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1. Introduction 

Kelvin [13] studied steady planar flows of an ideal fluid, confined in a bounded region 

with solid boundaries. He supposed the vorticity to have a given value in a region of 

fixed area, outside which the flow was irrotational, and considered possible configura- 

tions of the vortex. In the case of a circular region, he observed that infinitely many 

steady configurations exist, and one can easily verify that any radially symmetric 

configuration is steady. Less obviously, he claimed that in a dumb-bell shaped region, 

infinitely many steady configurations can be obtained by dividing the vorticity between 

the ends of the dumb-bell in an arbitrary proportion, and seeking the configuration that 

maximises the kinetic energy subject to this restriction. 

In this paper we prove two results on the existence of infinitely many steady 

configurations for a vortex, based on Kelvin's principle of stationary kinetic energy. 

We admit flows in which the vorticity may be nonconstant in the vortex core (the 

region of non-zero vorticity), and seek steady flows in which the vorticity is a 

rearrangement of a given function; this more general formulation is based on a theory 

of 3-dimensional vortex rings proposed by Benjamin [1]; additionally, we prescribe the 

circulations of the velocity around the connected components of the boundary. We first 

show that in a bounded planar region of arbitrary shape, for a given non-negative 

function ~0, the kinetic energies of steady ideal fluid flows whose vorticities are 
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rearrangements of  ~0, and having the prescribed circulations, realise all values between 

a maximum and a minimum. This result is proved using a saddle-point theorem for a 

convex functional relative to a set having convex sections. Our second result applies to 

a simply connected region comprising two cavities connected by a constricted aper- 

ture, generalising Kelvin's dumb-bell. We prove the existence of steady flows for 

which the vorticity vanishes in the aperture, and for which the restriction of the 

vorticity to each cavity is a rearrangement of a prescribed non-negative function. This 

is proved by a maximisation argument, and yields a disconnected vortex core that 

avoids the boundary of the region. By assigning varying proportions of  the vorticity to 

the two cavities, uncountably many steady flows are obtained, all of  whose vorticities 

are rearrangements of one given function. 

The main abstract results of the paper are Theorems 3.2 and 3.3 in Section 3, and 

the applications to fluids are given in Section 4. 

2. Measures and rearrangements 

When (Q, ~,/~) is a (positive) measure space and l~<p~ <oo, then LP(kt) will denote the 

space of real functions on f~ that are p-integrable with respect to /~. If  f~cR N is 

Lebesgue measurable, we denote by LP(•) the LP-space with respect to Lebesgue 

measure. Whenever we refer to Sobolev spaces, we intend that Lebesgue measure is 

used in their definition. We denote the Lebesgue measure of a set A by IAI . 

A measure space (f~,~t, kt) is called a measure interval if w=/~(f2) is finite and 

positive, and there exists a bijection Z : g2--*[0, w], such that for A c Q  we have A E ~ if 

and only if z(A) is Lebesgue measurable, and for all A E J//t we have k~(A)=L~(A) 1. It is 

well-known that any Lebesgue measurable subset g2cR n, together with any nontrivial 

finite positive measure on f2 that is absolutely continuous with respect to Lebesgue 

measure, is a measure interval; this can be deduced, for example, from a very general 

result in Royden [10], p. 270, Theorem 9. Measure intervals are a subclass of the finite 

separable nonatomic measure spaces studied in [3]. 

Two measures on the same set are called equivalent if each is absolutely continu- 

ous with respect to the other. 

Let  (f~, ~t,kt) and (Q',  ~ ' , # ' )  be (positive) measure spaces with kt(Q)=kt'(g2'). Real 

measurable functions f o n  f2 and g on if2' are rearrangements of each other if 

/2(f- ' [f l ,  ~)) =/~'(g- '[fl ,  ~)), VILER; 

if additionally 1 ~<p~< oo and f 6  LP(/~) then it follows that g 6 LP(/~') and II flip = I lgllv. 
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If to=/x(Q) is finite and positive, then every real measurable funct ionfon f2 has an 

increasing rearrangement f *  defined on [0, o9], and for l~<p~ <cr the inequality 

Ilf*-g*ilp ~< IIf-gllp, Vf, g 6LP(/~) (1) 

is well-known. A particularly neat proof of (1), for l~<p<~ and non-negative f and g, 

can be found in Crowe et al. [6]. 

The convexity assertion in the following lemma is due to Ryff [12] (who considered 

the case p = l )  although it can be deduced (for l < p < ~ )  from previous work of Brown 

[2] and Ryff [11]; it was subsequently rediscovered by Migliaccio [9] and the author [3]. 

The compactness assertion is easily proved. 

LEMMA 2.1. Let (Q,~t,l~) be a measure interval, let l~<p< oo, let foELP(~), and 

be the set o f  rearrangements o f  fo on if2. Then the weak closure ~ o f  ~ in LP(I ~) is 

convex (thus ~ is the closed convex hull o f  ~) ,  and ~ is weakly compact. 

