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0. Overview 

This paper  ou t l ines  a new app roach  to the a sympto t i c  ana lys i s  of  cer ta in  coun t ing  

func t ions  ar is ing in the geome t ry  of  d iscre te  groups.  The  approach  is based  on  an  

ana logue  of  the renewal  t h e o r e m  ([3], C ha p t e r  XI) for coun t ing  measu re s  in symbol i c  

dynamics .  
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The counting problems considered in this paper are mostly tied up with the ergodic 

behavior of the action of a discrete group at ~ .  Some of these problems may be solved 

by other methods of noncommutative harmonic analysis, e.g., the Selberg trace formu- 

la, and in these cases the alternative methods may give sharper results (especially error 

estimates). Also, the methods developed here are not well suited for groups with 

parabolic elements, because of difficulties with the symbolic dynamics. However, our 

approach is suitable for certain problems that are apparently outside the scope of 

noncommutative harmonic analysis, in particular, problems directly concerned with 

the geometry of the limit set. 

Let F be a Schottky group (Section 9; also [15]) acting on the hyperbolic plane H 2. 

(For simplicity, we shall state our main results for Schottky groups. These results hold 

for "most"  finitely generated Fuchsian groups without parabolic elements; cf. Sections 

10-13.) Consider the Riemann surface H2/F; define N(a) to be the number of closed 

geodesics on H2/1 " with lengths ~<a. Let A be the limit set of F, and let d be the 

Hausdorff dimension of A. 

COROLLARY 11.2. A s  a- .oo,  

ea~ 
N(a)  - - -  ab" 

The corresponding result for cocompact Fuchsian groups (b= 1) is a well known 

consequence of the Selberg trace formula ([5], Chapter 2). There are analogous results 

for closed geodesics on compact Riemannian manifolds of variable negative curvature 

[17] (but no hint of a proof appears in this paper) and, more generally, for periodic 

orbits of Axiom A flows [20], [19], [11]. 

Now let F be a Schottky group, as before, but consider F as a group of transforma- 

tions of the plane C with the Euclidean metric de. Let z be a point of discontinuity for 

F, i.e., z E C - A .  

THEOREM I0. A s  e--*O 

#{yE  F: dE(},z, A) > e} ~ Ce -6 

for  a suitable constant  0<C<o0. Moreover,  the uniform probability measure  on 

{~z: deO'z, A)>e} converges weakly  as e--->O to the normalized b-dimensional H a u s d o r f f  

measure on A .  

This result is closely related to counting problems concerning noneuclidean lattice 
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points ([6], [14], [17], [21], also Section 12), which are traditionally approached by 

spectral analysis of the Laplacean on H2/I ". It is not clear whether such methods can be 

adapted to obtain results like Theorem 10. The result concerning the asymptotic 

behavior of uniform distributions sheds some light on the construction of conformally 

invariant densities on A ([22], [31]). 

Next, let ~t be the natural fundamental region for F (Section 9). The images yg~, 

yE F, form a tessellation of C - A  in which the tiles y ~  accumulate at points of A. The 

(Euclidean) areas of these tiles converge to 0 as y__~oo. 

THEOREM 11. AS e---~O 

#{y E F: Area(y~) > e} - CE -~r2 

for a suitable constant 0<C<oo. 

Consider now the limit set A with the induced Euclidean metric; keep in mind that 

A is compact. Let N(e) be the minimum number of e-balls needed to cover A, and let 

M(e) be the maximum cardinality of an e-separated subset of A (i.e., a subset F such 

that d(x, y)>e for all x, y EF). Let G, be a subset of C of minimum cardinality such that 

every point of A is within distance e of some point of G,; define P, to be the uniform 

probability measure on G,. 

THEOREMS 12--13. AS e--~0, 

N(e)  ~ Ce -~, 

M ( e )  ~ C '  e -~  

for suitable constants O<C, C'<oo. Moreover, as e--*0, P~ converges weakly to the 

normalized 6-dimensional Hausdorff  measure on A. 

The counting functions N(e) and M(e) are used to define dimensional characteris- 

tics of A called the metric entropy and capacity [9]: 

metric entropy = lim log N(e) 
e---,O l o g e  -1 ' 

capacity = lim log M(e) 
,-,0 loge -I " 

Theorem 12 shows that for limit sets of Schottky groups the metric entropy, capacity, 

and Hausdorff dimension coincide. The asymptotic behavior of P, suggests that the 6- 
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dimensional Hausdorff measure be interpreted as a uniform distribution on A. Theorem 

12, which is the hardest result of this paper, was suggested by an analogous but easier 

result for self-similar fractals [ 1 3]. For discussion of other aspects of the geometry of A, 

see [16]. 

The results mentioned thus far are all derived from an abstract renewal-type 

theorem in symbolic dynamics. Let (57, a) be a one-sided shift of finite type (Section 1), 

e.g., 57=1q~{1,2 . . . . .  l} with the topology of coordinatewise convergence and 

(ax),=x,+ 1. For a continuous function f:Z--*C define Snf=f+foo+...+foo n-l. Let 

f, g: Z--->R be H61der continuous functions such that g~>0 but not identically zero and 

S,f>O on Z for some n~> 1. Define N(a, x) for a E R, x E 57 by 

N(a,x)= ~ Z g(Y) l{Snf(Y)<~a}" 
n=0 y: ony=x 

THEOREM I. I f  f is nonlattice then as a--->~, 

N(a, x) ~ C ( x ) e  a6 

uniformly for x E 57, for suitable constants 0<6<0% 0<C(x)<oo. 

The hypothesis that f be nonlattice means that no function cohomologous to f 

(Section 1) maps Z into a proper closed (additive) subgroup of R. Explicit characteriza- 

tions of the constants 6 and C(x) will be given in Section 2; 6 depends only on f, while 

C(x) depends linearly on g. 

In applications it is often difficult to show that the relevant funct ionfis  nonlattice. 

For the applications given in this paper the nonlattice character o f f  derives from the 

fact that the geodesic flow on the unit tangent bundle TH2/F is mixing relative to a 

certain invariant measure [24]. We shall use this to prove 

COROLLARY 11.4. The distortion cocycle of any discrete group containing a 

Schottky subgroup is nonlattice. 

See Section 11 for the definition of the distortion cocycle. Corollary 11.4 extends 

Theorem 6 of [32] (see also [30]). 

Acknowledgement. The author has benefitted from many enlightening discussions 

with W. Lalley. 
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Part L Renewal theorems in symbolic dynamics 

1. Background: Shifts, suspension flows, thermodynamic formalism 

A shift offinite type is defined as follows. Let A be an irreducible, aperiodic, lx I matrix 

of zeros and ones (l>1), called the transition matrix. Define Z to be the space of all 

sequences taking values in the alphabet (1,2 . . . . .  l} with transitions allowed by A, i.e., 

(1.1) Z = {  xEI'~,,=o {1,2 .. . .  l } :A(x . ,x .+l}=l ,Vn}} .  

The space E is compact and metrizable in the product topology. Define the (forward) 

shift o: Z--.Z by (tXX)n=Xn+ 1 for n~>0; observe that o is continuous and surjective, but 

not 1-1. The system (Y, o) is topologically mixing ([1], Lemma 1.3). 

Let C(Z) be the space of continuous, complex-valued functions on Z. F o r f E  C(Y) 

and 0<0<1 define 

varn(f) = suP{lf(x)-f(y)l: xj = yj, VO ~<j ~< n}, 

Iflo = supvar.(f) /o",  and 
n~>O 

~o = { fE  C(Z): Iflo< ~}. 

Elements of ~o are called H61der continuous functions. The space ~Q, when endowed 

with the norm [['[[o=l" [o+l[" ][oo, is a Banach space. 

For f, g E C(Z) define ~ g  E C(Z) by 

~fg(x)= E ef(Y)g(Y)" 
y: Oy=X 

For each 0E(0, 1) and fE  ~o, ~f: ~o--~o is a continuous linear operator; i f f  is real- 
valued then ~f  is positive. 

TrIEOREM A (Ruelle [25]). For each reai-valued fE  ~e, there is a simple eigenvalue 

~,f>0 olaf:  ~e---~o~ e with strictly positive eigenfunction hr. The rest of  the spectrum of  
~f is contained in {z E C: Izl~2f-e} for some e>0. There is a Borel probability measure 

vf on E such that ~f*vf---;~fvf. I f  hf is normalized so that Shfdvf= 1 then for every 
g E C(I~) 
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A proof may be found in [1], Chapter 1, also [25], [26]. Here .Lep is the adjoint of 

The probability measure/~I defined by (d/zy/dvf)=h I is o-invariant; it is called the 

Gibbs measure associated with f. For every Gibbs measure/zf the dynamical system 

(X,/zf, e) is mixing, hence ergodic ([1], Proposition 1.14). 

Functions f, gEC(Z) are cohomologous if there exists ~0EC(Z) such that 

f-g=q~-q~ o o. If f, g E ~Q are real-valued then/zf =/z~ iff f ,g are cohomologous; if this is 

the case thenf-g=cp-q0ocr  for some tpE ~;e ([1], Theorem 1.28). Otherwise/~y,/zg are 

mutually singular. Observe that iff-g=q)-r o tr then 

~ = e-~~ 

consequently, for real-valued f, g, cp 

it~= ite' hf = e-~h e, vf = e~vg. 

For fEC(Z)  define S,J=f+foo+.. .+foo n-l, n~>l, and S0f-0 .  Functions 

f, gE$; o are cohomologous iff for every n~>l and x EZ such that onx=x, 
S~f(x)=S~ g(x) ([1], Theorem 1.28). For real-valued fE  ~e, the Gibbs measure/z I is the 

unique o-invariant probability measure on Z for which there exist constants 

0<C1~<C2<~ such that 

C1<~ Izf{yET,: yi= xi, Vi =O, 1 . . . . .  n - l }  ~<C2 
Z~exp{S.f(x)} 

for all x E ~7 and n~>0. 

The functional P(f)=logity (the pressure) determines the moments of various 

functions relative to the Gibbs measures. In particular, for real-valued f, g~  ~o, 

P(zf+g) is real-analytic in z and 

(1.2) dP(zf+g) = f fd~zf+g ' z E R 
dz 

([26], Theorem 5.26 and Exercise 5.5). 

Define E to be the space of all double-ended sequences with transitions allowed by 
A, i.e., 

Z = {  xE ~In~-~(l'2 . . . . .  l}:A(x~,xn+,)=l,Vn}, 
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and let cr:X--->X be the forward shift. For a continuous function f.'X--->C define 

var,(f)=sup{lf(x)-f(y)[: xi=yi, Vlil<<-n}, and define Iflo, Ilfllo, :60' S,f, etc., as before. 

Notice that ~o may be regarded as a closed, linear subspace of :60 (namely, those 

functions in :60 that depend only on the "forward" coordinates x 0, x I .... ). Eve ry fE  :60 

is cohomologous to a function f E  ~v ' f  ([1], Lemma 1.6). Observe that for every f E  ~e 

the Gibbs measure/zf extends naturally to a cr-invariant probability measure on X, again 

denoted by/zf. 

Let f E  #0 be a strictly positive function on X. The suspension flow over the shift 

(X, o) with height function f is defined as follows. Let Ef= {(x, t): x E X, O<~t<~f(x)} with 

(x,f(x)) identified with (ox, 0). The flow Ts takes place on Xf; it is defined by 

Ts(x, t) = (x, t+s) for t+s <~f(x), s >- O, 

T~oT~=T,;+s ~ for st,s2>-O. 

See Figure 1. 

Finally, we remark that the notion of a shift of finite type may be generalized in a 

useful but trivial way as follows. Instead of having the transition rules for sequences x 

in X (or X) depend only on adjacent entries x~, x~+ 1, one may have them depend on 

x~_ k, x~_k+ l ..... x~+ i for a fixed k<oo. Such transition rules may be reduced to (1.1) by 

changing the alphabet { 1,2 .. . . .  l} to a finite set of "words"  from { 1,2 .. . . .  l} of length 

2k+ 1. (This generalization will be needed for the symbolic dynamics in Section 10.) 

2. Renewal measures and renewal theorems 

Let f E  ~;o be a real-valued function such that for some n, S,,f is strictly positive on X, 

and let g E o~ o be nonnegative but not identically zero. Define N(a, x) for a E R, x E X by 

oo 

(2.1) N(a,x)= X X g(y)l{Snf(y)<.a}. 
n=0 y: ony=x 

This is a distant cousin of the distribution function of the renewal measure in probabil- 

ity theory ([3], Chapter XI). Because S J i s  strictly positive for some n, N(a, x) is finite 

for all (a, x) E RxX; in fact N(a, x)=0 for a~0,  and N(a, x)<<. CleC2afor suitable constants 

C1, C2 (see Lemma 8.1 below). Observe that N(a, x) is nonnegative and nondecreasing 

in a. Most importantly, N(a, x) satisfies an analogue of the renewal equation: 

(2.2) N(a, x) = X N(a-f(y),  y)+g(x) 1 {a I> 0}. 
y: Oy=X 
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The asymptotic comportment (as a--* oo) of  N(a, x) depends on whetherfis  a lattice 

or nonlattice function. Say that f i s  a lattice function if f is cohomologous to a function 

taking values in a discrete subgroup of  R; otherwise, say thatf is  a nonlattice function. 

