

Hence

$$
E(\alpha) \ll E_{0}+P^{\varepsilon} H M R^{2}
$$

where

$$
E_{0}=\sum_{\substack{M<m_{1}<m_{2} \leqslant M R \\ m_{1}, m_{2} \in \mathscr{A}}} r^{-1 / 3} \min \left(H,\left|2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right)-\frac{b}{r}\right|^{-1 / 3}\right)
$$

and \mathscr{A} is the set of ordered pairs m_{1}, m_{2} for which $r<\frac{1}{12} M^{3}$ and $\left|2 \alpha\left(m_{2}^{6}-m_{1}^{6}\right) r-b\right|<$ ${ }_{2} M^{3} H^{-3}$.

Given such a pair m_{1}, m_{2} put $j=\left(m_{1}, m_{2}\right), n=m_{1} / j, l=\left(m_{2}-m_{1}\right) / j$. Thus

$$
E_{0} \leqslant \sum_{j} \sum_{l} \sum_{n} r^{-1 / 3} \min \left(H,\left|2 \alpha j^{6} l D-\frac{b}{r}\right|^{-1 / 3}\right)
$$

where j, l and n satisfy

$$
\begin{gathered}
j \leqslant M R, \\
l \leqslant M R / j, \\
(n, n+l)=1, \\
M / j<n \leqslant M R / j, \\
M / j<n+l \leqslant M R / j, \\
j n, j n+j l \in \mathscr{A} .
\end{gathered}
$$

and we have written D for $\left((n+l)^{6}-n^{6}\right) / l$.
Given $j \leqslant M R, l \leqslant M R / j$, choose c, s so that $(c, s)=1, s \leqslant H^{3} M^{-3}$ and $\left|2 \alpha j^{6} l-c / s\right| \leqslant$ $s^{-1} M^{3} H^{-3}$. Thus, for any n in the innermost sum we have

$$
\begin{aligned}
\left|\frac{c}{s}-\frac{b}{r D}\right| s D r & <D r M^{3} H^{-3}+\frac{1}{2} s M^{3} H^{-3} \\
& \leqslant \frac{6}{12}\left(\frac{M R}{j}\right)^{5} M^{6} h^{-3}+\frac{1}{2} \\
& \leqslant 1
\end{aligned}
$$

since $M \leqslant P^{1 / 7} R^{-1} \leqslant P^{3 / 20} R^{-1 / 4}$. Hence $c r D=b s$, so that $r \mid s$. Let $s_{0}=s / r$. Then $s_{0} \mid D$. Hence the innermost sum in E_{0} is

$$
\ll \sum_{s_{0} \mid s}\left(\frac{s_{0}}{s}\right)^{1 / 3} \sum_{n} \min \left(H,\left(\left|2 \alpha j^{6} l-\frac{c}{s}\right|(M / j)^{5}\right)^{-1 / 3}\right)
$$

where the sum over n is now over n with $n \leqslant M R / j,(n, n+l)=1$ and $\left((n+l)^{6}-n^{6}\right) / l \equiv 0$ $\left(\bmod s_{0}\right)$. Now, much as in the proof of the previous lemma we find that the number of such n is

$$
\ll\left(\frac{M R}{j s_{0}}+1\right) s_{0}^{\varepsilon}
$$

Therefore

$$
E(\alpha) \ll P^{\varepsilon} H M R^{2}+P^{\varepsilon} M R E_{1}
$$

where

$$
E_{1}=\sum_{j \leqslant M R} \sum_{l \in \mathscr{L}} s^{-1 / 3} j^{-1} \min \left(H,\left(\left|2 \alpha j b-\frac{c}{s}\right|\left(\frac{M}{j}\right)^{5}\right)^{-1 / 3}\right)
$$

and \mathscr{L} is the set of l for which $l \leqslant M R / j, s<\frac{1}{4} M^{3}$ and

$$
\left|2 \alpha j^{6} l s-c\right|(M / j)^{5}<\frac{1}{2} M^{3} H^{-3}
$$

Now given $j \leqslant M R$ choose d, t so that $(d, t)=1, t \leqslant M^{4} R j^{-1}$ and

$$
\left|\alpha j^{6}-d / t\right| \leqslant j /\left(t M^{4} R\right)
$$

Then

$$
\begin{aligned}
\left|\frac{c}{2 s l}-\frac{d}{t}\right| 2 s l t & <\frac{t M^{3} H^{-3}}{2(M / j)^{5}}+\frac{2 s l j}{M^{4} R} \\
& <\frac{M^{6} R^{5}}{2 H^{3}}+\frac{1}{2} \\
& \leqslant 1
\end{aligned}
$$

since $M \leqslant P^{1 / 7} R^{-1} \leqslant P^{1 / 5} R^{-1 / 3}$. Therefore $c t=2 d s l$ so that $s \mid t$. Let $t_{0}=t / s$. Then $t_{0} \mid 2 l$. Put $l_{0}=2 l / t_{0}$. Then

$$
\begin{aligned}
E_{1} & \ll \sum_{j \leqslant M R} \sum_{t_{0} / t}\left(\frac{t_{0}}{t}\right)^{1 / 3} \sum_{t_{0} \leqslant 2 M R /\left(j t_{0}\right)} j^{-1} \min \left(H,\left(\left|\alpha j^{6}-\frac{d}{t}\right| l_{0} t_{0}\left(\frac{M}{j}\right)^{5}\right)^{-1 / 3}\right) \\
& \ll \sum_{j \leqslant M R} P^{\ell} M R t^{-1 / 3} j^{-2} \min \left(H,\left(\left|\alpha j^{6}-\frac{d}{t}\right|\left(\frac{M}{j}\right)^{6}\right)^{-1 / 3}\right) .
\end{aligned}
$$

Therefore

$$
E(\alpha) \ll P^{\varepsilon} H M R^{2}+P^{\ell} M^{2} R^{2} E_{2}
$$

where

$$
E_{2}=\sum_{j \in J} t^{-1 / 3} j^{-2} \min \left(H,\left|a j^{6}-\frac{d}{t}\right|\left(\frac{M}{j}\right)^{6}\right)^{-1 / 3}
$$

and \mathscr{F} is the set of $j \leqslant M$ for which $t<\frac{1}{2} M^{3}$ and

$$
\left|\alpha j^{6} t-d\right|(M / j)^{6}<\frac{1}{2} M^{3} H^{-3}
$$

Now choose e, u so that $(e, u)=1, u \leqslant M^{9},|\alpha-e / u| \leqslant u^{-1} M^{-9}$. Thus for $j \in \mathscr{F}$,

$$
\begin{aligned}
\left|\frac{e}{u}-\frac{d}{j^{6} t}\right| u j^{6} t & <\frac{u M^{3} H^{-3}}{2(M / j)^{6}}+j^{6} t M^{-9} \\
& <\frac{1}{2} M^{12} H^{-3}+\frac{1}{2} \\
& \leqslant 1
\end{aligned}
$$

since $M \leqslant P^{1 / 7} R^{-1}$. Therefore $e t j^{6}=d u$, whence $t \mid u$. Let $u_{0}=u / t$. Then $u_{0} \mid J^{6}$. Let u_{6}^{6} denote the largest sixth power dividing u_{0}, u_{5}^{5} the largest fifth power dividing u_{0} / u_{6}^{6}, and so on.

Thus $u_{0}=u_{1} u_{2}^{2} \ldots u_{6}^{6}, u_{1} u_{2} \ldots u_{6} j j$ and $u_{1} u_{2} \ldots u_{6} \geqslant u_{0}^{1 / 6}$. Therefore

$$
\begin{aligned}
E_{2} & <\sum_{u_{0} j^{\prime}}\left(u_{0} J u\right)^{1 / 3} \sum_{j_{0} \leqslant M} j_{0}^{-2} u_{0}^{-1 / 3} \min \left(H,\left(\left|\alpha-\frac{e}{u}\right| M^{6}\right)^{-1 / 3}\right) \\
& <P^{\ell} H\left(u+Q^{3}|\alpha u-e|\right)^{-1 / 3} .
\end{aligned}
$$

Hence

$$
E(\alpha) \ll \frac{P^{\varepsilon} H M^{2} R^{2}}{\left(u+Q^{3}|\alpha u-e|\right)^{1 / 3}}+P^{\ell} H M R^{2} .
$$

The proof of the lemma can now be concluded in the same manner as that of Lemma 3.2.

The previous four lemmas are of greatest utility on minor arcs. Whilst they do give some information on major arcs it is important to establish a more precise estimate. We do this in the next lemma.

Lemma 3.5. Suppose that $(a, q)=1, \beta=\alpha-a / q$, and

$$
\begin{equation*}
k(k-1) 3^{k} q P^{k-2} H R^{k(k-2)}|\beta| \leqslant 1 \tag{3.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{1}(\alpha) \ll \frac{P H M R q^{\varepsilon}}{\left(q+Q^{k} \mid \alpha q-a\right)^{1 /(k-1)}}+H M R q^{\frac{k-2}{k-1}+\varepsilon} . \tag{3.9}
\end{equation*}
$$

Proof. By (2.35) and (2.31),

$$
\begin{equation*}
F_{1}(\alpha)=\sum_{h \leqslant H} \sum_{M<m \leqslant M R} S(\alpha, h, m) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
S(\alpha, h, m)=\sum_{z \leqslant 2 P} e\left(\alpha m^{-k}\left(z+h m^{k}\right)^{k}-\alpha m^{-k}\left(z-h m^{k}\right)^{k}\right) \tag{3.11}
\end{equation*}
$$

Hence, on writing $\alpha=a / q+\beta$, sorting the terms in $S(\alpha, h, m)$ according to the residue class r of z modulo q, and using the fact that

$$
\sum_{-\frac{1}{2} q<b \leq \frac{1}{2} q} e(b(r-z) / q)
$$

is q or 0 according as $r \equiv z(\bmod q)$ or $r \equiv z(\bmod q)$, we obtain

$$
\begin{equation*}
S(\alpha, h, m)=q^{-1} \sum_{-\frac{1}{2} q<b \leqslant \frac{1}{2}} \sigma(q, a, b, h, m) T(\beta, b, h, m) \tag{3.12}
\end{equation*}
$$

where

$$
\sigma(q, a, b, h, m)=\sum_{r=1}^{q} e\left(\frac{a}{q} m^{-k}\left(r+h m^{k}\right)^{k}-\frac{a}{q} m^{-k}\left(r-h m^{k}\right)^{k}+\frac{b}{q} r\right)
$$

and

$$
T(\beta, b, h, m)=\sum_{z \leqslant 2 P} e\left(\beta m^{-k}\left(z+h m^{k}\right)^{k}-\beta m^{-k}\left(z-h m^{h}\right)^{k}-\frac{b}{q} z\right) .
$$

When k is even, let d denote the greatest common division of

$$
q, 2 a k h, 2 a\binom{k}{3} h^{3} m^{2 k}, \ldots, 2 a\binom{k}{k-3} h^{k-3} m^{k(k-4)}, 2 a k h^{k-1} m^{k(k-2)}+b
$$

and when k is odd, let d denote the greatest common divisor of

$$
q, 2 a k h, 2 a\binom{k}{3} h^{3} m^{2 k}, \ldots, 2 a\binom{k}{k-2} h^{k-2} m^{k(k-3)}, b .
$$

Then by Theorem 7.1 of [Va2],

$$
\sigma(q, a, b, h, m) \ll d(q / d)^{\frac{k-2}{k-1}+\varepsilon} .
$$

If k is odd, then $d \ll(q, h, b)$, and if k is even, then $d \ll\left(q, h, 2 a k h^{k-1} m^{k(k-2)}+b\right)=$ (q, h, b). Thus

$$
\begin{equation*}
\sigma(q, a, b, h, m) \ll q^{\frac{k-2}{k-1} \varepsilon}(q, h, b)^{\frac{1}{k-1}} . \tag{3.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
\phi(\gamma)=\beta m^{-k}\left(\gamma+h m^{h}\right)^{k}-\beta m^{-k}\left(\gamma-h m^{k}\right)^{k}-\frac{b}{q} \gamma . \tag{3.14}
\end{equation*}
$$

Then

$$
\frac{b}{q}+\phi^{\prime}(\gamma)=k(k-1) \beta m^{-k} \int_{y-h m^{k}}^{\gamma+h m^{k}} \psi^{k-2} d \psi,
$$

so that when $|\gamma| \leqslant 2 P$ we have

$$
\left|\frac{b}{q}+\phi^{\prime}(\gamma)\right| \leqslant 2 k(k-1)|\beta| h\left(2 P+h m^{h}\right)^{k-2} \leqslant \frac{2}{9 q} .
$$

Thus, when $-\frac{1}{2} q<b \leqslant \frac{1}{2} q$ and $|\gamma| \leqslant 2 P$ we have

$$
\left|\phi^{\prime}(\gamma)\right| \leqslant \frac{1}{2}+\frac{2}{9}<\frac{3}{4}
$$

and if moreover $b \neq 0$, then

$$
\left|\phi^{\prime}(\gamma)\right|>\frac{|b|}{2 q} .
$$

Therefore, by Lemma 4.2 of [Va2], we have

$$
T(\beta, b, h, m)=\sum_{u=-1}^{1} I(\beta, b, h, m, u)+O(1)
$$

where

$$
\begin{equation*}
I(\beta, b, h, m, u)=\int_{0}^{2 P} e(\phi(\gamma)-\gamma u) d \gamma \tag{3.15}
\end{equation*}
$$