The next lemma is due to the author [5], Lemma 2.15. 

LEMMA 2.2. Let ff~ be a nonempty open set in R N, let I~ be a finite measure on if2 

equivalent to Lebesgue measure, and let 

~ =  2 a~(x)D~ 
l~<{al~<m 

define an m-th order linear partial differential operator, where the a ~ are finite-valued 

measurable functions on Q and there is no O-th order term. Let l~<p< oo, let q be the 

conjugate exponent o f  p, let fo6LP~)  be non-negative, let ~ be the set o f  rearrange- 

ments o f  fo on f2 (with respect to ~), and let ~ denote the weak closure of  ~. Suppose 

there exist f 6  ~ and V 6 Lq(p) fl W~lo'~ l (•) such that 

(i) ~v>~f almost everywhere in f~, and 

(ii) Safvdl~<<,Safvd~ for all f 6  ~. 

Then f 6  ~, and there exists an increasing function q9 such that 

f=~o~ ,  

almost everywhere in ff~. 

We now prove: 
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LEMMA 2.3. Let (~ ,~ , /~ )  be a measure interval, let to =/~(f2), let l~<p<~,  let 

fo, go E LP(I~), and let ~ and ~ be the sets of  rearrangements on f2 of fo and go, with 

weak closures ~ and ~. 

(i) Let fE  ~. Then 

inf IIf-gllp = IIf~-gg~llp, 
gE~ 

and the infimum is attained. 

(ii) Let fE  ~. Then 

and the infimum is attained. 

Proof. There is no loss of generality in assuming that f2=[0, to] and/~ is Lebesgue 

measure. 

To prove (i), all that is required in view of (1) is to construct g E ~3 satisfying 

IIf-gllp--IIf~-g~llp. By a result of Ryff  [11], we can write f = f ~ o o  where a:  Q---->f2 is a 

measure-preserving transformation; that is, a is measurable and [cr-l(A)[ = Iml for every 

measurable set A c Q .  We define g=g~ o tr. Then g E ~3, and f - g  is a rearrangement of 

f ~ - g ~ , h e n c e  Ilf-gllp---Ilf~-g~llp. 
To prove (ii), observe that IIf-gllp is a weakly lower-semicontinuous function of 

gELP(lt), and ~ is weakly compact, so the infimum is attained. The function 

: LP(/z)--->R, defined by 

~( f )  = ~nfllf-gllp 

is weakly lower-semicontinuous, being continuous and convex, and the inequality 

holds for all f E  ~ by (i), hence (2) holds for all f E  ,~. [] 

3. Saddle points relative to sets of rearrangements 

Notation. When X is any topological vector space and q): X-->R is Gglteaux differentia- 

big at u EX, the derivative is denoted a~(u).  If  additionally X is a product of two 
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topological vector spaces, the derivatives with respect  to the first and second variables 

are denoted ~lO(U) and a2~(u). The bilinear pairing of  X and its dual space X* will be 

denoted ( .  , �9 }. 

THEOREM 3.1. Let  C1 and C2 be nonempty sequentially compact sets in topologi- 

cal vector spaces X1 and)J2, and suppose C2 is convex. Let  ~: X1XXE--~R be a Gdteaux 

differentiable sequentially continuous convex functional. Define 

a~o(U) = inf a~(u, v), u ~ C r 
v~C 2 

Then 

(i) ~o attains its supremum relative to C1, and for each uECI the infimum in the 

definition o f  e~o is attained. 

(ii) I f  ~ is a maximiser for  d~ o relative to C1 and 0 is a minimiser for  e~(ft, �9 ) 

relative to C2, then 

0 minimises (02~(ti, 0), �9 } relative to C2, and 

maximises (01d~(a, 0), �9 ) relative to C1. 

Remark. Theorem 3.1 does not give a saddle point of  �9 in the classical sense. 

Instead it gives a point (a, ~) such that (ti, 0) is a saddle point of (0~(fi ,  0), �9 } relative 

to C l X C  2. 

Proof  o f  Theorem 3.1. It follows from sequential continuity and compactness  that 

the infimum in the definition of  ~0 is attained. Write M = sup O0(C0, and let {u.}.~ 1 be 

a maximising sequence in C1 for q~o. For  each n let v. be a minimiser for O(u., �9 ) 

relative to C2. By sequential compactness  we can replace {u.}.~ 1 and {v.}.~ 1 by 

subsequences such that u . ~ u  0 and v.--.v o, for some u 0 E C a and v 0 E C 2. We now have 

a~(u., v.)---~d~(Uo, 00) and so ~ ( u  o, Vo)=M. We show that ~o(Uo)=M. If 0 E C 2 then 

O(u., v)~O(u. ,  v.) for  each n, hence letting n---~oo we have O(u o, v)>~e~(u o, Vo). This 

shows that Vo minimises ~ (u  o, �9 ) relative to C 2, so O0(Uo)=~(Uo, vo)=M. Now Uo is the 

required maximiser for O0. 

