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1. Introduction 

Consider the Euclidean ball B n in R n. It is well known that B ~ can be approximated in 

the Hausdorff  metric by a sum of  segments. Given e>0,  what is the number  N needed 

so that the Hausdorff  distance between B ~ and a sum of  segments Ej~/~. is less than e? It 

is quite clear that N=exp(c(e)n) for a suitable c(e) will suffice. The surprising fact is that 

actually N=c(e)n will do. This was proved in [F.L.M.].  In this paper  we show that t h i s  

fact is not a special proper ty  of  B n but that essentially the same holds for  any convex 

body in R n which is a limit of  a sum of  segments. Questions related to this topic have 

been studied in the literature till now mainly in the framework of  Banach space theory.  

Also the main tools we use in this paper  are taken from Banach space theory.  In order  

to make the paper  accessible to experts in convexity theory as well as those in Banach 

space theory we include in the paper somewhat more than the usual amount  of  

background material. 

The introduction is divided into two parts. We first explain the geometric problem 

and state the main results. We then pass on to the functional analytic formulation, 

survey the history of  the problem and explain the contents of  the various sections of  

this paper. 

A zonotope in R ~ is a polytope P which is a vector  sum of segments N i.e., 

I / e =  . . . . .  N .  

j=l 

(1) This work was supported in part by the U.S.-Israel Binational Science Foundation. 
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(By a segment we mean a compact  one dimensional convex set.) A zonotope always 

has a center of  symmetry,  namely the sum of  the centers of  the segments/j .  It is easy to 

check that every face of  a zonotope  is again a zonotope and hence all faces of  a 

zonotope have a center  of  symmetry.  Conversely,  if P is a polytope all of  whose faces 

have a center  of  symmetry  then P is a zonotope (it actually suffices to check just  its two 

dimensional faces; for  a p roof  of  these facts and other  facts mentioned below we refer 

to the exposi tory paper  [Bo]). Thus,  it is easy to check which polytopes are zonotopes;  

in R z all centrally symmetric  polytopes (i.e., convex polygons) are zonotopes,  in R 3 the 

cube for example is a zonotope while the octahedron is not. A zonoid in R" is defined to 

be a limit in the Hausdorf f  metric of  a sequence of zonotopes,  and thus in particular is a 

compact  convex set with a center  of  symmetry.  From what was said above, it follows 

that any compact  convex symmetric  set in R 2 is a zonoid. For  n>~3 the unit ball in 

l~ i.e., 

{x=(tl,t  2 ..... tn); Ilxll=(,=~l ltilp) 1/p<<.I ) ] 

is a zonoid if and only if p~>2. In particular, the usual Euclidean unit ball B n in ~ is a 

zonoid. A polytope is a zonoid if and only if it is already a zonotope.  The zonoids arise 

naturally in many contexts .  For  example the zonoids are exactly the ranges of  a tom 

free vector (i.e., R ~ valued) measures.  

Clearly, an affine image of  a zonotope (zonoid) is itself a zonotope (resp. zonoid). 

In general the polar body of  a zonoid fails to be a zonoid. It follows from a result of  

Grothendieck that there is an absolute constant ~, so that if B is a convex body in R ~ 

with the origin as its center  of  symmetry  so that both it and its polar 

B ~ = (Y; I(x,y)l ~ 1 all xEB) 

are zonoids then there is an affine automorphism T of  R ~ so that 

B ~ T(B ~) ~ yB.  

There are however, for  every n, convex bodies B in R n which are not affine images of  

balls so that both B and its polar are zonoids (cf. [Schn.] and also the recent  survey 

paper [Schn.W]). The Euclidean ball B n plays a central role in the theory of  the 

zonoids; the result of  Grothendieck mentioned above is just  one indication of  this fact. 

The problem we study in the present  paper  is the following: Given a zonoid B in R n 
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and given e>0 what is the minimal N=N(B ,  e) so that there is a sum PN of N segments 

so that 

B C P N = ( I + e ) B .  (1.1) 

The e measures the distance between B and PN. It is related to the Hausdorff  distance 

between B and PN by the obvious relation 

er< ~ < eR (1.2) 

where r (respectively R) is the radius of the largest Euclidean ball contained (resp. the 

smallest ball containing) B. This e is more natural in our context than • since it makes 

N(B, e) an affine invariant of B. 

As mentioned already above for B=B n the Euclidean ball, it was proved in 

[F.L.M.] that (if e<I /2  say) 

N(B", e) <<. ce -2 log e -1 "n (1.3) 

where c is an absolute constant. This estimate was slightly improved in [G] where it is 

shown that 

N(B ~, e) <<. ce-2n. (1.4) 

The main interest in (1.3) (or (1.4)) is in the fact that N(B ~, e) depends linearly on n. 

This dependence on n is certainly optimal. As far as the dependence on e is concerned 

it is obviously not optimal for n--2 where one easily sees that N(B 2, e ) ~ e  -1/2 as e--~0. It 

was pointed out in [Be.Mc] that also for n=3 ,4  (1.4) can be improved. It was proved 

recently that also for n~>5 the dependence on e in (1.4) can be improved (cf. [Li]).(l) We 

shall prove however below (in section 6) that for a given r > 0  we have for all sufficiently 

large n that 

N(B '~, e) >I c(n) E - 2 + r  

for a suitable positive constant c(n) depending on n. 

The main results in this paper show that the estimate obtained previously for B n 

and which, as we just  remaked, is quite sharp in this case, is valid in a slightly weaker 

form for an arbitrary zonoid. 

(1) See also the note "added in proof".  
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THEOREM 1.1. Let  B be a zonoid in R ~ which is the unit ball o f  a uniformly convex 

norm in R ~ and let 3>0. Then we have 

N(B, e) <~ Ce-f2+~)n (1.5) 

where the constant C=C(z, 6) depends only on r and the degree o f  uniform convexity, 

i.e., on the constant 

= min{E- l lx+y l [ ;  Ilxll, Ilyl[ ~< 1, Ilx-yll I> 1} (1.6) 

Where II II is the norm in R ~ whose unit ball is B. 

Again, the main point here is the linear dependence of N(B, e) on n. For  general 

zonoids in R" (i.e., without the additional uniform convexity assumption) we have the 

following result. 

THEOREM 1.2. For every 3>0 there is a constant c(r) so that for  any zonoid B in 

R ~, n>>.2, 

N(B, e) <~ c(r) e-~2+*)(log n)3n. (1.7) 

The proofs of  both theorems give the following additional information on the 

approximating zonotopes. I f  B is a zonoid and P a zonotope Ej~ I/~ which approximates 

B up to e then there exist {Ji}~l where /V does not exceed the right hand side of  (1.5) 

(resp. (1.7)) and scalars {Ai)iN=l SO that Ei~=t ;~iljl approximates P up to 2e. 

Before leaving the geometric part of the introduction, we would like to point out 

another interpretation of our problem and results. Let  B be a convex compact subset of 

R n having the origin as an interior point and center of symmetry.  For  a unit vector x in 

R n (taken in the usual Euclidean norm) we denote by h(x, B) the (n-1)-dimensional 

volume of the projection of  B on the hyperplane orthogonal to x. It is well known (cf. 

[Bon.F.]) that 

h(x, K) = -~ ~-, l ( x, u)IdtTB(u) 

where Sn-l=a(B ~) and riB(u) is a certain positive measure on S n-I which is derived from 

the surface measure of B. Hence h(x, K) is the restiction to S n-1 of a norm on R n. The 

unit ball of the dual of this norm is a zonoid Z(B) (cf. (1.8) below) which is called the 

projection body of  B. The correspondence B<--~Z(B) turns out to be a one to one map 
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from the set of all convex bodies onto the set of all zonoids (we consider only those sets 

in R" which have the origin as an interior point and center of symmetry). This classic 

fact is due to Minkowski and A. D. Aleksandrov (see [Bo] and [Schn.W.] as well as 

[Bo.F.] for details). It is easy to see and well known that B is a polytope if and only if 

Z(B) is a zonotope; the number of segments in the representation of Z(B) as a zonotope 

is equal to half the number of (n-l)-dimensional faces of B. Thus the problem we 

consider here can be phrased as follows. Given a centered symmetric convex body B in 

R" and e>0, find the smallest possible N so that there is a polytope P with N faces in R n 

for which 

Z(P) c Z(B) c (1 +t)Z(P). 

A recent study of projection bodies which is closely related to the present paper is 

[B.L.]. 

We pass now to functional analytic terminology. Note first that by definition the 

sum P of N segments is an affine image of the unit cube in R N. Hence, if the origin is the 

center and an interior point of P, the norm induced by P on It" is a quotient norm of l~ 

(whose unit ball is the N-dimensional cube). Consequently the polar p0 of P is the unit 

ball of an n dimensional subspace of/~=(/~)*. Similarly a convex body B in R" with 

center at the origin is a zonoid if and only if the norm II II, induced by B ~ is given by 

= I<x, .>  Idol-) (1.8) Ilxll. 

where o(u) is a positive measure on the sphere S "-~ symmetric with respect to 0. (The 

zonoid is a zonotope if and only if the measure a is purely atomic with a finite number 

of atoms.) In other words B is a zonoid if and only if B ~ is the unit ball of an n- 

dimensional subspace of L~(f2,/x) for some measure space (f2,g) (as mentioned above 

we may always take f2=S "-1, another possible universal choice is f2=[0, 1] and/ t=the  

Lebesgue measure; all these elementary facts are explained in detail in [Bo]). 

Let us recall the notion of the Banach Mazur distance between two finite dimen- 

sional spaces X and Y (of the same dimension) 

d(X, Y) = inf {llZll IIT-~II; Z linear isomorphism from X to Y}. (1.9) 

It follows that d(X, Y)<~d if and only if there is an affine map T so that BxcTBr<~dBx 

where Bx (resp. Br) denotes the unit ball of X (resp. Y). We can now restate our 

problem as follows. 
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(*) Given an n dimensional subspace X of LI(0, 1) and e>0, what is the smallest 

N=N(X, e) such that there is a subspace Y of ff with d(X, Y)~<l+e. 

As mentioned above this question was considered in [F.L.M] and [G] for 

X=l~. For X=/p, l~<p<2 it was proved by Johnson and Schechtman [J.Sche.1] that 

there is a function c(e, p) so that N(l~, e)<~c(p, e)n. The dependence of c(p, e) on e was 

of the order e -p' where p'  is the conjugate exponent to p and thus the result is weaker 

than what can be deduced from (1.5) in this special case. The proof of [J.Sche.1] 

depends on a delicate analysis of truncations of p-stable variables. The result of 

[J.Sche. 1] was generalized by Pisier [P. 1] who considered economical embeddings of l~ 

spaces into general spaces with a known "stable type p"  constant. Schechtman 

continued this line of research and obtained, using probability distributions related to 

stable variables some results on general subspaces of LI(0.1) (cf. [Sche. 1] or [Sche.2]). 

In [Sche.3] Schechtman attacked the problem by a new and much simpler method using 

what is called in probability theory "the empirical distribution method". Using this 

method he proved that for every subspace X of LI(0, 1) of dimension n and every 

0<e<l/2 

N(X, e) <~ ce -2 log e -I" n 2 (1.10) 

for some absolute constant c. 

In section 2 below we recall the method of Schechtman [Sche.3]. We do this since 

our main results are obtained by analyzing and refining the same procedure. 

In section 3 we prove a weak version of Theorem 1.I above in which the 

dependence of N(B, e) in n is already linear but the dependence on e is worse than that 

of(1.7). For X=/p the dependence on e we get in section 3 is essentially the same as that 

in [J.Sche. 1]. The main ingredient we use in section 3 besides the empirical distribution 

method is a factorization theorem of Pisier [P.2] (or equivalently earlier results of this 

nature due to Nikishin and Maurey) which shows that we may change the position of a 

uniformly convex subspace X of LI(0 ,  1) SO that in the new position X actually sits 

"nicely" in Lp(0, 1) for some p > l .  

In section 4 we prove an estimate on the entropy of the unit ball of an n 

dimensional subspace of L l~)  for some probability measure p in the II II= norm. In other 

words, we compute for a given r> l  and for a suitable "good positioning" of an n 

dimensional subspace X of LI~)  the number of balls of radius r in the norm of L| 

(and also of Lp~) for large finite p) needed in order to cover the unit ball of X (in the 

norm induced from Ll~)). The proof involves Sudakov's inequality and its dual as well 

as the notion of absolutely summing operators. 
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In section 5 the methods of section 3 and 4 are combined and used to prove 

Theorems 1.1 and 1.2. 

Section 6 is devoted to the approximation of the usual Euclidean ball B n. This 

section can be read directly after section 2. In the first part of this section we show that 

for every compact convex set K in R n we can approximate up to e the ball B n by a 

Minkowski sum of N rotations of 2K where ;t is a suitable scalar and N is given by the 

right hand side of (1.3). The second part of section 6 is devoted to the examination of 

the dependence on e of N(B ~, e). The main result here (which is obtained by using 

spherical harmonics) is the fact that N(Bn, e)>~c(n)e -2(n-D/(n+2) as e--,0 for fixed n. 
Section 6 concludes that part of the paper which is devoted directly to the geometric 

problem of approximating zonoids. 

All the papers we quoted above in connection with problem (*) deal also with the 

problem of embedding n-dimensional subspaces X of Lr(0, 1) with l < r  into l~ for a 

suitable small N. The answer to this question in the special case X=l~ is given in 

[F.L.M.]. In section 7 it is shown that, in analogy to the situation for r= 1, the estimates 

obtained in [F.L.M.] for l~ are valid in a slightly weaker form for an arbitrary 

n-dimensional subspace of Lr(0, 1). These results strengthen the previous results in this 

direction (in [J.Sche. 1], [P. 1], [Sche. 1] and [Sche.3]). 

I fX is an n-dimensional subspace of Lr(0, 1) which is nicely complemented we may 

wish to find Y in l~ with say d(X, Y)~<2 so that not only N is small but that Y is also 

nicely complemented in l~. In section 8 we show, using the empirical distribution 

method, that this can be done for a general X and the estimate for N obtained is slightly 

weaker than the estimates obtained in [F.L.M.] for the special case of X=P2. We also 

apply these results to the siuation studied in [B.Tz. 1]. In particular we deduce a result 

on the Banach space structure of some spaces which arise in harmonic analysis. 

The last section of the paper is again concerned with entropy estimates. We obtain 

a sharper form of estimates proved in section 4. These sharper estimates, in view of 

their connection with classical questions, are of some independent interest (though 

they do not yield better estimates for N(X, e)). These estimates also have applications 

to questions in approximation theory related to Sobolev inequalities, especially the so- 

called Bernstein width (cf. [B.G.]). 

The main results of this paper were announced in [B.L.M. 1]. 

In this paper we consider only Banach spaces of dimension strictly larger than 1 

over the real field. The results and their proofs are valid (with some minor modifica- 

tions) also in the complex case. There are several universal constants which enter into 

the estimates below. These constants are denoted by letters like y, c, C, c~, c2 . . . . .  We 
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did not distinguish carefully between the different constants, neither did we try to get 

good estimates for them (the proofs however, yield naturally some estimates). The 

same letter will be used to denote different universal constants in different parts of the 

paper. The notation such as c(r, t}) will mean a function depending only on the 

parameters r and 6. The cardinality of a (finite) set A is denoted by ,~. The characteris- 

tic function of a subset A of Q is denoted by XA (provided fl is clear from the context). 

2. The empirical distribution method 

In this section we present the method and main result of Schechtman [Sche.3]. 

Let X be an n-dimensional subspace of Ll(fl,/z) where (f2,/z) is some probability 

space. Let h, t2 .. . . .  tN be N randomly (and independently) chosen points in this 

measure space. Consider the linear map T: Ll(g)--->ff defined by 

Tf= N-l(f(tl),f(t 2) ..... f(tN)). (2.1) 

The basic idea of the method is that for N sufficiently large and some (usually most) 

choices of (h, t2 ..... tN) the map T is almost an isometry on X, i.e., 

sup l - N - '  E If(t)l ;fEX, [Ifll = I (2.2) 
j=l 

is small. The tool for verifying that this happens is the following standard classical 

estimate from probability theory, often called Bernstein's inequality. 

