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0. Introduction 

We always wanted to know whether  the group of  real analytic diffeomorphisms of a real 

analytic manifold is itself a real analytic manifold in some sense. The paper  [16] 

contains the theorem,  that this group for  a compac t  real analytic manifold is a smooth  

Lie group modelled on locally convex vector  spaces.  (The proof,  however, contains a 

gap, which goes back  to Smale in [1]: in canonical charts,  no partial mapping of  the 

composi t ion is linear off  0.) The construct ion there relies on ad hoc descriptions of  the 

topology on the space of  real analytic functions.  Also the literature dealing with the 

duals of  these spaces like [9] does not really try to describe the topologies on spaces of  

real analytic functions.  There  are, however, some older papers  on this subject, see [29], 

[25], [26], [27], [31], [12] and [8]. 

For  some other  instances where  real analytic mappings in infinite dimensions make  

their appearance ,  see the survey article [28]. 

In this article, we present  a careful s tudy of  real analytic mappings in infinite (and 

finite) dimensions combined with a thorough t reatment  of  locally convex topologies on 
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spaces of real analytic functions. From the beginning our aim is Cartesian closedness: a 

mapping f: E• should be real analytic if and only if the canonically associated 

mapping f." E~C~ G) is it. Very simple examples, see 1.1, show that real analytic in 

the sense of having a locally converging Taylor series is too restrictive. 

The right notion turns out to be scalarwise real analytic: A curve in a locally 

convex space is called (scalarwise) real analytic if and only if composed with each 

continuous linear functional it gives a real analytic function. Later we show, that the 

space of real analytic curves does not depend on the topology, only on the bornology 

described by the dual. 

A mapping will be called real analytic if it maps smooth curves to smooth curves 

and real analytic curves to real analytic curves. This definition is in spirit very near to 

the original ideas of variational calculus and it leads to a simple and powerful theory. 

We will show the surprising result, that under some mild completeness conditions (i.e. 

for convenient vector spaces), the second condition can be replaced by: the mapping 

should be real analytic along affine lines, see 2.7. This is a version of Hartogs' theorem, 

which for Banach spaces is due to [2]. 

It is a very satisfying result, that the right realm of spaces of real analytic analysis 

is the category of convenient vector spaces, which is also the good setting in infinite 

dimensions for smooth analysis, see [5], and for holomorphic analysis, see [15]. 

The power of the Cartesian closed calculus for real analytic mappings developed 

here is seen in [21], where it is used to construct, for any unitary representation of any 

Lie group, a real analytic moment mapping from the space of analytic vectors into the 

dual of the Lie algebra. 

We do not give any hard implicit function theorem in this paper, because our 

setting is too weak to obtain one--but we do not think that this is a disadvantage. Let us 

make a programmatic statement here: 

An eminent mathematician once said, that for infinite dimensional calculus each 

serious application needs its own foundation. By a serious application one obviously 

means some application of a hard inverse function theorem. These theorems can be 

proved, if by assuming enough a priori estimates one creates enough Banach space 

situation for some modified iteration procedure to converge. Many authors try to build 

their platonic idea of an a priori estimate into their differential calculus. We think that 

this makes the calculus inapplicable and hides the origin of the a priori estimates. We 

believe, that the calculus itself should be as easy to use as possible, and that all further 

assumptions (which most often come from ellipticity of some nonlinear partial differen- 

tial equation of geometric origin) should be treated separately, in a setting depending on 



THE CONVENIENT SETTING FOR R E A L  ANALYTIC M A P P I N G S  107 

the specific problem. We are sure that in this sense the setting presented here (and the 

setting in [5]) is universally usable for most applications. 

The later parts of this paper are devoted to the study of manifolds of real analytic 

mappings. We show indeed, that the set of real analytic mappings from a compact 

manifold to another one is a real analytic manifold, that composition is real analytic and 

that the group of real analytic diffeomorphisms is a real analytic Lie group. The 

exponential mapping of it (integration of vector fields) is real analytic, but as in the 

smooth case it is still not surjective on any neighborhood of the identity. We would like 

to stress the fact that the group of smooth diffeomorphisms of a manifold is a smooth 

but not a real analytic Lie group. We also show that the space of smooth mappings 

between real analytic manifolds is a real analytic manifold, but the composition is only 

smooth. 

Throughout this paper our basic guiding line is the Cartesian -'osed calculus for 

smooth mappings as exposed in [5]. The reader is assumed to be familiar with at least 

the rudiments of it; but section 1 contains a short summary of the essential parts. 

We want to thank Janusz Grabowski for hints and discussions. This should have 

been a joint work with him, but distance prevented it. 

1. Real analytic curves 

1.1. As for smoothness and holomorphy we would like to obtain Cartesian closedness 

for real analytic mappings. Thus one should have at least the following: 

f: R2-->R is real analytic in the classical sense if and only if f v: R-->C~ R) is real 

analytic in some appropriate sense. 

The following example shows that there are some subtleties involved. 

EXAMPLE. The mapping 

f:R23(s,t)~__> 1 ER 
(st) z + 1 

is real analytic, whereas there is no reasonable topology on C~ R), such that the 

mapping fV : R--~C~ R) is locally given by its convergent Taylor series. 

Proof. For a topology on C~ to be reasonable we require only that all 

evaluations evt:C~ are bounded linear functionals. Now suppose that 

fV(s)=X~=ofkSk converges in C~ R) for small t, where fkE C~ R). Then the series 

converges even bornologically, see 1.7, sof(s, t)=evt(fV(s))=Efk(t)s k for all t and small 
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s. On the other  hand f(s,t)=Ek~=O(--1)k(st) 2~ for N<l/[t]. So for all t we have 

fk(t)=(-1)mt k for k=2m, and 0 otherwise,  since for fixed t we have a real analytic 

function in one variable. Moreover,  the series (r.fkz k) ( t ) = E ( - l )  k tZkz2k has to converge 

in U~ R) |  for Izl~6 and all t, see 1.7. This is not the case: use z=X/-L-] 6, t=l/6. [] 

1.2. There is, however, another  notion of  real analytic curves. 

Example. Lety2 R--*R be a real analytic function with finite radius of  convergence 

at 0. Now consider the curve c :R- - ,R  TM defined by c(t):=(f(k.t))ke N. Clearly the 

composite of  c with any continuous linear functional is real analytic, since these 

functionals depend only on finitely many coordinates.  But the Taylor series of  c at 0 has 

radius of convergence 0, since the radii of  the coordinate functions go to 0. For  an even 

more natural example see 5.2. 

The natural setting for this notion of real analyticity is that of  dual pairs: 

Definition (Real analytic curves). Let  a dual pair (E, E') be a real vector  space E 

with prescribed point separating dual E ' .  A curve c: R ~ E  is called real analytic if 

2oc :  R-+R is real analytic for  all 2 EE ' .  

A subset B~_E is called bounded if 2(B) is bounded in R for all 2 C E ' .  The set of  

bounded subset of  E will be called the bornology of  E (generated by E ' ) .  

The dual pair (E, E ' )  is called complete if the bornology on E is complete,  i.e. for 

every bounded set B there exists a bounded absolutely convex set A~_B such that the 

normed space Ea generated by A, see [10], 8.3 or [5], 2.1.15, is complete.  

Let  r be a topology on E, which is compatible with the bornology generated by E ' ,  

i.e. has as von Neumann bornology exactly this bornology. Then a curve c: R--*(E, r) 

will be called topologically real analytic if it is locally given by a power series 

converging with respect  to r. 

A curve c: R---~E will be called bornologically real analytic if it factors locally over 

a topologically real analytic curve into EB for some bounded absolutely convex set 

B~_E. 

1.3. Review of the smooth and holomorphic setting. We will make use of  the 

Cartesian closedness of  smooth maps between convenient  vector spaces [14] and that of  

holomorphic maps between such spaces [15]. Let  us recall some facts from those 

theories. 

First the smooth theory,  where we refer to [5]. Separated preconvenient vector 
spaces can be defined as those dual pairs (E, E ' )  for which E '  consists exactly of  the 

linear functionals which are bounded with respect  to the bornology on E generated by 
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E'.  To each dual pair (E, E'3 one can naturally associate a preconvenient vector space 

(E, Eb), where E b denotes the space of linear functionals which are bounded for the 

bornology generated by E' .  The space (E, E b) is the dual pair with the finest structure, 

which has as underlying space E and which has the same bornology. On every dual pair 

there is a natural locally convex topology, namely the Mackey topology associated with 

E',  The associated bornological topology given by the absolutely convex bornivorous 

subsets of E is the natural topology of (E, Eb). A curve c: R-->E is called smooth if 

2oc: R-->R is smooth for each 2 EE' .  If (E, E') is complete and r is any topology on E 

that is compatible with the bornology, then c is smooth if and only if c has derivatives of 

arbitrary order with respect to z or, equivalently, for every k the curve c factors locally 

as a Lipk-mapping over EB for some bounded absolutely convex set B~_E. 

A convenient vector space or convenient dual pair is a separated preconvenient 

vector space (E, E'), which is complete, so that E'=E b and the natural topology is 

bornological. Since the completeness condition depends only on the bornology, (E, E') 

is complete if and only if (E, E b) is convenient. 

A set U~E is called c~-open if the inverse image c-1(U)~_R is open for every 

smooth curve c or, equivalently, the intersection UB:=UnEB is open in the normed 

space EB for every bounded absolutely convex set BcE. If E is a metrizable or a Silva 

locally convex space and E'  its topological dual then its topology coincides with the c a- 

topology. 

