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1. Introduction 

The point o f  departure for the following work was an attempt to prove a formula of 

Giambelli which gives explicit expressions for a large family of characteristic classes of 

complete correlations. This formula of Giambelli together with some related formulas 

of Schubert stand out in the rich flora of numbers obtained from enumerative geometric 

problems; they constitute a generel species, solving large classes of enumerative 

problems, and therefore are of particular interest. 

We shall present below a proof of Giambelli's formula for complete correlations 

and also a similar formula for complete quadrics which we shall make more precise 

later in this introduction. A special case of Giambelli's formula for complete correla- 

tions is a beautiful formula of Schubert for the powers of the first characteristic class 

(see [$2]). It is interesting to note that in an earlier paper [S1], Schubert expressed the 

powers of the first characteristic class of complete quadrics in terms of a numeric 

function ~PA for which he only had a recursive definition; comparing with the explicit 

formula obtained for correlations indicated that there should be an explicit formula for 

~A: "Wfihrend aber die Ergebnisse der frtiheren Untersuchung noch nicht studierte aus 

Binomialcoefficienten zusammengesetzte Ausdriicke sind, so sind die Ergebnisse der 

neuen Untersuchung elegant gestaltete Determinanten der Binomialcoefficienten." We 

obtain the explicit formula requested by Schubert as a special case of our results. 
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The formulas of Giambelli and Schubert, although interesting in themselves, 

constitute only a minor part of  this work. As often happens in enumerative geometry, 

the verification of numbers, which may be of little interest in themselves, leads to 

problems of a more general and fundamental character and inspires work in other 

branches of mathematics. The formula of Giambelli is certainly no exception to this 

rule. 

First of all the rather vague geometric arguments supporting the proofs of Giam- 

belli and Schubert have lead to a sequence of works ([DC-P], [L], [T-K], [U], [V1], 

[V2], . . . )  on the parameter spaces of complete correlations, collineations, quadrics and 

more general complete objects. We shall not be concerned with this work here, but 

shall refer to the relevant parts of [T-K] and [L] when needed. 

Secondly, a deeper analysis of the formulas reveals that they are intimately related 

to explicit expressions for the Segre classes of tensor and symmetric products of locally 

free sheaves in terms of Schur functions. A major part of our work concerns such 

formulas for the Chern and Segre classes for the tensor product of two locally free 

sheaves and the second symmetric and exterior powers of a locally free sheaf. Some of 

the formulas we give can be found scattered in the literature with a variety of proofs 

(see especially [Lx]). We have not been able to find the explicit formulas for the Segre 

classes of the second symmetric and exterior powers elsewhere. We shall give a unified 

proof of all of the formulas. 

Thirdly, in the study of characteristic classes recursive formulas for the numeric 

functions appearing in the expressions of such classes appear naturally. Schubert 

observed several such formulas. We prove all of them. However, we go much further 

and prove recurrence relations for quite general alternating functions of power series. 

This approach to the recurrence relations is perhaps one of the most intriguing parts of 

our work. In addition to the formulas of Schubert we also obtain some expression in 

terms of Pfaffians that were given by Pragacz [P]. Although the recursive formulas are 

often convenient for computational purposes they are not always adequate. As a 

curiosity, the formula ~0, t ..... r-I = 1 for all r, which is an immediate consequence of our 

explicit formula (see the definition of ~PA below), does not seem to be easily obtainable 

by recursive means. Schubert wrote: "Der  Veffasser hat sich vergeblich bemiiht, 

dieses interessante Resultat auch rein arithmetisch, allein aus der Definition von ~p, zu 

beweisen." 

A fourth topic that is indicated by the work of Giambelli and Schubert is that 

geometry plays a very little role in their deduction of the formulas. Most of the 

arguments are of a purely algebraic and combinatorial nature. We have therefore 
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systematically stressed the formal sides of the arguments. We have separated out the 

combinatorial and algebraic arguments in a long appendix and kept the geometric 

arguments to the article proper. 

The contents of the article, section by section, is as follows: 

Sections 2, 3 and 4 contain the material that we need from other fields. 

In Section 2 we recall the language and results needed from general intersection 

theory. The references are to [K-T] and [F]. In this section we also interpret the formal 

results from the Appendix in terms of the Segre classes of locally free sheaves. 

The relevant material from the theory of Schubert subvarieties of Grassmannians 

is collected in Section 3. The main references here are [F] and [K-L]. 

In Section 4 we recall the material we need about the geometry of complete 

bilinear forms and complete quadrics. This material is taken from [T-K] and [L]. 

In Section 5 we prove Giambelli's formula for bilinear forms and in Section 6 we 

prove the analogous formula for complete quadrics. We shall next give a geometrical 

interpretation of the latter formula. A similar, but slightly more complicated, interpre- 

tation of Giambelli's formula can be given. We leave this matter to the reader. 

Assume that we are given a projective space P and an integer r. The space B of 

complete quadrics of rank r in P represents sequences Q I c Q 2 c . . . ~ Q t  of quadrics in P 

(for variable t) such that the linear span Ej of Qj is the vertex of Qi+l for j - - l ,  2 .. . . .  t -  I 

and such that Q1 is non-singular and the linear span Et of Qt has dimension r -1 .  For 

each integer i= I, 2 . . . . .  r we denote by #i the class in the intersection ring of B 

representing the locus of complete quadrics Q i c Q E C . . . ~ Q t  such that Qt is tangent to a 

given plane in P of codimension i (when i=r we interpret this as twice the condition that 

the span of the quadric Qt meets a given plane of codimension r). 

Let A=(al ,  a2 . . . . .  ar) be a strictly increasing sequence of non-negative integers. 

Given a flag L1=L2c. . .~Lr  in P, where the dimension of Li is equal to ai for all i, we 

denote by [~] the class, in the intersection ring of the Grassmannian T=Gr(P) of (r-1)-  

dimensional linear subspaces in P, which represents the locus of spaces L such that 

dim(L flLi)>~i-1 for i--1,2 .. . . .  r. There is a canonical map from B to T and we denote 

further by tOA the preimage of [~] in the intersection ring of B. With this notation the 

class 

t l l  I m 2 m r 
i~1 l,t 2 ... i, tr f3 to A 

in the intersection ring of B is represented by the locus of complete quadrics 

Q~cQ2c . . . cQt  such that Qt is tangent to mi fixed planes of codimension i in general 
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position in P and such that dim(EtNLi)>>-i-1 for each member L; of a fixed flag 

L t c L 2 c . . . c L r  in general position and with dimLi=a~ for i= 1,2 . . . . .  r. 

The class 

m I m 2 mr /ul Iz2 ... Izr fl to A 

represents a locus of  dimension E~= I a i+r - l -E~= l m i and is denoted by 

m ! m 2 / H  r 

(a0, a l , . . . ,  ap)/~l f12 ""/'tr 

by Schubert. We thus have r = p + l  and index the a~'s one higher than he does. 

When Eir la i+r- - l=Eir lmi  the class above has dimension zero and its integral 

represents a number . -To state the formula for this number we must define some 

combinatorial numbers. Le t  ~ ( k ,  t~ be the function defined by 

" P l i }  if  i>~O 

if i < 0 .  

Moreover, let E a be the r •  ~ matrix with entries (~') for i= 1 . . . . .  r and j=0 ,  1,2 . . . .  and 

denote by ~PA the sum of all r by r minors of E A. 

The formula states that if p is a number such that O<.p<r and such that the 

following inequalities are satisfied: 

~ m i > ~ a r _ i + l + q - I  for q = l  . . . . .  p - l ,  
i = l  i = l  

then we have that 

/ ju~" m, m,,  

= lm'2m2 "" Pmp( (P + l )m'+'~O A-- ~ cPP(mP+ l ' mP+ '--'lK"--(r--P)) er ~ r  ~ g )  

where the sum is over all K=(kt  . . . . .  kr-p) that are subsequences of  A with r - p  

elements. Here [[KII= E r___ -p k i, the sequence / (  is the complementary subsequence of K in 

A and e r is the sign of  the permutation (K, / ( )  of  A. 

For p=0 ,  1 and 2 Schubert gives (in [SI]) an explicit formula for 5/zT ~ . rap+, �9 "/~p+l nWd 
without any restrictions on the exponents mn . . . . .  mp+~. For p=O and I, there are no 

inequalities to be satisfied in our result and our formula coincides with that of  Schubert. 
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In the case p=2,  however, there is an inequality to be satisfied by the exponents which 

restricts the validity of our formula and, in fact, Schubert 's formula contains an extra 

term. 

Some relevant historical notes on the material mentioned above can be found in 

[K], [K-T], [L1] and [L2]. 

2. Notation and conventions 

Setup (2.1). We fix a ground scheme S. All schemes will be of finite type over S. By 

convention, a bundle on a scheme X will be a locally free Ox-module of finite type. We 

shall throughout assume that S admits an intersection theory in the sense of [F] or 

[K-T]. (For such a theory to exist it suffices that S is an algebraic scheme over a field.) 

Then, for all schemes X considered in the following (space of complete forms, degener- 

ation loci, flags, Schubert schemes .... ), there will exist a graded group of (cycle) 

classes A(X), covariant with respect to proper maps (proper push-forward) and contra- 

variant with respect to flat maps of pure dimension (flat pull-back). As in [F], flat maps 

are assumed to be of pure dimension. Moreover, for all maps f: X--. Y there will exist a 

graded group of (bivariant) classes A*(f) or A*(X/Y). A (bivariant) class a in Ai(x/Y) is 

a family a=(aw), indexed by schemes W/Y, of graded homomorphisms of degree - i :  

aw:A(W)--> A(XxrW), denoted z~-~aAz, 

commuting with proper push-forward, with flat pull-backs, and with refined Gysin 

maps of regular embeddings, see [F] or [K-T]. 

The bivariant classes form a bivariant theory in the sense of Fulton-MacPherson: 

Let a=(aw) in A*(X/Y) be a (bivariant) class. The product of a with a (bivariant) class 

fl=(flD in A*(Y/Z) is the (bivariant) class afl:=(at1• D in A*(X/Z) defined by 

composition of families. The proper push-forward of a by a proper Y-map 

f:X-~V is the (bivariant) class f.(a):=(fw.aw) in A*(V/Y). The pull-back or base- 
change of a along a map g: Z--> Y is the (bivariant) class a[Z=g*(a) in A*(XX rZ/Z) 
obtained by restricting the family (ctw) to schemes W/Z. These three basic operations 

satisfy the 7 bivariant axioms listed in IF]. 

Examples of bivariant classes are: The class defined by flat pull-back of (cycle) 

classes along a flat map of pure dimension, the refined Gysin class of a regular 

embedding and Chern and Segre classes of bundles (see below). 

Let a and fl be (bivariant) classes in A*(X/Y) and A*(Z/Y) respectively; denote by 

g the structure map of Z/Y. Then the cross product axfl is the (bivariant) class g*(a)fl 
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in A*(Xx yZ/Z). The classes a and fl are said to commute if a xfl=flx a. An orientation 
of a map f." X--> Y is a class 0 belonging to the subsystem of A*(X/Y) generated by flat 

pull-back classes and refined Gysin classes and such that 

0 n [Y] = [X] .  

Certain maps have natural orientations: Flat maps are oriented by the class of the fiat 

pull-back. Regular embeddings are oriented by the Gysin class and, more generally, 

maps f." X--> Y that are regular in the sense of [F] have a natural orientation class [ f ]  in 

A*(X/Y). Note that the notion of orientation is stable under composition of classes, but 

not in general under pull-back. 

For a proper map f: X---> Y we shall use the following notation: 

(1) If  z is a (cycle) class in A(X), then we denote by fxlrZ the image of z in A(Y) 
under proper push-forward, i.e., 

fx/r z : = f,(z) E A(Y). 

(2) If 0 is a (bivariant) class in A*(X/Y), then we denote by fx/rO the (bivariant) 

image of 0 in A*(Y/Y) under proper push-forward, i.e., 

fxl O :=f.(O)EA*(Y/Y). 
Y 

(3) If f is oriented by a class [ f ]  and a is a (bivariant) class in A*(X/X), then we 

denote by fxlra the image of  a[f] in A*(Y/Y) under proper push-forward, i.e., 

fx/r a := f,(a[f])= fxlra[f] EA(Y/Y). 

Note that if a flat and proper map 3q X--> Y is oriented by its natural orientation class, 

then we have that 

(fx/r a)Nz = f,(aNf*z). 

The three notions of integrating classes are connected by the following commuta- 

tive diagram 



ON GIAMBELLI'S THEOREM ON COMPLETE CORRELATIONS 149 

A*(X/X) .If] ~ A*(X/Y) ntr] ~ A(X) 

A*(u A*(u nl~q ~ A(Y) 

If XIY is smooth, then the upper left horizontal map, a~-,a[f], is an isomorphism by 

Poincar~ duality, see [K-T] or [F]. If Y is orienting in the sense of [K-T] (say Y is the 

spectrum of a field or the spectrum of a regular ring of dimension 1 or smooth over an 

orienting scheme), then the two horizontal maps to the right,/~-->/~N [Y], are isomor- 

phisms (see [K-T]). Note that if Y is orienting, then A~ thus 

identifying the (bivariant) identity class 1 in A~ with the (cycle) class [Y] in 

A~m r (Y). 

If Y is the spectrum of a field and a is a class in A*(XIX), then we may interpret 

Sxlra as an integer, since the graded group A*(Y/Y) has Z as its only non-zero 

component (in degree 0). More generally, if Yis orienting and a is a class in A*(XIX) of 

degree equal to the relative dimension of  X/Y, then we may interpret Sx/ra as the 

unique integer n satisfying the equation 

fx/ a nlEA~ 
Y 

PROJECTION FORMULAS (2.2). Given proper maps f:X---> Y and g: Y---~S. Then: 
(1) If zEA(X) is a (cycle) class and flEA*(YIY) is a (bioariant) class, then we have 

that 

fx/s z= fr/s fx/r z and fx/sf*~3) Nz= fr/s(~fx/rZ). 

(2) If O' EA*(X/Y) and 0" E A*(Y/S) are (bivariant) classes, then we have that 

(3) Assume that fand g are oriented. If a E A*(XI Y) and # E A*(Y/S) are (bioariant) 
classes, then we have that 

~ a = f r / s ~ r a  and f x , / * ~ ) a = ~ ( a f x ,  O). 
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Proof. The formulas are easily verified using the bivariant axioms in Chapter 17.2 

of [F]. 

