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1. Introduction 

1.1. We shall consider domains D ~ R  3 which are of the form GxR l where G is a 

domain in the plane R E. The main problem considered in this paper is: When is G x R  ~ 

quasiconformally equivalent to the round ball B37 It is well known that this is true if G 

is the disk B E. Indeed, the sharp lower bound qo=go(BE• 1) for the outer dilatation 

Ko(f) for quasiconformal maps f: BE• is explicitly known: 

1 f ,2 
q0=~- j0  (sint)-l/Edt= 1.31102...; 

see [GV, Theorem 8.1]. We shall show that there is a quasiconformal map f." GxR1--->B 3 
if and only if G satisfies the internal chord-arc condition, which is recalled in Section 4 

of this paper. It implies that the boundary of G is rectifiable. 

We also show that if G is bounded then Ko(f)~qo, and the equality is possible only 

if G is a round disk. For unbounded domains the corresponding lower bound is trivially 

one, which is attained when G is a half plane. 

It is of some interest to note that although the result deals solely with quasiconfor- 

mality, its proof will involve two other classes of maps: the locally bilipschitz maps and 

the quasisymmetric maps, the latter notion considered in a suitable metric of the 

product space a*G• 1 where O*G is the prime and end boundary of G. 

The main result is proved in Section 5 and the dilatation estimate in Section 6. 

Before that we give preliminary results on John domains, quasisymmetric maps, prime 

ends and chord-arc conditions. The following auxiliary results may have independent 

interest: Theorem 2.9 gives a useful condition for a weakly quasisymmetric map to be 

quasisymmetric. Theorem 2.20 gives a sufficient condition for a quasiconformal map to 
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be quasisymmetr ic  in the internal metric.  In L e m m a  6.7 we give a dilatation est imate 

for the boundary  map of  a quasiconformal  map at a point of  differentiability. 

1.2. Notation.  Our notat ion is fairly standard. Thus open balls and spheres in a 

metric space are writ ten as B(x, r) and S(x, r). In R n we may use superscripts  as Bn(x, r) 

and s"-l(x,  r). We abbreviate  

B"(O, r) = B"(r) = B(r), Bn(O, 1) = B", 

Sn-l(O, r) = Sn-I(r) = S(r), sn-l(O, 1) = S "-l .  

We let H n denote  the upper  half space x , > 0  of  R ~. 

A path in R" is a cont inuous map a: A--oR ~ of  an interval A c R  ~. The locus of  a is 

Jal=aA. I f  a is a path or  an arc,  its length is written as l(a). We let [a, b] denote  the 

closed line segment  with end points a, b E R  n. I f E  is an arc and if a, bEE,  E[a, b] will 

denote the closed subarc of  E between a and b. The diameter  of  a set A in a metric 

space (X, d) is d(A), the distance between sets A, B c X  is d(A, B). All closures and 

boundaries of  sets in R ~ are taken in the extended space I~=R~U {o0}. By a neighbor- 

hood we mean an open neighborhood.  The complement  of  a set A is C A. 

2. John domains 

2.1. Definition. John domains  were first considered by John [Jo, p. 402]; the te rm is 

due to Martio and Sarvas [MS]. There  are plenty of  different character izat ions of  John 

domains; see [V/is, 2.17-2.22] and [NV]. We shall adopt  the definition based on diame- 

ter cigars. 

Let  E c R  n be an arc with end points a, b. For  x E E we set 

For  c ~  >1 the open set 

6(x) = min(d(E[a, x]), d(E[x, b])). 

cigd(E, c) = U {B(x, 6(x)/c): x E E} 

is called a (diameter) c-cigar joining a and b. The terminology differs slightly f rom that 

in [V~is]. In particular,  no turning condition is given on the core E of  the cigar. 

We say that a domain D c R "  is a c-John domain if each pair of  points in D can be 

joined by a c-cigar in D. 
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2.2. The carrot property. It is more customary to base the definition of  a John 

domain on carrots than on cigars. We next  discuss the relation between these concepts  

and also give a relative version of  the carrot  property.  

Let  again E be an arc in R ~ with end points a, b, and let c~> 1. The set 

card(E, c) = LI {B(x, d(E[a, x])/c): x E E} (2.3) 

is a (diameter) c-carrot with vertex a joining a to b. We also allow the possibility that E 

is an arc in 1~ n with b=oo; then the union in (2.3) is taken over all x E E \ { o r  

Let  D c R  n be a domain. We say that a set A c D  has the c-carrot property in D with 

centerxoE1) if each xl EA can be joined to x0 by a c-carrot in D. Observe that there are 

two essentially different possibilities: either xoED or xo=~EOD. In the first case, 

excluding the trivial case D = R  n, D is bounded: DcB(xo, cd(xo, aD)). 

According to the customary definition, a domain D:4:R" is a c-John domain if it has 

the c-carrot property in D with some center  x0 ~ D. Such domains are always bounded.  

Our definition 2.1 gives plenty of  unbounded John domains. For  example,  a half space 

is a 1-John domain. The following lemma summarizes the relations between the cigar 

and carrot  definitions of  John domains: 

2.4. LEMMA. (a) I f  D is a bounded c-John domain, then D has the cl-carrot 

property in D with some center xoED and with cl=cl(c). 

(b) I f  a domain D c R  n has the c-carrot property in D with center Xo E D, then D is a 

c-John domain. 

(c) I f  D is an unbounded c-John domain, then D has the 3c-carrot property with 

center ~. 

Proof. We can obtain (a) and (b) by an easy modification of the proof  of the 

corresponding statements for distance cigars and carrots [V~is, 2.21]. 

To prove (c), assume that D is an unbounded c-John domain, and let a ED. Choose 

a sequence of points xjE D with Ixj-al=3j. Join a to xj by  a c-cigar cigd(Ej, c) in D. Le t  bj 

be the first point of  Ej in S(a,j) and set Fj=Ej[a, bj]. Then 

d(F~) ~ 2j ~ Ibj-xjl ~ d(Ej[bj, xj]). 

Hence 

card(Fj, c) ~ cigd(Ej, c) c D. (2.5) 
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For k= 1 .. . . .  j ,  let bjk be the first point of Fj in S(a, k). By the compactness of S(a, k) 
and by the diagonal process, we find an infinite subset N~ of the set N of positive 

integers such that for each k E N, bjk--->yk E S(a, k) as j---> o0 in NI f3 [k, oo). For every k E N 

we can then choosej(k)>~k+l such that for Uk=b~k),k and ok=b~k).k+l we have 

lu,-ykl < I/6c, Iv~-yk+d < 1/6c. (2.6) 

Set Ak=F~k)[Uk, Ok] for k>~2 and Al=F~l)[a, vii. Assuming D#R ~ it is easy to see that 

the arcs A~, [v~, u2],A2, [v 2, u~],A3 .... contain a path from a to oo. Leaving out some 

loops we obtain an arc E joining a to oo. We show that cara(E, c)=D. 
Let x E E  and write 6(x)=d(E([a, x]). We must show that B(x, ~(x)/3c)cD.Let first 

x EAk for some k. The case k= 1 is clear. Assume that k>~2 and set 6k(x)=d(F~k)[a, x]). 

Then 

~(x) <~ d(Ak[u k, x])+ 2j(k) <~ 6k(X)+26k(X) = 36k(X). 

