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1. Introduction 

The main result of this paper is: 

THEOREM 1. Let  Q be a convex hyperbolic domain in C" and suppose there is a 

subgroup FcAut(f~) such that 

(F1) F is discrete and acts freely (each ~ 6 F is f ixed-point free), 

(F1) F is co-compact  (in Q). 

Then • is biholomorphic to a bounded symmetric domain. 

The hypothesis that F acts freely can now be removed, see the comment on 

Lemma 11.8. 

This confirms a conjecture cited by Yau in [36], p. 140. The hypotheses are 

equivalent to saying that there is a compact complex manifold M whose universal cover 

is a convex hyperbolic domain Q in C". Thus, it is a type of uniformization theorem. 

Regarding the notion of hyperbolicity, see Proposition 2.8, and for a generalization 

weakening the convexity condition considerably see Theorem 2.6 which follows from 

Theorem 1 and the results in w 7. 

The first part of this paper introduces a new method that given a non-compact 

automorphism group acting on a domain Q produces continuous families of automor- 

phisms. One needs some mild regularity hypothesis on the boundary, unless the 

automorphism group is co-compact, in this case convexity suffices, see Theorem 2.4. 

The general idea is to use boundary localization, involving rescaling, an idea used by 

Kuiper and Benzecri, in the context of affine and projective geometry, in the fifties, 
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and many complex analysts in the seventies, including Pincuk, Greene and Krantz and 

I. Graham. Gromov and Mostow have used it in other contexts. We survey these and 

other subjects in [6]. Our new contributions here are firstly to prove a distortion 

theorem for convex holomorphic embeddings and to use this to reduce a complex 

analysis problem to one in affine geometry. Secondly, we exploit rescaling to produce a 

continuous family of automorphisms. Thus our particular technique of boundary local- 

ization is very different from what went before, we dub it the rescale blow-up and we 

believe that it can be applied to attack a very broad class of problems in the geometry 

of domains. We will elaborate this approach in future articles. A second application of 

the rescale blow-up is Theorem 7.1. 

The second part of this paper does not involve the rescale blow-up technique. The 

techniques there include a lot of structure theory of Lie groups, group co-homology, as 

well as complex differential geometry of compact manifolds. One may jump to the 

conclusion that there is an easy proof of the next theorem, we caution the reader that 

the hypothesis that F is discrete is essential here, and that one must use some fairly 

deep global ideas to exploit this. It is an open problem to generalize this to the 

(irreducible, pseudo-convex but) non-convex case. The main result of the second part 

is: 

THEOREM 2. Let Q be a convex hyperbolic domain in C" and suppose there is a 

subgroup FcAut(~)  such that 

(FI) F is discrete and acts freely, 

(F2) F is co-compact (in Q). 

Then/fAut0(Q) is non-trivial, 

(1) ~ has a factor Ql that is biholomorphic to a bounded symmetric domain, i.e. 

Q--Ql• where ~ is non-trivial and is biholomorphic to a bounded symmetric 

domain. 

(2) F has a finite index normal subgroup F' such that F'=F~xF~ where F ' c  

Aut(QI) xAut(Q2) and Fj=F' n Aut(Qj). 

This paper is divided into three parts, w 1, w 2 comprise 'Part 0'. In w I we quickly 

survey results relating compact, complex manifolds and bounded domains in several 

complex variables, and relate them to our new results. In w we introduce some 

notation, review some background material, and state our main results with some 

comments on the necessity of each hypothesis. 

Part 1 includes w 3 to w and introduces the rescale blow-up technique. w 3 

explains the idea, and subsequent sections provide detailed proofs. 
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This technique has many applications; to boundary regularity of holomorphic 

maps, to non-convexity of embeddings of Teichmtiller spaces in C", to classifying 

automorphism group actions on domains, to constructing canonical embeddings of 

domains, and to estimates of boundary asymptotics of intrinsic metrics. In this paper 

we confine ourselves to what is perhaps the simplest application; given a non-compact 

automorphism group acting on a convex domain f~ we produce continuous families of 
automorphisms. 

Part 2 continues the study of cocompact group actions, but from an intrinsic, 

geometric point of view, as opposed to Part 1 where we relate complex structure to 
affine structure. 

Compact complex manifolds and bounded domains 

Complex analysis in several variables has many features that distinguish it from the 

theory of one complex variable. In complex dimension n, with n~>2, the analytic theory 

of compact varieties is not based  on the geometry of domains in C", as it is in one 

dimension, via the uniformization theorem. On the other hand, there are very impor- 

tant examples of domains that cover varieties; the bounded symmetric domains, and 

Teichmiiller spaces (of punctured Riemann surfaces, these have finite-volume quo- 
tients). 

In this paper we solve the following problem: what bounded convex domains in C" 

cover compact complex manifolds? The answer is: only the bounded symmetric 

domains. In fact our technique leads to a stronger result (see Theorem 2.6, Definition 
7.3). 

The general study of domains that cover compact varieties commenced in the early 

fifties; H. Cartan and others [2] constructed automorphic forms to show that quotients 

of bounded domains are projective algebraic. Baily's extension of Kodaira's embedding 

theorem to V-manifolds implies that any quotient of a bounded domain f~ by a uniform 

lattice F (a discrete, co-compact group of holomorphic automorphisms) is projective 

algebraic, [20, 1]. Q is automatically pseudo-convex by a result of C. L. Siegel. Our 

conclusion, that f~ is symmetric relies on a stronger hypothesis; that af~ is h-convex at 

some point. The relationship of pseudo-convexity and h-convexity has been a subject 

of interest since the well known paper of Kohn and Nirenberg [23]. 

In the mid-seventies B. Wong [34] showed that if Q has smooth boundary and 

admits a co-compact group of automorphisms (i.e. f2 has a compact quotient), then it is 

biholomorphically the ball, B". J. Vey [3211 showed that if if2 is a generalized Siegel 



112 s. FRANKEL 

domain and admits a discrete co-compact group of automorphisms, F, then it is 

symmetric. The hypotheses in these theorems are quite special; essentially Wong 

assumes that f2 osculates the ball to second derivatives at a boundary point, and Vey's 

hypothesis guarantees that Aut0(Q) is large. In fact, it seems our result is the first to 

classify automorphism groups on a domain g2 without assuming, in some sense, that Q 

is canonically embedded, or close to a canonically embedded domain. 

The techniques we develop in this paper may be used to attack a wide class of 

problems in the geometry of complex domains, their embeddings and automorphisms. 

However we restrict the focus here to the aforementioned problem and leave other 

applications to subsequent papers. 

The results in this paper (in the complex 2-dimensional case) were obtained as part 

of the author's doctoral dissertation [5]. The proof has been reorganized slightly in this 

version and generalized to the n-dimensional case. This subsequent work was done at 

Columbia University and during one semester which I had the pleasure of spending at 

MSRI. I would like to thank NSERC for supporting me as a graduate student, 

Harvard's math department for their hospitality while I did the initial work, and 

Stanford's for their continuing help. 

I would especially like to thank my thesis supervisor Y. T. Siu, as well as K. Cho, 

Z. Gao, S. Kerckhoff, C. McMullen, H. Samuelson, J .  McGuinness, A. Fekete, G. 

Prasad, W. Goldman for helping to clarify various points. I also thank all those who 

helped me survive through my many relocations from one coast to the other. 

2. Convex hyperbolic domains and their automorphism groups 

In this section we present some basic definitions and notation, and references for some 

basic results, then we state our main result and provide some context for the hypothe- 

ses. 

In this paper D, ff2, will always denote open connected subsets of C". We call these 

sets domains. Q should be thought of as a complex manifold, and more precisely as the 

natural domain of definition of a ring of holomorphic functions. 

Definition 2.1. If f: fIi-->Q2 is holomorphic and Bg: fI2--->Ql such that g=f-1, then 

we say tha t f i s  a biholomorphism and ~21 is biholomorphic to ~2. We also write Q1-Q2, 

or ~2/f22. If ff22 is Q1 then we call f a n  automorphism. The group of automorphisms of 

f2 is denoted Aut(f2). 
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Q will always satisfy the following additional properties: 

(1) f~ is convex, i.e. 

Vx, y f i ~ , t s  1] =r t x + ( 1 - t ) y 6 f A  

(2) f~ is hyperbolic. (We always intend hyperbolic in the sense of Kobayashi.) We 

refer to [17] for a full treatment of this subject. The non-specialist reader can substitute 

the stronger condition that Q is bounded (but see Lemma 2). 

Kobayashi metrics 

We briefly review some basic facts about Kobayashi metrics, automorphism groups, 

and affine groups. If  a domain is hyperbolic then the Kobayashi distance k: Q x f~--~f~ is 

a metric on f~. 

k(x, y) = inf ~ d ( f~  I xi,f71 xi+l) 
i 

where xi 6 f~, J~: (z:lzl<l }---~ is holomorphic, and 'd '  denotes the Poincar~ metric on 

<z: Izl< 1 }. The infimum is taken over all sequences xi such that Xo=X, xN=y, N arbitrari- 

ly large, and all holomorphic maps f/, i= 1 . . . . .  N. 

We write k(x, y; f2) or k(x, y). It is an intrinsic metric, i.e. it depends only on the 

complex structure of f2, not the embedding to C". It follows that k is Aut(f2) invariant, 

i.e. k(yx, yy)=k(x, y). We let K(x, r) denote Kobayashi balls of radius r, {y: k(x, y)<r}.  I f  

~2 is convex then K(x, r) is convex as a subset o f  C" (not in the k(x, y)-intrinsic sense). 

The Kobayashi metric satisfies a simple comparison property: 

~ l c ~  2 ~ k(x,y;ff~l)>~k(x,y;ff~2). 

If k is a complete metric then we say Q is complete hyperbolic. In particular, if if2 is 

convex or if Aut(f~) is co-compact (see below), then f~ is complete hyperbolic. 

There are two important intrinsic Kiihler metrics on a bounded domain f2, the 

Bergman metric and the Einstein-K~ihler metric [12, 3, 26]. The latter is complete if f~ is 

pseudo-convex, in particular i f  if2 is convex or if Aut(f2) is co-compact. 

Automorphism groups 

References for the material below on Aut(f~) are [27, 18]. The most natural topology on 

Aut(ff2) is the compact-open topology. Given an intrinsic Kahler metric on f~, let 

denote the bundle of unitary frames on •, and ~t the projection to Q. Fixing f 6  

7%-898285 A c t a  Ma thema t i ca  163. Imprim6 le 8 septembre 1989 
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determines a canonical embedding f." Aut(f2)--->~, essentially y ~ d y ' f .  This induces 

the compact-open topology on Aut(f~) (independent of the choice of f ) .  Aut(t2) is a Lie 

group in the compact-open topology. In particular it is closed and locally connected. 

