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Introduction 

In this paper we present  a generalization to all dimensions of the following sharp 

inequality of JCrgensen [Jr concerning discrete nonelementary groups: 

THEOREM (JCrgensen's inequality). Let  f a n d  g be MObius transformations o f  the 

Riemann sphere. I f  f and g together generate a discrete nonelementary group, then 

I t r2(f)-41+ltr[f ,  e l -21 I> 1. 

Here  If, g]=fgf-~g- i  is the multiplicative commutator  and we are iden t i fy ingfand  

g with their matrix representatives in 8~2 C. Nonelementary in this setting means not 

virtually Abelian. 

It is the following principle that makes JCrgensen's inequality such a valuable tool. 

I f  two MObius transformations f and g generate a nonelementary discrete group, 

then given f ,  g cannot be too close to the identity. 

In higher dimensions the trace seems not to be such a good invariant and moreover 

we must work in the Lie group O+(1, n). Here  is the generalization we propose: 

THEOREM. Let  f and g be MObius transformations o f  S n. I f  f and g together 

generate a discrete nonelementary group, then 

max{llgyg-i-Idll: i = 0, 1,2 . . . .  n}/> 2-X/ -3 .  

(1) Research supported in part by a grant from the U.S. National Science Foundation. 
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Here we are identifying f a n d  g with their matrix representatives in O+(1, n+ 1), Id 

denotes the identity matrix and IIll denotes the Hilbert-Schmidt norm. 

We will actually produce a slightly stronger inequality in that i f f  is not elliptic, 

then we need only consider the maximum of the terms with i=0, 1 (see Corollary 4.3). 

However the important feature to note from the inequality is that the principle es- 

poused above remains valid in all dimensions, and thus provides the necessary tool to 

develop certain aspects of the theory of Kleinian groups to higher dimensions. Notice 

too that in the case of Fuchsian groups we are considering the group tg+(1,2) and there 

are exactly two terms in the inequality, corresponding closely to those of JCrgensen's 

inequality. 

There is the drawback that the formulation is not conjugacy invariant (as JCrgen- 

sen's inequality is). However this can easily be overcome (see Corollary 4.7). Further- 

more, the inequality seems not to be sharp, although it can be improved by considering 

norms other than the Hilbert-Schmidt norm (see Proposition 4.11). For instance the 

operator norm (maximum eigenvalue) can be used, this essentially frees both sides of 

the inequality from dimension and is especially useful in certain circumstances [Mar]. 

As applications, following Chuchrow [Ch], JCrgensen [Jr Weilenberg [We] and 

others [J.K.], [J.M.], we will consider the algebraic limits of discrete nonelementary 

M6bius groups and using these new inequalities show that under mild (and necessary) 

restrictions these limits are again discrete and nonelementary, Proposition 5.7. A 

simple consequence of our results is a proof in all dimensions of the well known fact in 

dimension two: 

A MObius group is discrete if  and only if  all its two generator subgroups are. 

We then apply these results to the deformation theory of discrete subgroups of the 

M6bius group validating the following principle: 

One cannot continuously deform a discrete nonelementary group, through discrete 

groups, out of  its isomorphism class. 

From this we obtain what might be considered a generalization of Weil rigidity to 

geometrically finite discrete subgroups of the M6bius group, Corollary 7.1. The results 

along this line are not quite straightforward generalizations of the two dimensional 

theory. A key ingredient in the low dimensional theory is that finitely generated 

Kleinian groups are finitely presented [Se] and [Sc]. This is at present unknown for 

discrete MObius groups in higher dimensions. 



ON DISCRETE MOBIUS GROUPS IN ALL DIMENSIONS 255 

In a companion paper [Mar] we have used the results herein to obtain new lower 

bounds for the volume of all hyperbolic n-manifolds and in particular a lower bound on 

the size of an inscribed ball in the Dirichlet region of any discrete group of hyperbolic 

isometries. The existence of a lower bound is due to Kazdan and Margulis [K.M.]. 

Our methods for the most part are quite geometric and the inequality we develop 

and its consequences will hold valid for nonsolvable discrete subgroups of rank one Lie 

groups and (with some necessary modifications) more generally for isometry groups of 

negatively curved visibility manifolds. There are two key steps in this generalization. 

Firstly discrete subgroups of the isometry group of such a space act as so called 

convergence groups [G.M.1] on the sphere at infinity. These groups are the natural 

generalizations of uniformly quasiconformal groups and are very much like conformal 

groups (at least topologically). This observation enables most of the geometric ideas 

used in the hyperbolic setting (at described herein) to go over to the more general case. 

Secondly we need a general version of the existence of Zassenhaus neighbourhoods for 

Lie groups. Such generalizations have been found by Buser and Karcher [B.K.] in their 

work on Gromov's almost flat manifolds and also by Ballman, Gromov and Schroeder 

[B.G.S.] in their study of manifolds of nonpositive curvature and, in particular, the 

Kazdan-Margulis phenomena. The details in this more general setting are rather longer 

and will appear elsewhere. 

The classical theory of discrete subgroups of Lie groups follows the lines laid down 

by Zassenhaus in his formulation of Bieberbach's solution to Hilbert's problem 18 

concerning the finiteness of the isomorphism types of crystallographic groups. They 

noted that in a Lie group the iterated commutator is contracting in a neighbourhood of 

the identity and used this fact together with Jordan's lemma and discreteness to find 

conditions to imply nilpotency. Indeed, even JCrgensen's argument follows this line of 

approach. We will have to generalize these ideas a little to the case that the group is 

virtually Abelian as opposed to nilpotent. It is therefore no surprise that we are led to 

consider carefully the existence of Zassenhaus neighbourhoods. 

I would like to acknowledge that I was led to consider this problem in relation to 

ongoing research with F. W. Gehring concerning other generalizations of JCrgensen's 

inequality for Kleinian groups, [G.M.2,3]. Also, as should be apparent, our exposition 

and results here owe a great deal to JCrgensen's original paper [Jr 

w 1. The Mrbius group, Mrb(n) 

We denote by B n the closed unit ball in n-dimensional Euclidean space R n. The 

boundary of this ball is the (n-1)-sphere S ~-1. The Riemannian metric 
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ds2=[dxl2/(1-[xI2) 2 has constant  curvature equal to - 1  and gives rise to the complete 

hyperbol ic  metr ic  of  int(Bn). The geometry of  this space is well known, however we 

note here that the geodesics of  this metric are those subarcs of circles or lines lying in 

B n and orthogonal to S n-~. More generally, the aff ine or totally geodes i c  subspaces are 

the intersections of  codimension one spheres or hyperplanes orthogonal to S ~-~, with 
B n" 

There is another  useful metric on B ~, namely the restriction of  the Euclidean 

metric to the ball. This metric extends to the boundary sphere S ~-1 and there we will 

call it the chordal  d is tance .  For  two points x and y of  S ~-j we denote by [ x - y  I the 

chordal distance between them. 

By a M 6 b i u s  t rans format ion  we mean a conformal self mapping of B n. Each 

M6bius transformation is the finite composit ion of  reflections in codimension one 

spheres orthogonal to the boundary of  BL The group of  all M6bius transformations of 

the ball, which we denote  by M6b(n), is precisely the group of all hyperbolic isometries 

of B n. A M6bius transformation which stabilizes the origin is an orthogonal transforma- 

tion and so an isometry in the chordal metric. If  g is a M6bius transformation, then 

g ( x ) = Q . o ( x ) ,  where o is a reflection in a sphere orthogonal to S ~-1 and Q is an 

orthogonal transformation. Thus every M6bius transformation is naturally identified 

with a conformal mapping of  the boundary S ~-t. The classical Poincar6 extension 

provides a converse to this. For  proofs of  these and other  relevant facts we might use 

concerning M6bius transformations we refer the reader to the books by L. V. Ahlfors 

[Ah] and A. Beardon [Be]. For  completeness we recall here some details that will be 

paticularly important to us: 

Another model for hyperbolic geometry comes from the hyperboloid model. Let  

~ =  {(x0,x I . . . . .  x~)ERn+1: q ( x , x ) =  1, x0>O}, 

where q ( x , y ) = x o y o - x ~ y ~ - x 2 y 2 - . . . - x , y  ~ is the usual quadratic Lorentz  form. Then Q 

is one sheet of  the hyperboloid of  two sheets and the map 

1 
(x~ xl . . . . .  xn) -~ (1 +x0) (xl' x2 . . . . .  x~) 

is an isometry between the metric induced on ~,from the quadratic form, that is 

ds 2 dx~ + dx~ + . . . ~ 2 = + d ~ , - d x  o, 

and the hyperbolic metric of  the ball. The isometries of Q are precisely the 

( n + l ) •  matrices which preserve the quadratic form q(x ,x )  and the upper half 
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space x0>0. The group of all such matrices is the rank one Lie subgroup (9+(1, n) of the 

general linear group ~ ( n +  1,R). Thus, O+(1, n) is the group of all matrices A=(au), 

i,j=O, 1,2 ..... n, such that q(Ax, Ax)=q(x, x) and the top left entry of A, a00>0. If J is 

j =  

the matrix 

then for all matrices A in (9+(1, n), 

o) 
- I d  n 

. . .  

(2.1) AJAt= j and A-l  = jAtj .  

