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1. Introduct ion 

A fundamental problem in several complex variables is to find computable invariants of 

complex manifolds with strictly pseudoconvex boundaries. The foci of this subject 

have been: the construction of canonical metrics on the interior and the study of the 

finitely determined geometry of the boundary. The metrics studied are the Bergman 

metric, Einstein-K/ihler metric, Kobayashi metric, etc. The geometry on the boundary 

is couched in the language of bundles with connections and normal forms. It was 

realized early on that there is a connection between the finitely determined part of the 

Einstein-K~ihler metric at the boundary and the intrinsically defined structure bundle. 

Some of these connections were worked out in [F2], [BDS] and [W1]. 

In the work which follows, we will continue our study of global invariants started 

in [BE]. In [BE] we associated Chern-Simons type secondary characteristic forms to 

non-degenerate codimension one CR manifolds. In real dimension three, under suitable 

topological conditions, we could integrate this form, and we studied the resulting 

biholomorphic invariant. (Cheng and Lee have independently found this invariant, and 

found some interesting further properties of it, cf. [CL].) 

Here we propose to study characteristic numbers of a strictly pseudoconvex 

domain N coming from the integrals of characteristic forms in the Einstein-K/ihler 

metric on N. Of course, most such integrals will diverge, the most obvious example 

being cl n, which is a multiple of the volume form: it behaves like ~p-n-1 at the boundary, 

if ~ is a defining function for aN. However, the curvature matrix ~'~EK of the Ein- 

stein-K~thler metric can be written as a sum of two terms, 

~'~EK = -- K +  W 

(t) The authors gratefully acknowledge the partial support of the National Science Foundation (grants DMS- 
8401978(DB) and DMS-8503302(CE)). 
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where - K  is the constant negative holomorphic sectional curvature tensor, and W is 

the trace free part, or Bochner tensor, of f~EK- The term W is continuous up to the 

boundary ON, even though it has an apparent logarithmic singularity if n=2, while - K  

has a second order pole at ON. We will sometimes call W the finite part of ~EK. It is 

clear that any Ad-invariant polynomial P, homogeneous of degree k on gf(n, C), will 

give rise to a biholomorphically invariant (k, k)-form on N, P(W), which will be 

integrable if k=n. These integrals are the characteristic numbers alluded to in the title 

above. 

We check in w 2 below that these forms have the continuity properties asserted 

above, and prove that they are ordinary characteristic forms, i.e., polynomials in the 

Chern classes of the Einstein-K~ihler metric. For P as above, we call the characteristic 

form P(W) the renormalization of the characteristic form P(f2EK). We denote by ~k the 

renormalized kth Chern form. As examples, ~ =0, while 

n CI(~,-~EK)2. C2 = C2(~'~EK) 2(n+ 1) 

(Note that the renormalization depends on the dimension of N.) In much of what 

follows, it is much easier to work with the renormalized trace powers, 

rj = tr(WJ), 

Theorem 2.1 expresses the rj in terms of ordinary characteristic forms. 

The integrals of renormalized characteristic forms are not readily accessible, since 

they depend a priori on the global solution of the Einstein-K~ihler equation. Theorem 

2.2 gives an integration by parts formula which shows that these numbers can be 

evaluated on the boundary, using only Fefferman's approximate solution of the Mon- 

ge-Amp6re equation (2.1). 

At the end of w 2 we consider briefly how much the characteristic numbers depend 

on the Einstein-K~ihler metric, in particular we point out what happens for the 

characteristic forms of the Bergman metric. 

Sections 3 to 5 below are directed towards relating the boundary integrals in 

Theorem 2.2 to intrinsic CR invariants on ON. The problem here is that in most 

reasonable cases, one will not be able to find a section of the CR structure bundle to 

produce a form of top degree on ON from the secondary characteristic forms defined on 

the structure bundle. Section 3 compares several different structure bundles related to 
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the boundary ON. It turns out that the most natural place to prove general transgres- 

sion, or integration by parts, formulas is on the structure bundle of Fefferman's 

Lorentz metric on the (n+ l)st root of the canonical bundle on N. The finiteness at the 

boundary of the forms in question is also transparent from this point of view. Section 4 

shows that while there will rarely be a section of the CR structure bundle over ON, for 

N in C", there exists a homological section, i.e., a (2n-l)-cycle over which we can 

integrate secondary characteristic forms. Section 5 proves that the numbers so ob- 

tained are independent of the cycle over which we integrated, and goes on to complete 

the identification of the boundary integrals in w 2 with an expression in topological 

invariants of N and CR invariants of ON. As an example, if n=2, we consider the 

invariant of [BE], p(ON), arising from a secondary characteristic form for c2 on ON. In 

this case, the final integration by parts formula of Theorem 5.2 reads 

fNC2(~"~EK) --~-CI2(~'~EK) = #(aN)+x(N), 

where z(N) is the Euler characteristic of N. An application of this to the problem of 

embedding abstract CR manifolds into C 2 is mentioned in w 5. 

The final w 6 contains a different method of proof of the basic integration by parts 

formula for n=2, which applies to more general compact complex manifolds with 

strictly pseudoconvex boundaries than domains in C 2. The proof method here is more 

classical, along the lines of Chern's proof of the Gauss-Bonnet theorem. From this 

point of view, the secondary characteristic numbers on the boundary aN are analogous 

to the second fundamental form contributions on the boundary to the Gauss-Bonnet 

formula for a manifold with boundary. This method requires a very tedious pole-by- 

pole analysis of the singularity of the characteristic forms at the boundary. One does 

not yet have a formalism as simple as that of w 2 in the more general geometric case. We 

conclude with the reconsideration of some example manifolds whose boundary invari- 

ants we calculated in [BE]. An interesting question is left open here about the 

relationship of these invariants to the K/ihler geometry of the interior manifold, and the 

behavior of developing maps for CR manifolds which are locally CR equivalent to the 

standard sphere. 

It would be very interesting to obtain further analytic interpretations of the 

renormalized characteristic classes. In dimension two, the class ~2 leads to the consid- 

eration of certain spectral problems on N. We hope to be able to discuss this at a later 

date. 
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A c k n o w l e d g e m e n t s .  The second named author would like to thank Sylvan Cap- 

pell, Ed Miller, Schmuel Weinberger and Raoul Bott for help with the topology and the 

Courant Institute for their generous hospitality. We would also like to thank Jack Lee 

for pointing out an error in the first draft of this paper. 

We follow the summation convention: an index which appears as an upper and 

lower index should be summed, e.g.: 

(ffi(pi = ~ q)i~gi" 
i=l 

We shall use the notation: 

_ acp, aq~ 
q9 i - az-----~z ~ i -  a~ i 

a2q9 etc. 
q)if ''~" azia~j, 

w 2.  R e n o r m a l i z e d  C h e r n  c l a s s e s  

Let NcC"  be a bounded, smooth strictly pseudoconvex (s.ap.c.) domain. In [CY] it is 

shown that on such a domain there is a unique, complete Einstein-K/ihler metric. 

Obtaining this metric is equivalent to solving the complex Monge-Amp6re equation: 

Lqg~ q~0=/ (2.1) 

qg=0 on aN, tp<0 on N 
log(- l@) strictly plurisubharmonic on N. 

If tp satisfies (2.1) then 

a21og( - lhp) dz i" d~j, (2.2) 
g - -  O z i a ~ j  

or 

q)if .~ q)iq)f (2.2') g (=  
--tp q~2 ' 

is the complete Einstein-K/ihler metric. The solution to (2.1) is in general not in C| 
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Fefferman, however, proved that one can find an approximate solution q0o in C=(~ r) 

which satisfies: 

J(q0 o) = - I + O((qo0) "+1) near ON. (2.3) 

The approximate solution is produced via a finite algorithm, see [F]. Lee and Melrose 

have shown the exact solution to (2. l) has an asymptotic expansion at ON of the form: 

C ) 9~q~o+9o E aj(q~o"+'l~ i 
\ j = l  

(2.4) 

where ajE C=(1V). In this section q0 will denote the solution to (2.1) and q0o a Fefferman 

approximate solution. 

We include here some formulas from [LM], pp. 163-164. Given the defining 

function q0, we define, in a neighborhood of aN, a (1,0) vector field ~ by 

(~,ca(p} = 1 and a~q~(#,.)=z(.,aq~). (2.5) 

Define r by r=~if~i~ j. O n e  then solves for ~ above: 

qg~i=rq3]. (2.6) 

The matrix ~0# defined by 

~00~= q~-+(1 - r )  ti0~ q0j (2.7) 

is positive definite near aN, and defining gr as usual, so t h a t  gifgkf=6ki, one can check 

that 

g~= (-q0) [~~ rq0+qg)/(1 -rqo) ~i~f]. (2.8) 

From (2.5-2.7) we see that ~00-~J=q9 i, and it therefore follows that 

~p~ = ~i. (2.9) 

From this and (2.8) we get (2.9) of  [LM]: 

gr = -~i~2/(r~- I). (2.10) 

For later convenience, set 

flY= [~p0--- (1--rq~+q0)/(1 --rg) ~ J ]  = gr (2.11) 

3-908288 Acta Mathematica 164. Imprim6 le 23 frvrier 1990 
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and set 

Define A i-i so that 

D. BURNS AND C. L. EPSTEIN 

A ~q~ky-- det(q~t-) 6k i, (2.12) 

A = av~icpf  = - det = - J(q~) + q~ det(tpst-), (2.13) 
i ~9 

the second equality by Cramer 's  rule. From (2.6) and (2.12) it follows that 

rcpfA ky = cp~iA kj = det(q0si) ~k. 