Furthermore any closed subgroup G is locally connected. N(G) denotes the normalizer 

of G. If f~=f~jx~2 and f2~f22, then Aut(~)=Aut(f~0xAut(Q2) (if ~j=ff22 then we 

must extend Aut(~0 x Aut(Q2) by Z2-permutations of the factors, in this paper we can 

ignore this point, because we are free to pass to finite index subgroups). 

A subgroup FcAut(f2) is discrete if it has no accumulation points in Aut(ff2), and 

co-compact if it has a compact fundamental domain in Q. (Occasionally we may 

consider F c G  co-compact in a group G, which means F has a compact fundamental 

domain in G [31].) One usually also assumes a group action is properly discontinuous so 

that the quotient is a manifold. In the case of isometric actions, discrete implies 

properly discontinuous, so this is redundant. 

The affine group M(n) acts on C ~ such that 

M(n) = {A: C"---~ C~: Az = Mz+b } 

with ME GL(n, C), and b E C n. We will discuss affine geometry in more detail in w 4. 

Bounded symmetric domains 

The Riemann mapping theorem fails for n > l ,  in fact there are infinite-dimensional 

families of holomorphically distinct domains, see [33]. In every dimension there are a 

finite number of domains whose group of holomorphic automorphisms satisfies: 

(1) Aut(~) is transitive on f~, 

(2) Aut(Q) is a semi-simple Lie group. 

These are called bounded symmetric domains (BSD), see [12]. If s where B is a 

BSD, we say ~ is symmetric. The reader should recall that every BSD has canonical 

convex embeddings; as a bounded domain the Harish-Chandra embedding and as 

unbounded domains the Siegel domains of types 1,2 and 3, see [30]. Intuitively 

speaking these embeddings are canonical because a certain class of one dimensional 

subspaces (extremal discs for the Kobayashi metric) are realized as affine discs or 

upper-half-planes. The canonical bounded and unbounded embeddings are related by 

the Cayley transforms. The technique we introduce here (rescale blow-up), provides an 

elementary geometric construction of the Cayley transform, using Aut(f2), and M(n). In 

fact, rescale blow-up provides canonical embeddings for a much larger class of do- 

mains. 
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Statement of theorems 

We apply the rescale blow-up to prove the following theorem: 

THEOREM 2.2. Let  ~2 be a convex hyperbolic domain in C" and suppose there is a 

subgroup FcAut(~)  such that 

(F1) F is discrete and acts freely, 

(F2) F is co-compact  (in ff~). 

Then Q is biholomorphic to a bounded symmetric domain. 

The development of the tools we need occupies all of this paper, at the end of w 13 

we provide the proof of Theorem 2.2. 

Remark  2.3. (1) By a well-known result of Borel every BSD admits a discrete, co- 

compact group of automorphisms. 

(2) If we drop the hypothesis (F1) then the result fails, Piiateski-Shapiro construct- 

ed homogeneous bounded domains that are not symmetric. By results of Borel, Hano 

and Koszul, a homogeneous bounded domain admitting a discrete co-finite volume 

group of automorphisms must be symmetric. There are examples due to Katz-Vinberg 

and later, W. Goldman, of convex hyperbolic domains that are not homogeneous, but 

with co-compact automorphism groups, [7], [16]. The fixed-point free hypothesis 

should be removable. The main problem is in extending Lemma 11.8 to this case. 

(3) If we drop the hypothesis that f2 is convex then the conclusion fails, because 

the universal covers of Kodaira surfaces [21] embed in C ~ by the Griffiths uniformiza- 

tion technique (essentially Bet's simultaneous uniformization construction in this 

case). However, our result implies that the Kodaira surfaces, as well as the surfaces of 

Mostow and Siu [25] have no convex uniformization. 

(4) We can weaken the convexity hypothesis to a local condition on a single point 

at the boundary, see Definition 7.3, similarly we can strengthen the assertion of non- 

convexity of the last remark to a local property: no boundary point can be h-convex. 

In part one we prove: 

THEOREM 2.4. Let  if2 be a convex hyperbolic domain in C ~ and suppose there is a 

subgroup FcAut(ff2) such that 

(F2) F is co-compact  (in f~). 

Then Aut0(~2) is non-trivial, in fac t  there is a convex holomorphic embedding w: f2--~C" 

such that w(ff2) is invariant under a l-parameter group o f  translations. 

8-898285 Acta Mathematica 163, Imprim~ le 8 septembre 1989 
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The proof is at the end of w 6, it relies on the work from w 4 to w 6, the idea is 

sketched in w 3. 

In part two of this paper, to begin, we will reduce the problem to the case where 

s is essentially irreducible, i.e. no finite covering has a decomposition as a product 

of complex manifolds. 

In the second part of this paper we prove the following result and apply it to the 

proof of Theorem 2.2. 

THEOREM 2.5. Let  Q be a convex hyperbolic domain in C" and suppose there is a 

subgroup FcAut(s such that 

(F1) F is discrete and acts freely, 

(F2) F is co-compact  (in g2). 

/ f  Aut0(Q) is non-trivial then [2 has a non-trivial factor  which is biholomorphic to a 

bounded symmetric domain. 

We provide the proof of Theorem 2.5 in w 13. 

Actually one only needs convexity near one boundary point p (in the hypothesis of 

Theorem 2.2) and we are free to choose any local holomorphic chart to make 

aQ NB(p, e) convex. We introduce the notion of h-convexity in w 7 so that we may state 

our result in proper generality: 

THEOREM 2.6. Let  Q be a bounded domain in a Stein space and suppose some 

p 6 aQ is h-convex, suppose there is a subgroup FcAut(Q) such that 

(F1) F is discrete and acts freely, 

(F2) F is co-compact  (in Q). 

Then Q is biholomorphic to a bounded symmetric domain. 

This follows directly from Corollary 7.2 and Theorem 2.2. 

Appendix 

We show that for most of our purposes, we can replace the hypothesis of hyperbolicity 

by something simpler. 

Definition 2.7. We say a domain f2cC" is affine hyperbolic if any complex affine- 

linear embedding of the complex line into s 

z~--> z ' A  +B 
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for A, B E C" is a constant map. Equivalently, given a complex (affine-linear) line L in 

C", L - L  N f~ contains at least two points. 

PROPOSITION 2.8. The following are equivalent: 

(1) Q is convex and hyperbolic. 

(2) f2 is convex and affine hyperbolic. 

(3) f2 is convex, and there is a bounded holomorphic embedding w: f2--~C". 

(4) For all L (as above), L N f2 is convex and L - L  N ~ 0 .  

Proof. The second and fourth items are trivially equivalent. (3)=~(1)=,.(2) is obvi- 

ous, so we show (2)=~(3). 

We will produce co-ordinates (Zl .. . . .  z,) such that f~ is bounded away from the co- 

ordinate hyperplanes: 

{z E C": Bi, zi = 0} N [B(0, e )+~]  = O. 

Then the co-ordinates (Wl ..... w,) where wi = 1/zi provide the bounded embedding. Note 

that B(0, t) is a priori a distance ball in the z-co-ordinates, i.e. in the Euclidean metric 

E ]dzil 2, however any pair of affinely equivalent Euclidean co-ordinates determine 

uniformly equivalent Euclidean metrics. Thus, we work in fixed co-ordinates 

(xl . . . . .  x,), and with the associated Euclidean metric d(x, y). 

It suffices to find complex hyperplanes Hi, i=(1 . . . . .  n) intersecting transversally, 

such that d(Hi, Q)>e. 

We construct the H; by induction; given complex hyperplanes Hi, i=(1 . . . . .  k) 

intersecting transversally, such that d(Hi, f~)>e, it suffices to find an Hk+ 1 satisfying the 

inductive hypothesis. 

Let Lcf ' lHi  be a complex line, and Lx the line parallel to L that passes through a 

point x E ff~. Since ~ is affine hyperbolic, there is a point p E Lx N af~ and a supporting 

hyperplane Hp to aff~ at p. Note that H,  N Lx transversaUy (x 6 s but Hp N fl=O).  

Let Hk+l=Hp+v, where v• {Ivll>e and v translates Hp away from if2. This 

completes the inductive step. 

COROLLARY 2.9. The Bergman metric and the Einstein-Ki~hler metric are well- 

defined on any convex hyperbolic domain. 

3. Sketch and discussion of the proof 

The philosophy of our approach is that certain problems in complex analysis involving 

automorphisms and maps of convex domains can be directly reduced to problems in 



118 s. FRANKEL 

affine geometry by an elementary technique involving localization near a boundary 

point. In this work we develop this technique called rescale blow-up far enough to 

show that the domain f2 of Theorem 2.2 admits a 1-parameter group of automorphisms 

o, E Aut0(~). 

We can push the technique much farther and it is quite possible that one can use 

techniques relating affine geometry and complex analysis to complete the proof, 

however we have chosen a different route in this paper; we use intrinsic metrics 

together with structure theory of Lie groups and some differential geometry to show 

that the closed group generated by F and a, is semi-simple and (at least if ~2 or F is 

irreducible) transitive. 

The reasons we chose this latter approach are: (i) It is probably simpler than 

developing the rescale blow-up technique, though it relies heavily on the fact that F is 

discrete. (ii) It yields a result which is interesting in itself, Theorem 2.5, and techniques 

that are pertinent to the structure theory of negatively curved compact manifolds. For 

such a result, see the paper of P. Eberlein in Acta Math., 149 (1982), 41-69, (iii) There 

should be some generalization to the bounded non-convex case. 

The main new technique developed here is named 'rescale blow-up', but should 

not be confused with the like-named process in algebraic geometry, it is closely related 

to the rescale blow-up construction of tangent spaces (or cones) in geometric measure 

theory, or Gromov's theory of Hausdorff convergence [9]. (This is clear from equation 

(2) below.) It connects complex geometry to affine geometry near the boundary of a 

domain in a fundamental way. It is a simple application of one-variable techniques, 

which contrasts sharply with the more sophisticated techniques from several complex 

variables, that were previously applied to this type of problem. 

The second half of our proof is differential-geometric. Various points in our proof 

rely on the existence of intrinsic metrics: the Kobayashi, Bergman, and Calabi-Yau or 

Einstein-Kahler metrics. We never use estimates of the boundary asymptotics of these 

metrics. One expects that the rescale blow-up can be used to rederive such estimates 

with very weak regularity hypotheses on the boundary. 

We will sketch and discuss part one here, relegating the sketch of part two to the 

body of that chapter. 