LEMMA 2.1. Let {gj)~=l be independent random variables with mean 0 on some 
probability space (D,p) which satisfy 

Ilglll <2, IIgjlL <M, I j< N, (2.3) 

for some constant M. Then for O<e< 1 

Prob{ ~=lgj >-eN} <2exp(-e2N/8M). (2.4) 

Proof. For -oo<x~<l we have eX~<l+x+x 2. Hence, since fgjdlz=O and Igj(t)l<.M 
for every j and every t E f~ we have if 0<2M~ < I 

f exp(,~gj) ~< 1 +22 1 ~< 1 + < exp(222M). ;t2ll&lh IIg lL ] 
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By the independence of {gj}~=l we deduce that 

exp A E gj d/~ < exp(222NM) 
\ j= l  

and consequently 

81 

expQ.Ne) Prob gj >I eN < exp(2;t2NM). 
L j = I  J 

Choosing 2=e/4M we certainly fulf'd 0<AM< I and get 

Prob gj>~eN <exp(-e2N/8M).  
k j = l  

and this implies (2.4). [] 

COROLLARY 2.2. Let  (g),/O be a probability space, let ~ be a finite set in Ll(f2,1t) 

so that 

Ilflll ~< I, Ilfll| ~<M, f E . ~  (2.5) 

for some constant M. Let  0<e<  1 and let N be an integer so that 

2~,~< exp(e~N/8M) (2.6) 

then there exist {tj}~= I in f~ so that 

N 

]]flll-N-~ ~ l f ( t i ) [  <~e, fE~. 
j= l  

Proof. For everyfE ~cons ider  the random variables {&}Jr= I on (QN,/~N) defined by 

gj(t) = If(tj)[- f [fl dg, j = I . . . . .  N; t = (t 1, t 2 . . . . .  t N) E f2 N . 

The {gj}~l satisfy the assumptions in Lemma 2.1 and hence by (2.4) 

Prob t e a  N, I l f [ h - g - ' ~  If(QI > e  <2exp( -e2N/8M) .  
j = l  

In view of (2.6) we deduce that there is a t E f~N so that (2.7) holds. [] 

6-898282 Acta Mathematica 162. Imprim6 le 8 mars 1989 

(2.7) 
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For applying Lemma 2.1 and Corollary 2.2, a good estimate on I[ H| is needed for 

the subsets of  L~ we consider. Such an estimate is provided by the next lemma. 

LEMblA 2.3. Let  X be an n-dimensional subspace Of Ll(f~,l~) for  some probability 

space (t), I~). Then there is a linear operator U : LI(~ ,  I~)---~LI(Q, v) for  some probability 

measure v on f~ so that U is an isometry on X and 

IlfllL.(O,~) ~ nllfllL~(O,~) for every f ~ UX. (2.8) 

Proof. Let  ~/}i~1 be an Auerbach basis in X, i.e., an algebraic basis of X so that 

IIf, ll-- 1 for all i and so that whenever f=E~ffi I ai f  i is in the unit ball of X then ]ai]<~l for all 

i (the existence of  such a basis is easy to prove cf. e.g., [L.Tz. 1. p. 16]). Let  F(t)= 

E,.%~ Ifi(t)l. Then IIFIh--n; If(t)l~F(t) for every t e l 2  and every f in the unit ball of  X. 

Let  v be defined by dv=n- lFd l  ~ and U: Ll (p )~L l (v )  by 

S ng(t)/F(t) if F ( t ) * 0  
Ug(t) t0 if F(t) = 0 

With these definitions all the assertions are evident. [] 

The preceding lemma asserts that for an n-dimensional subspace X of Ll(~) we can 

embed X in Ll(v) for another measure so that in the new position we have Ilfll| for 

every f i n  the unit ball of  X. The operation of passing from bt to v is called a change of 

density operation. If  F(t)*O for all t then the map U is an isometry from L~(t2,~) onto 

Ll (~ ,  v). 

A subset ~ o f  a set D is called an e-net in D for some e>0 if for every x E D there in 

a y E ~ with IIx-yll<~e. The following two lemmas are completely standard facts. 

LEMMA 2.4. The unit ball B o f  an n-dimensional space (and any subset o f  it) has 

for every e>0 an e net o f  cardinality <~(1 +2/e) n. 

Proof. Consider a maximal subset ~ o f B  with the property that Ilu-oll   for every 

u, v E ~;, u*v .  The open balls with centers in ~ a n d  radius e/2 are mutually disjoint and 

all are contained in (l+e/2)B. By considering the volumes of these balls we get that 

~: (1  +2/e) ~. [] 
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LEMMA 2.5. Let T be a bounded linear map from a Banach space X into a Banach 

space Y. Let 0 < e < l  and assume that for an e net ~; of  the unit ball of  X 

IIITxll-Ilxlll<~e, x ~ .  
Then 

IIITxll-Ilxl114 AIIxll for every x E X  where A = 3e/(1-e). (2.9) 

Proof. Put A=sup{I IlZxll-llxll I, Ilxll l). Let x be any point in the unit ball of X and 

let y E ~ satisfy IIx-Yll<.e. By the triangle inequality 

I IITxll-Ilxlll<-lllZYll-IlYll I+111T(x-y)ll-IIx-Yll 1+211x-Yll. 

Hence A~<e+eA+2e and (2.9) follows. [] 

We now have all the tools needed to prove 

THEOREM 2.6 (Schechtman [Sche.3]). Let X be an n-dimensional subspace o f  

L1[0, 1] and let 0<e<1/2. Then there is a subspace Y of l~ with d(X, Y)<~l+e provided 

that 

for some absolute constant c. 

N >1 ce -2 log 1 .  n 2 (2.10) 
e 

Proof. By Lemma 2.3 we may assume that [[xll| for every x in the unit ball of X. 

Let ~:be an e-net in the unit ball of X of cardinality <~(3/e) n (Lemma 2.4). By Corollary 

2.2 if 

log 2+n log (3/e) ~< e2N/8n 

i.e., if (2.10) holds for a suitable c, the map T from X into ~ defined by (2.1) satisfies 

I IITxll-Ilxll I<e for every x E ~. Hence by Lemma 2.5, 

d(X, TX)<~( I + A)(1-A)-1<~I +8e 

if e is small enough. [] 

Our goal in the coming three sections is to improve the estimate (2.10), i.e., to pass 

from n 2 to n (or almost n). The lemmas used above by themselves are sharp, i.e., 
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cannot be improved. For  example in Lemma 2.3 we cannot replace n by any smaller 

number. If  X=17 then in any isometric embedding of X into Ll(f~, v) the unit vectors of 

X have to map onto disjointly supported functions and thus since v is a probability 

measure at least one of the unit vectors of X will have an image whose II II| norm is at 

least n. The point which makes the improvement possible, however, is the exploitation 

of the fact that the set ~ to which we applied Corollary 2.2 is not an arbitrary set of 

cardinality (3/e) n in L1 but a set sitting in a low dimensional subspace. Thus while we 

cannot avoid the situation that some members of ~ have an I[ [1| norm equal to n, we 

can manage the data so that this happens only to relatively few elements or alternative- 

ly that a large value is attained only for a very small subset of if2 (substantially smaller 

than what follows just  from the condition that Ilflll= I). 

3. The uniformly convex case---the iteration procedure 

In this section we shall treat uniformly convex spaces X and prove a weak version of 

Theorem 1.1. For  the purpose of  proving this result we have to measure quantitatively 

the degree of uniform convexity. In the introduction we defined the constant 6 in (1.6). 

This 6 is perhaps the easiest measure of uniform convexity to understand geometrical- 

ly. However, for our purposes (and many other contexts as well) the notion of  " t y p e "  

is more useful. 

The Banach space X is said to be of  type l~<p~<2 if there is a constant a so that for 

every choice of  (Xi} ira_l  , m = 1,2, ... in X 

ri(t)x i dt<~a Ilx/ll p , (3.1) 

where (ri}7= 1 denote the Rademacher  functions. The quantity on the left hand side of 

(3.1) is just the average of IlEi~l_+x,.ll over all the possible 2 m choices of signs. The 

smallest a for which (3.1) holds is called the type p constant of X and is denoted by 

Tp(X). Evidently TI(X)= 1 for every X. Every finite dimensional X is type p for every 

l<~p<~2 (this, as well as the fact that p can never be taken >2,  follows immediately from 

the generalized parallelogram identity in Hilbert space, i.e., the identity 

f ~ r i ( t ) x  i m 2dt= ~ Ilx/ll 2 
i=l i=1 

valid in suchs spaces) but in general Tp(X) may tend to infinity with d imX i f p > l .  It is 

known that if an infinite dimensional space X fails to be of type p for any p > l  then for 
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every e>0, X has a subspace Y, with d(Y,, l l )~ l  +e. In other words such X contains for 

every e>0 unit vectors u,, v, so that {lu,+v~ll~2-e and {lu,-v,H>-2-e and thus the 6 

defined by (1.6) is 0 (cf. [L.Tz.2] or [M.Sche] for further references and other basic 

facts concerning the notion of type). Hence by a straightforward compactness argu- 

ment we get that for a Banach space X (finite or infinite dimensional) with a given 6>0  

defined by (1.6) there is a p(6)>l  and a finite C(6) so that Tp(~)(X)<,C(6). It is not hard 

to give a good explicit estimate of p(6) and C(6) in terms of 6 but this is of no real 

relevance to the problems we consider in this paper. We shall from now on state our 

results in terms of p and Tp(X) without restating them in terms of 6. 

We exploit the uniform-convexity assumption via the next proposition which is a 

special case of a factorization theorem of Pisier [P.2, Theorem 1.2] (which in turn is 

based on earlier results of Maurey and Nikisbin). In order to state the proposition we 

have to recall the notion of weak Lp spaces. Let (g2,/D be a probability measure space 

and let p~> 1. We denote by Lp, ~ )  the space of real valued measurable functions f o n  

so that 

Ilfll~, = = sup t(kt{w 6 Q; If(co) I > t})'* < oo. (3.2) 
t>0 

PROPOSITION 3.1 (Pisier). Let X be a subspace of  Ll(Q,/~) o f  type p for some p > l .  

Then there is a non-negative function F in LI(~'), M) s o  that 

{IF[IL,~.)= 1, ( ~ o ; F ( w ) = 0 ) c  n {oJ;x(~o)=0) 
x E X  

and so that for every x E X  

I lx(oJ)/F(o~)llL~ ~r Fl~) < e T~(x)IIxIIL,r 

where e is the base o f  the natural logarithm. 

(3.3) 

In other words the proposition asserts that after a suitable change of density 

transformation (passing from/~ to the measure v defined by dv=Fd#) we can assume 

that the Lp, ~ norm on the unit ball of X is bounded by a constant which is essentially 

To(X). 
It will be very convenient for our purposes to work not with general change of 

density operations but only with those for which F(w)~>I/2 for every o9 C g2. This can 

always be achieved at the cost of an increase of the constant by an amount depending 

on p. 
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LEMMA 3.2. Let X be a subspace o f  Ll(f~,bt) o f  type p > l .  Then there is a function 

G in Ll(g2,#) so that 

G(to) >1 1/2 for  every to E ~ ,  [[G(to)[[L,~) = 1 (3.4) 

and so that for every x E X  

llx(to)/~to)llLp ~ ,  o,) <~ c L (X) l l x l l / (p -  1) (3.5) 

where c is an absolute constant. 

Proof. Let  F be the function given by Proposition 3.1. The function G=(I+F)/2 

clearly satisfies (3.4). We shall show that also (3.5) holds. Let  v be the measure on 

defined by dv=Fd# let t>0  and let x E X  with Ilxll--1. Put 

Ao= {to;F(to)~ > 1}, Ak= {to;2-k~<F(to)<2-k+l},  k =  1,2 . . . .  

D = (to; Ix(to)l I> t(l+F(to))/2}. 

Clearly 

and hence by (3.3) 

D = {w; Ix(to)l ~ tF(to)/2) f) {to; Ix(to)l ~ t/2} 

v(D) <- v{to; Ix(to)l ~ tF(to)/2} <- (2eTp(X)/t) p 

lu(D) = E p(D tl Ak)<~ 2kv(D 13 Ak) 
k=O k=0 

<~ v(O)+ E 2kv{to; Ix(to)l > t2k-2F(to)} 
k=l  

and also 

Consequently,  for some absolute c~ 

< ( c_, r (x) 
2 \ ( p - 1 ) t ]  

and this is equivalent to (3.5). [] 
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The main technical result in this section is the following 

LEMMA 3.3. Let X be a subspace of ffl of dimension n. Let l<p~<2 and 0 < e < l / 2  

and assume that N~ne -2. Then there is a subspace Y of ff with d(X, Y)<-1 +e provided 
that 

l~ >~ cTp(X) N'/pnl-l/pe-2(log e-l)'-l/p(logN) l/p(p - 1) -3 (3.6) 

where c is an absolute constant. 

Proof. By Lemmas 2.3 and 3.2 we may assume that there is a probability measure 

on {1,2, . . . ,N} so that i~{i}~l/2N for every i and so that 

[[xIIL.o, ) ~< c2 nl]xl]; ]]xllLp.o0~) ~< c2 Tp(X)]]xll/(p- 1), x E X. (3.7) 

By Lemma 2.4 there is an e-net ~ in the unit ball of  X so that 

log ~ <  c 3 n log e -1. (3.8) 

For  every x E ~ we put 

Al(X) = {i; Ix(i)l ~< 2}, Ak(x) = {i; 2 k-l < Ix(i)l ~< 2k}, k = 2, 3 . . . .  (3.9) 

Note that by (3.7) Ak(X ) is empty for k>[lOgcEn]. We also put for xE ~, Xk=X'ZAk(x), 
k-- l ,2  . . . .  and note that 

x = xk, Ixkl A [Xhl = 0 ff h ~= k, x E ~ .  (3 .10 )  
k= l  

We shall specify below a choice of positive scalars ek, k= 1 . . . .  so that 

[log c 2 n] 

X el,<'c4e/(p-1) (3.11) 
k=l  

and prove, applying the empirical distribution method to the families {Xk}xe~, 

k= 1,2.. .  that if 

Vp 
No>tc, Tp(X)Nl/Pnl-Vpe-2(loge-l)'-uP(log N )  ( p - l )  -I (3.12) 
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there is a choice of  integers �9 u {~i}j=1 (not necessarily distinct) in { 1,2 . . . . .  N} so that 

No 

IlXkll--Uff' Z lXk(OI <-,,.e k, xE ~, k = I , 2 . . .  (3.13) 
j=l  

Once we verify (3.13) we are done. Indeed by (3.10) and (3.11) it will follow that 

I No Ix(i)l Ilxll-go' <~Zek<~c4e/(p--1), xE,~. 
j~l  k 

Consequently,  by applying L e m m a  2.5 to T: X- - -~  ~ defined by Tx=Nol(X(iO .... , x(i1%)), 
we get that d(X, TX)<~Cre/(p-1 ). We have only now to replace e by c6e/(p-1); this 

transforms the N O of (3.12) to the N of (3.6) and will conclude the proof. 

In order to verify (3.13) note first that by (3.7) and (3.9) we get for every x E ~ and 

k>~2 that 

ak(x ) <~ 2Nlt(Ak(X)) <~ [c7N(Tp(X)/(p- 1)2k) p] = U k. (3.14) 

Consequently,  all the elements in (Ixkl}kE~;, k=2,  ... are convex combinations of  the 

family ~k of  all the functions on { l, 2 . . . . .  N} which vanish outside a certain subset  of  

cardinality u k and on this set take one of the three values 0,2 k-~ or 2k. In order to 

ensure that (3.13) holds for a certain k it suffices that a similar statement holds for all 

y E ~k" The cardinality of  9 ,  is at most iN) 3u, and hence 
XUk~ - -  

Let ko be the smallest integer such that for k>~ko, ~k<~ ". By (3.8) and (3.15) we 

have 

2 .~ Tp(X){ IV ~"p[, N \~/p 
,o p - I  k l o g r  ~ l o g ~ )  (3.16) 

In view of Lemma 2.1 we can ensure that (3.13) holds for all k provided that 

ko 

~'~'~ exp(-E~No/8.2*)+ r~~ ~kexp(--e2N0/8"2k)< 1/2. (3.17) 
k=l k=ko+l 

We choose first eko=e and ek0_h=(2/3)h/2e for h = l , 2  .... ,k0-1. Then E k~ ~< e/(1-X/~3)  

and so far we fulfil (3.11). If we put rl=exp(-eZNo/8"2 k~ then in view of (3.8), (3.12) and 
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(3.16) we get that #r/<-~ (provided the constant c5, which we are still free to choose, is 

large enough). Hence 

ko 
# Z  e x p ( -  e 2 N0/8.2 k) <~ #(r /+  r/4/3 + f](4/3)2 + . . . )  

k=l 

~< ~*q(1 + r/l/3+r/2/3+...) ~< ~7/(1-r/1/3) ~< 2~q < 1/4. 

We pass to the second sum in (3.17). We put kl=[logc2n]. If kl<~ko the sum does not 

appear and there is no problem. So we assume that ko<kl. To ensure that (3.17) holds it 

suffices to choose ek for ko<k<~kl so that 

~k ~< (exp(eZN0/8" 2k)) 1/2, k 0 < k ~< k 1, (3.18) 

k 1 

Z (exp(-e2N0/8"2k))1/2 < I "  
k = ko+ 1 4 

(3.19) 

The condition (3.18) is equivalent to 

k> k o 

but since No was chosen so that this holds for k=ko we get that (3.18) is verified once 

[ ko+h h( 1) ~112 
eko+h >~ e~_~O 2- v- ) , h >~ l. 