Contracting this with q9 k we get 

rA = rq3fAkfqgk = det(q~i). (2.14) 

Using (2.7) and (2.13-2.14), one can check that 

cpyA ky= Ar  k. (2.15) 

(2.14) also implies, with (2,13), that 

rcp- 1 = J(q~)/A. (2.16) 

The Einstein-K/ihler metric defines a torsion free (1,0) connection, which can be 

calculated directly, using (2.2') and (2.8) above: 

O)EK = (.oiJ = gJeagie 

= (,~/q~k+,~Jq~i) dzk/(-q~) + gJ'[--q~cpi,k+,~,%k ] dzk/q~ 2. 

Define 

and 

giJk = ( o iJq)k'~'-(~kJ q) i)/(--~9), (2.17) 

Oi Jk = g Jr[ -- q)qgifk q'- q)f fffik]/~/92, (2.18) 

so that wi J= Y/k  dzk+ OiJk dz k" Note  that, by (2.10-2. I 1) above, we can calculate directly 

that: 

O/k = hJecPiek + ~JcPik/(1 -rcp). (2.19) 



CHARACTERISTIC NUMBERS OF BOUNDED DOMAINS 

In particular, oiJk is continuous up to aN in all dimensions. Note also that 

OiJk-~- OkJi . 

Next, we calculate the curvature f~EK of the Einstein-Kahler metric: 

~"~EK = dO)EK--(-OEK A O)EK 

= d ( Y + O ) - ( Y + O )  A (Y+O)  

= d Y - Y ^  Y + d O - O  ^ O-O ^ Y - Y ^  O. 

Expanding d Y - Y ^  Y, and using (2.10) and (2.18) above, we obtain: 

QEK = --(t~iJgl~i+f}kJgii) dzk ^ ds 

+dOiJ-Oi ~ ̂  OsJ+[fPitdz t A dzJ--cPtOit A dzS]/(-cp). 

Set 

and 

KiJ = (f}iJgkfWt~kJgii) dz k ^ d~ t, 

35 

(2.20) 

(2.21) 

W i  j ~- (~)EK) iJ-t-gi j" (2.22) 

We simplify W by the following manipulation: 

[~i, d z ' -  ~o, 0 : ] / ( -  ~o) = ' s '  ' [q~i, dz  - cp~(h q~,e,+ ~ cpit/(1 - rcp)) d z ' ] / ( -  cp) 

= [~0~'q~,~t/( 1 - rq~) - r~o~o,,/( 1 - rq~)] d z t / ( -  q~) 

= [ -  ~%Piet + rcPi,] dz'/( 1 - rcp) 

= -  [ -  ~ 0 i , , +  r ~ i , ]  dz'a/J(q~).  

For later convenience, set 

u i = (n + 1) [ -  ~eq)ie t + r~i,] dztA/J(gv). (2.23) 

Note that ui=uodzJ, withuo.=uji , so that 

dz i A Ig i ~ O. (2.24) 

Returning to our calculation of IV,-J, we get that 

w i J = d O i J _ O i S  A OsJ_lli A l dzj. (2.25) 
n+ l  
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If n~>3 it follows from (2.4), (2.19) and (2.25) that Wi j is continuous in the closure 

of N and depends on the 4-jet of qg0 at aN. In two dimensions, since W; J depends on the 

derivatives of ~0 of order less than or equal to four, the singularity that arises in Wi j at 

ON is at worst logarithmic, and therefore polynomials in W are integrable on N in this 

dimension, too. W is continuous on N for n=2 as well: cf. the proof of Proposition 2.1 

below. 

For convenience in some of the formulas which follow, we ca l l  to=gifdziAd~ j the 

Kiihler form. Note that it differs by a factor VL--i-/2 from the usual definition. The 

Einstein-K~ihler equation is: 

f2i i = - ( n +  1) to. (2.26) 

An easy calculation shows that Ki i=(n-I- 1)to. From this we see that Wi j is the trace free 

part of the curvature. If  we let Wi J= WiJktdzkAd~ ~, then Wjkr=gmyWi mkrhas the following 

symmetries: 

Wjr Wki~r= Wjtkr (2.27) 

These follow from the fact that both f2iy and K(  have these symmetries. The 

following algebraic lemma is what allows one to renormalize the characteristic classes 

explicitly: 

LEMr, IA 2. I. With Wi J and Ki j as above, the fol lowing identities hold: 

(a) wi k g / =  to W/= ri *w/. 

(b) K i k Kk j = toK/ .  
(2.28) 

Proof. The proof of  (a): 

Wik Kk j=  Wiktr~dz I A ds m A [6,Jgp~+6j gkq] dz p A d2 q 

= WiJlffldz I A dz m A to+Wiol,~dz I A ds m A d z  j A ds q. 

Since Wi~t,~= Wi,~t~ the second term is zero and this proves the first equation in (a). Note 

that as Wi j is a matrix of two forms and to is a two form, they commute.  To prove the 

second statement in (a) we observe 

gi  k wkj  = ( 0  i kgp#+6pk giez)dz" A d~ q A WkJt,~ dzt A d~ m 

= towiJ+gi~ldzP A d z  q A Wpltr~dz t A d~ m. 
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Since Wp Jt,~ = Wt ~r, the second term is zero and this proves the second part of (a). The 

proof of (b) is quite similar and is left to the reader. 

Symbolically, we have shown that 

W K  = K W  = toW 

and 

K2 = toK. 

Evidently we can iterate the second formula to obtain: 

g j = t o j - l g .  

Since f~= W - K  it follows that 

K ~  = f~K = toff~. (2.29) 

From the Chern-Weil  theory it follows that the characteristic classes of  g2 can be 

generated by the trace powers: 

Note that: 

We can now construct the 

stein-K~ihler metric; we define 

/ i \  
Cl= TI(~'~) = - ( n +  1)~-~-)to. 

renormalized characteristic 

(2.30) 

(2.31) 

classes of the Ein- 

rj = ( - ~ - ) J t r  W i . (2.32) 

THEOREM 2.1. Let  N be a strictly pseudoconvex  domain in C" with complete  

Einstein-Kiihler metric g, and let Q denote its curvature form.  Then i f  W is defined by 

W = f ~ + K  we have: 

rj = ~ ( -  1)k~,k] - ~ j = 2, n. (2.33) 
k=0 (n+l )  k (n+l )  j-I ' " '"  

Proof. From (2.28) it follows that K and ff~ generate a commutative ring and thus 

that 
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WJ = (~q-g)J = k~=o (Jk) ff2J-kKk; 

we use Kk=wk-lK to rewrite this as: 

k=2 

Now using (2.28) we obtain: 

WJ = Z f~J-kwk+Ko)j -~" 
k=O 

(2.34) 

Multiplying by (i/2n) j and taking the trace in (2.19) leads to: 

-2 i k j �9 

Using (2.31), we easily complete the proof of (2.33). 

Remarks. (1) We would like to thank Troels Jorgensen for simplifying the proof of 

Theorem 2.1. 

(2) If we express rz in terms of Chern classes we obtain: 

z 2 = - 2 [ c  2 nc;2 ] .  
2(n+l) 

This is the characteristic class which arises in the work of Yau and others, cf. [Y]. 

When n=2 it reduces to -2[c2-~c12], which is known to be negative semi-definite, 

vanishing if and only if g has constant holomorphic sectional curvature. The classes 

constructed in the theorem give potential generalizations of this class in higher dimen- 

sions. Each vanishes if g has constant holomorphic sectional curvature; in fact rj 

vanishes to order j at such a metric. 

(3) We can rewrite Theorem 2.1 in terms of the basic Chern classes, although we 

cannot make it quite as explicit as (2.33): 

THEOREM 2.1'. Let N be a strictly pseudoconvex domain in C ~. Let ck denote the 

k-th Chern form o f  the complete Einstein-Ki~hler metric on N. Then we can define 
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inductively renormalized Chern forms  6k, k=2 . . . . .  n, which are continuous on N by the 

formulas: 
k 

ck = E Pk, i(C2 . . . . .  Ck_l) ( C l ) i d - C k  . (2.35) 
i=l 

Here the Pk, i are uniquely determined polynomials,  which depend on the dimension n. 

Theorem 2.1' is a restatement of Theorem 2.1. The ck can be expressed in terms of 

the Tj(f2), j =  1 . . . . .  k. Each Tj(f2), in turn, can be solved for in terms of the r2 . . . . .  rj and 

powers of T~(ff2)=Cl, as follows inductively from (2.15). For n=2,  the continuity is 

proved below (Proposition 2.1), 

Here are the explicit formulas for the first three 6k: 

n(7n2-9n+8) 

1 
62 = C2 2(n+l)  C12 

63 _ n-___l_l n ( n -  1) 
=c3 n+lC2Cl 6(n+l)  2 c13 

64 = n - 2  nZ+n+2 
C 4 -  n+-----~C3Cl-+ ( n + l ) 2  c2c l  2 

(2.36) 

Cl 4. 
8(n+ 1) 3 

(4) If  we choose indices 2<~il<~i2<~...<~ip, so that i~+...+ip--n, then we can define 

renormalized characteristic numbers: 

Cil.,.i p ~-- Cir..ip(N ) -'- fN~i "... "~, . (2.37) 

Since the Einstein-K~thler metric is biholomorphically invariant and the 6j are given by 

universal polynomials in its curvature if2 it follows that the characteristic numbers are 

real-valued biholomorphic invariants. 

As a corollary of this and the theorem on the positive semi-definiteness of c2-~c~ 2, 

we have a very easy proof of: 

COROLLARY 2.1. I f  N is a strictly pseudoconvex domain in C 2 not covered by the 

unit ball, then Aut(N) is a compact  group. 

Proof. If N is not covered by the ball then cz - t c l  2 is positive almost everywhere. 

Let  p EN be a point where cz-~Cl2>O. If Aut (N) is not compact then there is an e>0 

and an infinite sequence of elements 7; E Aut(N) so that 

7i (Be(p) )  n T j ( B e ( p ) )  = ~ if i =[=j. (2.38) 
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Since C2--1Cl2>O is biholomorphically invariant: 

O< f C2__ZCI 2 = fy 1 2 (2.39) ]a~(p) 3 ,(a~(p)) c 2 - ~ - c I  " 

Together (2.38) and (2.39) imply that 

Nc2-1c~2= + ~,  

a contradiction. 