A mapping f." U-->F into another dual pair (F, F ' )  is called smooth (or C ~) i f fo c is a 

smooth curve for every smooth curve c having values in U. For Banach or even Fr6chet 

spaces this notion coincides with the classically considered notions. The space of 

smooth mappings from U to F will be denoted by C~ F). On C=(R, R) we consider 

the Fr6chet topology of uniform convergence on compact subsets of all derivatives 

separately. On C~(U, F) one considers the dual induced by the family of mappings 

C~(c, 2): C~ F)--~C~ R) for c E C~ U) and 2 E F ' .  This makes C~(U, F) into a 

complete dual pair provided F is complete, and so one can pass to the associated 

convenient vector space. If E and F are finite dimensional the bornological topology of 

C=(U, F) is the usual topology of uniform convergence on compact subsets of U of all 

derivatives separately. For this space the following exponential law is valid: For every 

c=-open set V of a convenient vector space a mapping f: V• U-->F is smooth if and only 

if the associated mapping f." V--~C=(U, F) is a well defined smooth map. 

Now the holomorphic theory developed in [15]. Let D denote the open unit disk 

{zEC: [z[<l} in C. For a complex dual pair (E,E') a map c:D--~E is called a holo- 

morphic curve if 2oc:D---~C is a holomorphic function for every 2EE ' .  If (E,E') is 
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complete and r is any topology on E that is compatible with the bornology, then c is 

holomorphic if and only if c is complex differentiable with respect to r or, equivalently, 

the mapping c factors locally as a holomorphic curve over EB for some bounded 

absolutely convex set B ~ E .  A mapping f: E~_ U---~F between complete complex dual 

pairs is called holomorphic i f f o  c: D---~F is a holomorphic curve for every holomorphic 

curve c having values in U. This is true if and only if it is a smooth mapping for the 

associated real vector spaces and the derivative at every point in U is C-linear. For  

Banach or even Frrchet  spaces this notion coincides with classically considered 

notions. Let  ~f(U, F)  denote the vector space o fholomorphic  maps  from U to F. Then 

Yf(U, F)  is a closed subspace of C=(U, F),  s ince f~ , f ' ( x )  (v) is continuous on the latter 

space. So one equips ~ (U ,  F)  with the convenient vector space structure induced from 

C=(U, F). If E is finite dimensional, then the bornological topology on Yf(U, F)  is the 

topology of uniform convergence on compact subsets of  U, see 3.2. For  this space one 

has again an exponential law: For every c=-open subset V of a complex convenient 

vector space a mapping 3q V• U ~ F  is holomorphic if and only if the associated 

mapping f." V---~ Yf(U, F)  is a well defined holomorphic map. This is a slight generaliza- 

tion of [15], 2.14, with the same proof as given there. 

1.4. LEMMA. For a formal  power series Ek~ o a k t k with real coefficients the follow- 

ing conditions are equivalent. 

(1) The series has positive radius o f  convergence. 

(2) Y, ak rk converges absolutely fo r  all sequences (rk) with rk tk---~O for  all t>0.  

(3) The sequence (akrk) is bounded for  all (rk) with rktk---~O for  all t>0. 

(4) For each sequence (rk) satisfying rk>O, rkrt~rk+ t and rktk---~O for  all t>0  there 

exists an e>0 such that (akrke ~) is bounded. 

This bornological description of  real analytic curves will be rather important for 

the theory presented here, since condition (3) and (4) are linear conditions on the 

coefficients of a formal power series enforcing local convergence. 

Proof. (1)=>(2). ~ ak r~ = E(a k t k) (r k t -~) converges absolutely for some small t. 

(2)=>(3)=>(4) is clear. 

(4)=>(1). If the series has radius of convergence 0, then we have E k lak] (I/n2) k= ~ for 

all n. There are kn/~ ~ with 

k=kn_ I 
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We put rk: =(l/n) k for kn_l<<-k<k,, then E k [a~[ rk(1/n) ~= o~ for all n, so ((a k rk(1/2n)~)k is not 

bounded for any n, but rk tk, which equals (t/n) ~ for kn_~<~k<kn, converges to 0 for all 

t>0, and the sequence (rk) is subadditive as required. [] 

1.5. T~EOREM (Description of real analytic curves). Let  (E, E ' )  be a complete dual 

pair. A curve c: R--)E is real analytic i f  and only i f  c is smooth, and for  each sequence 

(rk) with rktk---~O for  all t>0,  and each compact  set K in R, the set 

{ l c ( k ) ( a ) r k : a E K ,  kEN} 

is bounded, or equivalently the set corresponding to 1.4 (4) is bounded. 

Proof. Since both conditions can be tested by applying 2 E E '  and we have 

(2 o c)(k)(a)=2(c(k)(a)) we may assume that E=R.  

(=~). Clearly c is smooth. 

Claim. There exist M, 0>0 with I(1/k!)c(k)(a)l<Mo k for all kEN and a E K. 

This will give that [(l/k!)c(k)(a)r k ekl<.Mrk(eo) k which is bounded since rk(eo)k---~O, as 

required. 

To show the claim we argue as follows. Since the Taylor series of c converges at a 

there are constants Ma, Q, satisfying the claimed inequality for fixed a. An elementary 

computation shows that for a '  with [a-a'l<.l/2Q~ we have 

c(k~(a')] k 1 Ok[ 1 
k <~MaOa-~'--~ t=V2 1 - t '  

hence the condition is satisfied for all those a '  with some new constants M'~,O;. Since 

K is compact the claim follows. 

(~) .  Let  

a k := sup -~, c(k)(a) . 
aEK K !  

Using 1.4 (4=*-) these are the coefficients of a power series with positive radius 0 of 

convergence. Hence the remainder of the Taylor series goes locally to zero. [] 

Although topological real analyticity is a strictly stronger than real analyticity, cf. 

1.2, sometimes the converse is true as the following slight generalization of [2], Lemma 

7.1, shows. 

1.6. THEOREM. Let  (E, E ' )  be a complete dual pair and assume that a Baire vector 

space topology on E '  exists for  which the point  evaluations eVx for  x E E are continu- 
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ous. Then any real analytic curve c: R---~E is locally given by its Mackey convergent 

Taylor series, and hence is bornologically real analytic and topologically real analytic 

for every locally convex topology compatible with the bornology. 

Proof. Since c is real analytic, it is smooth and all derivatives exist in E, since 

(E, E ' )  is complete,  by 1.3. 

Let  us fix t0ER, let an:=(1/n!)c(n)(to). It suffices to find some r>0  for which 

{r"an: n E No} is bounded;  because then E t~an is Mackey-convergent  for  Itl<r, and its 

limit is C(to+t) since we can test this with functionals. 

Consider the sets At:={2 CE ' :  [2(an)[~<r ~ for all n EN).  These Ar are closed in the 

Baire topology, since the point evaluations at an are continuous. Since c is real analytic, 

Ur>oAr=E ', and by the Baire property there is an r>0  such that the interior U of  A~ is 

not empty. Le t  )t0 C U, then for all 2 in the open neighborhood U-20  of 0 we have 

[2(a,)t~<[(2+20) (an)[+[20(a,)[~<2r ~. The set U-20  is absorbing, thus for every 2 C E '  some 

multiple e2 is in U-)t0 and so 2(an)<~(2/e)r" as required. [] 

1.7. LEMMA. Let  (E, E')  be a complete dual pair, r a topology on E compatible 

with the bornology induced by E' ,  and let c: R--)E be a curve. Then the following 

conditions are equivalent. 

(1) The curve c is topologically real analytic. 

(2) The curve c is bornologically real analytic. 

(3) The curve c extends to a holomorphic curve from some open neighborhood U 

of  R in C into the complexification (Ec, E~:). 

Proof. (1)~(3).  For  every tCR  one has for some (3>0 and all Is[<6 a converging 

power series representat ion c(t + s) = E;=o Xk sk" For any complex number z with [z[<6 the 

series converges in (Ec, E~), hence c can be locally extended to a holomorphic curve 

into Ec. By the 1-dimensional uniqueness theorem for holomorphic maps, these local 

extensions fit together to give a holomorphic extension as required. 

(3)=~(2). A holomorphic curve factors locally over (Ec)B, where B can be chosen of 

the form B • ~ B. Hence  the restriction of this factorization to R is real analytic into 

Es. 
(2)=~(I). Let  c be bornologically real analytic, i.e. c is locally real analytic into 

some EB, which we may assume to be complete.  Hence c is locally even topologically 

real analytic in Es by 1.6 and so also in E. [] 

1.8. LEMMA. Let  E be a regular (i.e. every bounded set is contained and bounded 

in some step Ea) inductive limit o f  complex locally convex spaces Ea~_E, let c: C~_ U--,E 
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be a holomorphic mapping, and let W~C be open and such that the closure I/V is 

compact and contained in U. Then there exists some a, such that c IW: W-->E~ is well 

defined and holomorphic. 

Proof. Since W is relatively compact, c(W) is bounded in E. It suffices to show that 

for the absolutely convex closed hull B of c(W) the Taylor series of c at each z E W 

converges in EB, i.e. that c[W: W~EB is holomorphic. This follows from the 

Vector valued Cauchy inequalities. If r>0 is smaller than the radius of conver- 

gence at z of c then 

rk (k) ~.c (z)~B 

where B is the closed absolutely convex hull of {c(w): [w-zl=r}. (By the Hahn-Banach 

theorem this follows directly from the scalar valued case.) 

Thus we get 

and so 

2 ( w - z ] k  r k k=. ( Wr_.__f__Z ) k 
k=~ \ - - 7 - - /  "~. dk)(z) ~ 2 .B 

dk)(z). ,k 
k ~ t w - - z )  

is convergent in EB for Iw-zi<r. Since B is contained and bounded in some Ea one has 

clW: W--->EB=(Ea)B--->E~ holomorphic. [] 

This proof also shows that holomorphic curves with values in complex convenient 

vector spaces are topologically and bornologically holomorphic (compare with 1.3). 

1.9. THEOREM (Linear real analytic mappings). Let (E, E') be a complete dual 

pair. For any linear functional 2: E---->R the following assertions are equivalent. 

(1)). is bounded. 

(2)), o c E C~(R, R) for each real analytic c: R--->E. 

This will be generalized in 2.7 to non-linear mappings. 