As for (3.19) we choose ek=e. Then 

( e x p ( -  e2No/8 �9 2kl))I/2< 1/8, 

provided No>c11 ne -2. This requirement on N O is ensured by (3.12) since we assume 

from the start that N>~ne -z. Now the same computation as that done for the first sum in 
(3.17) shows that if 

[ 2 \h/2 
g,k_h~F-,~T), h > 0  ( 3 . 2 1 )  

then (3.19) holds. We take now ek for ko<k<k 1 to be the maximum of the two numbers 

appearing in the right hand sides of (3.20) and (3.21). With this choice of the {ek)~=x 
k l we get that (3.17) holds and that 2k=le k is bounded by an absolute constant times 

e / (p-  1 ). [] 
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Lemma 3.3 is evidently a useful tool for an iteration procedure. Let X be an 
n-dimensional subspace of Lz(0, 1) and let 61>0. We find a subspace Y1 in ~ '  with 

d(X, Y1)-..<1+61 so that N l is not too large (say by using Theorem 2.6). We then choose 

another number 62 and by applying Lemma 3.3 find a subspace Y2 of ~2 (with N 2 the 

of Lemma 3.3) with d(Y~, Y2) -~<1+62  . We continue to apply Lemma 3.3 as long as we 

can and as long as the numbers N k decrease. If we stop after s stages we get a space Ys 
s for which d(X, Y~)~IIk=l(1 +6k). 

To put this procedure into a precise framework we recall the quantity N(X, e) 

defined by the formulation of problem (*) in the introduction. Since 

(1 +e) (1 +-26-)~<1 +e+6  if 0<e, 6<--- 1/2 

we can restate Lemma 3.3 as follows. 

LEMMA 3.3'. There is an absolute constant c so that for every choice of  O<e, 

6<1/2, every l<p~<2 and every n-dimensional subspace X of Ll(O, 1) 

N(X, e +6) <. CTp(X) N(X, e)VPnl-UP6-2(log 6-1)l-UP' (log N(X, e) \lip 
n ) ( p - l )  -3, (3.22) 

provided that N(X, e)~>4n6 -2. 

COROLLARY 3.4. Let X be an n-dimensional subspace of  LI(0, 1), let l<p~<2, 

0<e< l  and let ~>2. Then 

N(X, e) <~ C(p, Tp(X), Q) e-~ (3.23) 

where, as the notation indicates, C(p, Tp(X), ~) depends just on p, ~ and the type p 

constant of  X. 

Proof. Let r > l  be such that Op/(p-1)>2rp/(p-r) and put q~(e)=N(X,e)/n. By 

(3.22) there is a y=y(p, Tp(X), r) so that for every 0 < e < l  

<~ 7.e-2rcP(2) rip (3.24) tp(e) 

provided 9(e/2)~>(4/e) 2. By iterating (3.24) k times we get 

k 2 k f ~tP k l+r/p+...+(r/p) g-2r(l+z'tp+...+(tlp) )2r/p+xd/p +...+k(r/p) __ 
q~(e)<~, r 1 \  / . (3.25) 
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By Theorem 2.6, q~(e/2k)<~ne-2~22kL Substituting this inequality in (3.25) with k - l o g  n we 

get the desired result. (If the iteration stops earlier, i.e., q~(e/2i)<.(2i+l/e) 2 for some i<k 
then we have an even better inequality.) [] 

Corollary 3.4 is a weak version of Theorem 1.1 and as mentioned in the introduc- 

tion it already generalizes the main result of [J.Sche. 1]. In order to obtain Theorem I. 1 

as stated we have to add to the method of this section an argument involving certain 

entropy numbers, which will be evaluated in the next section. 

4. Entropy estimates 

In this section we obtain an estimate on the number of balls of radius t in II norm 

needed to cover the unit ball of a subspace X of L1 which is in a "good posit ion".  The 

estimate is based on several known results. We devote a large part of this section to the 

statement of those known (or essentially known) results and the explanation of the 

notions from Banach space theory which enter in their formulations. 

We start with the notion of entropy. Let  D and B be subsets of a linear space and 

let t>0. We put 

E(D,B , t )=min  k; 3{xi}~=l, D c  (xi+tB) . 
i= 

In the cases we consider here this number will always be finite. Sometimes it is 

convenient to use instead of E(D, B, t) the number 

F.(D, B, t) = rain k; 3{x;}~= 1, xiED, 1) c (xi+tB) . 
i= 

It follows directly from the definition that always (if B is convex and symmetric) 

/~(D, B, 2t) ~< E(D, B, t) ~ E(D, B, t). (4.1) 

An important quantity which enters into entropy computations for subsets of R n is 

the following: Let  III III denote the Euclidean norm in R n (with B n its unit ball and S ~-l its 

boundary) and let II II be another norm on R ~. We denote X=(R ~, II II) and X*=(R ~, II II,) 
where the duality is with respect to the inner product defined by III III. The average of  

Ilxll on s is denoted by Mx, i.e., 

Mx= fsn-, Ilxll do x) (4.2) 
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where o is the normalized rotation invariant measure on S "-1. By the homogeneity of 

I1" II and by using polar coordinates we get easily other convenient formulas for Mx for 

example 

= a"(2:r)-'a2 Jl~[ Ilxll exp(-IIix1112/2) dx, a. ~ n -1/2. (4.3) mx 

A probabilistic way to rewrite (4.3) is to consider n independent and normalized 

Gaussian variables {gi(oJ)}i"=j on some probability measure space (t2,/~). Then 

f~ n 
M x = a. E gi ((~ ei dl~(W) 

i=1 

(4.4) 

where {ei}i~ 1 is an orthonormal basis in R ~. 

The following result is well known in probability theory. 

PROPOSITION 4.1 (Sudakov [Su]). Let X=(R",[[ II) and let Ill III be the Euclidean 

norm on R". Then 

log E(Bx, B % t) ~ Cn(-M-~ ) 2 (4.5) 

where Bx (resp. B n) denote the unit balls o f  J] I1 (resp. Ill III) and C is a universal constant. 

A dual version of  this proposition was recently obtained by A. Pajor and N. 

Tomczak-Jaegermann [Pa.T-J]. 

PROPOSITION 4.2. With the same notation as in Proposition 4.1 we have 

[Mx~ 2 
logE(B", B x, t) <- cn~--~}  . (4.6) 

We shall present here a proof of (4.6) which is different from that indicated in 

[Pa.T-J]. This proof was kindly communicated to us by A. Pajor and is due to him and 

M. Talagrand. 

Proof. We let # be the probability measure on R" defined by 

d~=(2ar) -"/z exp(-IIIxHI2/2) dx. 
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By (4.3) 

~{x; Ilxll ~ 2Mxa~'} I> I/2. (4.7) 

Let {x~}iN=l be a maximal subset in B" relative to the requirement that [Ixi-xjll>~t for i , j .  
1 N The sets (xi+~tBx}i= 1 have mutually disjoint interiors. Hence, 

N 

1 >IEl t {Y i+2Mxa~lBx}  where Yi=4Mx(ta,)-Ixi �9 (4.8) 
i=1 

Fix l<.i<.N. By (4.7), the convexity of the function e -" and the symmetry of Bx with 

respect to the origin, we get 

t~{yi+ 2Mxa~ 1 nx} = (2~t) -'a2 ( exp(-lllx-Yilll2/2) dx 
J2 M x a~ l B x  

>/(2zr) -"n ~2Mxa:, s x exp(-( i i ix-  y ,ili2 + iiix + y ,ill2)/4 ) dx 

= (2~) -~2 [ exp(-(lllxlll2+ Illy,1112)/2) dx 
J2 M x a~ ~ B x 

>>. 1 exp(_lllY,lll2/2) >~ 1 exp(_ (4Mx/a. t)2). 

Hence by (4.8), N~<2 exp(4Mx/a, t) z and since anon -1/2 we deduce (4.6). [] 

We recall now the notion of the K-convexity constant K(X) of the Banach Space X. 

Let Q be the natural projection from L2([0, 1],X) onto the span of {xiri(t)}7= I where 

x iEX and ri(t ) are the Radamacher functions i.e., 

) Qf(s)= f(t)ri(t)dt ri(s), fEL2([O, I] ,X ). 
i=l 

(4.9) 

Then 

K(X) = Ilall (with the usual operator norm). (4.10) 

It is evident that IIQII = 1 i f x  is a Hilbert space and thus in particular K(X)<oQ whenever 

dimX<oQ. The K convexity constant will enter our computations in view of the 
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following inequality which is an immediate consequence of the definition. For every 
m X *  choice of {x i };=1 in we have 

Ir(   )tm I } 
~<K(X)sup ri(t)x*, q(t)x i dt, Z ri(t)xl ~< I (4.11) 

k J 0  i= I i= I i= 1 L2(X) 

As for estimates on K(X); the following are due to Pisier [P.3I (see also [M.Sche], 

Chapter 14). 

K(X) <~ Clog d(X, l~)<~ Clog n, n = dim X (4.12) 

K(X)<~C(logn) 1~, n =dimX,  XcLI(O, 1) (4.I3) 

K(Lp(ff~,l~))~(p-1) ~e, l<p~<2 .  (4.14) 

An estimate which seems to be new is given in 

LEMMA 4.3. Let X be an n-dimensional subspace of  Ll(O, 1) and let l<p~<2. Then 

K(X) <~ C(log (1 + Tp(X))/(p- I)) m, (4.15) 

where C is an absolute constant and Tp(X) the type p constant of X. 

Proof. By Proposition 3.1 there is no loss of generality to assume that XcLI(Q,IJ) 

for some probability measure space (~,~)  and that we have for every x E X  

Ilxtl~. o <~ er.(x)Ilxlb,. (4.16) 

Let 0 < 0 < I  and 1/s=(1-O)/l+O/p. A standard computation (involving the sets 

{o), 2~<lf(o~)l~2k+l } for every k) shows that for fELp,| we have for some abso- 

lute cl 

{VI{~, Ilfll[~ Ilfll~, ~ 
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and in particular if we restrict 0 to be in (0, �89 

c f l-O o IlfliL~< 2 II IlL, IlfllLp, (4.17) 

for some absolute c2. Hence by (4.16) and (4.17) we get that if 0~<�89 then the Banach 

Mazur distance of X from a subspace, of L~(fl,/t) is <.c 3 Tp(X) ~ Consequently by (4.14) 

K(X)<-c4(s-l)-V2Tp(X)~ By choosing 0 so that 2(s-1)log(l+Tp(X))=p-1 we get 
(4.15). [] 

Two other notions from Banach space theory will be useful for us: 2-absolutely 

summing norms and cotype q. The 2-absolutely summing norm z~2(T) of a Utxear 

operator T:X---~ Y is defined to be the smallest constant y so that 

(4.18) 

holds for every choice of {Xi}im,, m= 1,2 . . . . .  in X (in our case dimX will be finite and 

this ensures in particular that :t2(T)<o0 for every operator T). The notion of cotype is 

dual to that of type. For 2~<q<~ the cotype q constant of the Banach space Y, denoted 

by Cq(Y) is the smallest constant y for which 

(,= l'r,llq)"q  fo'll,= Y,r,(t)lldt (4.19) 

holds for every choice of {Yi}i~l, m = l , 2  .. . . .  in Y. A simple consequence of the 

classical Khintchine inequality is that C2(Lt(O, 1))<~, i.e., Ll(0, 1) is a space of cotype 

2. With these notions we can state the next lemma which is just a reformulation of 

Lemma 1 in [D.M.T-J]. 

LEMMA 4.4. With X as in Proposition 4.1. we have 

Mx, <. cn-1/2K(X) C2(X) ~r2(T) (4.20) 

where T is the formal identity map from X into I~=(R n, III III). In particular, i f  X is a 
subspace o f  Ll(O, 1) then 

Mx. <~ 6n-1/2K(X) zt2(T). (4.21) 
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Proof. Evidently (4.21) follows from (4.20) with c=cC2(Ll(O, 1)). We prove (4.20). 

By the Pietch factorization theorem (cf. e.g., [L.Tz. 1 p. 64]) there exists an m>~n so 

that T can be factored as T-- VA U 

U A m V n 
X---~ l~---~ ! 2 ---* l 2 

where IIUII<I, IlVll~<l, AfF2/j, the {~j}jm being the unit vectors in l~ and l~' and 

I 
ra 2 \  I/2 2;) = IIAII~<2az2(T). (4.22) 

Since an orthogonal mxm matrix takes m independent normalized Gaussian 

variables {g,}i~l (on some probability space (f~,/~)) into a set of m variables having the 

same joint distribution and since every operator of norm ~<1 on l~ is a convex 

combination of orthogonal transformations we deduce (using (4.4) and the fact that 

IlV*ll l) that 

Mx.=anf i= _ lgi(to)ei d#(to)<-a.fo u*A*f, d#(to). 

Again, since for every t the functions {rj(t)&(to)}7=1 have the same joint distribution as 

{gj(to))7=l it follows that 

<-a. fo s ] j=~rj(t)gj(to)U*A*fj dtdlz(to) 
(4.23) 

<_a. (s j=~l gj(to)rj(t) U*A*f j 2dt) '/2dlz(to). 

For every to E Q we get by (4.11) 

(s j=~l gj(to) rj(t) U*A*fj 2 )  1/2 

<<. K(X) sup gj(w) U*A*f~(x); 
L j = I  

By (4.19) we have for al l  {Xj}jra=l in X 

Q=~ Ilxjli2) l/2<- C2(X) j=~ rj(t) xj 

j=~l rj(t)xj L2(X) ~ 1/" 

~< C2(X) t) xj 
j= 1 L2(X) 

(4.24) 
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Hence I 1 ~  rj(t) xjllL2(X)~ 1 implies that 

~= g2(c~ U*A*s (i=~ l&(c~ '/2 (~= llUxjl'2) ,,2 ( 
oc2 , ''2 

j=l  

Combining this inequality with (4.22), (4.23) and (4.24) we get 

Mx. <~ a~ K(X)  C2(X) co) kjl 2 dl~(to) 

<~ c I a,  K(X)  C2(X) 2~ 

<~ cn-i/2K(X) C2(X ) ~t2(T). [] 

Our next lemma is another change of  density result. 

LEMMA 4.5. Let  (Q,IZ) be a probability space and let X be an n dimensional 

subspace o f  Ll(~,lZ). Then there is another probability measure v on ~ and a subspace 

o f  Ll(f~, v) which is isometric to X so that 

~t2(T) ~< cn u2 (4.25) 

where T is the identity map from f~ onto (X, III lid where III III is the norm induced on f{ 

from L2(Q, v) and c, as usual, denotes an absolute constant. 

Proof. As shown by Lewis [Le] there is a basis (qoi}i~ 1 of  X so that for all scalars 

2/) 
j=l  

where 

~' = , I l O l k , ~ ) =  1. 
j=l  

Define now a measure v on ff] by dv=~dl~ and let f--->~ -1 f m a p  X onto a subspace X of 

Ll(•,v).  Clearly this map is an isometry and 7~ has a basis y2j=q)j/d~, j = 1 , 2  . . . . .  n 

satisfying 

7-898282 Acta Mathematica 162. Imprim6 le 8 mars 1989 
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,~_a z-- fn z fn~P,q~jdv=O if k * J  �9 ~0) --1, ~o~ dv= n -t,  
j = l  

(4.26) 

Consider now the functions ht defined on ~ ,  O<~t<~ 1 by (/2=_ 1) 

n s 
hi(to) = Imag H (1 +irflt) vQ(oj)) = rj(t) ~pj(eo)+higher order Walsh function in t. 

j=l j=t 

By (4.26) 

Ilh,ilL=(v) <~ sup I~I (I +~p~(w)) '/2 <~ 
co j = l  

(4.27) 

_ _  /I and for every x-E~=l~.j ~pj in 

fa x(w) h,(~o)dv = ~ )~jrj(t)/n+higher order Walsh functions 
j = l  

and thus 

x(~o) h,(w) dv dt ~ E 2~/n2 = Illxlll~d n" 
j = l  

(4.28) 

By (4.27) and (4.28) we get for any choice of {Xk}k~l in X 

}  (Io 1 sup Ix*(x )lZ; Ilx*ll 1 >t e -t sup ht(w)xk(oJ) dv 
0~<t~<l k=l  

>~e -1 h,(wlXk(ealdv dt>~ [ltxkll[ 2 ne 
k=l  k=l  

and this is equivalent to (4.25). [] 

Remark. Lemma 4.5 is already the third change of density result mentioned in this 

paper. By forming averages of the densities obtained in the various results and allowing 

a possible change in the absolute constants involved, we can ensure that we work with 

densities which have all the desired properties at once. In all the situations appearing 

here it is easy to check that the averaging procedure is permissible (the least obvious 

case involves Proposition 3. I where the checking is made in Lemma 3.2). 
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We combine now most of the preceding results to obtain the following entropy 

estimate. 

PROPOSITION 4.6. Let X be an n-dimensional subspace of  Ll(~,t~). Then there is a 

probability measure v on g2 given by dv=Fdl~ so that for the space )(=F-IX in Ll(f~, v) 

we have for every t>0 and every q>>-1 

log E{B~, n q, t} <-cK(X)nql/Z/t (4.29) 

where c is an absolute constant and Bq is the unit ball of  ffq= f( endowed with the norm 

induced by Lq(~-~, 1)). 