In principle, it is not possible to compute the characteristic numbers directly from 

(2.37), as this formula requires a solution of the Monge-Amp6re equation. We will next 

show that the computation in (2.37) can be reduced to a computation on ON which 

requires only the Fefferman asymptotic solution and is therefore, in principle, comput- 

able. 

In the paper of Chern and Simons [CS] a general formula is given for the trangres- 

sion TP(v2,u~) of a characteristic form P(~) .  Here ~0 is a connection taking values in a 

Lie algebra g, ~ the curvature of the connection defined by ~=d~--~0A~0 and P is an 

Ad-invariant polynomial defined on g. The trangression satisfies dTP=P. If 

p~(qJ) = Tj(uJ), then: 

/ i V  f '  TP~O/,,W) = ~-~x ) j j o  tr[~/, A (tUg+(t--t2)~ A ~)J-I]dt, (2.40) 

and dTPj(~,ud)=Pj(Ud). Setting 

X/= ui A ~ dz ~, 

as in (2.25) above, we have 

so that 

dO-0 A 0 = W+X, 

TPj(O, W) = \-~--~ ,] "JO tr[0 A (t(W+ X)+( t - t2)  O ̂  O) j-'] dt, (2.41) 

verifies 

dTP~(O, W) = P~(w+x) .  
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The following simple lemma, taken together with the cyclicity of the trace, shows that, 

forj~>2, X may be dropped from the last two formulas: 

LEMMA 2.3. Thefollowing identities hold: 

( a ) X . W = 0 ,  
(b) X 2 = O ,  

(c)X.O=O. 

(2.42) 

Proof. By the definition of X, it suffices to show 

dz i ^  Wi j-~- dz i ^ Xi j =  dz i ^  Oi j = O. 

The first and third vanish by (2.27) and (2.20), respectively, while the second 

vanishes by (2.24). 

This proves most of the following proposition: 

PROPOSITION 2.1. With W the trace free part o f  the Einstein-K~thler curvature 

form and 0 defined by (2.20) and (2.25) we define: 

[ i \J. f l  
% =  ~'2--~-~) J J0 tr[0 ^ ( tW+(t-t2)O ^ o)J-l]dt, (2.43) 

for j=2 ..... n. Then dTrj=rj in N and the Trj are continuous in 1V and along ON depend 

only on the four-jet o f  the Fefferman approximation, q~o. 

Proof. If n~>3, then the continuity and dependence on the four-jet of q~0 at ON of Trk 

in N follow from (2.4). 

In case n=2 it suffices to prove that W is continuous on ~r. Since only derivatives 

of q0 of order t>4 are singular along ON, we can write, using (2.25), (2.19) and (2.11): 

Wi j ~ gJiOacpiE/(- qg) = hJfOaqgii 

mod terms involving ~<3 derivatives of % and, hence, continuous on ,~/. We examine 

this fourth-order term, using (2.4) and (2.11): 

hieOacpi; - hJiOa(q%)ii - b log(q00) (tP0)i(q00)t-hJta(q~0) A 0(%), 

now modulo terms continuous on A/and vanishing along ON, and where b is continuous 

on ,~. Substituting (q0) i for (q%)i, we get 
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hJiOaqgii-hJicSa(CPo)ii =- b log(cpo) (q~o)i(~)ihJia(q~o) A O(CpO), 

-- b log(q%) (q~o)iq~Ja(~o) A ~(q~o)/(rqo-- 1), 

by (2.4) and (2.10-2.11), both modulo terms continuous on N, and vanishing on aN. 

This last expression is continuous on N, and vanishes along aN. This proves that the 

value of W, and hence of Trk, can be computed replacing q0 by q~0 in all the formulas 

above, especially those for 0 and W, (2.19) and (2.25). When n=2, q~0 is only completely 

well-defined up through third order terms. However, if we replace q~0 by cp0+aq~04, the 

argument just given can be used to show that the value of W is independent of a. (In 

fact, a more careful examination of which fourth derivatives of q~0 actually enter into the 

calculation of W along aN shows that these are precisely the fourth derivatives of q~0 

which can be determined from (2.3).) 

From the proposition we easily derive the following theorem, stated in terms of the 

renormalized trace powers: 

THEOREM 2.2. The characteristic numbers are given by: 

(2.44) 

Here W and 0 are computed from formulas (2.19) and (2.25), using Fefferman's 

asymptotic solution. 

As a corollary we have: 

COROLLARY 2.2. The characteristic numbers are biholomorphic invariants which 

are computable from local data on the boundary of  N. 

We would like to make a few remarks here on the use of other biholomorphically 

invariant metrics, and particularly the Bergman metric. It follows from the work of 

Fefferman IF1] that the connection form and curvature form of the Bergman metric can 

be decomposed into singular and bounded terms analogous to the decompositions 

above (for n=2, the "finite part" Ws of the curvature once again has a logarithmic 

singularity). In carrying out the analogy with the case treated above, one must replace 

the solution q0 of (2.1) by (KB) -1In+l, where K B is the Bergman kernel function. 

Therefore, one has Bergman renormalized characteristic numbers as well, with inte- 

grands polynomials in the trace powers tr(WnJ). One cannot, however, use (2.31), and in 
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lieu of (2.33), one can only prove (2.34). Thus, the Bergman renormalized characteristic 

forms are in the ring generated by the Chern forms of the Bergman metric and its 

K~thler form. 

The proof of Theorem 2.2 uses only the general symmetries which are shared by 

the Bergman metric, and is thus valid for the Bergman invariants as well. since, for 

n--2, it is known that 

(KB)-1In + 1 = 90 + 0(904 log( -- 1/Cpo)) (2.45) 

the proof of Proposition 2.1 for n=2 also proves the following corollary. 

COROLLARY 2.3. For N=C 2, we have 

fNtr(WErb = fNtr(Ws2). 

In higher dimensions the Bergman and Einstein-K/ihler renormalized characteris- 

tic numbers may well be different. 

It is clear that the renormalized characteristic classes exist on more general 

manifolds than domains in C n. For one variant of this, see w 6 below. The most precise 

theorem would require a complete Einstein-K/ihler metric of asymptotically constant 

holomorphic sectional curvature with an estimate on the rate at which the curvature 

approaches the constant value. 

In the sections which follow we will reexpress the renormalized characteristic 

numbers in terms of the connection and curvature form defined intrinsically by the CR 

structure induced from the embedding a N c C  ~. 

w 3. CR geometry: a review 

In this section, M will denote a strongly pseudoconvex CR manifold of real dimension 

2n-1. We review quickly the geometric structures that arise naturally in this situation. 

For the intrinsic theory, we will follow [CM] and [W2]; for the extrinsic theory, we 

follow [Wl]. 

If T(M) denotes the tangent bundle of M, we denote by TI'~174 the 

complex subbundle of vectors of type (1,0): if X, Y are sections of T1'~ then so is 

[X, Y]. Let 0 denote a real one-form such that ker 0= TI'~176 A complex one- 

form t/on M is of type (1,0) if r/annihilates Tl'~ Suppose 01 ..... 0 ~-I are (1,0)-forms 
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locally on M whose restrictions to TL~ are independent.  The structure on M is 

strictly pseudoconvex if and only if 

dO = i e ~ O  ~ A 0~+0 A e~ (3.1) 

where $ is a real one-form and Q,d is Hermitian and positive definite; 0 will sometimes 

be called a contact  one-form. In the sequel, Greek indices will run from 1 to n -  1, Latin 

indices from 0 or 1 to n. To obtain a solution for the equivalence problem for CR 

manifolds, Cartan (and later Chern) introduced a trivial ray bundle EcT*(M), given by 

M x R  9 (x,t)---> etOx E T*(M). (3.2) 

Ifpo:E--.M denotes the projection,  we can define the tautological one-form ~ by 

~x,o(X) = e'Ox(Po.(X)). (3.3) 

Set ~,~=po*(et/20 ~) and ~r~ On E we have 

d~t ~ = i o ~ r  a A ~rr ~ ̂  ~t ~ (3.4) 

We define a principal coframe bundle Y* as the coframes {~t~ on E which 

satisfy (3.4) with Q~=6~ .  The structure group is 

ill00 !)a a 
o a a ~  0 and ~.  

H = [ k : a  0 a~ w,=-ta~oaj 
w a wz 

(3.5) 

This is a subgroup of  SU(n,1). The Chern bundle PI: Y---~E is the bundle of  all frames 

dual to coframes in Y*. The main result of  Cartan and Chern is the existence of  a 

canonical ~tt(n, 1)-valued Cartan connect ion zr on Y with curvature 

l - I =  d ~ t - J t  A ~ .  

The curvature has the form 

FI=  ] ~ 
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(viewed in ~tt(n, 1)) where 

H - 0 mod (at ~, Jr a, ~ ) .  (3.6) 

The connection is normalized by trace conditions on the (1,1)-components of II. 

From a topological point of view, the bundle Y is rather cumbersome. Because of 

this, we consider its pseudohermitian reduction X introduced in [W1]. Let  0 be a fixed 

contact one-form and consider all solutions of the structure equation on M: 

dO = i6o~O a A 0~ (3.7) 

where 0 a are forms of type (1,0). The structure group of this bundle is U(n- 1). Define 

P0: X ~ M  as the dual frame bundle. We can use this choice of contact form to trivialize 

E, as in (3.3) above, and hence a splitting T(E)=T(R)~T(M). Let Q denote the 

projection onto the T(M) summand and set 

{0(~) = O(Q(~)), 
0~(~) = O'*(Q(~)), (3.8) 

for ~E T(E). From a solution to (3.7) we get a solution to (3.4) by 

{ ~r ~ = - d t ,  
~a  = et/2~a, 

~n = et~.  