The formula for the correspondence between a matrix A=(a~j) and the MObius transfor- 

mation g is developed on page 51 of [Be]. It will be quite important to us. I f x E B  ", then 

y=g(x) has coordinates 

(1 + ]xl 2) a0j+ 2(x 1 au+. . .  +x ,  an./) 

(2.2) YJ - -  ] x l Z ( a o o  - 1)+2(x I alo+... +x,, a,,o)+(aoo+ 1)" 

For any n • n matrix B= (bo) we define the Hilbert-Schmidt norm as 

(2 .3)  ItBll  = 
i,j=O 

The MObius group with the topology of uniform convergence in the chordal metric 

of B ~ is a geometric realization of O+(1, n) with the topology induced by the norm I1" [I. 

That is (9+(1, n) and M0b(n) are topologically isomorphic groups. This is simply because 

the hyperbolic ball is a model for the symmetric space of the Lie group (9+(1, n). 

Given two MObius transformations g and h of B" we denote the distance between 

them as 

(2.4) d(g, h) = sup{Ig(x)-h(x)l: x E S"-J}. 

In order to geometrically relate the inequalities we develop between the matrix 

representatives and the MObius transformations themselves, we wish to relate the two 

quantities IIA-Idll and d(g, Id), where A is the matrix in O+(I, n) corresponding to the 

MObius transformation g. 
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(1) 

(2) 

(3) 

LEMMA 2.5�9 Let A=(a O) correspond to the MObius transformation g. Then 

4(a 2 - 1 ) - 2  t r a + 2 ( n +  1) = I Ia-Idl l  2 

Ig(0)l z = aoo-  1 

aoo+ 1 

]g(ei)--ei[2 = 2(1 a~ l .  
aoo + a ~o / 

Proof. F r o m  (2.1) we see that  the matr ix  A has the form 

A =  and A -~=  a ~  
- -U  B t 

Hence  

and 

Consequent ly  

Also 

a~o_ 1 2 2 + 2 =a lo+a2o+ �9  ano, 

a~o+ 1 __ ai ,2+ a,z*2 - ... + a~n. 

IIA-Idll  2 = t r ( A - I d ) t ( A - I d )  = tr AtA-2  t r A + ( n +  1). 

n t/ 

tr  AtA = ~ a 2 = a 2 + E a~o + E ao2j + ~ a2 
i,j=O i=1 j = l  i,j=l 

n 

= 3 a ~ o - 2 + E ( a ~ o +  1) 
i=0  

= 4a~o+(n -3 )  = 4(a 2 - 1 ) + ( n +  1). 

Next ,  the formula  (2.2) yields 

so that  

aoi 
g(0)j = a~176 1 

2 

[g(0)[ 2 = aoj 
i=o (aoo+ 1) 2 

a 2 -  I aoo-  1 

(aoo+ 1) 2 aoo+l " 
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And finally 

Ig(e,)-eil 2 = Ig(ei)12 +leil2-g(ei)i = 2(1-g(ei),) 

= 2 ( 1  a~ ) .  
aoo + a io 

Henceforth,  by a MObius group we will mean subgroup of  the group of all MObius 

transformations of  B". The topology of such a subgroup will be that induced from the 

inclusion. It is well known that a discrete MObius group acts properly discontinuously 

in int(B"). The limit set L(G) of a MObius group G is the set of  all accumulation 

points of  the orbit G(x)={g(x):gEG} of any xEint(B"). The ordinary set of G is 

O(G)=S"-1-L(G). We note here that L(G) consists of either 0, 1, 2 points or is an 

uncountable perfect  set and in the latter case L(G) is the smallest closed G-invariant 

set. 

We will need to define what it means for a group to be nonelementary in higher 

dimensions and  we need to recall the classification of the elementary discrete MObius 

groups. Given a discrete MObius group G, there are only three types of  elements that 

occur. Namely,  if g E G, then either g is 

elliptic: there is an integer m such that gm=Id; 

parabolic: there is a unique fixed point x 0 E S n-1 such that" 

g+n ---) X 0 locally uniformly in B " -  {x0} as n ---) co; 

loxodromic: there are distinct fixed points x0 and Y0 such that 

g+" --~ x 0 locally uniformly in B " -  {Y0} as n -~ oo 

and 

g-"  ---) Y0 locally uniformly in B " -  {x0} as n --) ~ .  

In the last case we say that x0 is the attracting fixed point o f g  and Y0 is the repulsive 

fixed point. 

If g is a MObius transformation such that the group (g)={gm:mEZ} is not 

discrete, then we will call g an irrational rotation. Notice that simply by definition, if g 

is an irrational rotation, then there is a sequence of  distinct integers m(j)-~oo such that 

gm(~)-*Id as j--~oo. The convergence is of  course uniform on B". 

We say that a MObius group is nonelementary if G contains two elements of  infinite 
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order with distinct fixed points and which are not irrational rotations (there is no 

assumption of  discreteness). Otherwise G is elementary. It is relevant to note that the 

usual definition [Jr of  an elementary group being one for which every two elements of  

infinite order have a common fixed point, fails to be useful in higher dimensions. It is 

not difficult to construct  a pair o f  irrational rotations with no common fixed points but 

which both invert the same line. Such a group is nonelementary (in the classical sense) 

but has an index two subgroup stabilizing a line and so the group itself contains no 

loxodromics or parabolics. 

If G is a discrete nonelementary group, then the limit set of  G is perfect  and the 

fixed point pairs of  loxodromic elements are pairwise dense in the limit set. Moreover,  

from the classical Schot tky construction,  we see that sufficiently high iterates of  two 

loxodromic elements with distinct fixed points will generate a discrete subgroup 

isomorphic to the free group on two generators.  The converse is also true; if G is a 

discrete M6bius group containing a subgroup isomorphic to a free group of rank two or 

more, then G is nonelementary.  Firstly we need the following well known result which 

is an easy consequence of  the fact that the fixed point set of  an isometry is totally 

geodesic and that compact  subgroups stabilize a common point. 

PROPOSITION 2.6. Let g be an elliptic or irrational rotation o fB  n. Then the fixed 

point set of  g is a nonempty, complete affine subspace. 

Here is the classification o f  the elementary groups: 

PROPOSITION 2.7. Let G be a discrete elementary subgroup of MOb(n), the MObius 

group ofB ~. Then G is virtually Abelian (contains an Abelian subgroup of  finite index). 

Moreover, there is a number fl(n) such that G contains a solvable subgroup of index 

less than fl(n). 

I f  L(G)=(3, then G is finite and G is conjugate into the orthogonal group. 

I f  L(G)= {x0}, then every element of  infinite order in G is parabolic and G contains 

at least one such element, Furthermore G is conjugate into the Euclidean group and so 

the rank of a maximal torsion free Abelian subgroup is no more than n. 

l f  L(G) = {x0, Y0}, for distinct Xo and Yo, then G contains an infinite cyclic subgroup 

of  finite index and every element of  G which is of  infinite order is loxodromic, 

furthermore G contains one such element and is conjugate into the similarity group. 

Proof. Most of  this can already be found in Theorem 2.1 of [Tu] in Tukia 's  analysis 

of  point stabilizers. We need only make a couple of  observations. Firstly, Jordan 's  

theorem states that there is a fl(n) such that any finite subgroup of O(n), the orthogonal 
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group, has a normal Abelian subgroup of  index less than fl(n). This together with the 

fact that the group is virtually Abelian implies the second claim. Secondly,  there are the 

only three possibilities for the limit set, since this set is invariant, the cases L ( G ) = ~  

and L(G)={Xo) are covered, while in the last case the stabilizer of  the points x0 and Y0 

has index either one or two in G. 

Let  o: Bn----~B n be a MObius transformation. We will say that o inverts a line if there 

is a hyperbolic line ewhich o setwise fixes and whose endpoints are interchanged by o. 

It follows from the classification of  the elements in a MObius group that o inverts a line 

only if o is either elliptic or an irrational rotation. 

The following lemma is quite useful. 

LEMMA 2.8. Suppose that o inverts a line. I f  A EO+(1, n) is the matrix representing 

o, then 

llA-Idll/> 1/2. 

Proof. Suppose o inverts the line e. Since o is either elliptic or an irrational 

rotation, we see that o has a unique fixed point x0 on e. Let  V be the hyperbolically 

affine subspace of  B n perpendicular  to e and passing through x0. Then V is invariant 

under o, and separating in B n. Consequently o interchanges the components  of B " -  V. 

Let  z0 be the most  distant point of  S n-~ from V in the chordal meric. Considering the 

tangent plane to V at x0 and the fact that o interchanges components ,  one easily finds 

that IO(zo)-zolV--2. It is easy to see that we may assume by conjugating with an 

appropriate orthogonal transformation, that z0=el=(1 ,0  . . . . .  0). The above inequality 

then yields o(el)1<0. From our formula (2.2) we obtain (as a00+al0>0) 

ave+all < O. 

If alt~<l/2, then we are done as IlA-Id]l>lall-11. Otherwise, a01<-1/2 and we are again 

done as IIa-Idll~>la0L 

Finally in this section we wish to establish the following theorem which will give us 

a geometric characterization of our later results, much in the same vein as those 

obtained in [G.M.3]. The geometric content of the result is contained in the existence of  

the topological isomorphism between the MObius group and �9 n). 
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THEOREM 2.9. L e t  g be a MObius transformation and A =(a o) be the corresponding 

representative in O+(1, n). I f  d(g, Id)<6, then IIA-IdI[<2-V'3-,  where 

1 
6 =  

2V~-6+n 

Proof. Firstly, if d(g, Id)<6, then 1g(0)12<62, and so from Lemma 2.5 

a0o- 1 Oz . - - <  
a~+ 1 

Thus 

a~o-1 < 4 - -  
6 z 

(I-62) 2. 