Proof. ( ~ ). Let 2 satisfy (2) and suppose that there is a bounded sequence (xk) such 

that 2(Xk) is unbounded. By passing to a subsequence we may suppose that I;t(xOl>k 2k. 
Let ak:=k-kXk, then (rkak) is bounded and (rk2(ak)) is unbounded for all r>0. Hence the 

8-908282 Acta Mathematica 165. Imprim6 le 22 aot~t 1990 
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curve c(t):=Ek~ 0 tka~ is given by a Mackey convergent power series. So 2o c is real 

analytic and near 0 we have 2(c(t))=Ek~=obkt k for some bkER. But 

2(c(t))= Z 2(ak) tk+tu2 a k t k-N 
k=0 \ k > N  

and t~--~k>Na k t k-N is still a Mackey converging power series in E. Comparing coeffi- 

cients we see that bk=2(ak) and consequently 2(ak)r k is bounded for some r>0, a 

contradiction. 

( ~ ). Let c: R--~E be real analytic. By Theorem 1.5 the set 

{(I/k!) c(~)(a) rk: a fi K, k E N} 

is bounded for all compact sets K c R  and for all sequences (rk) with rktk~0 for all t>0. 

Since c is smooth and bounded linear mappings are smooth ([5], 2.4.4), the function 

2oc is smooth and (2oc)(k)(a)=2(c~k)(a)). By applying 1.5 we obtain that 2oc is real 

analytic. [] 

1.10. LEMMA. Let  (E, E l) and (E, E 2) be two complete dual pairs with the same 

underlying vector space E. Then the following statements are equivalent: 

(1) They have the same bounded sets. 

(2) They have the same smooth curves. 

(3) They have the same real analytic curves. 

Proof. (1)r This was shown in [14]. 

(1)=,-(3). This follows from 1.5, which shows that real analyticity is a bornological 

concept. 

(1)~(3). This follows from 1.9. [] 

1.11. LEMMA. I f  a cone o f  linear maps Ta: (E, E')---~(Ea, E ' )  between complete 

dual pairs generates the bornology on E, then a curve c: R---~E is C ~ resp. C ~ provided 

all the composites T~ oc: R---~Ea are. 

Proof. The statement on the smooth curves is shown in [5]. That on the real 

analytic curves follows again from the bornological condition of 1.5. [] 

2. Real analytic mappings 

Parts o f  2.1 to 2.5 can be found in [2]. For  x in any vector space E let x k denote  the 

e lement (x . . . . .  x) E E k. 



THE CONVENIENT SETTING FOR R E A L  ANALYTIC M A P P I N G S  I15 

2.1. LEMMA (Polarization formulas). Let f: E x  ... x E - ~ F  be a k-linear symmetric 

mapping between vector spaces�9 Then we have: 

(( ;) ( - 1 ) k - ~ f  X o + ~ x j  �9 
( 1 )  f(xl  . . . . .  Xk)  = ~ E 1 . . . . .  =0 

(2) f ( x  k) = ~.~ ._~ ( -1 )  k-j f((a+jx)k). 

k 

(3) f(xk) = ~-T =~ ~ ( - -1 ) k - j ( k l f ( ( a+Jx ' ] k '~  
�9 j ~  \ \  k ] ]" 

1 

(4) f(x~+2x',, 0 1 " ' X k - b ~ L X k )  E ~ E e j r ,  e I e l . .  = A J - t X l  , . . . , X k  ) ,  

e I, ..., ek=O 

Formula (4) will mainly be used for ; t=X/-~  in the passage to the complexifica- 

tion. 

Proof. (1) (see [17]). By multilinearity and symmetry the right hand side expands to 

Z  j0, ,jk/x ) ~ : | ,  0 . . . . .  x0 . . . . .  xk . . . . .  xk , 
j~+...+j~=k 0 .... k" \ ~o ' ' Jk 

where the coefficients are given by 

1 

..... E 
El' ""'gk =0 

The only nonzero coefficient is Ao,~ ..... ~= 1. 

(2) In formula (1) we put xo=a and all x y x .  

(3) In formula (2) we replace a by ka and pull k out of  the k-linear expression 

f (  ( ka +jx)k). 

(4) is obvious. [] 

2.2. LEMMA (Power series). Let E be a real or complex Frdchet space and let fk be 

a k-linear symmetric scalar valued bounded functional on E, for each k E N. Then the 

following statements are equivalent: 

(1) E~t~(x #) converges pointwise on an absorbing subset o f  E. 

(2) Ed~(x k) converges uniformly and absolutely on some neighborhood o f  O. 

(3) {ft(xk): kEN,  xE U} is bounded for some neighborhood U o f  zero. 

(4) {f~(xl . . . . .  Xk): kEN,  xjE U} is bounded for some neighborhood U of  O. 



116 A. KRIEGL A N D  P. W .  M I C H O R  

I f  these statements are satisfied over the reals, then also for the complexification of  the 

functionals fk. 

Proof. (1)=>(3). The set ar, r:={xEE: Ifk(xk)[~Kr k for all k} is closed in E since 

every bounded multi linear mapping is continuous. The union t.lr, rAr, r is E, since the 

series converges pointwise on an absorbing subset. Since E is Baire there are K > 0  and 

r>0 such that the interior U of At, r is non void. Let  x0 E U and let V be an absolutely 

convex neighborhood of 0 contained in U-xo. 

From 2.1 (3) we get for all x E V the following estimate: 

<~ ~. 2kKrk <~ K(2re) k. 

Now we replace V by V/2re and get the result. 

(3)=>(4). From 2.1 (1) we get for all xjE U the estimate: 

((z)? . . . . .  xk l s  jxj If(xl 
e i ,  . . . ,  ek=0  

�9 , ,  ..... ,,=o \\ 

el,...,ek=O 

Now we replace U by U/2e and get (4). 

(4)~(2). The series converges on rU uniformly and absolutely for any 0 < r <  1. 

(2)~(1) is clear. 

(4), real case => (4), complex case, by 2.1 (4) for 2=~'-2-f. [] 

2.3. THEOREM (Holomorphic functions on Fr6chet spaces). Let U~_E be open in a 

complex Fr~chet space E. The following statements on f: U--*C are equivalent: 

(1) f is holomorphic along holomorphic curves. 

(2) f is smooth and the derivative df(z): E--+C is C-linear for all zE U. 

(3) f is smooth and is locally given by its pointwise converging Taylor series. 
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(4) f is smooth and is locally given by its uniformly and absolutely converging 

Taylor series. 

(5) f is locally given by a uniformly and absolutely converging power series. 

Proof. (1)=>(2). [15], 2.12. 

(1)=>(3). Let zE U be arbitrary, without loss of generality z=0, and let bn: = 

f(n)(z)/n! be the nth Taylor coefficient o f f  at z. Then bn: E " ~ C  is symmetric, n-linear 

and bounded and the series Z,~0bn(v ..... v) t ~ converges to f(z+tv) for small t. Hence 

the set of those v for which the series E,~ 0//,(v .....  v) converges is absorbing. By 2.2, 

(1)=>(2) it converges on a neighborhood of 0 to f(z+v). 

(3)=>(4) follows from 2.2, (1)=>(2). 

(4)=>(5) is obvious. 

(5)=>(1) is the chain rule for converging power series, which easily can be shown 

using 2.2, (2)=>(4). [] 

2.4. THEOREM (Real analytic functions on Fr6chet spaces). Let U~_E be open in a 

real FrOchet space E. The following statements on f: U---~R are equivalent: 

(1) f is smooth and is real analytic along topologically real analytic curves. 

(2) f is smooth and is real analytic along affine lines. 

(3) f is smooth and is locally given by its pointwise converging Taylor series. 

(4) f is smooth and is locally given by its uniformly and absolutely converging 

Taylor series. 

(5) f is locally given by a uniformly and absolutely converging power series. 

(6) f extends to a holomorphic mapping f: (J---~C for an open subset (J in the 

complexification Ec with On E= U. 

Proof. (1)=>(2) is obvious. 

(2)=>(3). Repeat the proof of 2.3, (1)=>(3). 

(3)=>(4) follows from 2.2, (1)=>(2). 

(4)~(5) is obvious. 

(5)=>(6). Locally we can extend converging power series into the complexification 

by 2.2. Then we take the union 0 of their domains of definition and use uniqueness to 

glue f which is holomorphic by 2.3. 

(6)=>(1). Obviously f is smooth. Any topologically real analytic curve c in E can 

locally be extended to a holomorphic curve in Ec by 1.3. S o f o c  is real analytic. [] 

2.5. The assumptions " f  is smooth" cannot be dropped in 2.4 (1) even in finite 

dimensions, as shown by the following example, due to [3]. 
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EXAMPLE. The mapping f'. R2---~R, defined by 

x y  n+2 

f(x, y) : -  x2+y  2 

is real analytic along real analytic curves, is n times continuous differentiable but is not 

smooth and hence not real analytic. 

Proof. Take a real analytic curve t~(x(t),y(t)) into R 2. The components  can be 

factored as x(t)=t~u(t),y(t)=t%(t) for some k and real analytic curves u,v with 

u(0)2+v(0)24=0. The composite fo(x, y) is then the function 

t~-~ t (n+l)k urn+2 (t), 
H2 + U 2 

which is obviously real analytic near 0. The mapp ingf i s  n times continuous differentia- 

ble, since it is real analytic on R 2 \ { 0 )  and the directional derivatives of order  i are 

(n+ l - i ) -homogeneous ,  hence continuously extendable to R 2. But f cannot be n + l  

times continuous differentiable, otherwise the derivative of order  n+ 1 would be con- 

stant, and hence f would be a polynomial. [] 

2.6. Definition (Real analytic mappings). Let  (E,E') be a dual pair. Let  us denote 

by C~ E)  the space of all real analytic curves. 
Let U~E be c=-open, and let (F, F ' )  be a second dual pair. A mapping f: U---~F will 

be called real analytic or C ~ for short, if f is real analytic along real analytic curves and 

is smooth (i.e. is smooth along smooth curves); so f o  c E C~~ F) for all c E C~(R, E)  

with c(R)~_ U and )co c E C=(R, F )  for all c E C=(R, E) with c(R)~_ U. Le t  us denote by 

C~(U, F) the space of all real analytic mappings from U to F. 