(3.9) 

We use (3.9) to include X * x R  into Y*. A glance at the structure group H in (3.5) shows 

that Y* is topologically a vector bundle over X*xR.  We define s : X x R ~ Y  by taking 

dual frame fields, and set So: X---~ Y the inclusion at t=0. Clearly, s0*(at~ On the level 

of frames we define So by 

_ a  e s0(ea) = ( --~,a, en), (3.10) 

where en is the vector in T(M) such that 0(e~)=l, 0~(e,)=0. Here (e~, e,) are viewed in 

T(E) via the splitting in (3.8). 

In [F2], [W2], [BDS] a bundle is defined for M=aN, N a strictly pseudoconvex 

domain in C ~. We will follow Webster 's  conventions. Adjoin an extra variable z ~ and 

consider NxC* ,  z~ For a defining function q0 for N, define 

�9 (z  ~ , z '  . . . . .  z ~) = Iz~ 2/~+' q~(z ~ . . . . .  z " ) .  
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One obtains a K~ihler metric of  signature (n, 1) on N x C *  by 

G = ~i jdz  i. d~ j. (3.11) 

Normalize Hermitian frames (e0, el . . . . .  en) so that 

G(e~, e#) = 6~ ,  

G(e~, e o) = G(e~, e n) = 0, 

G(e0, e0) = G(e n, en) = 0, 

G(e0, e n) = - i. 

(3.12) 

This defines a U(n, 1) bundle over N x C * .  

Throughout  w167 3-5, co will denote  the connect ion matrix of the metric connect ion of  

type (1,0) associated to G, both on its U(n, 1)-frame bundle, and its extension to the full 

Gl(n+ l, C)-frame bundle. Likewise, f2 will stand for the curvature of  this connection.  

Relative to the local coframe near ~N: 

o9 o _ 1 dz ~ a + i n qa dz Qo9 
n + l  z ~ 

o9~ = dz ~, to n = -iuaq~, 

where u=lz~ 2/n+~, Webster  shows the curvature components  g20J=0. As a result, we 

easily obtain: 

LEMMA 3.1. The curvature fl=(g2i J) o f  G is independent  o f  dz ~ ds ~ 

Webster  defines a bundle over a N x C *  by adapting G-frames to the boundary as 

follows: 

(a) e 0 -- (n+l ) z~  ~ 

(b) e 0, ea span Tl '~  (3,13) 

(c) Re(e~) is tangent to a N •  and Im(e~) is transverse. 

Call the bundle of such adapted frames P2: Z--~aN• Map a N x C *  to E by 

PI(P, z~ = uOp EE  

where O=-iaq~, and u=lz~ z/~+l. Cover this map by/~l: Z - ~ Y  defined as: 

1 
fil(eo, ea, e n ) = ( - - ~ P l , ( e o ) , P l , ( e a ) , P l , ( e n ) )  �9 
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Z is an SLbundle over Y. Webster  compares  the connect ion and curvature forms on Y 

and Z as follows: if q~ is a 3rd order  approximate solution of  Fefferman's  Monge-  

Amp6re equation, as in (2.1) and (2.3), then 

(a) pl*(I-Ii j) = ~i j 

(b) pl*(~ri9 = (DiJ-~diJ (3.14) 

where #+/~=0, d/~=0. The form # accounts for the fiber o f / ~ .  The Monge-Amp~re  

condition on q0 at ON implies f~ii=0 on aN •  

In what follows, it will be useful to have a section s~ o f / ~ l : Z ~  Y. For  our  purposes 

it suffices to construct  the section over X •  Y; it can be extended to all of  Y using the 

structure groups. If  {f~} is a frame in X, with f,~=aJS/Sz ~, then (3.4) implies 

(f0,f~,f,)  = (-O---,e-t/2a~yS-~-,2e-tRe[irqgj~+b~f~]~ (3.15) 
\ Ot Oz ~ L od J/  

defines a frame in Y over (p, e/G), if the b ~ verify 

O~(ircpl 0 +b~fa]=O, f l = l  . . . . .  n - 1 .  
\ " Oz ~ / 

(3.16) 

(Here r is as in (2.6).) From (3.15), (3.16) we construct  a frame in Z over the point 

(p, e (n+l)t/2) by sl(fo,fc,,f.)=(eo, e,~, e.) with 

(a) e 0 = (n+l)z~ ~ 

(b) e~ = e-t/Za~ YO/Oz y (3.17) 

(c) e. = e-tirq~jO/SzJ+bC'ea+e-tbeo . 

The constant b is determined by the conditions 

(a) Re(b) = 0 
(b) G(en, e,,) = O. (3.18) 

An easy calculation shows/~1 os l= id  on Y, and Webster  has shown that 

Sl*(ff2 ) = H. (3.19) 

The bundle Z is constructed as a sub-bundle of ON• C* • Gl(n+ 1, C). The bundle X can 

be included into 8 N x  Gl(n, C) by 
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io({fa})= (f~,irqgf-~+bafaloz J / (3.20) 

with b a as in (3.15-3.16). 

Putting all of the above together, we have the following diagram which summarizes 

the comparisons made above: 

J 
3 N x  Gl(n, C) �9 3 N x  C* x Gl(n + 1, C) 

s0 sl i l /  
X ,  Y .  Z 

ON �9 E �9 0NXC* 
Po Pl 

(3.21) 

Here j is the inclusion: 

A0 . (3.22) 

We define a last map a from NxC* to N x C * x G l ( n +  1, C) simply by o(p, z~ z~ 

The two inclusions of X into 3Nx C* x Gl(n + 1, C), il o sl o So and j o to, are homotopy 

equivalent. 

We can complete this circle of comparisons by calculating the connection oJ and 

curvature ~ on aNxC* xGl(n+ 1, C) in the standard frame of C n+~, i.e., their pull-backs 

via a. 

LEMMA 3.2 (a) 

(7*(0))=[ Oui n l+ I j d 
(b) [0 0] 

o*(f~)= V; W/"  

H e r e  u i is as in (2.24), Oi j is as in (2.19), Wi j is as in (2.25), and 

V i = dui-O i ku k. (3.23) 
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Proof. We use the standard formulas for Kfihler metrics relative to holomorphic 
frames. Thus, 

0*(09) = Oo*(G) o*(G) -I. (3.24) 

Pulling back G amounts to setting z ~ 1: 

qg/(n+l) 2 qoy/(n+l)] 
o*(G) = Lqh/(n+ 1) q~j (3.25) 

and one can check that 

o*(G) -1 = , j (n+ 1) 2 -~iB(n+ 1) 
j - - - ) ~  det(q0,i) J(qo) 

I -r hiJ " 
L J(q~) 

(3.26) 

Using (3.24-3.26), one can calculate 

F det(tpst-) Oq~-A~IOcP] hkeaq~162 1 

J a*(~ k) = I 
! (n+ 1)[det(~v~t-) 8q~i-A~Yaq~iy ] 
L ~ JI, qg) 

(3.27) 

One uses the following easily verified facts: 

(a) ~fOq~f= r~cp 
(b) ~OkJ&py= dzk-( l -r)  acp~ k (3.28) 

as well as (2.11), (2,14), (2.19) and (2.24) to reduce (3.27) to the form given in the 

statement of the lemma. 

The proof of Lemma 3.2(b) follows from part (a) of the lemma, the definition of [2, 

the formula (2.25) for W and the fact that 

dE i A U i =  dz  i A Oi j = O .  

Finally, we calculate the forms necessary for explicit transgression calculations. 

First let us define a non-commutative monomial M(x, y) in two (non-commuting) 

variables x, y as a product of k factors, where each factor is either x or y. We will call k 

the degree of M(x, y). 

4-908288 Acta Mathematica 164. Imprim6 le 23 f6vrier 1990 
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PROPOSITION 3.1. For  any non-commuta t i ve  m o n o m i a l  M(x, y), we have 

(a) o*(tr M(co, g2)) = tr(M(0, W)) 

(b) (i/2:r)ko*(Ttr(f2k))= Tr k. 

Proof .  We prove part (a) by induction on the degree k of M. For k= 1, Lemma 3.2 

implies (a). For k~>2, we claim 

[0  0 ] 
tr*(M(w, ~ ) )  = Ai  B i A dzJ+M(O, W)  ' (3.29) 

where dziAAi=dz~ABi=O. If k=2, it is trivial to check (3.29), using as in w 2 above: 

dz i A u i = dz i A Oi j = dz i A W i  j = 0. (3.30) 

Suppose that M'(x ,  y )=M(x ,  y)x  or M(x,  y)y is a monomial of degree k+ I, where M(x,  y) 

is of degree k. By induction, we may assume (3.29) holds for M(x ,y ) .  If 

M'(x,  y )=M(x ,  y)x,  say, then 

a*(M'(co, ~ ) )  = Ai B i A dzJ+M(O, W)  ui V~ 1 

[ 0 0 j 
= A i A d z  l 4-Bi A d z  j A Ojt+M'(O, W)  " B i A d z  j A u j+M A U n+-----l- 

(3.30) now shows that the induction is complete. The case M'(s ,  y )=M(s ,  y ) . y  is treated 

in a completely similar manner, proving (3.29). Taking traces in (3.29) proves part (a) of 

the lemma. Part (b) follows directly from part (a) and the definition of TPk in (2.40). 