Proof. Let v be as in the proof of Lemma 4.5. From the definition of entropy it 

follows immediately that 

E{Bxc, B q, t) <<, E{Byo B 2, A} E(B 2, B q, t/ t } (4.30) 

for every 0<;t<t. We take as III III the norm in X2 i.e., that induced by L2(f2, v). By 

Propositions 4.1, 4.2 and (4.30) we deduce that 

f M2x* + AZM2 ~ (4.31) logE{BfoBq, t }<-c ,n~-~--  --~ Yc,}" 

By Lemmas 4.4 and 4.5, Mx.<-c2K(X). Let {g)(w')}~= 1 be normalized independent 

Gaussians on a probability space (~)',/~'). We take as unit vectors in Xz the functions 

{V'~-~pfl~"_~ with the 7;i as in (4.26). By (4.4) 

Mxq= a.nl/2 f~ I j=~&(oJ')Wj Lq(~,,v)dlg(to'). 

It follows from the Maurey-Khintchine inequality (cf. e.g., [L.Tz.2 p. 49]) (4.26) and 

the fact that a , - n  -~/2 that 

Substituting in (4.31) we get that 

l~ <~c4 { K(X)2 + q~2] n \ - F -  7:" 

By taking minimum over 2, (4.29) follows. [] 
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Remark. As in the remark above we may replace v by (v+/~)/2. Then we get a 

measure on fl which is dominated from below by/~/2 and for which (4.29) still holds 

(with c replaced by 2c). 

COROLLARY 4.7. Let X be an n-dimensional subspace of  ffl. Then there exists a 
probability measure v on { l ..... N} and a subspace f(  of  Ll(N, v) isometric to X so that 

log E(B~., B| t} ~< c(log n log N)l/2n/t (4.32) 

where B| is the unit ball o f  l~=(N, v). 

Proof. Let/~ be the usual probability measure on {1,2 ..... N) ,  i .e.,/~{i}=N -~ for 

every i. We apply Proposition 4.6 to find .Y and v. By the remark after Proposition 4.6 

we may assume that v{i}>(2N) -l for every i. For everyfELq(N, v) 

max If~l/(2N)~/q <~ l[f[l = ( ~i=~ If~lqv{ i) ) ~/q <~ max,. If l 

and hence d(Lq(N,v),L| 1/q. We take now q= logN in (4.29), use the 

estimate (4.13) for K(X) and (4.32) follows. [] 

COROLLARY 4.8. Let X be an n-dimensional subspace of  Lt(O, 1). Then for every 
e>0 there is a probability space (~,v) and a subspace X of  Lt(g2,v) with d(X,f()<~l +e 
so that 

log E{B:~, BL| ' ~), t} <<- c(log n(log ne-l))l/2n/t. (4.33) 

Proof. Combine (4.32) with Theorem 2.6. [] 

In the two corollaries above we may use the estimate (4.15) for K(X) instead of 

(4.13). Then for example we get, instead of (4.33), the following estimate with l<p~<2, 

log E(B,f., BL| ), t} <~ c[log(Tp(X)+ 1) log(ne -I) ( p -  1) -1 ] l/2n/t. (4.34) 

In section 9 we shall prove a slightly stronger version of (4.33), which however will 

not be of use for estimating N(X, e). 
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5. Proof  of  the main theorems 

Our purpose now is to combine the tools developed in the last three sections and to 

derive from them Theorems 1.1 and 1.2. We show first how the entropy numbers enter 

into the analysis of the empirical method. 

PROPOSITION 5.1. Let  X be an n-dimensional subspace o f  Ll(~"~,fl) for  some 

probability measure t~. Let  II II~ denote the norm in L| and put 

nx= (x; x~X, Ilxll ~ I) ,  B= = (x; x~X, Ilxll= ~ l} 

and M=sup(llxll~; x ~ x ,  I lxll~l) which we assume to be finite. Then for  some absolute 
constant C and all 0<t< l /2 ,  

~/2dt)2+nloge-~). (5.1) 

Since 

II ly~.xl-ly~-,.xl I1= ~ Ily,.=-xll~+lly~-,.x-xll~ ~ 2s+2"-' ~ 2~*1 

Proof. Let l=[log2M]+l and for s=0, I . . . . .  l let ~s be a subset of Bx so that 

Bx= 0 {y+TB~}, ~<~E,(Bx, B| (5.2) 

For s=l we choose ~1 to consist just of the origin 0. Let ~ be an e-net in Bx so that 

log ~,~ c I nlog e -1 (5.3) 

(cf. Lemma 2.4). For every x E $; and O~s<~l let Y~,x E ~ satisfy ]]x-y~,x]]| We 

clearly have 

l 

Ix(o))l = (Ix(~o)l-ly0.x(o,)l)+ ~ (lys,,(~o)l-ly,_Lx(~o)l), xEX, o) E f~. (5.4) 
s= l  

We are going to apply the empirical method to the following collection of subsets of 

L=(Q,~) 

~o= (Ixl-lyo.xl; x~ ~;}, ~,= (ly,,xl-ly,-,.xl; x~ ~}, l <~s<<-l. 
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we have 

IIf[It ~< 2, 

Also by (4.1), (5.2) and (5.3) 

[ I f l [ .~2  '§ fE ~, O~s~l. 

log 40 ~< c t nlog e -t, 

log ~ ~<log ,~s+log ~s_l <~21ogE(Bx, B| l ~ s ~ l .  

(5.5) 

(5.6) 

that 

Our aim it to find {%}j~1 in ~ where N is given by the right hand side of (5.1) so 

I N -1 E f ( w j ) -  f(w)d/~(to) 
j f l  

N -1 Ef(~oj) -  f(to) dlt(to) <- e s, fE  ~s, 
S=l dO [ 

~< e, fE  ~0 (5.7) 

l 

l~<s~<l with E G  ~<e. (5.8) 

Once (5.7) and (5.8) hold we get by (5.4) that 

N 

Ix%)l-Ilxll 
j = l  

<~2e, xES ~ 

and an application of Lemma 2.5 will conclude the proof. 
To ensure that (5.7) and (5.8) hold it is enough to verify that the measure of the set 

of {ws}j~ ~ in ~N for which at least one of the inequalities fails is less than 1. In view of 

Lemma 2.1 this will be the case in particular if 

2 40 exp( -  e2N/32) < 1/2 (5.9) 

f 

2 E  * 2 s+1 ~exp(--GN/32.2 )<1/2.  (5.10) 
s = |  

(We apply Lemma 2.1 to the functions f - f f d ~ ,  fE  ~s; these functions have an Ll norm 

bounded by 4 and an L~ norm bounded by 2s+~.) By (5.6) it follows that (5.9) is ensured 

once 

N ~> c 2 ne -2 log e-l. (5.11) 
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Note  that since obviously E(Bx, B=,2)~M/2, it follows from (5.6) that (5.10) is 

ensured once we have for a suitable c3>0 

e x p ( -  es 2 N/32" 2 s+l)/> c 3 E(B x, B| 2~-2) 4, 

i.e., 

l ~ s ~ l  

e s N uz >~ c4(log E(B x, B=, 2s-2))1/22 s/z, I ~ s <~ l. 

Since we a/so need to have that E~,=l e,~e, and E(B x, B~, t) is a monotone decreas- 

ing function of  t, we get that what  will ensure (5.10) is 

t f M(logE(Bx, B~ , t ) ) ,n  
eN1/2 >" c4 E log E(B x, B| 2 ~-~) 2 ̀ /2 >~ c 5 . dt. (5.12) 

s=l t 

Since the right hand side of  (5.1) verifies both (5.11) and (5.12) the proposition is 

proved. [] 

We are now ready to prove Theorem 1.2 in the following, more precise, formula- 

tion. 

THEOREM 5.2. Let X be an n dimensional subspace of L1(0, 1). Then for some 

absolute constant c 

N ( X ,  ~) ~ CE -2 log(ne -l) (log n)2n, e > 0. (5.13) 

Proof. By Lemma 2.3 and Corollary 4.8 there is for every e>0  a probability space 

(~,  v) and a subspace X of  L1(~, v) so that d(X, 3()<~ 1 +e, sup {llxll~; x 2, I lxll--- 1) ~<2n 

and 

Hence by (5.1) 

logE(B.~, B=, t) <<. cl[log n log(ne-I)]Inn/t, t> 1. 

and this implies (5.13). [] 

We pass now to estimates on N(X, e) for spaces for which we have information on 

Tp(X) for some p > l .  Our aim is to prove Theorem 1.1. We shall combine in the proof  
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the weak Lp estimates given by Proposition 3.1 with the entropy estimates from section 

4. The strategy is just to combine the proof of Lemma 3.3. with that of Proposition 5.1. 

While the proof involves no additional ideas to those already used above the task of 

keeping track of all the parameters leads to some quite lengthy (but elementary) 

computations. 

LEMMA 5.3. Let X be an n-dimensional subspace of  ~. Let l<p~<2, 0<e<l /2  and 
assume that N>-ne -2. Then there is a subspace Y of  ff with d(X, Y)<~. l + e provided that 

IV >. cne-2(log T)t/2(p- 1)-3(log(NT/n(p- I)) 5:2 (5.14) 

where c is a universal constant and T=Tp(X)+ I. 

Proof. By Lemmas 2.3 and 3.2 we may assume that there is a probability measure 

/~ on {1,2 ..... N} so that la{i}>l/2N for every i and 

IlxllL.~)~c2nllx[I, Ilxll, ~)~czL(S)(p-1)-~llxll, .x~S. (5.15) 

In addition, in view of Lemma 4.3 and Proposition 4.6, we may also assume that 

for every q > l  

c log E(B x, Bq, t) <~ c 3 K(X) nql~lt <. 4 \ p -  1 / (5.16) 

Note that, by (5.15), HxlILqo,)~c2nH/qllxl[ for every x6X and thus for t>c2 nH/q, 

E(B x, Bq, t)= I. Let ~be an e-net in the unit ball of X satisfying (5.3). We fix now a q>--2 

and put 

(log(1 + T,(X)) ~ l/2.ql/2, a=Sc2Tp(X)/(p-1), fl=8c4\ ~- l  / l= [logc2nl-~/q]. (5.17) 

For O<~s<~l we choose now a set Gs, in Bx so that 

B x ~  U {y+ESBq}, Gs~E(Bx, Bq, 2"). (5.18) 
yeGs 

The set Gl consists just of the origin. For x E ~, O<~s<~l let Y,.x 6 G, satisfy llx-y~,xllq<.2". 
Put next 
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By (4.1), (5.16), (5.17) and (5.18) we get that 

log~s~<fln2 -~, l<~s<~l. (5.19) 

By (5.15) we get that for every z E ~, O<~s<<.l 

Ilzlk~.0~)~2, IlzllL0,)~2 *+', ]lzllL=O~)~min((2N)'/q2*+',2c2n). (5.20) 

As in the proof of Proposition 5.1 we shall apply the empirical method to all the 

sets ~s, O<-s<-l. We find below positive numbers {0~}ls=~ and {6s)t~=l and certain 

expressions Nl,q, N2, q and N3, q so that 

I l 

s= l  s= l  

(5.21) 

and so that for iVy>max (NI, q, N2,q, N3,q) we have 

/L r Prob ]V-' Z z(i)- zdl~ 
j=l  d 

> e for at least one z fi ~ot < 1/2 

> 0 s for at least one z E ~,} < 5,, 

(5.22) 

l <.s<.l, (5.23) 

where the probability of {ij)~l is taken of course with respect to/~8. Once we verify this 

the proof will be concluded by showing that the right hand side of (5.14) exceeds 

max (Nl, q, 5/2, q, N3,q) for a suitably chosen q. 

We start with (5.22). As in the proof of Lemma 3.3 we cut each z in ~0 into its level 

sets Ak(z)= {i; 2k-l<[z(i)[<~2 k) and consider instead of g0 the - l og  n sets g0, k consisting 

of Z'ZAk(z). We apply the empirical method to all those sets using the reasoning of 

Lemma 3.3 but with Lq estimates (instead of Lv, | estimated used there). Thus, for 

example, (3.16) becomes in our setting (note that ~ =  ~0) 

\ log  ~ ' / /  " 

We get from this argument that (5.22) holds provided that 

]V >~ Nl,q = c6 ne-21og + ( N logN) l/q. (5.24) 
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w e  pass now to sets ~f, for l<.s<.l. Again we define ~f,,k={ZXAk(z); ZE ~,} and apply 

the empirical method to these sets. By using the Lq and L~ estimates from (5.20) the 

proof of Lemma 3.3 shows that (5.23) is satisfied for a given s if 

/~  ~ C 7 0s 2 2' log ~, ( N .log N= ~'/q (5.25) 
log ~, log ~,] 

and 

6~ > exp( -  c 8 02s l~/2SNltq). (5.26) 

Similarly, by using the Lp.| estimates instead of the Lq estimates the same argument 

gives that (5.23) holds for a given s if 

2Q>~ c 70-~2ct(p-1)-2log ~, ( N__~__. N \'/P tog ~ - - 1  (5.27) 
\log ~, log ~, /  

and 

6, > e x p ( - c  80~(p- 1)21V/2"Nvq). (5.28) 

Our choice of {0,}t,=l will be so that in particular 0,>~c9e(3/2) "-l, l<~s<~l, for some 

positive (small) absolute constant c 9. This requirement does not contradict the first 
inequality in (5.21) and allows us to choose the 6, so that the second inequality in (5.21) 

holds as well as (5.28) (and thus also (5.26)) for every l<~s<~l, provided that 

1~>~ N2,q= Clone-2(p - 1)-2(N~ l/q. (5.29) 
\ n /  

We now let So be defined by the equation 

o ( N ,og 
1O ,o  log ,o 1 

and define 0,, so that for h>0 

( 3 "~-~(,-l,,) 
o~,o~+h >- o N I T /  

,og )q 
log ~[~o] log ~[*o] 

/ 3 \-h:?a 
O[so]-h >" O[so] ~-~) �9 

(5.30) 

Such a choice can be made (consistent with our previous requirement on Os) so that 
EIs=~ O~e  provided that O[~0]~>Cll e min((p-  I), q-i). It is clear from (5.30) and (5.31) that 

i f~  r is such that (5.27) holds for [so] then (5.27) holds for all s>~[s0] and (5.25) holds for 

s<[s0]. 

(5.31) 
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In other words in order to ensure that for every l~s<<,l either (5.25) or (5.27) holds 

for our choice of {0,}ls=l it suffices that 

: ( N (5.32) )Q I> Cl 2 e-2a(p_ 1)-2(max((p_ 1)-1, q))2 log ~[s0] log ~[s0l ~[s0l ] " 

A direct computation using (5.17), (5.19) and (5.30) shows that (5.32) holds once 

-2 [ 1 2\ (qlogT') v2 [ ( NT '~ [ N>-X3,q= NT 
q3ne m a x ~ - q ~ , q ) \ ~ /  [ ~ l O g n ( p _ l ) / ~  

(5.33) 

where T=Tp(X)+ 1 and r=p/(pq-q+p). 
For q=(p-1)-llog(NT/n(p-1)) the right hand side of (5.14) satisfies all three 

conditions on ~r namely (5.24), (5.29) and (5.33). [] 

As in section 3 we can now use iteration and get a good estimate for N(X, e) for 

every XcLt(0, I). In particular we get the following refined version of Theorem 1.1. 

THEOREM 5.4. Let X be an n-dimensional subspace of Ll(O, 1), let 0<e<l/2,  let 
l<p~<2 and r>0. Then 

N(X, e) ~ c(r) ne-2(log(Tp(X)+ 1))l/2(p- 1)-3-*(log(Tp(X)/e(p- 1))) 5/2+3 (5.34) 

where c(r) is a function of r only. 

Proof. Put cp(e)=N(X, e)/n, a=(log(Tp(X)+ 1))l/2(p - 1) -3, fl=log((Tp(X)+ 1)/(p- 1)). 

By Lemma 5.3 we have for every integer k that whenever q0(e2-k)~>22ke -2 then 

q~(e2-~k-1)) ~ c22ke-2a( fl +log qg(e2-k)) 5/2. (5.35) 

By a routine calculation (5.34) follows from (5.35). [] 

Remark. If we take p -1=( log  n) -l in Theorem 5.4 we get a slightly weaker version 

of Theorem 5.2. Indeed for every n-dimensional subspace X of L1(0, 1), Tp(X)<~cl (for 

p=l+( logn)- l ) .  Hence the dependence of N(X, e) on n we obtain is n(logn) 3+~ (we get 
n(log n) 3 in Theorem 5.2). 
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6. The approximation of Euclidean halls 

In the previous sections we treated the question of embedding arbitrary subspaces of 

L I ( 0  , l )  in ft. In [F.L.M.] the question of embedding Euclidean spaces into arbitrary 

Banach spaces was considered. This section is devoted to some results concerning the 

case which is common to both of these studies, i.e., the embedding of P2 in ~,  or in 

geometric language, the approximation of Euclidean balls by zonotopes. While this 

case has been examined in several papers by now, and is certainly simpler than the 

general problems treated in the previous sections or in [F.L.M.], there are still (as we 

shall see) some open problems related to it. 