PROPOSlTXON 2.1. Let fE ~o be a real-valued function such that for some n~ l the 

function Snf is strictly positive on X. Then z--~2zf is strictly increasing for z E R, and 

there is a unique 6>0  such that 

(2.3) , ~ s  = 1. 

Henceforth, 6 will be the unique real number such that (2.3) holds. The proof of 

Proposition 2.1 will be given at the end of the section. 

THEOREM 1. Assume that f is nonlattice. Then 

(2~4) N(a, x) ~ C(x) e a~ 

as a--->oo, uniformly for xEZ.  

From the renewal equation (2.2) one sees that if (2.4) holds then 

C(x) = 2 e-~/(r)C(Y)' 
oy=x 
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so C(x) is an eigenfunction of the Perron-Frobenius operator ~_~f. In fact the proof of 

Theorem 1 will show that 

(2.5) ( Igdv_~f ~ h C(x)= t~ f (X)  �9 \ 

The lattice case is more complicated. If f takes values in a discrete additive 

subgroup G of R, then clearly N(a, x) is a step function in a with discontinuities only at 

elements of G. Thus, in general one would expect N(a, x) to exhibit asymptotic 

periodicity in a. 

THEOREM 2. Assume that f is integer-valued, but not cohomologous to any 

function taMng its values in a proper subgroup of  the integers. Then 

(2.6) N(a, x) ~ C(x)e Iaj ~ 

as a---~oo, uniformly for x E Y .  

Here [. ] denotes greatest integer. Once again C(x) is an eigenfunction of ~_~f; this 

time 

( S g h_o (x) (2.7) C(x) = (1-e-~) -l \ ~ 1  

Whenf is  not integer-valued but is cohomologous to an integer-valued function one 

again expects e-a~N(a, x) to be asymptotically periodic. 

THEOREM 3. Assume that f is cohomologous to an integer-valued function but not 

to any function taking values in a proper subgroup o f  the integers. Then there exists a 

bounded function C(fl, x), f ie  [0, 1), xEE,  such that 

(2.8) N(a, x) ~ C(a-  [a], x)e a6 

as a---~oo, uniformly for xEX.  

There is an explicit formula for C(fl, x) but it is neither simple nor illuminating, so 

we shall omit it. 

Theorems 1-3 are comparable to theorems giving exponential decay of solutions to 

renewal equations ([3], Section XI.6, Theorem 2), and exponential growth and decay of 

solutions to Wiener-Hopf equations ([I0], Theorem 15.4). The proofs of Theorems 1-3 

will be given in Sections 7-8. 
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Proof of Proposition 2.1. Since the Gibbs measure/ZzS is tr-invariant for each z E R, 

~ (SJln) dl~zf= ~ f dlZzf= (d/dz) (log2z,), 

by (1.2). Since S.fln>~e>O for some n, it follows that log2zf is strictly increasing in z; 

moreover, (d/dz)log2zf>~e so 2zf--->O as z----> -oo and 2zf--->oo as z---> oo. Now 2zf is 

analytic in z (cf. [26], Theorem 5.26) so 2zy = 1 has a unique solution z E R. 

Recall that the transition matrix A is irreducible and aperiodic. Consequently, 

I 

.LPg l(x) = ~ An(i, x o) --~ oo 
i = l  

as n~oo,  for each xEZ (here 1 denotes the function in ~o that is identically l). It 

follows from Theorem A that A0> I. Therefore, since 2z/ is  increasing, if 2zy = 1 then 

z<0. [] 

3. A modification for finite sequences 

Define Z ,  to be the set of  all finite sequences from the alphabet { 1,2 . . . . .  l} with 

transitions allowed by A, i.e., 

~ ,  = {~} U( I~ {(x0,x I . . . . .  xn):A(xi, xi+l) = 1}) 
n = 0  

(~ is the empty sequence). The forward shift o ,  on ~ ,  (or ~ t JZ , )  is defined in the 

obvious way, in particular, 

o.(Xo, x l  . . . . .  x . )  = (xl ,  xz . . . . .  x . ) ,  

o , ( 0  = ~. 

Sequences in %, may be extended to infinite sequences by adjoining an additional 

symbol 0 to the alphabet { 1,2 . . . . .  l} and making the correspondence 

(x 0, x I . . . . .  x.) <---> (x 0, xl, ..., x,, 0, 0 . . . .  ). 

Thus the shift o ,  on Z U [ ,  is a shift of  finite type. The transition matrix A is extended 

by A(0, 0) = 1, A(i, 0)= 1, A(0, i)=0 for i= 1,2 . . . . .  l. Unfortunately, the extension of  A is 

not irreducible, so (Z U Z , ,  o , )  is not topologically mixing and therefore the thermody- 

namic formalism of  Section 1 does not apply directly. However, Z OZ, is compact and 



R E N E W A L  T H E O R E M S  IN SYMBOLIC D Y N A M I C S  11 

metrizable in the product topology, and var,f, Iflo, IIf[1o, S.f, cohomology, etc., may 

be defined as in Section 1. Define ~e(Z U Z , )=  {fE C(Z U Z,): l fie< ~}. 
Let f ,  E ~e(Z U Z,)  be a fixed, real-valued function, and let f be its restriction to Z; 

assume that for some n, S . f  is strictly positive. Let g ,  be a nonnegative function on 

ZUZ, ,  not identically zero, such that var , .g ,=0 for some m < ~ ,  and let g be the 

restriction of g ,  to Z. For a E R, x E Z U Z ,  define 

(3.1) N* (a,x)= ~ E g*(y)I{S, f*(y)<~a}; 
n=0 y:ony=x 

as in Section 2, N,(a, x) is finite, identically zero for a~0,  and grows at most exponen- 

tially as a--->~. There is again a renewal equation: 

(3.2) N,(a,x) = Z N,(a-f,(y),y)+g,(x) l{a >I 0}. 
y: o,y=x 

TrI~OREM 4. Let 6>0 be the unique real such that 2_~f=l. If  f is nonlattice then 

(3.3) N,(a, x) ~ C,(x) e a6 

as a--~oo, uniformly for x E Z U Z , ,  where 

(3.4) C,(x) = ( f gdv_~f ~ h,(x) 

and h,(x) is the unique positive continuous function on Y. U Z, ,  satisfying 

(3.5) h,(x)= h_~:(x), xEE,  

(3.6) h , (x)= E e-~f'(Y)h*(Y)' xEY, .  
y: O.y~x 

There are analogous results for the lattice cases, which we shall refrain from 

stating. The proof of Theorem 4 will be given in Section 6. 

Theorem 4 differs from Theorem 1 in that more restrictive hypotheses are imposed 

on g(x). These may be relaxed somewhat; however, for the applications given in this 

paper this is unnecessary. 

For many counting problems in symbolic dynamics Theorems 1-4 apply in a very 

direct fashion to give the asymptotic behavior of the relevant counting function. 
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Examples of such problems will be encountered in Sections 5 and 12. There are more 

subtle counting problems, however, in which the counting function cannot be written in 

the form (2.1) or (3.1), but to which Theorems 1-4 may be applied indirectly. An 

example will be given in Section 13. In this example, and certain others like it, one must 

deal with a function of the form 

(3.7) N * ( a ' x ; t ) = 2  E g*(y)l{a<~Sn+lf*(Y)<'a+t;SJ *(y)~a'Vj<'n} 
n=0 y: o~,y=x 

where a, t>~O, xEY., UE, and g,~>0 is a function such that var~g,=0 for some k<oo. 

COROLLARY 3.1. Assume that f ,  satisfies the hypotheses of Theorem 4 and assume 

that f,(x)>O for all xEY  UZ,, x4=~. Then as a--,oo 

(3.8) N . ( a ,  x; t) ~ F(x, t) e a~, 

uniformly for xEY. UY, and t in any compact subset of(O, oo), where 

(3.9) F(x, t) = C.(x)  (ea((t-:'(x))^~ -a:'(x)) 

and C,(x) is defined by (3.4). 

Note. aAb is the minimum of  a and b. 

Proof. It is easily verified that 

a < S~+lf,(y) ~ a+t, 

Sjf,(y)<~a, Vj<~n, 

a~y =x 

occurs iff 

Hence 

a-f , (x)  < S,f ,(y) <~ a+((t-f,(x)) A 0), 

o , y  =x. 

N ,  (a, x; t) = N ,  (a + ((t - f ,  (x)) A 0), x ) -  N(a - f ,  (x), x) 

where N,(a, x) is defined by (3. I), so (3.8) follows from (3.3). [] 
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A similar result holds when the hypothesis f , > 0  is dropped. 

Now let G(t), t ~ R be a nonnegative, monotone function (either nondecreasing or 

nonincreasing); let g,(x) be as before. For x fi Y, O y define 

(3.10) N6(a, x) = ~ ~ g,(y) G(S,+~f,(y)-a) 1 {a < S,+,f ,(y);  Sjf,(y) ~ a, Vj <. n}. 
n=0 y: o~,y=x 

COROLLARY 3.2. Under the hypotheses of Corollary 3.1,for each x E Z ,  UZ, x~=~, 

(3. I 1) N~(a, x) ~ e a~ G(t) F(x, dt) 
JO 

as a ~ ,  uniformly for xEE,  UZ. 

This follows from Corollary 3.1 by a routine argument. Note that the measure 

F(x, dt) is supported by the interval [0, IIf, ll~l so the integral f~ could be changed to 

An important consequence of Corollary 3.1 is that F(x, t) is jointly continuous in 

x, t. This implies 

COROLLARY 3.3. For every e > 0  there exists a , > 0  such that if G(t) is any 
monotone function satisfying IG(C+ I)-G(0)I~< 1 where C=llf, ll~ and if 0 < a < a ,  then 

To fo (3.12) G(t + a) F(x, dt)-  G(t) F(x, dt) < e 

for every xEZ UY.,, x4=~. 

Proof. Since F(x, t)=F(x, C) for t>~C, the limits of integration may be changed 

from [0, ~) to [0, C]. Fubini's theorem (integration by parts) implies that the difference 

between the two integrals is 

- fo, ~] F(x, t) G(dt)+ f~ , el (F(x, t -a) -F(x ,  t)) G(dt)+ (a~c, c+~] F(x, t -a)  G(dt). 

The result now follows easily from the uniform continuity and boundedness of F(x, t). [] 

4. Equidistribution theorems 

Once again le t fE ~0 be a real-valued function such that S, f i s  strictly positive on E for 

some n>~ I, and let x C Z be a fixed but arbitrary admissible sequence. In this section we 

shall discuss the distribution of those y E Z such that o~y=x and S, J(y)<~a for some n. 
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Let  p~,o be the probabili ty measure that attaches probability 1/N(a,x) to each 

element of  

where 

(4.1) 

F x 'a= {yEZ:  ony=x, Snf(y)<~a for  some n~>0}, 

N(a, x) = # ( F  ~' 4). 

THEOREM 5. Assume that f is nonlattice. Then as a---~ 

D 
px, a ~ lp 6 f 

uniformly for x E Z. 

D 
Note. ~ (convergence in distribution) means that for  each continuous g: Z -~R  

(4.2) f gdP x'a ~ f gdv_~f 

as a---~ oo. 

Proof. Let  gE  ~ be nonnegative; then 

Z g(y) 1 {Snf(y) ~ a} 
f gdex'a= n=Oy:~ .-.~zgdl,'_t~f 

Z l{S,f(Y)<'a} 
n=0 y:ony=x 

as a---~oo, uniformly in x, by Theorem I and (2.5). Since any nonnegative, continuous 

function may be uniformly approximated by functions in ~o, (4.2) and hence (4.1) 

follow. [] 

For  g~C(X)  define g=Sgdtt-~f, and for yEF x'a let n(y) be the largest n~>0 such 

that o"y=x and S, f(y)<.a. Unless x is periodic there is only one such n for any y E F x' 4. 

If x is periodic the number  of  y E F x' n such that o"y=x has more than one solution n~>0 

grows linearly in a, since S,  f > 0  for some m. 

THEOREM 6. Assume that f is nonlattice. Then for each g ~ C(Z) and each e>0 



RENEWAL THEOREMS IN SYMBOLIC DYNAMICS 

(4.3) 

(4.4) 

Sn(ylg(Y) "gi >e}---->0, px, a{y: ~-~ 

ex, a{y: n_~y) _ f  > e} ..., 0 

as a--.oo, uniformly for xEX. 

(4.5) 

Proof. Let z>6>0, so ~,_zf<l (Proposition 2.1). Then 

2 E 1 {Snf(y ) <~ re(f-e)} <~ 2 E e-ZS"Br)eZm(/-E) 
n=m y:ony=x n=m y:ony=x 

= 2 (s 1)(x)e zm(i-̀ ) 
R~m 

2_~z/(1-2_z/) -] C(x) e zm(/-~) 

15 

as m--->oo uniformly for xEX, by Ruelle's theorem (Section 1). Theorem I implies that 

(4.6) 2 E l{S,,f(Y)<~m(f-e)} ~C'(x)e''(i-~)'~ 
n=l  y:ony=x 

as m~oo. Now (d/dz)(log2_z:)z=o=-f(cf. (1.2)) so there exists z>d such that 

3,_~ye (z-~)(Z-') < 1. 