Next we have 

[g(ei)-eA 2 < 62 

and so from Lemma 2.5 

aoi+aii ) f~2 2 1 < 
a oo + a io 

This yields 

(2.10) ( 1 - - ~ )  (aoo + aio) < aii + aoi �9 

We now observe that d(g, Id)=d(g-~,Id). Considering the matrix A -~ we find the 

appropriate version of (2.10) (see the proof of Lemma 2.5 for the form of A-I), 

(2.11) ( 1 - ~ )  (aoo--aio) < aii--aio. 

Adding (2.10) and (2.1 1) yields 

( 1 - ~ )  a00 < aii. 

Thus 

1 - a , ,  < aoo 
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as 1-a00~<0. Summing gives 

n 62 
(2.12) E (1 - a  O) < n ~- aoo. 

i=0 

Combining this with our estimates for a 2 - 1  yields 

n 62 1+62 
4(a~o- 1 )+2E(1-a i i )  < 1 6 - -  +n6 2 

i=O (1 --62) 2 1 ~2  

62 
< (16+n) __ 62)------'-- ~ .  

(1 

Finally observe that the left hand side is [[A-Id[[ 2 by Lemma 2.5, and by our choice of 6 

the right hand side is less than 2-X/-3-. 

w 3. Zassenhaus neighbourhoods 

In this section we introduce the key concept of Zassenhaus neighbourhoods for Lie 

groups. We will want to calculate the size of such a neighbourhood for the group 

(9+(1, n). 

Definition 3. I. Let U be a neighbourhood of the identity e of a Lie group ~. We say 

that U is a Zassenhaus  neighbourhood for ~ if it has the following property: Let F be 

any discrete subgroup of ~. Then F n U lies in a connected nilpotent Lie subgroup of ~. 

It is Zassenhaus' theorem that such neighbourhoods exist in arbitrary Lie groups. 

For more information on these neighbourhoods and their applications one should 

consult Chapter VIII of M. Raghunathan's book [Ra]. We will need to work through 

some parts of the chapter to get the estimates we need. 

We recall that for two matrices A and B 

[[A+BJ]~ [[AJ[+J[B[J and ][AB[]~ IIAIlIIBII. 

If A=Id+~ with [1~1[<1, then the series 

oo 

I d + E ( - 1 ) " ~  ~ 
n = l  

17-898286 Acta Mathematica 163. Imprim~ le 20 decembre 1989 
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converges uniformly to A -~. Thus for any matrix X 

IIA-'Xll ; 

Similarly 

o e  

X + Z ( -  1)"~"X 
n=l 

) ( 1 +  I1~11 = Ilgll 
IlXll+~ll~"ll Ilgll = IlXll 1-11~ll 1-11~11 

n=l 

I~A-'(I  ~ JJXll 
I-I1~11 

Suppose now that A=Id+~  and B=Id+~], where max(llr 11'711)<1- Then 

[A, B]- Id  = ABA-IB - j - I d  = (AB-BA)A-IB -I = (~]-~]~)A-1B -1. 

It follows by applying the above estimates twice, that 

[I[A, B]-Idll ~ ]lr162 
(1-11,TII)(1-11~ll) 

<~2 1t~51111r/lt 
(1-11~ll)( l-II~ll)  " 

Consequently, if max{H~] ], l lr/[l)<r<2-V~-, then 

(3.2) [[[A, B] - Id  I ~< c min(llA-Idll, [IB-Idl[), 

where c=r/(1-r)2< 1. 

THEOREM 3.3. The set f~={AE~s IIA-IdlI<2-V-3) is a Zassenhaus 

neighbourhood for ~s R). 

Proof. Consider the exponential mapping exp: Old(n, R)--.~s R) defined by the 

series 

x = exp X = 
.V.  

k=o k! 

This series converges absolutely and if lIXIl<ln 2, then 

Ilexpg-Idl] ~< ~ -' IlX~l~ ~< expllXII- 1 < 1. 

And if llx-Idll<l, then the logarithmic series 

X =  lnx = + (x-Id)k(-  
1) k+l 

k=l k 
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If x E Q, then 
oo 

Illnxll ~ ~ l l x - I d l l  k ~ 2-X/-3  
k=l V ~ - - 1  

Consequently, if we define 

= { x E ~ ( n ,  R): IIx-Idll < 2-x/-3-}. 

- - < I n 2 .  

then V is contained in U and 

y=exp YE f2, then 

and if x E F n+~, then 

I[Adx(Y)l[ = [l lnxyx-l[]  = 
k=l 

= x E (y-Id)k(-1)  k§ 
k 

~< tlxll [Ix-l[[ E(Y-Id) k 
k=l 

<~ (l+2-X/-3-)2(2-X/-3) <ln2.  
1 - ( 2 - x / - f )  

Thus Adx(V) lies in U. Next, we have seen already in (3.2) that [fL~]={[to,  r/]: 

to, r/E f2} lies in if2. That same estimate implies if F is any relatively compact subset of 

f~ and if we define the recursive sequence 

F ~  and F n+I=[F,F"] ,  

Ilx-Idll ~ c"(2-%/T), 

where c is a constant less than one and depends only on the diameter of F. 

~ (xyx-l--Id)k(-- 1)k+l I 

V=  {lnx: xE f2}, 

expV=~2. Moreover, for all xEf2 and Y E V  if 

also converges absolutely. Consequently if we set 

u =  { X ~ ( n , n ) :  IlXtl < In2}, 

then one easily finds by rearranging the terms of the absolutely convergent series that 

lnoexp[U is the identity mapping. Since both are continuous, both are homeomor- 

phisms onto their images. 

Next set 
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Now, the sets U, V and f~ satisfy all the desired properties of Lemma 8.20 in [Ra] 

and further f2 has the additional desired property for the proof of Theorem 8.16 in [Ra] 

and so by that theorem Q is a Zassenhaus neighbourhood of the identity for ~g(n, R), 

The following corollaries are not the generalizations of JCrgensen's inequality we 

seek. We include them for their interest and to point out the usefulness of Zassenhaus 

neighbourhoods. The proofs are immediate from the definition and the fact that a 

discrete nonelementary group is not nilpotent. 

COROLLARY 3.4. Let A, B be two elements o f  �9 n) generating a discrete group. 

Then 

max(llA-Id[], IlB-Idl]} ~> 2-X/-3-, 

unless (A, B) is an elementary nilpotent group. 

The geometric formulation of the above is 

COROLLARY 3.5. Let g and h be two MObius transformations generating a discrete 

subgroup of  MOb(n). Then 

max{d(g, Id), d(h, Id)} >t 
2Vq-6+n " 

unless (g, h) is an elementary nilpotent group. 

Notice that in Corollary 3.4 the right hand bound is independent of dimension (of 

course the dimension is intrinsic to the norm on the left hand side), while in the 

geometric inequality Corollary 3.5 the left hand side is dimension free while the right 

hand side depends only on V-if-. We ask if the dependence on V--n- of the left hand side 

of the inequality of Corollary 3.5 is really necessary? 

The most general formulation of Corollary 3.4 (and one which we will have cause 

to use) in terms of any number k of generators (possibly k=o~) is: 

COROLLARY 3.6. Let {Ai: i=l ,2 . . . . .  k} be a collection of  elements o f  O+(1,n) 

generating a discrete group G. Then 

max(llA,-Idll: i = 1,2 . . . . .  k} I> 2 - V ~ -  

unless G is an elementary nilpotent group. 
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The key to the inequality that we really seek is to replace B by [A, B] in Corollary 

3.4 and to get the weaker conclusion that (A, B) is virtually Abelian and so elementary. 

This is the content of the next section. 

w 4. The generalized Jergensen inequality 

Throughout this section we will abuse notation and think of a MObius transformation g 

and its matrix representative A C t g+(1, n) as being the same. Thus by IIg-Idll we will 

mean IIA-Idll. Also by a discrete group we mean a discrete subgroup of M0b(n). To 

begin with we need a couple of lemmas. 

LEMMA 4.1. Suppose that f and g are two MObius transformations generating a 

discrete group. I f  f is either parabolic or loxodromic and if the group ( f ,g - l fg )  is 

elementary, then the group ( f, g) is also elementary. 

Proof. Let us consider the two cases tha t f i s  parabolic and loxodromic separately. 

(i) Suppose that f is parabolic with parabolic fixed point x0. As the group (f ,  g-~fg) 

is elementary, x0 is the unique point of the limit set and every element of this group 

stabilizes that point. In particular g-lfg(xo)=X o. Consequentlyffixes g(xo) and s incef is  

parabolic, this is impossible unless g(xo)=Xo. Thus the group generated by f and g is 

discrete and stabilizes x0 and so is elementary. 