We conclude this section with several remarks on the comparisons and calcula- 

tions above. In invariant terms, N x C *  is a trivialization of the (n+l)st  root of the 

canonical bundle, K ~/"§ of C n (with the zero section removed). All of the frame 

bundles above are subbundles of the full holomorphic frame bundle of K I/n+ i. There is 

really just one transgression formula, defined on this last bundle: 

T(tr(f~J)) = j  tr[w A ( tQ+( t - - t  2) OJ A W) ~-l] dt. (3.31) 

Formula (3.31) is valid for any choice of framing of type (1,0). All the other transgres- 

sion formulas are consequences of (3.31). For domains N c C  n, the holomorphic frame 

bundle of T ~'~ is just K1/~§ x Gl(n+ 1, C). The comparisons above can be made in 
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more general contexts, but the non-trivial topology of K ~/n+~ will lead to additional 

terms in the integration by parts formulas analogous to those of w 2 above. 

Since the formula in Theorem 2.2 makes explicit use of the frame (a/az I . . . . .  a/azn), 

and this frame doesn't belong to any of X, Y or Z, this formula does not have any 

intrinsic meaning on ON. In general, Y---~aN will not have a section, and so there will 

not be a direct way to compare the holomorphic transgression defined on aN with 

transgression forms on Y. In w we circumvent this difficulty by finding a 

homological section of Y over aN, i.e., a (2n-1)-cycle C in Y such that 

PI,[C]=[M] E H2n_I(E, z)~n2n_l(M, Z). (In general, such cycles don't exist either, but 

for M=ON in C n, we construct one below.) 

A second issue arises: in general, the Chern-Simons theory [CS] says that for 

[C] EH2,_I(Y, Z) such that e l , [C]=0.  Then 

f TPCZ 

if dTP=O, and P is an integral class. In general this integer is non-zero, and if this is the 

case, the class [TP] E H2n-I(Y; R) is not the pull-back of a class in H2~-~(M, R). Again, 

for M = a N  in C ~ we show below that these integers are all 0. We thus will have created 

canonical classes [TP] EH2n-I(M;R)-~H2n-I(E;R) such that PI*['['P]=[TP]. Since Y 

doesn't have a section over M, this class may differ from that given by the holomorphic 

framing in w 2 above. 

Finally, we remark that our calculations in the CR case are quite similar to a 

procedure outlined in [FG] for constructing scalar invariants of a conformal structure. 

The complete Einstein-K~hler structure on N can essentially be realized as a structure 

induced on a hypersurface i(N) in K l/n§ by the Ricci-flat Lorentz metric. As one 

approaches infinity in N, i(N) approaches infinity in the fiber of K v~+~. If P is an 

invariant polynomial of degree n then P(ff~) defines an invariant of weight zero in the 

terminology of [FG]. This explains why P(Q) is finite: it is constant along the fibers of 

K ~/~+~ and obviously bounded along the section o defined above. A propos the com- 

ments at the beginning of section III of [FG], we remark that the only invariants of the 

complete "Poincar6 metric" with finite boundary values are a subset of the Weyl 

invariants of weight zero for the Ricci-flat "ambient metric". 

w 4. Boundary classes and homological sections 

In the bundles Y and Z (notation as in w 3) we can define secondary characteristic forms 

using the curvature forms YI and Q respectively. If Z is defined using a third order 
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approximate solution of the Monge-Amp~re equation, then we have from (3.14), (3.19) 

that 

/5~*P(ri) = P(Q) (4. I) 

S l*P(f2) = P(II) (4.2) 

for P any Ad-invariant polynomial on g[(n+ 1, C). 

Set ~=Sl*(W). Then 

d/7~-g'~ A 3~ = Sl*(~'~ ) = l"I. 

By the Uniqueness theorem 5.1 of [CM], we conclude Jr=s~*(w). Since/51os~=idr, 

(3.19) implies 

:r = sl* Opl*(er) = Sl*(O.)-~i(~iJ) = 3"t ' -S l*( /u)  (~i j. 

Thus, sl*(/z)=0, and therefore, 

sl*(TP(to, Q)) = TP(~z, II), (4.3) 

where TP is the canonical transgression of (3.5) in [CS]. 

Lemma 3.1 implies that P(f~)lat~• if P is an invariant polynomial of degree 

~>n. Similarly, H=0  rood (:P, n a, :r a) implies P(II)=0 on Y for P of degree ~>n. Thus, we 

conclude from (4.3) 

sl* o iI*(TP(og, •)) = TP(:r, H), (4.4) 

and we have classes [TP(w, g2)] E H 2"-I(aN• C* x Gl(n + 1, C); R), and [TP(:r, II)] E 

H2"-I(Y; R). Since the Chern bundle Y is functorial for biholomorphic maps, [TP(:r, H)] 

is a biholomorphic invariant. 

We would like to pull the class [TP(:r, H)] down to aN so that we may define CR- 

characteristic numbers for aN which we can compare with the boundary integrals of w 2 

and relate to the renormalized Chern numbers of N. As already noted at the end of w 3, 

we will here show that there exist homologial sections of Y over aN (if aNcC") ,  

enabling us to define characteristic numbers. We postpone until w 5 the proof that these 

numbers are independent of the homological section chosen, and the comparison of 

these numbers with the renormalized Chern numbers. 

In this section, M will be a closed s.ap.c, hypersurface in C". If q0 is any defining 

function for M, let 0 be the contact one-form -i&p on M. In w 3 above we recalled the 
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construction from 0 of the U(n-1)  principle bundle X over M. Our purpose here is to 

prove the following theorem on the existence of a homological section of X over M: 

THEOREM 4.1. Let M be a closed s.V2.c, hypersurface in C". Then there exists a 

class 3~2n_1 E H2n_I(X , Z) such that p0.(.~En_l) = [M] E H2n_I(M; Z). 

Remarks. (1) Since X is homotopy equivalent to Y, one can consider "~2n-I in 

H2n-1(Y;Z). 
(2) This provides a topological obstruction to the codimension 1 embedding (or 

even immersion) in C ~ of an abstract compact s.~p.c. CR-manifold M. In the case of M 

of real dimension 3, this reduces to the condition that TI'~ be trivial, as in [BE]. It is 

known that this obstruction to embedding is non-vacuous in this case. 

The bundle X could be described equivalently as a bundle of unitary frames in 

TI'~ for the Levi-form of cp as a metric on Tl'~ The homotopy type of X is 

independent of Hermitian metric chosen on T~'~ Thus, for the problem at hand, we 

can consider .~'=the bundle of unitary frames in TL~ for the Euclidean metric in C ~. 

has a simple "universal" description in terms of the Gauss map. Let S 2"-t be the 

unit sphere in C ~. The group U(n) acts on S 2"-1, and defines a U(n-D-principle bundle 
over S 2n-~ via 

qo U(n) g g~--~ g.(1,O ..... O)ES 2"-1. (4.5) 

This is simply X over M = S  2n-I for the contact form 0=-is J. For a general M, with 

defining function q0, and p E M, define the Gauss map by: 

g(p) = (qgi(p) . . . . .  qg~(p))/ldq~l 2 (4.6) 

where  Idtpl 2 is here measured with respect to the Euclidean metric..~" is the pull-back by 
g of qo: Y(n)'-'~S2"-l: 

go, 
" U(n) 

ql[ [q0 

M ~ S 2n-1. 
g 
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To define a cycle in H2.-I(.( ' ;Z) we will use Poincar6 duality, and we start with a 

description of  the homology and cohomology of  U(n). The basic facts are these: 

H,(U(n)) = A(Xl . . . . .  x2,-t) 

H*(U(n)) = A(y 1 . . . . .  y2~-l) 
(4.7) 

where each x; is a primitive cycle in dimension i, and the y' are the dual primitive 

cocycles. The cycles x~ . . . . .  x2n-3 lie in the fiber of  q0, but: 

* V  = y 2 n - 1 ,  q0 s~.' (4.8) 

where ([$2"-~], Vs2 . , )=1 .  From this it follows that on U(n), the Poincar6 dual ofx2n_ 1 
is yJ...y2n-3. 

For a general M, define ~2,-~ to be the Poincar6 dual of g*(y~...y2n-3). One of  two 

possibilities must occur: 

(a) degg = 0, and .(" has a section, or 

(b) degg 4= 0, and q1.($2._0 = [M]. 
(4.9) 

Since (a) is clear, consider case (b): 

( q l * ( X 2 n - l ) '  VM) = ( ' ~ 2 n - l '  q~VM) 
1 

deg g 

1 

deg g 

- - - ( . f z n _ l , q ~ ~  

- deg----g (x2n-l, g* o q~ Vs2 ~ ~ } 

= _ _  , 1 2 n - 3  * 0 * 1 ( [~ ] ,  g~,(y ...Y ).g~, qoVs2. ,} 

_ deg g** ( [ U(n)], y l...y2~-3, q~ Vs2._t } 
deg g 

= ([U(n)], yl...y2n-l) = 1. 

We have used degg=degg~,  (because g,~ is a bundle map), and (4.8). 

In the sequel we will need a little more precision than the statement above. 

PROPOSITION 4.1. Let  M = a N ,  N c C  n, and let io:X--~ONxGl(n, C) be the map 

given in (3.20) above. Then i f  the Euler characteristic z ( N ) * 0 ,  

io*('f2~-l) = [ON]-z  (N) x2~_ l (4.10) 
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in H2,_I(SN• Q), where x2,_ 1 is the universal class in H2n_l(U(n)) described 
above. 

Proof. We start by denoting by q2, resp. q3, the projection of a N x  U(n) to 8N, 
resp. U(n). Calculating as in the proof of Theorem 4.1, one sees directly that 

gaa.(fc2,_l)=(degg)x2n_l=-)(,(N)x2n_p the last equality by the Gauss-Bonnet  theorem 

Since ql=q2 o iv, and ql,(:~2n_l)=[aN], o n e  has 

i0,(.~2n_ 1) ---- [ 8 N ] - z ( N )  x:n_ 1 +c (4.11) 

where c is annihilated by both q2, and q3,. 