Therefore (4.5) and (4.6) imply that 

rJ=rn f fny=x 

2 E l{Snf(Y)<~m(f-e)} 
n=] ony=x 

---,0 

as m~oo uniformly for x E X, which in turn implies that 

px, a(y: n(y)f>~a(l+g)) ~0 

as a ~  uniformly for xEX. 
A similar argument, this time using 6>z>O, implies that 
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Z I{S, f(y)<'m(f+e)} 
n = l  ony=x 

Z l{S.f(Y)<'m(f+e)} 
n = l  ony=x 

---~0 

as m---~,  and hence 

px,.{y: n(y)f<~ a(1-g)} ----) 0 

as a ~  uniformly for x E Z .  This proves (4.4). 

In proving (4.3) it suffices to consider positive g E ~o" For such g, 

( d  log2zg_~f)z = > 0 ,  
d z  =v  " 

so for all sufficiently small z>0,  ;t eZ(e-')< -zg-~f 1. Consequently,  

2 Z l{Sng(Y)<~n('g-e)-ae;Snf(Y)<~a} 
n = 0  y:eny=x 

<~ 2 Z exp{-zS,g(y)+zn(#-e)-dS.f(y)+a(d-ze)} 
n = 0  y:ony=x 

I ezn(#-e)e a6-aze = (Le_zg_~ ) (x)  
n = 0  

C e  a6-aze 

for some C < w .  Since 

ZZ 
n=O y:ony=x 

l { S.f(y) <. a} ~ C(x) e "~ 

by Theorem 1, it follows that 

Z I{S,, g(y)<~n(~-e)-ae;S'f(y)<'a} 
(4.7) n=0 y:any=x "'> 0 

2 Z l{S.f(Y)<~a} 
n = 0  y: any=x 

as a---~oo, uniformly for x EZ. A similar argument shows that 
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~ l{S,g(y)>~n(~+e)+ae;S,f(y)~a} 
(4.8) n=O y:ony=x ~ 0 

l(S S(y) a) 
n=0 y: ony=x 

as a ~ o o ,  uniformly in x. The result (4.3) now follows easily from (4.4), (4.7), and (4.8). 
[] 

Theorems 5 and 6 extend to the setting considered in Section 3. We will not need 

such extensions, however, so we shall not state them here. 

5. Periodic orbits of suspension flows 

Consider a suspension flow over the two-sided shift (~, a) with height function g. 

Clearly, every x E~  such that anx=x, uix:~x, i=1 ,2  . . . . .  n - 1  for some n lies on a 

periodic orbit r of the flow; the period of r is Sng(x). Since there are infinitely many 

periodic sequences x E ~, it follows that there are infinitely many periodic orbits r. 

Recall that g is cohomologous to a function f that depends only on the " fo rward"  

coordinates Xl, x2 . . . .  ; f  may be considered a function on ~. It is not difficult to show 

that S~fis strictly positive for some n, since g>0.  The suspension flow is topologically 
mixing i f f  (equivalently, g) is nonlattice. Let  6>0 be as in Proposition 2.1. 

Define a measure M on Eg={(x, t): x E ~ ,  O<~t<g(x)} by 

(5.1) M(AxB) =/~_of(A) m(B)/f fdtt_~f 

for any rectangle A xBc~,g, where m is Lebesgue measure. Since ffdl~_~y = f g dlt_~f, M 
is a probability measure. It is easily verified that M is invariant for the flow. 

Denote periodic orbits of  the suspension flow by r; let ;t(r) be the (minimal) period 

of r. For  any continuous function G: Eg--*R let r(G) be the mean value of G on r, i.e., 

the integral of G over r divided by ;t(r). 

THEOREM 7. Assume that the suspension flow is topologically mixing. Then for 
any e>0, 

(5.2) #{r :  2(r) ~< a} - ea6/at~, 

2-898285 Acta Mathematica 163. Imprim6 le 8 septembre 1989 
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(5.3) 

a s  a---)  oo . 

S. P. LALLEY 

#{r:  2(r) <~ a and nr(G)-I GdMI > ~) --, o 
# {r: 2(r) ~< a} 

The first statement is equivalent to the main result of [20]; the second statement 

strengthens the main result of [19]. For more refined results, see [1 I]. 

Proof. Suppose that r is a periodic orbit of the suspension flow that crosses the 

"floor" ((x, 0): x E X} exactly n times. Then there is an n-periodic sequence x such that 

the crossings occur at (x, 0), (trx, 0), (e2x, 0) . . . . .  (e"-lx, 0), and 

;t(r) = S .  g(x)  = S . f ( x ) .  

Consequently, 

#{r:  ~(r) ~ a} = ~ n -1 #{xE X: x has least period n and S. f(x) ~ a}. 
n=!  

If x is d-periodic, with din , and S,f(x)<~a then Sdf(x)<~a/d<-a/2. Hence, 

~ n- l#{xEY: x is n-periodic, S.f(x)  <~ a} 

- ~ n-I # {x E X: x is n-periodic, S,f(x)  <~ a/2} 
n=l  

<~ #{r:  ;t(r) <~ a) 

<~ ~ n-l#{xEY.: x is n-periodic, SJ(x )  <~ a}. 
n=l  

Therefore, to prove (5.2) it suffices to prove 

(5.4) n - l#{xEX:  x is n-periodic, S,,f(x)<~a} acS" 
n=l  

Let k be a fixed large integer; choose X ( I ) , x  (2), , x ( m ) E  ~'~- such that ,,<0,/0 ..c0 . . . .  1 ~2 " " ' ~ k  , 

i= 1,2 .....  m, are the distinct sequences of length k in Y.. Assume that each x ~~ is an 

aperiodic sequence. Define gi: E~--~R by 

gi(x)  = I {Xj = X) O, V j  = 1,2 . . . . .  k } ;  

observe that X~=t gi-  1. 
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Consider x E Z such that o"x=x ~~ and g,(x)= 1. Let  $ be the n-periodic sequence 

$=Xl x2 ... xn xi x2 ... Xn ...; then 
| 

�9 IS,,f(.~)'S,,f(x) I ~ ~ varj(f)  = e k. 
j=k 

Keep in mind that ek--->0 as k--->oo. Because of our choice of x ~) .. . . .  x ~m), there is a 1-1 

correspondence between n-periodic sequences and sequences x such that o"x=x ~ and 

g;(x)=l for some i=1 ,2  . . . . .  m, provided n ~ k  (the correspondence is given by xo$) .  

Hence, for n~k,  

2 " (5.5) N(~)(a--ek) <~ #{x: x is n-per iodic ,  Snf(x) ~ a} <~ E N(/,~(a+ek ) 
i=1 i = l  

where 

N(/)(a) = ~{x: onx = x (0, gi(x) = 1, Snf(x) <~ a}. 

Now as a-+oo, #{ r :  A(r)~< a}--,oo, so the contribution to the sum (5.4) from the terms 

n<k is negligible as a--,oo; consequently we may ignore the fact that (5.5) may not hold 

when n<k. 
Recall that f satisfies the hypotheses of Theorem 1. Therefore, as a-+ oo 

| 

(5.6) N~~ E gi(x)l(Sn f ( x ) ~ a } - C i e a a  
n = l  n = l  x: onx=x tO 

where 

( I h 0. 

Now Theorem 6 implies that for nearly all x such that anx=x t~ and Snf(x)<-a for some 

n~>l, 

n ~ a / f f d p _ , ~ f .  

when a is large. Since for ~/<(Hfl[| - l  

E N~ 9(a) <~ N/(arlllf}l| = ~ 
l~n~arl 



20 s.P. LALLEY 

it follows from (5.6) that as a---~oo, 

(5.7) ~ n-'N~(a) ~ c i ( S  f d/u_6f ) e~/  a. 

Observe that as k--+ oo, ek--~0 and 

~ ci f f d~_6s= ~ O-'(f gidv_6f) h_~s(x~ ~ 3-' f h-6sdv-6s = 6-'. 

Therefore, (5.4), (5.5), and (5.7) imply (5.2). 

It remains to prove (5.3). Let G: ~e---,R be continuous; define h: ~---~R by 

f 
gtx) 

h(x) = G(x, t) dt. 
dO 

Now h is continuous, so it may be uniformly approximated by/~ E ~o. Recall that any 

/~ E ~ is cohomologous to some ~p E ~-Q. Thus, if r is a periodic orbit passing through 

(x, 0), where x is an n-periodic sequence, then 

r(G) ~- S n ~p(x)/Snf(x). 

By the same reasoning as that leading up to (5.4) we conclude that to prove (5.3) it 

suffices to prove that 

~n-l#{ x:xisn'peri~ S"f(x)<~a' Sn~p-nf ~pdl~-6f >ne} =~ 

This may be accomplished by virtually the same argument used in proving (5.2), this 

time using (4.3) of Theorem 6. [] 

6. Proof  of  Theorem 4 

Theorem 4 is a relatively straightforward consequence of Theorem 1. Observe that (3.3) 

holds for xE~Z by Theorem I. Furthermore, if (3.3) holds for all x E E U E ,  then the 

renewal equation (3.2) implies that 

C(x)= ~ e-~:o~Y)C(y), xEY. UZ,, 
y: o , y = x  
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and (2.5) implies that 

{ f g d v  ~f ]h_~f(x), xEX. C(x) = \ 6 Y f O/~-~s ] 

Therefore, to establish that (3.4) holds for all xEX UX, it suffices to show that C(x) is 

continuous and that the nonnegative solution to (3.5)--(3.6) is unique. 

LEMMA 6.1. There is at most one nonnegative, continuous h,(x) on X U X,  satisfy- 
ing (3.5)-(3.6). 

Proof. First notice that any solution h,(x) must be strictly positive on X U X,, It is 

positive on X because of (2.5), since h_rf>O. Hence it is positive near E, by continuity. 

But for any xEY,  there exists y EX, near  Y such that ~ y = x  for some n (since the 

matrix A is irreducible); iterating (3.6) n times shows that h,(x)~e-~SJ'~Y)h,(y)>O. 
For x, y E Y,, y*~,  define 

~e-af*(Y)(h,(y)/h,(x)) if o,y = x 
k(x, Y) I 

l0  otherwise. 

Then for each x E Y.,, Ey: o.y=x k(x, y)= 1. Define 

k~(x, y) = ~ k(x, yt)k(yl,Y2)...k(yn-l,Y); 
(Yl,Y2 . . . . .  Yn-l)  

then by induction Ey: o~y=x k~(x' Y)= I. Now suppose h',(x) is another nonnegative, con- 

tinuous solution to (3.5)-(3.6). Then 

h' (h , (y)]  h,(x) = ~ k(x, y) ( h*(Y) ] = X k~(x, y) �9 
h,(x) y \ h,(y) / y \ h-,-~y) ] 

As n-->~, any y EX, such that k(x, y)>0 (i.e., a,y=x)  gets increasingly close to X. But 

near X, h,/h,~- 1, by (3.5) and continuity. It follows that h,(x)/h,(x)= I for every x E X,. 
[] 

To extend (3.3) to x E X, we will use the fact that g,(x) depends on only finitely 

many coordinates of x. 

LEMMA 6.2. For each e>0 there exists n~ sufficiently large that if x, x' E Z U Z,  

satisfy xi=x " for i=0, 1 ..... n~ then 
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(6.1) N.(a, x) <- N.(a+e, x') 

for all aER. 

Proof. If  xi=x ~ for i=0,  1 . . . . .  n~, some n,~>0, then there is a natural, 1-1 corre- 

spondence between those y such that any=x and those y'  such that any'=x '. In 

particular, y,,--~y' iff yi=y[ for i=0,  1 . . . . .  n+n~. 
Recall that the function g .  in (3.1) satisfies varmg.=0,  i.e., g,(x) is a function of 

only the first m coordinates of x. Choose n,>-m; then if yoy'  as in the preceding 

paragraph, g.(y)=g.(y'). Consequently,  the series (3.1) defining N.(a,x) and 

N.(a+t,x') only differ in terms where Snf,(y)<~a but Snf.(y')>a+e, or vice versa. 

Now if y,~-->y', any=x, and any'=x ', then 

tl+n~ 

ISnf,(y)-Snf,(y')l <~ ~ varm(f,), 
/?l=n~ 

and since varm(f,) decreases exponentially to zero, if n~ is sufficiently large then 

V ~'m=n~ arm(f,)<& Therefore, all terms in the series (3.1) defining N(a, x) are included in 

the series defining N(a+e, x'), and because all terms in these series are nonnegative, 

(6.1) follows. [] 

Proof of Theorem 4. Consider the renewal equation (3.2); iteration yields 

(6.2) 

N,(a,  x) = 
n-1 

X N*(a-Snf*(Y)'Y)+X X g(y)l(a-Smf*(Y)~O}+g(x)l{a>~O)" 
y: an y=x m=l y: amy=x 

Fix n large. For  a>nllf.ll ~ the last two sets of terms in this expression do not change 

with a, so the asymptotic behavior of N.(a, x) is completely determined by 

E N.(a-S,f.(y),y). 
y: ony~x 

Observe that each y in the preceding expression is a sequence of length of least n, 

because c~.-1y4:~. For  each such y there exists y '  EZ such that y;=y~ for i=0, 1 . . . . .  n -  I. 