2.7. HARTOGS' THEOREM FOR REAL ANALYTIC MAPPINGS. Let (E, E') and (F, F') 

be complete dual pairs, let U~_E be c~-open, and let f: U-oF. Then f is real analytic if 

and only if f is smooth and 2 o f  is real analytic along each affine line in E, for all 2 E F'. 

Proof. One direction is clear, and by definition 2.6 we may assume that F = R .  

Let  c: R--o U be real analytic. We show that f o  c is real analytic by using Theorem 

1.5. So let (rk) be a sequence such that rkrl~rk+l and rktk~O for all t>0  and let K c R  be 

compact.  We have to show, that there is an e>0  such that the set 

{ l  (foc)(t)(a)rt(2)t: aEK, IEN} 

is bounded. 
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By Theorem 1.5 the set 

{lc("~(a)rn: n~ 1, aEK} 

is contained in some bounded absolutely convex subset Be_E, such that Es is a Banach 

space. Clearly for the inclusion is: EB---~E the function f o  is is smooth and real analytic 

along affine lines. Since Es is a Banach space, by 2.4, (2)=~(4)fo is is locally given by its 

uniformly and absolutely converging Taylor series. Then by 2.2, (2)=>(4) there is an 

e>0 such that the set 

{-~. dkf(c(a))(x~ .... ,xk): kEN, xjEeB, aEK } 

is bounded, so is contained in [ -C,  C] for some C>0. 

The Taylor series o f f o  c at ct is given by 

where 

1 k~ 

l>~o k>~O (m.) E N~ m n  ! 

~'nmn=k 

Znmnn=l 

) X n ~ =  X1,.~_.,,...,Xn,, ""~Xn'. , . . . .  

n --' m t m n 

This follows easily from composing the Taylor series of f and c and ordering by powers 

of t. Furthermore we have 

k~ z 
(m.) e N~ 
~n mn=k 

Enrnn n=l 

by the following argument: It is the/ th  Taylor coefficient at 0 of the function 

t " - I  = = t  k (- t )  J, 
= J 

which turns out to be the binomial coefficient in question. 

By the foregoing considerations we may estimate as follows. 
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1 
i--(l(f~ 

because 

k>.O 

Z N  k! 
(m n) ~- N O Fin m n ! 
~'n mn=k 
~nmnn=l 

(m.)en; llama! 
~nrnn=k 
Znmnn=l 

- - d k f ( c ( a ) ) ( ~ I n  (--~.c(n)(a)) m") rt(-~)' 

- -dk f (c (a ) ) ( l~ In  (--~.c(n)(a)rnen)m" ) ~t 

I - 1 ) c l = l  C 
~ k-1 2 t 2 ' k~O 

k! m. 
(mn)eNr~l-lnmn, l~In(~.C(n)(a)enrn) E (~-_11) (eB) I' 

Zn m n=k 
Enmnn=l 

~_ (E~:. [] 

2.8. COROLLARY. Let (E, E') and (F, F') be complete dual pairs, let U~_E be c ~- 
open, and let f: U--~F. Then f is real analytic if and only if f is smooth and 2 ofo c is real 
analytic for every periodic (topologically) real analytic curve c: R---~ U~_E and all 2 E F ' .  

Proof. By 2.7 f is real analytic if and only if f is smooth and 2 o f  is real analytic 

along topologically real analytic curves c:R---~E. Let h:R---~R be defined by 

h(t)=to+e, sin t. Then c o h: R---~R---~ U is a (topologically) real analytic, periodic func- 

tion with period 2zc, provided c is (topologically) real analytic. If C(to)E U we can 

choose e>0 such that h(R)c_c-l(u). Since sin is locally invertible around 0, real 

analyticity of ;t o fo  c o h implies that 2 o fo  c is real analytic near to. Hence the proof is 
completed. [] 

2.9. COROLLARY (Reduction to Banach spaces). Let (E,E') be a complete dual 
pair, let U~_E be c~-open, and let f." U--,R be a mapping. Then f is real analytic if and 
only if the restriction f'.Es~_UNEs--~R is real analytic for all bounded absolutely 
convex subsets B orE. 

So any result valid on Banach spaces can be translated into a result valid on 
complete dual pairs. 

Proof. By Theorem 2.7 it suffices to check f along bornologically real analytic 

curves. These factor by definition locally to real analytic curves into some Es. [] 
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2.10. COROLLARY. Let U be a c%open subset in a complete dual pair (E,E') and 

let f: U--~R be real analytic. Then for every bounded B there is some rB>0 such that the 

Taylor series 

Y ~ Z ~. dkf(x) (y*) 

converges to f (x  + y) uniformly and absolutely on r~B. 

Proof. Use 2.9 and 2.4 (4). [] 

2.11. Scalar analytic functions on convenient vector spaces E are in general not 

germs of holomorphic functions from Ec to C. 

EXAMPLE. Let fk: R---~R be real analytic functions with radius o f  convergence at 

zero converging to O for k-+o~. Let f'. R(NL--*R be the mapping defined on the countable 

sum R (N) of  the reals by f (x  o, x 1 .... ):=Eke1Xkfk(Xo)" Then f is real analytic, but there is 

no complex valued holomorphic mapping f on some neighborhood o f  0 in C (N) which 

extends f, and the Taylor series o f f  is not pointwise convergent on any c~-open 

neighborhood of  O. 

Proof. Claim. f i s  real analytic. 

Since the limit R(N)=lim R" is regular, every smooth curve (and hence every real 
---~n 

analytic curve) in R (r~) is locally smooth (resp. real analytic) into R" for some n. Hence 

fo  c is locally just a finite sum of smooth (resp. real analytic) functions and is therefore 

smooth (resp. real analytic). 

Claim. f has no holomorphic extension. 

Suppose there exists some holomorphic extension f: U ~ C ,  where U c C (N) is c =- 

open neighborhood of 0, and is therefore open in the locally convex Silva topology by 

[5], 6.1.4 (ii). Then U is even open in the box-topology [10], 4.1.4, i.e. there exist ek>0 

for all k, such that {(zk) E C(N~: IZkl<~ek for all k}c_U. Let U0 be the open disk in C with 

radius e0 and let fk: U0--~C be defined by fk(z):=f(z,O . . . . .  O, ek, O .... )/ek, where 

e k is inserted instead of the variable x~. Obviously fk is an extension of fk, which is 

impossible, since the radius of convergence offk is less than e0 for k sufficiently large. 

Claim. The Taylor series does not converge. 

If the Taylor series would be pointwise convergent on some U, then the previous 

arguments would show that the radii of convergence of thefk were bounded from below. 
[] 
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3. Function spaces in finite dimensions 

3.1 Spaces of  holomorphic functions. For a complex manifold N (always assumed to be 

separable) let Yg(N, C) be the space o f  all holomorphic functions on N with the 

topology of uniform convergence on compact subsets of N. 

Let Y(b(N, C) denote the Banach space of bounded holomorphic functions on N 

equipped with the supremum norm. 

For any open subset W of N let Y(bc(W___N, C) be the closed subspace of Ygb(W, C) 

of all holomorphic functions on W which extend to continuous functions on the closure 

For a poly-radius r=(rl ..... rn) with ri>O and for l~<p~<oo let l~ denote the real 

Banach space {x E RN~ II(xa ra)=~N, Ilo<~ }. 

3.2 THEOREM (Structure of Y((N,C) for complex manifolds N). The space 

Y((N, C) of  all holomorphic functions on N with the topology of  uniform convergence 

on compact subsets o f  N is a (strongly) nuclear Frkchet space and embeds as a closed 

subspace into C=(N, R) 2. 

Proof. By taking a countable covering of N with compact sets, one obtains a 

countable neighborhood basis of 0 in Yg(N, C). Hence Yg(N, C) is metrizable. 

That Y((N, C) is complete, and hence a Fr6chet space, follows since the limit of a 

sequence of holomorphic functions with respect to the topology of uniform conver- 

gence on compact sets is again holomorphic. 

The vector space ~ (N,  C) is a subspace of C=(N, RE)=C=(N, R) 2 since a function 

N ~ C  is holomorphic if and only if it is smooth and the derivative at every point is C- 

linear. It is a closed subspace, since it is described by the continuous linear equations 

df(x)(~/-S-i-1 .v)=W'-'i  .df(x)(v). Obviously the identity from Y((N, C) with the sub- 

space topology to ~(N,  C) is continuous, hence by the open mapping theorem [10], 

5.5.2, for Fr6chet spaces it is an isomorphism. 

That Yg(N, C) is nuclear and unlike C=(N, R) even strongly nuclear can be shown as 

follows. For N equal to the open unit disk D~_C this result can be found in [10], 

21.8.3 (b). More generally for N = D  n one has that Yg(N, C)=t'10<r< 111 ( r  . . . . .  r)(~)C as vector 

spaces. The identity from the right to the left is obviously continuous, if the intersec- 

tion is supplied with the projective limit topology induced from the Banach spaces 

l~ ....... )| a Fr6chet topology. Hence again by the open mapping theorem it is an 

isomorphism. Using now the Grothendieck-Pietsch criterion, cf. [10], 21.8.2, one 

concludes that ~g(D n, C) is strongly nuclear, see also [30], p. 530. For an arbitrary N 
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the space Y((N, C) carries the initial topology induced by the linear mappings 

(u-l)*: Yg(N, C)---~Y((u(U), C) for all charts (u, U) of N, for which we may assume 

u(U)=D ", and hence by the stability properties of strongly nuclear spaces, cf. [10], 

21.1.7, Yf(N, C) is strongly nuclear. [] 

3.3. Spaces of  germs of  holomorphic functions. For a subset A~_N let Y((A~_N, C) 

be the space of germs along A of  holomorphic functions W---~C for open sets W in N 

containing A. We equip Y((A~_N, C) with the locally convex topology induced by the 

inductive cone Yf(W, C)~Y((A___N, C) for all W. This is Hausdorff, since iterated 

derivatives at points in A are continuous functionals and separate points. In particular 

~((Wc_N, C)=Yg(W, C) for W open in N. For A I c A 2 ~ N  the "restriction" mappings 

gf(A2cN, C)--, ~(A1 c N ,  C) are continuous. 