As motivation, we ask; given f2 as in Theorem 2.2, how can one construct an 

embedding w: ff2--->C n such that B=w(ff2) is a canonically embedded bounded symmetric 

domain? The answer is surprisingly simple; essentially we construct such a map w, 

with 

w=limAi~,i, AiEM(n), ),i~Aut(ff]). (1) 
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Ai, )'~ must be chosen carefully, see w 6. It follows that 

w(ff2) = lim Ai f2, (2) 

in fact there is a p 6 aft2 such that 

w(f2) = lim Ai(ff~ tq B(p, e)) 

for arbitrarily small e. Thus we call (2=w(f~) the rescale blow-up of f2 at p. 

In this paper we don't carry the analysis of w(~) far enough to show that w(f2) is a 

canonical embedding. In fact this follows as a consequence of Theorem 2.2 and a 

further development of the rescale blow-up technique, (to appear elsewhere). 

If we impose an additional hypothesis, w(f2) is easily seen to be canonically 

embedded, namely, suppose that f2 osculates a bounded symmetric domain B to 

'sufficiently high order' at a boundary point p E af2 tq OB (this is essentially the point in 

B. Wongs theorem as well as extensions by Green and Krantz). The significance of our 

approach is that we don't  require such strong hypotheses (furthermore, the above 

works use ~-estimates to control boundary behavior, whereas we only use the 1- 

variable Schwarz lemma). There is a possibility of proving Theorem 2.2 by using affine 

geometry to classify convex domains with co-compact automorphism groups, but this 

looks quite difficult, at the same time it would give a more general result (see Remark 

2.3). 

The choice of Ai is determined in two different ways; firstly by 

A i Z = [dyi(Zio)] - l ( z - x  i) (3) 

as follows from equation (1) (see Definition 6.1), and secondly by equation (2) which 

implies that Ai are related to the shape of aft2 at p. (Actually it is only certain asymptotic 

properties of the sequence that are uniquely determined by the geometry.) It is the 

interaction of these two considerations that enables us to relate the affine geometry of 

af2 to the complex structure (and intrinsic geometry) of g2. 

The first step in our proof is to show that wi=Ai'~i has a convergent subsequence. 

The necessary estimates come from observing that the affine-structure-function 

q~: ff2x ff2---~g2 associated to a holomorphic convex embedding w by 

dp(x,y)= w - l ( l [ w ( x ) + w ( y ) ] )  

form a normal family, since f2 is hyperbolic. 
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It is easy to show that convergence of  w~ implies convergence of  w,(Q). In 

exploiting equation (2) we rely heavily on the facts that w(f2) is open and hyperbolic 

(not too small, not too big). The analysis proceeds  from here entirely on the level of  

affine geometry.  We conclude that w(f~) is preserved by a 1-parameter group of  

translations ot E Aut0(f~). 

4. Convergence of holomorphic embeddings 

In this section we discuss two notions of  convergence for holomorphic embeddings. 

Given a sequence of  holomorphic mapsfi:  f~--~C ~ o f  a domain f~, l imf i=forf i - ->fshould  

always be interpreted in the sense of  uniform convergence on compact  subsets of  ~ .  

We now introduce a notion of  convergence of  subsets of  C n essential to this work. 

It is based on the well-known notion of  Hausdorffdistance; given two sets, SicCn(we 

take for granted a euclidean or hermitian metric on C n) 

d(p, S~) = inf d(p, q), 
q E S  i 

d(Sp S 0) = sup sup d(p, Si). 
i=0, 1 p E Sl_  i 

The HausdorffR-seminorm is 

dR(S~, So) = d(S 1NB(0, R), S o fiB(0, R)) 

and we say Si---~S (as i - - -~)  or  limSi=S if 

VR >> 0, dR(S i, S) ~ 0 

and we call this convergence o f  sets. 

Remark 4.1. (1) We only apply this notion of convergence to convex sets, including 

affine linear subspaces of  C ". (Convergence of sets induces the standard topology on 

Grassmannians.) 

(2) The distance of  a domain S to its closure S is zero. Since there is a I - 1  

correspondence of  open convex domains to their closures, this generally causes no 

confusion. Occasionally we must specify whether  sets Si are open or closed. 

(3) For  all S, d(S, fD)= ~.  
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(4) The Blaschke selection theorem proves convergence of Cauchy sequences of 

convex sets, but we don't need it in this paper. 

The important point for this paper is that convergence of a sequence of convex 

holomorphic embeddings wi---,w of a hyperbolic domain g2, implies convergence of 

their images, wi(g2)--->w(f~). If we drop the convexity hypothesis this fails, even for 

n=l ;  

Example 4.2. Let D be the open unit disc in C, and D+t its translate. 

DNO+t=f~  r162 Iltll~2. 

Let Et=DUDt and ft:D---~Et be the biholomorphic map such that ft(0)=0, and 

f~(0) E R. Clearly limt_,2ft=f is the identity map, f(x)=x, sof(D)=D. On the other hand, 

lim,_,2ft(D) =E 2. 

We call this a bubbling-off phenomenon because of its similarity to like-named 

ideas in harmonic maps. We will use the rescale blow-up technique introduced in this 

paper to analyze bubbling-off in the several variable context in a future paper. 

We conclude with two basic lemmas, useful in analyzing convergent sequences of 

convex sets; 

LEMMA 4.3. Given convex sets D j such that D~---)DJo, j=I ,2 .  

(1) I f  all D~ are closed, then 

lim(D~ N D~)~D~ N D 2. 

(2) I f  all D~ are open, then 

lim(D~ N D~) = D~ N D~. 

The proof is trivial. There are easy examples where the first inclusion is strict. 

Subspaces of C n defined by systems of equations of the type 

(x: (x, vi) = ti} 

with vie C n, tie R are referred to as affine linear subspaces. We use the notation A+B 

to denote (a+b: a EA, b EB}. 

LEMMA 4.4. Suppose g2i are convex domains and ff2i--*ff2o. I f  Pi are affine linear 

subspaces, and Pi---->Po, and there is a compact Kcg2o such that Vi>>0, K N P ~ ,  then 
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lim(Qi f] Pi) = f2o f] Po, 

Proof. Suppose K+B~cf2o and fix R very large. (By our definition of  conver- 

gence). It suffices to prove the lemma assuming f~icBn. The key point is that 

f fd iNPiNg~f~Ve  ::16 such that 

(Pi-I-B 6) f'] ~-2ic(P i ['l Qi)+ B~ 

where 6 is independent  of  i, in fact 6<erl/R suffices. (To see this the reader  should 

consider supporting hyperplanes H to ~'~i at p 6 a f f J i f ' l P  i noting HN (K+B~)=~.  One 

constructs a cone C on p, such that ~"~i["l C=(~.)  
Now Pi+B6 is an open set, and the previous lemma may easily be applied. 

Remark 4.5. Given Pi as above (affine linear subspaces such that Kf]PiW-Q~), there 

is always a convergent  sub-sequence,  by compactness  of  the Grassmannian. 

5. Normalized convex embeddings 

Definition 5.1. Given a compact  set K ' c  f2. A family ~ of  embeddings of  a domain ~ is 

normalized at K'  with parameters  K, R or (K',  K, R)-normalized, if there is a compact  

K c C "  and R > 0  such that Vw6 ~ B x 6 K '  satisfying 

(1) w(x)6K,  

(2) II[dw(x)]ll, {l[dw(x)]-'l{ <~ R. 

The simplest choice of  parameters  is R =  1, K={0},  and K ' =  {x0}. In this ease we 

say that ~ is simply normalized. 

Remark 5.2. There are many essentially equivalent ways of  defining norms on 

tensors T=T~ such as dw, Vdw. In the case at hand, w: ~J--~C" (there are given co- 

ordinates in the domain and range), so one simply lets ]lTH=sup]]T~]], the maximum 

entry. Similarly, one can use the Euclidean metrics on domain and range to define 

Euclidean metrics on all tensors in a natural way. The maximum of  liT(x)]], for x 6 K ,  is 

denoted HTIIK. 

Definition 5.3. Given a convex embedding w: Q--~C n, the affine-structure-function 

~: ~• is defined by 

dp(x, y ) =  w- ' ( l [w(x )+w(y ) ] ) .  
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Note that if w is holomorphic then so is q~. 

The following lemma is well-known, but we reprove it using the affine-structure- 

function, (the same proof works for a broad class of metrics). 

LEMMA 5.4. I f  g2 is a convex hyperbolic domain in C n then the Kobayashi  

distance-balls K(x, R) are convex (in the euclidean structure). 

Proof. Recall, 

k((xl, Y I), (xz, Y2); if21 X ~2) ~--- sup { k(xj, x2), k(y I , Y2 )" (4) 

Thus the Kobayashi balls in g21 • are of the form K(x, r, QO• r, f22). In the 

case at hand ~1 = f~2= Q, and x, y fi K(xo, r) ~ (x, y) 6 K((xo, Xo), r). 

Since tp is distance decreasing, k(cP(Xo, Xo),$(x,y))<k((xo, xo),(x,y)),  which, for 

x, y 6 K(xo, r) implies, q~(x, y) 6 K(xo, r) => �89 + y) 6 K(x, r). But this easily implies K(x, r) 

is convex. 

COROLLARY 5.5. I f  Q c C "  is a convex domain and Q=QIxQ2 (as complex mani- 

folds) then the submanifolds (x, ff2z) and (f21,y) are linearly embedded in C". 

Proof. Applying the preliminary comment of the proof of the previous lemma 

together with the conclusion of the previous lemma and the fact that a holomorphic 

subvariety of the boundary of a convex set is linearly embedded in C n, proves the 

corollary. 

THEOREM 5.6. Let  Wi: ~-~---->C n be a (K',  K,R)-normal ized family o f  convex holo- 

morphic embeddings (Definition 5.1). 

(1) There is a subsequence Wij which converges, wij---~w (uniformly on compact  

sets). 

(2) w is a (K',  K, R)-normalized convex holomorphic embedding. 

(3) lim w,)(f2)=w(f2) (as sets). 

Proof. Let us assume at first that the family is simply normalized, the general case 

will easily follow. 

To each wi associate the affine-structure-function q~. Since $i maps to Q and Q is 

hyperbolic, there are constants C(K, f2) independent of i, such that 

}lYriC,IlK < C(K, Q). 