(ii) Suppose that f is loxodromic with two fixed points x0 and Y0. As above, since 

the group ( f ,  g-lfg) is elementary every element of this group must stabilize the set 

(x0, Y0}- Thus g-lfg({xo, y0})= {%, Y0} so that f stabilizes the set g({x 0, Y0}). Since f is 

loxodromic we must have g({x 0,y0})={x0,y0}. Thus the group generated by f and g 

stabilizes the set (x0,Y0}. This easily implies that the group (f,  g) is elementary. 

LEMMA 4.2. Let f and g be two MObius transformations generating a discrete 

group. Suppose that f is elliptic and p is the dimension of  the fixed point set off .  I f  the 

group 

G= (g-ifgi: i = 0 ,  1,2 ... . .  p + l )  

is elementary then either ( f ,  g) is elementary or IIf-ld[l>l/2. 

Proof. We introduce some terminology. Given a set of points {x 0, x~ .. . . .  xn} the 

span of the points ~p(x 0, x I . . . . .  xn) is the smallest (hyperbolically) affine subspace 

containing the points. Since we know what all the affine subspaces are, the span of the 



268 G.J. MARTIN 

points Xo, X 1 . . . . .  x n is the intersection of  B n and the sphere of  smallest dimension 

containing the points and orthogonal to the boundary.  

Let  V=f ix( f ) .  As remarked,  V is a nonempty affine subspace. We break the proof  

up into three parts. 

(1) Suppose that G is finite. Then it is well known that there is an affine subspace F 

pointwise fixed by every element of  G. Clearly F is a subspace of V. Let  x0 E F, Then 

xo=g-~fgi(Xo) for all i=0, 1,2, . . . , p +  1. Thus gi(xo)E V for all i=0, 1,2 . . . . .  p +  1. Set 

x i=gi(xo), i = 0 , 1 , 2  . . . . .  p + l .  

Let  j be the smallest integer such that ff(x 0, x I, x 2 . . . . .  xj)=op(x0, Xl, ... , Xj, Xj+I). Such a 

minimalj  exists since the (xj} are p + 2  points (though not necessarily distinct) lying on 

the p-dimensional affine subspace V. Now, since g is an isometry of  the space we have 

g(~(XO,  Xl ,  X 2 . . . . .  Xj) = 6p(g(XO), g ( X l ) ,  g ( x 2 ) ,  . . . ,  g(x j ) )  = ~p(x 1 , x 2 . . . . .  x j ,  xj+ 1). 

But f f (Xl ,X 2 . . . . .  xj, xj+ 0 is a subspace of  ff(Xo, Xl,X2 . . . . .  xj) by the choice o f j .  A simple 

dimension count  then implies 

g ( . p ( X o ,  x l , x 2  . . . . .  x j )  ) = .F,(Xo, x l , x 2  . . . . .  x j ) .  

Since ff(x 0, Xl, x 2 . . . . .  xj) is an affine space which is mapped to itself by g, we know that g 

has a fixed point in this space, or possibly in its boundary on S "-1. S incefs tabi l izes  this 

entire subspace pointwise, f and g have a common fixed point and so the group they 

generate is elementary,  as it is assumed discrete. 

(2) Suppose that L(G)=(Xo} .  Since the limit set is G-invariant we must have 

f(xo) =x0 and for all i= 1,2 . . . . .  p + 1, g-ifgi(x o) =%. Thus, as above if we set xi=gi(xo), then 

(xi} are p + 2  points lying in the fixed point set o f f .  The argument given in (1) now 

applies and we find that ( f ,  g)  is elementary.  

(3) Suppose that L ( G ) =  {x0,Y0}. Again as L(G)  is G invariant, every element of  G 

must fix or interchange the points x0 and Y0. If every element of G pointwise fixes x0 and 

y0 then the argument given in (2) suffices to deduce that the group ( f ,  g)  is elementary.  

If there is some element of  G which does not fix x0 and Y0 then there must be a 

generator which does not. Thus for some i E {0, 1,2 . . . . .  p + 1 }, g-~fgi must interchange 

the points x0 and Y0 and thus must invert the hyperbolic line between them. But then f 

must invert the hyperbolic line joining the points g(xo) and g(yo). Consequently,  by 

Lemma 2.8, [ [ f - Id[[>l /2 .  This last observation completes the proof  of  the lemma. 
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It is worthwhile observing at this point that the number p is at most n - 1 ,  while 

p = n - 1 ,  implies f is a reflection and therefore inverts a line, and so I[f-Idl l>l /2 .  Thus 

either 

p ~ < n - 2  or IIf-IdlL> 1/2. 

As corollaries to the above two lemmas, we can formulate preliminary versions of 

the generalizations of  JCrgensen's inequality we seek. We let fl(n) denote the constant 

of Proposition 2.7. 

COROLLARY 4.3. Let f and g together generate a discrete group and suppose that f 

is loxodromic or parabolic. Then 

max{llf-Idl l ,  [l[f, g]-Id[I} t> 2 -  N/-3- 

and 

max{tlf-Idt[,  tlg-lfg-Idt[} >t 2 -V ' -3 ,  

unless ( f ,  g) is elementary and contains a solvable subgroup of  index no more than 

fl(n). 

Notice that in Corollary 4.3 both inequalities must hold and neither one implies the 

other. The formulation of the above in the case that f is elliptic is the following: 

COROLLARY 4.4. Let f and g generate a discrete group and suppose that f is 

elliptic and k=dim(fix(f)) .  Then 

max{[lf-Idll ,  lilY, gi]-Idll: i = I, 2 . . . . .  k+ 1}/> 2 -  V'-3- 

and 

max{]lg-~gi-Idll: i = 0, 1,2 . . . . .  k+ 1} I> 2 - V ' T ,  

unless ( f ,  g) is elementary and contains a solvable subgroup of  index no more than 

fl(n). 

Proof o f  Corollaries 4.3 and 4.4. In each case if the given inequality fails to hold, 

then we find that the group 

<f, If, gl) = (f ,  g ig- ' )  

in the first case and the group 
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( f , [ f ,  gi]: i=  1,2 . . . . .  k + l )  = (gyg-i: i = 0 ,  1,2 . . . . .  k + l )  

in the second case are nilpotent and consequently elementary, by Corollaries 3.4 and 

3.6. Thus the two Lemmas 4.1 and 4.2 imply in each respective case that ( f , g )  is 

elementary, since [If-Idll>l/2 is impossible given that the inequality fails to hold. The 

remark about the index of a solvable subgroup comes from the structure of the 

elementary groups, Proposition 2.7. 

Putting together the above results into one inequality and recalling that the dimen- 

sion of f ix(A)~n-2,  unless f is of even order and [[f-Id[[>l/2 we obtain what we 

consider to be the correct generalization of JCrgensen's inequality to higher dimen- 

sions. 

THEOREM 4.5 (Generalized J0rgensen inequality). Let  f and g generate a discrete 

group. Then 

max{[lg-ifgi-Id[[: i = 0 ,  1,2 . . . . .  n - l )  ~> 2-x/-3 - 

and 

max{l[f-Idll, II[f, gq-Id[[: i=  1,2 . . . . .  n - l )  ~> 2-V'3"  

unless ( f ,  g) is an elementary group with a solvable subgroup o f  index no more than 

fl(n). 

The appropriate geometric form is 

COROLLARY 4.6. Let  f and g be MObius transformations generating a discrete 

group. Then 

1 
max{d(g-i fg i, Id): i=  0, 1,2 ... . .  n - l }  t> 

2VT6+n 

and 

max{d(f, Id), d([f, gi], Id): i = 1,2 ... . .  n -  1} I> 
2X/]--6+n 

unless f and g together generate an elementary group with a solvable subgroup o f  

index no more than fl(n). Moreover, i f  f is not elliptic, then it suffices to consider only 

those terms with i---0 or 1. 
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Notice that JCrgensen's inequality is formulated in a conjugacy invariant fashion. 

The inequality we have found is not. This is actually no problem at all since if G is 

discrete and nonelementay, then so is any conjugate of G. Thus the inequality is valid 

for G and all its conjugates. One can then obtain a conjugacy invariant formulation by 

looking at the adjoint orbit of G and considering the infimum. As an example, a 

conjugacy invariant formulation of Corollary 4.5 is 

COROLLARY 4.7. Let f and g generate a discrete nonelementary MObius group and 

suppose that f is loxodromic or parabolic. Then 

min(max(llh~ -~-Idll, Hh[f, g] h -l-Id)l}: h E MOb(n)} t> 2 -  V"3-. 

Of course similar versions of the other inequalities will hold. 

In view of Lemma 2.5 we can formulate Corollary 4.3 in a version involving traces 

that is close to JCrgensen's original inequality. Let f and g be MObius transformations 

with corresponding matrix representatives A=(ao) and B=(b0). Set C=B-~AB=(co.). 

COROLLARY 4.8. I f  f and g generate a discrete nonelementary MObius group and if  

f is not elliptic, then 

2tr( id_A)+4 max{a 2, c 2} I> 11_4V~-~->4 1 
14 

Here is an interesting application of this inequality. By a pure translation we mean 

a parabolic MObius transformation conjugate to x--}x+a, some a E R'. 