It follows by integration by parts that

$$
I(\beta, b, h, m, \pm 1) \ll 1
$$

and, when $b \neq 0$, that

$$
I(\beta, b, h, m, 0) \ll \frac{q}{|b|} .
$$

Therefore

$$
T(\beta, 0, h, m)=I(\beta, 0, h, m, 0)+O(1)
$$

and, when $b \neq 0$,

$$
T(\beta, b, h, m) \ll \frac{q}{|b|} .
$$

Hence, by (3.12) and (3.13),

$$
\begin{aligned}
S(\alpha, h, m) & =q^{-1} \sigma(q, a, 0, h, m) I(\beta, 0, h, m, 0)+O\left(\sum_{1 \leqslant b \leqslant \frac{1}{2} q}|b|^{-1} q^{\frac{k-2}{k-1}+\varepsilon}(q, b)^{\frac{1}{k-1}}\right) \\
& \ll q^{\varepsilon-\frac{1}{k-1}}(q, h)^{\frac{1}{k-1}}|I(\beta, 0, h, m, 0)|+q^{\frac{k-2}{k-1}+2 \varepsilon}
\end{aligned}
$$

By (3.14), (3.15) and Theorem 7.3 of [Va2], we have

$$
I(\beta, 0, h, m, 0) \ll P\left(1+|\beta| h P^{k-1}\right)^{-1 /(k-1)}
$$

Thus

$$
S(\alpha, h, m) \ll q^{\varepsilon-\frac{1}{k-1}}(q, h)^{\frac{1}{k-1}} P\left(1+|\beta| h P^{k-1}\right)^{-1 /(k-1)}+q^{\frac{k-2}{k-1}+\varepsilon}
$$

Therefore, by (3.10),

$$
F_{1}(\alpha) \ll M R q^{\varepsilon-\frac{1}{k-1}} \sum_{h \leqslant H}(q, h)^{\frac{1}{k-1}} \min \left(P,(|\beta| h)^{-\frac{1}{k-1}}\right)+H M R q^{\frac{k-2}{k-1}+\varepsilon}
$$

On writing $d=(q, h)$ and recalling that $P^{k-1} H=Q^{k}$ we obtain

$$
\begin{aligned}
\sum_{h \leqslant H}(q, h)^{\frac{1}{k-1}} \min \left(P,(|\beta| h)^{-\frac{1}{k-1}}\right) & \ll \sum_{d \mid q} d^{\frac{1}{k-1}} \min \left(P H d^{-1}, H^{\frac{k-2}{k-1}}|\beta|^{-\frac{1}{k-1}} d^{-1}\right) \\
& <q^{\varepsilon} P H \min \left(1,\left(Q^{k}|\beta|\right)^{-\frac{1}{k-1}}\right)
\end{aligned}
$$

The lemma now follows.
Having established suitable estimates for the underlying exponential sums we are now in a position to establish a relationship between T_{s}, and S_{s-1} and S_{s} that is particularly valuable when $S_{s} \approx P^{\lambda}$ with λ close to $2 s-k$.

Lemma 3.6. Suppose that $k \geqslant 4, s \geqslant k-1$ and (2.22), (2.23) and (2.24) hold. Then

$$
T_{s}(P, R, \theta) \ll\left(P M R+P H M R^{4}(Z P)^{-2^{2-k}}\right) S_{s-1}(Q, R)+P^{1+\sigma+\varepsilon} H M R Q^{-k / s} S_{s}(Q, R)^{i-1 / s}
$$

where

$$
Z=\left\{\begin{array}{cc}
\min \left(M^{12} P^{-2}, P^{2 / 3} R^{-7 / 6} M^{-1966}\right) & (k=4), \\
M & (k \geqslant 5),
\end{array}\right.
$$

$$
\sigma=\left\{\begin{array}{cl}
0 & (s \geqslant 2 k-2), \\
\frac{2}{s}-\frac{1}{k-1} & (2 k-2>s \geqslant k-1) .
\end{array}\right.
$$

Proof. Let \mathfrak{m} denote the set of points in $[0,1]$ with the property that whenever there are a, q with $(a, q)=1$ and

$$
\begin{equation*}
k(k-1) 3^{k} q P^{k-2} H R^{k(k-2)}\left|\alpha-\frac{a}{q}\right| \leqslant 1 \tag{3.16}
\end{equation*}
$$

then $q>P$. Further, let

$$
\mathfrak{M}=[0,1] \backslash \mathfrak{m}
$$

First of all suppose that $\alpha \in \mathfrak{m}$. Choose b, r with

$$
(b, r)=1, \quad r \leqslant P^{k-2} H \quad \text { and } \quad|\alpha r-b| P^{k-2} H \leqslant 1
$$

Then, by Lemma 3.1,

$$
D(\alpha) \ll \frac{P^{k-1+\varepsilon}}{r+Q^{k}|\alpha r-b|}+H P^{k-2+\varepsilon}
$$

Since $\alpha \in \mathfrak{m}$, either $r>P$ or $Q^{k}|\alpha r-a| \gg P R^{-k(k-2)}$. Thus

$$
\begin{equation*}
D(\alpha) \ll P^{k-2} H R^{k(k-2)} \tag{3.17}
\end{equation*}
$$

Clearly when $k \geqslant 4$ we have

$$
Z^{k} \leqslant P^{k-2} H \leqslant Q^{k} Z^{-k}
$$

(recall that when $k=4$ we have (3.5)). Hence, by Lemmas 3.2 and 3.3,

$$
E(\alpha) \ll \frac{P^{k-3} H M^{2} R^{2}}{\left(r+Q^{k}|\alpha r-b|\right)^{1 / k}}+P^{k-3+\varepsilon} H M^{2} R^{2} Z^{-1} \leqslant P^{k-3+\varepsilon} H M^{2} R^{k} Z^{-1}
$$

Hence, by (3.1), (3.17) and (2.37),

$$
F_{1}(\alpha) \ll P^{1+\varepsilon} H M R^{1+k(k-1) 2^{2-k}}(P Z)^{-2^{2-k}}
$$

whence

$$
\begin{equation*}
F_{1}(\alpha) \ll P^{1+\varepsilon} H M R^{4}(P Z)^{-2^{2-k}} \quad(\alpha \in \mathfrak{m}) \tag{3.18}
\end{equation*}
$$

Now suppose that $\alpha \in \mathfrak{M}$. We note that, by Dirichlet's theorem on diophantine approximation, there are q, a with ($a, q)=1$ and satisfying (3.16). Moreover since α is not in \mathfrak{m}, there are a, q with $(a, q)=1, q \leqslant P$ and satisfying (3.16). Furthermore, as $0 \leqslant \alpha \leqslant 1$ we have $0 \leqslant a \leqslant q$. Thus, by Lemma 3.5,

$$
\begin{equation*}
F_{1}(\alpha) \ll \frac{P^{1+\varepsilon} H M R}{\left(q+Q^{k}|\alpha q-a|\right)^{1 /(k-1)}}+P^{\frac{k-2}{k-1}+\varepsilon} H M R . \tag{3.19}
\end{equation*}
$$

Let $\mathfrak{M}(q, a)$ denote the set of α in $[0,1]$ for which (3.16) holds. Note that the $\mathfrak{M}(q, a)$ with $0 \leqslant a \leqslant q \leqslant P$ are disjoint. We now define $F^{*}(\alpha)$ on $[0,1]$ by taking $F^{*}(\alpha)$ to be 0 when $\alpha \in \mathfrak{m}$ and to be

$$
\frac{P^{1+\varepsilon} H M R}{\left(q+Q^{k}|\alpha q-a|\right)^{1 /(k-1)}}
$$

when $\alpha \in \mathbb{M}(q, a)$ with $0 \leqslant a \leqslant q \leqslant P$.
As $Z \leqslant M \leqslant P^{1 / k}$ and $k \geqslant 4$ we have

$$
(P Z)^{2^{2-k}} \leqslant P^{1 /(k-1)}
$$

Therefore, by (3.18), (3.19) and (2.36)

$$
T_{s}(P, R, \theta) \ll\left(P M R+P^{1+\varepsilon} H M R^{4}(P Z)^{-2^{2-k}}\right) S_{s-1}(Q, R)+I
$$

where

$$
I=\int_{\mathfrak{R}} F^{*}(\alpha)\left|f\left(2^{k} \alpha ; Q, R\right)\right|^{2 s-2} d \alpha
$$

By Hölder's inequality,

$$
I \ll J^{1 / s} S_{s}(Q, R)^{1-1 / s}
$$

where

$$
J=\int_{\mathfrak{R}} F^{*}(\alpha)^{\mathrm{s}} d \alpha
$$

A straightforward calculation shows that

$$
J<\left(P^{1+\varepsilon} H M R\right)^{s} P^{\varepsilon} Q^{-k} \sum_{q \leqslant P} q^{1-s(k-1)}
$$

and the lemma follows.
When $k=3$ we can obtain a more precise result. In principle such a result could be obtained for larger k but it would be valid only when $s>2^{k-2}$, which is too large to be useful when $k \geqslant 4$.

Lemma 3.7. Suppose that $k=3, M R \leqslant P^{1 / 7}$ and (2.22) and (2.23) hold. Then

$$
T_{3}(P, R, \theta) \ll P^{3+\varepsilon} M^{-1} R+P^{\frac{7}{6}+\varepsilon} M^{-\frac{3}{2}} R S_{3}(Q, R)^{\frac{2}{3}}
$$

Proof. Let \mathfrak{m} denote the set of points α in $[0,1]$ with the property that whenever there are a, q with $(a, q)=1$ and

$$
P H|\alpha q-a| \leqslant 1
$$

then $q<P$, and let

$$
\mathfrak{M}=[0,1] \backslash \mathfrak{m} .
$$

Let $\alpha \in \mathfrak{m}$ and choose a, q so that $(a, q)=1,|\alpha q-a| \leqslant H^{-1} P^{-1}$ and $q \leqslant P H$. Then $q>P$. Hence, by (3.1) and Lemmas 3.1 and 3.4 we have

$$
F_{1}(\alpha) \ll P^{\ell}(P H)^{1 / 2}\left(H M R^{2}\right)^{1 / 2}=P^{\ell} H R(P M)^{1 / 2} .
$$

By (2.32), (2.34), (2.35) and Lemma 2.3 with $j=1$ we have

$$
\int_{0}^{1}\left|F_{1}(\alpha)\right|^{2} d \alpha \ll P^{1+\varepsilon} H M R
$$

Thus

$$
\begin{equation*}
\int_{\mathfrak{m}}\left|F_{1}(\alpha)\right|^{3} d \alpha \ll P^{\ell} H^{2} R^{2}(P M)^{3 / 2} \tag{3.20}
\end{equation*}
$$

Now suppose that $\alpha \in \mathfrak{M}$. Then α is in an interval of the form

$$
\mathfrak{M}(q, a)=\left\{\alpha:|\alpha q-a| \leqslant H^{-1} P^{-1}\right\}
$$

with $(a, q)=1,0 \leqslant a \leqslant q \leqslant P$. Hence, by Lemmas 3.1 and 3.4 , we have

$$
F_{1}(\alpha) \ll P^{\varepsilon}\left(\frac{H P^{2}}{q+Q^{3}|\alpha q-a|}\right)^{1 / 2}\left(\frac{H M^{2} R^{2}}{\left(q+Q^{3}|\alpha q-a|\right)^{1 / 3}}+H M R^{2}\right)^{1 / 2}
$$

Thus

$$
\begin{aligned}
\int_{\sqrt[N a q]{ }}\left|F_{1}(\alpha)\right|^{3} d \alpha & \ll \int_{0}^{\infty}\left(\frac{P^{3+\varepsilon} H^{3} M^{3} R^{3}}{\left(q+Q^{3} q \beta\right)^{2}}+\frac{P^{3+\varepsilon} H^{3} M^{3 / 2} R^{3}}{\left(q+Q^{3} q \beta\right)^{3 / 2}}\right) d \beta \\
& <P^{3+\varepsilon} H^{3} R^{3} Q^{-3}\left(M^{3} q^{-2}+M^{3 / 2} q^{-3 / 2}\right) .
\end{aligned}
$$

Therefore

$$
\int_{\mathfrak{M}}\left|F_{1}(\alpha)\right|^{3} d \alpha \ll P^{3+\varepsilon} H^{3} M^{3} R^{3} Q^{-3}\left(1+P^{1 / 2} M^{-3 / 2}\right) .
$$

Hence, by (3.20) and (2.23),

$$
\int_{0}^{1}\left|F_{1}(\alpha)\right|^{3} d \alpha \ll P^{\frac{7}{2}+\varepsilon} M^{-\frac{2}{2}} R^{3}
$$

Now, by (2.36) and Hölder's inequality,

$$
T_{3}(P, R, \theta) \ll P M R S_{2}(Q, R)+P^{\frac{7}{6}+\varepsilon} M^{-\frac{3}{2}} R S_{3}(Q, R)^{\frac{2}{3}}
$$

The lemma is a consequence of this and the classical estimate

$$
S_{2}(Q, R) \ll Q^{2+\varepsilon}
$$

(see, for example, Lemma 2.5 of [Va2]).