The structure of Yg(A~_S 2, C), where A ~ S  2 is a subset of the Riemannian sphere, 

has been studied by [29], [26], [31], [12] and [8]. 

3.4. THEOREM (Structure of ~((K~_N, C) for compact subsets K of complex mani- 

folds N). The following inductive cones are cofinal to each other. 

~((K~_N, C) ~ {~(W, C), N ~ W ~ K }  

Yg(K~_N, C) *-- { Y(b(W, C), N= W=K} 

9((K~_N, C)<--( Y(bc(W~_N, C), N= W=K}. 

I f  K={z} these inductive cones and the following ones for l<~p<<, oo are cofinal to 

each other. 

Yg({z) c N, C) ~ {l~ | C, rE R+}. 

So all inductive limit topologies coincide. Furthermore, the space Y((K~_N,C) is a 

Silva space, i.e. a countable inductive limit of  Banach spaces, where the connecting 

mappings between the steps are compact, i.e. mapping bounded sets to relatively 

compact ones. The connecting mappings are even strongly nuclear. In particular, the 

limit is regular, i.e. every bounded subset is contained and bounded in some step, and 

Y((K~N,C) is complete and (ultra-)bornological (hence a convenient vector space), 

webbed, strongly nuclear, reflexive and its dual is a strongly nuclear Frkchet space. It 

is however not a Baire space. 

Proof. Let K c  V~ (zc W=N, where W and V are open and $7 is compact. Then the 

obvious mappings 
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~bc(Wc_N, C)-~ ~b(W, C)~ ~(W, C)~ ~bc(Vc_N, C) 

are continuous. This implies the first cofinality assertion. For q<.p and s<r  the obvious 
oo l o~ 

maps -rlq--~P'r, lr ---~l s, and l~| E C": [wi-zi[<ri} , C)---,I~ |  are continuous, by 

the Cauchy inequalities. So the remaining cofinality assertion follows. 

Let us show next that the connecting mapping ~b(W, C ) ~ b ( V , C )  is strongly 

nuclear (hence nuclear and compact). Since the restriction mapping from E:-- ~(W, C) 

to g(b(V, C) is continuous, it factors over E~E(t : )  for some 0-neighborhood U in E, 

where E(u ) is the completed quotient of E with the Minkowski functional of U as norm, 

see [10], 6.8. Since E is strongly nuclear by 3.2, there exists by definition some larger 0- 

neighborhood U' in E such that the natural mapping E~u,)---~E(u ) is strongly nuclear. So 

the claimed connecting mapping is strongly nuclear, since it can be factorized as 

Yfb(W, C)---~ Yd(W, C) = E---~ E(u,)---~ E(t:)---~ Yfb(V, C). 

That a Silva space is regular and complete, can be found in [4], 7.4 and 7.5. 

That Yf(K_N, C) is ultra-bornological, webbed and strongly nuclear follows from 

the permanence properties of ultra-bornological spaces, [10], 13.2.5, of webbed spaces 

[10], 5.3.3 and of strongly nuclear spaces [10], 21.1.7. 

Furthermore, Yg(K~_N, C) is refexive and its strong dual is a Fr6chet space, since it 

is a Silva-space, cf. [10], 12.5.9 and p. 270. The dual is even strongly nuclear, since 

Yd(K~_N, C) is a nuclear Silva-space, cf. [10], 21.8.6. 

The space Yd(K~_N, C) has however not the Baire property, since it is webbed but 

not metrizable, cf. [10], 5.4.4. If it were metrizable then it would be of finite dimension, 

by [4], 7.7. This is not the case. [] 

Completeness of N(Kc_C n, C) was shown in [31], th6or6me II, and regularity of the 

inductive limit Y((KcC, C) can be found in [12], Satz 12. 

3.5. LEMMA. For a closed subset  A ~ C  the spaces Yg(AcS 2, C) and the space 

Y ( ~ ( S 2 \ A c S  2, C) o f  all germs vanishing at ~ are strongly dual to each other. 

Proof. This is due to [12], Satz 12 and has been generalized by [8], th6or6me 2 bis, 

to arbitrary subsets A~_S 2. [] 

Compare also the modern theory of hyperfunctions, cf. [11]. 

3.6. THEOREM (Structure of Y((A~_N, C) for closed subsets A of complex mani- 

folds N).  The inductive cone 
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Y-g(A ~_N, C)*--{Yg(W, C):A ~_ W ~_ N} 
open 

is regular, i.e. every bounded set is contained and bounded in some step. 

The projective cone 

Yg(A ~_N, C)---~ ( Y((K c_N, C):K compact in A} 

generates the bornology of  ~(A=_N, C). 

The space Y((A~_N, C) is Montel (hence quasi-complete and reflexive), and ultra- 

bornological (hence a convenient vector space). Furthermore it is webbed and conu- 
clear. 

Proof. Compare also with the proof of the more general Theorem 7.3. 

We choose a continuous function f: N ~ R  which is positive and proper. Then 

(f-l([n, n+l])),eN0 is an exhaustion of N by compact subsets and 

(K, :=A nf-l([n, n+ 1])) 

is a compact exhaustion of A. 

Let ~ _ Y f ( A ~ N ,  C) be bounded. Then ~IK is also bounded in Y((K~_N, C) for 

each compact subset K of A. Since the cone 

( ~ ( W ,  C): K ~_ W ~_ N)  --* Y((K c_ N, C) 
open 

is regular by 3.4, there exist open subsets Wr of N containing K such that ~[K is 

contained (so that the extension of each germ is unique) and bounded in Y((Wr, C). In 

particular we choose WI~nl~,+I~WKn WK+~ nf- l ((n,  n+2)). Then we put 

W:=Un(WK N f- l ( (n ,n+l)))  U U WK, nK+ ,. 
n 

It is easily checked that W is open in N, contains A, and that each germ in ~ has a 

unique extension to W. ~ is bounded in Yg(W, C) if it is uniformly bounded on each 

compact subset K of W. Each K is covered by finitely many WK, and Y~[K n is bounded 

in Y((WK, C) so ~ is bounded as required. 

The space ~(A~_N, C) is ultra-bornological, Montel and in particular quasi-com- 

plete, and conuclear, as regular inductive limit of the nuclear Fr6chet spaces Yg(W, C). 

And it is webbed because it is the (ultra)-bornologification of the countable 

projective limit of webbed spaces Y((K~N, C), cf. [10], 13.3.3+5.3.3. [] 
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3.7. LEMMA. Let A be closed in C. Then the dual generated by the projective cone 

Yg(A ~_ C, C)---> {Y((K ~_ C, C),K compact in A} 

is just the topological dual o f  Y((A~C, C). 

Proof. The induced topology is obviously coarser than the given one. So let 2 be a 

continuous linear functional on Y((A~_C, C). Then we have 2 E Y(=(S2\A~_S 2, C) by 3.5. 

Hence 2 E Y((U, C) for some open neighborhood U of S 2 \ A ,  so again by 3.5 2 is a 

continuous functional on Y((KcS2, C), where K = S 2 \ U  is compact in A. So ;t is 

continuous for the induced topology. [] 

PROBLEM. Does this cone generate even the topology of  ~(A~_C, C)? This would 

imply that the bornological topology on Y((A~_C, C) is complete and nuclear. 

3.8. LEMMA (Structure of Yg(A___N,C) for smooth closed submanifolds A of 

complex manifolds N). The projective cone 

~(A ~_ N, C)--> {~g({z} ~_ N, C): zEA} 

generates the bornology. 

Proof. Let ~_Y((A~_N, C) be such that the set ~ is bounded in ~f({z}~_N, C) for 

all zEA. By the regularity of the inductive cone Y(({0}~_Cn, C) <---Y((W, C) we find 

arbitrary small open neighborhoods W z such that the set ~z of the ggrms at z of all 

germs in ~ is contained and bounded in Y((Wz, C). 

Now choose a tubular neighborhood p: U--->A of A in N. We may assume that Wz is 

contained in U, has fibers which are star shaped with respect to the zero-section and 

the intersection with A is connected. The union W of all the Wz, is therefore an open 

subset of U containing A. And it remains to show that the germs in ~ extend to W. For 

this it is enough to show that the extensions of the germs at zl and zz agree on the 

intersection of Wz, with Wz. So let w be a point in the intersection. It can be radially 

connected with the base point p(w), which itself can be connected by curves in A with 

zl and z2. Hence the extension of both germs to p(w) coincide with the original germ, 

and hence their extensions to w are equal. 

That ~ is bounded in Y((W, C), follows immediately since every compact subset 

K_~ W can be covered by finitely many Wz. [] 

3.9 The following example shows that 3.8 fails to be true for general closed subsets 

A~N.  
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EXAMPLE. Let A := {l/n: n EN} U {0}. Then A is compact in C but the projective 

cone ~((A__qC, C)--~t~((z}__C, C) (zEA) does not generate the bornology. 

Proof. Let ~3~_~f(A~C, C) be the set of germs of the following locally constant 

functions fn: {x+iy~C:x:~rn)---~C, with f,(x+iy) being equal to 0 for x<r, and being 

equal to 1 for x>r,, where rn:=2/(2n+l), for nEN. Then ~3~_~(A~_C,C) is not 

bounded, otherwise there would exist a neighborhood W of A such that the germ offn 

extends to a holomorphic mapping on W for all n. Since every f ,  is 0 on some 

neighborhood of 0, these extensions have to be zero on the component of W containing 

0, which is not possible, since f~(l/n)= 1. 