By (2.5) this implies 

B(x, ~(x)/3c) c B(x, 6k(x)/c) ~ D. 

Next assume that xE Iv k, uk+ d. Now 6(x)<~2j(k)<~2~k(vk). Since (2.6) gives Ix-okl  
{uk--Vkl<<-l/3c, we obtain 

Ix- ok[+c~(x)/3c <~ I/3c +26k(Vk)/3C <<- ~k(Vk)/C. 

By (2.5) this yields 

B(x, 6(x)/3c) c B(vk, 6Avk)/c) c D. [] 

2.7. Remark. A more thorough analysis on various cigar and carrot conditions will 

be given in [NV], where we also consider domains containing the point at infinity. 

2.8. Terminology. We recall the definition of quasisymmetry [TV]. Let X and Y be 

metric spaces with distance written as la-bl, let ~/: [0, ~)--+[0, ~) be a homeomorphism 

and f: X---> Y an embedding. If la-xl<<.t[b-xl implies [f(a)-f(x)[<~rl(t){f(b)-f(x)[ for 

all a,b, x E X  and t>0, f is ~/-quasisymmetric or r/-QS. If H>~I and if 

la-xl<.lb-xl implies If(a)-f(x)l<-HIf(b)-f(x)l, f is weakly H-QS. An ~/-QS map is 

weakly H-QS with H=r/(1). The converse is true for certain space. We give in Theorem 

2.9 a result in this direction which is related to but more useful than [TV, 2.151. 

The main result of this section is Theorem 2.20. It states that under certain 
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conditions, a QC map is QS in the internal metric. This result has also applications in 

the theory of John disks [NV]. Therefore we give it in a form which is stronger than 

what is actually needed in this paper. 

As in [TV] we say that a metric space Xis  k-homogeneously totally bounded or k- 

HTB if k: [1/2, ~)--->[1, oo) is an increasing function and if, for each a>~l/2, every closed 

ball/~(x, r) in X can be covered with sets AI . . . . .  As such that s<~k(a) and d(Aj)<r/a for 

allj. If t>0 and ifA is a bounded k-HTB set whose points have mutual distances at least 

t, card A<.k(d(A)/t). 

2.9. THEOREM. Suppose that X and Y are k-HTB metric spaces and that X is 
pathwise connected. Then every weakly H-QS map f.'X---> Y is r/-QS with r ! depending 
only on H and k. 

Proof. Let a,b, x E X  be distinct points with [a-xl=t[b-x I. We must find an 

estimate 

[f(a)-f(x)l <~ rl(Olf(b)-f(x)[ (2.10) 

where r/(t)---~0 as t-->0. We know that (2.10) is valid for t~<l with rl(t)=H. 
Suppose first that t> l .  Set r=lb-x  I and choose an arc F from x to a. Define 

inductively successive points a0 . . . . .  as of F so that ao=x, aj+~ is the last point of y in 

B(aj, r), and as is the first of these points outside B(x, Ix-aD. Then lai-ajl>-r for 

O<.i<j<s. Since X is k-HTB, we have 

s <~ k(lx-al/r) = k(t). 

Since f is weakly H-QS, we obtain 

[f(aO-f(x)[ <~ H]f(b)-f(x)[, 

and by induction 

[f(aj+,)-f(aj)[ <~ Hlf(@-f(aj_ ,)[ ~< HJ+t[f(b)-f(x)[ 

for l<~j<<.s-1. This implies 

If(a,)-f(x)[ <~ sHSlf(b)-f(x)[. 

Since [a-x[<~[as-x[, we obtain (2.10) with r/(t)=sH ~+1, s=k(t). 
Next assume that t< l .  Set r=[x-b I and choose points bjES(x, 3-Jr), j>~O, with 

bo=b. Let s be the smallest integer with 3-Sr<~[x-a[. Then 
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s t> In(l/t) 
In 3 = s~ 

I f  O<.i<j<s, we have 21x-bjl~lbi-bjl, which implies that [a-b~l~lbi-bjl. Hence  

If(a)-f(bj)l <<- nlf(b~)-f(bj)l, [f(x)-f(bj)l <- H]f(b~)-f(bj)l, 

and thus 

(2.11) 

I f (a)- f (x)[  <<_ 2I-~f(bi)-f(bj) I. 

On the other hand, Ibj-xl~lb-x I implies that the points f(bo) . . . . .  f (bs_ I) lie in the ball 

B(x, HI f (b ) - f ( x ) l  ). Since Y is k-HTB, we get 

s ~ k(2H2lf(b)-f(x)l/If(a)-f(x)[). 

Since So(t)--~oo as t-+0, this and (2.11) yield (2.10) with some q(t) converging to 0 

together with t. [] 

2.12. The internal metrics. Let  D = R  n be a domain. For  a, b E D  we write 

6o(a, b) = infd(a),  2o(a, b) = infl(a),  

where the infima are taken over all arcs (equivalently paths) joining a and b in D. Then 

60 and 20 are metrics of  D consistent  with the usual topology. In this paper we prefer  to 

work with 60, whose boundary behavior and some other properties are simpler than 

that of ;to. For  this reason we also work with diameter cigars and carrots.  

We let d denote  the euclidean metric. Then d<-6D<.2D. 

2.13. LEMMA. Let  D c R  ~ be a domain and let E = D  be connected. Then the 

diameters 6o(E) and d(E) are equal. 

Proof. Trivially d(E)<~6o(E). Let  e>0  and choose a domain Do such that E = D o c D  

and d(Do)<.d(E)+e. Let  a, b E E  and choose an arc a joining a and b in Do. Then 

6D(a, b) <<. d(a) <<. d(Do) <~ d(E)+ e. 

Hence 6u(E)<~d(E)+e. Since e is arbitrary, the lemma follows. [] 

2.14. LEMMA. Suppose that D c R  n is a domain, that A c D  has the c-carrot 

property in D and that e is a metric o f  A with 6o~e<~d. Then (A, e) is k-HTB with 

k=kc, n. 
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Proof. Consider a closed ball/~e(x, r) in the metric e, where x 6 A  and r>0. Suppose 

that xl ..... xs6Be(x,t) with e(xi, xj)~r/2 for i4=j. It suffices to find an upper bound 

s<.so(c, n). 
Choose carrots car~(Ej, c)~D joining xj to the center xo. Since 6D(xi, xy)>~r/2, 

d(Ej)<r/4 for at most one j ,  and we may thus assume that d(Ej)>.r/4 for all j. We can 

then choose points yjEEj such that the subarcs FFEj[x j, yj] satisfy d(Fj)=r/8. Then the 

balls Bj=B(yj, r/8c) are contained in D. We show that these balls are disjoint. IfBi meets 

Bj for i4=j, the set 7=FiU [Yi, Y~] tJ Fj joins xi and xj in D, and hence 6z,(xi, xj)<<-d(7). Since 

6o(x i, xj)~r/2 and since 

d(7) <- d( Fi) + d( Fj) + lYi- Yil < r/8 + r/8 + r/4c <. r/2, 

this gives a contradiction. It follows that lyi-yj{>~r/4c for i*j. On the other hand, 

lyi-xl <~ lyi-xil+ lxi-xl <~ d(Fi)+ e(xi, X) ~ r/8+r = 9r/8. 