4. Bounds for the number of solutions of the auxiliary equation

We now investigate the consequences of the reduction relations contained in Lemmas 2.1, 2.2 and 3.6. The aim is to establish bounds of the form

$$
S_{s}(P, R) \ll P^{\lambda_{s}+\varepsilon}
$$

when R is no larger than a small power of P. The reduction relations contained in Lemmas 2.1, 2.2 and 3.6 can be interpreted as inequalities between the permissible choices for λ_{s}. It is useful, therefore, to summarise below the corresponding inequalities.
(j1) For some j with $2^{j} \geqslant t$ and $1 \leqslant j \leqslant k-1$ there is a θ satifying $0<\theta \leqslant 1 / k$ such that

$$
\begin{equation*}
\lambda_{t} \geqslant(2 t-2) \theta+1+\lambda_{t-1}(1-\theta), \tag{j1.1}
\end{equation*}
$$

$$
\begin{gather*}
\lambda_{t} \geqslant(2 t-2-k) \theta+2-2^{1-j}+\lambda_{t-1}(1-\theta), \tag{j1.2}\\
\lambda_{t} \geqslant \frac{\left(2 t-2-k+k 2^{-j}\right) \theta+2-(j+1) 2^{-j}+\lambda_{t-1}(1-\theta)\left(1-t 2^{-j}\right)}{1-(1-\theta)(t-1) 2^{-j}} . \tag{j1.3}
\end{gather*}
$$

(j2) For some j with $2^{j} \geqslant t$ and with
(i) $j=k-2$, or
(ii) $j=k-4$, or
(iii) $1 \leqslant j \leqslant k-3$ and $k-j$ odd,
there is a θ satisfying $0<\theta \leqslant 1 / k$ such that

$$
\begin{gather*}
\lambda_{t} \geqslant(2 t-2) \theta+1+\lambda_{t-1}(1-\theta), \tag{j2.1}\\
\lambda_{t} \geqslant(2 t-2-k) \theta+2-2^{1-j}+\lambda_{t-1}(1-\theta), \tag{j2.2}\\
\lambda_{t} \geqslant \frac{\left(2 t-2-k+(k-1) 2^{-j}\right) \theta+2-(j+1) 2^{-j}+\lambda_{t-1}(1-\theta)\left(1-t 2^{-j}\right)}{1-(1-\theta)(t-1) 2^{-j}} . \tag{j2.3}
\end{gather*}
$$

($k-2$) We have $t \geqslant k-1$ and there is a θ satisfying $0<\theta \leqslant 1 / k$ such that

$$
\begin{gather*}
\lambda_{t} \geqslant(2 t-2) \theta+1+\lambda_{t-1}(1-\theta) \tag{k-2.1}\\
\lambda_{t} \geqslant\left(2 t-2-k-2^{2-k}\right) \theta+2-2^{2-k}+\lambda_{t-1}(1-\theta), \tag{k-2.2}\\
\lambda_{t} \geqslant 2 t-k+\sigma /\left(\frac{1}{t}+\theta-\frac{\theta}{t}\right) \tag{k-2.4}
\end{gather*}
$$

where

$$
\sigma=\left\{\begin{array}{cl}
0 & \text { when } t \geqslant 2 k-2 \tag{k-2.4}\\
\frac{2}{t}-\frac{1}{k-1} & \text { when } 2 k-2>t \geqslant k-1
\end{array}\right\}
$$

Theorem 4.1. Suppose that

$$
k \geqslant 5, \quad \lambda_{1}=1, \quad \lambda_{2}=2
$$

and that for each $t=3,4, \ldots, s$ at least one of $(j 1),(j 2)$ or $(k-2)$ holds. Then there are positive real numbers D_{1}, \ldots, D_{s} such that for each positive number ε there are real numbers $C_{1}(\varepsilon), \ldots, C_{s}(\varepsilon)$ such that whenever $P \geqslant R$ we have

$$
S_{t}(P, R) \leqslant\left(C_{t}(\varepsilon) R^{D_{t}}\right)^{\log \frac{2 \log P}{\log R}} P^{\lambda_{t}+\varepsilon}
$$

for $t=1,2, \ldots, s$.

Proof. This is by induction on s. The cases $s=1,2$ are classical. We may suppose, therefore, that $s \geqslant 3$ and that the case $s-1$ holds. Then, on hypothesis, there is a θ provided by $(j 1),(j 2)$ or ($k-2$) with $t=s$.

We now prove by (sub)induction on n that for suitable $D_{s}^{*}, C_{s}^{*}(\varepsilon)$ we have

$$
\begin{equation*}
S_{s}(P, R) \leqslant\left(C_{s}^{*}(\varepsilon) R^{D_{s}^{*}}\right)^{n} P^{\lambda_{s}+\varepsilon} \tag{4.1}
\end{equation*}
$$

whenever $R^{(1-\theta)^{1-n}} \leqslant P<R^{(1-\theta)^{-n}}$.
We observe that if $\lambda_{s} \geqslant 2 s$, then the conclusion is trivial. Moreover it follows easily by induction on t from ($j 1.1$), $(j 2.1),(k-2.1)$ that $\lambda_{s}>s$. Hence we may assume that

$$
\begin{equation*}
s<\lambda_{s}<2 s \tag{4.2}
\end{equation*}
$$

The bound (4.1) is trivial for $n \leqslant n_{0}(k)$ provided we take

$$
\begin{equation*}
D_{s}^{*} \geqslant 2 s(1-\theta)^{-n_{0}(k)} \tag{4.3}
\end{equation*}
$$

Therefore we may suppose that

$$
n>n_{0}(k)
$$

and that (4.1) holds for n replaced by $n-1$.
Clearly it suffices to establish (4.1) when

$$
0<\varepsilon<\varepsilon_{0}(s)
$$

By Lemma 2.1 with $D=P^{\theta}$ we have

$$
\begin{align*}
S_{s}(P, R) \ll & \left(\sum_{d>P^{\theta}}\left(C_{s}^{*}(\varepsilon) R^{D_{s}^{*}}\right)^{\frac{n-1}{s}}\left(\frac{P}{d}\right)^{\left(\lambda_{s}+\varepsilon / s\right.}\right)^{s}+P^{2 s\left(2 \theta-\theta^{2}\right)} \\
& +P^{\varepsilon^{2}}\left(\sum_{d \leqslant P^{\theta}}\left(\left(\frac{P}{d}\right)^{\theta} R\right)^{\frac{2 s-3}{s}} T_{s}(P / d, R, \theta)^{1 / s}\right)^{s} \tag{4.4}
\end{align*}
$$

Suppose first of all that θ is provided by ($j 1$) or ($j 2$). For brevity we write

$$
X=P / d, \quad J=2^{-j}
$$

By Lemma 2.2,

$$
\begin{aligned}
T_{s}(X, R, \theta) \ll & \left(X^{1+\theta}+X^{2-2 I+(1-k) \theta}\right) R S_{s-1}\left(X^{1-\theta}, R\right) \\
& +X^{2-2(j(1)) J+(1-2 n(1-k) \theta} R^{1-2 J} N_{j}^{J} S_{s-1}\left(X^{1-\theta}, R\right)^{1-s J} S_{s}\left(X^{1-\theta}, R\right)^{(s-1) J} .
\end{aligned}
$$

Let $v=2$ when θ is provided by ($j 1$) and let $v=1$ when θ is provided by ($j 2$). In the latter case $j=k-2$, or $j=k-4$, or $1 \leqslant j \leqslant k-3$ and $k-j$ is odd. Thus, by Lemma 2.3 , the case $n-1$ of (4.1) and the case $s-1$ of the theorem we have

$$
\begin{aligned}
T_{s}(X, R, \theta) \ll & \left(X^{1+\theta}+X^{2-2 J+(1-k) \theta}\right) R\left(C_{s-1}(\varepsilon) R^{\left.D_{s-1}\right)^{\log } \log _{\log \beta} R} X^{\left(\lambda_{s-1}+\varepsilon\right)(1-\theta)}\right. \\
& +X^{u} R\left(\left(C_{s-1}(\varepsilon) R^{D_{s-1}-1}\right)^{\log \log _{\log R} R} X^{\left(\lambda_{s-1}+\varepsilon\right)(1-\theta)}\right)^{1-s J}\left(\left(C_{s}^{*}(\varepsilon) R^{D_{s}^{*}}\right)^{n-1} X^{\left(\lambda_{s}+\varepsilon\right)(1-\theta)}\right)^{(s-1) J}
\end{aligned}
$$

where

$$
\mu=2-(j+1) J+(1-k) \theta+(k-2+v) J \theta+\varepsilon^{2} .
$$

Hence, by ($j 1$) and ($j 2$),

$$
\begin{aligned}
X^{\theta(2 s-3)} T_{s}(X, R, \theta) \ll & C_{s-1}(\varepsilon)^{1+n \log _{\frac{1}{1-\theta}}} R^{\mu_{1}} X^{\lambda_{1}+\varepsilon(1-\theta)} \\
& +C_{s-1}(\varepsilon)^{\left(1+n \log _{1-\theta}^{1-\theta}\right)(1-s)} C_{s}^{*}(\varepsilon)^{(n-1)(s-1) J} R^{\mu_{2}} X^{\mu_{3}+\varepsilon^{2}+\varepsilon(1-\theta)(1-n)}
\end{aligned}
$$

where

$$
\begin{gathered}
\mu_{1}=1+D_{s-1}+D_{s-1} n \log \frac{1}{1-\theta}, \\
\mu_{2}=1+\left(D_{s-1}+D_{s-1} n \log \frac{1}{1-\theta}\right)(1-s J)+D_{s}^{*}(n-1)(s-1) J, \\
\mu_{3}=2-(j+1) J+(2 s-2-k+(k-2+v) J) \theta+\lambda_{s-1}(1-\theta)(1-s J)+\lambda_{s}(1-\theta)(s-1) J .
\end{gathered}
$$

By (j1.3) and (j2.3),

$$
\mu_{3} \leqslant \lambda_{s} .
$$

Therefore

$$
X^{\theta(2 s-3)} T_{s}(X, R, \theta) \ll\left(C_{s-1}(\varepsilon)^{n{ }^{n+0} \frac{1}{1-\theta}} R^{\mu_{1}}+C_{s-1}(\varepsilon)^{n(1-s) \log \frac{1}{1-\theta}} C_{s}^{*}(\varepsilon)^{(n-1)(s-1) J} R^{\mu_{2}}\right) X^{\lambda_{s}+\varepsilon(1-\theta)}
$$

Hence, by (4.2),

$$
\begin{aligned}
& \left(\sum_{d \leq P^{\theta}}\left(\left(\frac{P}{d}\right)^{\theta} R\right)^{\frac{2 s-3}{s}} T_{s}(P / d, R, \theta)^{1 / s}\right)^{s} \\
& \quad<\left(C_{s-1}(\varepsilon)^{n \log \frac{1}{1-\theta}} R^{\mu_{1}}+C_{s-1}(\varepsilon)^{n\left(1-s / \log \frac{1}{1-\theta}\right.} C_{s}^{*}(\varepsilon)^{(n-1)(s-1) J} R^{\mu_{2}}\right) R^{2 s-3} P^{\lambda_{s}+\varepsilon(1-\theta)} .
\end{aligned}
$$

Thus, by (4.2) and (4.4), and provided that $C_{s}^{*}(\varepsilon)$ and D_{s}^{*} are large enough in terms of the implicit constant and $C_{s-1}(\varepsilon)$, and D_{s-1}, θ, s respectively, we have (4.1) as required.

Now suppose that θ is provided by $(k-2)$. Then we proceed as above but use Lemma 3.6 in place of Lemmas 2.2 and 2.3. Note that since $n>n_{0}(k)$ the hypotheses of Lemma 3.6 are satisfied. We thereby obtain

$$
\begin{aligned}
& X^{\theta(2 s-3)} T_{s}(X, R, \theta) \\
& \quad \ll\left(C_{s-1}(\varepsilon)^{n \log \frac{1}{1-\theta} \theta} R^{4+D_{s-1}+D_{s-1} n \log \frac{1}{1-\theta}}+C_{s}^{*}(\varepsilon)^{(n-1)\left(1-\frac{1}{s}\right)} R^{1+D_{s}^{*}(n-1)\left(1-\frac{1}{s}\right)}\right) X^{\lambda_{s}+\varepsilon(1-\theta)}
\end{aligned}
$$