KONNETH FORMULAS (2.3). Given a cartesian diagram of proper maps 

Pl 
x ,X~ 

xz , Y  
A 

Then: 
(1) Assume that Y is orienting and that at least one of  the maps fi is flat. I f  

aiEA*(Xi/Y) is a (bivariant) class of  degree equal to the relative dimension of  Xi/Y for 
i=1,2, then we have that 

fx/rP~(al)p~(a2)= fx,/ral fx~/raZ" 

(2) l f  Oi E A *(Xi / Y) for i= 1,2 are commuting ( bioariant) classes, then we have that 

fx, rO'xO2=fx o' fx 02 

(3) Assume that Xi/Y is oriented by an orientation [fi] for i= 1,2 and at least one of  
the maps fi:Xi--) Y is flat. Then the product class [.)q]x[j~] is an orientation of X/Y. 
Moreover, if ai is a (bioariant) class in A*(X/X) for i= 1,2 then we have that 

fxIyP~(QI)P~(Q2)=:XI/y(ZIfx2/yOL2" 

Proof. The formula (2) is a consequence of the bivariant axioms in Chapter 17.2 of 

[F]. The formulas (1) and (3) are consequences of (2). 

Definition (2.4). Let ~ be a bundle on S. We define the total Segre class s (~ )=  

So(~)+s1(~f)+... of ~" by 

:= f ci(r i+~'~-l. (2.4.1) Si(~) 
J~ ~)/S 
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The total Chern class c(~) of ~ is defined by the equation 

s(~f) c(~ ~*) = 1. 

Note that Segre classes defined in [F] differ from ours. The ith Segre class in [F] is 

equal to (-1)isi(~) in our notation. Our definition of Chern classes is, however, in 

accordance with [F]. In particular, if u: ~s-->A~ is a regular section of a line bundle 

then the first Chern class Cl(~) is determined by 

c1(~)  n IS] = [Z(u)]. 

Here Z(u) is the scheme of zeroes of u. 

For a line bundle ~ ,  we note that the definitions give 

s ( ~ ) =  1+l+12+... and c ( ~ ) =  1+l, 

where I is the first Chern class of ~.  

It is well known that the definition of Chern and Segre classes extends to all of the 

Grothendieck group K(S) of bundles on S, and it is a consequence of the splitting 

principle (see e.g. IF]), that for a bundle ~ we may (formally) write 

c ( * ) =  I - [ ( l+a )  and s ( ~ ) =  H 
1 

aEA aEA 1--a' 

where A is a finite family with rk ~ elements. 

Let 3= be another bundle on S and write 

s(,~) = I - I  
1 

bSB l&b' 

where B is a family with rk ~ elements. We then have that (see [F]) 

1 
c(~*)= F [ ( 1 - a ) ,  s(~'*)= ]--[ l + a  and 

aEA aEA 

c(~| I-I (l+(a+b)), s(~g| I~ 1 
aEA, bEB aEA, bEB 1-(a+b)" 

Also if A2~ and 8~2~ are, respectively, the exterior and symmetric square of ~ and 

A = { a l  . . . . .  ar} ,  then we have that 
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c(A2~)= H (l+ai+a.J)' s(A2~)= H I and 
I<<.i<j~, I~i<j~r 1--(ai+aj) 

] - [  ( l + a , + a ? ,  ]-I  ) �9 
l ~i.~j<~, I <~i~j~r 1-  ( a i + aj) 

Notation (2.5). In the sequel we shall consider matrices M (possibly with a 

countable infinity of rows and columns) with coefficients in a ring. It will often be 

convenient to number rows and columns O, 1 . . . . .  i.e., starting with O. If I, resp. J, is a 

sequence of row indices, resp. column indices, we shall denote by M l, resp. Mj, the 

matrix whose row indices, resp. column indices, are those of the sequence L resp. J. If 

I=(il . . . . .  i,) is a finite sequence of non-negative integers, then we denote by [[/][ the total 

degree, that is 

Illll := 

A finite set I of  integers will always be identified with the strictly increasing sequence 

whose entries are the elements of I in their natural order. Given a subset I of the 

integers 0, 1 . . . . .  n - 1 .  We denote by i the complement of I inside {0, 1 . . . . .  n - l } .  

Moreover, we denote by /*  the image o f / u n d e r  the involution i~-,i*=n- 1 - i  and we let 

I':=[*. We shall write (r) for the set {0,1 ..... r - l } .  Thus M (r) denotes the matrix 
consisting of the first r rows of M, and we have that II(r)ll=(D and (r)'=(n-r). 

Recall the following about Laplace expansion of an n • n matrix M: Let r be an 

integer such that O<~r<~n and let I and J be subsets with r elements of row and column 

indices respectively. The cofactor or algebraic complement in the determinant of M to 

the r by r minor det M~ is the complementary minor multiplied with the signs of the 

permutations determined by the two subsets I and J with their natural order. That is, it 

is equal to 

sign(/, ])  sign(J, J )  det M~ 

where ], resp. J, is the ordered complement of I, resp. J, inside the set of row indices, 

resp. column indices. Let A r M  a n d  VrM denote the (,~) x (~) matrices indexed by ordered 

subsets l , J  as above and whose IJth entries are, respectively, the minor detM~ and its 

algebraic complement. Then Laplace expansion of the determinant of M along r rows 

can be expressed by the following equation: 

(AM) (V'M) tr - (det M) I. 
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When d e t M = l  it follows that we have the equation ArM-I--(VrM) tr. Applying the latter 

equation to M -~, we get the equation 

det MJ = sign(l, [ )  sign(J, J ) d e t ( g -  ~)~. (2.5.1) 

Definition (2.6). Let ~ be a bundle. We denote by S(~) the oo x ~o matrix whose ijth 

entry is the Segre class si_i=sj_i(~f), i.e., 

S ( ~ )  = So si 

0 s o 
: : 

Let J=(Jl . . . . .  Jr) be a sequence of non-negative integers. Then the rxr matrix S~)(~) is 

the matrix obtained from S(~f) by selecting the first r rows and the r columns corre- 

sponding to the indices in J. The determinant of the matrix S~)(~f) is called the Jth 

Segre class of the bundle ~f and is denoted sj(~), that is, 

~ ( ~ ) : =  

... s j, [ 

... sj_~ ] 
. �9 

" '"  S J r - ( r - l )  ] 

The Jth Chern class cA~) is defined similarly using the Chern classes c~=c,Ug) for 

i=O, 1 . . . . .  The Segre class sj(~) and the Chern class cj(~) are (bivariant) classes of 

degree I~JIl-([). 

From the Appendix (A.4.3) we get the Complementarity Formula for Chern and 

Segre classes 

cj(~) = sj,(~). (2.6.1) 

Notation (2.7). Let t be an integer. We denote by D(t) and E the oo x oo matrices 

whose ijth entries are, respectively, the binomial coefficients (,~j+t)and ( j )  for 

i,j=O, 1,2 .. . . .  i.e., 

D(t)=I( , ; t )  (2;t) (3 ; )  and E =  2 ! 0 . 

~ (2~t) (3~1- t) (4~- t) ' 3  3 1 
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Let I=(il . . . . .  it) and J=(Ja . . . . .  Jr) be sequences of non-negative integers. We denote by 

dl, j(t) the determinant of the rxr  matrix Dgj(t) and we let dl, j:=dI, j(O). Assume that the 
sequences I and J are strictly increasing and identify them with sets of non-negative 

integers. Let K and L, respectively, be subsets of I and J with the same number of 

elements. The algebraic complement in the determinant det D~j(0) to the r by r minor 

detDX(O) will be denoted d~,) z, that is 

dr, L t,J := sign(K, I \K) sign(L, J \L) det/~j~,~(O). 

Moreover we denote by ~i the sum of all r by r minors of the rx oo matrix E t, i.e., 

7:1:= Z det Etx ' 
K 

where the sum is over all strictly increasing sequences K of r non-negative integers. 

Finally we denote by a~ the following signed sum 

a ! := ( -  1) (D Z ( -  1) Ilxll det E~c, 
X 

where the sum is over all strictly increasing sequences K of r non-negative integers. 

PROPOSITION (2.8). Let ~ and ~ be bundles o f  rank r and t respectively. Then the 
following formulas hold: 

st(g*) = ( -  1)(D-I~lst(*) (2.8.1) 

s( ~| = Z st( ~) dl, j ( t -r)  st(J;) (2.8.2) 
loJ 

c(~|  ~ )  = ( -  1) (~) Z ( -  1)lbtlist(~) dl, s(t-r) sj,(~;) 
l,J 

c(81~ 2~) = (-- 1)(~)2-'~r-D Z (-2)l~ldi,(ev) (-2r)  st(g~) 
! 

(2.8.3) 

(2.8.4) 

c(A2~) = ( -  1)(D2-'~'-I) Z ( -  2)l~ldt,~ev) ( l -2 r )  s/(~) 
I 

(2.8.5) 

: S(Sbmt2~) = ~ fft)lSt(~) (2.8.6) 

(2.8.7) s(^2~) = ~ alsA*). 
! 
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The sums are over strictly increasing sequences l=(il . . . . .  i,) and J=(Jl . . . . .  Jr) o f  non- 

negative integers and (ev) denotes the sequence consisting o f  the r even integers 

0,2 . . . . .  2 r -2 .  

Proof  The formulas follow from the formulas of Appendix (A.13) using the 
splitting principle of (2.4). 

Remark (2.9). The functions Wt and al are studied i more detail in Appendix (A. 15) 
and (A. 16). 

3. Schubert Calculus 

GYSlN FORMULA (3.1). Let  ~ be a bundle on S. Denote by G:=Grassq(~) the 

Grassmannian o f  rank q quotients o f  ~ and let 

0-~ ~--~ ~--~ ~---> 0 (3.1.1) 

be the tautological sequence on G. Moreover, set k: =rk ~ - q = r k  ~r and let I=(il . . . . .  iq) 

and J=(Jl . . . . .  JR) be sequences o f  non-negative integers. Then we have that 

f s~(X)s~(~)=sjl(~), /s 
where JI  is the concatenated sequence (Jl . . . . .  Jk, il . . . . .  iq). 

Proof  We shall use induction on q. If q = l ,  then G=P(~)  and the tautological 

sequence is 

0--~ ~i~--, ~pt,)--> &%-~ O, (3.1.2) 

where ~=(Tp~,)(1) is the tautological line bundle on P(~f). If I is the first Chern class of 

~,  then s j (~)=l  j and s(~pt~))=s(~) s (~) .  

To prove the assertion for q= 1 we shall use the formula 

[Sjl sj~ ... s~ 

sJl ..... j~ ( ~ )  li = det[SJ~._m sj~_l: ... sj~_l: 

\Sj_k Sj2-k ... Sj_k 

li+k 
li+k-l l. 

I i / 

(3.1.3) 
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The matrix here is a ( k + l ) x ( k + l )  matrix and the Segre classes occurring in it are the 

Segre classes of ~p~). 

To prove the formula, change the matrix by subtracting from each row the 

following row multiplied by i, beginning with the top row, using the relation 

sj( ~)=sj-sj_, I. 

The assertion in the case q = l  follows immediately from (3.1.3), the Projection 

Formula (2.2)(3), and Definition (2.4.1). 

Assume that the assertion holds for q - 1 .  We consider G=Grassq(~) with its 

tautological sequence (3.1.1) and P(~) with its tautological sequence (3.1.2). Let X be 

the incidence correspondence 

X: = P(.~ ) = Grass q - 1 (~ )  

corresponding to the commutative diagram 

0----, ~ 

II 
0 ' ~ x  

0 0 

~ex 

0 0 

, 0  

~.0 

where the bundle 9~ on X is the unique bundle defined by the diagram. It is the 

tautological rank q - 1  quotient of ~x on X over G or, equivalently, the tautological 

corank 1 subbundle of ~x on X over P(~). 

The proof is now an elementary calculation. From the case q= 1 and the projection 

formula we obtain the equalities 

~G/sSJ(ff~) SI(~ ) = fGIsSJ(ff~) fxIGSil ..... ir ) Siq(~X) 

= fxls sA:~x) si, ..... i,_~(~) s,(Lex). 
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The last integral can also be computed via the scheme P(~). By the projection formula 

it is equal to 

and by the induction hypothesis the latter expression is equal to the integral 

s (~)1S S j, i l ..... i q _ l ( ~ )  Siq(,~). 

Again, by the case q= 1, this integral is equal to 

ss, i, ..... ~ _ , , ~ ( ~ ) -  

Hence the assertion of the Proposition follows. 

The following result was given in [Lx2]. 

COROLLARY (3.2). Under the conditions of(3. I) assume that the bundle ~ is free. 

Moreover, let A=(al . . . . .  aq) be a strictly increasing sequence of non-negative integers 

such that aq<rk ~ and let J be the strictly increasing sequence obtained from the set 

J: = {0 ..... rk ~ -  1 } \ {al . . . . .  aq}. Then for every increasing sequence I of  non-negative 

integers with q elements we have that 

fc/ st(~)s](~*)= {lo if I = a  otherwise" (3.2.1) 
s 

Proof. Set k : - - r k ~ - q  and let J, ordered increasingly, be J=(Jl ..... JD. By the 

Gysin formula (3.1) we have that 

fGI S Sl(~ ) SJ(~{*) = (--1)Jl +J2--1+'"+Jk--(k--l) l sl(o~ ) 

~- (-- 1)J'+J2-1+'"+J'-(k-I)ssi(~). 

The concatenated sequence M has rk $ elements and $ is free so that s ($)= 1. Hence 

[sign(Jl) if JI is a permutation of (0, . . . , r k $ - l )  
Sj I (~ )  = Lo otherwise. 

Clearly the first condition is satisfied if and only if I=A. In that case the sequence JA 

may be ordered increasingly using 
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jk--(k--1)+... +j2--1+jl 

transpositions. Hence the assertion of  the Corollary follows. 

Definition (3.3). Fix a bundle ~/on S and an integer r>0.  Let  G:=Grassr(~ be the 

Grassmannian of  rank r quotients of  0~ and let 

0-* YC---~ ~ ~---) 0 

be the tautological sequence. Moreover, let { ~//i} be a strictly increasing flag 

of subbundles of  q/. The Schubert scheme f~=~({q/i}, q/) is the subscheme of  G 

representing rank r quotients of  q/satisfying, for i= 1 . . . . .  r, the following rank condi- 
tion: 

the composite map qli.a---~ ~ ~g has rank strictly less than i. (3.3.1) 

Let  A = (al . . . . .  a,) and B= (bl .... , br) be the strictly increasing sequences of integers 

defined by 

b ~ : = r k ~ i  and ai:=rkql/qlr_i+l-1 for i = 1  . . . . .  r. 