Let fl=q~(z)| E H2n-I(M• U(n)), where z E Hi(M), and i+il+...+ik = 

2n-1 ,  i~:0, 2n -1 .  To show c=0,  it suffices to show (c, f l )=0.  If z(N)*O, we use ~2,-1, 

as defined above, and compute: 

(c, fl) = (i0.(~2,_,) , fl} 

= ( [,(,], g,(yi...y2n-3), ia(fl)} 

= (i0.[)~] ' ~(y~...y2~-3).fl} 

= 0 ,  

since q~(yl...y2,-3).fl=0. 

Remark. Note that (4.11) holds even if z(N)=0.  

w 5. Homotopy of connections and independence of homological section 

In this section our first goal is to prove the following theorem. 

THEOREM 5.1. Let cEH2n_I(Y;Q ) project to 0 in H2n_1(aN, Q). Then 

f TP(:t, YI) = 0 (5.1) 

for any ad-invariant polynomial P. 

The proof will be based on the relation 

TP(zr, II) = s~ o i'{TP(a~, f2), (5.2) 
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of (4.4) above. We will deform the connection to on aNxC*xGI(n+ 1, C) to a family of 

flat connections on aNx  C*• C), which will reduce the evaluation of (5.1) to 

some variants of standard facts in the classical development of characteristic classes. 

We will first deform to by deforming the underlying Fefferman metric h0--G, of w 3 

above. For h a Hermitian metric on N• of signature (n, 1), let ~ denote the 

corresponding bundle of (1,0)-frames normalized as in (3.12). Topologically, 9/(h 0) is 

diffeomorphic to N•  U(n, l). We set U(h)=~215 .. Let q90 be a defining func- 

tion for N which is a Fefferman approximate solution for the Monge-Amprre equation 

along aN. We begin our deformation by homotoping q~0 to a defining function ~/91 which 

is strictly plurisubharmonic in a neighborhood of/V, e.g., by 

~pt=(1-t)Cpo+tCpz, O<.t < - 1. 

Next, let R be a constant large enough that Izl<R on N. Set 

% = (2-t)  q01 + ( t -  1)(Izl2-R2), 1 ~< t ~< 2, (5.3) 

i - j  
in a neighborhood of N, and set on N• Defining ht=(Wt)r 
O<-i, j<~n. By computing J(lpt) o n  aN one easily sees that we have a l-parameter family 

of non-degenerate K~ihler-Lorentz metrics of signature (n, 1) in a neighborhood of 

c3N• C*, for t E [0, 2]. Let tot=w(h(t)) be the connection form for hi, and ~"~t=dtot-tot A tot 

its curvature form. 

We will need to calculate the matrix to2 with respect to the standard frame of 

NxC*. Call this F2. One computes readily that 

(-~lodZ~ I dz---~J \ 
z ~ n+l Z ~ 1,  

F2= 1-~---dz~ l <~i,j<~n, (5.4) 

n+ l  z ~ u/  

and, in particular, f22=0. 

LEMMA 5.1. P(~'2t)IU(h)~-~O, where P is any Ad-invariant polynomial of  degree >~n, 
and t E [0, 2]. 

Proof. Indeed, the calculation of Webster's referred to in Lemma 3.1 above shows 

the f2t do not involve dz ~ ds ~ whence the lemma. 

Thus, if we extend the connections tot to all of aN•215 TP(to, f2t) 
defines a cohomology class in H2"-I(ONxC*xGl(n+ l, C)). 
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We are next going to simplify to2 further. We deform w2 through two families of 

connections on C" • C* x Gl(n+ 1, C), preserving the condition of Lemma 5.1 along 

ON• We will write these deformations out in terms of the Christoffel matrices with 

respect to the standard frame, as in (5.4) above. 

Define first 

and then 

/ - n  d_z ~ (3- t )  dz j \ 

r,=/n+10 z~ - 5-7 ] 
n + l  z ~ 'J,/ 

2~<t~<3, 

- ( 4 -  t) n dz ~ 0 \ 

n+ 10 z ~ , 3~<t~<4. 
Ft = ( 4 - 0  dz ~ 6 

n +  1 z ~ 

Note that Qt---0 over C"xC*,  2~<t~<4, and that F4~0 on CnxC *. 

LEMMA 5.2. For 

c E H2,_I(C"x C*x GI(n + I, C) ) 

which projects to 0 in Hz,_I(ONxC*), and P an Ad-invariant polynomial of  degree n, 

f TP(~ ~t) 

is independent of  t E [0, 4]. 

Proof. Without loss of generality, we may suppose that c is an integral cycle, and P an 

integral invariant polynomial. Then Theorem 3.16 of [CS] says that Sc TP(tot, f2t)EZ, 

t E [0, 4]. Since the formula for TP(a~,, f~t) is continuous in t, the integrals are constant. 

We can now use (5.2) and Lemma 5.2 to conclude 

f ri)= f TP(~o4, Q4). (5.5) 
qos0,(c) 

Since F4~-0 on ON x C* • Gl(n + 1, C), w4 is simply the Maurer-Cartan form of Gl(n + 1, C) 

pulled up to 0N•  • 1, C). Since ff~4-0, 
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TP(~~ ~'-~4) = k(P)tr(to4Z"-l), (5 .6 )  

where the constant k(P) depends on P. In any event, 

f TP(to t, = 0 Q,) 

for any class c E Hzn-l(Cn• C* • Gl(n+ l, C)) which is not a pure fiber class, i.e., unless 

c =  l |  aEH2n_l(Gl(n+l,C)). (5.7) 

To evaluate (5. l) via (5.5), since Y is homotopy equivalent to X (as in w 3), we can assume 

that a in (5.7) in fact comes from H2n-l(U(n-1)). Using the notation of w then, the 

following lemma is the key evaluation we need. 

LEMMA 5.3. For X 1 . . . . .  X2n_ 1 E H . ( U ( n ) ) ,  

(a) 

f~ tr(tO~cl)=0 if  i l+ . . .+i l=2n-1 ,  
il"" Xi I 

and two ij are non-zero, while 

(b) 

fx~~ t r (w~c ' )= n ( 2 n - l )  (2~ri)". 

have a diagram: 

U(n- 1) �9 U(n) 

,,,, j',,, 
F(E,-1) �9 F(E,) 

Gr(n-  1 , N - l )  �9 Gr(n, N) 

(5.8) 

Here tOMc is the Maurer-Cartan form on U(n). 

Proof. Introduce the Grassmannian Gr(n, N) of n planes in C u, n<<N, and let E, 
be the canonical n-plane bundle on Gr(n, N), F(E,) its bundle of unitary frames. We 
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where j includes Gr(n-  1, N -  1) as all n-planes containing a fixed vector in C N. Let o~. 

be the standard connection on E.. ~ .  its curvature. Then dTc.(~o., f~.)-----~*Cn(Qn). Note 

that 

( i ) n  1 tr(tozn_l) (5.9) 
Tc"(~ ~-~ (2nn-1) 

modulo terms which are exact when retricted to the fiber U(n). Note also that con 

restricts to O~uc on U(n). Since f*(TC.(~o n, ~n)) is universally transgressive on F(E._I), 

in the sense of [B, w 19], its restriction to the fiber U(n- 1) is primitive ([B], Proposition 

20.1). Since H*(U(n-1)) has no primitive class of degree 2n-1 ,  f*(Tc.(~o n, ff2n)) is exact 

on U(n-1).  Restricting Tc.(~o n, f~n) first to U(n) then U(n-1)  in (5.8) and using (5.9) 

proves (a) of the lemma. 

To prove (b), let S(E.) be the bundle of unit vectors in En. We have a diagram: 

U(n) -- S 2n-' 

F(En) = S(En) 

Gr(n, N) 

(5. lO) 

where the top horizontal map is that of w 4 above. As in [BC], there is a canonical 2 n -  1 

form ~ on S(E.) such that d~=q*Cn(ffa.). Then dTc.(o~., Q.)=:r*Cn(f~.)=dp*(~). Since 

Hzn-I(F(E.))---O, Tcn(C %, Q. ) -p* (~ )  is exact, and 

f~2.-, Tc .(to ., fit.) = fso(e. ) r (5.11) 

where So(E.) is the fiber of S(E.) over any point o 6 Gr(n, N). 

One can evaluate SSo<e.) ~ as in the proof of the generalized Gauss-Bonnet theorem 

in [BC]. One considers the standard n-plane bundle Q on 1 ~ (which admits a holomor- 

phic section with an isolated simple zero). Let f: pn~Gr(n, N), N>>0,  be a classifying 

map. We have a diagram: 
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Y 
S(Q) �9 S(E,) 

W " Gr(n, N) 

(5.12) 

and on S(Q), 

df*(o) = fq*c.(Q). (5.13) 

(We pull-back the metric and connection on E~ to Q.) Let s be a section of Q with one 

simple zero at 0EI~, and let o=s/Is t be the corresponding section from W-{0} to 

Let B(e) be an e-ball in W centered at 0. Then (5.13) and Stokes's theorem S(Q)[p._(o }- 
imply 

l= s B(~)o*(f*o) 

- ~  f * ~  (5.14) 
3s o(Q) 

= --fSofE) t~. 

Putting (5.14), (5.11) and (5.9) together, we see that part (b) of the lemma is proved. 

One has only to remark that part (a) of the lemma suffices to complete the proof of 

Theorem 5.1. 

As noted at the beginning of w Theorem 5.1 and the results of w show that to 

every Ad-invariant polynomial P of degree n, we can associate a CR-characteristic 

number fcTP(er, H), where c is any class in H2n_I(Y,Z) such that PI.(C)=[ON]E 
H2n_l(aN; Z). In particular, we can take c=22,_ v as described in w 4. Equivalently, we 

can associate to TP(Jr, H) a CR-invariant cohomology class [TP(:r, H)] E H2"-I(aN;R) 

such that Pl*[7~P(er, H)]=[TP(Jr, H)]. 