Since (R ~, d) is HTB, this gives S~So(C, n) as desired. [] 

2.15. Terminology. Suppose that Co and C 1 a r e  disjoint continua in li n, that t>O and 

that 

d(Co, Cl) <- t min(d(C0), d(CO). 

Then the family F=A(C0, C1;1~ n) of all paths joining Co and CI in 1~ n satisfies the 

standard modulus estimate 

M(F) ~> ~0(t, n) > 0, (2.16) 

where the function t~--~dpo(t, n) is a decreasing self homeomorphism of the positive real 

line (0, oo); see e.g. [GM, 2.6]. 

We say that a pair of  disjoint continua Co, C1 in a domain D=I~ n is t-standard in 

D, t>0, if 

()o(Co, CI) <~ t min(d(C0), d(Cl)). 

Let 0: (0, oo)---~(0, oo) be a decreasing homeomorphism. A domain D=I~ ~ is called 4'- 

broad if for each t>0 and each t-standard pair (Co, C1) in D, the path family 

F= A(C0, C1; D) satisfies the inequality 

M(r) >~ O(t). (2.17) 

14-898283 Acta Mathematica 162. Imprim6 le 25 mai 1989 
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In this paper we need only the case where D is a half space, for which (2.17) is well 

known to be true for ~(t)=~0(t, n)12. More generally, if D is a c-QED domain in the 

sense of [GM], D is ~-broad with ~=r n)/c. The domains BP• ~-p are not broad for 

l<.p<.n-1. The reader interested only in this paper can skip Lemma 2.18 and read the 

proof of Theorem 2.20 assuming that the domain D is a half space, in which case 6o=d. 

2.18. LEMMA. Let  D c R  ~ be a c/p-broad domain and let e be a metric o f  D with 

d<.e<.6o. Then (D, e) is k-HTB with k=kr 

Proof. We consider again a closed ball Be(x, r) and points xl . . . . .  xs E/~e(x, r) with 

Ixi-xjl> r/2 for i*j .  We must show that s<-So(ep, n). 

Choose a positive number q=q(cp, n)<l/16 such that 

2oJ._, (In 1 ~---~-4q] '-" ~< qffl), (2.19) 
\ Bq / 

where w._l is the area of S "-1. Join x~ to x by an arc Ei=D. Since Ei U Ej joins xi and xj in 

D, we have 

r/2 <~ e(x i, xj) <~ 6o(xi, xj) <~ d(Ei) + d(E j) 

for i*j. Hence d(E~)<r/4 for at most one i, and we may thus assume that d(Ei)>~r/4 for 

all i. Choose subarcs a i and/~i of E~ such that x~ is an end point of a~ and 

d(ai) = d(fli) = 6o(ai, ~i ) = qr. 

Since q<l/16, this is possible. Then (a~,/~i) is a 1-standard pair in D, and hence 

M(Fi)~>q~(1) for Fi=A(ai, fli; D). Setting Bi=Be(X i, r/4), ai=m(Bi) and F*= {y E F/: lyl=Bi}, 
we have 

M(F*) <~ a,(qr) -n. 

We next estimate M(Fi\Fi*). If y E F i \ F * ,  there is yE [YI with e(y, xi)>>-r/4. Since 

aiU ly[ joins xi and Yi in D, we have 

6D(y, Xi) ~ d( ai) + d(l~l) = qr + d(ly[). 

Since e<~6o, this yields d(lyl)>>-r/4-qr. Hence 7 meets ~B(xi, r/8-qr/2). On the other 

hand, d(ai)=qr implies that aicB(xi, qr). Hence y also meets B(xi, qr), and we obtain 

M(Fi \F*)  <~ w._, (In r/8-__qr/2 ~'-"<~ ~b(1)/2 
qr / 
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by (2.19). Consequently, 

( 1 ) ~< M(ri) ~< M(r*) + M ( r , \ r * )  <~ ai(qr)-n + ~b(1 )/2, 

and hence ai>>-q~r~qb(1)/2. 

Since e(xi, xj)~r/2, the balls Bi are disjoint. They are 

Be(x, 5r/4)cB(x, 2r), and hence 

ff2~2~r ~ >I ~ ai >1 sqnr~(1)/2, 
i=1 

209 

where fl~ is the volume of B ~. This gives the desired bound 

s ~< 2 n+l ~n/qn~(1) = So( ~, n). 

contained in the ball 

[] 

2.20. THEOREM. Suppose that f'.D---~D' is a K-QC map between domains 

D , D ' c R  ~, where D is (a-broad. Suppose also that A c D  is a pathwise connected set 

and that fA  has the crcarrot property in D' with center yoE/). /fyo=k ~ and hence 

yoED', we assume that d(A)<.c2d(f-l(yo), aD). l f y o = ~ ,  we assume that f extends to a 

homeomorphism D O {o0}--~D' O {oo}. 

Then f lA  is ~?-QS in the metr&s 6D and ~1~, with r I depending only on the data 

v=(cl, c2, K, ~p, n). 

Proof. For brevity we write 6=60 and 6'=6o,. From Lemmas 2.14 and 2.18 it 

follows that there is k=kv such that (fA, 6') and (A, 6) are k-HTB. By Theorem 2.9 it 

suffices to show that flA is weakly H-QS with H=H(v). Let a, b, x be distinct points in 

A with 6(a, x)<~6(b, x)=r. Set 

a' =f(a), b' =f(b) ,  x' =f(x), a = 6'(a',x'), fl= 6'(b',x'). 

We must find H such that a<~Hfl. We may assume that D*Rn4:D '. We set 

r = d(x, aD), r' = d(x', aD'), 

and let Mj~ 1, q./~< 1 denote positive constants depending only on v. 

We shall consider 5 cases. The first two are auxiliary cases. The cases 3, 4, 5 cover 

the whole situation. If y0= ~,  Case 3 is the general case. 

Case I. r~>2r. Now a and b lie in the ball B=B(x, 3r/2), and 6(a,x)=la-xl, 
6(b,x)=lb-xl=r. By [V~i3, 2.4] f iB  is r/-QS in the euclidean metric with r/=r/r,n. By 

[TV, 2.11] fB is of Ml-bounded turning, M~=2r/(1). This implies 
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a Mjla ' -x ' l  . .  [}a-xl~ 
--<~ ~< r/(1). 
fl Ib ' -x '  I m'~l~[-ff-~-x~]<~M' 

Case 2. B (x ' , a ) r  Now a = l a ' - x '  I. We may assume that /3<a and thus 

f l=lb'-x '[ .  Let R' be the ring B(x',  a ) \ B ( x ' ,  fl). The components of the complement of 

R = f - I R  ' are Co=f-lB(x' , f l)  and CI = ~f- lB(x ' ,  a). The continuum C O is bounded and 

contains x and b while CI is unbounded and contains a and ~ D. If Ix, b] meets ~ D, 

then d(Co, CO<~lb-xl<-d(Co). But this is also true if [x, bleD,  because then 

d(Co, CO <~ la-xl  <~ 6(a, x) <~ 6(b, x) = Ib-x[ <<- d( Co). 