Consider any maximiser ti for ~0 relative to CI, and let 0 be any minimiser for 

�9 (a, �9 ) relative to C2. For  any v E C 2 and 0 < t <  1 we have O+t(o-O)E C 2 by convexity,  

s o  

t- l(~(a,  0 + t ( v - 0 ) ) - o ( a ,  0)) >I 0. 

19-898286 Acta Mathematica 163. Imprim6 le 20 decembre 1989 
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Letting t---~0 we obtain 

(a2a~(a, 0), v-O ) >-0 

for every 06 C2, so 0 minimises (02~(ti, t~), �9 ) relative to 6"2. 

Now let u 6 C~, and choose a minimiser v for ~(u ,  �9 ) relative to C2. Then using the 

convexity of  �9 we have 

�9 (a, 0) t> q:'o(U) = ~(u,  v) 

~>~(a, 0)+ ( a ,~ ( a ,  0), u - a )  + (a2~(a,  o), o - o )  

>~(a, 0)+ ( a,.(a, 0), u -a) ,  

hence 

(a,r o), u -a )  <,o 

which shows that ti maximises <al ( I ) ( / t ,  /)), " > relative to C,. [] 

We now prove three general results about boundary value problems, which are 

applied to planar vortices in Section 4. The results are applicable to a wide class of  

elliptic equations. For  the remainder  of  this section we make the following hypotheses.  

Hypotheses (H). Le t  f 2 c R  N be a nonempty open set, let/~ be a finite positive 

measure on f~ equivalent to Lebesgue measure,  and let a~=p(f2). 

Let  

~= E aa(x)~ 

be an mth order  linear partial differential operator  with no 0th order  term, where the a a 

are finite-valued measurable functions on f~. 

Let  l~<p<oo, let q be the conjugate exponent  of  p, and suppose there exists a 

bounded linear operator  K:  LP(p)---,Lq(lu) such that Kv E W~o~ 1 (f2) for all v E LP(p), and 

~Ko = v 

almost everywhere in f2, for every v fi Lqp). 
Suppose that K is positive, in the sense that 

fn vKvdlt>~O, v6LP(p), 
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that K is symmetric,  in the sense that 

f uKvd~=fvKud~, 

and that K is compact.  

Let h ELV(I~) N W~lo~l(Q) be a function satisfying 

~ h  I>0 

u, v E LP(~), 

almost everywhere in t), and let �9 be defined by 

r  v e L~(~). 

THEOREM 3.2. Let the hypotheses (H) be satisfied. Let fi,f2ELV(/~) be non- 

negative functions satisfying f ifE=0 almost everywhere in Q, and let the sets o f  

rearrangements on g) o f  fi and f2 be ~1 and ~2 respectively, with weak closures ~l and 

~2. Define 

O 0 ( u ) = i n f O ( u + v ) ,  u E ~  1. 
vESg 2 

Then: 

(i) There exist ~ E ~l and 0 6 ~z such that 

sup ~o(U) = CI)o(a ) = ~(a+O).  

(ii) We have f tE~l ,  OE~2, and ~0=0 almost everywhere in Q (thus a+O is a 

rearrangement o f  fl +f2)- 

(iii) For ~p=K(a+O)+h there exists a function q~ such that 

almost everywhere in Q. 

(iv) Regarding ~ there are three cases: 

(a) I f  fi=O then ~ is decreasing. 

(b) I f  f2=O then ~ is increasing. 

(c) I f  fl and f2 are both nonzero then there exist numbers m2<~ml, such that, 

apart from sets o f  zero measure, 

t~-l(0, oo) = ~0-'(ml, oo), 

0-1(0, oo) = ~-1(- -  oo, m2). 
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Then qo is positive and decreasing on (-oo, m2), qo=0 on [m2, ml], and cp is positive 

and increasing on (m~, oo). 

Proof. Since J~ and ~ are non-negative, so also are all elements of #1 and #2. 

Lemma 2.1 shows that #1 and #2 are convex and weakly compact, while the positivity 

and compactness of K ensure that �9 is convex and weakly sequentially continuous. 

Theorem 3.1 now applies. Consider any maximiser t iE#l  for ~0 and let 0 = #2 satisfy 

�9 (ti+0)=~0(a). Then 

(a,l ,(a+o),f)  = f (g(a+O)+h)fdi,, VfELV(la). 