(K is an arbitrary compact set in g2. We will follow the custom of using ' . . .<C'  to mean 

there is a constant such that . . .<C, allowing C to change throughout the proof.) 
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point on the diagonal {(x, y): x=y} (note @(x, x)=x); 

2wi, ~(x)dPi~,~(x, x) = Wi,).(X) 

S. FRANKEL 

Now 2wi(~,(x,y))=w,(x)+wi(y), and we proceed to differentiate twice by x at a 

a _ 1 6 a  
~ i , ) . -  2 a 

(the Kronecker delta) 

2Wi, a,#(x)dflia,;~(X, x) dpfli,;t(x, x) + 2Wi, a(x) r a(x, x) = W i,;~,,~(x) 

and by the last two formulae 

l Wi, 2,).(X)'q-Wi, ct(X) ~)~,~,).(X, X) ~-" Wi, 2,).(X) 

and we conclude 

The normalization, 

implies 

IlVdwll~r < CIIdwllK. 

Definition 5.1(2), and a comparison theorem for O.D.E's 

which with Definition 5.1(1) gives 

tldwllK < C 

Ilwll,r c 

and the first item of the theorem follows. 

Now det(dw(x)) is a holomorphic function, and (supposing without loss of general- 

ity that wi~w)det(dwi(x))---~det(dw(x)). But det(dwi(x))*O since wi are embeddings, 

and det(dw(xo))*O by Definition 5. l(b), so Hurwitz's theorem implies det(dw(x))~O. In 

particular, 

Together with the fact that 

II[dw]-IIIK < C. 

wi(K)---> w(K) (5) 

as sets, for any K compact, this easily implies that [wi]-l--->u is well-defined on w(K), 
and u-~=w on K. Since K is arbitrary, w is an embedding. This argument is essentially 

in a paper of Fornaess and Sibony. 
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Recall that Vi, R the Kobayashi balls wi(K(x,R)) are convex. By equation (5) 

w(K(x, R)) is convex so w(f~) is convex. This finishes the proof of the second item of 

the theorem. 

By equation (5) 

D = lim Wi(~'~)SDW(~-~). 

The reverse inclusion is a consequence of convexity, we prove it by contradiction; 

Suppose p E D -  w(Q). D, w(~) are convex so, denoting the convex-hull of a set S by 

Q(S), 

Q(w(~) U B(p, e))cD. 

In particular, 3 U open such that 

1 = {tp+(1-t)Xo: tE [0, 1]}c Ucwi(Q), Vi >> O. 

By the comparison theorem for Kobayashi metrics 

k(x o,p; wi(Q)) < C, Vi >> 0 

and because f2 is complete hyperbolic, p Ew(K(xo, C+l))cw(g2), contradicting 

p ED-w(g2). The last item of the theorem follows by the contradiction. 

Remark 5.7. An immediate corollary of the estimates in the proof, is that the 

generalized normalization (at K' ) implies normalization at x0, but with different choices 

of K, R. Hence the theorem above is valid with the more general type of normalization. 

In fact one just has to compose each w e on the left by an appropriate Ai E M(n) to deduce 

the necessary estimates. 

6. Rescale blow-ups 

We will employ the following convention systematically when dealing with sequences s i 

of various types of objects; if si has a convergent subsequence s,), we will automatically 

relabel the latter as si. To alert the reader when we do this we write 'without loss of 

generality'. This indicates that the subsequence satisfies all the conditions we have 

imposed on the sequence si. 

Definition 6.1 Given a compact set K 'c f2 ,  i K' z0 E and ~/i ~ Aut(f2) such that 
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X i -~ ~i(Z~) "--> p E a~'~, 

let Ai E M(n) be defined by 

Then the embeddings 

A i z  = [ d ~ , i ( z ~ ) ] - l ( z - x i ) .  

Wi = Ai"  ~i 

satisfy the hypotheses  of  Theorem 5.6 and there is a convergent subsequence without 

loss of  generality 

Wi---> W. 

We call w(~)  the rescale blow-up of  Q at p by 7i or, the rescale blow-up of  Q by Ai, 

noting that 

w(Q) = lira A i ~'~. 

Note that when we extracted the subsequence of  wi we did the same with 7i, Ai. 

When Aut(~)  is co-compact  we can choose ~i such that the xi have particularly 

nice properties; in fact given any xi---~p and a compact  fundamental domain K one can 

choose 7i such that 7~ -~ xiE K. 

Definition 6.2. We say the rescale blow-up of  ~ defined above is very regular if the 

sequence xi satisfies the following property (we continue with the notation of  the 

previous definition): there is an affine complex line L c C  n such that p EL NOQ and 

(1) D=L N ~ has a unique supporting line IcL  at p. In this case OD is differentiable 

at p. 

(2) xiEL and xi--~p radially in D, i.e. the xi lie in a(n affine real) line through p and 

perpendicular to 1. 

In this situation we also use the following notation: let t be an arclength parameter  

for I such that t=O a t p ,  let v be the constant vector-field on C" such that v=Ot on 1, and 

let ore M(n) represent  the 1-parameter flow determined by v, vtz=z+tv. 

Remark 6.3. (1) Ai conjugates the group at to another  translation group o~. The 

latter have a convergent  subsequence,  and we will see that w(~) is invariant under  the 

limiting group. 

(2) The notion of 'admissible approach '  is connected to the rescale blow-up in a 

natural way, but we defer  this topic to another  article. The next definition is a simple 
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manifestation of this phenomenon, a special case that will suffice for the purposes of 

this paper. 

The following notation will be employed for the rest of this section: given a set X 

such that l imAiX exists, we denote the limit by .~'. Thus w(Q)=O, however in general 

is not the same as w(X). 

A very regular rescale blow-up is obtained as follows. 

LEMMA 6.4. Let g] be a convex domain, then almost every boundary point p 6 aft2 

has a unique supporting hyperplane. 

This well known fact follows from an analysis of the Gauss map on 092. In fact, in 

this paper we only need this fact for curves in R 2, cross-sections of Q. (Increasing 

functions are a.e. differentiable.) 

We call such p differentiable points. Choosing such a p, we can easily get L, xi that 

satisfy conditions 1 and 2 of the definition of 'very regular'. If Aut(f2) is co-compact 

with compact fundamental domain K',  we can choose 7i such that [yi]-l(xi)EK'. 

Now there are two simple lemmas that will give us the desired automorphisms 

of Q. 

Definition 6.5. We say a convex hyperbolic domain Q c C  n is large if there is a real 

1-dimensional affine-linear subspace (i.e. a real line) R c C "  such that Rcff2. (To be 

careful, one may prefer saying that a particular convex embedding is large.) We 

associate to a large domain the constant vector field OR on C n (tangent to R), and the 

associated flow oR. 

LEMMA 6.6. I f  O is a very regular rescale blow-up o f  ~ then it is large. 

LEMMA 6.7. I f  O is large then it is invariant under the associated flow, tYRO=(2 

for all tER, i.e. z E O , t E R ~ z + t v E O .  

Proof (of Lemma 6.6). By the construction, OEAiL for all i, so without loss of 

generality AiL----~L and by Lemma 4.4 

s N O = lim(AiL f qA  i Q )  = lim Ai(L N Q). 

Now by projecting into s this reduces to a problem of (complex) affine geometry in 

one complex dimension. We state it as a separate lemma. 

LEMMA 6.8. Given a convex domain D e C  with a differentiable point p E aD, as 
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well as xiED such that xi---->p radially, and AiE sO(l) such that Aixi=O. If  AiD--->f) where 
1~ is an (open) domain in C, then 1~ is large. 

Proof. In the l-dimensional case A~z=a~z+fl~, ai, fli~ C. In particular 

IIAix-Aiy[l=llail l  rlx-yll. 

1 2 Inscribe a triangle (q),p, q~) in D such that q~EOD and the segment [q,,qi] is 

parallel to I, and x, E [ql, qZ]. By uniqueness of I and radial approach of the x~, we see 

IIq i-xill 
ilp-x,II 

In fact the vertex angle at p tends to :r. 

But AiD-->DDB(O, r) implies 

IIA,(p-x,)ll > r, Vi>> 0, 

thus 

IIA,(q -x,)ll oo 

and we are finished. 

Proof (of Lemma 6.7). Given xEg) and R~(2 as above, the convex-hull 

Q(B(x, e)UR)c~ is invariant under o R. 

Remark 6.9. (1) The vector field of the flow at is holomorphic on f2. 

(2) It is very possible that one can apply the rescale blow-up technique to study 

domains with non-compact automorphism group, especially with some regularity hy- 

pothesis on 0fL 

(3) The relationship of the sequence 7i E Aut(t2) to a, is a little subtle, which 

accounts to some extent for the difficulty in exploiting ot in part 2 of the proof. In this 

regard one should note that the group of automorphisms obtainable by rescale blow-up 

of the upper-half-plane, with TiEs C(1) is not transitive. However with regularity hy- 

potheses on ag2 one could use affine geometry to produce different types of complete 

holomorphic vector fields on w(g2) in a systematic way. 
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Outline of the proof of Theorem 2.4 

We produce a holomorphic embedding of g) via the rescale blow-up as in Definition 6.1, 

and subject to the additional hypotheses in Definition 6.2. The lemmas from Definition 

6.5 to Lemma 6.8 guarantee that this embedding is invariant under a one parameter 

group of translations. 

7. H-convexity 

Slight refinements of the rescale blow-up technique allow us to weaken the convexity 

hypothesis in our main theorems to convexity near one boundary point. Roughly, af~ is 

h-convex at p, if af2 n B(p, e) is convex in some holomorphic chart for B(p,  e). 

We assume throughout this section that ~ is a bounded subdomain o f  a Stein 

space V with some hermitian metric e on V, both of complex dimension n, and that 

p 6 aQ. If V=C" then e is the euclidean metric. Clearly f~ is Kobayashi hyperbolic. 

The main goal of this section is to prove 

THEOREM 7.1. I f  there exists ~i E Aut(g2) and z E if2 such that yi(Z)-'-~p, and i f  af~ is 

h-convex at p, then ~ is biholomorphic to a convex hyperbolic domain in C". 

COROLLARY 7 .2 . / fAu t (~ )  is co-compact  in if2, and i f  ag2 is h-convex at p, then if2 

is biholomorphic to a convex hyperbolic domain in C". 

Proof  (of corollary). One uses the comment after Definition 6.1 to see that there 

exists TiE Aut(ff~) and z i E K c ~  such that 7i(z)--*p. 

Definition 7.3. (Distances and balls B are with respect to the hermitian metric e.) 

p E a f~cC n is peak-convex if there exists e>0 such that 

(1) S=aff2 nB(p,  e) is convex and 

(2) for all complex affine linear H c C " ,  such that p is an interior point of S N H in the 

topology of H, S n H c c S  (i.e. complex linear subdomains of S do not extend to aS). 

Given p 6 aQ with f2 a bounded subdomain of a Stein space, af2 is h-convex at p, if 

there exists e>0 such that u(af2 nB(p,  e)) is peak-convex in some holomorphic chart 

u: B(p, e)--~C n. 