Let Fs be the path family associated with the ring R. Then the TeichmOller estimate 

[V~i2, 11.9] gives M(FR)>~ql. Hence 

I a~i-. 
q, ~< KM(rR,)= Kton_t~ln~- } , 

which gives the desired bound (z<~H1/3 with Hl=Ht(v).  

Case 3. ~(X, Xo)>~2r where xo=f-I(yo). Ifyo = ~ ,  then Xo = ~ ,  and this is the general 

case. Join x' and b' by an arc CocD' with d(Co)<2fl. Join a' to Y0 by a carrot 

card(E, c)cD' .  For y EEX,,.{a ', Y0} set a(y)=d(E[a', y]). Then B(y,  o(y) /cOcD'.  We 

consider two subcases. 

Subcase 3a. There is y E E  with ly-x' l<o(y)/2cl.  Now r'>o(y)/2cl. Let 0=~x: 

[0, 1)~[0, oo) be the well-known distortion function for QC maps [V~i, 18.1], and set 

to=O-l(1~2). If Ib'-x'l<~tor ', then Ib-xl<.r/2, which implies r<~r/2, and we have Case 1. 

Assume that Ib '-x ' l>tor ' .  Now [x',y] OE[y, a'] joins x' and a' in D', and hence 

Since 

we obtain a/t~<.4ct/to. 

ct <~ Ix' -Yl  + o(y) <~ o(y)/2cl + o(y) < 2o~y). 

fl >~ Ib ' - x' I >1 to Z' > to o( y)/2c l , 

Subcase 3b. ty-x'l>~o(y)/2c~ for all y E E .  Now ConE=~.  Consider the path 

families F'=A(C0, E;D')  and F=f-~F '. By Lemma 2.13 we obtain 

d(f-ICo) = 6 ( f - I C  o) >~6(x, b) = r, 

d ( f - l  E) = t~(f-l E) >I 6(xo, a) >I 6(xo, x ) -6 (a ,  x) >I 2r--r = r, 

6 ( f - l C o , f - l  E) <<. 6(a, x) <~ r. 
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Hence the pair ( f - lCo, f - lE)  is 1-standard in D. 

M(r)~>~(1). 
We next show that the number 

Since D is 

= inf~ d~--l~. ~,e r , } 
~o [ d(Co)" 

b-broad, we have 

is bounded by a constant M2. We may assume that 60>2. Then each y E F' meets the 

spheres S(x', d(Co)) and S(x', 6o d(Co)/2), which implies 

/ 6 \ l - r /  

M(F') ~< w n _ l / l n 2 )  . 

Since M(F')>~M(F)/K>~$(1)/K, this yields 6o~M2. 

Since d(Co)<2/5, there is yEF ' ,  with d(l~,l)-<2M23. Let yEI~,InE. Then 

and hence 

o(y)/2cl <~ ly-x'l ~ d(lYl)+d(Co) < 2M2fl+ 2fl, 

a ~ d(Co)+d(190+o(y) < 23+2M2fl+4cl(M2+ 1),3 = M3,3. 

This completes the proof of Case 3. 

In Cases 4 and 5 we assume that yo*OO. Then yoED',xoED and d(A)<~c2d(xo, aD). 
Using an auxiliary similarity we may assume that d(yo, OD')= 1. For every y EfA there 

is a carrot card(E, c)joining y to Yo. Then B(y o, d(E)/Cl)~D', which implies d(E)/c3<~l 
and thus 6'(y, yo)~<Cl. Consequently, we have always 

a ~< 2ct. (2.21) 

Case 4. ~x'-yo[<l/2. As usual, we let L(x,f, r) and l(x,f, r) denote the supremum 

and infimum of If(z)-f(x)l over zES(x,r)ND. Writing ro=l(x',f-l, 1/2) we have 

B(x, ro)cD. If r<~ro, then ~5(a,x)<.r implies a EB(x, ro), and hence a'EB(x',  1/2)cD, 

which yields a=la'-x']<~l/2, and we are thus in Case 2. Choosing ao, b0E S(x, ro) with 

If(ao)-X'l=L(x,f, r o) and If(bo)-x'l=l(x,f,  ro) we have Case 2 also for the triple 

(x, ao, bo). Hence 

1/2 = L(x,f, to) ~ H, l(x,f, to) 

with Hi=Hi(v). If r>ro, then 
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fl >- l(x,f, r) > l(x,f, ro) >~ 1/2H~, 

and hence (2.21) gives a[fl<~4CiHl . 

Case 5.6(x ,  x0)~<2r and [x'-yol~l/2.  We may assume that f l<l/8, since otherwise 

(2.21) gives a/fl<~16c~. Join x' and b' by an arc Co=D' with d(Co)<2fl, and set 

C1=/~(Y0,1/4). We consider the path families F'=A(Co, CI;D') and F=f-~F '. Since 

Co=B(x', 2/3) and d(x', C1)~>1/4, we have 

[ 1 \1-~ 
M(F') ~ to,_1 ~ln--~) �9 

Since in view of Lemma 2.13, 

(2.22) 

d(f- lCo) = 6(f-ICo) >- 6(b, x) = r, 

d ( f - l C O  >- l(Yo,f  -1, 1/4) I> 0-1(1/4) d(x o, 019) >- 0-1(1/4) 6(A)/c 2 

t> 0-1(1/4) 6(b, x)/c 2 = r/M 4, 

tS( f - lCo, f - lCO ~ tS(x, x o) <. 2r, 

the pair ( f - lCo , f - lC l )  is 2M4-standard in D. Since D is C-broad, we obtain 

M(F)~>r Since M(F)<~KM(F'), this and (2.22) yield fl>>-q3. By (2.21) we have 

a/fl <.2c l/ q3. [] 

2.23. Finite connectedness. We recall that a domain Dcl~ ~ is finitely connected at 

a boundary point b if b has arbitrarily small neighborhoods U such that U n D has only a 

finite number of components. Equivalently [V~i2, 17.7], each neighborhood U contains 

a neighborhood V such that V meets only a finite number of components of U n D. If 

this number of  components is one, D is locally connected at b. 

A somewhat stronger form of the following result will be proved in [NV, 2.18]: 

2.24. LEMMA. A John domain D c R  ~ is finitely connected on the boundary. An 

unbounded John domain is locally connected at oo. 

3. Prime ends 

3.1. Suppose that f: Bn--->D is a QC map. Then f c a n  be extended to a homeomorphism 

f*:/~n-->D* where D* is the prime end compactification of D, obtained by adding the set 
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a*D of prime ends to D. This idea of Carathrodory has been extended from the plane to 

higher dimensions by Zorich [Zo] and by N~3d  [N~i]. We present a simple self- 

contained version, which is valid in the special case where D is finitely connected on 

the boundary; see Section 2,23. 