So taking ~=K(~+O)+h it follows from Theorem 3.1 that f=t i  maximises SQwfdtt over 

fE  ~l and f=0  minimises fay)fdtt overfE ,,~2. This latter statement can be expressed as 

saying that f=O maximises f~(-~2)fdtt over fE~2.  Moreover ~w~p=a+O+~Wh>_-a and 

( -~) ( -~)=~+O+~h>-O almost everywhere in f~. It follows from Lemma 2.2 that 

/~ E ~;1, that 0 E ~2 and that there exist increasing functions q01 and q~2 such that t~=~p~ o ~fl 

and 0=(p2o(-~p) almost everywhere in f]. I f f l = 0  o r ~ = 0  we are finished. Suppose 

therefore that fl and J~ are nonzero. We can suppose (p~ and (P2 are non-negative and 

have domain (-oo, oo); this may necessitate +oo being admitted to their ranges. 

We next seek m2<.m 1 such that ti-l(0, oo)=~-l(rnl, oo) and 0-1(0, oo)=~fl-l( -oo, m 2) 

apart from sets of zero measure; it then follows that /~-1(0, oo) and 0-1(0, co) are 

essentially disjoint, so ti0=0 almost everywhere on f2. Define m~=inf(pi-l(0, oo) and 

rn2=-infq0~l(0, oo). Then ~p-l(ml, oo)ct~-I(0, ~)co2-1[ml, oo) apart from sets of zero 

measure. But tt(ti-I(0, oo) fl ~p-I(m0)=0, since ~ p = 0  almost everywhere on ~fl-l(ml), by 

Lemma 7.7 of [7] for example, and Le~=ti+0+~h>~/~>0 on a-l(0, o~). Therefore 

/i-l(0, oo)=~o-~(m~, oo) and similarly 0-~(0, oo)=~fl-I(-oo,m2), apart from sets of zero 

measure. Consider the possibility that m2>m~. Then 

g(~-~(ml, m2)) = ( . O - - / . / ( ' ~ p - I (  - o o ,  rnl])-/~(~-~[m2, oo)) 

= tt(~ fl - ~(ml, oo)) + i t 0  fl-  I (_  oo, m2)) -~o  

=t~(a-l(0, oo))+~((0-1(o, oo))-~o 

=tt(f~-I(0, oo))+/t(ff~(0, oo))-~0 ~< 0, 

thus /~0p-~(ml, m2))=0. If we chose ml<m<m 2 then we have t~-l(0, oo)=~fl-~(m, oo) 

and 0-~(0, oo)=~p-l(-oo,m) apart from sets of zero measure. We can now redefine 

m~=m2=m if m2>m~. So we can assume m2<-~ml. Define 
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f ~l (S) ,  s > m l  

cp(s) = J 0 ,  m2<<-s<<.m l 

L q~2(-s), s<m 2. 

Then a+O=cp o ~p almost everywhere in ff~. Finally, q0 is decreasing on (-oo, m2), zero on 

[m2, ml] and increasing on (ml, oo). [] 

THEOREM 3.3. Let  the hypotheses (H) be satisfied. Let  fo E LP(#) be non-negative, 

let ~ be the set o f  rearrangements o f  fo on Q, and let a and A be respectively the 

infimum and supremum o f  �9 on ~. 

Then for each a E [a, A] there exists w E o ~ satisfying 

r  = a ,  

and such that, defining ~p=Kw+h, there exists a function cp for which 

w =  q~o~p 

almost everywhere in if2. 

Moreover, w and ~o can be chosen to ensure the following: 

(a) l f  a=a then ~ is decreasing. 

(b) I f  a=A then q~ is increasing. 

(c) I f  a < a < A  then there exist numbers ml, m2, with 

ess inf~p < m2 ~< ml < ess sup ~/,, 

such that q~ is positive and decreasing on (-oo, m2), (p=0 on [m2, ml], and q~ is positive 

and increasing on (ml, oo). 

Proof. L e t f d e n o t e  some rearrangement on [0, w] off0 (for example, we could take 

f to be the increasing rearrangement f~' off0). For 0<~2~<oj define 

[f(s) ,  0~<s~<2, 
f~,~(s) = tO, ~ < s ~< o9, 

fz,a(s) =f(s) - f l ,a(s) ,  0 <<- s <~ w. 

For i=1,2  let ~/,x be the set of  rearrangements off/,a on ~ and let ~-,~ be the 

closure of ~/.a. For  uE ~l,X define 
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O~(u)= inf O(u+v) 
vfi,~2, a 

0(2) = sup qb0(u). 

Then Theorem 3.2 shows there exist t~a E ~ , a  and 0~ E ~2,a such that 

�9 (aa+oa)  = ,t,~(aa) = o (2 ) ,  

such that 

t~x + 0~ = q0 a o (K(t~ + 0~) + h) 

almost everywhere in Q for some function q~, and such that t~0a=0 almost everywhere, 

so ti~+0aE ~. Since a(0)=a and ~ to show that o[O,w]=[a,A] it will suffice to 

show that o is a continuous function. 