By Lemma 6.2, if n>-n~ then 

N. (a -e -  Snf .(y), y') <~ N,(a-  S , f  .(y), y) <~ N.(a+e- Snf ,(y), y'). 
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The asymptotic formula (3.3) now follows easily. Theorem 1 implies that 

N .  (a +_ e -  Sn f  . (y), y' ) ~ C(y,) e (a - Snf.(y))t~e +- ~ 

as a---~oo. Letting e---~0 one obtains (3.3). The continuity of C(x) for x E Z lJ E .  follows 

easily from Lemma 6.2, [] 

7. Perturbation theory for Perron-Frobenius operators 

The proofs of Theorems I-3 will rely heavily on analyticity properties of the map 

z~-Tzf, z E C. In this section the most important such properties are summarized. 

Henceforth f E  ~-o is a fixed, real-valued function such that S,J" is strictly positive 

for some m. The quantities ~Tzy, 2zp hzy, vzs, etc., will be abbreviated .T z, 2 z, h z, v~, etc. 

The spectrum of ~Tz for z ~ R was partially described by PoUicott [23]. 

THEOREM B. Suppose z E C - R .  

(a) I f  for  some a E R the function (Im(z)f-a)/2~t is cohomologous to an integer- 

valued function, then eiaARe(z) is a simple eigenoalue o f  ~T z, and the rest o f  the spectrum 

is contained in a disc centered at zero o f  radius less than 2Retz ). 

(b) Otherwise, the entire spectrum o f  ~T z is contained in a disc centered at zero o f  

radius less than 2Re(z ). 

In case (a), Im(z)f=ia+2zdcp+iv--iy o tr for some integer-valued q9 and real-valued 

7. It is easily verified that the eigenvectors of *Tz and ~ corresponding to the 

eigenvalue e~aAR,(~) are e-iYhR,(~) and e~/v~r Observe that if f is a nonlattice function 

then case (a) can occur only if the constant a is irrational. Consequently, if f is 

nonlattice then 2R~z) is in the spectrum of *T z iff Im(z)=0. 

In applying Theorem B the following result is useful. 

LEMMA 7.1. One o f  the following three cases obtains. 

(a) f is cohomologous to a constant function. 

(b) There do not exist a E R, b>0 such that b- l . f -a  is cohomologous to an integer- 

valued function. 

(c) There exists a maximal b>0 such that for some a, b - l f - a  is cohomologous to 

an integer-valued function. Moreover, i f  b . ,  a .  E R are such that b , l f - a ,  is cohomolo- 

gous to an integer-valued function, then b,lb. 

Proof. Let G be the additive subgroup of R generated by {Snf (x) -Snf (y ) :  o~x=x, 
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o~y=y, n = l , 2  .... }. If  f is cohomologous to a constant then G={0}. If f is cohomolo- 

gous to q9-c, where c is a constant and tp takes values in a discrete subgroup H of R, 

then G is a subgroup of H, hence discrete. Therefore, if neither (a) nor (b) obtains then 

G is a nontrivial discrete subgroup of R. By rescaling f we may assume that G = Z  or 

G=(0}. 
There exists a constant c E [0, 1) such that f - c  is cohomologous to a function 

valued in G. To see this, observe that for each m= 1,2 .... there exists Cm E [0, I) such 

that S m ! f ( x ) - m ! c  m E G for all x E Z such that om'x=x. There exists a subsequence of cm 

converging to some kE[0,1]; by construction S ~ f ( x ) - n ~ E G  whenever o~x=x, 

n = l , 2  . . . . .  By Proposition 2 of [23] ((i)=>(iii)), f - ~  is cohomologous to an integer- 

valued function. If ~= 1, it may be replaced by c=O. 

This proves that if neither (a) nor (b) holds, then (c) must. [] 

In the remainder of this section we shall study the operator-valued function 

z--,(l- 
The operator-valued function z--~ZPz is an entire, holomorphic function of z; its 

derivative is given by 

(7.1) [(d/dz) "~z] g(x) = 2 f ( y )  eZS~Y)g(Y) = Zez(fg) (x). 
y: O y = x  

Therefore, if (I-&:~)-t exists (as a bounded, linear operator on ~Q) for all z in some open 

D e C  then z--~(I-&:~) -l is holomorphic in D. Now Proposition 2. I implies that ),z< 1 for 

all z < - 6 ,  and Theorem B implies that the spectral radius of &:z is ~:tRr162 ) for all zEC;  

consequently, if R e ( z ) < - 6  then the spectral radius of &~z is less than 1. This proves 

PROPOSITION 7.1. Z---)(I--~z) -t is holomorphic in the half-plane R e ( z ) < - &  

Next we shall investigate the singularity of z--~(l-~z)  -l at the point z = - 6 .  

Theorem A and standard results in regular perturbation theory ([8], Sections 7.1, 4.3) 

imply that the functions z--~2z, z--~hz, z---~vz extend to holomorphic functions in a 

neighborhood N of the real line, such that 

(7.2) ~'z * O, ~z hz = 2z h~, ~*  v~ = )'z vz, vz(hz) = vo(hz) = 1 

for z E N. (The function z-->vz takes values in the dual space ~ ,  not the space of Borel 

measures; it is holomorphic in the weak sense that for each g E o~ the map z---~vz(g) is 

holomorphic.) 

Define operators Lgz and ~ for z E N by 
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(7.3) ~g=2zvz(g)hz ,  g6~o,  

t (7.4) L~ = ~z-,~z. 

t By the results of the preceding paragraph, z ~z and z---~z are holomorphic, operator- 

valued functions in N. For each z 6 N, ~ maps ,~Q onto the one-dimensional subspace 

generated by h z, whereas ~ maps ~0 onto the complementary subspace 

{g 6 ~;Q: Vz(g)=O}. Therefore, 

(7.5) "- ' " " " ~e~ - (~e z) + ( ~ e  z ) 

for n = l , 2  . . . .  N o t i c e  t h a t  - 1  t �9 , n _ n . ;t~ ~z IS idempotent, so (~z) g-;t~ Vz(g ) h z. 
Theorem A (Section 1) implies that for z ER the spectral radius of ~z  is less than 

;tz. Since z---~z is analytic, the spectral radius of ~z  is a lower semicontinuous function 

of z. Consequently, there is a neighborhood U of z = - 6  such that the spectral radius of 

~z  is less than l ' 2 e  for all zE UNN, for some e>0. It now follows from the spectral 

radius formula that for some n,  1> 1, I I(~eT)"IN<(1 - ~)" for all n>-n, and z 6 U N N. Hence, 

(7.6) z ~ ~ ( , ~ Z )  n ~--- ( ]__ ~ ) - 1  

n=0 

is a holomorphic, operator-valued function of z 6 U N N. Together with (7.3)-(7.5), this 

proves 

PROPOSITION 7.2. The function z---~(I-~z) -l has a simple pole at z - - -6 .  In 

particular, for each g 6 ,~  

(7.7) (]_ ~r g = (1-2Z) -1Vz(g) hz +(]-  ~ ) -l g 

for z in some punctured neighborhood of  z = - 6 .  

The regularity properties of z---~(]-.~z) -1 on the rest of the line Re (z )= -6  depend 

on which case of Lemma 7.1 obtains. The case where f is cohomologous to a constant 

we shall ignore. Suppose there do not exist constants a ER, b>0, such that b- l f - a  is 

cohomologous to an integer-valued function. Then by Theorem B the spectral radius of 

5r z is less than ~'Re(z) if Im(z)*0. Since the spectral radius of Lr is lower semicontinuous 

in z, it follows that for each z, on the line Re (z )= -6  except z , = - 6  there is a 

neighborhood of z, in which z---~(]-~z) -1 is holomorphic. 

Suppose next that f is nonlattice but that b-~f-a is cohomologous to an integer- 
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valued function. Assume that b>0  is maximal in the sense of Lemma 7. l(c). Then ab is 

irrational, so by Theorem B, ;tRe(z ) is in the spectrum of LCz iff Im(z)=0. Consequently, 

z--->(I-&ez)-' is holomorphic in a neighborhood of every z on the line Re (z )= -6  except 

z = - 6 .  This proves 

PROPOSITION 7.3. I f  f is nonlattice then the function z---~(l-~z)-' is holomorphic in 

a neighborhood o f  every z on the line R e ( z ) = - 6  except z = - 6 .  

Next, suppose that f is integer-valued and that f is not cohomologous to any 

function valued in a proper subgroup of the integers. Then Lr is 2:ti-periodic in z, so the 

pole at z = - 6  is repeated at z = -6+2 : t im ,  m E Z. Theorem B implies that 1 =2_~ is not in 

the spectrum of Lr when R e ( z ) = - 6  and Im(z)/2~ is not an integer. Hence, 

PROPOSITION 7.4. l f  f is integer-valued but not cohomologous to any function 

valued in a proper subgroup o f  the integers then z---~(I-~gz) -1 is 2ari-periodic, and 

holomorphic at every z on R e ( z ) = - 6  such that Im(z)/2at is not an integer. 

8. Fourier analysis of the renewal equation 

In this section we shall analyze the asymptotic behavior of N(a, x) as a-->oo by means of 

its Fourier transform. We begin with the lattice case, as it is easier. 

Proof of  Theorem 2. Suppose that f is an integer-valued function but that f is not 

cohomologous to a function taking values in a proper subgroup of the integers. In this 

case N(a, x) is a step function in a with discontinuities only at integer values ofa .  Recall 

that N(a,x)=O for a,~0 and that N(a, x)=O(e ca) for some C < ~  as a--->~ (see Lemma 

8.1); consequently, the Fourier-Laplace transform 

(8.1) /~r(z, x) = ~ e"ZN(n, x) 
n = - o o  

is well-defined and analytic for z in a half-plane Re z < - C .  The renewal equation (2.2) 

transforms as 

YQ(z, x) = Ze z N(z, x) + g(x)/(1 - e  z) 

for Re(z)<0. By Proposition 7.1 ( I -~z) - '  is defined and holomorphic in the half-plane 

Re(z)<-6 ,  hence in the half-plane Re(z)< min(-6,  - C )  the functional equation 

)V(z, x) = (1 -eZ) -I (l-.~z) -1 g(x) 
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holds. Since the right hand side of this equation is analytic in Re(z )<-6 ,  l~(z, x) admits 

an extension to Re(z )<-6 .  Since the coefficients N(n, x) in the series (8.1) are nonnega- 

tive, it follows that the series converges uniformly and absolutely for Re(z )<-6 .  

According to Propositions 7.2 and 7.4, ( I -~z)  -I g(x) has an isolated singularity at 

z=-6  but is regular (holomorphic) at each z=-6+iO, 0<101  . The singularity at 

z= - 6  is (1-Zz) -1Vz(g ) hz(x); since vz(g) and hz(x) are continuous at z= - 6 ,  the singular- 

ity is a simple pole with residue 

_ -  

(-(d/dz) 2z)z=-6 \ f f dt.t-6, ] h-6(x)" 

It follows that ~r(z, x) is meromorphic in {z: 0~<Im(z)~<:t, Re(z)<-6+e) for some e>0, 

and that the only singularity in this region is a simple pole at z = - 6  with residue C(x), 
where C(x) is given by (2.7). Consequently, 

F(z, x) =a ~ zn{e_n6N(n, x)-C(x)} 
n=O 

is holomorphic in {[zl<l+2e} for some e > 0 ; F  is also jointly continuous in z and x. 

Cauchy's integral formula now implies that 

e-n6N(n, x ) -  C(x) = (2:ri)- 1 f F(z, x) z- ~- 1 dz = 0((I + e)-n) 
dl, Izl=l+e 

as n--~oo, uniformly for xEZ. This proves (2.6). [] 

Proof of  Theorem 3. Assume that 

f =  ~ + y - y o o  

where tp is an integer-valued function, and that f (hence also tp) is not cohomologous to 

any function valued in a proper subgroup of the integers. Note that since Sm f > 0  for 

some m, there exists m' such that Sm' tp>0. Recall that 2z=2zy=2z~ for all z E R hence 

also for those z E C where 2z is defined by analytic continuation. 
Define 

N*(a, x) = N(a-y(x), x) 

for a E R , x  E Z. The renewal equation (2.2) for N(a, x) may be rewritten as 

N*(a, x) = ~ N*(a-q~(y), y)+g(x) 1 {a I> y(x)}. 
oy=x 
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Fix fl E [0, 1), and define the Fourier-Laplace transform 

1Q'~(Z,X)= ~ e"ZN*(n+fl, x). 
t l ~ - o o  

The renewal equation implies that 

1~ (z, x) = (1 - e z) -l ( I -  ~z~)- l (ge ztr+l-a]) (x) 

for Re(z )<-6 ,  as in the proof of Theorem 2. We may remove the singularity at z = - 6  as 

before to obtain 

(8.2) N*(n + fl, x) - C(fl, x) e "6 

as n--->oo, uniformly for xEY. This also holds uniformly for fiE[0, 1), because the 

functions g(x)exp{z[7(x)+l-fl]}, f l=[0 ,1) ,  are bounded in ~o. Now (8.2) clearly 

implies (2.8). [] 

The nonlattice case is more complicated because it requires the analysis of a 

Fourier integral rather than a Fourier series. The Fourier (integral) transform of N(a, x) 

once again involves ( l -~z)  -~. Now Proposition 7.3 states that ( I -~z)  -l is holomorphic 

at every z such that Re(z )=-6 ,  Im(z)4:0; however, the operator norm of ( I -~z)  -~ may 

be unbounded as [Im(z)l---,oo on the line R e ( z ) = - &  Thus, the Fourier transform of 

e-a~N(a, x) may behave wildly at oo. Circumventing this problem requires an unsmooth- 

ing argument, and this in turn requires an a priori bound on the growth of the renewal 

function. 