Therefore (4.1) follows from (4.4) as before.
The theorem is immediate from (4.1).
We now state a cleaner version of the above theorem.
Theorem 4.2. Suppose that $k \geqslant 5, \lambda_{1}=1, \lambda_{2}=2$, and that for each $t=3,4, \ldots, s$ at least one of $(j 1),(j 2)$ or $(k-2)$ holds. Suppose further that $\lambda>\lambda_{s}$. Then, provided that $0<\eta<\eta_{0}\left(\lambda-\lambda_{s}\right)$ and $P>P_{0}(\eta, s)$ we have

$$
S_{s}\left(P, P^{\eta}\right)<P^{i}
$$

Proof. In Theorem 4.1 take

$$
\varepsilon=\frac{1}{2}\left(\lambda-\lambda_{s}\right)
$$

and choose η_{0} so small that whenever $0<\eta<\eta_{0}$ one has

$$
\eta D_{s} \log \frac{e}{\eta}<\frac{1}{4}\left(\lambda-\lambda_{s}\right)
$$

This gives Theorem 4.2.
In Table 4.1 are listed the optimal values of λ_{s} for those s with $\lambda_{s}>2 s-k$ that arise in Theorems 4.1 and 4.2 when $5 \leqslant k \leqslant 8$. Also listed are the corresponding values of θ. Moreover in the column headed by $j,(k-2)$ indicates that $(k-2)$ gives the optimal value, and otherwise ($j 1$) is satisfied with the indicated value of j unless $k-j$ is odd or $j=k-2$

k	s	j	θ	λ_{s}	k	s	j	θ	λ_{s}
4	$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ (k-2) \end{gathered}$	0.1250000000 0.1338305414 0.1818181819	3.250000 4.618034 6.232937	5	$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ 3 \\ 3 \\ (k-2) \\ (k-2) \\ (k-2) \end{gathered}$	0.1000000000 0.1000000000 0.1500000000 0.1635321106 0.1707317074 0.1707317074 0.1707317074	3.200000 4.480000 6.008000 7.660821 9.401656 11.186739 13.008516
6	3 4 5 6 7 8 9 10 11 12 13	$\begin{gathered} 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ (k-2) \\ (k-2) \\ (k-2) \\ (k-2) \end{gathered}$	0.0833333334 0.0833333334 0.1250000000 0.1305160302 0.1449861282 0.1500798248 0.1545352505 0.1546391753 0.1546391753 0.1546391753 0.1546391753	3.166667 4.402778 5.852431 7.393755 9.061597 10.802752 12.605910 14.440048 16.299834 18.181303 20.081102	7	$\begin{gathered} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{gathered}$	2 2 3 3 3 4 4 5 5 5 $(k-2)$ $(k-2)$ $(k-2)$ $(k-2)$ $(k-2)$ $(k-2)$ $(k-2)$ $(k-2)$	0.0714285715 0.0714285715 0.1071428572 0.1078205829 0.1195745911 0.1276289272 0.1318261785 0.1347204930 0.1361941573 0.1375951109 0.1377777778	$\begin{array}{r} 3.142858 \\ 4.346939 \\ 5.738339 \\ 7.197834 \\ 8.772051 \\ 10.439288 \\ 12.172336 \\ 13.957442 \\ 15.780403 \\ 17.636189 \\ 19.512981 \\ 21.406748 \\ 23.315152 \\ 25.236175 \\ 27.168080 \\ 29.109367 \\ 31.058743 \\ 33.015094 \end{array}$
8	3 4 5 6 7 8 9 10 11 12 13 14 15	2 3 3 3 4 4 5 5 5 6 6	0.0625000000 0.0625000000 0.0937500000 0.0937500000 0.1004741178 0.1104129144 0.1142072185 0.1175704127 0.1190184991 0.1204379548 0.1213892533 0.1219220239 0.1224238007	3.125000 4.304688 5.651124 7.058831 8.555290 10.156457 11.823832 13.549966 15.317640 17.122450 18.957310 20.815969 22.695466	8	16 17 18 19 20 21 22 23 24 25 26 27 28	$\begin{aligned} & (k-2) \\ & (k-2) \end{aligned}$	0.1228070176 0.1228070176	24.592514 26.502205 28.422987 30.353498 32.292542 34.239072 36.192168 38.151025 40.114934 42.083276 44.055505 46.031145 48.009776

Table 4.1

k	s	λ_{s}	k	s	λ_{s}	k	s	λ_{s}
9	28	47.182765	10	32	54.229641	11	38	65.215856
	34	59.051094		39	68.087768		46	81.088361
12	44	76.204964	13	48	83.231405	14	54	94.219572
	52	92.095892		58	103.100212		64	114.102752
15	60	105.210117	16	66	116.202593	17	72	127.196419
	71	127.097342		77	138.099089		84	151.094612
18	78	138.191614	19	84	149.187721	20	90	160.184757
	90	162.096361		97	175.092876		104	188.090061

Table 4.2
or $j=k-4$ in which case ($j 2$) is satisfied. The listed values were calculated to 16 significant figures by means of an electronic computer. However, once obtained it is relatively easy to check, if necessary by hand, that the corresponding ($j 1$), ($j 2$) or ($k-2$) are satisfied. Note that in each case when $(k-2)$ is satisfied the optimising choice of θ is

$$
\begin{equation*}
\theta=\frac{2^{k-2}-1}{k 2^{k-2}+1} \tag{4.5}
\end{equation*}
$$

and then λ_{s} is given by

$$
\begin{equation*}
\lambda_{s}=(2 s-2) \theta+1+\lambda_{s-1}(1-\theta) . \tag{4.6}
\end{equation*}
$$

The values given are all rounded up in the last decimal place.
We remark that for each k one further iteration will give

$$
\begin{equation*}
\lambda_{10}=15(k=5), \quad \lambda_{14}=22 \quad(k=6), \quad \lambda_{21}=35(k=7), \quad \lambda_{29}=50 \quad(k=8) . \tag{4.7}
\end{equation*}
$$

In Table 4.2 we extend Table 4.1 for selected values of s when $9 \leqslant k \leqslant 20$. We make use of this in $\S 9$.

We now treat the special cases $k=3$ and $k=4$.
Theorem 4.3. Let $k=4, \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=13 / 4$.

$$
\begin{gathered}
\theta_{4}=2 /(6+\sqrt{80}), \quad \lambda_{4}=6 \theta_{4}+1+\lambda_{3}\left(1-\theta_{4}\right)=4.618033 \ldots, \\
\theta_{5}=\frac{2}{11}, \quad \lambda_{5}=8 \theta_{5}+1+\lambda_{4}\left(1-\theta_{5}\right)=6.232936 \ldots,
\end{gathered}
$$

and suppose that $1 \leqslant s \leqslant 5$. Then, provided that $\lambda>\lambda_{s}, 0<\eta<\eta_{0}\left(\lambda-\lambda_{s}\right)$ and $P>P_{0}(\eta, s)$ we have

$$
S_{s}\left(P, P^{\eta}\right)<P^{\lambda}
$$

Proof. When $s=1$ or 2 the result is classical. When $s=3$ or 4 the proof follows that of Theorem 4.1. Thus for $s=3$ we note that ($j 2$) holds with $j=2$ and $\theta=1 / 8$ and for $s=4$ ($j 2$) holds with $j=2$ and $\theta=\theta_{4}$.

When $s=5$ we begin by following the proof of Theorem 4.1. Thus (4.4) holds. Then we estimate $T_{s}(X, R, \theta)$ through the use of Lemma 3.6 with $\theta=\theta_{5}$. Hence

$$
T_{5}(X, R, \theta) \ll X^{1+\theta} R^{4} S_{4}\left(X^{1-\theta}, R\right)+X^{6 / 5-(11 / 5) \theta+1 / 15+\varepsilon^{2}} R S_{5}\left(X^{1-\theta}, R\right)^{4 / 5}
$$

Therefore we may conclude the argument by following the proof of Theorem 4.1 in the case $(k-2)$. We need only check that λ_{5} satisfies

$$
\lambda_{5} \geqslant 6+\frac{11}{57}=6+\frac{1}{15} /\left(\frac{1}{5}+\frac{2}{11}-\frac{2}{55}\right) .
$$

Theorem 4.4. Let $k=3$ and suppose that $\lambda>13 / 4$. Then, provided that $0<\eta<\eta_{0}(\lambda-13 / 4)$ and $P>P_{0}(\eta)$ we have

$$
S_{3}\left(P, P^{\eta}\right)<P^{d}
$$

Proof. We again follow the proof of Theorem 4.1, so that (4.4) holds, but we take $\theta=1 / 8$ and estimate $T_{3}(X, R, \theta)$ through the use of Lemma 3.7. Thus

$$
X^{3 \theta} T_{3}(X, R, \theta) \ll X^{3+2 \theta+\varepsilon(1-\theta)} R+X^{\frac{1}{6}+\frac{3}{2} \theta+\varepsilon^{2}} R S_{3}\left(X^{1-\theta}, R\right)^{\frac{2}{3}}
$$

Again the proof is completed as before. We need only note that

$$
3+2 \theta=\frac{13}{4} \text { and } \frac{7}{6}+\frac{3}{2} \theta+\frac{2}{3}\left(\frac{13}{4}(1-\theta)\right)=\frac{13}{4} .
$$

5. The estimation of $G(k)$ when $4 \leqslant k \leqslant 8$

We establish Theorems 1.1. and 1.2 through the medium of the Hardy-Littlewood method. We consider the representation of a large natural number n in the form

$$
x_{1}^{k}+\ldots+x_{2 t}^{k}+y_{1}^{k}+\ldots+y_{u}^{k}=n
$$

where each x_{i} has the property that it has no prime factor exceeding n^{η} where η is a sufficiently small but fixed positive number. This enables us to combine Theorem 4.2 with Weyl's inequality on the minor arcs.

The restriction on the x_{i} is unlike any condition that has been used hitherto in connection with Waring's problem. Moreover u is usually too small for a direct application of classical methods on the major arcs. Thus it is necessary to develop a new technique for dealing with the major arcs.

We suppose now that n is large, and P and W satisfy

$$
\begin{equation*}
P=n^{1 / k}, \quad 2 \leqslant W \leqslant P \tag{5.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathfrak{P}(q, a)=\left\{\alpha:|\alpha-a / q| \leqslant(2 k q)^{-1} P^{1-k}\right\} \tag{5.2}
\end{equation*}
$$

denote a typical major arc, let \mathfrak{M} denote the union of the $\mathfrak{M}(q, a)$ with $1 \leqslant a \leqslant q \leqslant P$, $(a, q)=1$, and let

$$
\begin{equation*}
\mathfrak{m}=\left((2 k)^{-1} P^{1-k}, 1+(2 k)^{-1} P^{1-k}\right] \backslash \mathfrak{M} \tag{5.3}
\end{equation*}
$$

denote the corresponding minor arcs. Clearly the $\mathfrak{M}(q, a)$ are disjoint and contained in $\left((2 k)^{-1} P^{1-k}, 1+(2 k)^{-1} P^{1-k}\right]$.

It is not possible to estimate precisely the bulk of our generating functions throughout \mathfrak{M} without developing considerable machinery to handle the distribution of the elements of $\mathscr{A}\left(P, P^{\eta}\right)$ in arithmetic progressions to relatively large moduli, at least in mean. We therefore adopt a procedure for pruning the major arcs.

Let

$$
\begin{equation*}
\mathfrak{N}(q, a)=\left\{\alpha:|\alpha-a / q| \leqslant(2 k q)^{-1} W P^{-k}\right\} \tag{5.4}
\end{equation*}
$$

and let \mathfrak{N} denote the union of the $\mathfrak{R}(q, a)$ with $1 \leqslant a \leqslant q \leqslant W,(a, q)=1$. Evidently $\mathfrak{N}(q, a) \subset \mathfrak{M}(q, a)$ and $\mathfrak{N} \subset \mathfrak{M}$.

Let

$$
\begin{equation*}
\mathfrak{n}=\left((2 k)^{-1} P^{1-k}, 1+(2 k)^{-1} P^{1-k}\right] \backslash \mathfrak{R} \tag{5.5}
\end{equation*}
$$

so that

$$
\mathfrak{n}=(\mathfrak{M} \backslash \mathfrak{N}) \cup \mathfrak{m} .
$$

We first record some useful information regarding the standard generating function

$$
\begin{equation*}
f(\alpha)=\sum_{x \leqslant P} e\left(\alpha x^{k}\right) \tag{5.6}
\end{equation*}
$$

By Theorem 4.1 of [Va2], for $\alpha \in \mathfrak{M}(q, a)$ we have

$$
\begin{equation*}
f(\alpha)=V(\alpha, q, a)+O\left(q^{\frac{1}{2}+\varepsilon}\right) \tag{5.7}
\end{equation*}
$$

where

$$
\begin{gather*}
V(\alpha, q, a)=q^{-1} S(q, a) v(\alpha-a / q) \tag{5.8}\\
S(q, a)=\sum_{r=1}^{q} e\left(a r^{k} / q\right) \tag{5.9}
\end{gather*}
$$

and

$$
\begin{equation*}
v(\beta)=\sum_{x \leqslant n} \frac{1}{k} x^{\frac{1}{k}-1} e(\beta x) . \tag{5.10}
\end{equation*}
$$

Moreover, by Lemma 2.8 of [Va2] we have

$$
\begin{equation*}
v(\beta) \ll \min \left(P,\|\beta\|^{-1 / k}\right) . \tag{5.11}
\end{equation*}
$$

We will find the following lemma particularly useful.
Lemma 5.1. Suppose that $k \geqslant 3$ and $s \geqslant k+2$. Then

$$
\int_{\mathfrak{M}}|f(\alpha)|^{s} d \alpha \ll P^{s-k}
$$

and

$$
\int_{\mathfrak{M} \backslash \mathfrak{R}}|f(\alpha)|^{s} d \alpha \ll W^{\epsilon-1 / k} P^{s-k}
$$

Proof. By (5.7), for $\alpha \in \mathbb{M}(q, a)$ we have

$$
|f(\alpha)|^{s}-|V(\alpha, q, a)|^{s} \ll\left(q^{\frac{1}{2}+\varepsilon}\right)^{s}+q^{\frac{1}{2}+\varepsilon}|V(\alpha, q, a)|^{s-1}
$$

Let

$$
V(\alpha)=V(\alpha, q, a) \quad(\alpha \in \mathfrak{M}(q, a), 1 \leqslant a \leqslant q \leqslant P,(a, q)=1)
$$

and $\mathcal{M}=\mathfrak{M}$ or $\mathfrak{M} \backslash \mathfrak{M}$. Then the argument of Theorem 4.4 of [Va2] establishes that

$$
\int_{\mu}|f(\alpha)|^{s} d \alpha=\int_{\mu}|V(\alpha)|^{s} d \alpha+O\left(P^{s-\frac{1}{2}-k+\varepsilon}\right) .
$$