Suppose that the domain D=R" is finitely connected on the boundary. An endcut 

of D is a path a: [a, b)--~D such that a(t)--->zEaD as t-->b. We write z=h(a). A 
subendcut of a is a restriction to a subinterval [a~, b]. If U is a neighborhood of h(a), 
there is a unique component A(U, a) of U n D containing a subendcut of a. Two endcuts 

a and fl are equivalent, written a~fl, if h(a)=h(fl) and if A(U, a)=A(U, 8) for every 

neighborhood U of h(a). The equivalence class [a] of a is a prime end of D, and their 

collection a*D is the prime end boundary of D. We write D*=D U a*D. There is a 

natural impression map iD:D*--->19, defined by io([a])=h(a) for [a]Ea*D and by 

iolD=id. If D is locally connected at a point b E aD, i~ 1 (b) consists of a single point, 

which is often identified with b. In particular, if aD is homeomorphic to S "-~, we can 

identify a*D=aD. 
Suppose that f: B"--->D is QC. By [V/ii, 17.10, 17.14] f has a continuous extension 

f:/~"-->/). Every point-inverse f-l(y) is totally disconnected. Indeed, if Ecf-l(y) is a 

nondegenerate continuum, the family of all endcuts a of B" with h(a) E E has infinite 

modulus while its image is of modulus zero. 

If a is an endcut of B", fa is an endcut of D. We show that h(a)=h(fl) if and only if 

fa-ffl. If h(a)=h(fl)=b and if U is a neighborhood of h(fa)=h(ffl)=f(b), then there is 

r>0 such that f[B"NBn(b, r)] is contained in a component of UnD and contains 

subendcuts of both fa and f t .  Hence fa~ffl. Conversely, let fa~ffl and suppose that 

h(a)~:h(fl). Then h(fa)=h(ffl)=y. Since f-l(y) is totally disconnected, there is a 

compact set FcB" \ f - l ( y )  separating h(a) and h(fl) in B". We may assume that 

[a I n F =  ~ = Ifll N F. Choose a connected neighborhood U of y such that U OfF= ~.  Since 

f[FnD] separates fa and ffl in D, A(U, fa)~:A(U, ffl), a contradiction. 

If fl is an endcut of D, then aB"n clf-l[fll is a connected set in f-l(h(fl)), hence a 

point. Thus f - i t  is an endcut of B". It follows that f has a unique bijective extension 

f*:/~"--*D* satisfyingf*([a])=[fa] and hence iof*=f. 
If a: [a, b)--->D is an endcut of D, we say that a joins a(a) and [a]=uEa*D. 

Similarly, an open path a in D joins elements u, v E a*D if a has subpaths representing u 

and v. We can then extend the definition of the internal distance 6o(a, b) (see Section 

2.12) to all a, b in Q=D*\i~l(~). It is easy to see that 60 is a metric of Q. We show that 

60 is consistent with the topology of Q, that is, f*  defines a homeomorphismf*-lQ--~Q 
in 60. 
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Let uEQna*D, set b=f*-l(u), and let e>0. Since f is continuous, there is 

U=B" n B"(b, r) such thatfUcB~(io(u), e/2). Then dto(f(x), u)<e for all x E U. Hence f*  is 

continuous at b in 60. Next let U be as above, and choose a compact set 

FcB"\f-I(io(u)) separating b and S(b,r)nB ~ i n / ~ .  Then d(fF, io(u))=q>O. Since 

6o(Y, u)<q implies f . - l (y )E  U, f  *-l is continuous at u in 8D. 

3.2. Cylindrical domains. Let G be a domain in R" and let D = G x R ~ c R  ~+~. We 

assume that G is finitely connected on the boundary. Clearly D has also this property. 

We shall derive a relation between the prime ends of G and D. 

Suppose first that G is bounded. If a is an endcut of G and if t E R ~, then 

at(s)=(a(s), t) defines an endcut a, in D with h(at)=(h(a),t). We obtain a natural 

injective map j: G*xRI---~D * with j lGxRl= id  and j([a], t)=[at]. Moreover, the image 

imj is the set Qo=D*\i~)l(oo). 

The metric 6a of G* and the euclidean metric of R l define the product metric 

O((x, t), (x', t')) -- 6o(x, x')+lt-t'l (3.3) 

in G*xR ~. We show that j satisfies the bilipschitz condition 

p(z, z')/2 <. 6o(j(z),J(z')) <~ 20(z, z') (3.4) 

for all z=(x,t),z'=(x',t ') in G*xR I. 

Let PI: D---~G and/)2: D--~R ! be the natural projections. If a joinsj(z) andj(z') in D, 

then Pla joins x and x' in G, and hence 6a(x,x')<.d(Pdal)<~d(lal), which implies 

6G(X,X')<-6o(j(z),j(z')). Furthermore, It-t'l<.d(P21al)<.dlal, and hence It-t'l<. 
6o(j(z),j(z')). The first inequality of (3.4) follows. 

Next assume that fl joins x and x' in G. Thenj(z) andj(z') can be joined by a path a 

consisting of subpaths of fl, and fit' and of a vertical line segment of length It-t'l. We 
have 

t~o(j(z),j(z')) <~ d(lal) ~< 2d(~31)+lt-t'[, 

which yields the second inequality of (3.4). The set D*\Qo=ii)~(oo) clearly consists of 

two elements, represented by endcuts at,a2:[O, oo)---~D, defined by al(t)=(xo, t), 
a2(t)=(Xo,-t) where xoEG is arbitrary. We set [al]=+oo, [a2]=-oo. Then D* can be 
identified with (G*xR I) 0 {-oo, +oo}. 

Next let G be unbounded. Write Qa=G*\i~l(oo). As above, we obtain a natural 

bilipschitz map j: QaxRI-->D *. Now D is locally connected at oo, and D * \ i m j  consists 

of the single point oo =i~l(oo). We can thus identify D*=(QGxR t) O {oo}. 
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4. Chord-arc conditions 

4.1. The CA condition. We first recall the ordinary chord-arc condition. Let (X, d) be a 

metric space, let X=XU {~} be its one-point extension, and let AcJt" be a Jordan curve 

(topological circle). Suppose that A is locally rectifiable, that is, every compact subarc 

of A \ { ~ } i s  rectifiable. If a, b E A \ { ~ } ,  we let o(a, b) denote the length of the shorter 

component of A \ { a ,  b}. If c>.l and if 

o(a, b) <<. cd(a, b) 

for all finite a, b E A, we say that A is a c-chord-arc curve, or briefly, A is c-CA. 

Equivalently, A is CA if and only if A is a bilipschitz image of S ~ or 1~ ~. 

4,2. The ICA condition. We next recall the internal chord-arc condition from 

[V~i7]. Let D be a simply connected proper subdomain of R 2 and let D be finitely 

connected on the boundary. Then the prime end boundary a*D of D is Jordan curve. If 

a is as subarc of a'D,  the impression iDla is a path in R2 and has a well-defined length 

l(a), possibly infinite, called the length of a. Suppose that io(u)=~ for at most one 

uEa*D, then also written as ~,  and that l (a)<~ for every compact subarc of 

a ' D \  { ~ }. Then a*D is said to be locally rectifiable. If u, o E a ' D \  { ~ }, we let cro(u, o) 

denote the length of the shorter component of a * D \ { u ,  v}. Let 6o(u, v) be the internal 

distance as in Section 3.1. If c~> 1 and if 

OD(U, V) <. Cro(U, V) (4.3) 

for all u, v E a * D \ { ~ } ,  we say that D satisfies the internal c-chord-arc condition, or 

briefly, D is c-ICA. 

In [V~i7] we used a slightly different definition where 6o was replaced by the metric 

;tD (see Section 2.8). Since 6D<~2D, (4.3) implies the c-ICA condition of [V~iT]. As noted 

in [V~iT, 2.6], the converse is also true, up to the constants. However, the converse is 

not needed in this paper. The ICA condition has also been considered in [La] and in 

[Po]. 