COROLLARY 4.9. Suppose that f is a pure translation and that f and g together 

generate a discrete nonelementary subgroup o f  MOb(n). Then 

1 
max(If(0)[' Ig-lfg(~ >I 1~" 

Proof. Since f is a pure translation tr(A)=tr(Id). Thus from Corollary 4.8 

max{a2-1 ,  c 2 - 1 }  I> 
(2-V'T)  2 

Now by Lemma 2.5 

If(O)[2 _ a~o-1 
(aoo+ 1) 2 

and 
c ~ - I  

Ig-~fg(O))2 - (Coo+ l) 2" 
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The function h(t)=(t 2-1)/(1 +02 is increasing in t and therefore one of the terms above 

must exceed h (~/1 + ((2- ~ )2/4 ) ) = 0.0044 . . . .  The result then follows. 

By applying Corollary 3.4 instead of Corollary 4.8, the same argument shows 

COROLLARY 4.10. Suppose that f and g are pure translations generating a 

discrete nonelementary MObius group. Then 

1 
max{If(0)t' Ig(0)l} 1> 1-~" 

Notice the independence of dimension in both Corollaries 4.9 and 4. I0. 

With some more work we could go on to develop from our inequalities the 

appropriate version of the Shimutzu-Leutbecher inequality (the existence of precisely 

invariant horospheres at the fixed points of pure translations). However the best one 

could hope for is the result already obtained by N. Weilenberg [We, Proposition 4] and 

so we do not pursue the matter. 

Finally we prove another generalisation of Theorem 4.5 that is particularly useful 

in certain circumstances, see [Mar]. A function N(f, g) is a pseudo-distance on the 

Mfbius group generating the usual topology if N: Mfb(n)• is symmetric 

and nonnegative, N(f ,  g)=0 if and only if f - g ,  and N(3~, g)---~0 if and only if fi---~g 

uniformly in B n. Given such a pseudodistance we define N ( f ) = N ( f ,  Id). 

Here is the torsion free version of the general result we seek. The result in the case 

that there is torsion is a quite straightforward consequence of the argument given here 

and Theorem 4.5, which we leave for the reader to develop. 

PROPOSITION 4.1 1. Let N be a pseudo-distance on MOb(n) generating the usual 

topology. Suppose that there are b>0 and c<l such that 

max{N(hl),N(h2) } <6 =~ N([hj, h2]) <cc~. 

I f  f and g together generate a discrete nonelementary torsion free group, then 

max{N(f),  N(g)} I> b. 

Proof. Given f and g set hl=[f,g] and recursively define h2=[f, hl] . . . . .  

hn+l=[f, h,] and so on. If max{N(f),  N(g)}<b, then by hypothesis N(hi)-+O. Since N 

generates the usual topology we se that 

IIh,-Idll+ll[f, h,l-Idll---> O. 
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Thus the group Gi=(hi, f )  is eventually elementary by Theorem 4.5. Since 

Gi=(f,(hi_l)f(hi_O-1), Lemma 4.1 implies that Gi_l=(f, hi_l) is also elementary. 

Inductively we find that Go = (f ,  g) is elementary. 

There is another natural pseudo-distance to consider other than that induced by 

the Hilbert-Schmidt norm and that is the distance induced by the operator norm. If 

A E ~ffn, R), we define 

IIAllop = max(llmoll: I[vll = 1}. 

The usefulness of this norm is evidenced by the fact that it measures only the size of the 

largest eigenvalue of AtA and therefore is essentially dimension free, for instance every 

orthogonal transformation has norm one. The argument immediately following Defini- 

tion 3.1 shows that the estimate we found for the Hilbert-Schmidt norm also applies in 

the case of the operator norm. This establishes the following. 

PROPOSITION 4.12. Let f and g generate a discrete nonelementary torsion free 
MObius group. Then 

max{llf-Idllop, H[f, g]-Idllop} 9 2 -  ~-5-. 

Again the reader may easily develop the correct form of the above in the case that 

there is torsion. 

w 5. Algebraic convergence and discreteness 

There are many rather nice consequences of JCrgensen's inequality in the classical case 

of Kleinian groups. One of the more important is that the limit of Kleinian groups is 

again Kleinian (that is discrete and nonelementary). One of course suspects, since we 

have a version of the inequality in all dimensions, that this result should also be valid in 

all dimensions. We will find an easy example to show that this is not in fact the case. 

The example will motivate the assumption that we will have to make in order to 

proceed. 

There will also be some bother in showing that the limit of discrete nonelementary 

groups is nonelementary. There is a simple test to decide if two elements fix a common 

point in a Kleinian group, namely the trace of the commutator of the elements is two. 

This is no longer true in higher dimensions. This test together with JCrgensen's 

inequality enables one to readily establish Lemma 9 of [J.K.] showing that if the limit 

pair (g, h} of a sequence {gi, h~} of pairs of elements generating a discrete group fix a 
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common point, then so too must gi and hi for all sufficiently large i. This is used to 

prove that the limit of  nonelementary groups is nonelementary.  Another  problem is that 

the geometry is more complicated and to obtain the reduction to the two generator  

case, as is done in the Kleinian case, we must turn to more algebraic methods. 

Moreover, any finite group can occur  as a discrete subgroup of  a M6bius group (since 

all such groups embed in the orthogonal group). Thus any finite group can be a 

subgroup of a discrete nonelementary Mfbius  group. Consequently the classification of  

the elementary groups does not help nearly as much in the general setting as it does in 

the classical case. One more confounding issue is that the fixed point set of some power 

of  an elliptic element may be larger than that of  the element itself. Consequently it may 

be that f is elliptic and g is loxodromic with ( f ,  g)  nonelementary,  while (fro, g) is 

elementary. This cannot  happen in dimension three. 

EXAMPLE. For each n~>4, there is a sequence of  finitely generated discrete 

nonelementary subgroups o f  MSb(n), such that the generators converge uniformly on 

B ~ to MObius transformations which do not generate a discrete group. 

Proof. Let  F be a finitely generated nonelementary Fuchsian group. Let  F0 be the 

Poincar6 extension of  F to B n (obtained by first extending to B 3 and then to B 4 and so 

on). Then F0 fixes a codimension two affine subspace. Let  F0 denote the group 

generated by F0 together with the rotation of  order  n about this affine subspace. This 

sequence of groups is easily seen to have the desired properties if we are careful 

enough to arrange that the rotations converge to an irrational rotation. 

Another  point to this example is that we could arrange that the rotations converge 

to the identity. Thus the limit group would be discrete but the groups in the sequence 

are not eventually factors of  the limit group (that is there is no eventual homomorphism 

back). However it is always the case (for finitely generated groups) in dimension three 

that there is an eventual homomorphism back. 

The example actually shows essentially the only way the limit theorem can fail. It 

suggests two natural paths to follow. Firstly we could assume that no finite index 

subgroup stabilizes a codimension two or more subspace. This is a geometric restric- 

tion that seems rather  hard to apply in many circumstances.  In the torsion free case it 

amounts to asking that there is no totally geodesic submanifold of  codimension two or 

more carrying the fundamental  group of  the quotient. A more natural restriction is that 

i f  Gi splits as G=G~• where G" is nonelementary and Hi is finite, then there should 

be a uniform bound on the order  of the Hi. We prefer to make a somewhat stronger 
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algebraic restriction which will be easier to apply in the situations we are particularly 

interested in, namely continuous families of deformations. We will try to point out 

where with more work one could weaken the hypothesis to either of those above. 

Definition 5.1. Let {Gi}ie 1 be a family of groups. We say that {Gi} has uniformly 

bounded torsion if there is an integer N with the following property: 

if g E Gi for some i, then ord(g) ~< N or ord(g) = oo. 

That is, there is a uniform bound on the order of finite cyclic subgroups. The 

following lemma is clear. 

LEMMA 5.2. Let G be a fni te ly  generated discrete subgroup of  MOb(n) with a 

torsion free subgroup o f  index M. Then every finite cyclic subgroup has order less than 

M. 

At this point it is worthwhile recalling Selberg's theorem [Se] which implies that 

every finitely generated MObius group contains a normal torsion free subgroup of finite 

index. Thus the content of the definition is solely in the uniformity of the order of the 

torsion elements. Notice that such a hypothesis will be trivially satisfied if each group 

Gi is torsion free, or if each group is the isomorphic image of a fixed finitely generated 

M6bius group. We also raise here the question of whether or not there is an appropriate 

converse to Lemma 5.2. The Burnside groups provide a counterexample to the general 

question, but these groups cannot be linear. 

We need another useful lemma which is well known. Indeed the purely topological 

content of this result is also true and due to Newman [Ne]. 

LEMMA 5.3. For each integer m> l  there is a positive number 6(m) such that i f  g 

is a periodic MObius transformation of  period less than or equal to m, which is not the 

identity, then 

][g-Idn>b(m). 

The next lemma too is easy. 

LEMMA 5.4. Let {gj} be a sequence o f  MObius transformations converging 

uniformly to another MObius tranformation g. I f  ord(gj)<N for all j =  1,2 .... then, 

eventually the order o f  the gj is a constant m < N  and g is elliptic o f  order m. 
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We are now in a position to obtain the first convergence theorem. It is analogous to 

Proposition 1 of [Jr 

THEOREM 5.5 Let G be a nonelementary subgroup o f  M6b(n) and ~vm a sequence 

of  mappings o f  G into M6b(n) such that for each m= 1,2 .... the group ~Vm(G) is discrete 

and the family {/pro(G)} has uniformly bounded torsion, i f  for each g E G, 

~0m(g)~g as m ~ o %  

then G is discrete. 