In [Be.Mc.] the authors raise the question of how well B n can be approximated by 

a sum of segments of equal length. The empirical distribution method can be easily 

applied also for treating this question. We start by proving a simple variant of Lemma 

2.1. This variant involves Orlicz spaces so we recall the definition of such spaces. Let 

(f~,/z) be a probability space and let ~(t) be a convex increasing function on [0, o0) so 

that ~(0)=0 and limt_,| ~(t)=oo. We denote by L~(u) the space of all measurable real- 

valued functions f o n  ~ so that j 'u~(]f]/2)d/z<~ for some 2>0 and put 

[[fllL,o~)=inf{X>O;f~(lfl/Z)d/~<.l}. (6.1) 

We shall be concerned here only with the two functions 

~l(O = e ' - l ,  ~2(t)  = e t 2 -1 ,  t >I0 (6 .2)  

(besides of course the functions t p which give rise to the Lp(/z) spaces). 

LEMMA 6.1. Let {gj}~l be independent random variables with mean 0 on some 
probability space (f2,/O. Assume that IIg~llL~,0,)~<M for some constant M and every 

I<.j<.N. Then for 0<e<4M 

P r o b (  j=~gj >-eN}<.2exp(-e2N/16M2). (6.3) 

Proof. We may clearly assume that M=I .  For every g with IlgjllL~10,)~l we have 

fQ exp(lgl) d/~<2 and hence 

fQIgl k dlu <~ k! fu exp(]g[) d/z ~< 2. k!, 1 ~< k < oo. 
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Consequently, if in addition fQgdl~=O, we get for 0<2~<1/2 

exp(2g) d/z ~< 1+ [2g[kdl~/k! <- 1+2 2k~ < 1+422. 
k=2 k=2 

Hence 

Prob gi > eN exp(e2N) ~< exp 2 gi d/~ = 1-[ exp(2g i) d/~ 
j=l j=l 

~< (1 +422) N ~ exp(422N). 

By taking 2=e/8 (~<1/2) we get 

Prob gi>eN <~exp(-eZN/16) 
t . j=l J 

and this implies (6.3). [] 

Remark. The lemma obviously holds also if we take M=max I]gjllLv2~). In this form 

we shall actually apply it below. There are however instances which are of some 

geometric interest in which an L~I estimate on the functions involved is available while 

no L~: estimate holds. We shall discuss an example of such a situation in [B.L.M.2]. 

PROPOSITION 6.2. Let B" be the Euclidean ball and let 0<e<l/2.  Then for 

N >1 one -2 log e- 1 (6.4) 

there exist N segments {/j}}u__ 1 of equal length so that 

N 
( 1 - ~ ) B  n c Z I j c  ( l + e )  B n. (6.5) 

j=l 

Proof. Consider S"-~=O(B n) with the normalized rotation invariant measure o,. Let 

X" be the subspace of L1(o,) consisting of the (restrictions to S "-1 of the) linear 

functions. (We identify the elements of X" with the points in R".) Put 

fl,= i,_ll(x,u)[do,(u), xES"-'.  (6.6) 
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Then fln~n -1/2. A simple computation also shows that for x E S  "-~ 

f f f,2 / ;~2 exp(n(x ,u)2/4)don(u)  = cos~-2Oexp(ns inZO/4)dO/  J ~ cosn-2OdO<~cl 

for some absolute constant Cl. Hence 

II~l<x,  u)IIL~2~o.~ < c2, x ~ S  ~-1. (6.7) 

We now apply Lemma 6.1 to functions of the form 

~ll<x, uj>l-t, x, u~S  ~-~ 

and get by the reasoning of  section 2 in view of (6.2), (6.3) and (6.7) that for a suitable 

choice of {uj}~l in S ~-1 

t (N~.)- '~l(x,  uj)l-1 <e, x~S"-'. (6.8) 
j= l  

It follows from the Hahn Banach theorem (or more precisely the separation theorem) 

that (6.8) implies (6.5) if we take / j=(Nf l , ) - l [ -u j ,  uj]. All these intervals have a common 

length 2~Nil,. K(X)  and (4.32) follows. [] 

The proof of Proposition 6.2 actually enables us to obtain a more general geometric 

result. Proposition 6.2 asserts that we can approximate B" by a sum of N = N ( n ,  e) sets 

each obtained from a fixed segment by a suitable rotation. It turns out that it is possible 

to replace the segment above by an arbitrary compact convex set. 

THEOREM 6.3. Let  K be a compact  convex set in R n and let 0<e<l /2 .  There are a 
constant r = r ( K )  and orthogonal transformations (Uj}~I on R n, with N<~cne-Elog e -1 

so that 

1 N 
(1 --e) rB n c -~ .~  UjK c (1 +e) rB ~. (6.9) 

Proof. There is no loss of generality to assume that K is symmetric with respect to 

the origin (otherwise replace K by K - K ) .  There is also no loss of generality to assume 

that K has the origin as an interior point. Let  II II be the norm on R ~ whose unit ball is 

the polar of K, i.e., 

Ilxll=sup(l(x,u)l,u~g), x E R  n. 
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We shall now proceed as in the proof  of  Proposit ion 6.2. The only difference is that the 

Lr2 estimate we need now lies much deeper.  This estimate is however available in the 

literature. Le t  O n be the group of  orthogonal transformations on R n and let Pn be the 

normalized Haar  measure on O n. For  every xE R n we consider llUxll as a function on 
o L  A result of  Marcus and Pisier ([Ma.P.] section V2), which is based on the so called 
Landau-Shepp-Fernique theorem, states that there is a universal constant c~ so that 

Observe that 

II UxllL 2 n) ~ Cl l[ UXIILI~n)' X E R n. (6.10) 

Illxlll = fon IlVxll d n(U) (6.11) 

is a rotation invariant norm on R n and thus is a suitable multiple of  the usual Eucl idean 

norm. By applying the empirical distribution method to the functions I I Uxll-[[[x[[I on O n 

for all x satisfying [[[x[[[= 1 (to be precise for an e net with respect  to [[[. Ill of  this set) we 

get as in section 2 (and in view of  Lem m a  6.1 and (6.10)) that for N as in the statement 

of the theorem and for suitable (Uj}~ 1 c O n 

 ll xll-IIIxlll   lllxlll, xCR n, (6.12) 

Assertion (6.9) follows from (6.12) by a straightforward duality argument. [] 

Remark .  For  K a zonotope ,  Theorem 6.3 is an easy consequence of  Proposit ion 6.2 

and its proof. Thus in this case we do not have to use the result of  Marcus and Pisier. 

A more detailed study of  questions related to Theorem 6.3 is presented in 

[B.L.M.2]. In this paper  we determine in particular the number  of Minkowski symme- 

trizations needed in order  to pass f rom a general convex body in R n to a body e close to 

a sphere. 

We turn next  to the second topic of  this section and this is the study whether  (1.4) 

can be improved as far as dependence  on e is concerned.  We have seen in the previous 

section that up to logarithmic factors the same estimate holds for general zonoids and 

again in (6.4) we got a similar estimate for  the case of  equal segments. These results 

make the question above more interesting from the geometric point of  view. 

Some facts concerning this question are contained in [Be.Mc.]. One of the obser- 
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vations in [Be.Mc] is the following. Assume that (6.5) holds wi th / j=  [-Yi, YJ]" Then for 
every choise of ( n - l )  indices {ji}~-i I and every choice of signs {Oi)~-~ l there is on the 

boundary of Xj~ 1/j a segment of length 211~7-~ ~ Oiyj, lh. Hence by (6.5) 

n - I  [2 

(l--e)2+ i~=lOiYji 2 ~> (l+e)2. (6.13) 

Also by (6.5) we have for every x E S  n-~ that ~ l l ( x ,  yj)l>>-l-e and hence we may 

choose the 0 i and Ji, 1 <~i<~n, so that 

~> (1 -e) (n- 1)/N. (6.14) 
2 

PROPOSITION 6.4. Assume that (6.5) holds for some choice of  interoals {/j)~l not 
necessarily of  equal length. Then for some absolute constant c>0 

N >I cn2/(1 +ne). (6.16) 

Proof. We assume that n is even; the case n odd follows from n even by projecting 
on a subspace with codimension 1. Consider again the numbers fin defined in (6.6). The 

precise value of fin is given by 

fin = F(n/2)/(F((n + I)/2) F(1/2)). (6.17) 

Hence, by Stirling's formula 

f l ' a2 -F(n /4 ) r ( (n+l ) /2 ) -X /T ( l+  1 +O(~2)  ) .  (6.18) 
fin ~ 4n 

We write (6.5) in the following form. For some {Yj)~l in S ~-1 and some scalars 

N [ 
~]21t(x, yj) l -1 <_e, x E S  n-'. (6.19) 
j= l  

From (6.13) and (6.14) it follows that (for e<l/4) 

N >>- n/4e 1/2. (6.15) 

An estimate which is better than (6.15) for a suitable range ofe  (e~>n -2, to be precise) is 

given in the next proposition. 
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By integrating (6.19) with respect to an we get 

N 

j_~l ~,j-- 1 < e .  (6.20) 

Hence (if e<l/2) 

n/2 

2 2J ~> n(1-e)/2N >~ n/4N. 
j=l  

(6.21) 

Let E c R  n be an n12 dimensional subspace containing {yj}~__21 and let Q be the orthogonal 
projection on E. 

Then for xEE with Ilxl12--1 we get from (6.19) 

fl21 ~ 2jl(x, Qyi)l-  1 < e  
j=l  

and by integrating on the unit sphere of E with respect to its invariant measure it 
follows that 

N 

j=l  

By the Cauchy Schwartz inequality 

(j=~ 2J) (j=~ ;~jllQyJl[~) >~ (1-e)2 (fln/fl~)2. (6.22) 

Similarly, by replacing Q and E with I-Q and E • respectively and noting that 

(l-Q)yi=O for l<~j~n/2 we get 

(j=n/2~+l~,j) (j=~/E+ Ajll(I-Q)yjll~) >~(1-e)2(fln/fl,~) 2 (6.23) 

and in particular (if e<l /5 and n~>3) 

N 

2 )'JII(I-Q)YJll 2>~ 1/4. 
j=n/2+ 1 

By (6.20)-(6.24) 

(l+e)2 ~> = 

(6.24) 

8-898282 Acta Mathematica 162. Imprim~ le 8 mars 1989 
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t> I -  +2(I --e) 2 (fin/fin/2) 2 
. =  

>I n~ 1 6 N +  2( 1 - e) 2 (ft . /ft . /2) 2. 

Hence by (6.13), 

n/16N <~ (I +e)2-(1 -e )  2 (I - 1/2n+ O(n-2)) = 4e+ 1/2n+ O(e+ l/n) 2 

and this implies (6.16). [] 

In the notation of section 1, (6.16) states that N(B",  e)>~cn2/(l+ne). We consider 

next the behavior o f N = N ( B  ~, e) for a fixed n as a function o fe  as e--~0. It is trivial that 

for n=2 the right value of N is given by (6.15), i.e., N ~ c e  -I/2. For n=3,4 better upper 

bounds for N than (1.4) were obtained (using the notion of a projection body) in 

[Be.Mc.], namely 

N(B",  e) <~ y,  e (1-')/2. (6.25) 

We establish here a lower bound. 

THEOREM 6.5. For every n ~ 2  there is a positive constant  cn so that 

N(B  n, g) >t c n e 2(l-n)/(n+2). (6.26) 

Thus for example for n=3 we get from (6.25) and (6.26) that 

c 3 e -4/5 <~ N(B  3, e) <- ~3 e- i. 

We do not know the exact order of magnitude of N(B  3, e).(~) 

Theorem 6.5 is an immediate consequence of the following proposition. 

PROPOSITION 6.6. Le t  p be a symmetr ic  probability measure on S n-l supported by 

N points.  Put  

h(x) = .Isl -~ [(x, y )1 d~,Cy). (6.27) 

(1) See also the note "added in proof". 
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Then 

6 --= sup h(x)- inf h(x) >t Ilh--~.llL2(o.)I> c(n) N-('+2)/20'-1) (6.28) 
X~S n-I xES n-I 

for a suitable positive constant c(n). 

Here e,  denotes, as before, the normalized rotation invariant measure on S n-l and 

fln= fs._ l(x,y)ldo,,(x)= fs._ h(x)do,,(x)" 

Proof. We shall use some results on spherical harmonics. For each k let 
{ Yk,j, 1 <.j<.M(n, k)) be an orthonormal basis of the spherical harmonics of degree k on 

S "-l. By the addition theorem (see [Mu] p. 10) 

Z Yk, j(~) Yk, j(rl) = M(n, k)Pk((~, rl)), ~, rl ES"-' ( 6 . 2 9 )  
J 

is the Legendre polynomial of degree k and dimension n, given by where Pk(t) 
Rodriques' formula (see [Mu] p. 17) 

d k Pk(t)=(---~) k F(k+F((n- 1)/2)(n - 1)/2) (1-t2)(3-n)/2(-~) {(l-12)k+(n-3)/2}" (6.30) 

By the Funk-Hecke formula (see [Mu] p. 20) 

[h, Yk.d = fs._lh(x) Y~.~(x)da.(x)= fs._, [ fs._ l(x, Y)lYk.j(x)d~ d/~tY) 
fs (6.31) 

= ~k n--I Yk'J(Y) dlx(Y) 

where 2k=0 for odd k and for even k (by (6.30)) 

f' )'k = F(n/2) I tl (1 - t2) (" - 3)/ZPk(t) dt 
~l/2F((n- I)/2) 1 

= 1 t d k (1 t2) k+(n-3)/2 2-k+lF(n/2) f0 (-~)  { -- }dt 
~rv2F(k+ ( n -  1)/2) 

- (-1)(k-Z)/ZF(n/2)F(k-1) ~-k -~-1 for k---~.  
~rv22 k- IF(k/2) F((k+n + 1)/2) 

(6.32) 
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Note that we denote the inner product in L2(on) by [ . , .  ]. Recall also the following 

identity ([Mu] p. 30, Lemma 17) 

1 - ~ M(n, k) rtPk(t), ltl ~< 1, 0 ~< r < 1. (6:33) 
(1 +r2--2rt) nt2 k=0 

By (6.29) we deduce that 

l _ r  2 | 

(l+r2 2r(~, r/)),a2 = E r k Z  Yk,:(~) rk,,(TI), 
k=0 j 

~,rlES n-~, O~<r<l ,  (6.34) 

and by integrating with respect to/z we get (using also (6.31)) 

fS oo 
--' (1 +r2-2r(~,  */)) *=o j 

(6.35) 

Since 

h = fl,,+ E Z [h, Yk, j] Y*,j 
k=l j 

we get by the definition of 6 in (6.28) and Parseval's identity that 

t~2 >~ ~ Z [h, Yk,j] 2. 
k=l j 

(6.36) 

By our assumption _ N Sn-I ,u--~,i=lai6q, where r/iE and a~>0 with E~lai=l. Hence, by 

(6.35) and (6.36) 

II a.:, II I -  ~ d max (rkA~-I). (6.37) 
.= ( l+r2-2r(~,  ~]i>) n/2 L2(o~) k~l 

Next observe that by (6.34) the square of the left hand side of (6.37) is equal to 

N N l _ r 4  

Z X a i a r  
ill i'=t (I +r4-2r2(r/i, rli,)) n/2 

-1  

which is at least 

0 ,r' 
( 1 - ? ) "  

I> N - l ( l - r )  - n + l -  1. 



We choose now r so that 

APPROXIMATION OF ZONOIDS BY ZONOTOPES 117 

( l-r2)  -"+1 = 2N. (6.38) 

Then by (6.32) and (6.37) there is a constant c~(n) so that 

cl(n) 6 max(rkk l+'u2) I> 1. (6.39) 
k even 

[] By taking k~(1-r2) -1 in (6.39) and using (6.38) we deduce (6.28). 

It was pointed out recently by Linhart [Li] that it follows from results of J. Beck 

(presented in detail in [Be.C.]) on irregularities of distribution on the sphere that the 

upper estimate N(B n, e)<.c(n) e -2 can be improved also for n~>5. The estimate given in 

[Li] is N(B ~, e)<~c(n) e-2+2/nllog el.(1) 

7. Embedding into 

In this section we treat the question of embedding subspaces X of Lp(0, 1) into L~ with 

small N in the case l<p<oo (the trivial case p=2  is excluded). As already mentioned in 

the introduction, the results we get show that the estimates obtained in [F.L.M.] for the 

case X an inner product space hold in a slightly weaker form for arbitrary X. In general 

the arguments here will resemble those used in sections 2-5 for the case p =  1. There- 

fore we shall be somewhat more brief here and mainly emphasize those technical points 

which have to be treated differently for p >  1. 