We next show that the ICA condition is a special case of the general CA condition: 

4.4. LEM~A. Let D be a simply connected proper subdomain o f  R 2 and let D be 

finitely connected on the boundary. Then D is c-ICA i f  and only i f  a*D is c-CA in the 
metric 6D. 

Proof. Suppose that io(u)=~ for at most one u EO*D, also written as ~.  It 

suffices to show that if a c a * D \ { ~ }  is a compact arc, then its length 16(a) in the 
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metric 6n is equal to l(a). Let u, vEa*D\{oo}.  If a path fl joins u and v in D, then 

[in(u)-io(v)l<~d(lfl[). Hence lio(u)-io(v)l<<. D(u, o). It follows that l(a)<~16(a). 

Conversely, f fyca*D\{oo}  is an arc with end points u, v and if e>0, then there is 

a path fl joining u and v in iDy+Bn(e). Since 

d(~l) ~< d(i o y)+2e ~< l(y)+2e, 

we have On(u, v)~l(y). If the points uo .. . . .  Uk divide a to subarcs as . . . . .  ak, we obtain 

k k 

X OD(uJ ' ui-') <~ X l(a) = l(a), 
/=t  j = l  

and thus l~(a)<~l(a). [] 

5. The main theorem 

5.1. Terminology. A homeomorphism~ D---~D' between domains in R n is of L-bounded 

length distortion, abbreviated L-BLD, if 

l(a)/L <. l(fa) <~ Ll(a) 

for every path a in D, or equivalently, each point in D has a neighborhood in whichf i s  

L-bilipschitz. More general discrete open BLD maps are considered in [MV]. An L- 

BLD homeomorphism is K-QC with K=Ln-k  Compared with QC maps, the BLD maps 

have a pleasant behavior in cartesian products; the product of two L-BLD maps is 

again L-BLD. 

Suppose that for each c~>l there are given conditions A(c) and B(c). We say that A 

and B are equivalent up to constants if for each c~ > 1 there is Cl~> 1 such that A(c):~B(cO 

and B(c)=~A(cO. The parameter can also be written as K or L. 

We next give the main result of this paper: 

5.2. THEOREM. Let G be a simply connected proper subdomain o f  R 2. Then the 

following conditions are equivalent up to constants: 

(1) There is a K-QC map B3-->GxRk 

(2) G is finitely connected on the boundary and c-ICA. 

(3) There is an L-BLD homeomorphism Go--~G where Go is either a round disk or a 

half plane. 

(4) There is an L-BLD homeomorphism Go• I, where Go is as in (3). 
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Proof. The implication (2)=*-(3) was proved in [V~i7, 3.4, 3.7, 3.8, 3.11]. In fact, it 

was proved in the seemingly stronger form in which the ICA condition was given in the 

metric ~.D instead of 6D. The unbounded case had been proved earlier by Laffullin [La], 

which was unfortunately overlooked in [V~i7]. 

I f  f: Go-->G is the L-BLD homeomorphism given by (3), thenfxid:  G0xR1--~GxR 1 

is L-BLD, and hence (4) is true. Since G0xR ~ is QC homeomorphic to B 3, (4) clearly 

implies (1). It remains to show that (1) implies (2). 

Replacing B 3 by its Mfbius image H 3 we assume that there is a K-QC map 

f ' .H3--~GxR1=D. We first show that G is a crJohn domain. Here and later, we let 

c~, c2 .... and ql, q2 . . . .  denote constants depending only on K with cj~>l and 0 < ~ < I .  

Let x0ER 2, let r>0, and suppose that BE(x0, r ) \ G  has two components El,E2 meeting 

B2(xo, r/c). By [NV,4.5] it suffices to find an upper bound c<.c2. Now Elx{0} and 

E2x {0} are contained in different components of B3((x0, 0), r ) \ D .  Thus [GV, Theorem 

6.1] gives an estimate c<~e Mr where M is a universal constant. Hence G is a crJohn 

domain. From 2.24 it follows that G is finitely connected on the boundary. We divide 

the rest of the proof into two cases: 

Case 1. G is bounded. We e x t e n d f t o  a homeomorphismf*:/~3---,D*; see Section 

3.1. We identify D*=(G*xR 1) U {-oo, +oo} as in Section 3.2. Performing an auxiliary 

M6bius transformation of R 3 we may assume that f*(0)=-oo  and f*(oo)=+oo. 

We may assume that G has the crcarrot  property in G with center x0 E G; see 

Lemma 2.4(a). We may normalize d(xo, aG)= 1. Then 

6o(x , Xo) < c I (5.3) 

for all x E G. For r>0 set S+(r)=H 3 fl S2(r). The projection offS+(r) into the x3-axis is an 

interval or a point. Let ro<~r~ be its end points. An easy modification of the proof of 

[GV, Lemma 8.1] gives the estimate 

r l - r  o < c 3 = (Km(G)/~O(1)) I/2 (5.4) 

where ~p(1) is the same universal constant as in [GV]. 

Choose positive numbers r<r' such that r~=0, r6 = 1. We may assume that r= 1. We 

want to apply Theorem 2.20 to the map f: H3--~D with A = H  3 n (B3(r')\B3(r)). Choose 

z0 ~ H 3 tq S 2 such that y0=f(z0) is of the form (x0, to); then ro<.to<~O. We show that f A  has 

the c4-carrot property in D with center Y0 and with c4=1+c1+2c3. Assume that 

yl=(Xl, t l ) E f A c G x  [r0, r[]. Join xl to x0 by a 2-dimensional carrot card(E0, c)cG.  Set 

E l = E o x { t l ) ,  E2={Xo)X[to, tl], E=EIUE2.  
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Then E is an arc joining Yl to Y0. We show that cara(E, c4)=D. 
Let y E E and set 6(y)=d(E[yl, y]). We must verify that B3(y, 6(y)/c4)~D. If y E El, 

we can write y=(x, tl) with Be(x, 6(y)/cO=G. Hence 

B3(y, ~(y)/c4)cB3(y, ~(y)/cl)cG• I = D. 

IfyEE2, we write y=(xo, t). Then (5.4) implies 

~(y) ~< 8(E) ~< 6(E~)+r't-r o <<. 6(E~)+ I +2c3. 

Since d(x0, 0G)= I, we have 6(E0~<cl, and hence ~(y)~<C4. Thus 

B2(y, ~(y)/c4)cB3(y, 1)'-B2(x0, 1)• 

It follows that fA has the c4-carrot property in D. 

We still need an upper bound for d(A)/d(zo, 01-13). Write s=d(zo, OH 3) and observe 

that d(A)=2r'. We thus have to find an estimate 

r' ~< c 5 s. (5.5) 

Let F be the family of paths joining S+(1) and S+(r') in A. Then 

M(F) = 2:t(In r') -2. 