It is well known, see e.g. [F] or [K-L], that the Schubert scheme f l  is equidimensional 

over the base and that its relative dimension, resp. codimension in G, is 

i=l a i - ( i - 1 ) =  ai-  2 ' resp. bi_(i_l)  = bi - r 2 " (3.3.2) 
i=1 i=1 i=l 

PROVOSITION (3.4) (Giambelli). Keep the above notation. Assume that the bundles 

qli are free. Then the following equations hold in A(G): 

[f~] = sB(~) n [G] = sj (Yt'*- ~*) n [G], (3.4.1) 

where J is the strictly increasing sequence o f  non-negatioe integers obtained from the 

set {0 . . . . .  rk q / -  1 } \ { a l  . . . . .  a~}. 

Assume in addition that all is free. Then, for every sequence l=(il .... , i~) with 

0~<il<. . .<i ,  the following equation holds in A(S): 

fost(~)N[Q]={[S] i f l = a  otherwise. (3.4.2) 
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Proof. The first equation in (3.4.1) is proved in [K-L] or IF]. (Note that their setup is 

the dual. Their formula expresses the class [f~] in terms of the total Chern classes 

c(Y(*-(~/qli)~)=c(ql~,~-~'*). However, q/i is free, so c(q/*-ge*)=s(~).) From the 

Complementarity Formula (2.6.1) we have that snOg)=ca,Og). However, J=A=/~*=B'  

and we have the relation c(~)=s(-~g*)=s(3f*-ql*) .  Hence we have that sn(~)= 

sj (Yg*-0//,) and we have proved the first part of the Proposition. 

The equation (3.4.2) follows immediately from (3.4.1) using the Corollary to the 

Gysin Formula (3.2). 

Notat ion (3.5). As in [T-K] we shall use the following compact notation for pairs: 

If U=(q/', q/") is a pair of sheaves, then we denote by N U  the pair (A'~ Arq/') and by 

U | the sheaf q/'| If I=(l ' ,  I") is a pair of sequences l '=(i[ . . . .  i') and l"=(t~' . . . . .  i") 

of non-negative integers, we let 

IlIIl : =  ii+...+i'r+i';+...+gL 

Let U=(q/', 0//,,) be a pair of bundles. The Segre class sx(U) is defined as the product of 

the Segre classes of the two coordinates, i.e., 

sx(U) := sr(~ ')  s r (~") .  

We denote by d l the determinant dr,r=detD~i.(O) introduced in (2.7) (see also (A.7)). If 

the two bundles q/' and q/" of U have the same rank, then the formula (2.8.2) for the 

Segre class of a tensor product with this notation takes the form 

s(U| = Z dlsl(U)' (3.5.1) 
I 

where the sum is over all pairs of increasing sequences of non-negative integers that 

each has a number of elements equal to the common rank of the bundles in U. Note that 

the degree of the Segre class sl(U) in the above notation is [[I[[-r(r-1). 

The Grassmann scheme G=Grassr(u) is the scheme representing pairs of rank r 

quotients of U. That is, G is equal to the product Grassr(~ of the two 

Grassmannians formed from the components of U, and the tautological sequence of 

pairs 

0--> K--> U6--~ E---> 0 

consists of the pull-backs along the projections of the tautological sequences on the two 

factors. 

11-898283 Acta Mathematica 162. Imprim~ le 25 mai 1989 
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Let {Ui}~-{(~ ~7)} be a flag of pairs of subbundles of U as in (3.3), that is 

~ ' l c ~ / ~ c . . . c ~ c ~  ' and ~ / ~ c ~ - . . . c ~  ". 

The corresponding Schubert scheme f~=fl({Ui},U) is the subscheme of Grassr(U) 

representing pairs of rank r quotients of U satisfying the rank condition (3.3. I) in each 
coordinate for i= 1 . . . . .  r. That is, f~ is equal to the product O({~'}, 0-//,) x f~({~7}, 0//,,) of 

the Schubert schemes formed from each of the two coordinates. From the flags {0g,} 

and {~7} we obtain pairs of sequences A=(A',A") and B=(B' ,B")  of non-negative 

integers using the definition in (3.4) in each coordinate. By (3.3.2) the relative dimen- 
sion of the Schubert scheme f~=f~({Ui}, U) is equal to 

r[_ ft dimsf~ = E (ai a i ) -r (r -1)"  (3.5.2) 
i=l 

Note that with the above notation this dimension is equal to I[A[l-r(r-1). 

P a o P o s I r l o s  (3.7). Keep the notation of(3.5), and assume that the pairs {Ui} and 

U are pairs o f  free bundles. Let  G=Grassr(U) be the Grassmannian and 

0---~ K--~ U~---~ E--. 0 

the tautological sequence on G. I f  I is a pair o f  increasing sequences with r elements, 

then 

f6 s,(E)N[~]={[S0] zf I = A '  
/s otherwise. 

Proof. Let J=(J ' , J")  be the pair of increasing sequences obtained from the pair 
A--(A',A") using the definition in Proposition (3.4) in each coordinate. If T is an S- 

scheme, then clearly ~({~'},  ~/')Xs T=f~({~ r}, ~ ) .  Therefore, by (3.4.1), we have 
that 

[f2({~;'}, ~ ' ) x  s T] = sj,(Y{'*| s 6 r) t] [Grass ' (~)] .  (3.6. I) 

Set fl":=f]({~7}, ~") .  Substituting T:=s in the above equation, we obtain that 

[O] = sj , (X'*|  ~o-) n [Grass'(~ (3.6.2) 

Set G' :=Grass '(~ ') .  Then [Grassr(~-r)]=[G'Xsfl({~7}, ~")] and applying (3.6.1) to 

the latter expression we obtain that 
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[Grass~(~,,)] = se,(6 c, | ~"*) f3 [G'XsGrass'(91") ] = st(C7 c, | ~ '*)  n [G]. (3.6.3) 

From (3.6.2) and (3.6.3) it follows that [fl]=sj(K*)n [G] and hence we have that 

By the Kiinneth formula (2.3) (3), the integral fG/s si(E)sj(K*) is equal to a product of 

two integrals, one from each factor of G. Evaluating each of these integrals using the 

Corollary to the Gysin Formula (3.2), the assertion follows from (3.6.4). 

4. Intersection on the space of  complete forms 

Setup (4.1). We shall in this section recall some notation and definitions from the works 

IT-K] of  Thorup-Kleiman and [L] of  Laksov. 

Fix a pair E of bundles such that the minimum of the ranks of the two components 

is r~> 1. Let B be the space of complete forms on E. In the notation of [T-K], the space 

B is the scheme Br(E) of  projectively r-complete forms on E. When E has the form 

E--(~, ~*),  the space B is the space of complete collineations between ~ and 

denoted by CL(~f, ~ )  in [L]. 

By [T-K] or ILl, the formation of B,(E) is functorial in the sense that for every 

scheme T/S we have that Br(ET)=B~(E)• T. 

Moreover, the scheme B is smooth over S and of relative dimension r k E |  In 

fact it can be covered by open subsets which are isomorphic to affine spaces of this 

dimension over open subsets of S (see [T-K] or [L]). On the space B there is a canonical 

surjective form w: E~--,~B(1 ). This form defines a map B--,P(E~). The latter map can 

be described as a sequence of monoidal transformations with centers on regular 

subschemes, see [T-K] or [L]. The canonical form w: E~---,~TB(1) is r-divisorial in the 

sense of [T-K]; that is, its exterior powers NW: (NEB)| have line bundles ~t~ as 

images for i= 1 .. . . .  r. The surjections from (NE~) | to d~. are called modified exterior 

powers in [T-K]. In [L] the corresponding quotients are denoted by Ai~B@Ai~;*B---~i] 
and are called characteristic maps. The collection of these maps defines a closed 

embedding 

(see IT-K] or [L]). 

B ~ P(E | • P((A2E) | • • P((A' E)| 

For convenience, set d~0:=r n. The linebundles ~.:-----J~i+l(~d~ 1 fit into a chain of 
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~ l  ~ ~2 ~-' ... ~ r "  (4.1.1) 

For i=1 . . . . .  r the scheme of zeros of the ith map ~.+~---~. is a Cartier divisor denoted 

by Vi in [T-K] and by CL(r-1 ,  r -1 -13  in [L]. The corresponding invertible ideal is 

~i :~-~ ~/+1 (~ ,~ [  1 = ~i+ i @.A~/~-2 ~ ' ~ i - I  (4. 1.2) 

and the associated linebundle is ~(Vi)=~ I. 

Definition (4.2). The Chern classes 

/zi:= cl(elt i) for i = 1,. . . ,  r and 

cSi:=cl(~(Vi))=-cl(~r i) for i = l  .....  r -I ,  

characteristic classes, respectively degeneration classes, of E. For  

r 

a =  ~ f l i l t  i with fliEA~ 
i=l 

I f  the two components o f  E have different rank, then this expression is unique. I f  the 

two components have the same rank we may take fir=0 and then the expression is 

unique 

(3) I f  the two components, ~g' and ~", o rE  have the same rank, then 

/z, = c~(~')+c~(~"). 

(4) The following equivalent set o f  equations hold in A I(B): 

hi=--tzi+l+21zi--l~i_l for i =  1 . . . . .  r - 1  (4.3.1) 

izi+l = --c~i--2cSi_l--...--i6~+(i+l)lz I for i =  1 . . . . .  r--1. (4.3.2) 

are called the 

convenience we define/~0 to be equal to ci(2/0)=c~(~7)=0. 

THEOREM (4.3). Let E be a pair o f  bundles on S such that the minimum o f  the 

ranks o f  the two components is r>~l. Let B=B,(E) be the space o f  complete forms on E 

and f: B--->S the structure map. Then: 

(1) The orientation class [ f ]  EA*(B/S) is determined by 

[f][Z] = [B,(Ez)] for all schemes Z/S. 

(2) Each class a EA I(B) can modulo elements in f * A  I(S) be written as 
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Proof. (1) Since the structure m a p f i s  smooth, its orientation class is given by the 

flat puU-back, i.e., by [f][Z]=[Br(E)XsZ]. The equation follows because formation of 

Br(E) commutes with base change, see (4.1). 

(2) Since the scheme B can be obtained from P(E | as a sequence of monoidal 

transformations with centers on regular subschemes, the assertion is a consequence of 

standard results on the behavior of the Picard group under blow ups, see e.g. [F], 

Proposition 6.7 (e), p. 115 or Example 17.5.1 (c), p. 333. 

We remark that in [T-K] and [L] there is given a very precise description of the 

schemes Vi, resp. CL(r - I ,  r - l + / ) ,  mentioned above and of their intersections. From 

this description one may obtain considerable additional information about the Picard 

group. The statement of (2) is however sufficient for our purpose. 

(3) Under the given assumption, we have that ~r=(ArEB)|174 The 

assertion follows because the first Chern class of a bundle is equal to the first Chern 

class of its determinant. 

(4) The equivalence of the two sets of equations is easily checked. The first set of 

equations follow from the definition of 6i and the equations (4.1.2). 

PROPOSITION (4.4). Keep the notation of  (4.1). Assume that the two components 

of  E have the same rank r>-l. Then, in the notation of(3.5), the following holds: 

(1) For all non-negative integers m we have that 

fB ~7 dlSi(E), 
/s 1 

where the sum is over all I that are pairs of  increasing sequences of  non-negative 

integers with r elements such that IIIIl=m-r+ 1. 

(2) Let p be an integer such that 0 < p < r  and le t / i l  be the first Chern class 

lil=C~(~p+~)=Cl(~p+l| l) (see (4.1)). For all non-negative integers m, k we have that 

f, .'; = 
/S H, K 

where the sum is over all K, resp. H, that are pairs of  strictly increasing sequences of  

non-negative integers with r -p ,  resp. p, elements such that IlKll=k-(r-p)+ l, resp. 

IIHll=m-p+l. 
(3) For all sequences ml . . . . .  mr of  non-negative integers there exists an algorithm 

for determining the integer coefficients i(ml . . . . .  mr, I) in the sum 
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ml m r 
Izl "'" Itr = Z i(ml . . . . .  m r, I) sx(E), 

IS ! 

where I is a pair o f  increasing sequences  o f  non-negative integers each with r 

elements.  

mt ..... m, f o r  sequences  (m I . . . . .  m r) and (n t . . . .  n r) such that m l + . . . + m  r (4) Let  cnt ..... ~, 

= n l + . . . + n  r be a sys tem o f  integers satisfying the equation 

(~ l r_ l - -~ .~r )  ml mr-I  mr__  nr-I nr "'" (/"~1--/'~r) (--~Ur) - -  Z ml ..... mr nl 
Cn 1 . . . . .  n r ]'~1 " " ~ l r - - 1  ~ r  " 

n l , . . . Jn  r 

Then the intersection coeff icients i(ml . . . . .  mr, I) of(3) satisfy the fol lowing equation: 

i(ml . . . . .  mr 'I)=(-1)llxlr Z "1 ..... "I,. . c, I ..... n, z(nl . . . .  nr, l). 
n I , ...,tl r 

Proof. (1) As mentioned above the structure map B-->S can be factored via a map 

B--->P(E | such that/zl  is the pullback to B of the Chern class c1(~1)) and the map 

B--->P(E | is a composite of blow-ups along regularly embedded subschemes. Hence,  

by Proposition 17.5 (a), p. 332 in IF], we have that -fSa,(E% 1=1. By (2.2)(3), we 

therefore have that 

fs/s = Cl(O(1))m" 

Moreover, by the definition of  Segre classes (2.4. I) we have that the right hand side of 

the latter equation is equal to the class 

Sm_rkE|  + t ( E |  

and by the product formula (3.5.1) this class is equal to the class 

Z dl sI(E)" 
I 

Here the sum is over all I such that 

IlIII-r(r- I) = m - r k  E| 1. 

Since rkE |  e, the latter equation gives the asserted condition on I and we have 

proved assertion (1). 
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(2) Let Vp be the scheme of zeros of the map ,.O~p+l--->,~ p of (4.1). Then, since 

~p=[Vp] by definition, it follows from the second formula of (2.2)(3) that 

fB m-k ~" fvp ra-k (4.4.1) 
IS IS 

Let G: =GrassP(E) be the Grassmannian of pairs of rank p quotients of E and 

0---> S---> E~---~ R---> 0 

the tautological sequence. Then by [T-K] or [L] there exists a cartesian diagram 

Vp----~ Bp(R) 

B~_p(S) -,, G 

(4.4.2) 

such that the classes al and #1 are the pullbacks to Vp of the corresponding classes on 

Bp(R) and B,_p(S) respectively. Therefore, by the K0nneth formula (2.3)(3), the integral 
f m -k v/cl~l/*1 is equal to a product of two integrals coming from the factors 

Br_p(S) and Bp(R) respectively. These two integrals may be evaluated using assertion 

(1) on the schemes Br_p(S)/G and Bp(R)/G respectively. Hence we obtain that 

fv ~'~1 ~1  = dndKsK(S)sn(R), (4.4.3) 
/G K, H 

where the sum is over all K, H as indicated in statement (2) of the Proposition. 