But on the other hand the set ~z~_~({z)~_C, C) of germs at z of all germs in ~ is 

bounded, since it contains only the germs of the constant functions 0 and 1. [] 

3.10. Spaces o f  germs o f  real-analytic functions. Let M be a real analytic finite 

dimensional manifold. If f: M ~ M '  is a mapping between two such manifolds, then f is 

real analytic if and only i f f  maps smooth curves into smooth ones and real analytic 

curves into real analytic ones, by 2.4. 

For each real analytic manifold M of real dimension m there is a complex manifold 

Mc of complex dimension m containing M as a real analytic closed submanifold, whose 

germ along M is unique ([32], Proposition 1), and which can be chosen even to be a 

Stein manifold, see [7], section 3. The complex charts are just extensions of the real 

analytic charts of an atlas of M. 

Real analytic mappings f: M--~M' are the germs along M of holomorphic mappings 

W~M'c for open neighborhoods W of M in Mc. 

Let C~(M, F) be the space o f  real analytic functions f'. M---~F, for any convenient 

vector space F, and let ~(M, C):= ~(M~_Mc, C). Furthermore, for a subset A~_M let 

C~(A~_M, R) denotes the space o f  germs of  real analytic functions defined near A. 

3.11. LEMMA. For any subset A of  M the complexification o f  the real vector space 

C~ R) is the complex vector space ~f(A~_Mc, C). 

Definition. For any A~_M of a real analytic manifold M we will topologize 

C~(A~_M, R) as subspace of ~((Ac_Mc, C), in fact as the real part of it. 

Proof. Letf ,  g E C~(Ac_M, R). They are germs of real analytic mappings defined on 

some open neighborhood of A in M. Inserting complex numbers into the locally 

convergent Taylor series in local coordinates shows, that f a n d  g can be considered as 

holomorphic mappings from some neighborhood W of A in Mc, which have real values 
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if restricted to WNM. The mapping h:=f+ig:W---)C gives then an element of 

~(A ~Mc, C). 

Conversely let hE ~(A~_Mc, C). Then h is the germ of a holomorphic mapping 

h: W--->C for some open neighborhood W of A in Mc. The decomposition of h into real 

and imaginary part f=�89 and g=�89 which are real analytic maps if restricted 

to WNM, gives elements of C~(A~_M, R). 

That these correspondences are inverse to each other follows from the fact that a 

holomorphic germ is determined by its restriction to a germ of mappings M~_A---)C. [] 

3.12. LEMMA. The inclusion C~ R)-->C~(M, R) is continuous. 

Proof. Consider the following diagram, where W is an open neighborhood of M in 

Mc. 

inclusion 
C~ R) , C'(M, R) 

direct sumrnand [ [ direct summand 

inclusion 
N(M ___ Me, C) , C'~ R 2) 

restriction I I restriction 

inclusion 
~ ( W ,  C) ) C~(W,  R E) 

3.13. THEOREM (Structure of C~(A~_M, R) for closed subsets A of real analytic 

manifolds M). The inductive cone 

C~(A ~ M, R) <-- {C~ R):A~W _~ M} 
open 

is regular, i.e. every bounded set is contained and bounded in some step. 

The projective cone 

C~(A ~ M, R)----> ( C~ ~ M, R): K compact in A)  

generates the bornology of  C~(A~M, R). 

I f  A is even a smooth submanifold, 

generates the bornology. 

then the following projective cone also 

C*~ ~_M, R)---~ {C~ ~_M, R): xEA} .  
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The space C~({0)~_R m, R) is also the regular inductive limit of  the spaces lPr(rE RT) 

for all l <~p<~ oo. 

For general closed A ~ N  the space C~ R) is Montel (hence quasi-complete 

and reflexive), and ultra-bornological (hence a convenient vector space). It is also 

webbed and conuclear. I f  A is compact then it is even a strongly nuclear Silva space 

and its dual is a strongly nuclear Fr(chet space. It is however not a Baire space. 

Proof. This follows using 3.11 from 3.4, 3.6, and 3.8 by passing to the real parts 

and from the fact that all properties are inherited by complemented subspaces as 

C~(A~M, R) of ~(A~_Mc, C). [] 

3.14. COROLLARY. A subset ~C'~ R) is bounded if and only if 

~):= {f(~)(O): fE  ~} is bounded in R for all a E N'~ and the poly-radius of  conver- 

gence for f E B  is bounded from below by some roe N~ (or equivalently there exists an 

r>O such that {f(a)rl~l/a!: fE  B, aE N~} is bounded in R). 

Proof. The space C'~ R) is the regular inductive limit of the spaces 

lP(r E R~') for p equal to 1 or oo by 3.13. Hence ~ is bounded if and only if it is contained 

and bounded in lPr for some r E R~. This shows the equivalence with the first condition 

using p= 1 and the equivalence with the second condition using p= oo. [] 

4. A uniform boundedness principle 

4.1. LEMMA. Let (E,E') be a dual pair and let 5~ be a point separating set of  bounded 

linear mappings with common domain (E, E'). Then the following conditions are 

equivalent. 

(1) I f  F is a Banach space (or even a complete dual pair (F, F')) and f: F--->E is 

linear and 2 o f  is bounded for all 2 E 5 ~ then f is bounded. 

(2) I f  B~_E is absolutely convex such that 2(B) is bounded for all 2 E ~ and the 

normed space EB generated by B is complete, then B is bounded in E. 

(3) Let (bn) be an unbounded sequence in E with 2(bn) bounded for all ).E 5 e, then 

there is some (tn)E I l such that ~ t n b~ does not converge in E for the weak topology 

induced by 6P. 

Definition. We say that (E, E') satisfies the uniform 5Q-boundedness principle if 

these equivalent conditions are satisfied. 

Proof. (1)==>(3). Suppose that (3) is not satisfied. So let (b~) be an unbounded 

9-908282 Acta Mathematica 165. Imprim6 le 22 aofit 1990 
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sequence in E such that 2(bn) is bounded for all 2 E fie, and such that for all (tn) E 11 the 

series 2 t n b n converges in E for the weak topology induced by fie. We define a linear 

mapping f: 11---~E by f(tn)= E tn b,. It is easy to check that 2 o f  is bounded, hence by (1) 

the image of the closed unit ball, which contains all b,, is bounded. Contradiction. 

(3)=>(2). Let  B~E be absolutely convex such that 2(B) is bounded for all 2 E fieand 

that the normed space EB generated by B is complete, and suppose that B is unbound- 

ed. Then B contains an unbounded sequence (b,), so by (3) there is some (t~) E I l such 

that ~ t, b, does not converge in E for the weak topology induced by fie. But Z t, bn is 

easily seen to be a Cauchy sequence in EB and thus converges even bornologically, a 

contradiction. 

(2)=>(1). Let  the bornology of F be complete, and let f." F--.E be linear such that 

2 o f  is bounded for all 2 E fie. It suffices to show that f(B), the image of an absolutely 

convex bounded set B in F with FB complete, is bounded. Then 2(f(B)) is bounded for 

all ;t E fie, the normed space Ef~B) is a quotient of FB, hence complete. By (2) the set f(B) 

is bounded. [] 

4.2 LEMMA. A complete dual pair (E, E') satisfies the uniform fie-boundedness 

principle for each point separating set fie of bounded linear mappings on E if and only if 

there exists no. strictly weaker ultrabornological topology than the natural bornological 

topology of (E, E'). 

Proof. (=>) Let r be an ultrabornological topology on E which is strictly weaker 

than the natural bornological topology. Since every ultrabornologic~al space is an 

inductive limit of Banach spaces, cf. [10], 13.1.2, there exists a Banach space F and a 

continuous linear mapping f: F---~(E, r) which is not continuous into E. Let  fie= 

{Id:E---~(E, r)}. N o w f d o e s  not satisfy 4.1 (1). 

(r If  fieis a point separating set of bounded linear mappings, the ultrabornological 

topology given by the inductive limit of the spaces Es with B satisfying 4.1 (2) equals 

the natural bornological topology of (E, E'). Hence 4.1 (2) is satisfied. [] 

4.3. LEMMA. Let ~ be a set of  bounded linear mappings f: E---~Ef between dual 

pairings, let b~ be a point separating set of  bounded linear mappings on Ef for every 

f E .~, and let fie:= t.Jf~ f*( fiey)= {go f: f E ~, g E fief). I f  ~ generates the bornology and 

Ef satisfies the uniform Sf-boundedness principle for all fE  ~, then E satisfies the 

uniform fie-boundedness principle. 

Proof. We check the condition (1) of 4.1. So assume h: F---~E is a linear mapping 

for which g ofo h is bounded for all f E  ~ and g E fief. Then foh  is bounded by the 
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uniform Sff-boundedness principle for Ey. Consequently h is bounded since ~generates 

the bornology of E. [] 

4.4 THEOREM. A locally convex space which is webbed satisfies the uniform 5P- 
boundedness principle for any point separating set of bounded linear functionals. 

Proof. Since the bornologification of a webbed space is webbed, cf. [10], 13.3.3 

and 13.3.1, we may assume that E is bornological, and hence that every bounded linear 

functional is continuous, cf. [10], 13.3.1. Now the closed graph principle, cf. [10], 

56.4.1, applies to any mapping satisfying the assumptions of 4.1 (1). [] 

4.5 THEOREM (Holomorphic uniform boundedness principle). For any closed 
subset A ~ N  of a complex manifold N the locally convex space Y((Ac_N, C) satisfies 
the uniform 5e-boundedness principle for every point separating set 5~ of bounded linear 
functionals. 

Proof. This is an immediate consequence of 4.4 and 3.6. [] 

Direct proof of a particular case. We prove the theorem for a closed smooth 

submanifold A_~C and the set 5e of all iterated derivatives at points in A. 