Proof. Suppose that G is not discrete. Then there is a sequence of elements {hi} in 

G converging to the identity. Since G is nonelementary it has two elements which are 

either parabolic or loxodromic and have distinct fixed points. Label these asfl  and f2. It 

follows from continuity that for i= 1,2 and sufficiently large j and m, 

IlWm(h)-Idll+ll[~Pm(h), Wm(f/)]--Idll < min{O(N), 2 -  X/-3-} 

where N is the bound on the order of the finite cyclic subgroups and 6(N) is the number 

in Lemma 5.2. It follows that lpm(hj) is not elliptic and that the group generated by 

~Pm(hj) and ~Pm(fi) is elementary by Corollary 4.3. Moreover, as f/ is not elliptic, Lemma 

5.3 together with the assumption of bounded torsion implies that for large enough m, 

~Pm(f/) is not elliptic. Consequently ~pm(hj) and ~Pm(fi) both have common fixed points. 

So then do ~Pm(fi), i=1,2. Consequently in the limit we find that fl and f2 have a 

common fixed point and this is the desired contraction. 

Analogously to Proposition 2 of [Jr we have 

THEOREM 5.6. A finitely generated nonelementary subgroup of  M~)b(n) is discrete 

if  and only i f  every two generator subgroup is discrete. 

Proof. Suppose that G is nonelementary and every two generator subgroup is 

discrete and yet G itself is not discrete. Then there is a sequence {hi} converging to the 

identity in G. Now G has bounded torsion as it is finitely generated. Thus we may 

assume that the hj are not elliptic. Furthermore G has parabolic or loxodromic 

elements 3q and ~ with distinct fixed points by hypothesis. Since (hi, f )  is discrete for 

each j and i=1,2, the argument given in Theorem 5.4 will now imply that for large 

enough j, hj and fi, i= 1,2, will have common fixed points. This is a contradiction. 
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We now seek to establish the appropriate version of  the proposition of  JCrgensen 

and Klein on the algebraic convergence of groups, see [J.K.]. We need a definition. 

Definition 5.7. Le t  {G j} be a sequence of subgroups of M6b(n) each with the same 

finite number of  generators say {g~, 1, g j, 2 . . . . .  g j, m}" If for each i= 1,2 . . . . .  m we have 

gj, i---~ gi as j - - - ~ ,  

then we say that the groups Gj converge algebraically to the M6bius group 

G =  (gl,  g2 . . . . .  gin)" 

Given an element g E G -  {Id), we can express g in a minimal fashion as a product  of  the 

generators 

N 

g : I"[  gp/,i) 
i=1  

where for each i, gi is some generator.  Given such a minimal reduction of g we define 

the word length of  g as w(g)=Ep(i). We set w(Id)=0. 

PROPOSITION 5.8.  Let G be the algebraic limit o f  a sequence o f  m generator 

discrete nonelementary subgroups o f  M6b(n) of  uniformly bounded torsion. Then G is 

discrete and nonelementary. 

Proof. Let  the sequence of discrete nonelementary groups converging to G be 

denoted {Gi}. Since G and Gi have the same finite number of generators the mappings 

gij--~gi given by the correspondence of  generators will have the property needed in 

Theorem 5.5. Evidently then G will be discrete if it is nonelementary.  This is what we 

shall show. Firstly we claim: 

(1) G is not finite. To see this let us suppose that G were finite and let 

m=max{w(g):g E G}<o~. As Gj is infinite there are words of  every length. Let  {hi} be 

a sequence of  words of  length m + l .  Because the word length of h i is uniformly 

bounded we may pass to a subsequence so that hj---~h E G. Now h has a representat ion 

as a word of  length no more than m. Let  the corresponding word in Gj be f i  and set 

hj=fj-lh/ Then l<w(hj)<~2m+l, and hj---qd. By Lemma 5.3 and since {Gj} has 

uniformly bounded torsion, f o r j  sufficiently large, h) is not elliptic. Clearly hj is not the 

identity. Next ,  since Gj is nonelementary at least one of the generators of  Gj cannot  

stabilize (setwise) the fixed point set of  hi. Let  gj be such a generator.  Since there is a 
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finite set of generators, we may assume by passing to a subsequence that gj---~g, a 

generator of  G. We now easily obtain a contradiction to Corollary 4.3 as 
v t - - l  v Ilhj-Idll+tlg:hjej - I d l l ~ 0 ,  but the group (hi, g~) is discrete and nonelementary. Thus 

G is infinite. 

Hence we may choose h E G of  infinite order (recall that G is finitely generated and 

so contains a torsion free subgroup of finite index). Let  {hi} be the corresponding 

words in {Gi}. Then it is clear h:--,h. Since {Gi} has uniformly bounded torsion and 

since for all fixed p, h~--~tr~ for all j sufficiently large hj is not elliptic. Again 

choose a generator gj which does not stabilize the fixed point set of hj and assume 

gi---~g a generator of  G. We have now obtained the desired reduction to the two 

generator case as (gi, h:) is discrete and nonelementary and the generators are 

converging to the group (g, h) .  

We claim: 

(2) The limit h is parabolic or loxodromic. To see this let us suppose, for the 

purpose of  contradiction, that this is not the case. Since h is either elliptic or an 

irrational rotation there is an integer k such that h k is so close to the identify (possibly 

equal) that 

[Ihk-Idll+ll[h k, g ] - I d l l < 2 - V ' - f .  

From the uniform convergence, we find that for all sufficiently large j ,  

[[hf-Idll+ll[h~', g j ] - I d l l < 2 - V T .  

Consequently by Corollary 4.3, the group (gj, h:) is elementary. This is impossible 

since h i is loxodromic or parabolic (as hj is) and gj was chosen so that it did not setwise 

stabilize the fixed points. 

We next claim: 

(3) The elements g and h do not have a common f ixed point unless g is parabolic 

and h is loxodromic, or g is loxodromic and h is parabolic. Suppose g and h do have a 

common fixed point. There are two cases. 

Firstly, let us suppose that the group (g, h) is discrete. Then since g and h have a 

common fixed point the group is elementary and so virtually Abe/Jan. Therefore there 

are integers j and k such that h ~ and ghqg -j c o m m u t e .  This is because both of the 

elements h and f=ghg  -j are of infinite order and so some power lies in any finite index 

subgroup. Then 

[l[ hP, f q ] - Id l l+  II[[ hP, f q ], hP] - IdH-  O. 
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By continuity and Corollary 4.3 we see that for all sufficiently large i, the group 

generated by the elements hi p and [hP,f q] is elementary, where f,.=gi --j hig i. But this is 

the group generated by h~ and gT~hqgi and both of these elements are parabolic or 

loxodromic with distinct fixed points (since gi does not fix the fixed points of h3. This is 

impossible. 

Secondly, if (g, h) is not discrete, then there is a sequence fk converging to the 

identity in (g, h). For sufficiently large k 

IIf,-/dll+ll[A, h]-Idll+ll[fk, ghg-I]--Idll << 1. 

The uniformly bounded torsion assumption will now imply that the approximants to fk 

are not elliptic and by continuity and Corollary 4.3 the group generated by the 

approximants t o ~  and h and the group generated by the approximants tofk and ghg -1 

are elementary. Thus the approximations to h and to ghg -1 have common fixed points. 

This is not the case by construction. 

It remains only to observe that h and g-Jhg are both parabolic or loxodromic with 

distinct fixed points (notice that in the loxodromic case that they may have one 

common fixed point). Thus G is nonelementary and this establishes the proposition. 

We are now in a position to assert the following generalization of the theorems of 

Chuckrow, Marden and JCrgensen, see [Jr Weilenberg also has an n-dimensional 

version of the following theorem in the case that Go is torsion free, [We, Theorem 3]. 

We need the following easy lemma (cf. Lemma 3 [Jr and notice that the appropriate 

version of the combination theorem is true in all dimensions, and that the weaker 

assumption that f is not the identity, with the same conclusion, is false in higher 

dimensions): 

LEMMA 5.9. Let G be a discrete nonelementary group and f E  G not elliptic. Then 

there is a loxodromic g E G such that ( f, g) is discrete, nonelementary and isomorphic 

to the free group o f  rank two. 

THEOREM 5.10. Let Go be a f in fe ly  generated discrete nonelementary subgroup 

of  MOb(n). For each natural number m, let ~Pm be an isomorphism o f  Go onto a discrete 

group Gm and suppose that for some choice o f  generators {g,-: i= 1,2, ...,k} the images 

V/m(gi) converge to a MObius transformation 

~rn(gi) "---> ~)(gi) as m ~ oo. 

18-898286 Acta Mathematica /63. Imprim6 le 20 decembre 1989 
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Then the group G generated by transformations {~p(gi): i=l, 2 .. . . .  k} is discrete and 

nonelementary, furthermore ~p is an isomorphism of Go onto G. 

Proof. It is clear that the mapping ~p: Go--->G is a homomorphism onto. L e t f b e  an 

element of Go-{Id}. If f is elliptic of order p say, then so too is ~Pm(f) for all m. 

Consequently, Lemma 5.4 implies that II~Pm(f)-Idll is bounded below by a number 

depending only on the dimension. Thus lpm(f ) does not approach the identity and so 

~p(f)4=Id. If f is not elliptic, then according to Lemma 5.9 choose a loxodromic g E Go 

so that the group ( f ,  g) is discrete, nonelementary and isomorphic to the free group of 

rank two. 