To prove continuity of o let 2, ~ E [0, w] and define 

7(2, ~) = 

so by (1) we have 

f ,  _ f ,  I ~<7(2,~). 1,2 1,~ p 

Now ti~E ~1,~ satisfies ~( t~)=o(2) ;  let us choose use ~ .~  with [[~-udlp<~7(2, ~). Now 

choose use ~2,e with d~(u~+vr and by Lemma 2.3 choose vxE ~z,a such that 

Ilvx-vsll,~<7(2, O. Write wa=a~+v ~ and ws=u~+v s. Then 

~ i> 'I'~(u s) = c/,(w~) 

 ) IIKll I lY011.+llhll? 
The same inequality holds with 2, ~ interchanged, so 

1o(7)-o(OI ~-< 27( 2, ~)(llgll I I/01 I. + Ilhll~). 

Since 7(2, ~)---~0 as ~---~2 we deduce the continuity of a. 
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Finally we consider the function q~. If 2=0 then fLa=0, so q~ is decreasing, and 

o(;t)=a. If 2=to then fz,~=0, so q0 is increasing, and a(2)=A. If a<o0.)<A then 

fLx andfz,a must both be nonzero, then Theorem 3.2 shows w=~a+Ox and q0 can be 

chosen so there exist numbers m2<.m 1 such that, writing q~=Kw+h, we have 

0~-1(0, o~)=~-1(- -~ ,  m2), /~-1(0 ' ~ )= lp - l (ml ,  oo) apart from sets of zero measure, q~ is 

positive and decreasing on ( - ~ ,  m2), q~ is zero on [m 2, m~] and cp is positive and in- 

creasing on (ml, o~). It follows that m2>ess inf~p andm~<ess sup ~0. [] 

THEOREM 3.4. Let the hypotheses (H) be satisfied. Let f21, f~2 be measurable 

subsets o f  ~2. For i=1,2 let f.ELP(bt) be a non-negative function that vanishes on 

Q\ff2i, and let ~. be the set o f  rearrangements o f f  on Q that vanish on Q\ f2 i .  

Then d~(u+v) attains its supremam subject to (u, v)E ~1x~2. /f(fi ,  0) is a maxi- 

miser and ~=K(ft+O)+h, then there exist increasing functions q~l, q92 such that 

fi=tplO~0 almost everywhere in fill, and 

0=(p20~/) almost everywhere in ff22. 

Proof. Let o~ 1 and o~ 2 be the weak closures in LP(p)of  ~l and ~2respectively. 

Thus all elements of o~ l and ~2 are non-negative. Then by compactness O(u+v) attains 

its supremum subject to (u, v) E ~1 x o~ z. Let (~, 0) E ~ x ~2 be a maximiser, and write 

~p=K(~+O)+h. Consider any uE ~-1 and 0<t~<l. Then (1-t) f t+tuE o~ since ~1 is con- 

vex by Lemma 2.1, so 

Letting t---~0 we obtain 

t - l (~( (1- t )  (t+tu+O)-~(a+O)) <~ O. 

Moreover ~p=~+O+~h>>-a. It now follows from Lemma 2.2 that tiEo~l and that 

fi=q~l o ~p almost everywhere in f2~ for some increasing function 9~. A similar argument 

shows that 0 E o%2 and O=q02o~p almost everywhere in Q2 for some increasing function 

q~2. [] 

4. Application to fluid mechanics 

We consider an ideal fluid (inviscid and incompressible) flowing without body forces in 

a bounded planar connected open region if2, whose boundary is assumed to be a disjoint 
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union of simple closed curves Co . . . . .  C,; we suppose that Co encloses f~. If u denotes 

the fluid velocity field, then u must be tangential at the boundary. 

The vorticity field r is defined by 

curl u = ~ k 

where k is a fixed unit vector perpendicular to the plane of g2. In an unsteady flow, the 

functions ~ at any two instants are always rearrangements of one another. Other 

conserved quantities are the kinetic energy 

l folUl , E=~ 

and the circulations 

f 
Fi= | u 'ds ,  i=O . . . . .  n. 

Jc i 
We assume that f~ lies in the xy-plane of right-handed cartesian coordinates xyz, 

that k is directed along the positive z-axis, and that, viewed from the point (0, 0, 1), Co is 

described anticlockwise and Cl . . . . .  C, are described clockwise. It then follows from 

Green's theorem that 

f~ ~=~Fi'i=O (3) 

subject to suitable regularity assumptions. We shall fix a non-negative function r on f~, 

whose class of rearrangements on f2 we denote ~, and fix real numbers 71, ..., ~',- We 

shall then consider flows for which ~ E ~ a n d  Fi=Yi, i= 1 . . . . .  n (Fo being then determined 

by (3)), and will prove two results showing, provided ~0 is nonconstant, that among such 

flows there exist uncountably many steady ones. 