Let us suppose first that A is the point 0. We will show that condition 4.1 (3) is 

satisfied. Let (bn) be an unbounded sequene in N({0},C) such that each Taylor 

coefficient bn, k=b(k)(O)/k! is bounded with respect to n: 

(1) sup{lbn, kl: n~N} < o0. 

We have to find (t,)El 1 such that Y,, t, b, is no longer the germ of a holomorphic 

function at 0. 

Each b, has positive radius of convergence, in particular there is an r ,>0 such that 

(2) sup {Ibn, k~l:kEN) < ~. 

By Theorem 3.4 the space Y(({0}, C) is a regular inductive limit of spaces l~. Hence a 

subset ~ is bounded in Yg({0), C) if and only if there exists an r>0 such that 

{lb(k)(O)rk:bE ~ , kEN)  

is bounded. That the sequence (bn) is unbounded thus means that for all r>0 there 

are n and k such that Jb..kl>(I/r) k. We can even choose k>0 for otherwise the set 
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{bn, k rk: n, k E N, k>0} is bounded, so only {b., o: n E N} can be unbounded. This contra. 

dicts (1). 
> k., 

Hence for each m there are km>O such that ?r {n E N: ]b.,k~.] m } is not empty. 

We can choose (kin) strictly increasing, for if they were bounded, ]b.,k~]<C for some C 
k m and all n by (1), but Ib.m,k.J>m ~ for some nm. 

Since by (1) the set {bn, km: n E N} is bounded, we can choose nm E / m  such that 

tb.m,kml>~lbj, km I for j>nm 
(3) 

Ib,m, j >- m k~. 

We can also choose (nm) strictly increasing, for if they were bounded we would get 
k m ]b~m, kmr I I<C for some r>0  and C by (2). But (1/rn)~m---~0. 

We pass now to the subsequence (bn~) which we denote again by (bin). We put 

(4) t m : = sign tj bi, km 4 m 
\ , k,n j<m 

Assume now that b~=Emtmb ~ converges weakly with respect to 5 e to a holomorphic 

germ. Then its Taylor series is b=(z)=Ek~ob=,kz k, where the coefficients are given by 

b~k=Zm>~otmbm, k. But we may compute as follows, using (3) and (4): 

Ib~ ' kml~  j~<~m tjbj'k~ -- E Itjbj, kml 
j>m 

= j~<mtjbj, km [ +[Imbm, k,.I (same sign) 

- -El t jb j ,  km I 
j>m 

1 m km 

Ibm,  l 3.4m 3.4m 

Ilk m 
So Ib~,km goes to ~ ,  hence b= cannot have a positive radius of convergence, a 

contradiction. So the theorem follows for the space Yg({t}, C). 

Let  us consider now an arbitrary closed smooth submanifold A~_C. By 3.8 the 

projective cone Y((A~_N, C)---~{Y(({z}~_N, C) ,zEA} generates the bornology. Hence 

the result follows from the case where A={0} by 4.3. [] 



THE CONVENIENT SETTING FOR REAL ANALYTIC MAPPINGS 133 

4.6. THEOREM (Special real analytic uniform boundedness principle). For any 

closed subset A~_M of  a real analytic manifold M, the space C~ R) satisfies the 

uniform b~-boundedness principle for any point separating set ~ o f  bounded linear 

functionals. 

l f  A has no isolated points and M is 1-dimensional this applies to the set o f  all 

point evaluations evt, t EA. 

Proof. Again this follows from 4.4 using now 3.13. I fA has no isolated points and 

M is 1-dimensional the point evaluations are separating, by the uniqueness theorem for 

holomorphic functions. [] 

Direct proof  o f  a particular case. We show that C~ R) satisfies the uniform b ~ 

boundedness principle for the set b ~ of all point evaluations. 

We check property 4.1 (2). Let ~_CO(R, R) be absolutely convex such that evt(~) 

is bounded for all t and such that C~ R)B is complete. We have to show that ~ is 

complete. 

By Lemma 3.12 the set ~ satisfies the conditions of 4.1 (2) in the space C=(R, R). 

Since C~ R) satisfies the uniform 5e-boundedness principle, cf. [5], the set ~ is 

bounded in C=(R, R). Hence all iterated derivatives at points are bounded on ~,  and a 

fortiori the conditions of 4.1 (2) are satisfied for ~ in ~(R,  C). By the particular case of 

Theorem 4.5 the set ~ is bounded in X~(R, C) and hence also in the direct summand 

C~ R). [] 

5. Cartesian closedness 

5.1. THEOREM. The real analytic curves in C~ correspond exactly to the real 

analytic functions R2--~R. 

Proof. (=*-) Let j2 R-->C~ R) be a real analytic curve. Then f: R--~C'({t}, R) is 

also real analytic. We use Theorems 3.13 and 1.6 to conclude that f is even a 

topologically real analytic curve in C~ R). By Lemma 1.7 for every s E R the curvef  

can be extended to a holomorphic mapping from an open neighborhood of s in C to the 

complexification ~({t}, C) of C~ R). See 3.11. 

From 3.4 it follows that ~({t}, C) is the regular inductive limit of all spaces 

~(U, C), where U runs through some neighborhood basis of t in C. Lemma 1.8 shows 

tha t f i s  a holomorphic mapping V---~ ~(U, C) for some open neighborhoods U of t and 

V o f s  in C. 
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By the exponential law for holomorphic mappings (see 1.3) the canonically associ- 

ated mapping f^ :  V• U---~C is holomorphic. So its restriction is a real analytic function 

R• near (s, t). 

(~ )  Let f: R2---~R be a real analytic mapping. Then f(t ,  ) is real analytic, so the 

associated mapping fv: R___~CO,(R, R) makes sense. It remains to show that it is real 

analytic. Since the mappings CO(R, R)---~C~ R) generate the bornology, by 3.13, it is 

by 1.11 enough to show that fv:  R~C~ R) is real analytic for each compact K~_R, 

which may be checked locally near each s E R. 

f: RZ~R extends to a holomorphic function on an open neighborhood Vx U of 

( s}xK in C 2. By cartesian closedness for the holomorphic setting the associated 

mapping f V : v - - - ~ ( U , C )  is holomorphic, so its restriction VNR~C~ R)--+ 

CO(K, R) is real analytic as required. [] 

5.2. Remark. From 5.1 it follows that the curve c: R---~C~'(R, R) defined in 1.1 is real 

analytic, but it is not topologically real analytic. In particular, it does not factor locally 

to a real analytic curve into some Banach space C~ R)B for a bounded subset B and it 

has no holomorphic extension to a mapping defined on a neighborhood of R in C with 

values in the complexification ~(R,  C) of C~(R, R), cf. 1.7. 

5.3. LEMMA. F o r  a real analytic manifold M, the bornology on the space 

CO(M, R) is induced by the following cone. 

s 

CO(M, R)--~ Ca(R, R) 

for all Ca-curves c: R--*M, where a equals co and o9. 

Proof. The maps c* are bornological since C~ R) is convenient by 3.13, and by 

the uniform ~e-boundedness principle 4.6 for CO(R, R) and by [5], 4.4.7 for C~ R) it 

suffices to check that evto c*=evc~ 0 is bornological, which is obvious. 

Conversely we consider the identity mapping i from the space E into CO(M, R), 

where E is the vector space CO(M, R), but with the locally convex structure induced by 

the cone. 

Claim. The bornology of E is complete. 

The spaces CO(R, R), and C=(R, R) are convenient by 3.13 and 1.3, respectively. So 

their product 

I-I C~ R) • I 1  C| R) 
C C 
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is also convenient. By Theorem 2.4, (1) r (5), the embedding of E into this product has 

closed image, hence the bornology of E is complete. 

Now we may apply the uniform 6e-boundedness principle for CW(M, R) (4.6), since 

obviously evp o i= ev0 o c* is bounded, where cp is the constant curve with value p, for all 

p E M. [] 

5.4. Structure on C~ F). Let (E, E') be a dual pair of real vector spaces and let 

U be coo-open in E. We equip the space C~(U, R) of all real analytic functions (cf. 2.6) 

with the dual space consisting of all linear functionals induced from the families of 

mappings 

C* 
CO(U,R)---~CO(R,R), for all cECO(R, U) 

C* 
CO(U,R)-*C~(R,R),  for all cEC~(R, U). 

For a finite dimensional vector space E this definition gives the same bornology as the 

one defined in 3.10, by Lemma 5.3. 

If (F, F') is another dual pair, we equip the space CO(U, F)  of all real analytic 

mappings (cf. 2.6) with the dual induced by the family of mappings 

CO(U,F)-~C~(U,R), forall  2 E F ' .  

5.5. LEMMA. Let (E, E') and (F, F') be complete dual pairs and let U~_C be c ~ 

open. Then CO(U, F) is complete. 

Proof. This follows immediately from the fact that C~ F) can be considered as 

closed subspace of the product of factors C~(U, R) indexed by all ;t EF' .  And C~'(U, R) 

can be considered as a closed subspace of the product of the factors C~ R) indexed 

by all c E C~(R, U) and the factors C=(R, R) indexed by all c E C=(R, U). Since all 

factors are complete so are the closed subspaces. [] 

5.6. LEMMA (General real analytic uniform boundedness principle). Let E and F 

be convenient vector spaces and U~_E be c~-open. Then C~ satisfies the uniform 

b~ principle, where 0~ = {eVx: x E U}. 