We start with the definition of the subject of our study. For a finite-dimensional 

subspace X of Lp(O, 1) and e>0 we put 

Np(X, e) = min{N; d(X, Y) <~ l +e  for some Y= l~}. (7.1) 

The change of density lemmas we used above for p =  1 generalize in a straightfor- 

ward way to the case p >  1. For example the lemma of Lewis (used in section 4 for p =  1) 

reads for general p as follows. 

(i) See also the note " added  in p roof" .  
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LEMMA 7.1 [Le]. Let X be an n-dimensional subspace of Lp(t2,p), l<~p<oo. Then 

there is a basis {r I of S so that for all scalars {Ai}i~ l 

fo ) 

F =  , I l f l lp  = I .  
i=1 

where 

(7.2) 

(7.3) 

It follows from this lemma that if v is the probability measure defined on f~ by 

dv=FPdl~ then the mapf-->F-tfmaps X into a subspace .~ of Lp(Q, v) which is isometric 

to X and which has a basis ~Oi=tpiF --1, l<~i<~n satisfying 

/~1 ~p~ ----- 1, = n -I ~ .  (7.4) 
'= i=1 2 "= 

An immediate consequence of (7.4) is the fact that for fEX,  IIfll| Conse- 

quently if l<~p<2, fE~" 

Ilfll~ ~ Ilfll~-'llfll~ ~ n'-PrZllfll~-'llfll~ 

o r  

Ilfl12 ~ n(2-')~'llfllp (7.5) 

and in conclusion 

Ilfll| l~<p~<2, Ilfll| ,, 2<-p, fEX .  (7.6) 

As pointed out by Schechtman [Sche.3] the empirical method of section 2, applied 

to the expressions 

IA )I'-fo Ifl p dv 

wherefranges  over an e-net in the boundary of the unit ball of X gives immediately, in 

view of (7.6), the following estimates. 
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Np(X,e)<~cn2e-21oge -I, l ~ < p < 2  (7.7) 

Np(X, e) ~ cnl+p/Ze-21og e -I, 2 < p .  (7.8) 

Our aim is to improve on these estimates by entropy considerations or the iteration 

procedure. 

The next proposition gives the relevant entropy estimates. 

PROPOSITION 7.2. (i) Let  X be an n-dimensional subspace o f  Lp(O, 1) with 2<p<oo 

and let e>0. Then there is a probability space (Q, v) and a subspace f (  o f  Lp(Q, v) so 

that d(X,f()<.l  +e and 

logE(Bp, Boo, t )< .c .p log(ne- l )n t  -2, l ~ t < . n  rE. (7.9) 

(ii) With X as above but f o r  l < p < 2  there are a v and f (  as above so that 

logE(Bp, B=, t )<~c(p-1) - l log(ne- l )n t  -p, l <~t<~n lip. (7.10) 

Here Br denotes the unit ball o f f (  in the norm induced by Lr(ff~, v). 

Proof. The proof of part (i) is by a trivial modification of arguments appearing 

already in section 4. If Y is a subspace of Lp(v) for some probability space, with a basis 

satisfying (7.4) then by the proof of Proposition 4.6 we have for every q>p 

log((ar) p, (Br) q, t) <<- log E((By)2, (By)q, t) <- c I qnt -2. (7.11) 

By Lemma 7.1 there is a probability measure v on {I .....  Np(X,e)} with v({i})~ > 

1/2Np(X, e) for every i and a subspace f( of Lp(v) so that (7.4) holds and d(f(, X ) ~  < 

l+e. Taking q=logNp(X,e)  in (7.11) and using (7.8) we get (7.9) (see the proof of 

Corollary 4.7). 

The proof of part (ii) requires more work namely both a duality argument and 

interpolation. Let again Y be a subspace of Lp(v) with a basis satisfying (7.4) and denote 

by Br its unit ball in the L~(v) norm, 

Fix 2<r and let q>r and 0<0<1 be such that 

1 1 - 0  0 - -  _ _ . q .  

r 2 q" 

Since for f, g E B2 

Ill-gilt ~ IIf-gll~-~ ~ ~ 211f-gll~ 
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log E(B 2 , B,, t) <~ log E(B 2 , B q, (t/2) I/~ <~ c 2 qn(t/2) -2r{q-2)/q(r-2) . (7.12) 

By taking q=rlogn (and remembering that only t<.n count) we get that 

log E(B2, Br, t) <~ C 3 rn log n(t/c3) -2r/(r-2). (7.13) 

We shall use (7.13) for estimating E(Bp, B 2, t). For k=0, 1 . . . . .  let ~k be a maximal 
subset of Bp with respect to the condition I[f-gll2>8kt for eve ry f*g  in If k (if 8/~t>n (2-p)/2p 

we take Igk={0}). Clearly 

~k ~/~(Bp, B 2, 8kt). 

It is also obvious that for every k there is an hk E Bp so that if 

~F k = 0e; f E  ~t, IIf-hklh ~< 8k+l/} 

then 

~k ~> ~k//~(Bp, Bz, 8 k+lt) t> E(Bp, B 2, 8kt)/E(Bp, B 2, 8k+'t). (7.14) 

Let ~k={(f--hk)/8k+lt, f E  ~:k}. Then 

Ilgll2~<l, IIgll,<~2/8k+lt, g E ~  k, Ilg-g'll2>l/8, g4=g'EC~k. 

Hence for g~=g' in qdk we have, with p '  denoting the conjugate exponent to p, 

8-2 ~< [Ig-g'[l~ ~< [[g-g'l[p IIg-g'llp' ~< 41[g-g'[I, ,/8~+lt 

or Ilg-g'llp,~>2-8k-2t. Consequently 

log/~(B2, Bp,, 8k-2t) I> log c~ k = log ~k ~ log/~(Bp, B 2, 8kt) -log/~(Bp, B 2, 8k+lt). 

By summing this inequality over all k and using (7.13) we get that for a suitable 
universal c4 

log F.(Bp, B 2, 0 <- c4(P- 1)-In log n. (t/c4) -2p/t2-p). (7.15) 

Since for all l < 2 < t  

log E(Bp, Bq, t) <~ log E(Bp, B 2, 2) +log E(B 2, Bq, t/~,) (7.16) 
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we get by (7.7), (7.11) and (7.15) and by taking a suitable it, q=logNp(X,e) and X a 

suitable subspace of Ll(v) where v is probability measure on {I, 2, ..., Np(X, e)} that 

(7.10) holds. [] 

Remark. If we take q=(4r/(r-2))logs in (7.12) (which can be done for 

s>exp((r-2)/4)) and then follow the argument above up to (7.16) we get that for 

l<p<2<q<oo  and say qp/(q-p)>~l that 

log E(Bp, Bq, t) <~ cn log t- t -pq/<q-p), t > e x p ( q + ( p -  1)-l). (7.17) 

This is a very precise estimate for a general finite dimensional subspace of L2~) in a 

"good position" (i.e., with a basis satisfying (7.4)). In fact, Schiitt computed in [Schu] 

the left hand side of (7.17) for the special case of X=/~ (i.e.,/~ the usual probability 

measure on { 1 .. . . .  n} and X being the entire L2~)), and found that 

log E(Bp, B q, t)~n(log t) t -pq/(q-p). 

We are now ready to prove sharper estimates on Np(X, e) than those given by (7.7) 

and (7.8). We start with the case p>2.  

THEOREM 7.3 Let 2 < p < ~  and let 0<e<  1/2. Then there is a constant c(p, e) so that 
for every n-dimensional subspace X of Lp(O, 1) 

Np(X, e) <~ c(p, e) n prz log n. (7.18) 

Proof. By Lemma 7.1 and Proposition 7.2 there is no loss of generality to assume 

that for some probability space (~, v), XcLp(f~, v), I[fll| f E X  and that (7.9) 

holds for E(Bp, B| t). 

Let ~:be an e-net on the boundary of Bp(=the unit ball of X) with log ~<4nlog  e -~. 

For k= 1,2 .. . . .  /=[log nl/2/log(1 +e)]+ I let ~kcBp be such that 

Bp C LI (g+e(l+e)k/3.B| 
e~k 

and 

log ~k ~< cl P log(ne-l) ne-2( I -}'e)-2k" (7.19) 

8~'-S98282 Acta Mathematica 162. lmprim~ 1r 8 mars 1989 
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For every x E ~ and l<.k<.l let fk, x E Mk satisfy Ilx-fk,  xll| +e)k/3. Put 

Ck,~ = {a,; IA, x(a,)l I> ( l +e )  I ' - ' }  

Dk, x = Ck, x ~  [J Ch, x, Do, x= f l ~  O Ck, x 
h>k k>~l 

and 
l 

= x'Zoo, +~ (1+~)%,,. 
k= l  

Note that if toECk, x, k~>l, then 

while if oJ~Ck, x 

Ix(w)] I> (1 + e) k- l -e(1 + e)k/3 > (1 "{'E) k -2  

(7.20) 

Ix(m)[ ~< (1 + e) k- ! + e(1 + e)k/3 < (1 + e) k+ i. 

Hence for every w E D k ,  x, k>~l, 

(1 +e) k-z ~< Ix(~o)l ~< ( l + e )  k §  

while for w E D0, x, [x(w)[~<(1 +e) 2. It follows that 

(1 +e) -z  <~ 1~(og)l/Ix(oJ)l ~< ( l+e)  2, x E ~,  oJ EfL  (7.21) 

As usual, we prove the theorem by using the empirical distribution method. We 

shall work with the functions 

I ~ ( , o ) l ' -  

In view of  (7.21) it follows that if we show that for suitable {w;}~1 

N - 1 Z  I~f(wi)[ p -  [~(~o)lPdv < e ,  x e ~ ,  (7.22) 
i=1 

then a similar statements holds if ~ is replaced by x provided we replace e by 4pc. In 

order to prove (7.22) it suffices to verify that 

N-I Z [X(Wi)IPZDo, x ( w i ) -  ]X(O))I p dv < e o, x E 9; (7.23) 
i=1 o,x 
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where 

I 

E e k ~ E .  
k=0 

<eg, l<~k<~l, x E ~  (7.24) 

(7.25) 

Let ~k, l ~ k ~ l  be the collection of all sets of form Dk, x. It follows from the definition 
that 

l 

log ~k ~< Z log ~h <~ c2P log(he-l) ne-3(l +e)-2k. 
h=k 

(7.26) 

In view of Lemma 2.1, in order to ensure that (7.22) holds for some {coi)~, it is 

enough to have that 

I 

#exp(  - e0 2 N/8(1 + e) zp ) + E ~k exp( - e 2 N/8( 1 + e) pk) < �89 
k=l 

(7.27) 

In view of (7.26) it is readily checked that (7.25) and (7.27) hold with 

N=c(p,e)rd/21ogn if we take eo=c3e, el=c3e/(p-2), ek=(l+e)(2-P)(t-k)/2"ev l<~k<l. [] 

Remark. The proof above gives that c(p,e) in (7.18) can be taken to be 

c(p-2)-2e-511ogelexpcp. Some variants of the argument in the proof above give 

formulas for Np(X, e) which improve on (7.8) as far as the dependence on n is 

concerned without changing the dependence on e. We do not go into details since for 

p > l  the dependence on e seems to be less interesting than in the case p = l .  In the 

application presented in the next section only the isomorphic nature of the result (i.e., 

the dependence on n) is of interest. 

In a completely similar manner we get, by using (7.10), the following 

THEOREM 7.4. Let l < p < 2  and let e>0. Then there is a constant c(p, e) so that for 
every n-dimensional subspace X of  Lp(O, I) 

Np(X, e) <. c(p, e) n(log n) 3. (7.28) 

As in section 3 we can obtain also for l < p < 2  a better estimate of Np(X, e) (as far as 

dependence on n=dimX is concerned) if we make an extra assumption on the type of 
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X. The proof will be by iteration and the argument is identical to that used in section 3. 

We just formulate here the result. 

PROPOSITION 7.5. Assume that 1 <p<r~<2 and that X is an n-dimensional subspace 

of lNp. Let 0<e<l /2  and assume that N~ne  -2. Then there is a subspace f~ of  t~ with 

d(X, J()<. 1 +e provided that 

plr l~ >~ cnl-p/rNP/r (log N) e-210g e-l(r-p)-(P+3)Tr(X) p. (7.29) 

COROLLARY 7.6. For every 0>2,  &~>l, l<p<r~<2 there is a c(p,r,o,;O so that 

whenever X is an n-dimensional subspace of  Lp(O, l) 

Np(X, e) <~ c(p, r, p, Tr(X)) ne -~ (7.30) 

We conclude this section with a remark concerning the role of the lp spaces in the 

discussion of this section. One may ask whether Theorems 7.3 and 7.4 or Corollary 7.6 

are special cases of a general fact concerning symmetric structure. Assume that Z is a 

Banach space with a symmetric basis {e,.}/~ I and denote Z~=span {ei}i~ffil . For every 

finite dimensional subspace X of Z and every e>0 we define Nz(X, e) in an obvious 

analogy to (7.1). Is it true that any estimate for Nz(l~, e) is valid (perhaps in a slightly 

weaker form) for an arbitrary n-dimensional subspace X of Z? 

The answer to this question is negative. Consider for 0<r/<l  the space Z(r/) having 
o a  

a basis {el}i= 1 with 

The space Z(t/) is isomorphic to l~ and its cotype 2 constant is bounded by a constant 

independent of ~. Hence by the results of [F.L.M.] there is a c(e) for all e>0 so that 

Nz(~)(l' ~, e)<~c(e) n. However l~cZ(~) for all ~>0 and 

limNzr ,(l~, l-vl~l =oo. 
~ 0  ~ \ ~o / 

It is also easy to construct a fixed space Z of cotype 2 with a symmetric basis and 

subspaces X n c Z  with dimXn=n so that, e.g., Nz(X~, 1)~>exp(n) in spite of the fact that, 

by [F.L.M.], Nz(l ~, e)<~c(e) n for alle>0. 
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8. Complemented subspaces 

Let X be an n-dimensional subspace of Lp(0, 1) on which there is a linear projection P of 

norm 2. We are interested to embed X in l~ with N small so that on the image of X in l~ 

there will also be a projection with essentially the same norm. For X=l~, l<p<oo, it is 

easy to see and well known that we may take (ignoring e for the moment) N ~ n  p*/2 
where p*=max (p, p'), p '  being the conjugate exponent to p. This N is large enough to 
ensure that l~ embeds in both l~ and l~ (the complementation is obtained in this case 

automatically, any inner product space contained in Lr(0, 1) with 2~<r<oo is well 

complemented). In this section we prove, by using the empirical method, that a similar 

result holds for a general n-dimensional subspace of Lp(0, 1) (though, in the general 

case, complementation is no longer automatic). The first result in this direction was 

proved in [Sche.2]; it involved a special family of subspaces of Lp(0, 1) (the so called X~p 

spaces). The estimate obtained in [Sche.2] does not, however, imply Theorem 8.1 

below even in this special case. 

In contrast to the situation for subspaces of l~ of which there are known many 

interesting examples (especially if l~<p<2) the complemented subspaces of lp are a 

rather restrictive class. In some (non-precise) sense they seem to be just "mixtures" of 

l~ spaces and inner product spaces. Therefore, while the main interest of the results of 

the preceding sections is in the existence of economic embeddings of concrete exam- 

ples, the main application of the result in the complemented case seems to be in 

analyzing further the structure of complemented subspaces of l~. In some instances it is 

possible to prove, using Theorem 8.1 below, that a complemented subspace of l~ has to 

be isomorphic to l~' for a suitable m. The second part of this section contains a specific 

result of this nature. 

THEOREM 8.1. Let X be an n-dimensional subspace o f  Lp(f2,1~) for some probabil- 

ity space (g2,1~) and l<p<oo. Assume that there is a bounded linear projection P from 

Lp(g2,10 onto X with IlP[l=2. Then for  O<e<(c(p)2) -1 and 

N = [c(p, e) np*/2(log n) 2p*-I] (8.1) 

where p*=max(p,p') ,  there is a subspace f f  o f  lUp so that d(X,f()<.l+e and so that 

there is a projection Q from lUp onto f( with 

[[Qll ~< A(l+ec(p) 2). (8.2) 

Proof. Our strategy for getting a complemented embedding of X in l~ is the 

following. Let X and P be as in the statement of the theorem and let Y=P*X*cLp,~).  

9-898282 Acta Mathematica 162. Imprim~ le 8 mars 1989 
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Assume that N O and the points {~oy}j~~ in Q are such that 

I Nol~?~lf(wj)lP- Ifl~d~ <e, fEX,  Ilfll~=l 
j=l  

I" L No' j__~tlg(%)l"- IglP'd~ 

(8.3) 

No 
No I Z f(a~) g(wj)- fg dl~ 

j=l 

< e, g E Y, Ilgll< : I (8.4) 

<e, f~x ,  g~Y, Ilfllp=llgllp,=l. (8.5) 

Let T: X--->( ~ be defined by Tf=(f(~o 0 . . . . .  f(~Oso)) (it is convenient in our context 

to consider/~0 as an Lp space over the set { 1,2 .. . . .  N0) with each point having measure 

Nff01) and let S: y.._~/~0 be defined similarly. Let i:X--~Lp~)be the natural embedding. 