The notion of a stream function proves valuable in what follows. An incompress- 

ible flow satisfies d ivu=0 in f~. Subject to suitable regularity assumptions, a stream 

function ~2 then exists, satisfying 

in f2; the multiple connectedness of • presents no difficulty since u has zero flux across 

each Ci. Taking the curl we obtain 

= -A~ / .  



REARRANGEMENTS OF FUNCTIONS, SADDLE POINTS 303 

Tangency of  u on a f t  is equivalent to requiring that ~p is constant on each (7,., and the 

circulations are given by 

F i = - f c V ~ . n d s ,  i=0 . . . . .  n, 
i 

where the unit normal n is drawn outwards from f2. The kinetic energy is now given by 

E= T IV I 2 (4) 

When the values of ~ and FI . . . . .  F, are given, then V is determined up to an 

additive constant,  and therefore u is uniquely determined; we shall always normalise V 

so that V=0 on Co. To find a convenient  expression for V in terms of  ~ and 

F 1 . . . .  , F,, we introduce the following notation. Let  C O ..... C, be of  class C 2, and let 

71 . . . . .  ~,. 6 R  be prescribed. In the Appendix we prove the existence of  a unique 

function h fi C=(ff~) N Cl(~)  satisfying 

- A h  = 0 in f~, 

h = 0 o n  C 0, 

h is constant on C 1 .... , C., 
t *  

- I V h . n d s = T i ,  i = 1  . . . . .  n. 
Jc Ci 

(5) 

For ~ fiLP(f~) we also prove in the Appendix the existence of  a unique function 

K~6 W2'p(f~) satisfying 

- A ( K ~ )  = ~ in f~, 

K r  on Co, 

Kr is constant  on C~, ..., C,, 

fcV(K~) �9 ds=O, i= l !1 n .  

i 

(6) 

Then K:LqQ)-- .Lq(f~)is  a symmetric,  compact ,  positive linear operator ,  and if 

CELP(g2) then Kr is the stream function for the flow with vorticity ~ and circulations 

7~ . . . .  , y.. If  we set tF=Kr V=K~+h and apply the divergence theorem to (4) we obtain 
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lfo fo = ~- (div ( ~ V W ) - W A ~ )  + (div (hV~)-hA~) + 5. 

l ~ o f c  1 ~  ~ f c  fo ' f o ' ~ ' ~  
= -~- WVW.B - 5 .  tlJAqJ + hVqJ.n - hAW + -~ 

"= i i=0 i 

Taking into account (5) and (6) we now obtain 

l f r162 + fohr + l f lvhl ; (7) e = e ( O  = 5 5 .  

thus E has been expressed as a function of ~, and the third integral in (7) is a constant. 
To verify that a flow is steady, it will suffice to show that the stream function ~0 

satisfies 

- A , f  = go(V) in ~ (8) 

for some function go; the relationship between (8) and the Euler equations for an ideal 
fluid will be discussed at the end of the section. The following theorem is an immediate 

consequence of Theorem 3.3. 

THEOREM 4.1. Let ~ be a nonempty, bounded, connected, open set in R z, whose 

boundary is a disjoint union of  simple closed curves Co,..., C, of  class C z, with Co 

enclosing Q, let 2<p<oo, and let h, K ,E  be defined by (5), (6), (7), where Yi . . . . .  y, are 

prescribed real numbers. Let ~o ELP(~) be non-negative, and let ~ be the set of  all 

rearrangements of  ~o on if2. 

Then for each a, infE(~)~<a~ < sup E(,~), there exists ~ E ~ such that E(~)=a, and 

such that ~p=K~ +h satisfies 

-A~/= go(V,) 

almost everywhere in ~,  for some function 9; that is, ~ contains an element represent- 

ing the vorticity o f  a steady ideal fluid flow, with kinetic energy a and with circulations 

Yl .. . . .  y. around C1 . . . . .  C.. 

Moreover, the choice of ~ and go can be made such that if  a=infE(o%) then 9 is 

decreasing, if  a=supE(o %) then 9 is increasing, and if infE(o%)<a< supE(o %) then 

there exist numbers ml,m2 with infqJ<mz~<ml<supq j, such that go is positive and 

decreasing on (-o% mE), go=0 on Ira2, ml], and go is positive and increasing on (ml, oo). 
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It follows from the remarks after Corollary 3.4 of [5] that the minimiser is unique; if 

~0 is nonconstant, then infE(o%)<sup E(o%) and so uncountably many steady solutions 

are obtained. The existence of steady flows having maximum or minimum energy can 

also be deduced easily from previous work [3, 5, 8]. Consider now the particular case 

when the boundary of g2 comprises just one simple closed curve Co; then h---0. Then let 

V be the stream function corresponding to a non-maximising solution constructed by 

Theorem 4. I; thus infq,=0 and is attained only on Co. Then for some number m>0, the 

function q0 occurring in (8) is positive on (0, m), from which it follows that the vorticity 

is positive at all points sufficiently close to Co. 