The scheme G is a product of two Grassmannians. Therefore, by the K0nneth 

formula (2.3)(3), the integral S6/s sK(S) sn(R) is equal to a product of two integrals, one 

from each factor of G. Each of these integrals may be evaluated using the Gysin 

formula (3.1). Hence we obtain that 

f~/s sK(S) sa(R) sr'a(E)" (4.4.4) 

Combining (4.4.1), (4.4.3) and (4.4.4), the second assertion of the Proposition follows. 

(3) We order the sequences (m I ..... m r) E Z+ in the following way: First we order 

them after the total degree ml+...+m r and secondly we order sequences of the same 

total degree lexicographically. The proof of assertion (3) proceeds by descending 

induction on this ordering. 
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Let p < r  be the largest integer such that mp+j >0. If p=0,  we even have the explicit 

expression of assertion (1). Hence we may assume that p>0.  From (4.3.1) we get 

~171.. " mr m I mp mp+l-I __ - -  /z, =/z t .../Zp /Zp+ I (2/zp /tp_ l 6p). 

We integrate both sides and get three terms on the right hand side. The first two of 

these can be determined algorithmically by the induction hypothesis. To determine the 

third term 

~B *nml tnmP Hrap+l- I j'~ 
/U~l ""P~p /~p+l Vp, 

/S 

we use the expression pp+l=fq+/Zp resulting from the definition in assertion (2). 

Inserting this expression in the integral above, we get a sum of terms of the form 

~B m] nmp_t **n ~Tk (~ /'gl ""l~p-1 P~pP~I p" 
/S 

Arguing as in part (2) above, this integral is equal to 

~1 ""P~p-I  /t'CpP"l" 
/S /G 

The inner integral may be evaluated using the argument in (2) and the induction 

hypothesis on the scheme Bp(R) and the sequence of integers (ml .. . . .  mp_ 1, n) (note that 

the total degree of this sequence is at least 1 less than the total degree of 

(ml . . . . .  mp- i ,  rap)). We obtain an equation similar to (4.4.3), but with algorithmically 

determined integer coefficients in the expression on the right hand side. The latter 

expression may now be integrated from G to S using the equation (4.4.4). Thus the third 

assertion of the Proposition follows. 

(4) Denote by B* the space of complete forms on the pair of dual bundles E* and by 

~ i  for i= 1 . . . . .  r the corresponding characteristic classes. Then, by the duality results in 

Section 4 of [T-K], there is a canonical isomorphism of schemes B = B *  and we 

have that /~,=/zr-i-/z, for i = l  . . . . .  r. The assertion follows easily, noting that 

si(E*)= ( -  I)IIIIIsI(E) by (2.8.1). Thus the Proposition is proved. 

5. Giambeili's formula 

Se tup  (5.1). Assume that ground scheme S is the spectrum of a field and fix a pair U of 

vectorspaces of the same dimension over the field. Let r~  > I be an integer and {Ui} a 
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strictly increasing flag of pairs of subspaces: 

U 1 c U  2 c . . .  c U  rC2U 

and let A=(A',A") be the pair of increasing sequences 

A' = (a' 1 ..... a;) and A" = (a'; ..... a") 

of non-negative integers defined from this flag in (3.5). 

Let T: =Grassr(U) be the Grassmannian of pairs of rank r quotients of U and 

Ur--- E 

the tautological quotient. Thus E is a pair of bundles of rank r on T. Corresponding to 

the flag {Ui) we introduced in (3.5) a Schubert scheme fl=Q({Ui},U) which is a 

subscheme of T. 

Let B: =Br(E) be the space of r-complete forms on E and f: B---> T the structure map. 

From the functoriality of the space of r-complete forms it follows that the scheme 

f-l(~-~) is equal to Br(En). We have that 

N: = d imf - l (~ )  = dim Br(E u) = ~ (a;+a'i')+r- 1. (5.1.1) 
i=l 

Indeed, by (3.5.2) we get 

r 

dimBr(E u) = dimnBr(En)+dim Q = (r 2-1)+ 2 (a~+a~)-r(r- 1) 
i=l 

which is the desired equation. 

We denote by [Q] the class of Q in A(T). The class [Q] depends on the sequences 

A=(A',A") only. Moreover, it follows from (3.5.2) that the class o f f - l (Q)  in A(B) is 

equal to the inverse image [f]([Q]) of [fl] under the orientation class. We denote this 

class by to A, that is 

tOA: = [ f - l ( ~ ) ]  = [ f ] ( [ f f~] ) .  

PROPOSITION (5.2). Let N:=Ei~l(a;+a'i')+r-I be the dimension of f-l(~).  Then: 

(1) (Schubert) 

fB#~' tOA dA. n 
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(2) Let p and k be integers such that O<p<r and O<.k<N. Set 

~l: = cl(&ep+ 0 :  c~(~p+, | 

Then we have that 

fB /u~-i-l #~ ~p n tO A = X dK dKA, 
K 

where the sum is over all K that are pairs of  subsequences of  A with r - p  elements each 

and such that I lKtl=k-(r-p)+ l. Here d~ is the algebraic complement in d A to the 

minor d K as defined in (2.7). 

Proof. (1) It follows from the projection formula and from (4.4)(1) that 

f/o,.,=f,(f./) 

where the sum is over all I that are pairs of increasing sequences of non-negative 

integers with Hill=N-r+ I. By (3.6), the only non vanishing term in the last sum is equal 

to dA. This proves the first assertion of the Proposition. 

(2) It follows from the projection formula and from (4.4)(2) that 

l- ~ dK d. s~(E) n o2A, 
./T K,H 

where the sum is over all K, resp. H, that are pairs of increasing sequences of non- 

negative integers with r -p ,  resp. p, elements such that t lKH=k-(r-p)+l,  resp. 

[IH[[=N-k-p. By (3.6), in the last sum the term corresponding to K, H vanishes except 

when the concatenated pair KH ordered increasingly is equal to A. The exception 

occurs precisely when K is a pair of subsequences of A and H is its complement. In this 

case we have that 

sr, n(E) = sign(KH) sA(E) and dri = sign(KH) d~, 



ON GIAMBELLI 'S  THEOREM ON COMPLETE CORRELATIONS 169 

and, by (3.6), the corresponding term in the sum is therefore equal to d K d~. Therefore 

the second assertion of the Proposition holds. 

LEMMA (5.3). Let ml ..... mr be non-negative integers and consider for l~q<-r the 
inequality 

mi> ~ (a'_i+lq-a"_i+l)+q-l. (5.3.q) 
i=1 i=1 

Let a be a class in A*(B). Then: 

(1)/f(5.3.q) holds for some q<r, then 

YB ml m2 mq #l /z2 ...l~q atSq • taA=0. 

(2) I f  p<.r and (5.3.q) holds for all q<p, then 

B ml m2 mp :B ml+m2+'"+mP /~t /Z2 "'" ,Up a I"1 CO A = lm12 m2 . . .  prop /Ul (~ n (/)A" 

Proof. (1) Using the notation of (4.1) and (4.2) we have that 

6q tl tOA = 6q fl [Br(Eu)]  = [Vq(Eu) ] .  

It follows from the projection formula (2.2) (1) that 

s  :V mlm2mq /~1 /'/2 " " ~ q  gl~q [7 (.OA= /~1 /~2 ""~q fl z, (5.3.1) 
q(E•) 

where z is the class a n [Vq(Eu)] in A(Vq(Eu)). In the notation of (4.4) with p: =q and 

S:=Q, the cartesian diagram (4.4.2) becomes: 

Vq(En)---* Bq(R) 

1 l 
Br_q(S)  > Grassq(Ea) 

Here R and S are the tautological pairs of rank q quotients and rank r - q  subbundles 

respectively on G: =Grassq(EQ) and the restricted classes/~ ..... /Zq are the pull-backs of 

the corresponding classes on Bq(R). 

Let U~--~E6 be the surjection identifying E6 with a pair of quotients of U6. Then 

the composite maps of pairs 
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Ui, G---> UG---> E G 

satisfy, in each coordinate, the rank condition (3.3.1) for i= 1 .. . . .  r, because G is an fl- 

scheme. It follows that the composite map UG--~Ec--~R defines a pair of rank q 

quotients of Ua and that the composite maps of pairs 

Ui, G- '~  U G - - ~  EG----> R 

satisfy, in each coordinate, the rank condition (3.3.1) for i= 1 .. . . .  q. Therefore, if we let 

t):=f~({Ui}q=~,U) denote the Schubert scheme corresponding to the truncated flag of 

pairs {Ui}~= ~ in U and by !~  the tautological pair of rank q quotients of Uo, then there 

exists a natural map from G to t) such that ! ~  pulls back to R. Hence, by the 

functoriality of the space of complete forms we have a cartesian diagram 

Bq(R) , Bq(Eh) 

l 1 
Grassq(EQ) .~ O 

and the classes ,U~ . . . . .  ,uq on Bq(R) are the pull-backs of the corresponding classes on 

Bq(E~). In particular the composite of the two upper horizontal maps in the two 

preceeding diagrams gives a map Vq(Et~)---->Bq(E~) such that the classes ,ul . . . . .  ,uq on 

Vq(Eu) are the pull-backs of the corresponding classes o n  Bq(E~). Assertion (1) of the 

Proposition now follows from equation (5.3.1) and the projection formula, since the 
m I mq 

assumed inequality (5.3.q) asserts precisely that the degree of,u~ ...,uq is bigger than 

the dimension, - ' -  q ' " N . -  Ei=l(ar_i+ I +ar_i+l)d-q- I ,  o f  Bq(E~) (see (5. I. 1)). 

(2) We shall proceed by induction on rap. The assertion is trivial if p=  1, so we may 

assume that p > l .  We may clearly also assume that mp>O. By (4.3.2) we have that 

m I trip m I rap I mp--l~, 
,Ul " " ~ p  =,Ul "",up--I Up tP,ul--~ (P--q)•q)" 

q<P 

We multiply by a n tOA and integrate. It follows from assertion (1) that the resulting sum 

on the right hand side is equal to its first term 

~B/.~71+I m 2 mp 1 mp-I  p /2 2 ...,up_~ ~p a f l  w A. 

By the induction hypothesis we have that the latter term is equal to 
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f 
m 1 m --1 | ml+m2+...+m l m l 2 m 2 " " ( P - - 1 )  P- P P P JB~I  POt [q tO A 

and we have proved assertion (2). 

GIAMBELLI'S THEOREM (5.4). We keep the notation of(5.1).  In particular, we let 

U be a pair ofvectorspaces o f  the same dimension and {Ui}i~ I a strictly increasingflag 

of  pairs o f  subspaces o f  U. We denote by T:=Grassr(U) the Grassmannian o f  pairs o f  

rank r quotients o f  U and by E the tautological pair o f  rank r quotients o f  Ur. 

Moreover, we denote by B=Br(E) the space o f  r-complete forms on E with the 

characteristic classes #l . . . . .  I~ in A*(B) and by f:B--->T the structure map. Further- 

more, let A be the pair o f  strictly increasing sequences (al, ...,a'r) and (a'{ .. . . .  a") 

defined by 

' ' 1 . . . .  rk U t / U 1 ; _ i +  1 - ai . -" -rk  U ' / U ' _ i + l - 1  and a i . - -  

for i=1 . . . . .  r. Finally, we denote by Q:=f~({Ui},U) the Schubert subscheme o f  T 

defined by the flag {Ui}irl and by tOA:=[f- lf l ]  the class o f f - I f2  in A(B). 

Let p be an integer such that O<~p<r and ml ..... mp+l a sequence of  non-negative 

integers such that 

~ m,= ~ (a~+a'i')+r- l = dim f - I ( ~ )  
i=l i=l 

and satisfying the following inequalities: 

• 2 , + , , +  mi> (a~_i+ 1 a~_i+ 1) q--1 for q 1 . . . . .  p - 1 .  
i=l i=l 

Moreover, let q~(k, i) be the function defined by 

qf(k, i )= 0 +p 1 +"" +p i i f  i>>-O 

l 0 if i < 0 .  

Then we have the following formula: 

/ / ,~, m, m,§ 
�9 ".~p /%+1 rl to A 

----- lm'2 m2 . . . p  ( p - I - l )  dA-- E qP(mp+,, m,+,-llKll-(r-p))dKdl , 
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where the sum is over all K that are pairs o f  subsequences (k' I . . . . .  k'~_p) and 

(]~, "", ~"r-p) of  A. Here IlKll.-r,i=~(k,+~/)'- �9 ' ' and a~A is the algebraic complement in d A to 

the minor d K as defined in (2.7). 

Remark (5.5). By definition of  the function q~(k, i) the summation in Giambelli 's 

formula may be restricted to pairs of subsequences K each with r - p  elements such that 

HKl]<-mp+l-(r-p). When p=0 ,  the only possible subsequence is K=A.  The sequence 

K=A does not satisfy the latter inequality, because we have IlAIl=r,~=+~tmi-(r-1)> 
mp+l-(r -p)  when p=0 .  Hence Giambelli 's formula in the case p = 0  reduces to Schu- 

bert's formula (5.2) (1). 

Our presentation of  the formula is very close to Giambelli 's presentation in [G]. To 

translate his notation to ours one should replace his numbers d, n, s and r by r - I ,  

rk U - 1 , p  and q respectively. Moreover, his characteristic classes lUd-i for i= 1 . . . . .  d are 

our characteristic classes/~; for i=  1 . . . . .  r -  1, his subsequences are defined by subsets of  

the indices of A and the Ad and Bd in his terminology is d K and d~A in our. Note finally 

that our characteristic class/z�9 does not occur in his result. The class/z�9 is exceptional in 

the sense that it comes from T and occurs in the formula of (5.4) only in the limiting 

case p = r -  1, a case not covered by the original formula in [G]. 

Proof  o f  (5.4): By the above Remark (5.5) we may assume that p>0 .  Let  
N �9 t t :=Ei=l(ai+a'i')+r-l=V'~ By (5.3)(2) we have that 

I/.gTi mp rap+! fB mt+m2+"'+mP mp+l .~tp ~tp+ ! fl t O A =  lm12m2...p mp �9 . ~1 /Zp+ I f l  to A 

= Im'2m2"'" pmpe(mp+l) 
(5.4. i) 

where the function P is defined by: 

fB N-k k P(k):= Izl IZp+l N to A for O<.k<.N. 