Then Pi=Ix=the identity operator of X, thus i*P*=i~r.P*=Ix, and P**(i~r)*=I x (we 

identify canonically X with X**). The requirement (8.5) means that 

[(Tf, S g ) - ( f , g ) l < e  , f 6 X ,  geY,  Ilfllp=llgl}p,=l 

i.e., that IIS*T-(i~r)*ll<~e. Hence 

IIP** S*T-Ixl I <~ IIPII. e = 2e. 

It follows that 

Q = T(P**S*T)-~p**s * 

is a projection of norm at most ).(l+e)2/(l-Ze) from ( ~  on TX. Since d(TX, X)<~I+e 
this will prove the theorem once we verify that we can take as N O the number appearing 

in the right hand side of (8.1). 

It is clear, in view of Lemma 2.5, that for the argument above it suffices to require 

that (8.3)--(8.5) hold just for all x and y belonging to an e-net in the surface of the unit 

balls of X, respectively Y. 

We shall use the procedure described above for obtaining a complemented embed- 

ding twice. In the first step we shall use the method of section 2 to embed X 

complementably in some ,/~ where N 1 is a polynomial in n which is however larger than 

the right hand side of (8.1). This step is needed in order to insure that for X (resp. Y) we 

have at our disposal the sharp entropy estimates (7.9) and (7.10). Once we have these 

estimates we use the arguments of section 7 in order to obtain a complemented 

embedding into l~ for an N satisfying (8.1). 
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We examine the first step. In order to be specific, we assume that l < p < 2  and then 

p*=p '>2 .  For performing it we have first to make a change of density procedure so as 

to get good L~ estimates for the elements in the unit balls of X and Y=P*X*. By the 

Lemma 7.1 there is a function F~>0 on Q with IIFIIL,~)=I so that if dv=P'dM and 

are: X--->Lp(v) is defined by Jvx=F-lx then JF is an isometry and Ilfll=<~n'*llfllp, f~. leg.  
As we have already done in previous sections, we replace F by GI=((FP+ 1)/2) I/p. Then 

Jal is an isometry from all of Lp(/0 onto Lp(tr 1) where do, = ~ d/~ and 

G,(w)>.--.2 - '*,  oJE~; llfll| fEJ%X. (8.6) 

Note that Pt =J% PJ~I is a projection of norm 2 from Lp(cr 0 onto J~, X. Under this 

transformation the space Y is replaced by P~(JGt X)* =JG~_~ Y. By applying Lemma 7.1 

to the subspace J~V' Y of Lp.(o,) we get in a similar way a function G 2 on g2 so that 

IIG~II,(o,) - '  = = I I ~  Ik,,(o,) 1 (8.7) 

and so that Jc2: Lp(~176 is an isometry onto where do 2 = G~2 do" 1. Moreover, we 

have 

G2(w) I> 2- '* ,  w E Q, l lglL ~< (2n)':211gllp ,, (8.8) 

for g E J~_,(Jr Y) = J(62 c,)p-' Y c Lp,(O2). Also for f=JG2 GI X ~ JC2 GI X w e  get 

llflLo ~ llG~-lll~llJo, xlLo ~ llG~-'ll| xlk,(,,,) 

-- llGr <- (4n)1*llflk,(o2). 
(8.9) 

In conclusion, we see that by replacing X and Y respectively by J62oX and 

J(o~61r_t Y there is no loss of generality to assume that for f E X  with ][flip= 1 and g E Y 

with Ilgllp,-- 1 

llf"lloo ~< 4n, l lgp'IL ~ (4n) p'/2, llfgll~o ~ (4n) '/2+1.. (8.10) 

By (8.10) and the method of section 2 we get that (8.3)-(8.5) hold for suitable (wj}ju=~ l if 

N O/> c I ne-210g e-' .  (4n) p'/2. 
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We now apply Proposition 7.2 to obtain, via another change of density, good 

estimates on the entropy numbers. Since we work with densities which are bounded 

from below an argument similar to the one we did above (and using the definition of the 

entropy numbers) shows that we can make a change of density which is good for both X 

and Y. In other words there is no loss of generality to assume that for suitable constants 

C 2 and c3(p) we have 

Ilfll~<.cEn~/Pllfll p, fEX;  Ilgll| g E r  (8.11) 

logE(Bx, B| -p, l <.t<.c2 nl/p (8.12) 

logE(Br, B| -2, l ~t<~c2 nl/2. (8.12) 

From the proof of Theorem 7.3 it follows now that if we take as No the right hand 

of (8.1) then (8.3) and (8.4) hold for suitable {tOj}jN__~ l in g2 and all x, resp. y, in a side 

suitable e-net ~x, resp. ~r,  in the boundary of the unit balls of X, resp. Y. By an 

argument which is similar to the proof of Theorem 7.3 we shall show next that also (8.5) 

holds for this No and this will conclude the proof. 

As in the proof of Theorem 7.3, we can replace the functions xE o%x and y E ~ r  by 

the functions of the form 

I t Ii 

k = l  k=O 

12 12 

Y = YXno., + E (1 +e)h(zo~,~,--Zt~' ,) = ~ ~0h, y 
h = l  h=0 

where 

l, = [log(c 2 nUP)/log(l +e)], 12 = [log(c 2 n'/2)/log(l +e)] 

and for each xE ~x, the sets Do, x,D'k.x,D~,x, l~k~l  1 form a decomposition of Q into 

disjoint sets, a similar statement holding for y E ~:r. In the present context we have to 

take into consideration also the signs of x and y and this is the reason for the 

appearance of D'k,x and D~,x rather than just Dk, x as in the proof of 7.3. 

As in the proof of 7.3 (see (7.26)) we get from the construction and (8.12) and (8.13) 

that if we put ~k= {Cpk, x}x~, x and ~r = {~rlh, y}yE,~r then 

log~ <~c4(P,e)nlogn/(l+e) kp, log ~h <~c4(P,e)nlogn/(l+e) zh. (8.14) 
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We consider the maps T and S defined after (8.5) with No being the N given in (8.1). 

(Obviously T and S are defined not just  on X and Y but on all the functions on f2.) As 

mentioned above the argument of the proof  of Theorem 7.3 and (8. I) ensure that we can 

assume that 

l 1 

k=0  

and that a similar statements holds for y E ~ , .  Our goal is to show that we can ensure 

also that 

I l 12 

l< Z..~, S.y>-<.~, Y>I ~ Z Z l< Z~k,x, S'l'/)h,y>--< Cffk, x, "l~h,y)[ < F.. 
k=0  h=0 

(8.15) 

for all x E ~x  and y E ~r .  

Note that for k~> 1, [~k, xl is (1 +e) k times the characteristic function of  a set. Because 

of the special form of  T, ITCpk, xl is also (1 +e) k times the characteristic function of  a set 

with essentially the same measure.  The same holds for [~h,y] and ISWh, y[. Our strategy 

for verifying (8.15) is to show that the terms in the sum of  (8.15) for which kp is far f rom 

hp' are small because [(q0k, x, "l/)h,y>] a r e  small for  these indices, while the rest of  the 

terms can be handled by the estimates provided by the empirical distribution theory 

(i.e., Lemma 2.1). In view of  (2.4) and (8.14) the h and k for which we can apply the 

empirical distribution estimate are those for which 

N/(  1 + e) h+k > cs(p, e) n log n max(( 1 + e)-kP, ( 1 + e)-Zh). (8.16) 

Let  a ,  be such that 

(1 +e) a" = (log n) 2p/~'-l), 

and consider h and k for which 

2h < kp < hp'  +a , .  (8.17) 

In this case (8.16) becomes 

N >  c5( p,  e) nlog n( l + e) I~-h 

but 

(1 + e) k-h < (1 + e)h(P'/P-l)(1 + e) a"/p <~ (c 2 nilE) p'/p-I log n 2/~~ 
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and thus since l+�89 (8.1) ensures that (8.16) holds for indices satisfying 

(8.17). Another case for which (8.16) is easily seen to hold is 

kp < 2h, h <~ log log n. (8.18) 

For the h,k for which (8.17) and (8.18) fail we will show that the terms I(q~k,x, ~h,y)[ 
contribute only a negligible amount to (8.15) (and similarly [( Tcpk ,~, S~Ph ,y )D. Recall that 

S~lq~k,~ dv<~2 and .[t~l~Ph, yl p' dv<~2, hence for all x, y, k and h 

I( q~*,x, ~h,y}[ <~ 2(l +e)h+kmin(( l +e)-~'(l +e)-hp')" (8.19) 

Hence 

I 1 

~ I(q~.~, Wh.y)l ~< c6(P, e) ~ ( l+e)  h+(hp'+'~")('-p)/p 
kp>hp' +ctn h=0 

I 1 

= c6( p, e) ~a (1 +e) a'(l-p)/e 
h=O 

= c6(P, e)/t/(log n )  2 ~< c7(P, e)/log n .  

(8.20) 

We also have 

kp<2h 
h>loglog n 

(1 + e) h(2 -P')/P 

h =log log n 

<~ 2e-l(log n)-r ~~ ~) 

(8.21) 

for some ca(p, e)>0. 

(8.20) and (8.21) complete the verification of (8.15) and the proof is finally conclud- 

ed. [] 

We apply Theorem 8.1. to prove a result in the spirit of [B.Tz.1]. 

PROVOSlTION 8.2. Assume that I~=X~ Y with re=dim y<n21p*-* for some l<p<oo 

and e>0 (as always p*=max(p,  p')). Then 

d(X, l~ -m) <<. c(e, 2, M, p) (8.22) 
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where 2 is norm of  the projection of  lp on Y which maps X to 0 and M is the basis 

constant of  Y (i.e., the inf o f  the basis constants of  all possible bases of  Y). 

Before we prove Proposition 8.2. we state an immediate corollary of it for spaces 

arising in harmonic analysis. Recall that for a subset A of the integers Lp,A is the 

subspace of Lp[0, 2~r] of all the functions whose Fourier coefficients vanish outside A. 

PROPOSITION 8.3. Let l<p<oo ,e>0  and A c ( 1  .. . . .  n} satisfy A<n~P'-L Then 

d(Lp, 0 ...... )\A, l~ -?') <~ c(e, 2, p), (8.23) 

where ~. is the norm of the orthogonal projection from Lp(O, 2~r) onto Lp, A. 

Proof. By a classical result d(Lp,(l ..... n), l~)<-cl(P) (see [Zy], Chapter X, Theorem 

(7.5)). Another classical fact, a theorem of M. Riesz, asserts that the characters in their 

natural order form a Schauder basis of Lp(0, 2~r). Hence the basis constant of Lp, A is 

bounded by a number depending only onp.  These two classical facts show that (8.23) is 

a consequence of (8.22). [] 

We turn to the proof of Proposition 8.2 which follows some arguments of [B.Tz. 1]. 

The proof consists of two steps. 

Step 1. For fixed Y with dim Y=m<n wp*-` the relation i~,= Y@X has a "unique" 

solution. In other words, if ~?i=d(l~, Yt~Xi) , i= 1,2, then d(X 1, Xz)<-C(e, p,;t 1, ;t 2, r h , 7"/2) 

where ;tl, resp. 22, is the norm of the projection onto Y taking X l, resp. X 2, to 0. In this 

step the basis constant of Y plays no role. 

Step 2. With Y as in the statement of Proposition 8.2. 

d( lnp, lnp-m(~ Y) <~ C2(~, ~, M, p) 

where the direct sum in l~-m~ Y is taken, e.g., in the lp sense. 

Proof of  Step 1. In the sequel, all the isomorphism and complementation constants 

are assumed to be controlled by the parameters of the given data. To prove that the 

solution X of l ~ X ~ Y  is unique, it suffices by [B.Tz.1] to prove that X contains a 

subspace Z complemented in l~, so that dimZ=n'>cn,  that both Z and its complement 

are isomorphic to in spaces of the appropriate dimension and that moreover Y embeds 

complementably in l~'. The latter requirement follows from Theorem 8.1 since 

n'>mP*/2(log m) 2p*-1. The existence of Z follows from [J.Sche.2] or [B.Tz.2]. Indeed, let 
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P be the projection on Y whose kernel is X. By [B.Tz.2] 

A c { 1 , 2  . . . . .  n} with ft>~cn so that 

there is a subset 

1 (8.24) lIRA PRA[lp-'P < 10 

where R a is the natural projection from 1~ onto span{ei}i~.A. Let  

Z = ( I - P )  span { e i} ie A CX.  

Clearly by (8.24), l~---ZO)span{ei}ir A. 

P r o o f  o f  S tep  2. We shall use the finite-dimensional version of  the decomposit ion 

method introduced in [B.D.G.J.N.] .  Assume that for some m0 and every subspace Y of  

dimension m0 of  lp so that Y is complemented in lp and has a good basis, we know that 

for some no 

y(~/~pO =/~pO+mo (8.25) 

with a good control  of  the constants.  We shall verify that then for every m~ a similar 

statement is valid if m 0 and n o are replaced by m 0 In 1 and ml( (m o ml)P*/E+e+n o) respective- 

ly, again with a good control  of  the constants.  This argument will show that if 0 is 

defined by no=rng and if Q>p*/2 then (by an appropriate choice of  m l) we can replace Q 

by any ~ satisfying 

_ p*  

0 

In other  words we will get that (8.25) is valid for  every m 0 and no=m ~ provided O>p*/2 

and this is the assertion in Step 2. 

Let  now re=morn 1 and n=mP*e§ Let  Y be a complemented subspace of  lp with a 

Schauder basis {ui}i~ I. Write (1 . . . . .  m} as a union of  m I consecutive intervals Aj each 

of size m 0 and put 

Wj= span{ui}i~A/ j =  1 . . . . .  m 1 

By the assumption (8.25) we have for every j 

Wj@/~0 ~ n0+m0 1~ . (8.26) 

Let  

Uy = span{ui}ieuk~ja,, j = 1 . . . . .  m I. 
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Note that Ul= Yand that Urn= Win; Since dim Uj<~m for everyj  it follows by our choice 

of n and Theorem 8.1 that for every j and suitable Zj 

lp~ Uj@)Zj. (8.27) 

By (8.26) and (8.27) we get 

n 0 U j + I , ~ Z j . ~ .  p . ( 8 . 2 8 )  -p 

Write 

/ ;1 -1)  n + m l (mo + no) = lnp + mo +no ~ . . .  (~ lnp + rn~ + n~ (~ lnp ~ 

with ml summands (the direct sums are in the lp sense). By (8.26), (8.27) and (8.28) we 

get 

l(m'-l)n+m,(m~176176176 .. .  @(Uml_l~)Zmx_l@lnp~176 @l~p ~ 

= f  l ~ ( U 2 @ Z l ~ l ; ~ 1 7 6  .. .  { ~ ( V r a l ~ Z m  _ l ~ l p ~ 1 7 6  0 

= y ~ / ; t - l ) n + m j n o  

and this concludes the proof. [] 

9. Entropy estimates, sharper results 

The number of balls of radius k in t~ needed to cover the ball of radius n in l~' (=the 

unit ball of L l~)  where/~ is the natural probability measure on {1,2 .. . . .  n}) is clearly 

equivalent to the number of solutions to the equation 

Ix 11+ Ix2l+... + Ixnl ~< n 

where each xi is an integer (positive, negative or 0) divisible by k. This number can be 

computed explicitely and as observed in [Schu.] one gets from this computation that 

log E(nBlT, Bt~, t) ~- n(log t)/t, 2 <- t <<- n. (9.1) 

In this section we shall prove a generalization of (9.1) to the case where l~ is 

replaced by an n-dimensional subspace of l~ in a "good position". The result we obtain 
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will be sharp and strengthen the results obtained in section 4. Like (9.1) the result has a 

natural interpretation as an estimate for the cardinality of a suitable set of lattice points. 

The counting of the number of lattice points in the ball of an arbitrary n-dimensional 

subspace X of l~ is naturally more complicated than in the concrete case of l~'. The 

results in this section are obtained by refining the Banach space techniques of section 

4. Hence one may view the results of this section as an application of Banach space 

theory to a problem of counting lattice points. 

As in section 4 the estimate of the L| entropy of the LI ball will be done via L2 

estimates. Thus our problem naturally divides into two parts-estimating the L2 entropy 

of the LI ball and the L~o entropy of the L2 ball. We start with the second part. 

PROPOSITION 9.1. Let  X be an n-dimensional subspace o f  L l ~ )  where I~ is a 

probability measure on {1 . . . . .  N }  satisfying/~{i}>~l/2Nfor every i. Denote by X 2 resp. 

X| the space X endowed with the norm induced by L2~) resp. L|  Le t  {q~j}~=1 be an 

orthonormal basis o f  X 2 and define O by 

(9.2) 

Then 

log E(Bx2, Bx| t) <<- c02nt -2 log(tN/n), 2 ~ t ~ onl/2, (9.3) 

where c is an absolute constant.  

We prove (9.3) by using another intermediate space, namely the Orlicz space 

L~0:~) where (as in section 6) ~P2(s)=exp(s2) - 1. 