LEMMA 8.1. There exists constants C, a .< oo, depending only on f ,  such that for 

every g E ~Q the function N(a, x) defined by (2.1) satisfies 

(8.3) N(a,x)=O, Va<~a., 

(8.4) N(a, x) <- Cllgll,, ear. 

Proof. Recall that there is an n~>l such that S,f>~e>O on Z. Since f, S2f, .... Sn_lf 

are continuous and Z is compact, there exists a .  E ( -  0% 0) such that 

(8.5) min Si f (x)>a ,, VxEZ. 
O ~ i < ~ n  - 1 
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If a<.a. then (8.5) implies that there are no nonzero terms in the series (2.1) defining 

N(a, x); thus (8.3). 

Define G(a, x)=e-aON(a, x)/h_6f(x ). Since h_of is bounded away from 0 and ~,  it 

suffices to prove that G(a, x)<~fllgll~ for a suitable C<oo. 

The renewal equation (2.2) may be rewritten as 

(8.6) 

G(a,x)= -OSnf(Y) X G(a-Snf(Y),Y)e (h_of(y)/h_of( )) 
y: any=x 

n--1 

+e-a6 ~ ~a g(y)(l{a >~ Sif(y)}/h_of(x)). 
i=00~=X 

Observe that 

(8.7) e-6SJ~y)(h_6f(y)/h_of(x)) = (~_ofh_of) (x)/h_of(x) = 1, 
y: o"y=x 

since h_0y is the eigenfunction of ~-0f corresponding to the eigenvalue ,~_6f = 1. If n is 

sufficiently large that Snf(y)~e>O for all y E ~ ,  and if 

G(a)= sup G(a',x), 
a'<~a, xE~ 

then it follows from (8.6) and (8.7) that for all a E R, 

(8.8) 

where 

G(a) <~ t~(a-e)+C'llgll~ e-a6 

o - 1  

C' = E l i  in h-6f(Y) < ~ "  
i=0 l y E Z  

Now (8.8) implies that G(a)<<.Cl[gl[ ~ for a suitable constant C < ~ ,  proving (8.4). [] 

To prove that e-a6N(a, x)--->C(x) we will show that it suffices to prove that a suitably 

smoothed version of e-a~ x) converges to C(x), then accomplish the latter by 

Fourier analysis. For the smoothing we will use a continuous probability density 

k(t)=k(-t) whose Fourier transform/f(i0)= J" ei~ is nonnegative, C ~, and 

has compact support. Let P be the set of all such probability densities. (Note: P * ~ .  To 
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see this let/~=/~1 */~, where/~ is an even, C | compactly supported function, suitably 

normalized. Then k E P.) 

LE~MA 8.2. To prove Theorem 1 it suffices to prove that for each kEP 

(8.9) lim I ~ k(a-t) e-6tN(t, x) dt = C(x) 
a . . .~  ao J-| 

uniformly for x E Y. 

Proof. Fix e>0 (small). Choose kEP such that f [ ,k( t )dt>l-e  (such a k exists 

because if k(t)EP then ck(ct)EP for all c>0). By Lemma 8.1, there exists C < ~  such 

that e-~tN(t, x)<~C for all t E R; consequently, if (8.9) holds then for sufficiently large a 

and all x E Z 

f ~+" k(a-t) e-6tN(t, x) dt-C(x) < C' e, 

for a suitable C'<0r independent of x. Since N(t, x) is nondecreasing in t, 

fa ~+ 2~ k(a+ e-t)  e-6tN(t, x) dt >I (1 - e )  e-2~e-~N(a, x) 

and 

f a k (a-e- t )  e-6tN(t, x) dt <~ e2&e-6aN(a, x). 
- - 2 e  

Letting e---~0 shows that e-~aN(a, x)-->C(x) uniformly for x E ~  as a-->oo. [] 

Proof of Theorem 1. By Lemma 8.2 it suffices to prove (8.9) for arbitrary kEP. 
Recall that N(a, . ) - 0  for a~0  and that e-6aN(a, x) is uniformly bounded for a E R, x E Z. 

Hence, to prove (8.9) it suffices to show that 

(8.10) lim I | {k(a- t)+k(-a- t )}  e-~tN(t, x) dt = C(x) 
a . . . ~  oo 3-| 

uniformly for x E Z. 

Define the Fourier-Laplace transform 

(8.1 l) F(z, x) = f |  e za-6a N(a, x) da. 
J_| 
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As in the proof of Theorem 1, the renewal equation (2.2) and the analyticity of 

z ~ ( l - ~ )  -1 in the half-plane Re(z )<-6  imply that 

F(Z, x) = - ( I -  ~z-~)- l g(x)/(z- 6) 

for Re(z)<0 (observe that Lemma 8.1 implies that the integral (8.11) converges abso- 

lutely and uniformly in each half-plane Re(z)<-e<0) .  By Proposition 7.3, F(z, x) is 

holomorphic at every z on the line Re(z)=0 except z=0. By Proposition 7.2, F(z, x) has 

a simple pole at z=0 with residue -C(x), where C(x) is given by (2.5). Therefore, 

F(z, x) = -C(x)/z +G(z, x), 

where G(z, x) is holomorphic in a region containing the closed half-plane Re(z)~>0. 

The monotone convergence theorem implies that 

:oo{k(a-t)+k(-a-t)} x)dt = (| {k(a-t)+k(-a-t)}  x) e-rtN(t, lim e-(6+S) tN(t, dt. 
s~o J_| 

For each s>0, e-~O+s)tN(t,x) is a nonnegative, integrable function (relative to dt), by 

Lemma 8.1. Furthermore, k(t) is the (inverse) Fourier transform of a nonnegative, 

integrable function l~(iO). Consequently, the Parsevai relation ([3], Chapter XV, equa- 

tion (3.2)) implies that 

(8.12) I| {k(a-t)+ k( -a- t )}  e-'~+')tN(t, x)dt= ~| 2 cos(Oa)~(iO)F(-s+ iO, x)dO/2:t. 
J-| 3-| 

Since the left hand side is real, we may ignore the imaginary part of the integrand on the 

right hand side. Using the representation (8.12) together with the fact that I~(iO) is real 

we obtain 

f:| {k(a-t)+k(-a-t)}  e-~ dt = f:| 2c~ ~iO)c(x) s(s2 +O2)-l dO/2a 

+ 2cos(aO iO)ReG(-s+iO, x)dOI2~---~ C(x)+ cos(a iO)ReG(iO,x)dOl~ 
O o  - -  o o  

as s $ 0. (The m e a s u r e s  ~Tr-ls(s2+O 2) dO converge weakly to the delta function at 0 as 

s ~ 0, and/~(0)= 1 because k is a probability density.) 

It remains to show that the  last integral converges to zero as a--,oo, uniformly for 

x E E. Recall that i~(iO) has compact support, say [ -A,  A], and is C ~176 also that G(iO, x) is 

analytic in a neighborhood of [ -A,  A] and continuous in x. The Cauchy integral formula 
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for derivatives implies that (d/dO)G(iO, x) is uniformly continuous, hence bounded on 

[ -A ,  A]xZ.  Integrating by parts gives 

f; f; cos(aO) I~(iO) Re G(iO, x) dO = -a-~ sin(aO) (d/dO) {f(iO) Re G(iO, x)} dO; 
.4 .4 

clearly, this converges to zero as a--*~, uniformly for x~Z.  This proves (8.10). [] 

Part II. Applications to discrete groups 

9. Symbolic dynamics for Schottky groups 

Let Qi, Q-l, Q2, Q-2 . . . . .  Qk, Q-k be 2k (k~>2) mutually exterior (nonintersecting) circles 

in the plane, and for each j= l, 2 . . . . .  k let Tj be a linear fractional transformation 

mapping the exterior of Q_j onto the interior of Q~. The group F generated by 

T l, T 2 .. . . .  T k is called a Schottky group ([4], [15]). The region ~ exterior to all 2k circles 

is a fundamental region for the group. 

The Schottky group F enjoys a very simple and transparent symbolic dynamics, 

because it is a free group on the k generators T l, T 2 . . . . .  T k. Consider the set Z ,  of finite 

sequences from the alphabet {T 1, T( 1, T 2, T2 -1 ... . .  Tk -1} with all transitions allowed 

except TiTi -1 and Ti -~ Ti, i= l  . . . . .  k. There is a natural 1-1 correspondence between F 

and Z,  in which the group identity corresponds to the empty sequence ~ and the shift 

a ,  corresponds to a multiplication by one of the symbols T~ 1. Henceforth we will not 

always distinguish between F and Y,; x~x2...x ~ may denote a sequence in Z,  or the 

corresponding element of F. 

To complete the symbolic dynamics we will extend the correspondence just 

described to a map from the set Z of infinite sequences (with allowable transitions) to 

the limit set A of F. To accomplish this we will show that for any x=x~ x2... E E and any 

z E Yt, lim,~| I x2... x,) (z) exists and is independent of z E ~.  

For each ),=T~ 1, i=1,2 . . . . .  k, let Dy be the open disc interior to Q~=Q+i; for 

xlxz...x~ ~ Z , - { ~  }, let 

(9.1) D~I~2...~ ~ = xl  D ~ _ . . ~ .  = . . .  = x l . - - x . - 1  D~~ 

Notice that 

(9.2) /)~lx2 .... .§ .... . if m~>l; 

(9.3) /)x,x2 .... N/)~ix;...x;=~ unless x i = x  ~, i= 1 ... . .  n; 
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(9.4) X 1 X 2 . . .  X n ~ C Dx,x2..x, 

(compare with [7], Section 5.2). 

LEMMA 9.1. There  exist  cons tan t s  C< oo, 0 < 0 <  1 such that  f o r  each x I x2. . .  x n E E.  

(9.5) diam(Dx,~ 2 ... x~) ~< CO n. 

The proof will be given at the end of the section. 

It is now apparent from (9.2)-(9.5) that for each x - - x  I x 2 ... E~, the regions x~ x 2 . . .  

xn~  shrink to a single point x E A  as x---~o~, and that the induced map E--~A is a 

homeomorphism. Furthermore,  (9.5) implies that any Lipschitz continuous function on 

A pulls back to a H61der continuous (~e) function on E. 

Consider now the shift a: Z---~Z; let F:A--~A be the corresponding map on A. 

Following Bowen [2] we will call F = F r  the Nie l sen  m a p  for F (cf. [18]). Notice that for 

zEAND_+;, 

+1 F(z) = T F z, 

so F is continuously differentiable and F'(z)~=O at every z E A. Define 

(9.6) f(z) = logIF'(z)l, z E A, 

and let f:~--->R be the H61der continuous pullback of f .  We will call f (or f )  the 

distortion f unc t ion  of F. 

LEMMA 9.2. There exists n>~l such that  S n f  is strictly posi t ive on Z.  

The proof will be given at the end of the section. 

Any measure on the sequence space Y~ induces a corresponding measure on the 

limit set A (and vice-versa). Bowen [2] proved that the Gibbs measure/z-6f on Z (here 

6>0 is as in Proposition 2.1) induces a measure on A that is equivalent to 6-dimensional 

Hausdorff  measure on A, and that the 6-dimensional Hausdorff  measure of A is finite 

and strictly positive. Series [27] subsequently proved that the measure induced by v_6f 

is actually a scalar multiple of  the 6-dimensional Hausdorff  measure on A. 

P r o o f  o f  L e m m a s  9.1-9.2. The group F is discontinuous at ~ ,  so every element 

7 E F has an isometric circle C~, and for each e>0 only finitely many C~ have radii larger 

than e (cf. [15], IV. 1 D). Moreover, for each 7~=identity, 7(~) lies in the interior of C_~. 

3-898285 A c t a  Mathemat i ca  163. Imprim6 le 8 septembre 1989 
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Now (9.4) implies that ~,(oo) E D r, so it follows from (9.2) that all but finitely many of the 

isometric circles C r lie in U~=l(interior(Qj)0 interior(Q_j)). 

Choose n sufficiently large that each isometric circle C~x, .... , x I x 2 ... xnE X., lies 

in interior (Q.~) for some j .  Then for every sequence Xl... x~ of  length n and every 

+i, x I x2... x~ Q• t...~nrt); but since x t x2... x n ~cD~t  and each Q•  it 

follows that Xl... x~ Q• Hence Ct~,...~nracDx. Thus, whenever xnx~+ ! is an allowa- 

ble transition (i.e., xnx~+14:id),/5~,+t lies in the exterior of  C~t~2...~; 

The derivative of  a linear fractional transformation in absolute values is < 1 outside 

the isometric circle. Consequently,  there is an a < l  such that for each sequence 

x I x 2 ... x~ EX. of length n the derivative of x I ... x~ in absolute value is <~a on tJy.~Z~/)y. 

It follows by an easy argument that 

(9.7) max diam Dx~...~,§ <<. Cot k, k = 1,2 . . . . .  
XlX 2 .-. Xkn+l ~ .  

for a suitable C<oo. The result (9.5) follows from (9.7). 