There is a unique maximal set of the form S n H; since S is convex, the convex 

hulls of the union of two such sets is also such a set. 

For the rest o f  this section we use p, e, S. H etc. as in Definition 7.3 with H 
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maximal as in the remark. The condition involving H guarantees that 092 is strictly 

convex in a coarse sense, and that the rescale blow-up of  f~ will be hyperbolic.  

We will use an idea of  Rosay to prove 

LEMMA 7.4. I f  K c c f 2  is compact, yirAut(f~)  and z r K  such that y,<z)-~p, then 

vi(K)ccB(p, e), Vi>>0. 

One feature of  our  approach here is that we avoid the usual use of  global peak- 

functions for this type of  boundary  localization. We feel this is worthwhile because it 

frees us from considerations of  boundary regularity. We prepare for the proof  with: 

Let  D={zrC:[z[<I} .  Given any two points x, yr~2 there is a holomorphic 

j2 D---~ff~ such that x, y 6f (D) .  In fact x, y can be joined by a real analytic curve, which 

can be analytically continued to provide such anf .  We can always suppose tha t f (0 )=x .  

Now let 

l(x, y) = inf d ( f - ' x , f - l y )  

where f: D ~ f 2  is holomorphic,  and 'd '  denotes the Poincar6 metric on D. The infimum 

is taken over all holomorphic maps f .  It is irrelevant for our purposes here whether  

l(x, y) is a distance, we only care that it is intrinsic, lO, x, ~,y)=l(x, y) for y E Aut(f~). 

We let L(x, r) denote 'balls'  of  radius r; {y: l(x, y)<r}.  Given any Kccff2 compact ,  

there is clearly an L(x, r)=K. 

LEMMA 7.5. Suppose f: D---~(2 such that f(O)=p, where Q is h-convex at p. Then 

f: D-->S n H. 

This is clear for f:D0---~(2 where Do is a small neighborhood of  0. (One can use a 

local peak function for S n H to see this.) By analytic continuation it is true for D. 

Proof o f  Lemma 7.4. Given p6aQ h-convex. Any sequence of  holomorphic 

lpi:D----~ has a convergent  subsequence,  without loss of generality v/i---~V:D----~(2 

converges. If  vi(O)=xi----~p, then V(D)ccS  NH by Lemma 7.5. Using standard facts on 

compactness and uniform convergence,  it follows that, Ve l<<l , r  B6 such that if 

x 6 B(p, 6) and l(x, y)<r then y 6 B(S f] H, eO~B(p, e). Consequently,  if K c c ~  is com- 

pact, ~/i E Aut(f2) and z 6 K such that )'i(z)---~p, then zi(K)ccB(p,  e), Vi>>0. 

Proof o f  Theorem 7.1. Choose e, u as in Definition 7.3. We construct  the rescale 

blow-up of  f2 at p by ~i as before,  with the following modifications; choose an 

exhaustion of  g2 by compacta  KFcKj+I. For  each j,  and all i (in view of  Lemma 7.4) 
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large enough that yiKFB( p, e), construct the embeddings wi=Aiuy i  a s  in w 6, normal- 

ized at some x 6 K0. Note wi: Ky-~C". 
We claim the embeddings wi have convergent subsequences, in fact by the 

definition of h-conoexity the affine-structure-function (Definition 5.3)tPi: Ki• is 

well defined if i>>0. Thus the estimates of Theorem 5.6 apply to Kj_~ccKj, and the wi 
have a subsequence, convergent on Kj-1, for allj. 

Diagonalizing, we get an embedding w such that for all j, we have w: KT~C", 

hence w: f2~C".  

It remains to show that w(~) is convex. The affine-structure-functions Oi form a 

normal family, so without loss of generality, 

w-J(l[w(x)+w(y)]):KjxKF. Q for all j, ~ ; ~ =  

hence q~: Q •  Q. Since ~0 is well defined on all of Q, w must be a convex embedding 

(the midpoint of any pair of points in Q is in Q). This finishes the proof. 

One can also show that w(~) is the Hausdorff distance limit of A,<u(~ OB(p, e)), 
where u(Q riB(p, e) is peak convex at p. The argument is analogous to that in Theorem 

5.6. It would be interesting to develop an intrinsic notion of h-convexity. 

8. Part 2 of the proof, introduction 

In Part 1 of this paper we produced a one-parameter subgroup ocAut0(f~). In this, Part 

2 of the paper, we analyze the interaction of o with the discrete co-compact group F. 

Our goal is to prove Theorem 9.1, which, given o implies Theorem 2.2. The second part 

of this paper does not involve the rescale blow-up technique. It is more in the spirit of 

complex differential geometry of compact manifolds. 

The philosophy of our proof is easy to describe; the continuous group of automor- 

phisms gives complete holomorphic vector fields, pushing them forward by V E F we 

generate a large group, ~, which is normalized by F. ~ orbits in f2 descend to compact 

submanifolds in ~/F=M. We study the geometry of these submanifolds to show (i) that 

~3 is semi-simple, and (ii) that ~3 is transitive on a factor of ~.  The techniques we apply 

combine Lie group theory, homology theory and differential geometry, including some 

easy Bochner-Weitzenboch formulae. We apply results from Lie group theory such as 

the Iwasawa decomposition, the Levi-Malcev decomposition, the Borel density theo- 

rem, the Margulis-Zassenhans lemma, and basic theory of semi-simple lie groups and 

symmetric spaces, for which we provide references. We must also apply the existence 

8t-898285 Acta Mathematica 163. Imprim6 le 8 septembre 1989 
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theorems for Einstein-K~hler metrics on bounded domains, and basic facts about 

Kobayashi metrics in our use of differential geometry. Finally, the machinery of group 

cohomology is applied in the proof of Theorem 11.2. Thus, in contrast to Part l, Part 2 

is far from self-contained, but the basic ideas are still quite intuitive, and the analysis is 

essentially 'soft'. It is reasonable to believe that this is not the ideal proof of the 

theorem, and that quite different approaches could work better. On the other hand, 

many approaches that, at first glance, appear easy, do not work, and we are convinced 

that the result is far from trivial. In the author's thesis a simpler proof was given, but 

only for the complex two dimensional case, the main difference is that it avoided the 

machinery in w 10 by using an argument involving characteristic classes, this also 

appeared as an appendix to the last section in the preprint version of this paper. 

The main work in the proofs is in Sections 10, 11. The fixed-point theorem in w 12 is 

applied in w 11. 

B. Wong has studied the interaction of F and Aut0(Q), viewing the orbit structure 

as a fibration, but his techniques are unrelated to ours. 

9. Notation and basic facts 

This section contains general facts necessary for the proofs in subsequent sections. The 

material in this section is mostly a reiteration of some well known theory. 

The general notation we use for groups and their actions is as follows: 

H+J denotes the group generated by H, J in Aut(Q). 

F/j denotes HNF 

[H] denotes the closure of H in Aut(f2). 

H0 denotes the maximal connected subgroup of H. 

~;(H) denotes the normalizer of H. 

~(H) denotes the centralizer of H. 

Hx denotes the H-orbit of x in Q. (x denotes a point in Q.) 

Hx denotes the isotropy o fx  in H, i.e. {hEH: hx =x}. 

H* denotes the fixed-point set of H in Q. 

We identify elements X of Lie algebras with complete holomorphic vector fields 

X(x) on Q throughout the rest of this paper. Note that X(x)=dExp(tX)x. at, at t=0. We 

use 3% to denote the 'push forward' of a vector, or a tensor, by the differential dy, when 

this makes sense. 

The main result of the second part is 
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THEOREM 9.1. Let Q be a convex hyperbolic domain and suppose there is a 

subgroup FcAut(~)  such that 

(F1) F is discrete, 

(F2) F is co-compact (in ff~), 

(F3) F acts freely (in ff~). 

Suppose there is a non-trivial one-parameter subgroup crcAut0(Q), and let 

cg, =[F+ {or,: t 6 R}], and ~ denote the maximal connected subgroup o f  ~'.  Let g21 = ~x 

and ff~2 = ~*. 

(1) cg is semi-simple. 

(2) ~'~=~'~1X ~-~2 holomorphically, in particular both factors are complex manifolds, 

furthermore ~1 is non-trivial and is biholomorphic to a bounded symmetric domain. 

(3) F has a finite index normal subgroup F' such that F'=F~xF~ where F ' c  

Aut(Q1) • and Fj=F' f] Aut(•j). 

Item 1 is proved in w 10. Items 2 and 3 are proved in w 11. Lemma 9.2 contains 

some basic preparatory material. Lemma 9.4 essentially reduces Theorem 9.1 to the 

case where f~/F is irreducible. We recap the proof in w 13. 

We let M=f~/F and x: fl---~M be the projection, (or covering map). (We always let 

Aut(g2) act on the left, hence we really should write F\g2, nevertheless we use the 

more conventional f2/F except in the rare instances where this would be confusing, 

such as F\G/K.) 

In the following lemma we let Q, F and ~ be the entities defined in Theorem 9.1. 

LEMMA 9.2. (1) Fc3C(~). 

(2) The orbits ~gxcQ and ~g'xcQ are closed, locally connected, properly embed- 

ded, smooth submanifolds o f  ~2. 

(3) :r( ~x)=vr( ~g'x), in fact  :r-l(vr(~3x))= ~'x. It follows that :r( ~ x ) c M  is a compact, 

locally connected, properly embedded (no boundary), smooth submanifold o f  M. 

(4) ~f)F is co-compact in ~. In fact  x 6 g2 determines a canonical, proper map 

x: ~/F-~er(~x). 

Proof. (1) By construction of ~. 

(2) Let ~ be the unitary frame bundle of f2, (with respect to the Bergman metric). 

Note that Aut(Q) acts on ~ .  Recall that Aut(fl) is a Lie group in the compact-open 

topology, [29]. In particular, given x E ~ ,  A u t ( f ~ ) x c ~  is a closed, locally connect- 

ed, properly embedded, smooth submanifold of ~'-~. But the projection, p: ~2---~Q is 

proper, so Aut(Q)x~g2 is also a closed, locally connected, properly embedded, smooth 

submanifold of f2. The same argument works for any closed subgroup of Aut(fl). 
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(3) The assertion follow easily, in particular x(~x)cM is compact by compactness 

of M, Heine-Borel, and the local properties that :r(q3x) is closed and locally connected. 

(4) Let S((gx)c~' be the stabilizer of ~gx in (g'. Clearly ~is  a normal subgroup of S 

of finite index. Furthermore :r(Cgx) compact implies that S n F is co-compact in S (recall 

Fc~d'). But S=~g+(SNF), so S/(SnF)=Cg/(~gnF). The rest is clear. 