Moreover, by (5.11) and in the notation of Lemma 4.9 of [Va2] we have

$$
\int_{\mu}|V(\alpha)|^{s} d \alpha \ll P^{s-k} \sum_{q \leq P} S_{s}^{*}(q) \min \left(\left(\frac{q}{Y}\right)^{\frac{s}{k}-1}, 1\right)
$$

where $Y=1$ when $\mathcal{M}=\mathfrak{M}$ and $Y=W$ when $\mathcal{M}=\mathfrak{M} \backslash \mathfrak{M}$. By a variant of the argument of Lemma 4.9 of [Va2] we have, for $s \geqslant k+2$,

$$
\sum_{q \leqslant Z} q^{(s-1-k) / k} S_{s}^{*}(q) \ll Z^{\varepsilon} .
$$

Therefore

$$
\sum_{q \leqslant Y} q^{(s-k) / k} S_{s}^{*}(q) \ll Y^{++1 / k}
$$

and

$$
\sum_{q \geqslant Y} S_{s}^{*}(q) \ll Y^{e-(s-1-k) / k} .
$$

The lemma now follows easily.
It is also useful to record the standard estimate for f on \mathfrak{m} that is a consequence of Weyl's inequality (Lemma 2.4 of [Va2]), namely that

$$
\begin{equation*}
f(\alpha) \ll P^{1-\sigma+\varepsilon} \quad(\alpha \in \mathfrak{m}) \tag{5.1}
\end{equation*}
$$

where

$$
\sigma=2^{1-k} .
$$

Henceforward we suppose that η is a sufficiently small but fixed positive number, that $n>n_{0}(\eta)$, and take

$$
\begin{equation*}
R=P^{\eta} \tag{5.13}
\end{equation*}
$$

k		$t(k)$	$u(k)$
4	5	$v(k)$	
	5	1	2
6	9	1	1
7	13	2	3
8	20	1	1

Table 5.1
and

$$
\begin{equation*}
g(\alpha)=\sum_{x \in \operatorname{sid}(P, R)} e\left(\alpha x^{\natural}\right) . \tag{5.14}
\end{equation*}
$$

When $4 \leqslant k \leqslant 8$ we suppose that $t=t(k), u=u(k)$ and $v=v(k)$ are given by Table 5.1.
Lemma 5.2. Let t, u, v be as in Table 5.1, and let

$$
L=\int_{0}^{1}\left|f(\alpha)^{2 u} g(\alpha)^{2 t}\right| d \alpha
$$

and

$$
I(\mathscr{B})=\int_{\mathscr{B}}\left|f(\alpha)^{v} g(\alpha)^{2 t}\right| d \alpha
$$

Then

$$
\begin{gathered}
L \ll P^{2 t+2 u-k}, \\
I([0,1]) \ll P^{2 t+u-k}
\end{gathered}
$$

and there is a positive number δ such that

$$
I(\mathfrak{n}) \ll P^{2 t+v-k} W^{-\delta} .
$$

Proof. By Table 4.1,

$$
\lambda_{t}+v\left(1-2^{1-k}\right)<2 t+v-k .
$$

Therefore, by Theorems 4.2 and 4.3 and (5.12) we have

$$
\begin{equation*}
\int_{\mathrm{m}}\left|f(\alpha)^{2 u} g(\alpha)^{2 t}\right| d \alpha \ll P^{2 t+2 u-k-\delta}, \quad I(\mathrm{~m}) \ll P^{2 t+u-k-\delta} . \tag{5.15}
\end{equation*}
$$

Note that, by Table 5.1 we have $v \leqslant 2 u$.
By Hölder's inequality

$$
\int_{\mathfrak{R}}\left|f(\alpha)^{2 u} g(\alpha)^{2 t}\right| d \alpha \leqslant\left(\int_{\mathfrak{R}}|f(\alpha)|^{2 t+2 u} d \alpha\right)^{\frac{u}{t+u}}\left(\int_{\mathfrak{R}}|g(\alpha)|^{2 t+2 u} d \alpha\right)^{\frac{t}{t+u}}
$$

By replacing the last integral over \mathfrak{M} by one over $[0,1]$ and interpreting the result in terms of the underlying diophantine equation we see that

$$
\int_{\mathfrak{R}}|g(\alpha)|^{2 t+2 u} d \alpha \leqslant L
$$

Moreover, by Table 5.1 we have $2 t+2 u \geqslant k+2$. Therefore, by (5.15) and Lemma 5.1 we obtain

$$
L \ll P^{2 t+2 u-k}+\left(P^{2 t+2 u-k}\right)^{\frac{u}{t+u}} L^{\frac{t}{t+u}}
$$

and so secure the first part of the lemma.
Let $\mathcal{M}=\mathfrak{M}$ or $\mathfrak{M} \backslash \mathfrak{M}$. Then, by Hölder's inequality once more, we have

$$
I(\mathcal{M}) \leqslant\left(\int_{\mathcal{M}}|f(\alpha)|^{\frac{u}{u}(t+u)} d \alpha\right)^{\frac{u}{t+u}}\left(\int_{\mathcal{M}}|g(\alpha)|^{2 t+2 u} d \alpha\right)^{\frac{t}{t+u}}
$$

As before the last integral here is bounded by L. By Table 5.1, $v \geqslant u$ and $t+u \geqslant k+2$. Hence, by Lemma 5.1 and (5.15),

$$
\begin{aligned}
I([0,1]) & \ll P^{2 t+v-k}+\left(P^{\frac{v}{u}(t+u)-k}\right) \frac{u}{t+u} \\
& \left.\ll P^{2 t+2 u-k}\right)^{\frac{t}{t+u}}
\end{aligned}
$$

and

$$
\begin{aligned}
I(\mathrm{n}) & \ll P^{2 t+v-k-\delta}+\left(P^{\frac{v}{u}(t+u)-k} W^{t-1 / k}\right) \frac{u}{t+u}\left(P^{2 t+2 u-k}\right)^{\frac{t}{t+u}} \\
& \ll P^{2 t+v-k} W^{-\delta}
\end{aligned}
$$

as required.
The next step in our argument is to estimate

$$
\int_{\mathfrak{R}} f(\alpha)^{v} g(\alpha)^{2 t} e \dot{(-\alpha n) d \alpha}
$$

asymptotically for a suitable choice of W. We achieve this through the approximation for g embodied in Lemma 5.4. Before starting this we introduce some notation. Let $\varrho(x)$ denote Dickman's function, defined for real x by

$$
\begin{aligned}
& \varrho(x)=0 \text { when } x<0 \text {, } \\
& \varrho(x)=1 \text { when } 0 \leqslant x \leqslant 1 \text {, } \\
& \varrho \text { continuous for } x>0 \text {, } \\
& \varrho \text { differentiable for } x>1 \text {, } \\
& x \varrho^{\prime}(x)=-\varrho(x-1) \text { when } x>1 \text {. }
\end{aligned}
$$

For an extensive study of the properties of ϱ see [B1]. Note that for $x \geqslant 0, \varrho(x)$ is positive and decreasing.

We further define

$$
\begin{equation*}
w(\beta)=\sum_{R^{k}<m \leqslant n} \frac{1}{k} m^{\frac{1}{k}-1} \varrho\left(\frac{\log m}{k \log R}\right) e(\beta m) \tag{5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
W(\alpha, q, a)=q^{-1} S(q, a) w(\alpha-a / q) . \tag{5.17}
\end{equation*}
$$

At several stages in our arguments we require some knowledge of the asymptotics of $\mathscr{A}(P, R)$. This is summarised in

Lemma 5.3. Let τ be a fixed positive number and suppose that $R \leqslant X \leqslant R^{\tau}$. Then

$$
\operatorname{card}(\mathscr{A}(X, R))=X \varrho\left(\frac{\log X}{\log R}\right)+O\left(\frac{X}{\log X}\right)
$$

Proof. The lemma is immediate from (1.3) and (1.4) of [B2] and standard estimates from prime number theory.

Lemma 5.4. Suppose that $q \leqslant R,(a, q)=1$ and $\beta=\alpha-a / q$. Then

$$
g(\alpha)=W(\alpha, q, a)+O\left(\frac{q P}{\log P}(1+n|\beta|)\right)
$$

and

$$
W(\alpha, q, a) \ll q^{-1 / k} \min \left(P,\|\beta\|^{-1 / k}\right) .
$$

Proof. Let Π denote the product of all primes p with $R<p \leqslant P$, and suppose that $R<m \leqslant P$. Then

$$
\sum_{\substack{x \in \mathcal{A}(m, R) \\ x=r(\bmod q)}} 1=\sum_{\substack{d \| \Pi \\ d \leq m}} \mu(d) \sum_{\substack{y \leq m / d \\ y d=r(\bmod q)}} 1 .
$$

Since $d \mid \Pi$ and $q \leqslant R$ we have $(d, q)=1$. Hence

$$
\begin{aligned}
\sum_{\substack{x \in g(m, R) \\
x=r(\bmod q)}} 1 & =\sum_{\substack{d \Pi \\
d \leqslant m}} \mu(d)\left(\frac{m}{d q}+O(1)\right) \\
& =\frac{1}{q} \sum_{\substack{d \Pi \\
d \leqslant m}} \mu(d) \frac{m}{d}+O\left(\sum_{\substack{d \Pi \\
d \leqslant m}} 1\right) .
\end{aligned}
$$

Hence, by the case $q=1$, we obtain

$$
\sum_{\substack{x \in S(m, R) \\ x=r(\bmod q)}} 1=\frac{1}{q} \sum_{x \in s(m, R)} 1+O\left(\sum_{\substack{d \| \Pi \\ d \leqslant m}} 1\right) .
$$

The error term here is bounded by the number of natural numbers not exceeding m which are coprime with $\Pi_{p \leqslant R} p$. Hence, by Theorem 2.2 of [HR] and elementary prime number theory we have

$$
\sum_{\substack{x \in \operatorname{san}(m) \\ x \in=(\bmod q)}} 1=\frac{1}{q_{x}} \sum_{x \in \operatorname{sem}(m, R)} 1+O\left(\frac{P}{\log P}\right) \quad(R<m \leqslant P) .
$$

Therefore

$$
\sum_{x \in s(m, R)} e\left(a x^{k} / q\right)=q^{-1} S(q, a) \sum_{x \in S(m, R)} 1+O\left(\frac{q P}{\log P}\right) .
$$

Let

$$
S_{y}=\sum_{x \in s\left(a\left(y^{1 / k}, R\right)\right.}\left(e\left(a x^{k} / q\right)-q^{-1} S(q, a)\right)
$$

so that for $R^{k}<y \leqslant n$ we have

$$
S_{y}<\frac{q P}{\log P} .
$$

Then, by partial summation

$$
\begin{aligned}
& \sum_{\substack{x \in \operatorname{spq}(P, R) \\
x>R}}\left(e\left(\alpha x^{k}\right)-q^{-1} S(q, a) e\left(\beta x^{h}\right)\right) \\
& \quad=\sum_{R^{k}<y \leqslant n} S_{y}(e(\beta y)-e(\beta(y+1)))+S_{n} e(\beta(n+1))-S_{\left[R^{k}\right]} e\left(\beta\left(\left[R^{k}\right]+1\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{\substack{x \in \mathscr{S}(P, R) \\ x>R}}\left(e\left(\alpha x^{k}\right)-q^{-1} S(q, a) e\left(\beta x^{h}\right)\right) \ll \frac{n q P}{\log P}|\beta|+\frac{q P}{\log P} \tag{5.18}
\end{equation*}
$$

Let

$$
T_{y}=\sum_{\left.x \in \operatorname{sth} y^{1 / k}, R\right)} 1
$$

Then, by the previous lemma

$$
T_{y}=y^{1 / k} \varrho\left(\frac{\log y}{\log R}\right)+O\left(\frac{y^{l / k}}{\log P}\right)
$$

whenever $R^{k}<y \leqslant n$. Hence, by partial summation

$$
\begin{aligned}
\sum_{x \in \Omega(P, R), x>R} e\left(\beta x^{k}\right)= & \sum_{R^{k}<y \leqslant n} T_{y}(e(\beta y)-e(\beta(y+1)))+T_{n} e(\beta(n+1))-T_{\left[R^{k}\right]} e\left(\beta\left(\left[R^{k}\right]+1\right)\right) \\
= & \sum_{R^{k}<y \leqslant n}\left(y^{1 / k} \varrho\left(\frac{\log y}{k \log R}\right)-(y-1)^{1 / k} \varrho\left(\frac{\log (y-1)}{k \log R}\right)\right) e(\beta y) \\
& +O\left(\frac{P}{\log P}(1+n|\beta|)\right)
\end{aligned}
$$

When $y>R^{k}+1$, an application of the mean value theorem shows, since ϱ^{\prime} is bounded, that

$$
y^{1 / k} \varrho\left(\frac{\log y}{k \log R}\right)-(y-1)^{1 / k} \varrho\left(\frac{\log (y-1)}{k \log R}\right)=\frac{1}{k} y^{\frac{1}{k}-1} \varrho\left(\frac{\log y}{k \log R}\right)+O\left(\frac{y^{\frac{1}{k}-1}}{\log R}+\frac{1}{k} y^{\frac{1}{k}-2}\right)
$$

Thus, by (5.16),

$$
\sum_{\substack{x \in \underset{x}{x}(P, R) \\ x>R}} e\left(\beta x^{k}\right)=w(\beta)+O\left(\frac{P}{\log P}(1+n|\beta|)\right)
$$

This with (5.18) establishes the first part of the lemma.
The second part of the lemma follows by the methods of Lemmas 2.8 and 4.6 of [Va2] and the monotonicity of ϱ.