We will next put this result together with the formulas of w 2 to derive our main 

theorems, which give a generalized Gauss-Bonnet theorem relating the renormalized 

characteristic numbers of N and the boundary characteristic numbers we have just 

defined. We will again express them explicitly in terms of the renormalized trace 

powers. 
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PI(A )= ( j~ ) " tr(A i') ... tr(A~0, 

where I={il, ..., ip}, 2<~il<<-...<~iv, and il+...+iv=n. 

THEOREM 5.2. (a) Ifp>l 

fNTJi,'"r:ip=f~E,,_TPl(~'II); 
(b)/fp= 1, 

fN r" = f2.-, TP{,)(er, H)+z(N) .  

Proof. We know from (5.2) that 

~ TPl(#,rI)= f, TPt(w,Q). 
2 n -  t l ~  - t) 

From (4.10) we have: (a) i f z ( N ) 4 0 ,  

(ilos0,(s = [0N]|  I - z ( N )  1 | [x2,_~], 

or (b) if z(n) = O, 

61 

(5.15) 

(il~ i),(s 1) = [aN] | 1 + c, 

where PI,(C)=0. Thus, (5.15) implies 

2 n - I  N 2 n - I  

Since f~ is identically zero when restricted to a fiber, the second term on the right is 0 

for P=PI, unless I={n) .  In case P=P~,), the integral on the right is - 1 ,  as in the proof 

of Lemma 5.3 (b). From Theorem 2.2 we conclude 

foNTP(co'")= foNT(ri,'"''~O= fNrg,''"'ri p 

proving the theorem. 
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As a possible application of  Theorem 5.2, consider the question of  which abstract  

s.ap.c. CR structures on the sphere S 3 may be embedded in C 2 as a s.~p.c, hypersurface.  

In dimension two, the formula of  Theorem 5.2 (b) becomes explicitly: 

NC2--1Cl ~ -  z ( N ) + p ( a N ) ,  (5.17) 

where /~(aN)  is as in the introduction or [BE]. As shown in [BE], /~(SN) can be 

calculated from knowledge of  the abstract CR structure given on M = a N .  The region N 

bounded by such a hypersurface in C 2 would have to be homeomorphic  to the standard 

ball, so z (N)  is necessarily I. On the other  hand, the integrand on the left is well-known 

(cf., e.g., [Y]) to be ~>0 everywhere,  if calculated in the Einstein-Kahler  metric of N,  

and - 0  if and only if N is biholomorphic to the standard ball. Putting these facts 

together, we get the following corollary. 

COROLLARY 5.1. Let  M be a s.v/.c. CR manifold homeohorphic to S 3. A necessary 

condition for  M to admit  a CR embedding into C 2 is the inequality: 

kt(M) 1> - 1. (5.18) 

I f  l~(M) = - l ,  and M embeds in C 2, then M is CR equivalent to the standard boundary o f  
the ball B 2. 

We call this a potential  application of  Theorem 5.2 because we do not know of  an 

example of a s.ap.c. CR structure on S s which has p < -  I. Indeed, Cheng and Lee  have 

recently proven ([CL]) that at the standard structure on S 3 the functional/z has a non- 

negative second variation. Whether  p < -  1 for structures distant from the standard one 

is still an open question. 

w 6. Another method of proof for n-- 2 

When n=2  we can prove a result like Theorem 5.2 in a slightly more general geometric 

setting. The proof  follows the lines of  Chern 's  classic argument, as in [BC], w 6, for 

example. As is often the case with secondary characteristic classes, it seems difficult to 

state optimal hypotheses  for a theorem like Theorem 6.1 below. We offer this version 

as a sample, and will consequent ly  be somewhat terse about the necessary computa- 

tions. (They are elementary,  if somewhat tedious.) We conclude this w by comparing 

some of the examples calculated in [BE] with the present  work. 

In this section we let N be a compact  strictly pseudoconvex complex manifold with 
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smooth boundary ON, which for convenience we will assume is contained in a slightly 

larger complex manifold N' .  We will assume that N admits a volume form v whose 

Ricci form is identically zero in a neighborhood of the boundary.(1) In this case, it is 

well known that we can find local holomorphic coordinates z I . . . . .  z" in a neighborhood 

of any point where Ric(v)=0 such that v is given locally as 

v = ( i /2)ndz 1 ^ d~ l ^ ... ^ dz"  ^ d~". (6.1) 

We will call such a coordinate system unimodular. Let  go be a defining function for 8 N ,  

strictly plurisubharmonic in a neighborhood of ON.  We look for K/ihler metrics g = g r  

on N which verify the Einstein-K/ihler equation 

Ricd(g) = - ( n +  1) gu (6.2) 

in a neighborhood of 8 N .  If  we look for g of the form 

g d  = (log(- 1/go))( (6.3) 

in a neighborhood of aN, we find that the sufficient differential equation for go is given 

locally, in a unimodular coordinate system, by the Monge-Amp~re equation: 

J(go)=det(go\go; goql-) = - 1 .  (6.4) 

Using the algorithm described in IF1], one can construct approximate solutions to (6.4) 

up to order n+  1. From now on, we will assume that go is a third order approximation, 

i.e., satisfies 

J(go) = - 1 + O(go3), (6.5) 

and that g~ is a Hermitian metric on N which is as in (6.3) near the boundary. If  N'  

admits a smooth volume form whose Ricci form is negative, then N admits a complete 

Einstein-K~ihler metric [CY] which is asymptotic to (6.3) with go as in (6.4). 

- -- 1 2 for N of dimension We want to consider the renormalized Chern form c z - c z -  ~ c ~ ,  

2. The form c2 is integrable on N and we want to integrate by parts to derive a 

Gauss-Bonnet theorem as in Theorem 5.2 expressing fN C2 in terms of the invariants of 

(2) We don' t  know how much more than q ( N ) = 0  when restricted to H2(SN; R) is necessary to guarantee 

this. If  c l (N)=0 in H2(N;II),  we can prove that there exists such a volume form on N; this seems, however, a 

very restrictive hypothesis on N. 
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aN and the topology of N. In order to do this, we will treat the terms c2 and c~ 2 

separately for awhile. 

Let us treat ct 2 first. In a neighborhood of aN, we can write 

3i OOlog(- llq~)+OOF, (6.6) 
Cl = - 2at 

where F=O(~p 3) near the boundary, and the estimate can be differentiated. Define 

N,={q0<-e}, for e small and positive. By (6.6) and Stokes's theorem, there is a 

compactly supported closed two-form 61 on N,, for e sufficiently small; such that 

f% c]2= l e~2+ ~ ( 3i ]2010g(--1/Cp) A OOlog(--1/q~)+O(e). 
JU, JaU~ \ 2~r / 

(6.7) 

(Note that this equation also holds true if cl is the first Chern form of the complete 

Einstein-K~ihler metric on N, if N admits such a metric, by the results of [CY] and 

[LM].) The first term on the right is a topological invariant of the situation: ~1 is a lifting 

of cl to H2(N, aN; R), and the integral is independent of this lifting and the e. We are 

now in a position to state the main theorem of this section. 

THEOREM 6.1. With notation as above, we have 

1 2 1 fNc2-yc, = x(N)--y fNe/ (6.8) 

where it(aN)=the secondary class as in (5.17) above. 

To prove Theorem 6.1, we will express the left-hand integral in (6.8) as the 

fN l C 2  lim c 2- 
e---~0 t T 1 " 

Equation (6.7) shows us how to begin treating the Cl 2 portion of the integral. Next let us 

consider c2. 

Let ~ be a Morse function on N which agrees with our function q~ in a neighbor- 

hood of aN, and let X be the vector field on N of type (1,0) given by the (1,0)-part of 

the gradient of q0 with respect to the metric g on N. X has a finite number of isolated, 

non-degenerate zeroes, none of them on the boundary aN. Let N,,a denote the 

manifold N, above with a smooth ball of radius 6 removed about each zero of X. On 

N,,a we can split the holomorphic tangent bundle smoothly into the subbundle r 
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spanned by X, and the subbundle v normal to r. Over N,,6, therefore, we have two 

connections on the bundle of  holomorphic tangents, Tl'~ viz., the original connec- 

tion V ~ associated to the Hermitian metric g, and the connection V ~ given as the direct 

sum of the connections induced by V ~ on r and v. We can calculate a relative 

transgression Tc2(V ~ ~7 I) on N~, 6 such that 

C2(V~ I) = dTc2(V O, Vl). (6.9) 

Furthermore, since V ~ splits along r and v, we have 

C2(V l) = Cl(T ) A Cl(F ). (6.1 O) 

Finally, since we have an explicit section X of r, we can construct an explicit transgres- 

sion one-form Tcl(r) such that 

c ] ( O  = d T c l ( T )  (6 .11)  

on Nr,,. Putting (6.9--6.11) together, we have 

fNc2=f~ c 2 ( V ~  Q(V ~ 

= z(N~)+ / Tc~(V ~ V1)+TQ(r) A cl(v), 
.I ON e 

(6.12) 

Putting (6.7) together with (6.12), we see that the proof of Theorem 6.1 reduces to 

showing 

/~(aN)=l im f B, (6.13) 
~-,0 JaN~ 

(6.14) 

where the integrand B is given by 

, , 1 [ 3i \2 
B = Tc2(V ~ V1)+ Tcl(r ) A Qtv)----~ ~--2-~ a log(--1/99) ^ aa  log(-l/q)), 

restricted to an t .  To prove (6.13), we prove that the apparent pole singularities in B 

cancel, and that B converges smoothly to an integrand for the invariant/~(aN) calculat- 

ed in [BE]. 