The group (tpm(f), ~Pm(g)) is discrete and is isomorphic to (f ,  g), therefore it is not 

virtually Abelian and so nonelementary. If ~p(f)=Id, then by continuity for sufficient 

large m 

ma -i i X{l[/pm(g ) ~p,,(f)tpm(g) -Id[l: i = 0, 1,2 . . . . .  n -  1} < 2 -  X/-3-. 

And this implies by Theorem 4.5 that (~Pm(f), ~Pm(g)) is elementary. This contradiction 

implies that ~Pm(f) cannot approach the identity and so ~p(f)4:Id. Thus the eventual 

homomorphism ~p is an isomorphism. By Proposition 5.8 the limit group G is discrete 

and nonelementary since a sequence of isomorphic groups has bounded torsion. 

Note how important it was to us that the maps ~Pm were isomorphisms as it enabled 

us to omit the assumption of uniformly bounded torsion. A. Marden used a version of 

the above theorem in the Kleinian case to show that every group on the boundary of 

Schottky space is discrete. Schottky space is more complicated in higher dimensions 

(for instance the Cantor set limit sets may have topologically distinct complements). 

However the above suggests that essentially the same result is true. We hope to return 

to this at another time. 

It is worthwhile remarking at this point how one might weaken the hypothesis of 

bounded torsion. In Theorem 5.5 one will have control on the order of the cyclic groups 

that lie in the appropriate splittings of the Gm by (a necessary) hypothesis. Then one 

needs to control the eUiptics that really do lie in the nonelementary part of the group. 

To control these elliptics we need an n-dimensional version of Lemma 2 of [Jr and 

Lemma 4 of [J.K.]. The first lemma asserts that if Xi--->X, Yi~ Y, with (X,-, Yi) 

discrete nonelementary, then X elliptic implies X~ is elliptic for i sufficiently large and 

the orders of the Xi are uniformly bounded. This is false in higher dimensions (even if 

the limit (X, Y) is discrete nonelementary). The second lemma implies the existence of 

elements of infinite order and word length bounded in terms of the number of gener- 
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ators in a discrete nonelementary group. This seems rather hard to guarantee in higher 

dimensions. However there is hope that the arguments can be made to work under the 

geometric assumption that the limit set does not lie in the boundary of any codimension 

two (hyperbolically) affine subspace. We shall report on this elsewhere. 

w 6. Continuous families of discrete groups 

In this section we will replicate what we can from Section 4 of [Jr In particular we are 

aiming to get a n-dimensional version of the main theorem of [J.K.] and the appropriate 

version of Theorem 3 of [Jr Unfortunately we will always have to deal with the 

troublesome problem of bounded torsion. 

Thus motivated we define ~(n:r) to be that subset of 

O+(1, n)xO+(1, n)x ... xO+(1,n) (r copies) 

consisting of all points (gl, gz . . . . .  gr) such that (g~, g2 . . . . .  gr )  is a discrete subgroup of 

the n-dimensional M6bius group, M6b(n). As such it has a presentation with exactly r 

generators. We give 0~(n: r) the topology it inherits as a subspace, this corresponds to 

the notion of algebraic convergence and is easily seen to be compatible with the natural 

topology induced by the norm I[" H. Notice that each point of ~(n:r) is a discrete group 

with a canonical choice of generators and that the same group may represent different 

points of O~(n:r) depending on how the generators are chosen. ~(n:r) is naturally a 

subset of O~(n:r+ 1) as we may add an extra generator with the additional relation that it 

is the identity. According to Theorem 5.5 the subset of 0~(n:r) consisting of those 

groups whose finite cyclic subgroups have order less than M is closed (one needs to 

make the additional observation that the limit of such groups also has the bound M on 

the order of the finite cyclic subgroups, as we will see). In particular the finitely 

generated torsion free groups form a closed set. 

It follows from the compact core theorem for three manifolds of P. Scott [Sc] 

together with Selberg's theorem [Se], that every subgroup of 60(2:r) is finitely present- 

ed. The question of whether every element of 03(n:r) is finitely presented or not is 

unknown and difficult. It would follow from such a core theorem for n-dimensional 

hyperbolic manifolds. 

Consequently we must make some assumptions about the existence of finite 

presentations. The following is the appropriate version of Theorem 2 of [J.K.]. It is 

unfortunately and necessarily more complicated. We go through the details for com- 

pleteness and because there are a few differences in our situation. 
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THEOREM 6.1.  Let {G,,} ~,= 1 be a sequence o f t  generator discrete nonelementary 

subgroups o f  MOb(n) converging algebraically to the group G. Suppose that the 

sequence has uniformly bounded torsion and that G is finitely presented. Then G too is 

a discrete nonelementary subgroup o f  M0b(n) and the correspondence from the 

generators o f  G to their approximants in G,, extends for all sufficiently large m to a 

homomorphism of  G onto Gin. 

Proof. We denote the generators of G,, by gm, l , gm ,  2 . . . . .  gin, r" By hypothesis we 

have for each i= 1,2 . . . .  , m, 

gm, i-"->gi as m ~ ~.  

There is only one possibility of  extending the natural correspondence of  generators 

(which we denote by ~p,,), namely for each finite sequence (p(i), q(i)) we should have 

N N 
-[ .t,,~ ._._> ]'--[ gp~O 

~q(i)  I ..I. rn, q(i)" 
i ~ l  i = l  

A necessary and sufficient condition for this correspondence to define a mapping of G 

is that 

N N 

tS q(i) ~ g m, q(o 
i= l  i=1 

Our assumption is that G has a finite presentation. Let  R j, R2 . . . . .  R,~ be a basis for  

the relations in G each Ri being written as a product  of powers of  gi and let Rm,  i denote 

the same word in the group G,, in terms of  the generators for Gin. We need only show 

that there is a number  M such that if re>M, then Rm, i=Id. It is clear that 

Rm, i---->Id as m--* ac, 

as for each m ,  Rm, i has the same uniformly bounded word length. Since the groups G,. 

have uniformly bounded torsion, it must be the case that for all sufficiently large m, 

R,~,i is either the identity, parabolic or loxodromic. We already know from what we 

have proved above that G is discrete and nonelementary.  Thus choose a pair of  

loxodromics h~ and h 2 in G generating a free group of  rank two. Then the sequence of  

approximants hm, 1 and hm, z must be either parabolic or Ioxodromic. From Corollary 

4.3, and the above for sufficiently large m, the group generated by R,., i and hm,j, j = 1,2 

is discrete and elementary and both generators have infinite order. The least such m for 
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which the above statement holds true is the M that we seek. For then Rm, i has infinite 

order and has either 

(a) four distinct fixed points (both hm, i are loxodromic) or 

(b) three distinct fixed points (one hm, i parabolic the other loxodromic) or 

(c) two distinct fixed points (both hm, i are parabolic). 

It only remains to observe that the last case cannot occur in a discrete group, that is a 

parabolic and loxodromic cannot share a common fixed point, see for instance Theo- 

rem 6.7 of [G.M.1]. This concludes the proof. 

We remark here that we could replace the assumption that G has a finite presenta- 

tion by the assumption that each am is finitely presented and the word length of each 

relation in the presentation is bounded independently of m. 

Given two points (groups) G and H in 60(n: r) we denote by d(G, H)  the distance 

from G to H defined by 

d(G,H)  = max{llgi-hill: i= 1,2 .... r} 

where {gi} and {hi} are the canonical set of generators. It is not difficult to see that this 

metric is compatible with the usual topologies of all spaces concerned. 

The following lemma will prove extremely useful. It's proof is inherent, more or 

less, in the proof of Theorem 6.1 but will go through the details. 

LEMMA 6.2. Let GEG)(n: r) and {gl,g2 ..... gr} be the generating set for G. Let 

{Hi: iEI}  be a family o f  subgroups of  G)(n: r) such that each torsion element has order 

less than M. Then there are positive numbers e and 6 depending only on the choice o f  

generators for G, the number M and the dimension n, such that i f  hie Hi and 

d(G, Hi )<e  and I[h/-Id[] <6,  

then hi= Id. 

Proof. There is a positive number 61 such that for all i and h EHi, if [Ih-Idll<61, 

then h is not elliptic. Choose a pair of loxodromic elements fl and f2 of G generating a 

discrete nonelementary subgroup isomorphic to a free group of rank 2. By the continu- 

ity of the commutator and local compactness of the group, there is a positive number 62 

such that for all M6bius transformations h, ifllh-Idl[<62, then [[[h,f]-Id[l<l/8 for all 

M6bius transformations f with min{ [[f-f~[[: i= 1,2} < 1. 

We choose 6=min{61,62, 1/8}. Next, choose e so small that if d(G, H)<e,  then the 
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words hi and h2 in the appropriate generating set for H, corresponding to the elements 

fl  and f2 satisfy ]]hl-fl]l+]]h2-f211<l, and neither hi nor h2 is elliptic (every loxodromic 

has a neighbourhood which contains no elliptic elements) and hi and h2 have distinct 

fixed points. 

With these choices of e and 6 we are done, for IIh-Idll<6 implies that for i= l, 2, 

II[h;, h ] - Id l ]+ l lh - Id l l<2V~- .  This implies by Corollary 4.3, that (hi, h) is discrete and 

elementary, for both i. Since neither h nor hi is elliptic, we obtain, as before, that h 

must be equal to the identity. 