By imitating the usual method of estimation on the major arcs, where necessary using Lemma 5.4 , we obtain when $W \leqslant R$

$$
\begin{equation*}
\int_{\mathfrak{R}} f(\alpha)^{v} g(\alpha)^{2 t} e(-\alpha n) d \alpha=\Im(n) J(n)+O\left(P^{2 t+v-k}\left(\frac{W^{C}}{\log P}+W^{-\delta}\right)\right) \tag{5.19}
\end{equation*}
$$

where C and δ are positive constants that depend only on t, v and k, where $\Xi(n)$ is the usual singular series in Waring's problem

$$
\Im(n)=\sum_{q=1}^{\infty} \sum_{\substack{a=1 \\(a, q)=1}}^{q}(S(q, a) / q)^{2 t+v} e(-a n / q)
$$

and where

$$
J(n)=\sum_{y_{1}} \ldots \sum_{y_{v}} \sum_{x_{1}} \ldots \sum_{x_{2 t}} k^{-v-2 t}\left(y_{1} \ldots y_{v} x_{1} \ldots x_{2 t}\right)^{\frac{1}{k}-1} \varrho_{1} \ldots \varrho_{2 t}
$$

with

$$
\varrho_{j}=\varrho\left(\frac{\log x_{j}}{k \log R}\right)
$$

and the multiple sum is over $y_{1}, \ldots, y_{v}, x_{1}, \ldots, x_{2 t}$ satisfying

$$
\begin{gathered}
y_{1} \leqslant n, \ldots, y_{v} \leqslant n, \quad R^{k}<x_{1} \leqslant n, \ldots, R^{k}<x_{2 t} \leqslant n \\
y_{1}+\ldots+y_{v}+x_{1}+\ldots+x_{2 t}=n .
\end{gathered}
$$

By Lemma 5.2 and (5.19) with W a suitable power of $\log P$ we obtain

$$
R(n)=\Xi(n) J(n)+O\left(P^{2 t+v-k}(\log P)^{-v}\right)
$$

where v is a positive constant and $R(n)$ is the number of solutions of

$$
y_{1}^{k}+\ldots+y_{v}^{k}+x_{1}^{k}+\ldots+x_{2 t}^{k}=n
$$

with $x_{j} \in \mathscr{A}(P, R)$.
A simple counting argument combined with the fact that

$$
\varrho\left(\frac{\log x_{j}}{k \log R}\right) \gg 1
$$

when $R^{k}<x_{j} \leqslant n$ establishes that

$$
J(n) \gg P^{2 t+v-k}
$$

Moreover, by Theorem 4.6 of [Va2] and Table 5.1,

$$
\mathfrak{S}(n) \gg 1
$$

when $k \geqslant 5$. This conclusion is also evident when $k=4$ and $n \equiv r(\bmod 16)$ with $1 \leqslant r \leqslant 12$ by the argument in the penultimate paragraph on page 87 of [Va 2].

This establishes Theorems 1.1 and 1.2.

6. Sums of three $\boldsymbol{k t h}$ powers

Theorem 1.3 follows immediately from Theorem 4.4 via Cauchy's inequality and the lower bound

$$
\operatorname{card}\left(\mathscr{A}\left(P, P^{\eta}\right)\right) \gtrdot P
$$

that is a consequence of Lemma 5.4, for example.
Theorem 1.4 follows likewise from Theorems 4.2 and 4.3 on observing that in Theorem 4.2 if $\lambda_{3}=3+1 / k$, then ($j 1$) holds with $j=2, \theta=1 / 2 k$.

7. A simplified estimation and an exponential sum

We obtain Theorem 1.5 by combining our method with an idea of Vinogradov. We first state a bound for $S_{s}\left(P, P^{\eta}\right)$ that avoids an excess of calculation when k is large.

Theorem 7.1. Suppose that $k \geqslant 5, \lambda_{1}=1$ and that for $s \geqslant 2, \lambda_{s}$ is given by

$$
\lambda_{s}=2 s-k+(k-2)\left(1-\frac{1}{k}\right)^{s-2}
$$

Suppose further that $\lambda>\lambda_{s}$. Then, provided that $0<\eta<\eta_{0}\left(\lambda-\lambda_{s}\right)$ and $P>P_{0}(\eta, s)$, we have

$$
S_{s}\left(P, P^{\eta}\right)<P^{\lambda}
$$

Proof. The theorem follows from Theorem 4.2 on observing that ($j 1$) is satisfied with $\theta=1 / k$ when $t \leqslant 2^{k-1}$ and that $(k-2)$ is also satisfied with $\theta=1 / k$ when $t \geqslant 2 k-2$.

Let

$$
\begin{equation*}
X=P^{1 / 2} \tag{7.1}
\end{equation*}
$$

and for a sufficiently small positive number η let

$$
\begin{equation*}
\mathscr{B}=\left\{x: x=p y, \frac{1}{2} X<p \leqslant X, y \in \mathscr{A}\left(X, X^{\eta}\right)\right\} \tag{7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
h(\alpha)=\sum_{x \in \mathscr{R}} e\left(\alpha x^{h}\right) \tag{7.3}
\end{equation*}
$$

By Hölder's inequality,

$$
\begin{equation*}
|h(\alpha)|^{2 s} \leqslant X^{2 s-1} \sum_{\frac{1}{2} X<p \leqslant X}\left|\sum_{y \leqslant Y} b_{y} e\left(\alpha p^{k} y\right)\right|^{2} \tag{7.4}
\end{equation*}
$$

where $Y=s X^{k}$ and b_{y} is the number of solutions of

$$
y_{1}^{k}+\ldots+y_{s}^{k}=y
$$

with $y_{j} \in \mathscr{A}\left(X, X^{\eta}\right)$. We note for future reference that

$$
\begin{equation*}
\sum_{y} b_{y}^{2}=S_{s}\left(X, X^{\eta}\right) \tag{7.5}
\end{equation*}
$$

Let m be as in the hypothesis of Theorem 1.5, and let $\alpha \in m$. Choose a, q so that $(a, q)=1, q \leqslant 2 X^{k},|\alpha-a / q| \leqslant \frac{1}{2} q^{-1} X^{-k}$. Then, by the definition of m, either $q>X$, or $q \leqslant X$ and $|\alpha-a / q|>q^{-1} X^{1-2 k}>q^{-1} X^{1-k} Y^{-1}$. Thus the hypothesis of Lemma 5.4 of [Va2] is satisfied. Hence we may estimate the right hand side of (7.4) in the same way that (5.44) of [Va2] is estimated. Thus

$$
|h(\alpha)|^{2 s} \ll X^{2 s-1} Y^{1+\varepsilon} \sum_{y}\left|b_{y}\right|^{2} .
$$

Therefore, by (7.5) and Theorem 7.1, when $0<\eta<\eta_{0}(\varepsilon)$ and $P>P_{0}(\eta, s)$, we have

$$
|h(\alpha)|^{2 s} \ll X^{2 s-1+k+\lambda_{s}+\varepsilon} .
$$

This means that

$$
h(\alpha) \ll P^{1-\sigma+\varepsilon}
$$

where

$$
\sigma=\sigma(k, s)=\frac{1}{4 s}\left(1-(k-2)\left(1-\frac{1}{k}\right)^{s-2}\right)
$$

In addition, by (7.1), (7.2) and Lemma 5.3 we have

$$
\operatorname{card} \mathscr{B} \gg \frac{X^{2}}{\log X} \gg \frac{P}{\log P}
$$

This establishes the main part of Theorem 1.5.
The maximum of $\sigma(k, s)$ as s varies is attained for a value of s satisfying

$$
\left|s-\lambda\left(\log \frac{k}{k-1}\right)^{-1}\right|<1
$$

where λ is the larger root of the transcendental equation

$$
\begin{equation*}
(\lambda+1) \frac{k^{2}(k-2)}{(k-1)^{2}}=e^{\lambda} \tag{7.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lambda=\log k+\log \log k+O\left(\frac{\log \log k}{\log k}\right) \tag{7.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho(k)=\frac{\log \frac{k}{k-1}}{4(\lambda+1)}\left(1+O\left(\frac{1}{k \log k}\right)\right) \tag{7.8}
\end{equation*}
$$

This completes the proof of Theorem 1.5.

8. The estimation of $\boldsymbol{G}(\boldsymbol{k})$ when \boldsymbol{k} is large

We now investigate the possibility of combining Theorems 1.5 and 7.1 through a variant of the argument developed in $\S 5$ to establish Theorem 1.1.

Let $\mathfrak{M}, \mathfrak{N}, \mathfrak{m}, \mathfrak{n}$ be as in $\S 5$, and let f, g, h be as in (5.7), (5.14) and (7.3). We suppose that $0<\eta<\eta_{0}(\varepsilon)$, that

$$
\begin{gather*}
u \geqslant k+1, \tag{8.1}\\
2 t \varrho(k)>(k-2)\left(1-\frac{1}{k}\right)^{u-2} \tag{8.2}
\end{gather*}
$$

where $\varrho(k)$ is as in Theorem 1.5 and define

$$
L=\int_{0}^{1}\left|f(\alpha)^{2} g(\alpha)^{2 u} h(\alpha)^{2 t}\right| d \alpha
$$

and

$$
I=\int_{\pi}\left|f(\alpha) g(\alpha)^{2 u} h(\alpha)^{2 t}\right| d \alpha
$$

By Hölder's inequality and Theorem 1.5 (note that $\mathfrak{m} \subset m$),

$$
L \ll \int_{\mathrm{m}} P^{2+2 t-2 t e(k)+\varepsilon}|g(\alpha)|^{2 u} d \alpha+\left(\int_{\mathfrak{M}}|f(\alpha)|^{k+2} d \alpha\right)^{\frac{2}{k+2}}\left(\int_{0}^{1}\left|g(\alpha)^{2 u} h(\alpha)^{2 t}\right|^{\frac{k+2}{k}}\right)^{\frac{k}{k+2}}
$$

By Theorem 7.1 and (8.2) the first integral on the right is

$$
\ll P^{2+2 t+2 u-k}
$$

By (8.1), $4 u / k \geqslant 2$ so that the last integral on the right is bounded by

$$
\int_{0}^{1}\left|g(\alpha)^{2+2 u} h(\alpha)^{2 t}\right| P^{\frac{4 u}{k}-2+\frac{4 t}{k}} d \alpha \leqslant L P^{(4 u+4 t-2 k) / k}
$$

Hence, by Lemma 5.1,

$$
L \ll P^{2+2 t+2 u-k}+\left(P^{2}\right)^{\frac{2}{k+2}}\left(L P^{(4 u+4 t-2 k) / k}\right)^{\frac{k}{k+2}},
$$

whence

$$
L \ll P^{2+2 t+2 u-k} .
$$

Now a cognate argument gives

$$
I \ll P^{1+2 t+2 u-k-\delta}+\left(\int_{\mathfrak{R} \backslash \Re}|f(\alpha)|^{k+2} d \alpha\right)^{\frac{1}{k+2}}\left(\int_{0}^{1}\left|g(\alpha)^{2 u} h(\alpha)^{2 t}\right|^{\frac{k+2}{k+1}} d \alpha\right)^{\frac{k+1}{k+2}}
$$

where δ is a suitable postive number. Since $u \geqslant k+1$ the last integral on the right is bounded by

$$
L P^{\frac{2 u}{k+1}-2+\frac{2 t}{k+1}}
$$

By applying our bound for L and appealing to Lemma 5.1 we obtain

$$
I \ll P^{I+2 t+2 u-k} W^{-\delta}
$$

The process developed for dealing with the contribution from \mathfrak{N} in $\S 5$ now shows that every large n can be written as the sum of $1+2 t+2 u k t$ powers. We take

$$
v=u-2, \quad t=1+\left[\frac{k-2}{2 \varrho(k)}\left(1-\frac{1}{k}\right)^{\nu}\right]
$$

Thus

$$
G(k) \leqslant 7+2 v+2\left[\frac{k-2}{2 \varrho(k)}\left(1-\frac{1}{k}\right)^{v}\right]
$$

The remark after Theorem 1.6 can be justified by observing that the optimising choice of v occurs with $|v-\mu|<1$ where

$$
\mu \log \frac{k}{k-1}=\log \left(\frac{k-2}{2 \varrho(k)} \log \frac{k}{k-1}\right)
$$

Thus

$$
\begin{aligned}
G(k) & \leqslant \frac{2 \log \left(\mathrm{e} \frac{k-2}{2 \varrho(k)} \log \frac{k}{k-1}\right)}{\log \frac{k}{k-1}}+O(\log k) \\
& =2 k \log \left(\frac{\mathrm{e}}{2 \varrho(k)}\right)+O(\log k)
\end{aligned}
$$

and by (7.6), (7.7) and (7.8)

$$
\begin{aligned}
\log \frac{1}{4 \varrho(k)} & =\log (k(\lambda+1))+O\left(\frac{1}{k}\right) \\
& =\log (k \log k)+O\left(\frac{\log \log k}{\log k}\right)
\end{aligned}
$$

k	$s(k)$	k	$s(k)$	k	$s(k)$	k	$s(k)$
8	22	12	44	15	60	18	78
9	28	13	48	16	66	19	84
10	32	14	54	17	72	20	90
11	38						

Table 9.1

9. The estimation of $\boldsymbol{G}(k)$ when $9 \leqslant k \leqslant 20$

When k is of moderate size we may vary the argument of the previous section by using Theorem 4.2 with optimal choices for the λ_{s} to establish improved versions of both Theorem 1.6 and Theorem 1.7. A further improvement can be brought about by employing a more precise form of the proof of Theorem 1.6.