To evaluate/KaN),  we will use the pseudohermitian form of the invariant given in 

[BE]. We will use the pseudohermitian structure on aN given (notation as in w 3 above 

5-908288 Acta Mathematica 164, Imprim~ le 23 f~vrier 1990 
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and [BE]) by the defining function q0. It will be particularly convenient to carry out our 

computations in a unimodular coordinate system z 1, z 2. We set 

0 = i0q0, (6.15) 

and 

01 = ~ l d z 2 - ~ 2 d z 1  , ( 6 .16 )  

where the ~; are as in (2.5), while the connection form is given by 

O11 = -2 i rO ,  (6.17) 

where r is as in (2.6). The reader may check that the form 01 is not necessarily well- 

defined independently of the unimodular coordinate system chosen, but changes only 

by multiplication by a unimodular complex constant factor under change of such 

coordinates. This is because our topological assumptions on ON only imply that some 

tensor multiple of TI '~  is trivial. The connection form is well-defined, however, and 

as is remarked in [BE], Remark l, p. 339, this is sufficient for defining the invariant 

#(aN), and particularly the formula in Remark 1, p. 339 of [BE] remains valid in this 

context. Calculating the pseudohermitian invariants of this reduction, we find the CR 

curvature is given by 

R = 2r, (6.18) 

while the torsion is given by 

rl = i(~1~2_~2~1). (6.19) 

We remark that these formulas are of peculiarly low order in the derivatives of q~, but 

this is because q~ satisfies the Monge-AmpSre equation at the boundary. Finally, we 

evaluate t~(ON) via the formula on p. 339 of [BE] cited above: 

/~(0N) = 8J~ f ~  JaN---~-2id01~^ Ol ~ + I RO A dOll--2O A Tt A ~ i . (6.20) 

Call the integrand of the right hand side of (6.20) Tcz(:r as in [BE]. The proof of 

Theorem 6.1 consists of showing that the integrand B of (6.14) above extends continu- 

ously to the boundary, where it agrees with Tcz(ar). 
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In order to simplify matters a little bit, we consider a unimodular coordinate 

system for N' at a point p=zo in aN which has been arranged so that 

~91~(Z0) = (p2|(Z0) ~- 0, ~92(Z0) -~ ~2(Z0) = 0. (6.21) 

Let us call such a coordinate system normalized at z0. Substituting (6.15-6.19) into 

(6.20) proves the following: 

LENMA 6.1. At the origin Zo of  normalized coordinates, one has 

Tcz(~r) = - ~ rZ[l -(1/A)Zlcp~ cp,~-q)~i q)~l 2] (&P-g~) ^ Ogq). 

Next we must describe the computation of the integrand B. This naturally breaks 

up into three components, as in (6.14). The third term of (6,14) restricted to the surface 

{qv=-e} is given by 

3 (lhp/) (0q)-0q)) ^ 0gq0. (6.22) 
8a 

It remains to evaluate the other two terms of B. Let us begin with Tc2(W, ~71). 
Define the difference form A, a section of End(T1'~174 l'~ in a neighborhood of ON, 
by V~ and set Vt=V~ Let f2t be the curvature of V t. The relative transgres- 

sion is calculated using 

C2(~71)--C2(V O) = ! l l d  [tr(f~t)Z_tr(f~)] dt 
L dt 

= d{~-~ tr(A" fl0) }, 

and we take 

1 
Tc2(V ~ V 1) = - ~ tr(A. f~0). (6.23) 

This calculation relies on the Bianchi identity and the fact that tr(A)=tr(A3)-0, since 

the operator A is purely "off-diagonal" when TL~ is split into r|  

Let us indicate how to begin making the difference form explicit. In a unimodular 

coordinate system, define the vector field Z of type (1,0) by the formula 

0 0 
Z = qh-~z z -q)20Z 1. (6.24) 
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Again Z is well-defined modulo multiplication by a constant unimodular factor. The 

fields X and Z are orthogonal to one another in the metric (6.3) and give a local framing 

for TI'~ in terms of which A can be characterized by 

A(X) = (1/(Z, Z)) (V~ Z)Z ,  
(6.25) 

A(Z) = (1/(X, X)) (V~ X)X.  

Here the inner product is with respect to (6.3). 

Finally, we can calculate the term Tc~(r)AC~(V) as follows. The field X is a section 

of r, so we can write c~(r)=(//2:r) da, where a is the connection form on r in the f lame 

given by X, namely 

i 
a = (I / (X,X))(V~ Tcl(r) = 2~r a. (6.26) 

The term c~(v) can be calculated similarly in terms of  Z. It is, however, more useful to 

calculate it as 

i 
Cl(l) ) = CI(~70)--CI('10 = ~ [ - 3 a a l o g ( -  1/q~)+da]+aaO(q~3), (6.27) 

where the estimate can be differentiated. Note that it follows from (2.5) that a is O(q0 -l) 

near aN. Thus, along aN~, i.e., along the surface {q0=-e}, one has 

1 
Tcl(r) A CI(V) = - -~ -~a  A [--30alog(--1/cp)+da]+O(e). (6.28) 

For the rest of the proof of Theorem 6. l ,  one substitutes (6.22), (6.23) and (6.28) 

into B. One uses (2.17-2.18) to make V ~ explicit. One calculates B restricted to aN, at a 

point z,. It is useful to make this evaluation in a coordinate system normalized as in 

(6.21) above. One can thus calculate that the apparent "po les"  cancel. In order to 

complete the comparison of the limit of B restricted to aN, with the expression for 

/~C2(~) given in Lemma 6.1, one must recall that the defining function q0 is a third order 

solution of the Monge-Amp~re equation along aN, and use the consequent identities 

among the derivatives of  q0 at z0. These calculations are tedious, but elementary, and 

are omitted. This completes the proof of  Theorem 6.1. 

We conclude with a reexamination of the examples of the invariant I~(aN) comput- 

ed in w 4.3 of [BE] in light of  Theorem 6.1. These examples were given as follows: Let  Z 

be a compact Riemann surface and ds 2 a conformal metric on Z whose Gauss curvature 

K is nowhere vanishing on X, and let M be the unit circle bundle with respect to d s  2 
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inside the bundle Tl'~ M is a s.ap.c. CR-manifold, and its invariant is calculated (cf. 

equation (4.6) of [BE]) to be 

_ L~(5~) I + 1 f [A(loglKi)]2 aArea (6.29) 
= 4 24~ 9~ IK[ 

In comparing this formula with (6.8) above, care must be taken in choosing the 

appropriate N. If the genus of E is ~>2, we take N to be the unit disk bundle in T~'~ 

with aN=M. If the genus of Z is 0, we must take N to be the vectors in TI"~ of length 

>11, compactified by adding the "section at infinity" of T~'~ (These choices are 

dictated so that N is to the s.V.c, side of M. The case of Z of genus one does not occur.) 

Near aN there is a canonical non-vanishing holomorphic two-form, the symplectic form 

normally viewed on A~'~ so that N verifies all the hypotheses of the discussion 

around (6.8). 

In order to have a wider class of examples, let us simultaneously consider the 

cyclic covers and quotients of the N just described, corresponding to taking roots and 

powers of the tangent bundle Tl'~ In the resultant line bundle of degree d over �9 we 

denote by N(d) the manifold of vectors of length ~< 1 or >I 1 (compactified), according to 

the pseudoconvexity requirements described above. The canonical two-form on 

aNcTl'~ suffices to show that all N(d) verify the assumptions of Theorem 6.1. 

Let us first assume that the genus g of Z is I>2. Then N(1-g) is the unit disk bundle 

in a square root of the tangent bundle of Z. Let us assume at first that Z is equipped 

with a metric of constant sectional curvature. There is a representation of the funda- 

mental group of Y~ into SU(1, 1) sending ~ in ~q(Z) to 

(a 
such that N(1-g)  is the quotient of the ball B 2 by the action of ~rl given by 

y" (z, w) = (az+b/cz+d, w/cz+d). 

In particular, N(1-g)  has a complete K/ihler metric of constant negative holomorphic 

sectional curvature. By (6.29), 
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the last integral being zero when Y. is of constant curvature. The canonical divisor of 

N(1-g)  is readily calculated to be -3E ,  so that by Poincar6 duality, we have 

fN(l-g) ~12 = (3E)2 = 9Z(E)"  

Here the self-intersection of X is computed in N(1 -g) .  Since z(N(d))=X(X), independ- 

ent of d, we get that the "topological terms" in (6.8) and (6.30) cancel, and for X with 

arbitrary metric with K nowhere zero one has 

fv l f~  dA ,_e) c2-1c12= 1-i~ [Al~ [K[" (6.31) 

On the other hand, if we compare (6.8) with (6.29) for N(2-2g),  using the fact that the 

canonical divisor is - 2 ~  and (z )z=2-2g  on N(2-2g) ,  we get 

fv  1 2_ f~ ,2_2g)c2--3 -c' - -  ]2 Z(E)+ 2-~-~ [AloglKI] 2dAIK I . (6.32) 

The topological term on the right is always >0, and represents an obstruction to 

extending the constant holomorphic sectional curvature metric inherited near 

aN(2-2g) from N(1-g )  to all of N(2-2g) .  It is interesting to note that, if the original 

metric on X were of contant curvature, then the Hermitian metric on N(2-2g)  in which 

we compute the left hand side of (6.32) could be taken to be the quotient metric (of 

constant holomorphic sectional curvature) from N(1-g)  outside an arbitrarily small 

neighborhood of XcN(2-2g) .  In fact the value -~X(Z)  can be computed, as a limit of 

regularizations, as the value of 

N(2-2g) C2-- - ~  C12 

for the singular quotient metric. It is interesting to speculate whether this number may 

be defined as a local invariant of the embedding of X in N(2-2g);  a priori, although the 

integral can be localized along Y., the metrics used appear to depend on a global 

boundary condition (viz., that they agree with the constant holomorphic sectional 

curvature metric away from X). This would be interesting in connection with deciding 

which 2-dimensional compact s.~p.c, manifolds with boundary could be covered by the 

ball B 2. We do not pursue this here, but point out that a similar analysis can be made in 

the case of X of genus 0 as well. 
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