We shall consider the function P(k) for O<~k<-mp+l. By (5.2)(1) we have that 

P(0) = d A. (5.4.2) 

Assume next that k>0. From the equations (4.3.1) and (5.3)(2) we get 
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fB N-k k - 1 2  6 P(k) = /~l /%+1( ~lp--~p-l-- p) n (1) A 

~ N-k k-I = I~ 1 ~p+l(2pl~l--(p--1)~l--dp) Cl ~o A. 

Hence we obtain a recurrence formula 

p ( k ) = ( p + l ) P ( k _ l ) _ f s  N-k k-I /~I ~p+l C~p fl (D A. 

Set/~l:--/t/p+l-Pp as in (5.2) (2). Then we have that 

)f. N-k k-I k--|  N-k i -k - i - l~  
/~1 ~/p+l ~q fl (DA = ~1 ~p/[/l Op fl O) A. 

i=O i 

It follows from (5.3)(2) that the right hand side of the last equation is equal to 

pi ~N k-i-16p 
i=O 

By (5.2)(2), the latter sum is equal to the sum 

pi E dKd~A' E 
i=O IlKll=k-(r-p)-i 

where the sum is over K that are pairs of subsequences of A each with r - p  elements. 

Hence 

P ( k ) - ( p + l ) P ( k - 1 ) = -  E k~ l  pi E dKdKA" (5.4.3) 
i=0 IIKll=k-(r-p)-i 

The function & of (5.4) satisfies the recurrence relation 

1) for k> i~O and q0P(k , - l )=0 ,  

as is seen from the identity k _ k-~ k-~ ( j ) - (  j )+(j-l) .  Consequently, if we introduce the function 

k-I  

Q(k) := - E qP(k,i) E dKdK' (5.4.4) 
i=0 IlKll=k-(r-p)-i 

then it follows from (5.4.3) and a short computation that we have 

P(k)- (p+ 1)P(k-  1)= Q(k)-(p+ 1) Q(k-  1). 
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Therefore we get that P(k)-(p+l)kP(O)=Q(k)-(p+l)kQ(O)=Q(k). From (5.4.2) and 

(5.4.4) we get that 

P(k) = (p + 1)kp(o) + Q(k) 
k - I  

=(p+l)kdA--E cf(k,i) E dKdI' 
i f f i 0  IlKll=k-(r-p)-i 

Interchanging the order of summation in the last sum we obtain that 

P(k) = (p + 1)kdA - ~ cpP(k, k-IIKII-(r-P)) d K d K, 
K 

(5.4.5) 

where the sum is over all K that are pairs of subsequences of A with r - p  elements each. 

Equation (5.4.5) was derived under the assumption that k>0. However, equation 

(5.4.5) is also true if k--0. Indeed, in this case all the terms in the sum on the right hand 

side vanish by the definition of q~' and the assertion follows from (5.4.2). Therefore, 

Giambelli's formula follows from (5.4. l) and (5.4.5). 

6. The formula for quadrics 

Setup (6.1). Assume that the ground scheme S is the spectrum of a field of characteris- 

tic different from 2 and fix a finite dimensional vectorspace 0//over the field. Let r~  > 1 be 

an integer and {9/i} a strictly increasing flag of subspaces: 

% c  %~-. . .c%c ~ 

and let A be the strictly increasing sequence A=(aj ... . .  a,) of integers defined by 

ai:=dimall/~ for i=1 . . . . .  r as in (3.3). 

Let T: =Grassr(0//) be the Grassmannian of rank r quotients of 0//, and 

the tautological quotient. Thus ~ is a bundle of rank r on T. Corresponding to the flag 

{q/i} we introduced in (3.3) the Schubert scheme f~= f~({q/4}, q/) which is a subscheme 

of T. 

Let B be the space of complete symmetric forms on ~. In the notation of [T-K], the 

space B is the scheme B:=B~Ym(~, ~) of (projectively) r-complete symmetric forms 

on the pair (~, ~). The theory of complete symmetric forms, completely parallel to the 

theory described in Section 4, may be found in IT-K], and of its notations and results 
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we shall freely use the parallel symmetric versions of (4.1), (4.2) and (4.3). In particular, 

the structure map f: B--->T factors through the characteristic map B--->P(8~2~) and the 

latter map can be described as a sequence of monoidal transformations with centers on 

(r+ b -  1 regular subschemes. The relative dimension of  B/T is therefore equal to 2 �9 

The scheme Bn:=f-~(f~) is the space of complete symmetric forms on the bundle 

~Q. We have that 

N := f - l (Q)  = dim Bu = ~ ai+r-  1. (6.1.1) 
i=1 

Indeed, by (3.3.2) we get 

t () d imBu=dimuBu+dimf~  = r 1 - 1 +  ai -  r 
i=] 2 ' 

which is the desired equation. 

We denote by [ff~] the class of f~ in A(T). The class [~2] depends on the sequence A 

only. Moreover, it follows from (3.5.2) that the class o f f - I (Q)  in A(B) is equal to the 

inverse image [f]([f~]) of [fl] under the orientation class. We denote this class by tot, 

that is 

WA := [ f - l ( f l ) ]  = [fl([ff2]). 

PROPOSITION (6.2). Let N:=E;'__ 1 ai+r-1 be the dimension o f  f-l(~d). Then: 

(1) 

fB/~ a ~0 a = ~PA" 

(2) Let p and k be integers such that 0 < p < r  and O<.k<N. Set I~1:=c1(~e+1)= 

cl(~p+l| Then we have that 

fB N-k-1 -k ~ /zl /~1 op Iq w a = ~ sign(K,/0 ~Pr ~0tr 
K 

where the sum is over all K that are subsequences o f  A with r - p  elements and such 

that IlKIl=k-(r-p)+ 1. Here IC is the complementary subsequence o f  A and the sign is 

the sign o f  the permutation (K, I~) o f  A. 

The integers ~PK are defined in (2.7) (see also Appendix (A.15)). 

12-898283 Acta Mathematica 162. Imprim~ le 25 mai 1989 
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Remark. As mentioned in the introduction, formula (1) was obtained by Schubert, 

but he only had the recursive formulas (A.15.3), (A.15.6) and (A.15.7) for ~PA, while we 

have defined ~PA by the formula (A. 15.2) which is the explicit expression requested by 

Schubert. 

Proof. (1) The proof is similar to the proof of (5.2)(I), using the parallel symmetric 

version of (4.4)(1). 
(2) The proof is similar to the proof of (5.2)(2) using the parallel symmetric version 

of (4.4)(2). 

LEMMA (6.3). In the setup of(6.1), the statements o f  Lemma (5.3) are valid if  the 

inequality (5.3.q) is replaced by the following: 

2 m i > ~ a r _ i + l + q - 1 .  
i=l i=l 

Proof. The proof is similar to the proof of (5.3), using the parallel symmetric 

version of the cartesian diagram of (4.4.2). 

(6.4). We are now ready to give the formula for complete quadrics that is similar to 

GiambeUi's formula for complete bilinear forms. 

FORMULA FOR COMPLETE QUADRICS. We keep the notation of(6.1). In particular, 

we let ~ be a vectorspace and {~ a strictly increasing flag o f  subspaces o f  U. We 

denote by T:=Grassr(~ the Grassmannian o f  rank r quotients of  all and by ~g the 

tautological rank r quotient o f  qlr. Moreover, we denote by B=Bsym(~, ~) the space o f  

complete symmetric forms on ~ with the characteristic classes I~l . . . . .  Itr in A*(B) and 

by j~ B--> T the structure map. Furthermore, let A be the strictly increasing sequence 

(al ..... at) defined by 

ai:=rkql/Ollr_i+l-1 for i = l  .. . . .  r. 

Finally, we denote by s o//) the Schubert subscheme of  T defined by the fiag 

{alli}i~l and by tOa:=[f-l~"] ] the class off-1s in A(B). 

Let p be an integer such that O<~p<r and ml ... . .  mp+~ a sequence o f  non-negative 

integers such that 

~ mi = ~a ai+r-- 1 = d i m f - l Q  
i=1 i=1 
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and satisfying the following inequalities: 

~ m i > ~ a r _ i + l + q - 1  for q = l , . . . , p - 1 .  
i=l i=l 

Moreover, let cpP(k, 0 be the function defined by 

q~(k,i)= +P 1 +"" +p i if i>I0 

if i < 0 .  

Then we have the following formula: 

�9 ..~p ~p+l n o) A 

=1"'2"2""P'(  (p+l)"~p+'~Oa- Zr qI(mP+"mP+'-llK"-(r-p))ex~~ ' 

where the sum is over all K=(kl ..... kr-p) that are subsequences of A with r -p  
elements. Here [[KlI=Er=--~ ' k~, the sequence I~ is the complementary subsequence of K in 

A, and eK is the sign of the permutation (K, I~) of A. The integers ~PK are defined in (2.7) 

(see also Appendix (A. 15)). 

Remark (6.5). By definition of the function qg(k, i), the summation in Giambelli's 

formula may be restricted to subsequences K with r -p  elements such that 

IIKlI<~mp+l-(r-p). When p=0,  the only possible subsequence is K=A. The sequence 

K=A does not satisfy the latter inequality, because we have 

IIal l  = ~i=1 mi-(r-1)>mp+l-(r-P) when p=0.  

Hence the formula in the case p=0  reduces to Schubert's formula (6.2)(1). 

Our presentation of the formula is very close to the presentation of Giambelli's 

Formula for complete correlations in (5.4). It should be emphasized, however, that the 

formula above was never stated, nor indicated, by Giambelli. As the statement (and its 

proof, see below) is so parallel to the statement of Giambelli, an explanation may 

simply lie in the fact that an explicit formula for the function ~0A was not known. 

Proof of (6.4). The proof is entirely identical to the proof of (5.4), using the 

symmetric versions of (4.3.1), and (6.2) and (6.3), instead of (5.2) and (5.3). 

Remark (6.6). The parameter space B and the intersection numbers S/~ '  ,,r �9 ..~U r [70) A 
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have other interpretations than that given in the Introduction. As for the latter, there 

are similar interpretations for complete bilinear forms. 

An algebraic interpretation is as follows: The parameter space B is a compactifica- 

tion of the set of symmetric forms (up to scalar multiplication) of rank r on 02/. The null 

space of such a form is a (vector) subspace ~ of corank r in 9 /and  the Schubert 

condition corresponding to the flag {9/i} in (6.1) is translated to the following: the 

quotient (9/i+ ~ ) / ~  has rank less than i for i= 1 .. . . .  r. The condition/~i is represented as 

follows: Fix a rank i (vector) subspace ~r of 9/. Then the composite map 8~2Ai'll/'s~ 
8~m2Ai9/B-->8~,~2Ai~B-'->,/~ i d e f i n e s  a section of M/, and its (scheme of) zeroes correspond 

to the symmetric forms on 9/whose restriction to ~ has rank less than i, i.e. whose 

restriction to W'is singular. (When i=r this has to be interpreted as twice the condition 

that the null space meets ~ non-trivially.) 

A translation to geometry is as follows: A symmetric form of rank r on q/ 

corresponds to an element of 8~29/*, i.e., a global section of ~(2), where P:=P(9/*). 

The scheme of zeroes of the latter section is a quadratic hypersurface in P. The null 

space ~ of the form corresponds to the vertex V of codimension r in P of the quadratic 

hypersurface. The parameter space B is therefore the compactification of the set of 

rank r quadratic hypersurfaces P. The points added on the boundary correspond to 

finite sequences consisting of a quadratic hypersurface in P with vertex V~, a quadratic 

hypersurface in V1 with vertex V2 .. . . .  a quadratic hypersurface in Vt_ 1 vertex Vt, such 

that the last vertex Vt has codimension r in P. 

The dual of the flag {9/i} corresponds to a strictly decreasing flag PDL1 ~ . . .  DLr of 

linear subspaces (and a ;=codimLi- l ) ,  and the Schubert condition on the vertex V is 

that the span Li+ V has codimension at least i in P for i= 1 . . . . .  r. 

The class/~i may be represented by the condition for quadratic hypersurfaces to be 

tangent to a given (i-1)-plane in P (corresponding to the dual vectorspace of ~/r 

(When i=r this has to be interpreted as twice the condition that the vertex meets a 

given ( r -  l)-plane.) 

Note finally that the interpretation given in the introduction is the dual of the 

geometrical interpretation above. 

Appendix: Schur functions 

Setup (A.1). Consider a graded ring R=RoO)R~R20)... and associate with it its 

completion, R, with respect to the filtration determined by the grading, i.e., 

I~:=RoXRIxR2x .... Elements in the ideal RkXRk+IX... of/~ will be said to have order 
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at least k. We shall consider power series in/~[[T]], and f o r p  in/~[[T]] we shall write Pi 

for the ith coefficient and indicate this by writing p=p(T)=po+p~T+p2T2+ .... The 

power series p(T) is convergent if the order of  Pi goes to infinity with i. Note that we 

may substitute an element zE/~ in the power series p(T) if the power series p(T) is 

convergent or if the element z has positive order. In any case substitution yields the 
no i 

element p(z)= ~i=oPi z in/~. 

Notation (A.2). Ifp=po+pl T+p2 T2+... is a power series in/~[[T]], then we denote 

by (p)  the infinite row of  its coefficients, i.e., 

(P) := (Po,Pl,P2, ...). 

More generally, if (pl,p2 . . . .  ) is a finite or infinite sequence of r power series in/~[[T]] 

and l~<r~<~, then we denote by (pl,p2 . . . .  } the rXoo matrix whose ith row is (pi}. I fr  is 

finite and the power series pl ..... pr are convergent, then we denote by [p~ . . . . .  pr] the 

sum of all r by r minors of  the matrix (pt ..... p'}. That is, 

[P' . . . . .  P'] := Z det (p '  . . . . .  pr}j, 
J 

where the sum is over all strictly increasing sequences J=(Jt . . . . .  jr) of  non-negative 

integers. The notation for submatrices here and in the following is that of (2.5). 