Here is the main result of this section. It is the n-dimensional version of Theorem 3 

[Jci]. 

THEOREM 6.3. Let ~ be a compact connected subset o f  O~(n:r). Then ~ consists 

entirely of  isomorphic groups. 

Proof. Recall that each point of ~ has a canonical choice of generators. Let  us first 

consider those elements of ~ for which the order of a finite maximal cyclic subgroup is 

no more than m. Call this set ~m. 

(1) ~,, is closed. Suppose not. We already know that any convergent sequence in 

~,, converges to a discrete nonelementary group, we wish to show such limits are again 

in g,,. Consider such a sequence Gk---~ G. Suppose that G contains an elliptic g of 

order p>m. The element g has finite word length in the generators of G and so the 

corresponding words in Gk, call them gk, must converge to g. Since the order of gk is 

either infinite or less than or equal to m, it must be the case for sufficiently large k that, 

gk is not elliptic. However, we must have g~k---~gP=Id. Thus we have a sequence of 

elements of infinite order converging to the identity. The usual trick of taking two 

loxodromics in G with distinct fixed points will now produce the desired contradiction. 

Unfortunately it may not be the case that ~,, is also (relatively) open. We need to 

show: 

(2) Each component o f  g,~ consists o f  isomorphic groups. Let GErm and let 

R be a relation in G. Lemma 6.2 implies that all groups sufficiently close to G also 

have the relation R. Let F be that subspace of ~m consisting of groups with the relation 

R. Lemma 6.2 implies that F is (relatively) open while clearly F is closed. Since F is 

both open and closed it is the union of  components of ~,0. Next let H be a point of F 

which is in the same component  as G. The above argument shows that every relation 

in H (in terms of the canonical generators) also occurs in G (in terms of the canonical 
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generators). Thus G and H have the same presentation and represent isomorphic 

groups. 

We would now actually like to conclude that for some m, gm=g without using the 

hypothesis that ~ is compact. This would then-imply that each component of C0(n: r) 

consists entirely of isomorphic groups. We see that since every element of g is virtually 

torsion free 

= U~,=O~m 

and each gm is closed and disjoint from g,, m*n.  Now a continuum (connected 

compact set) cannot be written as the countable union of closed disjoint nonempty sets. 

This is Sierpinski's theorem, see [Ku, w 47, III, Theorem 6]. This fact is not true if we 

are merely asuming that ~ is closed (i.e. a component). This last observation establishes 

the theorem, for then gm=g for sufficiently large m, and so ~ consists entirely of 

isomorphic groups. 

It is not difficult to see from the above theorem that every path component of 

CO(n: r) must consist entirely of isomorphic groups (Sierpinski's result is true for closed 

subsets or R). By a continuous deformation of a discrete group GECO(n:r) through 

discrete groups we mean a path in 03(n:r) passing through the group G. 

Evidently we have shown 

COROLLARY 6.4. Let G be a finitely generated discrete nonelementary group and 

let {Gt: tER) be a continuous deformation of  G through discrete groups. Then the 

family {Gt) consists entirely o f  isomorphic groups. 

Notice that a continuous family of representations of the group G is an analytic 

space, [Ra]. In particular this result implies that the hypothesis that the group be 

finitely presented and the family of homomorphisms be injective is unnecessary in 

Weil's rigidity theorem (in this case), see Theorem 6.19 in [Ra]. Of course Mostow's 

rigidity theorem completely covers this situation (that the quotient is cocompact) but 

we point it out as we are interested in finding a version of this rigidity theorem in the 

case that the group is not cocompact (or even cofinite volume). Such aims are the topic 

of the next section. 

w 7. Deformations of geometrically finite groups 

This section consists of applying the results of Tukia [Tu] together with what we have 

found so far. We will show that for the most part and in all dimensions, a deformation 
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of a geometrically finite MObius group through discrete groups, consists of a deforma- 

tion through isomorphic groups each canonically quasisymmetrically conjugate on the 

limit set. The term quasisymmetry is the necessary generalization of the notion of 

quasiconformality. To obtain such geometric results we must turn back to the picture of 

the action of the group on the ball. We need to recall some notation and definitions. 

A discrete MObius group G acts properly discontinuously on the ball B" and 

extends naturally to the boundary sphere S "-1. The limit set L(G) of G lies in this 

sphere. One can define in the usual manner, the Dirichletfundamental polyhedron for 

the action of the group on B" 

J' = {y E B": Q(y, x) < Q(g(y), x) for all g E G}, 

where p is the hyperbolic metric of the ball. This fundamental polyhedron 5' will consist 

of the locally finite intersection of geodesic half spaces and the boundary will lie in the 

countable union of affine subspaces. If this countable union is actually finite, and G is 

finitely generated, we say that G is geometrically finite and that the fundamental 

domain ~' has a finite number o f  faces. There is an important special case for us. If G is 

geometrically finite and contains no parabolics we say that G is of compact type. In 

view of Corollary 2.5 of [Tu] this is equivalent to the condition that the orbit space 

M~=(B"-L(G))/G is compact. 

It is important to notice that this is not the same as int(W)/G being compact, that is 

G is cocompact (certainly though, cocompact implies compact type). Compact type 

means that the fundamental polyhedron 5" is compactly supported away from the limit 

set. Typical examples of such groups are Schottky groups and as another example 

every bordered Riemann surface without punctures arises as the quotient of such a 

group acting on the disk. 

Given two geometrically finite groups G and H and an isomorphism v/: G--->H 

between them, we say that ~0 is type preserving if ~V has the following property: 

~p(g) is parabolic in H if and only if g is parabolic in G. 

A mapping f:L(G)--->L(H) is said to induce or to be induced by an isomorphism 

~p: G--->H, if 

f(g(x)) = ~V(g) (f(x)) for all g E G. 

A quasisymmetric mapping between subsets E and F of S" is a homeomorphism with 

the property that it distorts cross ratios by a bounded amount. For a more precise 
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definition see [Tu], the point to make is that it is the natural generalization of the notion 

of quasiconformality. The main theorem of [Tu] is 

THEOREM (Tukia). A type preserving isomorphism ~p: G---~H between two geomet- 

rically finite MObius groups G and H is induced by a canonical quasisymmetric 

mapping 

f'. L(G)---~ L(H). 

The map is canonical given the isomorphism as it identifies loxodromic fixed point 

pairs in the obvious manner. 

It is important to note that if G and H are of cofinite volume, then 

L(G)=L(H)=S n-l, and so the two groups would be canonically quasiconformally 

conjugate on the boundary sphere. This is an important step in Mostow's proof of the 

rigidity theorem. The final step is to observe that such a quasiconformal conjugacy is 

linearizeable to a conformal conjugacy. 

A parabolic subgroup of G is a subgroup which stabilizes exactly one point of S n-~. 

Such a group is elementary and consists entirely of parabolics and elliptics. The rank of 

a parabolic subgroup is the rank of maximal Abelian torsion free subgroup. In particu- 

lar, the rank is one if and only if the parabolic subgroup is virtually cyclic. Notice that 

the rank of a parabolic subgroup is an isomorphism invariant as soon as it is larger than 

one. Also Tukia shows that if G is of compact type, then G contains no parabolics. 

COROLLARY 7.1. Let G and H be geometrically finite groups lying in the same 

connected compact subset of  0~(n:r). Suppose that G and H have no parabolic 

subgroups of rank one. Then G and H are isomorphic and canonically quasisymmetri- 

cally conjugate on their respective limit set. 

In particular, if  G and H lie in the same path component of  discrete finitely 

generated groups and neither G nor H have rank one parabolic subgroups (for 

instance if G and H are of compact type), then G and H are canonically conjugate on 

their limit sets. 

Notice the implication that if one of G or H has S n-I as its limit set, then both do 

and they are canonically quasiconformally conjugate. Also if G and H are cofinite 

volume, then each parabolic subgroup has maximal rank, greater than two, if the 

dimension n>~3 and so all the hypotheses are satisfied. 

It is easy to construct examples (in all dimensions) where one can continuosly 

deform a compact type group through discrete groups into a geometrically finite group 
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which contains a parabolic. For  instance, one can do this in such a manner  that the limit 

set changes from a Cantor  set to a circle. Clearly then the hypothesis on the rank of  the 

parabolic subgroups is necessary.  In the compact  type case we have what we consider 

to be a fair generalization of  Weil 's rigidity theorem (to the special case of O+(1, n)). 

THEOREM 7.2.  Let G be a finitely generated discrete MObius group of compact 

type. Let (Gt:tE[-1,1]} be a continuous deformation of G=Go through discrete 

groups each of  compact type. Then each Gt is isomorphic to Go and the groups Gt and 

Go are canonically quasisymmetrically conjugate on their respective limit sets. 

Notice that there is no assumption that Gt is the homomorphic image of Go. If  Go is 

of compact  type and Gt is the homomorphic  image of  Go, then there is good reason to 

suspect that the arguments of  Marden,  see w 9 [Ma], will work in all dimensions and 

imply that at least for small time the group G, is discrete and again of compact  type,  and 

consequently isomorphic and canonically quasisymmetrically conjugate. This would be 

a nice complement  to the above result and we hope to return to this question along with 

the question of  when there is a conjugacy defined on the whole ball Bn instead of  just  

the limit sets at a later date. 
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