Let

$$
\begin{align*}
& X=P^{\frac{k}{2 k-1}} \tag{9.1}\\
& Z=P X^{-1} \tag{9.2}
\end{align*}
$$

and define the generating function h by

$$
\begin{gather*}
\mathscr{C}=\left\{x: x=p z, \frac{1}{2} X<p \leqslant X, z \in \mathscr{A}\left(Z, Z^{\eta}\right)\right\}, \tag{9.3}\\
h(\alpha)=\sum_{x \in \mathscr{C}} e\left(\alpha x^{\prime}\right) \tag{9.4}
\end{gather*}
$$

We now define $s=s(k)$ as in Table 9.1.
Then, by Lemma 4.2 and Tables 4.1 and 4.2 we have

$$
\begin{equation*}
S_{s}\left(Z, Z^{\eta}\right)<Z^{\lambda} \tag{9.5}
\end{equation*}
$$

whenever $\lambda>\lambda_{s}, 0<\eta<\eta_{0}\left(\lambda-\lambda_{s}\right)$ and $P>P_{0}(\eta)$.
Since s is even we may write $2 r=s$. By Hölder's inequality

$$
\begin{align*}
|h(\alpha)|^{s} & \leqslant X^{s-1} \sum_{\frac{1}{2} X<p \leqslant X}\left|\sum_{z \in \alpha\left(Z, Z^{n}\right)} e\left(\alpha p^{k} z^{k}\right)\right|^{2 r} \\
& =X^{s-1} \sum_{\frac{1}{2} X<p \leqslant X} \sum_{\mid y \leqslant Y} c_{y} e\left(\alpha p^{k} y\right) \tag{9.6}
\end{align*}
$$

k	$\sigma(k)$	k	$\sigma(k)$	k	$\sigma(k)$	k	$\sigma(k)$
8	0.01008306	12	0.00481491	15	0.00346504	18	0.00270010
9	0.00791794	13	0.00425964	16	0.00316742	19	0.00251303
10	0.00652403	14	0.00382220	17	0.00291609	20	0.00234894
11	0.00553974						

Table 9.2
where c_{y} is the number of solutions of

$$
z_{1}^{k}-z_{2}^{k}+\ldots+z_{2 r-1}^{k}-z_{2 r}^{k}=y
$$

with $z_{i} \in \mathscr{A}\left(Z, Z^{\eta}\right)$ and

$$
\begin{equation*}
Y=r Z^{k} \tag{9.7}
\end{equation*}
$$

Let n denote the set of real numbers α such that whenever $a \in \mathbf{Z}, q \in \mathbf{N},(a, q)=1$ and $|\alpha-a / q| \leqslant q^{-1} X^{1-k} Y^{-1}$ one has $q>X$.

Let $\alpha \in_{n}$ and choose a, q so that $(a, q)=1, q \leqslant 2(2 X)^{k}$ and $|\alpha-a / q| \leqslant q^{-1} 2^{-1}(2 X)^{-k}$. Then, by the definition of n, either $q>X$, or $q \leqslant X$ and $|\alpha-a / q|>q^{-1} X^{1-k} Y^{-1}$. We now appeal to a variant of Vinogradov's estimate for sums of the kind on the right of (9.6). The most effective form for the purpose at hand is that contained in the main Lemma of [T2]. Thus, as $c_{y}=c_{-y}$,

$$
\begin{aligned}
\sum_{\frac{1}{2} X<p \leq X} \sum_{y \mid \leq Y} c_{y} e\left(\alpha p^{k} y\right) & =\sum_{\frac{1}{2} X<p \leq X}\left(c_{0}+2 \operatorname{Re} \sum_{0<y \leq Y} c_{y} e\left(\alpha p^{k} y\right)\right) \\
& \ll X^{C}\left(X Y+X^{k}\right)\left(\sum_{|y| \leqslant Y} c_{y}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Hence, by (9.1), (9.2), (9.6) and (9.7)

$$
|h(\alpha)|^{2 s} \ll X^{2 s+k-2+\varepsilon} S_{s}\left(Z, Z^{\eta}\right) .
$$

Therefore, by (9.5),

$$
h(\alpha) \ll P^{1-\sigma+\varepsilon} \quad\left(0<\eta<\eta_{1}(\varepsilon), P>P_{1}(\eta)\right)
$$

k	$u(k)$	$t(k)$									
9	34	6	12	52	20	15	71	28	18	90	36
10	39	14	13	58	24	16	77	32	19	97	37
11	46	16	14	64	27	17	84	33	20	104	39

Table 9.3
where

$$
\sigma=\sigma(k)=\frac{(k-1)\left(2 s-\lambda_{s}\right)-k(k-2)}{2 s(2 k-1)}
$$

The values of σ that arise from Tables 4.1 and 4.2 by taking s as in Table 9.1 are listed below in Table 9.2. The values given are rounded down in the last decimal place.

Now let $u=u(k)$ and $t=t(k)$ be given by Table 9.3.
We take $\mathfrak{M}, \mathfrak{R}, \mathfrak{m}, \mathfrak{n}$ as in $\S 5$, so that $\mathfrak{m} \subset \mathfrak{n}$ and define $t_{0}=t_{0}(k)$ by

$$
t_{0}-1<\frac{1}{2} t \leqslant t_{0} .
$$

By Tables 4.2, 9.2 and 9.3

$$
\lambda_{u}+t(1-\sigma)<2 u+t-k \quad(k \neq 9 \text { or } 15)
$$

Therefore, by a variant of the argument of $\S 8$, and with f and g as in (5.7) and (5.14) we have

$$
\int_{0}^{1}\left|f(\alpha)^{2} g(\alpha)^{2 u} h(\alpha)^{2 t_{0}}\right| d \alpha \ll P^{2+2 u+2 t_{0}-k}
$$

and

$$
\begin{equation*}
\int_{\pi}\left|f(\alpha) g(\alpha)^{2 u} h(\alpha)^{t}\right| d \alpha \ll P^{1+2 u+t-k} W^{-\delta} \tag{9.8}
\end{equation*}
$$

When $k=9$ or 15 we observe that by Lemma 2.4 and Theorem 5.3 of [Va2]

$$
f(\alpha) \ll P^{1-\tau} \quad(\alpha \in \mathfrak{m})
$$

where

$$
\tau=0.00390625(k=9), \quad \tau=0.000347551(k=15) .
$$

Thus

$$
1-\tau+\lambda_{u}+t(1-\sigma)<1+2 u+t-k
$$

and our argument may proceed as before. Thus (9.8) holds in this case also.
It now follows by a kindred method to that used in $\S 5$ for dealing with \Re that

$$
G(k) \leqslant 1+2 u+t
$$

and this establishes Theorem 1.7.

10. Another exponential sum

We now proceed with the proof of Theorem 1.8. Let $\alpha \in m$ and choose a, q so that

$$
\begin{equation*}
(a, q)=1, \quad q \leqslant P^{k / 2}, \quad|\alpha-a / q| \leqslant q^{-1} P^{-k / 2} \tag{10.1}
\end{equation*}
$$

We desire to convert $S(\alpha)$ into the kind of sum considered in the proof of Theorem 1.5. However the possibility that (q, x^{h}) may be large is a nuisance. We deal with this by first removing the common factors that may arise by writing

$$
S(\alpha)=\sum_{\substack{q_{0} \mid q}} \sum_{\substack{x \in \mathscr{S}(P, R) \\\left(q, x^{k}\right)=q_{0}}} e\left(\alpha x^{k}\right) .
$$

Let q_{k}^{k} be the largest k th power dividing q_{0}, q_{q-1}^{k-1} be the largest ($k-1$)st power dividing $q_{0} q_{k}^{-k}$, and so on. Then $q_{1} \ldots q_{k} \mid x$. Hence

$$
\begin{align*}
S(\alpha) & =\sum_{q_{0} \mid q} \sum_{\substack{y q_{1} \ldots q_{k} \in \mathbb{E}(P, R) \\
\left(q / q_{0}, y^{k} q_{1}^{k-2} \ldots q_{k-1}\right)=1}} e\left(\alpha y^{k} q_{1}^{k} \ldots q_{k}^{k}\right) \tag{10.2}\\
& =\sum_{q_{0} r=q}^{*} T\left(\alpha q_{1}^{k} \ldots q_{k}^{k}, P /\left(q_{1} \ldots q_{k}\right), R, r\right)+O\left(q^{\varepsilon} P^{1-\delta}\right)
\end{align*}
$$

where $\Sigma_{q_{0} r=q}^{*}$ indicates a sum over q_{0} with

$$
\begin{equation*}
q_{0} r=q_{1} \quad q_{0}=q_{1} q_{2}^{2} \ldots q_{k}^{k}, \quad q_{1} \ldots q_{k} \leqslant P^{\delta}, \quad q_{1} \ldots q_{k} \in \mathscr{A}(P, R), \quad\left(r, q_{1}^{k-1} \ldots q_{k-1}\right)=1 \tag{10.3}
\end{equation*}
$$

$q_{1} \ldots q_{k}$ squarefree, and

$$
\begin{equation*}
T(\gamma, Q, R, r)=\sum_{\substack{y \in \operatorname{sq}(Q, R) \\(r, y)=1}} e\left(\gamma y^{k}\right) \tag{10.4}
\end{equation*}
$$

The next lemma provides a convenient method of factorising the elements of $\mathscr{A}(Q, R)$.

Lemma 10.1. Suppose that $2 \leqslant R \leqslant M<y \leqslant Q$ and $y \in \mathscr{A}(Q, R)$. Then there is a unique triple (p, u, v) with
(i) $y=u v$,
(ii) $u \in \mathscr{A}(Q / v, p)$,
(iii) $M<v \leqslant M p$,
(iv) $p \mid v$,
(v) $p^{\prime} \mid v \Rightarrow p \leqslant p^{\prime} \leqslant R$.

Proof. We first show the existence of the triple (p, u, v). Write $y=p_{1} \ldots p_{s}$ where $R \geqslant p_{1} \geqslant p_{2} \geqslant \ldots$ and let

$$
d_{j}=\prod_{i \leqslant j} p_{i}
$$

Then $1=d_{0}<d_{1}<\ldots<d_{s}=y$ and, since $y>R$ and $y \in \mathscr{A}(Q, R)$ we have $s \geqslant 2$. Since $1<M<y$ there is a t such that $d_{t} \leqslant M<d_{t+1}$. Since $M \geqslant R$ we have $t \geqslant 1$, and since $M<y$ we have $t<s$. Therefore $M<d_{t+1}=d_{t} p_{t+1} \leqslant M p_{t+1}$. We take $p=p_{t+1}, v=d_{t+1}, u=y / v$. Clearly each of (i), \ldots, (v) is satisfied.

Now we show the uniqueness of the triple (p, u, v). Suppose that there is another, say ($p^{\prime}, u^{\prime}, v^{\prime}$). Without loss of generality we may suppose that either $p^{\prime}<p$, or $p^{\prime}=p$ and $v^{\prime}>v$. Let w and w^{\prime} denote the largest divisors of y which have all their prime factors exceeding p and p^{\prime} respectively. Then $v=p^{h} w$ and $v^{\prime}=\left(p^{\prime}\right)^{h^{\prime}} w^{\prime}$ where $h \geqslant 1$ and $h^{\prime} \geqslant 1$.

If $p^{\prime}<p$, then $v \mid w^{\prime}$ so that

$$
\begin{equation*}
v^{\prime} \geqslant p^{\prime} v>p^{\prime} M \tag{10.5}
\end{equation*}
$$

If $p^{\prime}=p$, then $w=w^{\prime}$. Therefore, as $v^{\prime}>v$, we have $h^{\prime}>h$. Therefore (10.5) holds in this case also.

Clearly (10.5) contradicts the definition of ($p^{\prime}, u^{\prime}, v^{\prime}$).