If  p is a power series, then we denote by M(p) the ~ • ~ matrix whose ith row 

consists of  the coefficients of the power series Tip(T), i.e., 

M(p) := (p, Tp, T2p .... ) = P0 Pl 

0 Po 

For every sequence J=(J l  . . . . .  Jr) of r non-negative integers the rxr  matrix M~s~)(p) is the 

matrix obtained from M(p) by selecting the first r rows and the r columns correspond- 

ing to the indices in J,  that is, 

My)(p) = | PJ,-' pj~-, 
i 

\P~,-(,-~) PJ2-(,-t) 

�9 . .  p j ,  

�9 "" Pj,-li )" 

"'" PL-('-t)] 

The determinant of the latter matrix will be denoted Ps: =det)Wf(p).  
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Moreover,  given an ordered  set (zl . . . . .  z,) of  elements in /~ ,  we let V(zl . . . . .  zr) 

denote the r x  oo matrix whose  rows are the coefficients of  the power series (1-z i  T) -~ 

for i= 1 . . . . .  r, that is 

(1 l )  z2 
V(z, . . . . .  Zr):= 1 - - Z ,  7" . . . . .  1 - - Z , T  = i " 

2 
Zr Zr 

If J is a sequence of  r non-negative integers, then we shall denote by Aj(zl . . . . .  zr) the 

determinant Al(zl . . . . .  zr): = det Vs(zl . . . . .  zr). In particular, for J=( r ) ,  we have that 

1 z l  . . .  z~-~[ 
I A ( z ~  . . . . .  z )  : =  A<,)(z~ . . . . .  z , )  = : : ! 

1 z ,  . . .  z T ' l  

is the usual Vandermonde determinant.  

LVMMA (A.3). Let p and q be power series in/~[[T]] and z an element o f  l~. Then: 

(I) For every integer n>~l the following matrix equations hold: 

(p)M(q)  = (pq) ,  M(p )M(q)=  M(pq) and M~(~I(p)M~t~I(q) = M~(~l(pq). 

(2) I f  the power series p is convergent or the element z has positive order, then we 

have that 

V(z)(p)  tr =p(z )  and V(z)M(p) tr =p(z)  V(z). 

Proof. (1) The first equation is trivially verified. The second follows by applying 

the first to the power series Tip(T) and q(T) for i=0,  1 . . . . .  The third follows from the 

second since the matrices in question are upper triangular matrices. 

(2) The first equation is just  the definition Y~=0 zJPj=P(z) ofp(z).  The second follows 

by applying the first to the power series Tip(T) for  i=0,  1 . . . .  

LEMMA (A.4). Let p(T)=po+Pl T+p2 7"2+... be a power series with constant term 

p0 = 1 and let I and J be subsets o f  {0, 1 . . . . .  n - 1 }  with r elements each. Moreover, let z 

be an element o f  l~ and let c be the power series defined by the equation 

p(T) c ( -  T) = 1. 
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Then the following equations hold: 
(1) (Symmetry) 

j* 
det M~t, (p(T)) = det M~(p(T)). 

(2) (Homogeneity) 

det M~(p(zT)) = z I~ll-II~l det M~(p(T)). 

(Where both sides are equal to 0 if IIJIl<lllII.) 

(3) (Complementarity) 

det M~',(c(T)) = det M~(p(T)). 

Proof. Let (6 ... . .  b) and (Jl .. . . .  Jr) be the increasing sequences determined by the 

subsets I and J respectively. 
j* j~. 

(1) The matrix M~(p) is equal to the transpose of the matrix Mi~i:ii:i~(p), because 

i-j=j ~-i*. The latter matrix can be transformed into MJt:(p) by reversing the order first 

of its rows and next of its columns. Therefore the asserted equality of determinants 

holds. 

(2) The determinant detM~(p(zT)) is a sum of products of the form 

k l - i l + . . . + k r - i  r 
-t-Z P k l - i  t "'" P k , - i , ,  

where (kl ..... kr) is a permutation of (Jl .. . . .  jr). The latter product is only non-zero if all 

the inequalities kl>~il ..... kr>-ir are satisfied. As IIKII--IIJII it follows that the power ofz is 
equal to z IIJIl-IlIII (and that the determinant is equal to 0 if IIJll<ll/]l). 

(3) Let u=c(-T) in/~[[T]] be the inverse o fp  and let P:=M~I(p) and U:=M~I(u). 

From the third equation of (A.3)(1) it follows that PU=I. By the Laplace expansion 

(2.5. I), we have that det/~s=sign(l, ])sign(J, J )de t  U~, that is, 

det M~(p) = sign(L ]) sign(J, J) det MJl(u). (A.4.4) 

A permutation (I,]) may clearly be put in increasing order by b-(r-1)+...+i2-1+il 
transpositions. It follows that the product of the two signs on the right hand side of 

equation (A.4.4) is equal to (-1)LVlL-tI~L=(-1) LL~I-I~tlI. By assertion (2) with z : = - I  we 
therefore obtain that detM~(p)=detMJt(c). Finally it follows from assertion (1) that 

det M~(c)=det Mtj,(c) and we have proved assertion (3). 
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Definition (A.5). For a finite family A of elements in/~, we denote by c(AT) and 

s(AT) the power series defined by 

1 
c(AT) := I-[ (l+aT) and s(AT):= 11I 1-aT" 

a E A  a E A  

The coefficients of c(AT)=co+cl T+... and s(AT)=so+sl T+... are the elementary 

symmetric functions and complete symmetric functions respectively of the finite family 

A. The matrices M(c(AT)) and M(s(AT)) will be denoted by C(A) and S(A) respectively. 

For a finite sequence J=(j~ .. . . .  jr) of non-negative integers, the determinant 

sj(A): =det S~)(A) is called the Jth Schurfunction of the family A. If the elements of A 

have positive order, then the power series c(AT) and s(AT) are convergent. Substitu- 

tion of T= 1 yields in this case the values 

c ( A ) : = H ( l + a )  and s ( A ) : = I -  [ 1 
a E A  a E A  l - a "  

If the elements of A are homogeneous of degree 1, i.e., if they are elements of R~, then 

clearly sj(A) is homogeneous of degree Jt + (J2-1) +.. .  + (Jr - (r - I)) in R. 

A detailed treatment of Schur functions (with a change in indexation) is given in 

[M]. 

LEMMA (A.6) (Jacobi-Trudi). Let (al . . . . .  at) be an ordering o f  a finite family A o f  

elements o f  positive order in 1~ and for  k=l ,  ..., r denote by c k the polynomial 

ck(T):=l-li.k(l-aiT). Moreover, denote by W(a I . . . . .  a )  the r• matrix (c i . . . . .  Cr)r 

Then the following formulas hold: 

W(a I . . . . .  a )  s(r)(A) = V(a I . . . . .  a ) ,  (A.6.1) 

(r) - I W(a I . . . . .  ar) = V(r)(a I .....  a )  S(r)(A) , (A.6.2) 

det W(a I . . . . .  a )  = A(a I . . . . .  a ) .  (A.6.3) 

Moreover, i f  J is a sequence o f  r non-negative integers, then we have that 

Aj(a I . . . . .  a )  = A(a I . . . . .  a )  sj(A). (A.6.4) 

Proof. From the definitions we get that 

ck(T)s(AT)= 1 for k =  1 . . . . .  r. 
1-akT 
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Therefore, applying the first equation in (A.3)(1) to r rows, we have that 

( cl(T) ..... cr(T) ) M(s(AT)) = .1--ai T .... l - a  r T/ 

The matrix on the right hand side of the above equation is the matrix on the right hand 

side of (A.6.1). The first factor on the left hand side of the above equation has only its 

first r columns non-vanishing, because the ck(T)'s are polynomials of degree less than r. 

Therefore the product on the left hand side is equal to the product of the two matrices 

obtained from the first r columns of the first factor and the first r rows of the second 

factor, that is, the left hand side of the above equation is equal to the left hand side of 

(A.6. I). Thus equation (A.6.1) holds. 

The matrix (r) S(~)(A) is an upper triangular matrix with 1 in the diagonal and conse- 

quently it has determinant equal to 1. Therefore, equation (A.6.2) follows from equa- 

tion (A.6.1) by selecting the first r columns in (A.6.1). Equation (A.6.3) follows from 

taking the determinants of two sides of (A.6.2). Finally, the last formula follows from 

the first and the third. 

and 

Definition (A.7). For an integer t, let D(t) and E(t) be the ~ x ~ matrices given by 

D ( t ) : = ( 1  1 1 / tr 
(1 -- T) '+ ~' (1 - T) '+2' (1 - T) t+3 .... 

E( t ) :=<  1 T T 2 >tr. 
(1-  T)t+l ' (1-  T) t+2, ( l - T )  t+3 .... 

Thus the ijth entries are, respectively, the binomial coefficients 

�9 (i+t I for and (- t~_lj- j)  (-1)~-J = \ i_ j  / 

i.e., 

i,j=O, 1,2 ..... 

| ( '7)  (37) o 
D(t)=~(2~t) (3-~t): (4-~t): and E(t)=\(2~t)(2-~t): (2-~t): 

LEMMA (A.8). Let a be an element of positive order in 1~ and set z:=(1-a) -I ER. 
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Then toe have that 

V(a)D(t) = zt+lV(z) and V(a)E( t )  = z t+lV(z-1) .  (A.8.1) 

Proof. The equations follow from the first equation in (A.3)(2) and the definitions 

of D(t) and E(t). 

Remark (A.9). The ijth entry in E(0) is (~) and therefore we have that 

E(0) = (1, I + T , ( I + T )  2 . . . .  ). 

Hence, by (A.3)(2) and (A.8), for every a of  positive order (and z : = ( l - a )  -l) we have 

that 

V(a)  E( t )  E ( 0 )  tr - z t + l V ( z -  1) E(O)tr = z t +1(1, Z, Z 2 . . . .  ) 

= zt+IV(z) = V(a)D(t). 

It follows easily that D(t)=E(O E(0)tL Consequently the minors of  D(t) can be expressed 

as sums of minors of E(t) with integer coefficients. 

Remark. The matrix equation D(t)=E(t)E(O) tr is a special case of  a general equa- 

tion. Namely,  if p, q and u are power series such that u has constant term equal to 0, 

then for the composite power series p o u we have that 

(p)  (q, uq, u2 q, ... ) = ( ( p o u )  q).  

In fact, if a is an element of positive order, then 

V(a) ( q, uq, u2q . . . .  ),r(p)tr = q(a) (1, u(a), u(a) 2 . . . .  ) (p)tr 

= q(a)p(u(a)) = V(a) ~(p ou) q)tr, 

and this implies the assertion. 

LEMMA (A. 10). Let  (al . . . . .  at) be an ordering o f  a finite family A o f  elements o f  

positive order in t~, and set zi: =(1 -ai)  -I for  i= 1 . . . . .  r. Moreover, let W(aj . . . .  , at) be the 

r x r  matrix o f  Lemma (A.6). Then we have that 

F I z i = s ( A )  and A(zl . . . . .  z ) = A ( z l - 1  . . . . .  z~- l )=s(A)r - lA(a l  . . . . .  ar), (A.10.0) 
i=1 

W(a~ . . . . .  a )  S~')(A)D(t) = diag(zt~ § . . . . .  z'~ § V(z~ . . . . .  z ) ,  (A. I0.1) 
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W(a I . . . . .  a r) S(')(A) E(t) = diag(ztl +1 , t+l, . . . .  z r ) V ( Z l - 1  . . . . .  z , - l ) .  (A.10.2) 

Moreover,  f o r  every p o w e r  series p in/~[[T]] we have that  

W(a~ . . . .  , a )  Sr M ( p )  tr = diag(z~ +1P(Zl) . . . . .  ztr +1P(Zr)) V(zl . . . . .  Zr)" (A. 10.3) 

Proof .  The first equation in (A. 10.0) follows from the definition of s(A) in (A.5). 

Moreover, we have that 

s(A)r- lA(al  . . . . .  a r) = s ( A f - l A ( a l -  I . . . . .  a~-  1) 

= s ( A ) r - I A ( - Z l  1 . . . . .  - -Zr  1) 

where the first equation follows from the usual expression for the Vandermonde 

determinant A(a I . . . . .  ar)=IIi<j(aj-ai). Multiplying out the last of the above expressions 

and switching columns in the resulting matrix, we see that it is equal to A(zl .....  zr). The 

remaining equation in (A. 10.0) is trivial. 

The kth row of the left hand side of (A. I0.1) is, by Jacobi-Trudi's Lemma (A.6.1), 

equal to V(ak)D(t) .  The latter row is by the first equation in (A.8.1) equal to the kth row 

of the right hand side of (A.10.1). The proof of (A.10.2) is similar, using the second 

equation in (A.8.1). 

By Lemma (A.3)(2), the equation (A. 10.3) results from (A. 10.1) upon multiplica- 
tion by the matrix M ( p )  tr. 

Remark .  The equations involving discriminants follow also from (A.8): Apply (A.8) 

to r elements (a~ .. . . .  at) with t: = - r  and select the first r columns. The first r columns in 

D ( - r ) ,  resp. E ( - r ) ,  are the coefficients in the polynomials ( I - T y  -~ ..... I - T ,  1, 

resp. ( l - T )  r-1 .. . . .  Tr-2(1-T), T ~-1. Since these polynomials have degree less than r, 

only the first r rows in D(-r)~,),  resp. E(-r)(~), are non-vanishing. Therefore, with 
�9 _ ( r )  D.-D(t)<~) the following matrix equation results: 

V(r)(a I . . . . .  a )  D = diag(z~ -~+ 1 . . . . .  Zrr+l) V(r)(Z 1 . . . . .  Zr), 

resp. a similar equation results with D replaced by E. Clearly D has the elements 

(-- 1) r- l ,  (-- 1) r-2 . . . . .  I in the antidiagonal and zeros below, and E has l ' s  in the diagonal 

and zeros above. Thus d e t D = d e t E =  1 and the required equations follow from taking 

determinants. 
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LEMMA (A.11). The functions [pl . . . . .  pr] of  r convergent power series pt . . . . .  pr in 

/~[[T]] defined in (A.2) for  r= 1,2 ... .  are l~-multilinear and alternating and satisfy the 

following equations: 

[pl=p(1)  and [1,pl=p(1)-p(O). 

[ Tp  ~ . . . . .  T p  r] = [1,  Tp  ~ . . . . .  rp ' ]  = [p~ . . . . .  pq .  

r 

[Pl .. . . .  Pq - [ I 'P~  ..... Pq = E ( -  1)k-tpk(O)[Pt . . . . .  pk . . . . .  p,], 
k=l 

(A. 11.0) 

(A.11.1) 

(A.11.2) 

Finally the following explicit formula holds: 

(Pf([Pl,PJ])i j = ..... 
[ p l  . . . . .  pr] = [ ef([P',P~])i j=oi...,r 

i f  r is even, 
(A. 11.4) 

i f  r is odd, 

where Pf denotes the Pfaffian o f  the alternating matrix and where, in case o f  odd r, we 
interpret [p0, pk] as [pk]. 