Finally, consider the Nielsen map F. On ANDx,~, 2 .... , F o F o . . . o F  (n times) 

coincides with (x I x2... xn) -I (cf. (9.6)), and maps A N Dxlxv..xn into Lly.xZl/)y. Conse- 

quently, the derivative of  F o F o  ... o F  in absolute value is ~>l/a>l  on A. Lemma 9.2 

now follows from the definition o f f .  [] 

10. Symbolic dynamics for Fuchsian groups 

Series [27] has developed "symbolic  dynamics"  for a large class of  nonelementary,  

finitely generated Fuchsian groups. In this section we give a resum6 of  her results. 

A Fuchsian group is a discrete group F of  linear fractional transformations, each 

mapping the unit disc D onto itself; it is nonelementary if its limit set A is infinite. A 

nonelementary Fuchsian group is necessarily nonabelian. A group F is finitely generat- 

ed with generating set F0 if every element of F is a finite product of elements of  F0. Each 

finite product of elements of  F0 yielding the identity in F is called a relation; the set of 

relations and their inverses is itself a free group. 

A nonexceptional Fuchsian group is a nonelementary,  finitely generated Fuchsian 

group satisfying at least one of  the following conditions: 

(10.1) D/F is not compact; 

(10.2) IF0[ >I 5 and every nontrivial relation has length I> 5; 
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(10.3) at least 3 of the generating relations have length >t 7. 

Series proved that if F is a nonexceptional Fuchsian group then every element of F has a 

canonical representation as a shortest word in the generators F0, and that the rules 

governing these representations are of finite type. Consequently, there is a 1-1 corre- 

spondence between F and X,, where X, is the set of finite sequences with admissible 

transitions from some finite alphabet. 

Assume henceforth that F is a nonexceptional Fuchsian group with no parabolic 

elements. (A linear fractional transformation is called parabolic if it has only one fixed 

point.) Series proved that the canonical bijection F<-->Y.. extends to a continuous map 

X->A, which is onto and one-to-one except at a countable number of points where it is 

two to one. (Here A is the limit set of F and X the set of infinite sequences with the 

same transition rules as X..) If zEInt(D) is not a fixed point, then there exist C<oo, 

~<I  such that whenever x, x' E X., xi=x~, Vi<~n then 

(10.4) dE(XZ, x'z) <<- CQ n 

(cf. [27], Proposition 4.2; de is the Euclidean distance). Consequently, if x E Z then 

limn_~(x I x2... xn) (z) E A gives a continuous surjective map X--~A. The inequality (10.4) 

lifts to X, and therefore Lipschitz continuous functions on A lift to H61der continuous 

functions on X. 

The shift o: E-->X induces a map F: A->A, which we will again call the Nielsen 

map. This map is C ~ except (perhaps) at a finite set of points. Define 

(10.5) f (z)  = loglf'(z) I, zEA, 

and let f be the H61der continuous pullback to Z. We will call f (or f )  the distortion 

function for F. Series proved that there is an n~>l such that S n f i s  strictly positive on X. 

Finally, let 6>0 be the unique real number such that 2_~f= 1 (Proposition 2.1) and 

v_~f the corresponding eigenmeasure. Series proved that 6 is the Hausdorff dimension 

of A, and that v_~y is a scalar multiple of the 6-dimensional Hausdorff measure on A (cf. 

also [22], [31]). She calls v_~f the "Patterson measure". 

11. The geodesic flow 

Let F be a Schottky group. F may be regarded as a group of isometries of the 

hyperbolic space H a+l, where d= 1 if F is Fuchsian and d=2 otherwise ( H  d+l is the unit 

ball in R d+l with the Poincar6 metric). Thus, Hd+l/[" is a Riemannian manifold with the 
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induced Poincar6 metric. In this section we shall discuss the geodesic flow on the unit 

tangent bundle T(Hd+lff'), using the symbolic dynamics developed in Section 9. The 

restriction to Schottky groups is primarily for simplicity; the methods and results of this 

section can almost certainly be generalized to the nonexceptional Fuchsian groups of 

Section 10 (cf. [28], [29]). Our methods can be traced back to Artin, Hedlund, and 

Morse (cf. [28]). However, our main result, Theorem 8, seems not to have been noticed 

before. 
,-/- + 1 T + I  Tkl For definiteness, let F be a Fuchsian Schottky group generated by -~ , -2 . . . . .  

as in Section 9. The region ~ inside the unit disc D but exterior to each of the circles 

QI, Q-~ .. . . .  Q-k is a fundamental polygon for F. The images 7~, 7 E F are nonoverlap- 

ping, and by Lemma 9.1 the eucl idean diameters of Yn ~ converge to zero as n - - ~  for 

any sequence 7, of distinct elements of F. Consequently, if z,, Z'nET, ~ for each 

n = l , 2  . . . . .  then limz, exists iff limz', exists, in which case limzn=limz~EA. On the 

other hand, if xEA has the expansion x t x 2 . . . E E ,  then for any 7 the sequence 

(x I x2.. .  x.)  ~ o f  polygons converges to the point x E A as n ~  ~. 

Consider now the set of geodesics in H2; keep in mind that the geodesics on the 

Riemann surface H2/F are in I-1 correspondence with the geodesics in H 2 that enter 

(plus k additional geodesics corresponding to the 2k circles hounding ~ ,  which we will 

ignore.) Each geodesic in H 2 is determined (up to a translation in time) by its endpoints 

on the unit circle S ~. Consider a geodesic (x, y) whose left and right endpoints x and y 

are both in the limit set A; let x . . . x l x 2 . . . E Z  and ycc--~yly2...E~.. In order that the 

geodesic (x, y) enter ~ it is necessary and sufficient that Xl4=yl. Furthermore, if this is 

the case then the geodesic passes through infinitely many images 7~  of ~ ,  in the 

following order: 

(ll.1) . . .  "--') Xl X2 ~ ---) .XI ~ -'-) ~/~-oyl~---~ylY2~--) . . . .  

Conversely, if a geodesic in H 2 cuts through infinitely many 7~  in the order specified 

by (11.1) then the left and right endpoints of the geodesic are necessarily x and y, by the 

arguments of the preceding paragraph. See Figure 2. 

Now let x, y E A ,  x - -  x l x  2 .... Y=YlY2 . . . .  The condition that x~4=y I is equivalent to 

the condition that Xl-lYl=l=id, i.e., that all transitions in the double-ended sequence 

�9 " x~x~lY~ Yz. . .  are allowable. Let Z denote the set of all double-ended sequences with 

allowable transitions, and let ti denote the forward shift on Z. Define g: Z---~(0, oo) by 

setting g ( . . . x 2 1 x ( l y l y  2.. .)  equal to the noneuclidean length of  that segment of the 

geodesic (x ,y)  lying in ~.  It follows routinely from Lemma 9.1 that g is H61der 
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continuous on E (see [28] for a similar argument). Observe that g o o"(... X21XllYl Y2"") 
is the noneuclidean length of the segment of (x, y) lying in y~ Y2... Yn ~ (if n>0) or 

x 1 x2... xn~ (if n<0). 

Consider the geodesic flow on the unit tangent bundle T(HE/F). The set F of points 

in T(HE/F) whose orbits correspond to geodesics in H 2 with endpoints x, y both in A is a 

closed subset of T(HE/F), since A is a closed subset of S 1. Call the flow restricted to F 

the restricted geodesic flow. What we have shown is that the restricted geodesic flow 

has a representation as a suspension flow over a shift of finite type with HOlder 

continuous height function g (Section 1). 

THEOREM 8. The height function g is cohomologous to the distortion function f. 
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Proof .  It suffices to show that for every n-periodic sequence 

...XlX2...XnXlX 2 ...Xn...~.~ in Z, 

(11.2) Snf(~)  = S ,  g($) 

([1], Theorem 1.28). Let x = x  I x2. . .  x , x  I ... and x'--x,,--lx-~._ t ... x-~lx~ l ..., and consider the 

geodesic (x', x) in H 2. The transformation x~ x2... x, E F maps this geodesic onto itself, 

mapping that segment in (x~ x2... xk~+i)~ onto the segment in 

(xl x2... x . )  (x I x2... x~+ i) ~ .  

Consequently, the corresponding geodesic on H2/F is periodic, with period S,,g(.~). It 

follows that for any point z on ( x ' , x )  in H 2, Sng(.~) is the length of the segment 

(z, (Xl X 2 ... x , )  z) of (x', x). 

Choose z on (x', x) very near x (in the euclidean metric). Near x the geodesic (x', x) 

looks like a line emanating from x perpendicular to S ~, and the transformation x~ x2... xn 

looks like a homothety (expansion) with expansion rate 

( - - ~  x2""x")(O),=x = eS'y(x)" 

Therefore, for z near x the noneuclidean distance from z to (x~ x2... x.) z is approximate- 

ly 
eeSnf(x) 

f .~ Snf(X ). 2dt 
j ,  1 - ( l - t )  2 

Letting z -*x ,  we obtain (11.2). [] 

Consider again the suspension flow over the shift (Z, ~) with height function g. If g 

is nonlattice then the suspension flow is topologically mixing ([19], Section 5). Con- 

versely, if g is lattice then the suspension flow is not mixing for any invariant measure 

(if g is cohomologous to an integer-valued function then the flow only returns (approxi- 

mately) to its initial point at (approximately) integer times). It is known [24] that there 

exists an invariant measure for the restricted geodesic flow that is mixing. (Note: this 

invariant measure [24] is supported by the subset F of T(HZ/F) carrying the restricted 

geodesic flow.) Therefore, 

COROLLARY 11.1. The distort ion func t ion  f o f  a Fuchs ian  Schot tky  group is 

nonlattice.  
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It follows that the suspension flow on Xg is topologically mixing (Section 5). The 

periodic orbits of the geodesic flow correspond to those of the suspension flow, and 

have the same lengths. Consequently, (5.2)-(5.3) translate to corresponding statements 

about the periodic orbits of the geodesic flow. In particular, if S is the measure on F 

corresponding to the measure M (cf. (5.1)) on Xg, then 

COROLLARY I 1.2. For any e>0 and any continuous G:F---~R, 

(11.3) #{z: 2(0 <~ a} ~ e~/a6, 

(11.4) #{r:  ;t(r) ~ a, I t (G)-  f GdS I > e} ---, 0 
#( r :  )].(z) ~< a} 

as a---~ oo . 

Note.  S coincides (up to a scalar factor) with Sullivan's invariant measure [31] for 

the restricted geodesic flow. (This is because S is an ergodic invariant measure that 

induces a measure on the endpoints (x, y) at oo of geodesics that is equivalent to 

v_6f(dx)v_6f(dy).) Thus (11.4) implies that most closed geodesics are approximately 

distributed on T(H2/F) according to the Sullivan measure. 

Now let F be a nonexceptional Fuchsian group without parabolic elements (Sec- 

tion 10). Then F has a Schottky subgroup F0. If the distortion function of F were lattice 

then the distortion function of F0 would also be lattice (this is easily proved by looking 

at elements of Ar and Ar0 that have periodic expansions). Therefore, 

COROLLARY 11.3. The distortion function f o f  a nonexceptional Fuchsian group 

with no parabolic elements is nonlattice. 

The results about the distortion function we have just obtained may be recast in a 

form that submerges the role of the shift and the associated symbolic dynamics. Let F 

be any Kleinian group and A its limit set. A cocycle is a continuous function 

U:FxA---~R satisfying 

U(~q ~'2, x) = U(~'1, Y2 x)+ U(y2, x); 

a coboundary is a cocycle of the form 

u(y, x) = W(yx)-  W(x) 

for a suitable continuous W: A--~R. Two cocycles are cohomologous if their difference 

is a coboundary; a cocycle is lattice if it is cohomologous to a cocycle valued in a 
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discrete subgroup of R. Define the distortion cocycle U by 

u(7, x) = log 17'(x)l. 

If the distortion cocycle is lattice then the distortion function is also lattice (for F of the 

types considered in Sections 9-10). Therefore, 

COROLLARY 11.4. I f F  contains a Schottky subgroup then the distortion cocyle is 

nonlattice. 

This is similar to [32], Theorem 6, but seems more general. Sullivan's approach is 

totally different from ours, and does not seem to generalize easily. 

Finally, observe that Theorem 8 and Corollary 11.1 hold also for non-Fuchisan 

Schottky groups. The proofs are identical except that the geometry must be carded out 

in n 3 instead of H 2. 

12. Distribution of noneuclidean lattice points and fundamental polygons 

Let F be a nonexceptional Fuchsian group with no parabolic elements, and let z E H 2 

(=D) be such that z is not a fixed point of any y E F. Let dh,=hyperbolic distance. 

THEOREM 9. As  a---~oo 

(12. I) #{7 E F: dn(O, yz) <<- a} ~ Ce a~ 

for  a suitable constant C ~ (0, oo), Moreover, i f  P a is the uniform probability distribution 

on {yz: d~O, yz)<~a, 7EF} then as a---~oo 

D 
(12.2) P~ ~ Patterson measure. 

Recall that the Patterson measure is the normalized h-dimensional Hausdorff 

measure H0A on the limit set A=Ar.  The statement (12.2) means that for any continuous 

function g on the closed unit d isc / )  

(12.3) f gdP -  f gdH . 

The result (12.1) is a special case of the principal result of [14] (see also [17]), 

which states that (12.1) holds for all finitely generated groups, gives a formula for the 

constant C, and provides an error estimate. Our method may generalize to other 
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groups, but probably it cannot be adapted to give the precise error estimates of [14]. On 

the other hand, it seems unlikely that the related Theorems 10-11 below can be 

obtained by the methods of [14] (or [6], [21]). 