Since B(xo, l)~-GcB(xo, cO, [Vfil, 7.2] and (5.4) easily give the estimates 

n ~< M f f r )  ~< :tc~. 
(1+2c3) 2 

Since f is K-QC, we obtain 

Hence (5.5) reduces to 

l+ql  ~<r' ~<c 6. 

s ~> q2. (5.6) 

We may assume that s<q~. Let Co be the vertical segment of length s joining Zo to OH 3, 

let Ct=S+(r'), and let F~=A(Co, C~;H3). Then 

M(FI) ~ 4x I n s  (5.7) 
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Set r"= l-q1. Arguing as above with path families we get the estimate r'~>-c7. ThenfCo 

lies between the planes x3=-c7 and x3=0. Moreover, fCt lies between the planes x3 = 1 

and x3=r]<l+c3. Let Z be the cylinder B2(xo, 1)• l+c3)cD.  Then there are 

continua C~cZnfC o and CicZNfC1 with diameters at least 1/2. As a quasiball Z is 

c8-QED, and hence [GM, 2.6] gives an estimate 

M ( f F  0 I> M(A(C~, C'~; Z)) I> M(A(C~, CI; R~))/c8 t> q3. 

Since M(fFO<.KM(F1), this and (5.7) yield (5.6). 

We have now verified all hypotheses of Theorem 2.20. Thus flA is rh-QS with 

respect to the euclidean metric of A and the metric 6D of fA. Here and later, we let 

rh, r/2 .... denote homeomorphisms rh: [0, ~)---~[0, oo) depending only on K. Let F be the 

closure offA in D*. Thenf*-~fF is r/E-QS in the metric 60. By Section 3.2, the metric 6o 

is 2-bilipschitz equivalent to the product metric 0 of G*xR 1. Hence the restriction 

f~: a*Gx[0, 1 ] ~ R  2 o f f  *-~ is r/3-QS in 0. From [Vfis, 5.6] and from (5.3) it follows that 

the Jordan curve a*G is c9-CA in ~c. By Lemma 4.4 this means that G is c9-ICA. 
Case 2. G is unbounded. We again e x t e n d f t o  a homeomorphismf*: H3---~D*. We 

use the identification D*=(QoxR1)U {o0), QG=G*\i~l(oo), explained in Section 3.2. 

Since G is a John domain, we can write i~1(~)=oo and thus Q o = G * \ { ~ ) ;  see Lemma 

2.24. We may assume that f*(oo)=~.  We want to apply Theorem 2.20 to the map 

f:H3--.D with A=H ~. Suppose that y=(x,t)ED. Since G is ct-John, there is a 2- 

dimensional carrot cara(E, 2Cl) joining x to ~ in G; see Lemma 2.4. Then 

cara(E• {t}, 2c~) joins y to oo in D. Hence D has the 2crcarrot property in D. We can 

thus apply Theorem 2.20 and conclude t h a t f i s  r/4-QS in ~D. As in Case 1, this implies 

that fE=f*-~[(a*G\(~))xR ~ is r/5-QS in the product metric 0. From [V~, 5.4] it 

follows that a*G is Clo-CA in ~D, and hence G is Clo-ICA. [] 

6. Dilatation estimates 

6.1. Terminology. We recall that the outer dilatation Ko(f) of a homeomorphism 

f'.D-->D' between domains in R n is the infimum of all K~>I such that 

M(F) ~< KM(fF) 

for every path family F in D. The inner dilatation of f is K~(f)=Ko(f-1). If D is 

homeomorphic to B n, the outer coefficient of quasiconformality Ko(D) is the infimum 

(in fact, minimum) of the numbers Ko(f) over all homeomorphisms f: D~B ~. Thus 

Ko(D)<oo ff and only ff D is QC equivalent to a ball. 
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The exact value of Ko(D) is known for only very few domains D. One of these is 

the round cylinder D--B2xR ~ for which 

K~ = q~ Jo (sint)-ledt = ( l - t4) - led t  = 1.31102 .... (6.2) 

See [GV, Theorem 8. I] and observe that [GVI writes Ko(f )  z for our Ko(f) .  

In this section we estimate Ko(D) for domains of the form D = G x R  I, G c R  2. 

Trivially Ko(D)>~I for all D. If Ko(D)=I, D must be a M6bius image of B 3. This 

happens precisely when G is a half plane. 

We next consider the case where G is bounded. If Ko(D)<~, Theorem 5.2 implies 

that l(O*G)<~. The number 

b ( G ) -  l(O*G)2 
4~rm(G) 

is called the isoperimetric constant of G. If l(O*G)= oo or if l(O*G) is not defined, we set 

b(G)= oo. By the isoperimetric inequality, we have always b(G)~ I, and b(G)= 1 if and 

only if G is a round disk. 

We shall prove the following generalization of the round case mentioned above: 

6.3. THEOREM. For every bounded simply connected domain G c R  2 we have 

Ko(GXR I ) >I qob(G) TM, 

where qo is the constant in (6.2). Hence Ko(GXR1)>~qo for  all bounded G, and 

Ko(GXRl)=qo if  and only i f  G is a round disk. 

Proof. We try to rewrite the proof of the round case [GV, Theorem 8. I] in the more 

general setting. Set D = G x R  1, and let f: H3--->D be a QC map with Ko(f -1)=Kl( f )=K.  

By Theorem 5.2, G is finitely connected on the boundary, l(O*G)<oo, and G is c-ICA 

for some c=c(K). We must show that K~qob(G) TM. Let again 

f*:/ts---~ D* = (G*xR l) U {-oo, +oo) 

be the homeomorphic extension o f f ;  see Section 3. We may assume that f*(0)=-oo,  

f * ( ~ ) = + ~ .  Let a<b be real numbers, let F '  be the family of all vertical segments 

{y}x(a, b), y E O'G, and let F=f*-~F '. We shall prove in Section 6.5 the inequality 

I(O*G) 
M2(F) I> K(b-a-----)" (6.4) 
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We remark that if G has a smooth boundary, then (6.4) follows easily from [GV, 

Theorem 4.3] which implies that the induced boundary map of H2\{0} onto a G x R  ~ is 

K-QC. 

We show how the theorem follows from (6.4). For every positive number r let 

again r0 and rl denote the infimum and supremum of P3(f(x)) over x E S+(r)=SE(r)fl H a. 

Let 0<r<s<oo, let Z be the positive x3-axis, and set 

R=B3(s ) \B3(r ) ,  R0=Rf lR  2, A = R n H  3, E = R n Z .  

Consider the path families 

F 1 = A(E, R0;A), l" 2 = A(SE(r), S2(s);Ro). 

For a=r0, b=s1, each member of the family F of (6.4) has a subpath in F2; hence 

ME(F2) ~> /(a 'G) . 
K(s I - r  o) 

Applying [V~il, Theorem 3.4] as in [GV, Lemma 3.7] we obtain the estimate 

:r~/2(So-rl) 
M2(fFI)>I 2m(G)V2 �9 

Since M(fFO<.KM(FI),  these inequalities yield 

K2M(FI) M2(1"2) >~ ~2b(G) I/2 So-rl . 
S l - r  o 

On the other hand, we have 

M(F 0 = ~  -,  M2(F ~)=2:~ In ; 
2qo r 

see [GV, Lemma 3.8]. Hence 

K 2 >t q2 b(G)l/2 So-r1. 
S 1 - - r  0 

As s--~oo, this and (5.4) give K~qob(G)  TM as desired. 