Note that the same conclusions hold for any closed subgroup H of Aut(Q) such 

that Fc.Ar(H), for example the radical of ~3. 

Appendix: Notes on reducibility 

To prove the main theorem of this paper in full generality we show that it suffices to 

consider the case where g)/I" is irreducible (in a sense made precise below). One must 

show that f~ has a (holomorphic) factorization, into 'irreducible' factors; Q= 0)i g~i such 

that each factor Qi admits 

(I) a convex embedding, 
(2) an automorphism group Fi satisfying the hypotheses of the main theorem (e.g. 

discrete, fixed-point free, etc.). 

Note that for the purposes of this paper one can always pass to a finite index 

normal subgroup of F without loss of generality, in particular we may assume that if 

•=Qi x ~2, then FcAu t (Q0  xAut(Q2). 

Definition 9.3. Given a domain Q and FcAut(f l )  we say (Q, F) is reducible if 

(1) Q = QI x Q2 is a non-trivial factorization, and 

(2) F=F1 x F2 where FcAut ( f l0  x Aut(f22) and Fj=F n Aut(f~). 

We say (fl, F) is essentially irreducible if (Q, F') is not reducible for any finite 

index normal subgroup F ' c F .  (Compare [31] p. 86, Theorem 5.22.) 

Since ~ is finite dimensional there is a finite index normal subgroup F' and a 

factorization of (fl, F') into essentially irreducible factors. 

If F is discrete, and if Fj is a factor as above then Fj is discrete (in Aut(fl)). 

Likewise if F acts freely then so does Fj-. Recall that if Q is convex, then each fli admits 

a convex embedding by Lemma 5.4. 

In w 13 we use essential irreducibility, via the following lemma: (compare [31] p. 

85, Theorem 5.19) 

LEMMA 9.4. Given a non-triviai factorization •=QI • and F co-compact in g), 

such that 
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(I) Aut(ff20 is semi-simple and has no compact factors, or ff~l is a bounded 

symmetric domain, and 

(2) [F+Aut(f~l)]0=Aut(Q 0. 

Then there is a finite index normal subgroup F ' c F  such that F'=F~xF~ where 

F]=F' n Aut(ff2j). In particular, (f2, F) is not essentially irreducible. 

Proof. Note FeN(F1). By the technique of Lemma 9.2, and item 2 above, 

F1=FnAut(f l0  is co-compact in Aut(Q0. 

Recall that by a technique of Bochner and Yano, if fl is a (K~ihler) manifold with 

negative Ricci (this is certainly the case for symmetric spaces of noncompact type) and 

F is co-compact in Aut(~) (F acting by isometries), then ~r is finite. Thus the 

kernel of the homomorphism of F to N(F~)/F~ is a finite index normal subgroup, 

and we assume without loss of generality (by passing to a finite covering) that the 

homomorphism of F to N(F0/F1 is trivial. In particular every ), E F/F~ lifts to 0'1, Y2) E 

Aut(f20xAut(f22) where Y16 ~(FO+FI. 

But, Q~ is a bounded symmetric domain, so ~r and by the Borel 

density theorem [37] qC(F1)=0, hence yj 6 F~. 

Now letting vr2 be the projection of Aut(~0xAut(f22) to Aut(fl2), 

x 2 F = (F+Aut(f21))/Aut(~I)=F/(Aut(~21) n F) = F/F 1 . 

To show F=Fl • with Fj=F n Aut(f~j), it suffices to show Aut(f22) In F=x2F. But 

we have already shown that if x2(y)=y2, then By1 E F~cF such that yl 'y=y2. 

The point is that the quotient space has a bundle structure, and some finite cover is 

a trivial bundle. 

10. ~d is semi-simple 

The main result of this section is 

THEOREM 10. I. Let ~ be a bounded domain and GcAut(f~) a connected, closed 

subgroup. Suppose FcAut(•)  is co-compact, and Fcv~(G). l f F  is discrete then G is 

semi-simple. 

Note that the hypotheses that F acts freely, and ~ is convex are unnecessary here. 

By Lemma 9.2, Q3 satisfies the hypotheses of Theorem 10.1, and we may apply it in the 

proof of Theorem 9.1. Throughout this section we let H be a connected, closed 

subgroup of Aut(ff2). Certain definitions and lemmas in this section are useful else- 

9-898285 Acta Mathernatica 163. Imprirn6 le 8 septembre 1989 
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where, so we state them in terms of H, rather than G. (This gives them a little more 

generality, since G satisfies some additional hypotheses.) Lemmas stated in terms of H 

may be applied with H=  G, or H equal to some subgroup of G. The reader should bear 

in mind that H does not represent any fixed group in the context of Theorem 10.1, and 

this will cause no confusion. 

The technique of the proof of Theorem 10. I is to show that the abelian radical C of 

G, defined below is trivial. 

Definition 10.2. Let ~ H  be the Lie algebra of H. The nilpotent radical n of ~ H  is 

its maximal nilpotent ideal. We call the center of n the abelian radical of ~H, and 

denote it by c. c, n determine subgroups C, N (respectively) of H by the Exp map. 

LEMMA 10.3. 

(1) ~ H  is semi-simple iff  n=O iff c=O. 

(2) N, C are closed subgroups o f  H. 

(3) rc~qc),  ~N).  

Proof. (1) It is a standard fact that ~ H  is semi-simple iff n=O. If n*0 then the 

derived sequence (ck+l=[n, ck]) of n terminates, and the last step c,t,)is in the center, 

and is non-trivial. 

(2) The group N associated to n is closed in H, since by definition it is maximal. 

Likewise, the closure of C is central in N, so C is closed in N. 

(3) Since every step in the construction of C is canonical, it is preserved by 

automorphisms of H. 

We now outline the proof of Theorem I0.1, breaking it into several steps. 

(1) From Definition 10.4 to Corollary 10.6 we define a function gn relating to H- 

actions and develop a Weitzenboch type formula for gtt (which we apply with the 

Einstein-K/ihler metric on f2). 

(2) From Lemma 10.7 to Corollary 10.9 we show that for H=C, the abelian radical 

of G, gc=-O iff C is trivial. 

(3) It remains to produce a maximum for gc. The point is to show gc is F-invariant. 

From Definition 10. I0 to Lemma 10.13 we develop the notion of a 'unimodular action 

of F on C', showing that (i) If C/(CN F) is compact, then the F action on C is 

unimodular, and (ii) If the F action on C is unimodular then gc is F-invariant. 

(4) In Theorem 10.14 we exploit the hypothesis that F is discrete by applying the 

machinery of discrete subgroups of lie groups as in [31], to show C/(Cn F) is compact. 
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There is one hypothesis in Theorem 10.14 that requires special verification, and this is 

done using another Weitzenboch type formula, somewhat simpler than that for gtt. 

Now we begin to develop a Weitzenboch type formula for certain group actions. 

The following definition presupposes the choice of an intrinsic K/ihler metric on s 

( , ) denotes the associated inner product, ^ denotes the wedge or 'exterior' product. 

There are actually two different exterior products, one comes from tensoring over R, 

the other over C, and both are useful to us; in Lemma 1 1.3 we work over R, whereas in 

Definition 10.4 we work over C. In general, if we regard vector fields Xi(x) as fields in 

Tf~, then we tensor over R, whereas Xi(x)E T~'~ indicates that we tensor over C. 

Definition 10.4. Let H be a closed, connected subgroup of Aut(92) of dimension k 

and let Xi(x) fi T1"~ be complete holomorphic vector fields on 92 giving a basis for the 

Lie algebra ~H.  We define 

wn(x) = AiXi(x)EAkTl'~ and gn(x) = (WH(X), Wn(X) ). 

Note that if we had tensored over R, then wn(x) would essentially be the push- 

forward of a volume form on H. But since we tensor over C it is a holomorphic tensor 

field. We now show that gH satisfies a strong maximum principle, when defined in 

terms of the Einstein-K/ihler metric [3]. 

Recall that on a K~ihler manifold, the Laplace-Beltrami operator on functions takes 

the simple form: A=lEgi)OiOi and given vector (or appropriate tensor) fields, X, Y, 

Oi(X, Y) = ( DiX, Y) + (X, D; Y) where D indicates covariant differentiation. 

In the next lemma we will use the holomorphicity of Xi to get DIXg=O=DIw 
repeatedly. 

LEMMA 10.5. Let U be an Einstein-K~hler manifold, such that Ricj=-rg~,  let 
Xi(x) 6 TI'~ be holomorphic vector fields on f~, and w(x)= AiXi(x) 6 AkTf2. Then 

~-  AIw(x)l 2 = IVwlZ+krlwl 2. (6) 

Proof. We will sketch the proof. We refer to [22] for background. 

Alwl ~ = gaagOj ( w, w> = gaa,< w, Djw ) = IOwl% ( w, g~V;Djw } 

= IOwl% <w, gb'[Oi, Dj] w). 

But -g~ t, Dj] w is a Ricci curvature term. By multilinearity of curvature opera- 
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tors, Ric(X^ Y)=(Ric X ) ^  Y + X ^  (Ric Y)=-2r(X^ Y) where the last equality holds only 

in the Einstein-K~ihler case. 

If U is a bounded domain then by the work of Cheng-Yau, [3], there is a canonical 

Einstein-K~ihler metric on U. With respect to this metric we see 

COROLLARY 10.6. I f  U is a bounded domain with the Cheng-Yau metric, then 

g~x) is subharmonic and satisfies a oery strong maximum principle: if  it has a local 

maximum then it oanishes identically. 

We now begin the second step from the outline of the proof of Theorem I0. In a lot 

of cases the function gH vanishes everywhere, hence is of no interest. One case where it 

is of interest is when H is abelian. Recall that a connected abelian or nilpotent Lie 

group has a unique maximal compact subgroup, which is a toms. It is clearly a 

canonical normal subgroup. The space of homomorphisms q~: S I ~ T  is in 1-1 corre- 

spondence with the fundamental group, :t1(T), hence it is countable. Furthermore, 

given ~ E:tI(T), the fixed-point set q~*cs is a holomorphic subvariety. The isotropy Tx 

is compact, so {x: Tx~=0}=U~,~r~q~ *. 

But s by simple measure theory considerations. Hence there 

exists x E s such that the isotropy is trivial, i.e. Tx = {0}. We conclude 

LEblMA 10.7. Let NcAut(s be a non-trioial connected nilpotent group. Then N 

has no isotropy on a dense open subset S of  s I f  X,(x) E Ts is a basis for ~N,  then 

Vx E S, X,(x) are linearly independent over R. 

LEMrdA 10.8./fCcAut(s is abelian, and X,(x) E Tl'~ is a basis for ~C, C has no 

isotropy on a dense open subset S of  s and Vx E S, X,(x) are linearly independent 

over C. 