For x=x  1 x2... x n E Z ,  (=F), x4:~, define 

f,(x) = dH(O, (xl x2... x,) z)-dM(O, (x2 x3 ... x,) z); 

for x E X define f , ( x )  =f(x), where f is the distortion function of F. 

LEMMA 12. I. f ,  E ~O(X U X,) for  some 0<•< 1. 

Proof. Let 7 be a linear fractional transformation mapping the unit disc D onto 

itself. A simple computation shows that 

o,,{ de(yw' Sb)+o(d w, Sb) 1 ~ , , - - - ~ .  ~( cliO, w)-aH(o, ~w) = \ a~(w, s ) 

= logl~,'(w)l+o(d~w, sb), w~.D 

(d n, d e are the hyperbolic and euclidean distances on D and S 1 is the unit circle). Now 

let z E D = H  z such that z is not a fixed point of any 7EF; let x=x lxE . . . xnEX , ,  
t l I l I t  t l  I I  __  t X =XlX2 . . .Xm~. , ,  and x = x I x 2 . . . E Y . = A  such that x i - x  i -  ' -~ :  for i=1,2 ..... k. By 

(10.4), 

de(xz, x '  z) <~ CQ ~, 

de(xz, x") <- CQ k, 

de(x' z, x") <~ CQ k 

(see also Lemma 9.1 for Schottky groups). Hence, for a suitable 0<C'<oo,  

I f  , ( x ) - f  ,(x") I <, C ' o k, 

I f , ( x ' ) - f , ( x" ) l  <- C '0 k. t3 

Proo f  o f  Theorem 9. (12.1) follows immediately from Theorem 4, Corollary 11.3, 

and Lemma 12.1. In fact, Theorem 4 implies that for any sequence Y=YlY2...  Yn E Y,,, 

(12.4) #{X lXz . . .Xm~Y , :  dn(O, xlXz...XmZ)<~a, x i = y  i, V i < ~ n } ~ C ( y ) e  a6 

where 
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C(y)= ( b v ~ - ~  h,(~), / 

v as(y) = v_~f{x = x I x2... E ~,: x i = Yi, Vi <<- n}. 

Now the cylinder sets {xEX: xi=y i, Vi<~n} generate the Borel a-algebra on Y~A, and 

v ~ f  is the Patterson measure H6A on A. Consequently, (12.4) implies that for any 

angular sector 

A =  {rei~ l-e<<,r < , 1, 0 1 ~ 0 ~ 0 2 }  , 

lim W(A) = H~A(A). 

The result (12.3), hence (12.2), follows by a routine approximation argument. [] 

Now let F be a Schottky group and let z by any point of discontinuity, i.e., 
zEC U {oo}-A. 

THEOREM 10. As e-->O 

#{TE F: dE(TZ, A) > e) -- Ce -~ 

for  a suitable constant C E (0, oo). I f  pc is the uniform probability distribution on 

{~'z: de(Tz, A)>e, ~EF} then as e---,~ 

D 
P~ ~ Patterson measure. 

There is a similar result for nonexceptional Fuchsian groups without parabolic 

elements and z E S ~-A. Undoubtedly it holds in even greater generality. 

The proof of Theorem 10 is virtually the same as that of Theorem 9; this time we 

use the function 

( dE((X2X3 .'. xn) z, A) ) 
f , (x )  = log de((Xl x2." xn) Z, "-~ 

for x=x  I x2... x n EZ, ,  f , (x )=f (x)  for xEX. In proving the analogue of  Lemma 12.1 one 

must use (9.5) in place of (10.4). 

Finally we consider the polygons in a noneuclidean tessellation. For simplicity we 

consider only Schottky groups. Let ~ be the natural fundamental region, i.e., that part 

of CU {oo} exterior to each of the circles Q~, Q - I  . . . . .  Q-k. 
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THEOREM 11. As e---~ oo 

(12.5) #{), E F: Area(y~) > e} -- Ce -6/2 

for a suitable constant CE (0, oo). 

Note.  Area means euclidean area. It doesn't matter whether the euclidean area for 

the sphere $2=C 0 {oo} or the plane C is used. 

Proof. For x=x  I X2. . .  X n ~ • , ,  X:~=~, define 

f ,(x) = -~ log (Area (x2x3""xn~)  
Area(x I x2... xn ~ ) /  

and for x E~: define f . (x)=f(x)=distort ion function. We must show that f .  E ~o(X OX.) 

for some O E (0, 1); (12.5) will then follow from Theorem 4 and Corollary 11.1. 
l I I t t I ! _ _  t _ _  I Let x=x  1 x2... E X=A, x =x 1 x2... x', E E , = F ,  x' =x'~ x'~ .., x'~, E X. such that x i - x  i --2ff+i 

for i= I, 2 .....  k. Then each of x, x ' ~ ,  x"~  is contained in the disc Dx~x2...x k (see (9.4)) 

which by Lemma 9.1 has diameter ~<C0 k. Now 

Area(x, x2. . .x .~)= f f ~ z  X,(z) 2dm(z), 

x2x3...xn ~ 

' ' ~ ) =  x;(z) dm(z), Area(x' 1 x2... Xm 

x~xl.., x~, 

where m denotes Lebesgue measure. The diameters of x 2 x3... x, ~ and x~ x~... x" ~ are 

--<C0 k-l, and (d/dz)xl is Lipschitz on/)~2x3...~k (since l)x2x3...x ' lies outside the isometric 

circle of x~; see the proof of Lemmas 9.1-9.2). Consequently, 

If,(x)-f,(x') I <- C' o k, 

[f,(x)-f,(x") I <~ C' o k 

for some C'<oo. This proves that f ,  E ~o(X U X.). [] 

13. Packing and covering functions of the limit set 

In this section we shall describe a more elaborate application of the renewal theory, 

this to the geometry of the limit set A. Let F be a finite set of points in the plane. Say 
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that F is an e-covering of A if every point of A is within e of some point of F; say that F 

is an e-packing of A if F c A  and no two points of F are within e of each other. Define 

the covering function N(e) of A to be the minimum cardinality of an e-covering of A, 

and define the packing function M(e) of A to be the maximum cardinality of an e- 

packing of A. (Note: In this section the only distance function considered is the 

euclidean distance on R2=C.) 

THEOREM 12. f f A  is the limit set of  a Schottky group then as e---)O 

(13.1) N(e) ~ Ce -~, 

(13.2) M(e) ~ C'e -~ 

for suitable constants C, C' E (0, oo). 

The functions N(e) and M(e) are used to define dimensional quantities usually 

called the metric entropy and capacity (better terminology might be covering dimension 

and packing dimension): 

(logN(,)], 
metric entropy = lim,__,0 \ lo--o~e -1 ] 

capacity=lim(l~ ) 
~o log e- 1 

provided these limits exist [9]. Theorem 12 shows that the Hausdorff dimension, metric 

entropy, and capacity of A are all equal. This is apparently not true for limit sets of 

discrete groups with parabolic elements [33]. 

It is natural to ask about the distribution of points in an economical e-covering (or 

an e-packing). For e>0 let F, be an e-covering of A of minimum cardinality and let /~ be 

the uniform probability measure on F,. 

THEOREM 13. / f A  is the limit set of  a Schottky group then as e--~O 

(13.3) P~ _~o Patterson measure. 

In other words, if g: C-*R is any bounded, continuous function then as e--~0 

f gdP ~ ---> f gdH~A 



RENEWAL THEOREMS IN SYMBOLIC DYNAMICS 45 

where H~A is the Patterson measure (normalized 6-dimensional Hausdorff measure on 

A). There is a similar theorem for maximal e-packings. 

The key to Theorems 12-13 is the approximate local self-similarity of A. Let J be 

the intersection of A with a small disc, and let F: A----~A be the Nielsen map (Sections 9, 

10). Since F is conformal, F acts on J approximately as a homothety; consequently, 

any e-covering of J is mapped by F to an e0-covering of F(J) for a suitable ~>0. (Note: 

for the limit set of a semigroup of contractive homotheties the analogues of Theorems 

12-13 are simpler; see [13].) 

In proving Theorems 12-13 we shall, for ease of exposition, only discuss (13.1). 

We shall begin by modifying the symbolic dynamics constructed in Section 9. Let 

F be a Schottky group generated by T~, T 2 . . . . .  T k, as in Section 9; recall that F may be 

identified with the set Z ,  of finite admissible sequences from F~= {TI, T7 l, T 2 . . . . .  T~-~}, 

and that the limit set A may be identified with the set Z of infinite admissible 

sequences. Let Fr, r~>l, be the set of all sequences x ~ x  2 . . .  X r f : Z  , of length r, and let 

Y' (Y,) be the set of infinite (finite) admissible sequences from F ,  (Admissible transi- 

tions are defined as follows: if 

y = x i x  2 . . .  x r C F r, 

y '  = x ' ~ x ~ . . . x ' r C ~ r , ,  

then y y '  is admissible iff x~x~4=identity.) There is a natural homeomorphism Z---~Z r 

given by 

(13.4) x l  x2 . . .  - - ,  ( x l  x2 . . . Xr) (X~+ l X~+ 2 . . .  X 2 )  . . . .  

Thus, for each r>~l the limit set A may be identified with Y r, so there are infinitely many 

choices of "symbolic dynamics". 

Recall from the proof of Lemmas 9.1-9.2 that there exist 0<ct< 1 and r>~ 1 such that 

for each x~ xz... xr E F~ the derivative of the function (x  I x 2 . . .  x )  in absolute value is ~<a 

on t J , x ; l  1)~. Fix such an r; henceforth we will only use the sequence spaces Z% Y,. For 

notational convenience we will drop the superscript r and refer to these spaces as 

Z ,Z, .  The shift on Z U Z,  will be denoted by or,. All entries xi, y i, zi, w i  occurring in 

sequences, either finite or infinite, are henceforth from the alphabet F r 

(Note: The space Z ,  of finite sequences from F~ can no longer be identified with F, 

or even a subgroup of F. This will not matter.) 

Consider now the shift a: Z---~Z; the corresponding map on A is F (r), where F is the 

Nielsen map defined in Section 9. Define 
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ft')(z) = logl(F<')) ' (z)[, z E A, 

and let f :  Z-->R be the f~ullback o f f  (r) to X. Because of our choice of r, 

(13.5) f ( x ) > 0 ,  VxEX 

(see the proof of Lemma 9.1). 

LEMMA 13.1. The function f is nonlattice, and the unique 6>0 such that 2_~f=l 
(cf. (2.3)) is the same t~ as for the distortion function ofF.  

Proof. For this proof let g denote the distortion function of F (cf. Section 9). By 

construction, the pullback of f to the original sequence space (via the map (13.4)) 

coincides with Srg , and the Perron-Frobenius operator &Cz.r pulls back to ~ .  Conse- 
u �9 q ently 2z/=2~g. The statement about 6 follows immediately. That f i s  nonlattice follows 

from the fact that g is nonlattice (Corollary 11.1) and Theorem B (Section 7), together 

with the spectral radius formula. [] 

Let Dx, xv..xn, x I x2... x n E 5z,, be the discs defined by (9. I). (This is a subset of the 

system of disks defined by (9.1), because x,.EFr; hence, (9.2)-(9.5) still hold.) Define 

functions fl,f2: X UX.--*R by 

f,(x)=f(x), xEX, 

d l - }, 
f l(xlx2.. .xn)=inf{log -~z X~ (Z) : zEDx,x2 .... 

d -t 
f2(X, X2...Xn)=SUp{Iog-~ZX , (Z):z=Ox,x2...xn}, 

f,(r 

LEMMA 13.2. The functions fl and f2 satisfy 

(13.6) 

(13.7) 

(13.8) 

(13.9) 

A,A E .~JX uX,) 

o<f,(x)<.fe(X), VxEXux,, x=F~, 

fl(xlx~...X,)<~fl(xlx2...x~x~+z...x,+ ), Yxlx2...x.+jEX,, 

f2(xl x2... x,) )f2(xl x2... x, x,+ l"" x.+), Yx I x2... x,,+j E X,. 
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Proof. (13.8)-(13.9) follows from (9.2). The positivity of f l  follows from our choice 

of r. The H61der continuity off1, f2 follows from (9.5). [] 

Define 

(13.10) ~m----{xEX*:X=XlX2""Xm}, m-- - l ,2  . . . . .  

i.e., Xm is the set of all sequences of length m with allowable transitions. Define 

(13.1 I) a m = sup max{S n f2(x)-Sn ft(x): x E Z~+m}. 
n>_.0 

Observe that am-~Em(Varjf2+varjfl) , so by (13.6) 

(13.12) am-~0  as m--~oo. 

LEMMA 13.3. Let  

x=x  lx2...x~+ mExn+ m where n, m ~ l .  

For any Zl, z2 E/)x x 
n + l  n + 2 " " X n + m  

dist(zl, Z2) <~ eSnh ~x) eS J~ (x) <~ 
dist((xl x2... Xn) Zl, (xl x2 ... x~) Z2) 

Here x~ x2... x~ denotes both a sequence in X, and an element of  the group F. To 

prove Lemma 13.3 it suffices, by induction, to consider the case n= 1; for n= 1, the 

result follows from elementary calculus. 