We now apply Lemma 10.1 to T. Note that for any triple (p, u, v) satisfying (ii)-(v) we have $u v \in \mathscr{A}(Q, R)$ and $M<u v \leqslant Q$. Thus, there is a bijection between the y and the (p, u, v). Hence, by (10.4),

$$
\begin{equation*}
T(\gamma, Q, R, r)=\sum_{\substack{M<y \leqslant Q \\ y \in \mathscr{\sim}(Q, R) \\(r, y)=1}} e\left(\gamma y^{k}\right)+O(M)=\sum_{\substack{p \leqslant R \\ p \nmid r}} U(\gamma, Q, M, R, r, p)+O(M) \tag{10.6}
\end{equation*}
$$

where

$$
\begin{equation*}
U(\gamma, Q, M, R, r, p)=\sum_{\substack{v \in \mathscr{B}(M, p, R) \\(v, r)=1}} \sum_{\substack{u \in \mathscr{S}(Q / v, p) \\(u, r)=1}} e\left(\gamma u^{k} v^{k}\right) \tag{10.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{B}(M, p, R)=\left\{v: M<v \leqslant M p, p\left|v, p^{\prime}\right| v \Rightarrow p \leqslant p^{\prime} \leqslant R\right\} \tag{10.8}
\end{equation*}
$$

For $v>M$ we have

$$
\sum_{\substack{u \in \mathfrak{d q}\left(Q^{\prime} v, p\right) \\(u, r)=1}} e\left(\gamma u^{k} v^{k}\right)=\int_{0}^{1}\left(\sum_{\substack{u \in \operatorname{su}(Q / M, p) \\(u, r)=1}} e\left(\gamma u^{k} v^{k}+\theta u\right)\right)\left(\sum_{x \leqslant Q^{/ v}} e(-\theta x)\right) d \theta
$$

Therefore

$$
\begin{align*}
U(\gamma, Q, M, R, r, p) & \ll \int_{0}^{1} V(\gamma, Q, M, R, r, p, \theta) \min \left(\frac{Q}{M}, \frac{1}{\|\theta\|}\right) d \theta \\
& \ll(\log Q) \sup _{\theta} V(\gamma, Q, M, R, r, p, \theta) \tag{10.9}
\end{align*}
$$

where

$$
\begin{equation*}
V(\gamma, Q, M, R, r, p, \theta)=\sum_{\substack{M<v \leq M R \\(v, r)=1}}\left|\sum_{\substack{u \in \mathcal{A N}(Q / M, p) \\(u, r)=1}} e\left(\theta u+\gamma v^{k} u^{k}\right)\right| . \tag{10.10}
\end{equation*}
$$

Now we take

$$
\begin{equation*}
\gamma=\alpha q_{1}^{k} \ldots q_{k}^{k}, \quad Q=P /\left(q_{1} \ldots q_{k}\right), \quad M=P^{1 / 2} R^{-1}\left(2 q_{1}^{k-1} q_{2}^{k-2} \ldots q_{k-1}\right)^{-1 / k} \tag{10.11}
\end{equation*}
$$

Note that γ and Q agree with the choices forced upon us when we substitute (10.4) into (10.2).

By (10.2), (10.6) and (10.9),

$$
\begin{equation*}
S(\alpha) \ll P^{1-\delta+\varepsilon}+(\log P) \sum_{q_{0} r=q}^{*} \sum_{p \leqslant R} \sup _{\theta} V(\gamma, Q, M, R, r, p, \theta) . \tag{10.12}
\end{equation*}
$$

When $(h, r)=1$, the number J of solutions of the congruence $x^{k} \equiv h(\bmod r)$ satisfies $J \ll r^{\varepsilon}$. Hence there is an $L \ll r^{\varepsilon}$ such that the v with $M<v \leqslant M R$ and $(v, r)=1$ can be divided into L classes $\mathscr{V}_{1}, \ldots, \mathscr{V}_{L}$ such that for two distinct elements v_{1}, v_{2} in a given class \mathscr{V}_{j} we have $v_{1}^{k} \equiv v_{2}^{k}(\bmod r)$ if and only if $v_{1} \equiv v_{2}(\bmod r)$. Therefore, by (10.10) and Hölder's inequality,

$$
\begin{equation*}
V(\gamma, Q, M, R, r, p, \theta)^{2 s} \ll P^{\varepsilon}(M R)^{2 s-1} \max _{j} \sum_{v \in V_{j}}\left|\sum_{y \leqslant Y} b_{y} e\left(\gamma v^{k} y\right)\right|^{2} \tag{10.13}
\end{equation*}
$$

where

$$
\begin{equation*}
Y=s(Q / M)^{k} \tag{10.14}
\end{equation*}
$$

and $\left|b_{y}\right| \leqslant c_{y}$ with c_{y} being the number of solutions of

$$
u_{1}^{k}+\ldots+u_{s}^{k}=y
$$

with $u_{i} \in \mathscr{A}(Q / M, p)$.
By (10.3),

$$
\frac{a}{q} q_{1}^{k} \ldots q_{k}^{k}=a q_{1}^{k-1} q_{2}^{k-2} \ldots q_{k-1} / r=a^{\prime} / r
$$

say, with $\left(a^{\prime}, r\right)=1$. Thus, by (10.1), (10.3) and (10.11),

$$
\begin{equation*}
\left|\gamma-\frac{a^{\prime}}{r}\right| \leqslant q_{1}^{k-1} q_{2}^{k-2} \ldots q_{k-1} /\left(r P^{k i 2}\right)=1 /\left(2 r M^{k} R^{k}\right) \tag{10.15}
\end{equation*}
$$

Hence, if $v_{1}, v_{2} \in \mathscr{V}_{j}$ and $v_{1} \equiv v_{2}(\bmod r)$, then we have

$$
\begin{aligned}
\left\|\gamma\left(v_{1}^{k}-v_{2}^{k}\right)\right\| & \geqslant\left\|\frac{a^{\prime}}{r}\left(v_{1}^{k}-v_{2}^{k}\right)\right\|-\frac{1}{2} r^{-1}(M R)^{-k}(M R)^{k} \\
& \geqslant \frac{1}{2} r^{-1}
\end{aligned}
$$

When $r>M R$ the elements of \mathscr{V}_{j} are distinct modulo r. Thus for $v \in \mathscr{V}_{j}$ the γv^{k} are spaced at least $\frac{1}{2} r^{-1}$ apart modulo 1 . Therefore, by the large sieve inequality (see, for example, §27, Theorem 2 of [D4]),

$$
\begin{equation*}
\sum_{v \in \Upsilon_{j}}\left|\sum_{y \in Y} b_{y} e\left(\gamma v^{k} y\right)\right|^{2} \ll(Y+r) S_{s}(Q / M, R) \tag{10.16}
\end{equation*}
$$

When $r \leqslant M R$ we have to consider what happens when $v_{1} \equiv v_{2}(\bmod r)$ but $v_{1} \neq v_{2}$. Then, by (10.15),

$$
\left\|\gamma\left(v_{1}^{k}-v_{2}^{k}\right)\right\|=\|\left(\gamma-\frac{a^{\prime}}{r}\right)\left(v_{1}^{k}-v_{2}^{k}\right)| |=\left|\gamma-\frac{a^{\prime}}{r}\right|\left|v_{1}^{k}-v_{2}^{k}\right| .
$$

Since $v_{1}-v_{2}$ is a non-zero multiple of r and $v_{1}>M, v_{2}>M$ we have

$$
\left\|\gamma\left(v_{1}^{k}-v_{2}^{k}\right)\right\| \geqslant\left|\gamma-\frac{a^{\prime}}{r}\right| M^{k-1} r
$$

Now, by (10.11) and (10.3)

$$
q=r q_{1} q_{2}^{2} \ldots q_{k}^{k} \leqslant M R q_{1} q_{2}^{2} \ldots q_{k}^{k} \leqslant P^{\frac{1}{2}}\left(q_{1} \ldots q_{k}\right)^{k} \leqslant P^{\frac{1}{2}+k \delta}
$$

Thus, by the definition of m, we have $|\alpha-a / q|>q^{-1} P^{(1 / 2)+k \delta-k}$. Therefore

$$
\left|\gamma-\frac{a^{\prime}}{r}\right|=\left|\alpha-\frac{a}{q}\right| q_{1}^{k} \ldots q_{k}^{k}>P^{\frac{1}{2}+k \delta-k} \frac{q_{1}^{k} \ldots q_{k}^{k}}{r q_{1} q_{2}^{2} \ldots q_{k}^{k}}
$$

so that, by (10.11),

$$
\left\|\gamma\left(v_{1}^{k}-v_{2}^{k}\right)\right\|>\frac{1}{2} P^{k \delta-\frac{1}{2} k} R^{1-k}
$$

Thus in this case, for $v \in \mathscr{V}_{j}$ the γv^{k} are spaced at least

$$
\frac{1}{2} \min \left(r^{-1}, P^{k \delta-\frac{1}{2} k} R^{1-k}\right)
$$

apart modulo 1. Therefore, by the large sieve and (10.16), in either case

$$
\sum_{v \in V_{j}}\left|\sum_{y \leqslant Y} b_{y} e\left(\gamma v^{k} y\right)\right|^{2} \ll\left(Y+r+P^{\frac{1}{2} k-k \delta} R^{k-1}\right) S_{s}(Q / M, R)
$$

By (10.14) and (10.11), $Y=s(Q / M)^{k}=2 s P^{k / 2} R^{k} /\left(q_{1} q_{2}^{2} \ldots q_{k}^{k}\right)$, by (10.1) and (10.3), $r \leqslant P^{k / 2} /\left(q_{1} q_{2}^{2} \ldots q_{k}^{k}\right)$, and, by (10.3), $q_{1} q_{2}^{2} \ldots q_{k}^{k} \leqslant P^{k \delta}$. Thus, by (10.13) and Theorem 7.1,

$$
V(\gamma, Q, M, R, r, p, \theta)^{2 s} \ll P^{\ell}(M R)^{2 s-1}(Q / M)^{k}(Q / M)^{2 s-k+\sigma}
$$

where

$$
\sigma=(k-2)\left(1-\frac{1}{k}\right)^{s-2}
$$

Hence, by (10.12) and (10.11),

$$
\begin{aligned}
S(\alpha) & \ll P^{1-\delta+\varepsilon}+\sum_{q_{0} r=q}^{*} \sum_{p \leqslant R} P^{\varepsilon} R^{1-\frac{1}{2 s}} Q(Q / M)^{\frac{\sigma}{2 s}} M^{-\frac{1}{2 s}} \\
& <P^{1-\delta+\varepsilon}+R^{2+\frac{\sigma}{2 s}} P^{1-\frac{1-\sigma}{4 s}+\varepsilon} \sum_{q_{0} r=q}\left(q_{1} \ldots q_{k}\right)^{\frac{1}{2 s}-1}
\end{aligned}
$$

and the theorem follows.

References

[BM] Balasubramanian, R. \& Mozzochi, C. J., An improved upper bound for $G(k)$ in Waring's problem for relatively small k. Acta Arith., 43 (1984), 283-285.
[B1] de Bruins, N. G., The asymptotic behaviour of a function occurring in the theory of primes. J. Indian Math. Soc. (N.S.), 15 (1951), 25-32.
[B2] - On the number of positive integers $\leqslant x$ and free of prime factors $>y$. Nederl. Acad. Wetensch. Proc. Ser. A., 54 (1951), 50-60.
[C] Chen, Jing-Run, On Waring's problem for nth powers. Acta Math. Sinica, 8 (1958), 253-257; translated in Chin. Math. Acta, 8 (1966), 849-853.
[D1] Davenport, H., On Waring's problem for fourth powers. Ann. of Math., 40 (1939), 731-747.
[D2] - On sums of positive integral k th powers. Amer. J. Math., 64 (1942), 189-198.
[D3] - The collected works of Harold Davenport, vol. III. Ed. B. J. Birch, H. Halberstam \& C. A. Rogers, Academic Press, 1977.
[D4] - Multiplicative number theory. Springer-Verlag, second edition, 1980.
[DE] Davenport, H. \& Erdős, P., On sums of positive integral kth powers. Ann. of Math., 40 (1939), 533-536.
[DL] Davenport, H. \& Lewis, D. J., Homogeneous additive equations. Proc. Roy. Soc. London Ser. A, 274 (1963), 443-460.
[E] Estermann, T., Einige Sätze über quadratfreie Zahlen. Math. Ann., 105 (1931), 653-662.
[HR] Halberstam, H. \& Richert, H.-E., Sieve methods. Academic Press, 1974.
[HL] Hardy, G. H. \& Littlewood, J. E., Collected papers of G. H. Hardy, including joint papers with J. E. Littlewood and others. Ed. by a committee appointed by the London Mathematical Society, vol. I, Clarendon Press, 1966.
[H] Hooley, C., On Waring's problem. Acta Math., 57 (1986), 49-97.
[K] Karatsuba, A. A., On the function $G(n)$ in Waring's problem. Izv. Akad. Nauk SSSR, 49 (1985), 935-947, 1119.
[L] Linnik, Ju. V., On the representation of large numbers as sums of seven cubes. Dokl. Akad. Nauk SSSR, 35 (1942), 162 and Mat. Sb., 12 (1943), 218-224.
[T1] Thanigasalam, K., On Waring's problem. Acta Arith., 38 (1980), 141-155.
[T2] - Some new estimates for $\boldsymbol{G}(k)$ in Waring's problem. Acta Arith., 42 (1982), 73-78.
[T3] - Improvement on Davenport's iterative method and new results in additive number theory, I \& II, proof that $G(5) \leqslant 22$. Acta Arith., 46 (1985), 1-31 and 91-112.
[Va1] Vaughan, R. C., Homogeneous additive equations and Waring's problem. Acta Arith., 33 (1977), 231-253.
[Va2] - The Hardy-Littlewood method. Cambridge University Press, 1981.
[Va3] - Sums of three positive cubes, Bull. London Math. Soc., 17 (1985), 17-20.
[Va4] - On Waring's problem for smaller exponents. Proc. London Math. Soc. (3), 52 (1986), 445-63.
[Va5] - On Waring's problem for sixth powers. J. London Math. Soc. (2), 33 (1986), 227-236.
[Va6] - On Waring's problem for cubes. J. Reine Angew. Math., 365 (1986), 122-170.
[Va7] - On Waring's problem for smaller exponents II. Mathematika, 33 (1986), 6-22.
[Vi1] Vinogradov, I. M., The method of trigonometrical sums in the theory of numbers. Trudy Mat. Inst. Steklov, 23 (1947), 1-109.
[Vi2] - On an upper bound for G(n). Izv. Akad. Nauk SSSR, 23 (1959), 637-642.
[Vi3] - Selected works. Springer-Verlag.
[W] Watson, G. L., A proof of the seven cube theorem. J. London Math. Soc., 26 (1951), 153-156.

Received June 24, 1987
Received in revised form June 11, 1988