Proof. It suffices to show that VxE s TxCx~TQ is totally-real, i.e, 

TxCxNJ(TxCx)=O, where J denotes the complex structure. Suppose LcTxCx  is a 

complex line. Since C is abelian and acts freely, L may be regarded as a subalgebra of 

c, hence as a subgroup of C. Since L acts freely by holomorphic automorphisms, the 

orbit Lx has complex tangent space TyLx at every y E Lx, in fact Lx is a non-trivial 

holomorphic embedding of a complex line. But Q is hyperbolic so this gives a contra- 

diction. 

COROLLARY 10.9. Wc(X) and gc(x) are non-zero on a dense open subset of  s 
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We now begin the third step from the outline of the proof of Theorem 10. We want 

to apply the maximum principle, Corollary 10.6, to prove Theorem 10.1. It suffices to 

show that if C is the abelian radical of G then gc(x) is a F invariant function. 

We exploit the fact that C is the radical of G because GorY(C), and FeN(G) 

implies FcN(C). In fact F~r (C)=~FcN(FNC) .  In Theorem 10.14 we will see that 

F N C is co-compact in C. 

This will verify the hypothesis of Lemma 10.12 for all yEF  and by Lemma 10.13 

we conclude that gc(x) is F invariant. 

From this point to Lemma 10.13, N can represent any closed, connected subgroup 
of  Aut(f~) (including C). (We think of it as a nilpotent radical for the application here, to 

Theorem 10, but the theory is valid in greater generality.) 

Definition 10.10. (1) Given y E ,At(N), Ads(y): N--~N is defined by Ads(y) (t)=y-~ty, 
in particular, Ads(y) (e)=e. 

(2) Thus the derivative, dAddy)(e):  ~ N - - ~ N  and we define, 

ads(y) = d(Ad,v(y)) (e). 

(3) The modular function of N is a homomorphism ~N:,~r(N)~R defined to be 

~s(y)=det(ads(y)). 

Remark 10.11. (1) Given XE ~N, X0,(x))=y. ad(y)X(x). One just differentiates 

y.y-I .Exp(tX).y.x by t. 

(2) We will use the notation [ad(y)Xi](x) for Yva~/Xj(x), with holomorphic vector 

fields Xi, where ad(y)Xi= Eja~iXj for the corresponding elements of the Lie algebra. 

(3) Choose a left invariant volume form/z on N, and suppose that F~v\N is a 

compact quotient (of unit volume). Note that the following maps are well-defined; right 

multiplication, rh: FN\N~FN\  N for h EH, left multiplication, lh: FN\ N ~  FN\N for 

h EFN. Clearly, for y E FN, 

frN\Ndet(d(l _, d/z = 1. ry)) 

constant function, in fact ~s(y)=det(d(l_,ry)), 

The last remark essentially proves the well known 

But the integrand is a so for 

yE rN, I~s(y)l = I. 
Now ~ is a homomorphism, so by the preceeding, I S(y)I:rN v--,R is well 

defined, but it has compact range, so I~S(y)I--I (for all y E N  or yearN)) .  
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LEMMA 10.12. Let FN be a co-compact subgroup of  N, then ~'y E N(Fu), ]~0u(y)[ = 1. 

We say that y is unimodular on N. Unimodularity is the key to showing gc is F 

invariant. 

LEMMA 10.13./flq~N(y)l=l then 

IwN0,(x)))  2 =  IwN(*)l  2 

Our use of the K~ihler-Einstein metric is necessary here. 

Proof. X,(},(x))=@(x) [ad0,)Xi] (x) so w(},(x))=AiX,(},(x))=7, det ad(y) A;X~((x)) but 

]q~s(?)[ = 1 implies det2[ad(v)]= 1 and y .  is isometric, for the intrinsic metric, so 

2 = Iw(x)f 2 

We now begin the fourth step from the outline of the proof of Theorem 10. To 

prove the main theorem of this section, it suffices by the lemmas above to show that 

C n F is co-compact in C. By the hypotheses of Theorem 10 G n F is co-compact in G. 

(From Lemma 9.2 we know that ~fl F is co-compact in ~.) We must appeal to some 

machinery from the theory of discrete subgroups of Lie groups to derive the theorem 

stated below. This is essentially Corollary 8.26, followed by Proposition 2.17 from the 

book of Raghunathan [31]. 

THEOREM 10.14. Let G be a connected Lie group, F c G  a lattice. Let R be the 

radical of  G, N the nilpotent radical, and let S c G  be a semi-simple subgroup such that 

G=SR is a Levi-Malcev decomposition. Let o be the action of S on R, i.e. sr=o(s, r)s. 

[ol] Assume that the kernel of  o has no compact factors in its identity component. 

Then N/(NaF) is compact. Furthermore if C is the center of  N, then C/(CaF) is 

compact. 

So we will finish the proof by verifying [ol] (for G= ~). Since S is semi-simple 

there is unique maximal compact factor K in ker o and K is semisimple. It is clear that 

on the level of Lie algebras ~ K  is a factor of ~G, and that F=N(~K).  The Killing form 

is a canonical bi-invariant metric on ~K, so Ad(),) acts on L#K by isometries for all 

yEF. 

Let Xi(x) be an orthonormal basis for ~K. Define fK: f~--->R by 

= 4 (x)t 2 
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SO 

f ~(~,(x) ) =ix(x) 

for all y 6 F. The proof is analogous to that in Lemma 10.13. fr(x) is precisely the energy 

function (in the sense of harmonic maps) of the map from K to Kx. Again we invoke the 

F invariant Cheng-Yau metric to get a very strong maximum principle for fK. 

L E M M A  1 0 . 1 5 .  

AfK = ~ (Ivxil 2-4- rlXil2), 

The calculation is similar to Lemma 10.5, in this case we don't really need the 

holomorphic formalisms, we can use the riemannian structure with the fact that X; are 

killing fields. This is essentially the Bochner-Yano formula. 

By the strong maximum principle and co-compactness of F, fK vanishes identical- 

ly, thus K is trivial. 

The proof of Theorem 10.1 is complete. 

Theorem 10.1 may be compared to a result of Hano [10], he showed that if a 

unimodular group G acts transitively on a bounded domain, then G is semi-simple. 

11. ~ is transitive 

mc 
Definition 11.1. We use K e G  to denote 'K is a maximal compact subgroup of the Lie 

group G'. 

The main theorem of this section is 

THEOREM 11.2. Let f2 be a convex hyperbolic domain and F a discrete, freely 

acting co-compact subgroup o f  Aut(Q). Let G be a closed, connected, semisimple 

subgroup of  Aut(g2) such that Fca~C(G). Then Vxfiff~, 
mc 

(1) GxcG. 

(2) The orbit Gx is a holomorphic submanifold o f  f~. 

(3) There is a canonical biholomorphic map ~x: Gx• 

In particular, i f  g2 is essentially irreducible then G is transitive, and f2 is a bounded 

symmetric domain. 
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The proof of Theorem 11.2 hinges on an analysis of the set 6 ewhich we now define. 

Given a connected, closed sub-group GcAut(~)  acting on Q let 

~= {xeQ:6x%a}. (7) 

This is the 'lowest stratum of the orbit structure'. 6e is clearly F invariant if Fc.AC(G). 

Note that x 6 5e satisfies item (l) of Theorem 11.2 by definition. Our strategy for the 

proof of Theorem 11.2 is to show that 5~ satisfies many of the (hypotheses and) 

conclusions of Theorem 11.2 (with Q replaced by Se). We will use these facts to 

compare 5e to g2 and conclude that in fact they must be the same. 

Much of the analysis of 6e is based on the Caftan decomposition of a semi-simple 

Lie group, [12]. In the non semi-simple case (which is not relevant to this paper) the 

Iwasawa decomposition [14] can be used as a substitute at many points in the analysis. 

The maximal compact sub-group Gx of a connected Lie group is connected (by the 

Iwasawa decomposition). This leads us to the following equivalent characterization 

of ~: 

5P= (x f i~ :  dimGx<~k} (8) 

for an appropriate k, (note '~<' could be replaced by '= ') .  (Clearly, the real dimension is 

referred to here.) 

LEMMA 11.3. 6e is a real analytic suboariety o f  f2. 

Proof. Choose a basis X,(x)E TQ for L~G and let (Xo(x)) be the matrix with rows 

X,(x). By equation (8) 

b ~ (x 6 ~: rk(Xo(x)) <<. k} (9) 

where rk denotes 'rank over R'. Since X,(x) are holomorphic vector fields, (real) 

determinants of (k+ 1)x(k+ 1) submatrices are real analytic functions. But 5eis the zero 

set of finitely many such functions. 

The following lemma is standard material, [13]: 

LEMMA 11.4. Given Lie groups JoG,  let J act on G/J. The fixed-point set J* in G/J 

satisfies the following: 

(1) J*=gV(J)/JcG/J (i.e. the ~V(J)-orbit o f  the coset [J]). 

(2) I f  G is compact and connected, or if  J is semi-simple, then p((j)=c~(j)+j. 
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(3) Furthermore, i f  G is semi-simple and J maximal compact, then Jf(J)=J, so 

J*=[J], a single point. 

(Item (2) is not applied in this paper.) 

By the Iwasawa decomposition, G = K . S  differentiably, where K~G,  and S is a 

solvable subgroup of G such that S=R  n differentiably. Furthermore all maximal com- 

pact sub-groups of G are conjugate in G. 

Remark 11.5. (1) Gx=G/Gx=R n for all xE~ .  

(2) Given x E 5 e, by the Cartan (or Iwasawa) conjugacy theorem, 

yEGx 

(3) ,~= u ~y. 
yEG* 

(4) If G is semi-simple then by Lemma 11.4 for all x E ~, Gx n G*= {x}, furthermore 

for all y, z E fie, 3 Ix such that Gz N G~= {x}, hence the unions above (in the two preceed- 

ing items) are disjoint. 

To proceed with the proof of Theorem 11.2 we will need two basic properties of 

the set Ae; 

LEMMA 1 1.6. (I) b ~  

(2) ,Y is connected. 

Both follow from the fixed-point theory in w 12; since Q is convex, Theorem 12.2 

implies that b~4=~, and that G* is connected for x E ,9~ But G is connected, so Gx=G/Gx 

is connected, and item (2) of Remark 11.6 follows from item (2) of Remark 11.5. 

Item (4) of Remark 11.5 is crucial for the next two lemmas, so for the balance of 

this section we assume that G is semi-simple. 