Results on multiple solutions for rearrangement problems have previously been 

given in [5], where an appropriate form of the Mountain Pass lemma was proved. Fluid 

flow in a dumb-bell shaped region f2 was studied there, and for suitably chosen ~0, four 

steady configurations were given, one being the minimiser, two being local maximisers 

and the fourth being constructed by the Mountain Pass lemma. All the solutions 

constructed in [5] satisfy equation (8) in f~ for a monotonic q0, in contrast with Theorem 

4.1 of the present paper. 

We next turn to the existence of continuum-many steady configurations in a dumb- 

bell shaped region. The vortex cores of the solutions we construct avoid the boundary 

of the region, but equation (8) is only satisfied locally. 

THEOREM 4.2. Let 2<p<oo, let b>a>O, let to>2xb 2, let 0<2<�89 let fo6LP[O, to] be 

positive almost everywhere on [0, xa 2] and zero almost everywhere on [eta 2, to], and 

suppose V is a closed triangle in R z. Then there exists 6>0 such that the following 

holds: Assume 

(i) that ~2 is the planar region enclosed by a simple closed curve Co of  class C z, 

that f2 has the V-exterior cone property, that Q countains open discs f21 and QE o f  

radius b, such that (21 fl (22=~, that every point o f ~ o = Q \ ( Q l  U Q2) lies within distance 

6 of  Co, and that 1~21=~o, 

(ii) that K and E are defined by (6) and (7) with h=O and n=O, 

(iii) that fl 6 (2, �89 is fixed, that 

f,(s) = ~fo(S), 
1.0, 

0 < S < f l~a2, 

f l x a  2 < s < ~, 

f~ =fo-f,, 

and that for i=1,2, ~/consists  of  the set o f  all rearrangements o f f  on g2 that vanish 

throughout f2\ f2i .  
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Then cI)(~l+~2) attains its supremum subject to (~1, ~2) 6 ~1•  � 9  (~1, ~2) is a 

maximiser, if r  and if ~=K~, then r is a rearrangement o f f  0 and there exist 

increasing functions q~t and Cpz such that 

- A ~  = ~9io ~ 

almost everywhere in f~iUQo, for i=1,2 .  

~ra 2 Proof. Let  ~ be  the lesser of So~a2fo and S~a~/zf o, and let DI and D2 be the discs of  

radius a concentric with f~  and f~2 respectively. By a weak compactness argument in 

conjunction with the Maximum principle, it follows that there is an r/>0, depending only 

on a,b,~ and IIf011p, such that for all non-negative orLP(t)i)satisfying II011,I>  and 

Iloll  <llf011p, the solution urHI(Qi) of - A u = o  satisfies u~>r/ in D i. Then by the Maxi- 

mum principle we have K(~t+~2)>~r/ in D l UD z for all ~1 6 ~1 and ~2 6 o~ 2. By Theorems 

8.16 and 8.27 of  [7] there are constants a=a(p,V)>O and c=c(p,V,w)  such that 

if vrLP(Q) ,  if x r f l ,  if x 0 6 C  0 and Ix-x01<l then IKv(x)l<~clx-xoHIollp. We choose 

6 6 (0, 1) such that c  llf011 <,l. 
Now consider a maximiser (~1,~2) for cI)(~l+r 2) relative to (r  let 

~=(1+(2 and let ~p=K~. By Theorem 3.4 there exists such a maximiser, and there exist 

increasing functions tpl and tp2 such that ~i=cPioV almost everywhere in Qi for i= 1,2. 
Now 

I{x 6 f2il W(x) t> r/}l/> :ta 2 > I{x6 Qil (i(x) >0}1 

so since (i is essentially an increasing function of  ~ on f2;, we deduce that 

{x 6 Qi I ~i(x) > 0} c {x 6 t L I V:(x) I> '7} 

apart from a set of  measure zero. Hence  we can assume q%<s)=0 for all s<r/. By the 

choice of  6, we have ~ (x )< r / fo r  all xE f~0, and (,(x)=0 for all xE f20. So r 

q~,(V:(x)) for all x 6 f2 i O f20, for i= 1,2. [] 

For the solutions constructed in Theorem 4.2, the vortex core avoids Co. For  in 

f~;U f~0, the vorticity ~ is an increasing function of  the stream function V, and the area 

of  the vortex core is less than It~,t, so the vortex core avoids the set where ~p attains its 

minimum, which is Co. Since (21 N ~)~=~, the vortex core is disconnected. Uncountably 

many solutions may be constructed on the same ~2, by varying fl in (2, ~). 