Proof. From the definitions it is obvious that the functions [pl ..... pr] are /~- 

multilinear and alternating and that the formulas of (A. 11.0) hold. 

The matrix (Tp I . . . . .  Tp ~) has its first column equal to zero and clearly the same 

nonvanishing minors as (pl . . . . .  pr) .  Therefore the equations of (A. 11.1) hold. 

To prove equations (A. 11.2) and (A. 11.3) we proceed by induction. We prove first 

that the two right hand sides are alternating. As/~-linearity is obvious, it suffices to 

prove that the right hand sides vanish if two consecutive arguments are equal. This is 

easily verified in all cases except for the right hand side of (A. 11.3) when r is even and 

the two equal arguments are the first two. To treat the exceptional case in r+2 

variables, we evaluate the right hand side of (A.11.3) on a sequence of power series 

(p ,p ,pl  . . . . .  pr) with r even. The result is the following sum" 

[p,p] [ p l  . . . . .  Pr]+ E (-1)k[p'pk] [p,pl . . . . .  pk . . . . .  pr]. 
k=l 

Here the A indicates an omitted argument. Moreover these functions are determined 

by the functions [p]=p(1) and [p, q] through the following recurrence formula: 

~ ( _ l ) k - I [ p k ]  [pl ..... pk . . . . .  pr], i f r  is odd. 

[p~ . . . . .  pq  = A (A.11.3) 
(_l)k[pt,pk] [p2 ..... pk . . . . .  p,], i f  r is even. 

~ k = 2  
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The first term in the sum is clearly equal to zero. By induction we may assume that 

(A.11.3) holds for r variables. Therefore the kth term in the sum is equal to the 

following expression: 

E (--1)k+j-l[p'pk] [p, pl] [ p l  . . . . .  pj ..... pk ..... pr] 
j<k 

_bE (_ l )k+j[p, pk] [p, pj] [ p l ,  . . . ,  pk ..... pj . . . . .  pr]. 
j > k  

For k= 1 . . . . .  r we insert the latter expression in the sum. The vanishing follows easily. 

Next we note that, since the power series are convergent, for every n there is only 

a finite number of terms of order less than n in the sum defining [p~, .,.,pr]. Thus it 

suffices to prove the equations for polynomials. Finally, since the expressions are 

alternating and the polynomials in/~[[T]] have the sequence 1, T, T 2 ....  as a free/~- 

basis, it suffices to verify the equations on sets of the form (T J' . . . . .  T Jr), where 
0~<jl<...<jr. The verification is immediate, noting that [T s' ... . .  TJr]=l, because the 

only r x r  submatrix of (T j~ . . . . .  T j') with all rows non-zero is the unit matrix. 

For even r, the formula (A. 11.3) is the Laplace type expansion of the Pfaffian, and 

therefore (A. 11.4) holds by induction on r. Finally note that (A. 11.4) for an odd number 

r of variables follows from (A.11.4) applied to the r+ l  variables 1,Tpl(T) . . . . .  Tpr(T) 

using (A.11.1) (and interpreting [pO,pk] as [pk]). Thus Lemma (A.11) is proved. 

LEMMA (A. 12). Let  A=(a l  . . . . .  ar) be an ordered family  o f  elements o f  positive 

order in 1~. Then the fol lowing formulas  hold: 

E A j ( a l , . . . , a ) = A ( a l  . . . . .  ar)l~il_~aiil~<j 1 J . l_aia j ,  (A.12.1) 

E sj(A)= I ~  ~ a  I-[ 1 (A.12.2) 
J i - -  i i< j  1--aiaj' 

where the sum is over all strictly increasing sequences J=(Jl . . . . .  Jr) o f  non-negative 

integers. 

Proof. The formulas of the Lemma are of a universal nature. That is, if they hold 

when the family A=(at  . . . . .  ar) is the family of independent variables (xl . . . . .  x~) in the 

ring R=Z[Xl ..... Xr] of polynomials over Z, then they hold in general. Indeed, the 

asserted equations can be obtained by substituting (a~ .. . . .  a~) for variables in polynomi- 

al identities. Therefore, in the proof, we may assume that (a~ ..... a~) is the sequence of 
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independent variables ( X  1 . . . . .  Xr) in the ring of polynomials Z[xl . . . . .  x,]. Thus the ring/~ 

is the ring Z[[Xl .. . . .  Xr]] of formal power series. 

Denote by D(x~ . . . . .  Xr) the element of/~ obtained by multiplying the left hand side 

of equation (A. 12.1) by Hi(1-xi). By definition and the multilinearity of (A. l 1) we have 

that 

[ 1-xl  l--x, ] 
D(x I , o~ XE~ ~ 

"" L 1 --X I T .. . . .  l--x, T j" 

Clearly D(xl)=l and an easy summation gives D(xt,x2)=(x2-xO/(1-xlx2). Therefore, 

by (A. 11.4), w'e have that 

D(x I . . . . .  Xr) = Pf (d~/ ) ,  

where the matrix on the right hand side is the even order matrix of the size indicated in 

(A. 11.4) and with coefficients given by 

.~--X i 
d O- 1-xixj (and doj = 1 if r is odd). 

It follows from the expression that D=D(xl . . . . .  x,) is a rational function Of Xl . . . . .  Xr and, 

more precisely, that the product of D and the polynomial Hi<j(1-xixj) is a polynomial. 

This polynomial is clearly alternating and therefore divisible by the Vandermonde 
determinant A(x I . . . . .  Xr)=Hi<i(xj-x ). Hence we have proved that the equation 

D(x  I . . . . .  Xr) = C H x j - x i  
i<j l - x i x j  

(A.12.3) 

holds with a polynomial factor C on the right hand side. 

The rational functions (xj-x3/(l-xixj) are clearly invariant under the substitution 

determined by Xk~---~l/Xk for k= 1 .. . . .  r. Hence it follows from the Pfaffian expression for 

D and the equation (A.12.3) that the polynomial C is invariant under the latter 

substitution. Therefore, the polynomial C is an integer constant. 

Except for the factor C on the right hand side, the equation (A. 12.1) follows from 

(A. 12.3) upon division by IIi(1 -xi). By Jacobi-Trudi's Lemma (A.6.4), a further division 

by A(xl .....  Xr) yields equation (A.12.2). Therefore, equations (A.12.1) and (A.12.2) 

hold except for a universal integer constant C on the right hand side. 

To finish the proof we evaluate the two sides of (A. 12.2) on the family A=(0 .. . . .  0). 

Both sides are clearly equal to 1 and therefore C= 1. Thus the Lemma is proved. 



ON GIAMBELLI'S THEOREM ON COMPLETE CORRELATIONS 189 

PROPOSITION (A. 13). Let A and B be finite families of  elements of  positive order in 
I~, with r and s elements respectively. Moreover, let (al ..... ar) be an ordering of the 
family A. Then the following formulas hold: 

I-[ 1 - Z st(A) det O~(s-r) ss(B), 1-(a+b) aEA,  bEB l , J  

(A. 13.1) 

I-[ (l+(a+b)) = (-1) (9 E (-1)lltflst(A)detDl~(-s-r)sr(B)' 
aEA, bEB l , J  

(A.13.2) 

I - I  (1 +(ai+aj)) = ( -  I)(92 -'(r-l) Z (-2)11~1 det D~(ev)(- 2r) sI(A), 
i<~j 1 

(A.13.3) 

H (1 +(ai+aj)) = ( -  1)([)2 -r(r-l) Z (-2)11~11 det D~ev)(1-2r) si(A), (A. 13.4) 
i<j I 

1-I 1 =~t (~de tEi (O))s t (A) ,  (A.13.5) 
i~j 1-(ai+aj) 

I-I 1 =(_l) (~)Z(Z(_l ) l~l ldetE~(O)ls t (A) .  (A.13.6) 
I -(ai+a J) i<j I k s /  

The sums are over strictly increasing sequences I=(il ..... ir) and J=(J l  . . . . .  Jr) of  non- 
negative integers. The sequence (ev) is the sequence consisting of  the r even integers 
0, 2 . . . . .  2 r - 2 .  The notations IIJII and J' are introduced in (2.5) and the matrices D(t) 
and E(t) are defined in (A.7). 

Proof. The formulas of  the Proposition are of a universal nature, cf. the proof  of  

(A.12). We may therefore, in particular, assume that the Vandermonde determinant 

A(a~ .. . . .  a~) is a non zero divisor, and we shall freely divide by the latter determinant. 

Define the sequence (zl ..... Zr) by zi :=(1-ai )  -l as in (A. 10) and let t be an integer. 

In the proof  we shall use the following three equations 

det W(a 1 ..... a)  det(S(r)(A) D(ev)(t)) = I-I z~ § det A(ev)(z 1 . . . . .  Zr), (A. 13.7) 

t+l det W(a I . . . .  ,ar)det(S(r)(A)Ej(t))=I-Izi Aj(z l -  1 . . . . .  Zr-1), (A.13.8) 

det W(a~ . . . . .  a r) det(S(r)(A) D(t) M(r)(p) tr) = I-[ Z~ + ! l'-[ P(Zi) A(Zl . . . . .  Zr), (A. 13.9) 



190 D. LAKSOV, A. LASCOUX AND A. THORUP 

where J is a strictly increasing sequence of non-negative integers with r elements and p 

is a power series in/~[[T]]. The above equations result when the determinant is applied 

to the matrix equations obtained from equations (A.10.1), (A.10.2) and (A.10.3) by 

selecting the columns from (ev), the columns from J and the columns from (r) respec- 

tively. 

Consider first equation (A.13.9). With p:=s (BT)  we have that 

p(z,) = FI" 1 = I ~  b 1 = zT~ ~ I  1 . 
1 - z i b  z i ( 1 - a i - b  ) l - a  i - b  b b 

From (A.10.0) and the above expression for p(zi) it follows, when p = s ( B T ) ,  that the 

right hand side of equation (A. 13.9) is equal to the expression 

A(al . . . . .  a,)s(A)t_s+rH[" [ 1 
b i 1 - a i - b "  

By (A.6.3), the left hand side of equation (A. 13.9) is equal to the expression 

A(a I ... .  , a )  det(S(')(A)D(t) S(~)(B)tr). 

Therefore, using the formula det S D M =  EI. J det S t det D/j det M ~ for the determinant of a 

product of matrices S, D and M of sizes rx  o% oo x oo and oo x r respectively, the equation 

(A.13.1) of the Proposition follows when we set t : = s - r .  

Similarly, when p = c ( B T ) ,  we have p(zi)=l-lb(l+zib)=z ~l-Ib(1-ai+b ) and the right 

hand side of (A.13.9) is equal to 

a(a ,  . . . . .  a,) s(A) '+r+' I-[  I-[  (1-  a,+ b). 
i b 

By (A.6.3), the left hand side of equation (A.13.9) is equal to the expression 

A(a I . . . .  , a r) det(S(r)(a) D(t) C'~r)(B)t~). 

Therefore, applying equation (A. 13.9) to a family of the form w A  with w = -  1 and using 

the homogeneity and complementarity of Lemma (A.4), the equation (A.13.2) of the 

Proposition follows when we set t : - - - s - r .  

Consider next equation (A.13.7). We have that 

2 2 . . . .  z,) I - I  ( z , + z ) .  A(ev)(Z I . . . . .  Zr) = A(Z~ . . . . .  Z2r) = I - I  ( Z j - Z  i) = A(Z 1, 
i<j i<j 
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As zi+zj=zizj(2-ai-aj) and I~i<jZiZj=~iiz7 -1, we have that 

A(ev'(Zl . . . . .  Zr) = A(Zl  . . . . .  Zr) 1-I z: -1 l'-'[ (2-ai-aj)" 
i i<j 

From (A. 10.0) and the above expression for A(ev)(Z~ ..... z,) it follows that the right hand 

side of equation (A. 13.7) is equal to the expression 

A(a I ..... a) s(A) t+2r-I U (2-ai-aj)" (A. 13.10) 
i<j 

By (A.6.3), the left hand side of equation (A. 13.7) is equal to the expression 

A(a 1 .. . . .  a )  det(S~)(A) D<ev)(t)). 

Therefore, applying equation (A. 13.7) to a family of the form wA with w = - 2  and using 

the homogeneity of Lemma (A.4), the equation (A.13.4) of the Proposition follows 

when we set t : = l - 2 r .  

Since 2-2ai=2z~ 1 and I-Iizi=s(A) w e  may rewrite the expression (A.13.10) for the 

right hand side of (A. 13.7) in the form 

A(al, ..., a) s(A)t+ 2r2-r U (2-ai-aj).  
i~j 

Therefore, applying equation (A.13.7) to a family of the form -2A and using the 

homogeneity of Lemma (A.4), the equation (A.13.3) of the Proposition follows when 

we set t := -2 r .  

Consider finally the equation (A.13.8). If we form the sum over all sequences J of 

the right hand side of equation (A.13.8), then it follows from (A.12) that the sum is 

equal to the expression 

A(Zl-1 .. . . .  z r - l )  . . . .  zi 1- (z i -  1) 1-(zi-1)(zj-1)" 

Since 1-(zi-1)=zi(1-2ai) and 1-(zi-1)(zj-1)=zizj(1-(ai+aj)), the latter expression is 

equal to the expression 

. ,  i - i •  1 1 1-I I-[ A(Zl- 1 .....  Zr-- 1) Z~ i Zi ~<j i j ~<_j 

13-898283 Acta Mathematica 162. Imprim6 le 25 mai 1989 
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From (A. 10.0) and the above computation it follows that the sum over all J of the fight 

hand side of equation (A. 13.8) is equal to the expression 

A(a t . . . .  a )  s(A) t I-I 1 
�9 l - ( a i + a  )" i<~j 

By (A.6.3), the sum over all J of the left hand side of equation (A.13.8) is equal to the 

expression 

A(al . . . . .  at) E det(S(rJ(A)Ej(t)). 
J 

Therefore, evaluating the last determinant and interchanging the order of summation in 

the resulting sum, the equation (A. 13.5) of the Proposition follows when we set t : -0 .  