LEMMA 11.7. X E 5e determines a canonical diffeomorphism ~r Gx• G*--.SP (onto 

fie) defined by 

V~EG, ~(x)=y ~ 5~x(Y,W)=~/(w) 

Proof. y,(x)=y,i= 1,2=:,32EGx, such that 72=yl.A but 2(w)=w, so 5~x is well- 

defined. In fact, by Remark 11.5, item (4), ~r Given zESe, let 

y=Gx fl G* and w=G*N Gz, then ~r w)=z. 
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In the case where F acts freely we can now apply the machinery of group 

cohomology to show b~ 

A good reference for the material we use in the following lemma is the book of 

Mosher and Tangora, [28]. 

LEMMA 11.8. (1) Given contractible smooth manifolds Di, i=l ,2  and a proper 

embedding f'. DI-->Dz, if BF a discrete, freely acting, co-compact, properly discontinu- 

ous subgroup o f  diffeomorphisms o f  D2, such that f(Dl) is F invariant then f is a 

homeomorphism. 

(2) Given N, M compact manifolds and an embedding f: N-->M such that the 

induced map on the fundamental group f . :  :tl(N)--->:rl(M) is an isomorphism, if  both 

N, M are K(x, 1) spaces (Eilenberg-MacLane) then f is a homeomorphism. 

Sylvan Cappel has pointed out that by an application of the 'Bovel trick' one can 

remove the hypothesis in (1) that F acts freely. This implies that the main theorems, 

Theorem 1 and Theorem 2, are true without the hypothesis that F acts freely. 

Proof. (1) Letting N=DI/F (identify D~ with f ( D l ) )  and M = D 2 / I  -', both are K(x, 1) 

spaces (with x=F).  Furthermore, f induces  a well defined map on the F-cosets, in fact 

an embedding, and the induced map on the fundamental group,f , :  :rl(N)-->xl(M) is just 

the identity map on F. Thus the first item of the lemma reduces to the second item, 

which we proceed to prove. 

(2) f ,  is an isomorphism and both N, M are K(er, 1) spaces so f is a homotopy 

equivalence, therefore f is a homology equivalence. Therefore the homological dimen- 

sions of N, M are equal. Since M, N are compact manifolds their topological dimen- 

sions equal their homological dimensions. But an embedding into an equidimensional 

manifold is a homeomorphism. (The point of the proof is that the cohomology of either 

space is the group cohomology of F.) 

We apply the lemma with DI  = o q~ D2 = s where f i s  simply the inclusion map. Since 

we are assuming that f~ is convex, it is certainly contractible. Furthermore, in this case 

G* is contractible by the fixed-point Theorem 12.2. Together with contractability of Gx 

for xfAe and Lemma 11.7 which says 5r215 this implies that ~ is contractible. 

Note that Gx*iS a holomorphic submanifold of f~. It is easy to see that 5eis a manifold, in 

fact by Remark 11.5, item (4) locally it is the product of G* by a neighborhood of x in 

Gx. By Lemma 11.3, ow is a smooth, locally-connected, closed submanifold of s 

without boundary. Applying Lemma 11.8 we conclude that 5r 
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LEMMA I 1.9. Given a connected semi-simple group acting by hotomorphic isome- 

tries on a hermitian manifold ~ ,  define Seas in equation (7) and 5~x as in Lemma l l .7,  

suppose that b~ Then V x E ~ .  

(1) Gx is a holomorphic submanifold o f  5 r 

(2) or is a biholomorphic map. 

Remark 11.10. Note that this lemma does not suppose that FeN(G)  for some co- 

compact F. 

There is no analogous statement in riemannian geometry (replacing 'holomorphic 

submanifold' with 'totally-geodesic submanifold', and 'biholomorphic' with 'isomet- 

ric'). There are counterexamples, without the complex structure. Even with Q of 

constant curvature and 5~xCIsom(~2), Gx may not be totally geodesic and 5~x not an 

isometry. In some sense this happens because in the riemannian case the group G can 

act on an irreducible space ~ ,  such that for some x, Gx is a proper totally geodesic 

submanifold but, (1) the normal bundle NGx to Gx is flat and (2) G acts trivially on 

NGx. This contrasts with the case of a (K/ihler) bounded symmetric domain g2, where 

(I) is impossible because the bisectional curvature on f2 is non-trivial, and this induces 

non-trivial curvature in NGx. On the other hand, we expect there is an analogous 

statemenl in riemannian geometry if f2 is Einstein and we suppose that FcN(G)  for 

some co-compact F. 

Proof. (1) It suffices to show TxGxZTxG* (since ff~ is a holomorphic manifold and 

TxGx~TxG~*=-T~)). In Lemma 12.1 we show that G* determines a projection 

p:T~Se---~T~G* and kerp=(TxG*) • But VvE TxGx, kE G*x,k, vE TxGX, hence p(v)E 

Tx GxNT~G*=O so kerp=TxGx. 

(2) We must verify that d~x(Z, y) is complex linear on Ty Gx* and on Tx Gx. The first 

is obvious because y E G is holomorphic and dS~x(Z, y) on Ty G* is just dT. The second is 

more subtle; 5~x(z, y)= 5~y(yy, y). 5~x(X, y) and we apply the chain rule. The left factor is 

complex linear since dy is. The right factor, dS~(x, y): X(x)~-~X(y) for any field XE ~G. 

It follows that dtx(X,y) conjugates the action of Gx on TxGx to the action of 

Gy=G~ on T x Gy. But the complex structure of Tx Gx, Ty Gy is uniquely determined (up 

to complex conjugation) as the central element of G* satisfying JZ=-I .  So d~(x,  y) 

conjugates the complex structure of T~ Gx to the complex structure of Ty Gy. We can 

ignore the complex conjugate by the continuity method and connectedness of G*. 

By Lemma 11.9, g2=GxxG* is a holomorphic factorization. Now Gx is clearly a 

bounded symmetric domain and FcY(G),  so Lemma 9.4 at the end of w 9 proves the 

last claim of Theorem 11.2. 
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12. Fixed points of  convex domains 

The following trivial averaging trick is quite useful. 

LEMMA 12.1. Given a compact group J acting by isometries on a euclidean space 

V, define ~r: V-*J*, by 

where dlt is the bi-invariant measure (with unit volume), n is a linear projection map, it 

is the identity map on the linear subspace J*, and k e r n = J  *-L. 

The following theorem is of general interest in the study of automorphism groups 

of convex domains. 

THEOREM 12.2. Given a convex hyperbolic domain fI and a compact subgroup 

JcAut(f /) ,  

(a) J* is non-empty and 

(b) J* is contractible. (In fact  J* is a retract of  fI.) 

(c) J* is a holomorphic submanifold of  g2, in particular it is a locally-connected, 

real analytic submanifold without boundary, totally-geodesic in any J-invariant metric. 

The proof resembles that of the Cartan fixed-point theorem, however we use two 

structures simultaneously: the Kobayashi metric which is intrinsic and the euclidean 

structure which is not. We exploit convexity of K(x, r) in the euclidean sense, see 

Lemma 5.4, not the intrinsic sense. 

We cannot hope to drop the convexity hypothesis on f2 in Theorem 12.2 because 

(we are told [8]), there are examples of finite groups, that act on pseudoconvex 

domains with no fixed-points. On the other hand, if we add the hypothesis that J is 

connected, there are generalizations. 

Proof. (a) We recursively define a sequence of pointed-sets 

(xi, Si), x i~  Sic~~, r i c O .  

(i) S0=f2 and Si+ ! is defined as follows: 

(ii) X i is the center of mass of S;. 

(iii) Let S,(r)=S i t'ljejK(jx i, r), 

(iv) ri=inf{r: S,(r)*~}, 

(v) Si+!=Si(O. 
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By induction, Vi, Si is compact (i>0), convex (since K(x, r) is by Lemma 5.4), S i is 

J-invariant, dimSi+l<dimS~, or it is zero. In the latter case S,-={xi}, in particular for 

i=dimR(f2), Si={xi} is a fixed-point, z, so J*~=~. 

(b) Contractibility follows from the same construction, roughly speaking we con- 

tract along geodesics of the Kobayashi metric. The catch is that one needs to single out 

a 'unique geodesic' in a continuous fashion. We do this in the next paragraph, using the 

(euclidean) center-of-mass, hence the contraction depends on the choice of a (convex) 

embedding. 

Given x, y fi J*, Vt fi [0, 1] let Stl = K(x, tk) N K(y, (1 - t )  k), where k= k(x, y). Proceed 

as above to obtain zt(x,y)fiJ *. zt(x,y) depends on t ,x,y in a continuous fashion. 

zl(x, y)=y and z~ y)=x, so this provides a contraction. 

An examination of the proof that J * = ~  shows that we have actually constructed a 

retraction map from ~2 to J*. 

(c) These local facts are all easily verified. One may apply Lemma 12.1 to the 

second fundamental form of J* to see that J* is totally-geodesic. 

An interesting possibility for an alternative proof is to consider the holomorphic 

map s: ff~---~f~ defined by 

s ( z )  = 

where d/x is the bi-invariant measure (with unit volume). Iterations of s should converge 

to a holomorphic retraction of f2 to J*. One hopes that in general J* admits holomor- 

phic convex embeddings, (note that kob=car for a holomorphic retraction of convex •, 

by work of Lempert). 

13. Final steps 

We recap the proofs of the main theorems. 

Proof of  Theorems 2 and 9.1. Recall ~ '=[F+{at : t6R}] ,  and ~ denotes the 

maximal connected subgroup of ~d'. The same arguments will hold if we replace 

{or: t 6 R} by any connected subgroup of Aut(ff2). 

By Lemma 9.2, [F+C~]0=~3, and F normalizes ~. By Theorem 10.1, ~ is semi- 

simple. By Theorem 11.2, f~=ff2~• holomorphically, in particular both factors are 

complex manifolds, furthermore f21 is non-trivial and is biholomorphic to a bounded 

symmetric domain. 
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Now we can apply Lemma  9.4, so F has a finite index normal subgroup F' such 

that F '=F~xF~ where F'cAut(ff~0xAut(f~2) and F]=F'  O Aut(ff~i). 

Proo f  o f  Theorem 1. It suffices to apply Theorem 2 inductively to the factors ff22 

and Aut(Q9 that arise in the conclusion of  that theorem. To this end we have verified 

that each of  the hypotheses  of  Theorem 1 is satisfied by f22: it is a complex submanifold 

of f~ by Theorem 11.2, and a holomorphic factor of if2, hence it is convex by Corollary 

5.5, hyperbolicity of  f22 is automatic.  The hypotheses  on F, (F1) F is discrete and acts 

freely and (F2) F is co-compact  (in f~), are discussed in the appendix to w 9 (Notes on 

reducibility). 
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