LEMMA 9.2. With X as in Proposition 9.1 we have for  a suitable absolute con- 

slant c~ 

log E(Bx2, Bx~ 2, t) <~ c2oEnt -2, 1 <<- t <~ on I/2. (9.4) 

Proof. By Proposition 4.2 we have 

log E(Bx2, Bxv 2, t) <<. c2nt-2M 2 (9.5) 
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where 

M =  n-l/2 ~ Jf~ j=l~gJ((D)~)JlL~P2(u)d(7(O)) 

the {gj}jLl being normalized independent Gaussians on the probability space (f2, o). 

Observe that [Ifl[Lr2(u)~<c 3 f exp ( f  2) dIt for every function f and some universal c a. 

Hence for every c4>0 there is a c5<~ so that 

By the Laudau-Schepp-Fernique theorem (see [Ma.P.]) we have that for suitable c4 
and c6 

f o (  I exp c 4 ~ gj(to) t~j do(w) <~ c 6 
-- j=l 

whenever XjL~ a2~<l. Consequently, we deduce that M ~ o c  5 c 6 and by substituting this 

estimate in (9.5) we get (9.4). [] 

LEMMA 9.3 With It as in the statement o f  Proposition 9.1 we have 

log E(BL~2~u), B L Au), t) ~< c 7 exp( -  c 8 t 2) N, 1 ~< t ~< (log N)m. (9.6) 

Proof. Let fEBL~2(~) and put A={i;  [f(i)[<~2t}, f0=fza, f t= f - fo .  A direct computa- 

tion shows that lift I IL~0,) ~<ca exp(-- t2). Hence 

BL~2~ ) c 2 tBL| + c 9 exp(-- t 2) BL2~). (9.7) 

Since I t { i}>l /2N for every i we get from (9.1) (cf. [Schu.]) that 

log E(BL2~), BL| , s) <<. C l0 Ns-2 log s <~ cll Ns-1 

and hence, by (9.7), 
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log E(Bz~2(u), BL~O,), c12 t) <~ Cl3 N e x p ( -  t 2) 

Proof of  Proposition 9.1. For l < s < t  we have by Lemmas 9.2 and 9.3 

log E(Bx: Bx| t) <. log E(Bx2, Bx~ ,, ts-i)+ log E(Bs Bs s) 

<. c 1 92ns2t-2 + c 7 N exp( -  c a s2). 

By taking s~-(logNt/n) u2, (9.3) follows. [] 

COROLLARY 9.4. Let X be as in Proposition 9.1. and let Y be an m-dimensional 

subspace of  X. Then there is an fE  Y satisfying 

Ilflk~,) = 1, IlfllL~0~)~< c,4p( nm-l l~ 2. (9.8) 

Proof. Assume that for some t> l ,  tBrc�89 Then by (9.3) 

2m ~ log E(Br2, B r ,  t) ~ log E(Bx2, B x ,  t) 

<<. cp2nt -2 log( tN/n), 

and hence 2t<c14 o(nm -l log(NQ/m)) m. 

COROLLARY 9.5. Let X be an n-dimensional subspace of  l~. Then 

d(X, l~) >t c15n 1/2( 1 + log N/n)- 1/2. (9.9) 

Proof. Let/~ be any probability measure on {1 ..... N) satisfying kt{i}>l/2N for 

every i and let 0 be given by (9.2). By Corollary 9.4 there is an orthogonal system 

f~, "..,fm (m=n/2) in Xz satisfying I]fjHs vz for every j. By the ortho- 

normality of the fj 

f (f 2xdlZ(i))l/2 fj(i)fj d#(i) <~ Z f j ( i ) f j  <~ m'/Zd(X, l~)cl6e(log(No/n)) '/z. 
j=l 
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On the other hand since the norm in X is the L= norm 

f xd"(i) f (m.~=lfJ(i)2)d~( i)=m" 

Hence 

d(X, l~) >t ml/2(c16 Q(log(NQ/n))V2) -l. 

We are free to choose the measure #. We show that/~ can be chosen so that ~ will be 

bounded by an absolute constant and this will prove (9.9). The 2-absolutely summing 

norm of the identity of X is n 1/2 (cf. e.g., [P4], Theorem 1.11) and hence by the Pietch 

factorization theorem there is a probability measure v on {1 ..... N} so that 

IlxlL<~nl/Zllxlk2(v) for every xEX. Define/t by 

/a{i)=2N1 + + v ( i } ,  l<~i<~N. 

For every orthonormal system {tpj}jnl of X (in the norm induced by L2(,tt) and any 
a n choice of scalars { j}~=l we have 

ajqgj Otjqgj = 2 n  1/2 . 

j= 1 L2~u) \ j= 1 

Consequently [l(E]=, q0~)1/211= ~<2n v2. [] 

Remarks. (1) S. Kislyakov informed us that E. Gluskin recently obtained (9.9). 

(2) A simple example shows how precise the estimate (9.9) is (and for that matter 

also the preceding estimates). Let X(k, m)=(E t~l~)= with m summands in the direct 

sum. Then n=dimX(k, m)=km, X(k, m) is 2 isomorphic to a subspace of/~ with N=m2 Ck 
and d(X(k, m), l~)<~m l/z. It follows that for all choices of k and m, (9.9) gives an 
equivalence. 

(3) In [F.L.M.] it is shown that d(X, l~)~cnV2(logN) -1/2 and in [F.J.] it is proved 

that d(X, l~)~�89 1/2. Thus only if N is close to n but not too close (e.g., N=n log n) 

is (9.9) an improvement on previously published results. 

(4) B. Carl and A. Pajor [C.Pa.] obtained independently an estimate which is 

essentially the dual of Proposition 9. I (and thus by [T-J.] also essentially equivalent to 

Proposition 9.1). 
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We pass to the estimate of the L2 entropy of the unit ball of a subspace X of L~. Let 

X be an n-dimensional subspace l~ v. As we noted in Lemma 4.5 it follows from the 

lemma of Lewis that there is a probability measure/~ on { 1 .....  N) with/~{i} >i 1/2N for 

every i, a subspace ) (ofLi(a)  which is isometric to X and an orthonormal system {~p~}]=~ 

in J? so that 

• q92(i)~< 4n, l<.i<~N. (9.10) 
j=l  

The entropy estimate we are going to prove will be for the unit ball of X. 

For the proof below it is convenient (though not really necessary) to note that if B 

is the unit ball of an inner product space and D is any compact convex set then 

E(D, B, t)=/~(D, B, t). Indeed, if a compact convex set K is in the unit ball it is also 

contained in a ball with radius 1 centered at K (take as center the nearest point to 0 

in K). 

PROPOSITION 9.6. Let f(  be an n-dimensional subspace of  Ll(~) as above. Then 

log E(B~., Br 2, t) ~< c min(KO() 2, log t) nt -2, 2 <~ t <<- n 1/2 (9.11) 

where K(f() is K-convexity constant of f( .  

Proof. We have 

logE(Bx,,B~,,t)<---logE(Be,BXlNtBe2,2)+logE(Byq NtB~2,BY~? 2 ) �9 (9.12) 

Note that 

E(Bx , Bx, n tBe? 2) ~< E(Bx,, Be:, 2t). (9.13) 

Indeed ifB8cU~=l(uk+2tB8) with u k E Be, for every k, then for every x E B8, there is a k 

such that x -uk  E 2tBe2 and hence x - u  k E 2(Bx, N tBe). We estimate E(B8, N tB8~,Be~, t/Z) 

by using (4.5) and (4.20). Note that the norm induced by BxNtBe~ on A" is 

max{[[xllL,0, ), t-lllx[[L20,)}. Denote by X(t) the space X endowed with this norm. Clearly 

d(l((t), l~)<<.t and hence by (4.13) 

K(ff(t)) <- c I min(K(X), (log t)l/2). 
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Also the ~2 norm of the identity map from .g(t) to -('2 is at most that of the identity map 

from -~l into -g2, i.e. by (4.25), at most czn ~/2. Thus, we get that 

log E( B ~ fq tB 22 , B yr2, t/2 ) <. c s nt -2 min(K(.(') 2, log t). 

Substituting into (9.12) we get that 

log E(B~,, B27 t) ~ log E(B2,, Bk2, 2t)+ c a nt -2 rain(K(.(') 2, log t). (9.14) 

Assertion (9.1 I) follows directly from (9.14) by iteration. [] 

We can now easily deduce the main result of this section, which generalizes (9.1) 

to a general n-dimensional subspace of ~ in a "good position". 

THEOREM 9.7. Let  X be an n-dimensional subspace o f  ~ .  Then there is a probabil- 

ity measure It on (1 . . . . .  N}  and a subspace .Y Of Ll(fl) which is isometric to X so that 

logE(B2,, B x ,  t) <~ cnt-t(log t . log(Nt/n)) ~12, 2 <- t <- n. (9.15) 

Proof. Choose It and X as in Proposition 9.6. Then by (9.10) we may apply 

Proposition 9.1 to X with ~=2. By (9.3) and (9.11) we get for 2<s<t  

log E(Bfq, B e ,  t) <<. log E(Bx,, Be2, t/s) +log E(Bg2, Bfc | s) 

<. cn(t-2s 2 log t+ s -2 log sN/n). 

By taking s so that s2~-t(log(tN/n) �9 (log t)-1)1/2, (9.15) follows. [] 

Added in proof.  It is now known that, up to a possible logarithmic factor, the 

estimate given in Theorem 6.5 is the best possible. More precisely; there is (for n>~2) a 

constant Cn so that for every 0<e<l /2  there is a zonotope P(n,e)  with 

BncP(n,  e)c(1 + e)B ~ and so that the number N(B ~, e) of summands of P(n, e) satisfies 

N(B", e) <. Cn(e -2 loglel) ~"-'/~"+2) 

The proof (as well as results for other zonoids) is presented in: J. Bourgain and 

J. Lindenstrauss, Distributions of points on spheres and approximation by zonotopes, 

Israel Journal o f  Mathemat ics  (to appear). 



140 J. BOURGAIN, J. LINDENSTRAUSS AND V. MILMAN 

References 

[B.D.G.J.N.] BENNETT, G., DOR, L. E., GOODMAN, V., JOHNSON, W. B., & NEWMAN, C. M., On 
uncomplemented subspaces of L p, l<p<2.  Israel J. Math., 26 (1977), 178-187. 

[B.G.]  BOURGAIN, J. & GROMOV, M., Estimates of Bernstein widths of Sobolev spaces. 
GAFA Seminar 87/88, Springer Lecture Notes. To appear. 

[B.L.] BOURGAIN, J. & LINDENSTRAUSS, J., Projection bodies. GAFA Seminar 86/87, 
Springer Lecture Notes no. 1317 (1988), 250-270. 

[B.L.M. 1] BOURGAIN, J., LINDENSTRAUSS, J. & MILMAN, V., Sur l'approximation de zonoides 
par des zonotopes, C.R. Acad. Sci. Paris, 303 (1986), 987-988. 

[B.L.M.2.] - -  Minkowski sums and symmetrizations. GAFA Seminar 86/87, Springer Lecture 
Notes no. 1317 (1988), 44--66. 

[B.Tz.1] BOURGAIN, J. & TZAFPaPd, L., Complements of subspaces of ~,  p~>l, which are 
uniquely determined. GAFA Seminar 85/86, Springer Lecture Notes no. 1267 
(1987), 39-52. 

[B.Tz.2] - -  Invertibility of large submatrices with applications to the geometry of Banach 
spaces and harmonic analysis. Israel J. Math., 57 (1987), 137-224. 

[Be.C.] BECK, J. • CHEN, W., Irregularities of distribution. Cambridge Tracts in Math- 
ematics, vol. 89, 1987. 

[Be.Mc.] BETKE, U. & McMULLEN, P., Estimating the sizes of convex bodies from projec- 
tions. J. London Math. Soc., 27 (1983), 525-538. 

[Bo] BOLKER, E. D., A class of convex bodies. Trans. Amer. Math. Soc., 145 (1969), 
323-346. 

[Bon.F.] BONNESEN, T. & FENCHEL, W., Theorie der konvexen K6rper. Ergebnisse der 
Mathematik, vol. 3, Springer Verlag 1934. 

[C.Pa.] CAaL, B. & PAJOR, A., Gelfand numbers of operators with values in a Hilbert 
space. To appear. 

[D.M.T-J.] DAvis, W. J., MILMAN, V. & TOMCZAK-JAEGERMANN, N., The distance between 
certain n-dimensional spaces. Israel J. Math., 39 (1981), 1-15. 

[F.J.] FIGmL, T. & JOHNSON, W. B., Large subspaces of l~ and estimates of the 
Gordon Lewis constant, Israel J. Math., 37 (1980), 92-112. 

[F.L.M.] FIGIEL, T., LINDENSTRAUSS, J. & MILMAN, V., The dimension of almost spherical 
sections of convex bodies. Acta Math., 129 (1977), 53-94. 

[G] GORDON, Y., Some inequalities for Gaussian processes and applications. Israel J. 
Math., 50 (1985), 265-289. 

[J.Sche. 1] JOHNSON, W. B. & SCHECHTMAN, G., Embedding l~' into l~. Acta Math., 149 (1982), 
71-85. 

[J.Sche.2] - -  On subspaces of Li with maximal distances to Euclidean space. Proc. Re- 
search workshop on Banach space theory. University of Iowa 1981, 83-96. 

[L.Tz.I] LINDENSTRAUSS, J. & TZAFmm, L., Classical Banach spaces, vol. I, Sequence 
spaces. Ergebnisse der Mathematik, vol. 92, Springer Verlag 1977. 

[L.Tz.2] - -  Classical Banach spaces, ool. II. Function spaces. Ergebnisse der Mathema- 
tik, vol. 97, Springer Verlag 1979. 

[Le] LEwis, D., Finite dimensional subspaces of Lp. Studia Math., 63 (1978), 207-212. 
[Li] LINHART, J., Approximation of a ball by zonotopes using uniform distribution on 

the sphere. To appear. 
[Mu] MOLLER, C., Spherical harmonics. Springer Lecture Notes no. 17 (1966). 
[M.Sche.] MILMAN, V. & SCHECHTMAN, G., Asymptotic theory of finite dimensional normed 

spaces. Springer Lecture Notes no. 1200 (1986). 
[Ma.P.] MARCUS, M. B. & PISIER, G., Random Fourier series with applications to harmon- 

ic analysis. Ann. Math. Studies, vol. 101, Princeton 1981. 



APPROXIMATION OF ZONOIDS BY ZONOTOPES 141 

[P. 1] 

[p.2] 

[P,3] 

[P.4] 

[Pa. T-J] 

[Sche.l] 

[Sche.2] 

[Sche.3] 

[Schn.] 

[Schn.W] 

[Schu.] 

[Su] 

[T-J.] 

[Zy] 

PISIER, G., On the dimension of the Pp subspaces of Banach spaces for l~<p<2. 
Trans. Amer. Math. Soc., 276 (1983), 201-211. 
Factorization of operators through Lp, | or Lp, 1 and non-commutative general- 
ization. Math. Ann., 276 (1986), 105-136. 
Un Throrrme de factorization pour les operateurs lineaires entre espaces de 
Banach. Ann. Sci. Ecole Norm. Sup., 13 (1980), 23--43. 

- -  Factorization o f  linear operators and geometry of  Banach spaces. Regional 
Conferences Series no. 60, Amer. Math. Soc. 1986. 

PAJOR, A. & TO~tCZAK-JAEGe~Ar~lq, N., Subspaces of small codimension of finite 
dimensional Banach spaces. Proc. Amer. Math. Soc., 97 (1986), 637--642. 

SCnECnT~L~N, G.,  Fine embeddings of finite dimensional subspaces of Lp, l~<p<2, 
into l'~. Proc. Amer. Math. Soc., 94 (1985), 617-623. 
Embeddings X~p spaces into l~,. GAFA Seminar 85/86, Springer Lecture Notes 
no. 1267 (1987), 53-75. 
More on embeddings subspaces of Lp in l~,. Compositio Math., 61 (1987), 
159-170. 

SCnNEIDER, R., Zonoids whose polars are zonoids. Proc. Amer. Math. Soc., 50 
(1975), 365-368. 

SCHNEIDER, R. &WeIL, W., Zonoids and related topics. Convexity and its Applica- 
tions, Birkhauser Verlag (1983), 296-317. 

Scnf2rrr, C., Entropy numbers of diagonal operators between symmetric Banach 
spaces. J. Approx. Theory, 40 (1984), 121-128. 

SUDAKOV, V. N., Gaussian random processes and measures of solid angles in 
Hilbert spaces. Soviet Math. Dokl., 12 (1971), 412--415. 

TOMCZAK-JAEGERMANN, N . ,  Dualite des nombres d'entropie pour des op~rateurs ~t 
valeur dans un espace de Hilbert. C.R. Acad. Sci. Paris, 305 (1987), 299-301. 

ZYOMUND, A., Trigonometric series. Cambridge Univ. Press, 1977. 

Received August 23, 1987 

9t-898282 Acta Mathematica 162. Imprim~ le 8 mars 1989 