At this stage some remarks on regularity and on the Euler equations are in order. 
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Since Co . . . . .  Cn are of class C 2 and ~ELP(f2) for some p>2 ,  the stream function ~0 is of 

class W 2,p, so the velocity u is of class W I'p, and is therefore continuous on ~ .  The 

steady Euler equations for an ideal fluid are 

(u. V) u = - V P ,  (9) 

div u = 0. (10) 

The equality of weak cross derivatives for ~0 ensures that (10) is satisfied almost 

everywhere. To fulfill (9) we have to construct a pressure function P. Consider first the 

solutions constructed in Theorem 4.1. If  tp is as in equation (8) and F(s)-- J'~ q~ then it is 

easily verified that 

-P(x )  = I IV~p]2+F(~0) 

satisfies (9) formally. It can be shown that Fo~p E W~or p and V(Fo~p)=(q0 o~p) V~p almost 

everywhere (the details for an increasing q0 have been given during the proof of Lemma 

9 of [4], and the q0 considered here is a difference of increasing functions). The formal 

derivation of (9) is then justified for weak derivatives, and (9) holds almost everywhere. 
_ _  $ In the case of a solution constructed by Theorem 4.2, define F,(s)-So q~i and 

- P ( x ) = l  ]v~12+Fi(~O), X~'~ilJ~-~O, i =  1,2. 

Then Fl0p)=0=F20P) in f20 and (21 n ~ 2 = ~  so P is well defined and continuous, and 

(9) is satisfied almost everywhere. 

Appendix 

Since the boundary conditions in (5) and (6) of Section 4 are slightly unusual, we now 

give a detailed proof of the existence and uniqueness of solutions. Both (5) and (6) are 

special cases of the boundary value problem (11) considered below. 

PROPOSITION. Let g2 be a nonempty, bounded, connected open set in R 2, whose 

boundary is a disjoint union o f  simple closed curves Co ..... Cn of  class C 2, and suppose 

Co encloses Q. Let 2<p<oo,  let 71 . . . . .  Yn be real numbers, and let v E LP(Q). Then there 

is exactly one function u satisfying 
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u e w2,p(~), 
- A u  = v in g2, 
u = 0  on Co, 

u is constant on C i, 

- / ( V u ) - n  ds = Yi, 

i=1, ..., n, 

i =  1 . . . .  , n. 

(11) 

Proof. Let  Qo . . . . .  f~, be the regions enclosed by Co,.. . ,  C,. Let  

W =  {wrHI ( fDI  w = 0  on Co and w is constant  on C, i= I  . . . . .  n} 

and for w 6 W let wi denote the value of  w on C, i= 1 . . . . .  n. Define 

J ( w ) =  1 IVwl 2 -  vw+ Viwi, w r W .  
i=1 

Then the trace H1(Q)--->L2(aff2) ensures that W is a closed linear subspace of  HI(g2), and 

W comprises the restrictions to g2 of  elements of  H~(~2 0) that are constant  on 

~i, i=I  . . . . .  n. It now follows from Poincar6's  inequality for H~(f2 0) that J is coercive on 

W. Moreover J is a smooth,  strictly convex functional on W. It follows that J possesses 

exactly one critical point, the global minimiser. 

The variational condition for an element u 6 W to be a critical point of J is that 

V t i ' V w -  IdW-~- Z YiWi = O, V w E  W. 
i= 1 

(12) 

Let  Lipschitz functions g~ . . . . .  g "6  W be chosen to satisfy the boundary conditions 

g/=r)o., l<-i,j<~n. Then (12) is equivalent to 

f n V u . V w - f u w = O ,  Vw 6 H~(fD, (13) 

f n V u . V g J - f v g J + y j = O , j = l n .  . . . . .  (14) 

Now (13) is a variational formulation of  - A w = o ,  and in view of  the regularity theory 

([7], Theorem 9.15), (13) is equivalent to 

- A u  = v in f2,]  
u 6 W2,,(Q). r J (15) 
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Since p > 2  we have the embedding Wz'P(f~)--->C~(~). When (15) holds we can apply the 

Divergence theorem to write (14) in the form 

fo ( - A u - v ) g J +  gJVu.n+yj=O,  j = l  . . . . .  n, 
i = 1  i 

which reduces to 

c jVU'n+~=O,  j = l  n. 

It follows that (11) holds if and only if u is a critical point of  J,  and therefore (11) has 

exactly one solution. [] 

The existence and uniqueness of  h satisfying (5) follows by taking v=O; in this 

case, the regularity of  harmonic functions and the embedding W2'p(Q)--oC~(~) 

show that hE C~(f~)nCl((2). The existence and uniqueness of  K~ satisfying (6) is 

obtained by taking v=~ and ) ' l= . . .=yn=0.  
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