6.5. Proof  of(6.4). We shall use an elaboration of the argument in [GV, p. 30]. Fix 

Vo E O*G and write 

D 2 = (O*G\{vo})X(a,  b), D I = f * - l D  v 
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For 2=l(a*G) let ~: a*G\{vo}--->(O, 2) be a length-preserving map, that is, l(~-1(0, t))=t 

for 0<t<2.  Let D3 be the rectangle (0,2)x(a, b ) c R  2 and let g: D2--~D3 be the homeo- 

morphism ~ x id. 

Since G is c-ICA, ~ is locally c-bilipschitz in 5o. Hence g is locally 2c-bilipschitz if 

D2 is considered with the product metric Q (see (3.2)) and D3 with the euclidean metric. 

Let fl: D I--->D2 be the homeomorphism defined by f* .  The proof of Theorem 5.2 shows 

that fl is r/-QS in ~ with r/=r/x. Hence h=gfl:Dl~D3 is locally rh-QS with rh=4c2r/, 

and thus h is KrQC with Kl=4c2r/(1). We shall show that h is, in fact, K-QC. This will 

imply (6.4), since the family F3 of all vertical segments {t} x(a, b), 0<t<;t, has modulus 

;t/(b-a) and since F consists of h-IF3 and the single arc fll[{o0} x(a, b)]. 

As before, we let io: G*---)G and io:D*---)19 denote the impression maps. The path 

~P=ic q~-l: (0, X)--oR 2 is parametrized by the arc length, and thus Iw'(t)l--1 a.e. It follows 

that the derivative of the map io g-~=~p x id: D3--*R 3 is a linear isometry A(z): R2--oR 3 for 

almost every z E D3. 
Fix x0 E D~ such that h is differentiable at x0 with a nonzero jacobian and such that 

A(zo) exists and is a linear isometry for zo=h(xo). Then the linear map T=A(zo)h'(xo) is 

the derivative of the map fo=iDf~:D~---)R 3 at x0. Observe that 3~ is a restriction of the 

continuous extension f:/]3---)/) of f .  From Lemma 6.7 below it follows that ITI<~KI(T). 
Hence [h'(xo)[<~Kl(h'(xo)). Since this is true for almost every xoEDl, h is K-QC. [] 

6.6. Derioative at a boundary point. At the end of Section 6.5 we needed the 

estimate ITI<~KI(T), where l(T) is the minimum of ITxl over x E S  ~-2 and T is the 

derivative of the boundary map induced by the QC mapf.  We prove the corresponding 

result for an arbitrary dimension, since it may be useful also elsewhere. Suppose that 

2<-p<-n and that T: RP---)R ~ is a linear map. Let Jp T be the p-measure TB p. If Jp T>0, 

the inner and outer dilatations of T are 

HAT) = Jp T Ho(T ) = ITr  
l( T ) t' ' Jp T" 

If p=2,  we have Ht(T)=Ho(T)=ITI/I(T ). 
If f: D---)D' is a QC map, we have 

Ki( f )  = ess sup Hi( f  '(x)), Ko( f )  = ess sup Ho(f'(x)). 
xED xED 

If f:/-/~---)/-/~ is QC, it induces a boundary map g: l~n-~--*l~ n-l, for which Kt(g)<. Kt(f) ,  
Ko(g)<-Ko(f). This was proved in [GV, Lemma 4.6] for n=3 and in [Gel, Corollary, 
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p. 95] for all n~3.  We generalize the result to the case where the image domain is 

arbitrary: 

6.7. LEMMA. Suppose that f'. Bn(r)At:l" is a continuous map, that fIB"(r)AlP is QC 

and that g=flB"-~(r) is differentiable at the origin with J,-t  g'(0)>0. Then Ht(g'(O)) 
<<-Kt(f) and Ho(g'(O))<~Ko(f). 

Proof. We shall use normal families and the recent surprising local maximum 

principle of Gehring to reduce the lemma to the case f." lP--->lP mentioned above. We 

may assume that r---1, that f (0)=0 and thatf ' (0) maps R "-i onto itself. Write D=B"A 1-1" 
and T=f'(O). Consider the maps Jj:j/)-->R" defined by fj(x)=ff(x/j). For every 

x E R~_ = / - P \  { oo }, fi(x) is defined for large j. We show that the family (Jj) is equicontin- 

uous in R~ in the spherical metric. 

Since each fjljD omits 0 and 0% the equicontinuity in l p  follows from the general 

equicontinuity properties of QC maps [V~i2, 19.3]. Let x0E R n-! be a boundary point. 

Let 0 < r < l  and let j>lxol+2. Let aj(r) and bj(r) denote the supremum of If:(x)-fj(xo)l 

over x E l p  A/~(x 0, r) and x E R"- 1 A/~(x0, 2r), respectively. By the local maximum princi- 

ple of Gehring [Ge2, 2.1, 2.10], we have 

a~(r) <~ cbj(r) (6.8) 

where c depends only on K(f )  and n. Since T=g'(O), we can write 

g(x) = Tx +lxlh(x), Ih(x)l 

for some homeomorphism e: [0, ao)--->[0, oo). If xfi R "-I NB(Xo, 2r), we have 

If (x)-f <x01 = I  x-x0)+ Ixlh(x/jg-[xolh(xo/Jgl 

21Tlr+2(Ix01+2) E((Ix01+2)09 

= 2 l T l r + 6 ( j )  

where 6(j)--->0 as j--->oo. By (6.8) this yields 

aj(r) ~ 2clTlr+cr(j), 

which implies the equicontinuity of (jj) at Xo. 

By Ascoli's theorem, (A) has a subsequence converging to a map F: R~--->I~", 
uniformly in the spherical metric in compact sets. Since each fjljD has the same 

dilatations as f, F l iP  is either constant or a QC map with K~(F)<.Kt(f), Ko(F)<~Ko(f). 

15-898283 Acta Mathematica 162. Imprim~ le 25 mai 1989 
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On the other hand, b-JR n-I is the linear map T onto R n-l. It follows that F~/-P is a QC 

map onto H ~ or onto the lower half space. By the aforementioned result of  [Ged, we 

have H~(T)=KI(T)<.Kt(F)<~K~(f), and similarly for the outer dilatation. [] 

6.9. An upper bound. We next study the sharpness of the bound in Theorem 6.3. 

For t ~ l  let ~r be the infimum of the numbers Ko(GXR ~) over all bounded domains 

G c R  2 with b(G)>~t. Then Theorem 6.3 gives the inequality 

x(t) >~ qo tl/4" (6.10) 

For t= 1 this holds as an equality. For  t>  1 we presumably have a strict inequality, since 

the estimate for M ( f F 0  in the proof of Theorem 6.3 is not necessarily sharp. 

To get an upper bound for x(t) we construct an explicit example. For  s ~ l  let 

g:R3--->R 3 be the linear map g(x)=(sxl,x2,x3). Let Gs be the ellipse gB 2, and let 

Ds=GsXRI=g[B2xRt]. Then Kt(g)=s and hence Ko(D~)<~sKo(B2xRl)=qos. Setting 

fl(s)=b(G,) we thus have 

~r <<. qofl-l(t). (6.11) 

For t = l  (6.10) and (6.11) give the equality x(1)=qo. The estimate l(aGs)>4s gives the 

inequality 

x(t) < ~2qo t/4. (6.12) 

It seems reasonable to conjecture that x(t)/t tends to a finite limit as t--~oo. 
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