The fight hand side of (A.13.8) multiplied by ( -1)  I~ll is clearly equal to the 

expression 

Aj(1-Zl . . . . .  1--Zr) I--[ Z~ +1" 
i 

If we form the sum over all sequences J of the last expressions, then it follows from 

(A. 11) that the sum is equal to the expression 

lI~ t+lI--ili l fi~<j 1 A(1-zl  ..... I - z )  . zi . l - ( l - z i )  1 - ( 1 - z / ) ( l - z ) "  

Since 1-(1-zi)=zi and 1-(1-zi)( l -zj)=ziz~(1-((ai+a)) ,  the latter expression is equal 
to the expression 

A(1--Zl .. . .  , 1--Zr) H Z~+I l'~I i _.~ H Z..~, H 1  I 1 
1-(ai+a )" i " i i < j  i :j i< j  

Moreover, 

A(I - z  I . . . . .  l - z ) = (  - 1)(gA(zl- 1 . . . . .  Zr-- I). 

From (A. 10.0) and the above computation it follows that the sum over all J of the fight 

hand sides of equation (A. 13.8) multiplied by ( - I )  I~1 is equal to the expression 

( -  I)(DA(aI . . . . .  at) s(A)t H 1 
i<~i 1-(a i+a)"  
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By (A.6.3), the sum over all J of  the left hand sides of  equation (A. 13.8) multiplied by 

( -1 )  I~'[I is equal to the expression 

A(a i . . . . .  a�9 ~ ( -  1) I~'11 det(S<�9 E~(t)). 
J 

Therefore, evaluating the last determinant and interchanging the order of  summation in 

the resulting sum, the equation (A. 13.6) of  the Proposition follows when we set t: =0. 

LEMMA (A.14). Let  pl . . . . .  p�9 be convergent power series in/~[[T]]. Then: 

(1) I f  ql . . . . .  qr are convergent power series in /~[[T]] satisfying the symmetry 

conditions 

[p*,qq = [pJ, q*] for k , j =  1 . . . . .  r, (A.14.1) 

then the following formulas hold: I f  r is even, then 

•[p• . . . . .  q* . . . . .  p�9 = 0 ( A . 1 4 . 2 )  
k= l  

and 

[ 1 , p l  . . . . .  qk, ...,pr] = ~ (_l)k-l[1,qk] [pl . . . . .  ~ ,  .... pr] 
k= l  k= l  

A 
_ ( _  1)k-l[q*] [1,pl . . . . .  pk . . . . .  pr]. 

k=t 

(A. 14.3) 

I f  r is odd, then 

and 

• • A 
[ p l  . . . . .  qk, . . . ,pr] = (_l)k-l[qk] [ p l  . . . . .  pk . . . . .  pr] 

k = l  k = l  

[ l , p l  . . . . .  qk . . . . .  p�9 = (_l)k-l[1,  qk] [pt . . . . .  pk . . . . .  p,]. 
k= l  k= l  

(A.14.4) 

(A. 14.5) 

(2) I f  the power series u I . . . . .  u r defined by uk:=(l+T)- lp k for  k = l  . . . . .  r are 

convergent, then for  all r the following formulas hold: 

rip 1 . . . . .  pq - 2 ~ Lo' . . . . .  u k . . . . .  pr] = 0 (A. 14.6) 
k = l  
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and 

r 

( r+ l )  [1,p I . . . . .  p r ] _ 2 Z  [ l ,p l  . . . . .  u ~ . . . . .  pq = [pl . . . . .  p,]. 
k = l  

(A.14.7) 

(3) I f  the p o w e r  series v I . . . .  , o r de f ined  by vk: = (1 - T ) -  lpk f o r  k= 1 . . . . .  r are conver- 

gent,  then the f o l l ow ing  f o r m u l a s  hold: 

I f  r is even, then 

r 

r 2 ~ r[p I . . . . .  p ] -  Z [pJ, . .  v k . . . . .  pr]=O. 
k = l  

(A.14.8) 

I f  r is odd, then 

( r+l )  [1,p ~ . . . . .  pr]--2 [1,p ~ . . . . .  V ~ . . . . .  pq ---- --2 Z (--1)k-l[uk] [pl . . . . .  p k  . . . . .  p r ] .  

k=l k = l  

(A. 14.9) 

Proof.  (1) Reordering the arguments, the left hand side of (A. 14.5) is equal to the 

following sum: 

2 __ (__l)k-l[qk, l,pL . . . . .  pk . . . . .  pr]. 
k=l 

By (A.11.3) for an even number of variables, the kth term in the sum is equal to the 

following expression: 

(-1)k[q k, 1] [pi . . . . .  pk . . . . .  P ' ] -  Z (--1)k+j[qk'p~] [1,p' . . . . .  pJ . . . . .  pk . . . . .  pr] 
j<k 

+ Z (--1)k+j-I[qk'pi] [ l ' p l  . . . . .  pk . . . .  , p i  . . . . .  pr]. 

j>k 

Replacing for k= 1 . . . . .  r the kth term in the former sum by the latter expression and 

using the symmetry assumption (A. 14.1), the sum is easily reduced to the right hand 

side of (A. 14.5). Therefore, (A. 14.5) holds. 

By (A.11.1), the kth term in the sum on the left hand side of (A.14.3) can be 

replaced by [1, T, Tp 1 . . . . .  Tq k . . . . .  Tpr]. Arguing as above, we see that equation (A. 14.3) 

holds. 

Finally, by (A.11.1), the equations (A.14.2) and (A.14.4) follow by applying 

respectively (A.14.3) and (A.14.5) to the sequences Tp 1 . . . . .  Tp r and Tq I . . . . .  Tq r. 
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(2) Let qk:=pk--2uk=(--l+T)u k for k= l ,  ...,r. Then, by (A.11), we have that 

[pk, qq = [(1 + T)uk,( - 1 + T)uq 

= - [ u  k, u uq+[u  k,  ruq + [ru ruq 

= [u k, Tuq+[u ~, Tuk]. 

The last expression is clearly symmetric in k and j. Thus the conditions (A. 14.1) are 

satisfied and consequently, by assertion (1), the equations (A.14.2-5) hold. The left 

hand side of (A. 14.6) is equal to the left hand side of (A. 14.2) or (A. 14.4). We have 

clearly [qk]=0. Thus (A.14.6) follows from (A.14.2) or (A.14.4) and, moreover, it 

follows from (A.14.3) or (A.14.5) that the left hand side of (A.14.7) is equal to the 

expression 

r A 

[1,pl ..... pr]+ ~ (_l)k-l[1, qk] [pl . . . . .  pk . . . . .  pr]. 
k=l 

We clearly have [1,qk]=[qk]--qk(O)=pk(O). From this and (A.11.2) it follows that the 

latter expression is equal to the right hand side of (A. 14.7). Thus (A. 14.7) holds. 

(3) Let qk:=pk--2Vk=(--1-T)v k for k=l  ..... r. As in (2) it follows that the equations 

(A.14.2-5) hold. Clearly (A.14.8) follows from (A.14.2). To prove (A.14.9), note that 

[1, qk]=qk(1)--qk(O)=pk(O)--2vk(1). Thus it follows from (A.14.5) that the left hand side 

of (A. 14.9) is equal to the expression 

r A r 

[1,pl ..... pr]+ ~ (_l)k-lpk(O)[pl . . . . .  pk . . . . .  pr]_2 ~ (_ 1)k-lvk(1)[pl ..... pk . . . . .  pr]. 
k = l  k = l  

The last sum in the above expression is equal to the right hand side of (A.14.9). The 

sum of the remaining terms is, by (A.11.2), equal to [pl ..... pr]. We clearly have that 

[pg]=0 and, therefore, it follows from (A.11.3) with odd r that [pl ..... pr]=0. Thus 

(A.14.9) holds and the Lemma is proved. 

PROPOSITION (A. 15). Let  (al, ..., ar) be an ordering o f  a finite family  A o f  elements 

o f  positive order in 1~ and denote by ~i~ ..... ir the integer coefficient to the Schur funct ion 

Sil ..... it(A), in the expansion o f  ~Ii<~j(1 - -  (aid- aj))-l. That is, 

1 - ~ ~1 st(A), 
H l_(ai+aj  ) i<~j i 

where the sum is over all strictly increasing sequences I=(il . . . . .  it) o f  non-negative 
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integers. Then: 

(1) The functions ~p are given by the following explicit formula: 

~P, = Z det E(0)~, (A. 15. I) 
J 

where the sum is over all strictly increasing sequences J=(Jl . . . . .  jr) o f  non-negative 

integers. 

(2) l f  p i denotes the polynomial (I + T)i for  i=0, 1,2 .... then we have that 

Vd,, ..... ,, = [p" . . . . .  p"]. (A. 15.2) 

(3) 
through the following recurrence formula: 

( l )  ~rlik ~ i i  . . . . .  i ,  . . . . .  i r ' 

~')il ,  . . . ,  i r 
k 

( -  1)  ~rlil, i ,  l f f  i 2 . . . . .  i k . . . . .  i r ' 
~.k=2 

The functions q ) for  r - - l ,  2 . . . .  are determined by the functions ~l) i and V)i.j 

i f  r is odd. 

i f  r is even. 

(A.15.3) 

(4) The functions ~p are given by the following explicit formula: 

~ PfOpik, i,)k,t= l ...... i f  r is even, 

~1)il . . . . .  i r =  [ P f ( ~ ) i k ,  i t ) k , l = O  . . . . . .  i f  r is odd, 
(A. 15.4) 

where Pf denotes the Pfaffian and where for  odd r we interpret ~Pio, it a s  ~l)il. 

(5) The functions ~0 in one and two variables are given by 

~)i = 2i and ~Pi, j = q~(i+j,j)-q~(i+j, i), (A.15.5) 

where cp(k, ._  i k i). -- Et=o(/). Moreover, the following recurrence formulas hold for all strictly 

increasing sequences O<-il<...<ir: 

r 

rlPi  ' . . . . .  i r - - 2 2 1 P i l  ..... i ,_ 1 ..... i t = O ,  i f  i l > 0 .  (A.15.6) 
k=l  

r 

r~)o, i2 ..... i - - 2 Z  ~)0, i 2 . . . . .  i t - l  . . . . .  i r : ~ ) i 2 . . . , i r .  
k=2 

(A.15.7) 

Proof. Assertion (1) is the content of  Formula (A.13.5). 
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The matrix E(0) is equal to (pO, pl,p2 .... ) (see (A.9)). Therefore assertion (2) 

follows from (1) and the definitions; (3) and (4) follow from (2) and (A.11). 

To prove assertion (5), note that p i=( l+T)pH when i>0. Therefore (A.15.6) and 
(A.15.7) follow from assertion (2) and Lemma (A.14)(2). The formula for ~0i follows 

from the definitions: ~ i = [ p i ] = p i ( 1 ) = ( l +  1) i. From (A.15.6) we see that the function ~t)i,j 
on the left hand side of the second equation in (A.15.5) satisfies the equations: 

~rli_l,j'4-~i,j_l~-.lffi, j i f  0 <  i< j .  

Clearly ~00.i=2i-1 if0<i .  The right hand side of the second equation in (A.15.5) is 

easily seen to satisfy the same equations. Therefore the second equation in (A.15.5) 

holds, and thus the Proposition is proved. 

PROPOSITION (A. 16). Let (al ..... ar) be an ordering of  a finite family A o f  elements 

of  positive order in 1~ and denote by all ..... i, the integer coefficient to the Schur function 

Sil ..... i(A) in the expansion ofIli<j(1-(ai+aj)) -1. That is, 

iI-~<j l _ ( l + a j ) -  ~l OtIsl(A)' 

where the sum is over all strictly increasing sequences I=(il ..... ir) of  non-negative 

integers. Then: 

(1) The functions a are given by the following explicit formula: 

a l  = (-- 1)(9 2 (-- 1)1~1I det E(0)~, (A. 16.1) 
J 

where the sum is over all strictly increasing sequences J=(Jl ..... jr) o f  non-negative 

integers. 

(2) I f  p i denotes the polynomial (1-T)i for i=0, 1,2 .... then we have that 

ai I ..... i, = ( - -  1 ) (~ ) [P  i' . . . . .  pi,]. (A. 16.2) 

(3) The functions a for r = l , 2  .... are determined by the value a0=l and the 

function ai, j through the following recurrence formula for sequences 0~<il<...<ir: 

I O, if  r is odd and 0 < i  I. 

ai2 ..... ir , if r is odd and 0=i 1. 
ai, ' �9 = (A.16.3) 

..... r[~=2(--1)kail,ikC2iv...,~,...,ir, i f r i seven .  
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(4) The functions a for an even number r of  arguments are given by the following 
explicit formula: 

t 2 i  I . . . . .  i r = P f ( a i k ,  i t ) k , l =  1 . . . . .  r '  (A. 16.4) 

where Pf denotes the Pfaffian. 

(5) The function a is in two variables given by 

( i + j - l ~  ( i+j-11 _ ( / + j - l ) ,  
ai'J= \ i / - - \  j / i!j! 

( j - i ) .  (A. 16.5) 

Moreover, for even r the following recurrence formulas hold for all strictly increasing 
sequences O<.i~<... <i,: 

rait ..... ir--22 Olil . . . . .  i t _  1 . . . . .  ir = 0, / f i  I > 0. (A.16.6) 
k=l 

~2ai 3 ..... i, if i 2= 1. (A.16.7) 
ra~ ..... it-2 a~ ..... i k - 1  . . . . .  ir (0 ,  if i2> 1. 

k=2 

Proof. Assertion (1) is the content of  Formula (A. 13.6). 

If we multiply the j th  column in the matrix E(0) for j = 0 ,  1 . . . .  by ( -  1) J, then the 

resulting matrix is clearly equal to (pO,pl,p2 . . . .  ) (see (A.9)). Therefore assertion (2) 

follows from the definitions. By (A. 11), assertion (3) follows from (2), since [pi]=pi(1) is 

equal to 1 if i=0 and equal to 0 if i>0 (note that the sign disappears: If  r is odd, then 

( - I ) ( 9 = ( - 1 )  (r~t) and if r is even, then the shift in signs passing from r to r - 2  is 

- 1  =(-1)('2)). Assertion (4) follows similarly from (2). 

To prove assertion (5), note that pi=(1-T)pi-1 when i>0. Moreover,  with 

vk:=p ik-I, we have that vk(1) is equal to 1 if ik=l and equal to 0 if ik>0. Therefore 

(A. 16.6) and (A. 16.7) follow from Lemma (A. 14)(3). 

From (A.16.6) we see that the function ai.j on the left hand side of Equation 

(A.16.5) satisfies the equations: 

O L i _ l , j - ~ - a i , j _  1 ~ -  OLi, j if 0 < i < j ,  

and clearly ao.i=-[1,pi]=l if 0<i.  The right hand side of Equation (A.16.5) is easily 

seen to satisfy the same equations. Therefore Equation (A.16.5) holds, and thus the 

Proposition is proved. 
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