LEMMA 13.4. For any x = x l x  2 ...Xn+mE~.,n+m, n, m>-l, 

e-SJ2~X) diam( D - )~<diam(Dxx r ) <<- e-Sdl~X) diam(Dxn+t ~+ ). 
X n + l  " " ~ n + m  1 2 . . . .  n + m  "'" 

This is a straightforward consequence of  Lemma 13.3. 

LEMMA 13.5. There exists C<oo with the following property: i f  ~ is any collection 

o f  pairwise disjoint discs from the set { Dxtxz... ~ : x I x2... x~ E 5z,} such that each disc in 

has diameter >-Ce, then the distance between any two distinct discs in ~ is >e. 

Note.  The constant  C does not depend on e. 

Proof. Consider a pair of disjoint discs whose distance is ~<e. Then by (9.2)-(9.3) 
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these discs are contained in discs Dxlx2 .... .x.+p Dxlx2..x,x',+~ whose distance is ~<e. It 

suffices to show that diamDxtx2...x,+<Ce. 

If dist(Dx1~2...~,~.+ ~, D~tx2...x/,+~)<,e then by Lemma 13.3 

e s'- If2(xl x2""Xn)e ~ dist(D~. ~.+~, Dx. xi+~) 

On other hand, Lemma 13.4 implies that 

diamDxtx~...x.+ l <~ e-S.fl(~lx:~.§ diamDx.+ . 

Consequently, since there are only finitely many D~,+~ and Dx.x.§ it suffices to show 

that there is a constant C ' <  oo such that 

S ,_ l f 2(x)-  S , f ~ (x) ~ C' 

for every sequence x ~. X.. But this follows from (13.11)-(13.12). [] 

Let K be any compact subset of R2; define N(e,  K )  to be the minimum cardinality 

of an e-covering of K (note: N(e)=N(e ,  A)). Clearly, N(e,  K)  is a nonincreasing, integer- 

valued, right-continuous function of e>0. If K is the union of pairwise disjoint, compact 

sets Ki such that dist(Ki, Kj)> 2e if i:Vj then N(e,  K ) =  F~iN(e, Ki). 

Define subsets ~ '  of Z ,  as follows. Fix },,,I>0 real and m~>l integer. Let ~ be the 

set of all x~ x2... x,+ m E Z ,  such that 

(13.13) S ,  f l (x l  x2... x~+,,) > (log e-1)_Tin, 

( 1 3 . 1 4 )  S j f l ( x l X z . . . X j + m ) ~ ( l o g g - 1 ) - ~ m  , V j < n .  

Lemmas 13.4--13.5 and relation (13.12) imply that if ~,,, is chosen sufficiently large then 

for each pair of distinct sequences x 1 x2 ... Xn+ m, x' 1 x~ ... x',+ m 6 ~m, 

(13.15) dist(/)~,x~ .... . + . , / ) ~  .... ',+.,) > 2e. 

Let x=x~ x 2 ... C Z; since S,f(x)---~oo as n---~oo and J] is a H61der continuous extension of 

f, there exists n<o~ such that (13.13) holds. Consequently, 

A = U Ax~x2...x~ ., 
~7 

Axtx2  ...x n --  A r]Dxix2.. .x .. 
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It follows from (13.15)-(13.16) that 

N(e) = N(e, A) = Z N(e, Ax,~2 .... .+,,). 

Fix W=WlW2...Wk~Zk, s o m e  k~>l, and let gw(x)=l if x i=w i for i=1,2 .. . . .  k, 

gw(x)=O otherwise. As e---)0 the sequences in ~ become longer; in particular, for all e 

sufficiently small each sequence in ~ has length ~>k. By the nesting property 

(9.2)-(9.3). 

(13.17) 

A t9 A =:~ 
- - w  1 w2 ... w k - - x  1x2... Xn+m 

x E @~: gw(x)= 1 

N(e, Aw, w2... w) = Z gw (x) N(e, Ax,x2 ... ,.+m). 
@7 

Let  X=XIX2...Xn+m~ ~7" I f F  is an e-covering of Ax, x2...x,+r, then by Lemma 13.3, 

( x l x2 . . . x , ) - lF  is an eexp(S ,  f2(x))-covering of Ax.+,...x.+,. Similarly, if G is an 

e exp(S, fl(x))-covering of A~.+I .... .+., then (x 1x2... x,)G is an e-covering of A~:2 ... ,.+,; 

Hence, by (13.17) and (13.11), for all e>0 sufficiently small, 

(13.18) 

Z Z ~ . . . .  S " f l ( x ) + a "  - -  " ~ gwtX ) ~v ~ ee ' Arl y2 ... y,,) ~ N(e, A,,,, w2... wk ) 
yE'~,,, x E  @~(y) 

<- Z Z gw(x)N(eeS"fltX)'Ayty2...rm ) 
yEZrn xE @t(Y) 

where Xr, is defined by (13.10) and, for each yEX m, 

~,(y)  = {x E ~ :  x,+ i = Yi, Vi = 1,2 . . . . .  m}. 

The sums in (13.18) are nearly of the same form as the sums considered in 

Corollary 3.2. Observe that by (13.8), if (13.13) holds then (13.14) is implied by 

(13.19) S,_ 1 fl(Xl x2... x.+,,) ~< (log e- l)-y, , ;  

on the other hand, if (13.14) holds then 

(13.20) S,_ 1 fl(xl x2... x,+ m) ~< (log e-l)-y, ,+a,~.  

4-898285 A c t a  M a t h e m a t i c a  163. Imprimd le 8 septernbre 1989 
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For y E Xm, define 

~(y )  = {x = x I x2... Xn+ m ~ X , :  Xn+ i = Yi, Vi <<- m and (13.13), (13.19) hold}, 

~"(y) = ~,(y)-~ ' (y) .  

Then (13.18) implies that for all e>0 sufficiently small, 

Z Z . . . . .  S"fl(x)+am N(e, A`0,,o 2...`0) gwtx) Ntee , Ar~y 2...y) ~< 
yE3" m xE e;(y) 

<~ Z Z x N eeS"fl(X) A g`0( ) ( , yly2...y,.) 
(13.21) y ~ Z  m Xe~;(y)  

+ Z X g`0(x)N(e-r"Ay, y2...y, )" 
yEX,. xE ~(y) 

Now each of the sums Xxee~(y ) is of the form Xy:o.y=yNc((log e-I)--~'m , y') for a suitable 

monotone G, where Na(a, y) is defined by (3. I0), hence Corollary 3.2 applies to each. 

The next order of business is to show that ifm is chosen very large (thus am is small, by 

(13.12)) then the ratio of the right and left sides of (13.21) is close to 1 as e---~0. 

LEMMA 13.6. There exists C<~ such that for any m ~ l ,  yEXm, O<e<-e(m), 

(13.22) 

Note. #F=cardinali ty of F. 

~ ~"( y) <. e-3( Ce-6e-am) 

Proof. By (13.19)-(13.20), i fxE  ~ ( y )  then 

Consequently, 

( log  e - l ) _  ~m ~ a n  - I f l  (X) ~ ( log  e - I) _ ~m + am" 

:1r Z ~ l{O<~Snfl(X)+loge+~m<~am} 
n=O ~:a,y=y x:o.~.x=y 

Z C,(~7) e-3e-6Ym(e 6am- 1), 

p:o,y=y 

by Theorem 4, where C,(y) is given by (3.4). Since ym~>0 and C,(37) is bounded for 

y E Y,, (13.22) follows. [] 
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LEMMA 13.7. There exists C<oo such that for each w=w I w 2 . . .  W k  ~ ,  , ,  

N(ep A~, ~o 2"'" ~o) ~< C(el/e2)_ ~ (13.23) 
N(e2, Aw, w2... w) 

for all O<el<~ez<<.e(w). 
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Proof. Recall that N(e, K)~>I for e>0 and K~=~ and that N(e, K) is nonincreasing 

in e. Choose e(w)>0 such that (13.21) holds for all O<e<e(w). Then for e<e(w) 

(13.24, Z Z g~(x)<~N(t,A~2...w)<.lVIZI Z g~(x)+ Z g~(x)}} 
yE Y- m xE ~e(y) L yE Y'm L xe  ~'.~'e(y) xE ~"e(y) 

where 

= max{N( e-r ' ,  ATIy 2 ...y.)'- Yl Y2''" Ym E ~m}" 

It follows from Corollary 3.1 that 

(13.25) Z gw(x)~Cy e-~ 
x E ~(y) 

for some 0<Cy<OO. Inequality (13.23) follows from (13.22), (13.24), (13.25), and (13.5). 
[] 

Consider again the double inequality (13.21). Fix y EZra; define 

Gy(t) = N(e t-r', Ay,y2...ym), 

Gy(t) = N(e t-y'+~', Ayly~...y .) = Gy(t+am). 

Then 

(13.26) Z X Nfee s"s A gw() - r,y2...y. ) =  Z NGy ((lOg t-I)-ym' :)' 
xE @~(y) :: oj=y 

(13.27) Z gw(x)N(eeS"fttx)+a"Ay~y2...yQ = Z Nd~ ((l~ 
xE ~'~(y) y: o .y=y 

where N o, N o are defined by (3.10). By Corollary 3.2, as e---~0 
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(13.28) N6y((log e-1)_),m, Y) ~ e-%-~m f | G(t) F(y, dt), 
J0  

(13.29) Nd ((log e-l)-y,,, y) ~ e-6 e -6r- fo ~ C,(t) F(y, dt), 

where F(y, t) is defined by (3.9). 

Recall that for each y the measure F(y, dt) is supported by [0, HflH| that 

foF(y, dr) is bounded above, and that for a suitable C>0, 

F(y,t)-F(y,O)~C(e6t-1), r y e  ~ .  tJZ 

(cf. (3.9)). Lemma 13.7 implies that there exists a constant C '>0  independent of m~>l 

and y E Zr~ such that 

Gy(t)/Gy(O)~C', VO<~t<~ilf, ll| 

dr(t)/Gy(O) >- C' ,  V0~</~<llfdl| 

Consequently, there exists a constant C">0 such that for each m~> 1 and each y E ~,~ 

(13.30) (Gy(t)/Gy(0)) F( y, dt) >t C", 

(13.31) (Gy(t)/Gy(0)) F(y, dt) >1 C"; 

since G~(t)/Gy(O) and Gy(t)/Gy(O) are ~< 1 for t~>0, it therefore follows from Corollary 3.3 

that as m ~  (recall a,,--->0 as m--->~) 

(13.32) .fo Gy(t)F(y, dt) �9 1 
fo Gr(t) F(y, dt) 

uniformly for y E 'E. m. 

Now consider the term 

(13.33) E gw(x)N(e -r', Ay~...y) 
x E ~ ( y )  

in (13.21). This is bounded above by (#@"(y))Gy(0). Hence, by (13.30) and Lemma 

13.6, for large m (small am) the ratio of (13.33) to 
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fo  a ( e-~ e -~rm t) F(y, dt) 

is small as e-->0, uniformly for y E Era. Combining this with (13.32) and (13.26)-(13.29), 

we find that for large m the ratio of the right and left sides of (13.21) is close to I for all 

small e>0. Letting m - - ~  we obtain 

(13.34) N(e, Aw, w2 .... ) ~ C(w) e -~ 

as e--,0. 

Examination of  (13.28)-(13.29) shows that the sequence w= w I w2... w k enters into 

the asymptotic formula (13.34) only by way of the distribution functions F(y, t). It 

therefore follows from (3.9) and (3.4) that 

C(w) = C ~ gw dv-6f 
3 

for some 0<C<oo independent of w. Hence,  (13.34) implies that as e--*0 

N(e) = E N(e, Awl ) ~ Cg -o 
W 1 

and 

N(e, Aw, w2... wk) f 
N(e) "~ J gw dv-6f = H~A(Aw, ... Wk)" 

This proves Theorems 12-13. [] 

14. Random walk and Hausdorff measure 

Recall that the Patterson measure (normalized 6-dimensional Hausdorff  measure on A) 

is the probability measure induced by the measure v-of on X. The Gibbs measure/~_6fis 

equivalent to v-of, hence it induces a probability measure ~(dx) on A equivalent to the 

Patterson measure. 

Let  { p / 7 E  F} be a probability distribution on F, i.e., py~>0, VTE F and Xrpr= 1. 

Let X~, X 2 . . . .  be a sequence of  independent, identically distributed random variables 

with distribution {pr}, i.e. X~,X 2 . . . .  are measurable F-valued functions on some 
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normalized measure space (f2, ~,  P) such that 

P{X, = ~,,; x 2  = ~'2; . . . ;  x ,  = ~,,} =py, py, ...py. 

For any discrete group F of  the types considered in Sections 9-10 and any z E C - A ,  

lim X 1 X2.. X~ z 

exists and is independent of  z, provided F is the smallest group that supports {Pr}- 

Define the exit measure r/(dx) on A by 

r/(A) = P (  lira Xt Xz. . .  X n z E A} 
n-.~otJ 

for Borel measurable A c A .  

THEOREM 14. There exists a probability distribution {py} on F whose  exit measure  

~=~. 

This follows from the construction in [12], which shows that any Gibbs measure has a 

representation as an infinite concatenation of independent, identically distributed ran- 

dom words of  finite length from the alphabet { 1,2 . . . .  l}. 

The probability distribution {py} given by Theorem 14 is not unique. It would be 

interesting to have a concrete example of  such a distribution. (For self-similar fractals 

the Hausdorff  measure has a very simple and natural representation as an exit measure: 

cf.  [7].)  
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