Proof. The complete bornology of C~ F) is by definition induced by the maps 

c*: C~ F)~CO(R, F)  (c E C~ U)) together with the maps c*: C~ F)---~C| F)  

(c E C~176 U)). Both spaces C~(R, F) and C| F)  satisfy the uniform J--boundedness 
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theorem, where 3 : =  (evt: tER},  by 4.6 and [5], 4.4.7, respectively. Hence C~ 

satisfies the uniform 5e-boundedness theorem by Lemma 4.3, since evtoc*=eVc(t). [] 

5.7. Definition. Let (E, E') and (F,F') be complete dual pairs. We denote by 

L(E, F) the space of linear real analytic mappings from E to F, which are by 1.9 exactly 

the bounded linear mappings. Furthermore, if E and F are convenient vector spaces, 

these are exactly the morphisms in the sense of dual pairs, since f is bounded if and 

only i f 2 o f E E  b for all ~,EF b. 

5.8. LEMMA (Structure on L(E, F)). The following structures on L(E, F) are the 
same: 

(1) The bornology of pointwise boundedness, i.e. the bornology induced by the 

cone (evx: L(E, F)---~F, x E E). 

(2) The bornology of  uniform boundedness on bounded sets in E, i.e. a set 

~ L ( E ,  F) is bounded if and only if ~(B)c_F is bounded for every bounded B~E. 

(3) The bornology induced by the inclusion L(E, F)---~C=(E, F). 

(4) The bornology induced by the inclusion L(E, F)---~C~(E, F). 

The space L(E, F) will from now on be the convenient vector space having as 

structure that described in the previous lemma. Thus L(E, F) is a convenient vector 

space, by [5], 3.6.3. In particular this is true for E' =L(E, R). 

So a mapping f into L(E, F) is real analytic if and only if the composites eVx o f  are 

real analytic for all x E E, by I. I 1. 

Proof. That the bornology in (1), (2) and (3) are the same was shown in [5], 3.6.4 

and 4.4.24. Since C~(E, F)---~C=(E, F) is continuous by definition of the structure on 

C~ F)  the bornology in (4) is finer than that in (1). The bornology given in (4) is 

complete, since the point-evaluations evx: C~(E, F ) ~ F  are continuous, and linearity of 

a mapping E---~F can be checked by applying them. Furthermore L(E,F) with the 

bornology given in (4) satisfies the uniform 5e-boundedness theorem, since U~ F) 

does, by 5.6. So the identity on L(E,F) with the bornology given in (1) to that given in 

(4) is bounded. [] 

The following two results will be generalized in 6.3. At the moment we will make 

use of the following lemma only in case where E=C~(R, R). 

5.9. LEMMA. L(E, C~(R, R))~C~(R, E') as vector spaces, for any convenient vec- 

tor space E. 
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Proof. For c E C~ E') consider 6(x) := eVx o c E C~ R) for x EE. By the uniform 

6e-boundedness principle 4.6 for 5e= (evt: t E R} the linear mapping ~ is bounded, since 

ev, o ~ = c(t) E E'. 

If conversely IEL(E,C~(R,R)), we consider [(t)=evtolEE':=L(E,R) for tER.  

Since the bornology of E' is generated by ~ : =  {evx:xEE), ['. R---~E' is real analytic, for 

eVxO[=l(x) E C~(R, R). [] 

5 .10 .  COROLLARY. We have ~ ~ ~ vector spaces. C (R, C (R, R))~C~(R, C (R, R)) as 

Proof. C=(R,R) ' is the free convenient vector space over R by [5], 5.1.8, and 

C~ R) is convenient, so we have 

C=(R, C~ R)) = L(C~(R, R)', CO)(R, R)) 

C~ C=(R, R)") by Lemma 5.9 

= C~ C~(R, R)) 

by reflexivity of C~(R, R), see [5], 5.4.16, [] 

5 .11 .  THEOREM.  Let (E,E') be a complete dual pair, let U be c~-open in E, 

let f. 'R• be a real analytic mapping and let cEC~(R, U). Then c*of'R--> 

C~ R)-->C~(R, R) is real analytic. 

This result on the mixing of C ~ and C ~' will become quite essential in the proof of 

Cartesian closedness. It will be generalized in 6.4, see also 8.9 and 8.14. 

Proof. Let I_~R be open and relatively compact, let t E R and k E N. Now choose an 

open and relatively compact J ~ R  containing the closure i of I. There is a bounded 

subset B ~ E  such that cIJ: J ~ E ~  is a Lipk-curve in the Banach space EB generated by B. 

This is [13], Folgerung on p. 114. Let UB denote the open subset UN EB of the Banach 

space EB. Since the inclusion EB---~E is continuous, f is real analytic as a function 

R• UB~R•  U ~ R .  Thus by 2.4 there is a holomorphic extension f: V• W ~ C  o f f  to an 

open set V• W~_C • (EDc containing the compact set (t} • c(i). By Cartesian closedness 

of the category of holomorphic mappings f" V ~ ( W ,  C) is holomorphic. Now recall 

that the bornological structure of ~(W, C) is induced by that of C~(W, C) := C~(W, R2). 
And c*: ~ �9 k C (W, C)--,LIp (I, C) is a bounded C-linear map, by [5]. Thus c*o~V---~ 

Lipk(I, C) is holomorphic, and hence its restriction to R n V, which has values in 

Lipk(I, R), is (even topologically) real analytic by 1.7. Since t ER was arbitrary we 

conclude that c* of.. R---~Lipk(I, R) is real analytic. But the bornology of C~(R, R) is 
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generated by the inclusions into Lipk(I, R), [5], 4.2.7, and hence c* of.. R--+C=(R, R) is 

real analytic. [] 

5.12. THEOREM (Cartesian closedness). The category of real analytic mappings 
between complete dual pairs of real vector spaces is Cartesian closed. More precisely, 
for complete dual pairs (E, E'), (F, F ' )  and (G, G') and c%open sets Uc_E and W~_G a 

mapping f: W• U--~F is real analytic if and only if f'. W--~C~(U, F) is real analytic. 

Proof. Step 1. The theorem is true for G = F = R .  

(~ )  Let  f'.R---~CO(U,R) be C ~ We have to show that f . ' R x U ~ R  is C ~ We 

consider a curve c1: R---~R and a curve c2: R--~U. 

If the ci are C =, then c~of'. R--,C~ R)~C=(R,  R) is C ~ by assumption, hence is 

C =, so c~ofo c1: R---~C=(R, R) is C =. By Cartesian closedness of smooth mappings, 

(c~ofocl)^=fo(clxcz):R2--~R is C =. By composing with the diagonal mapping 

A: R---~R 2 we obtain that f o  (cl x c2): R---~R is C =. 

If the ci are C =, then c~oj".R--+C~(U,R)--+C~ is C ~ by assumption, so 

c~ofoCl:R---~C~ is C ~ By Theorem 5.1 the associated map (c~ofocO^= 

f o  (c 1 x c2): R2---~R is C% So f o  (cl, c2): R---~R is C ~ 

(~)  Let  f:  R x  U ~ R  be C ~ We have to show that j': R~C~ R) is real analytic. 

Obviously f h a s  values in this space. We consider a curve c:R---~U. 
If c is C =, then by Theorem 5.11 the associated mapping ( fo ( Idxc ) )  v= 

c* of." R--~C~(R, R) is C ~ 

If c is C ~ then f o ( I d x c ) :  RxR--~R• U--*R is C ~. By Theorem 5.1 the associated 

mapping (fo(Id• * of.. R---)C~ R) is C ~ 

Step 2. The theorem is true for F = R .  

(~ )  Let  j'." W--~C~ R) be C ~ We have to show that y2 W• is C ~ We 

consider a curve c~: R--~W and a curve c2: R--~U. 

If the ci are C =, then c~ of.. W-~C~(U, R)-~C=(R, R) is CO by assumption, hence is 

C =, so c~' o fo  cl: R--~C=(R, R) is C =. By Cartesian closedness of smooth mappings, the 

associated mapping (c~ oJ~o cl)^=fo(cl • RE---~R is C ~. So f o ( c  1, c2): R--~R is C =. 

If  the ci are CO, t h e n f o c l :  R---~W-~CO(U, R) is C ~ by assumption, so by step 1 the 

mapping ( fo  C l ) A = f o  (Cl xIdv): R x  U--~R is CO. Hence 

fo(cl, c2) = fo(c  1 x Idu) o (Id, C2)'- R---~R 

is C ~ 

(=~) Let  f:  Wx U--*R be C ~ We have to show that f." W---,,C~ R) is real analytic. 

Obviously f has values in this space. We consider a curve c2:R~W. 
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If cl is C a, we consider a second curve c2"R-->U. If  c2 is C ~, then fo(cl• 

R• U-->R is C a. By Cartesian closedness the associated mapping 

( f o  (cl • c2)) v = c~ o f o  cl: R---> C ~ (R, R) 

is C ~. If  c 2 is C ~ the mapping fo(IdwXc2): W• and also the flipped one 

(fo(IdwXcE))-:RxW--~R are C ~ hence by Theorem 5.11 c~o((fo(IdwXCE))-)v: 

R-->C~(R,R) is C ~ By Corollary 5.10 the associated mapping (c~o((fo(IdwXCE))-)v) ~= 

c~ 03/'o c1: R-->C~ R) is C ~. So for both families describing the dual of C~(U, R) we 

have shown that the composite with f o  cl is C ~, so f o c l  is C ~. 

If  cl is C ~ then fo(clxIdt:):RxU--->WxU--~R i sC ~. By step 1 the associated 

mapping (fo(cl• R--~C~ R) is C ~ 

Step 3. The general case. 

f'. W• U--> F is C ~ 

<:> 2 of: W• U-~R is C ~ for all 2 E F '  

<:> (2 o f )  v = 2 ,  of.. W---~ C~ R) is C ~, by step 2, 

r f: W--> C~ F) is C ~'. [] 

6. Consequences of Cartesian closedness 

Among all those dual pairings on a fixed vector space E that generate ,the same real 

analytic structure there is a finest one, namely that having as dual exactly the linear real 

analytic functionals, which are exactly the bounded ones, by 1.9. Recall that a dual pair 

(E, E ')  is called convenient if and only if it is complete and E '  consists exactly of the 

bounded linear functionals. 

6.1. THEOREM. The category o f  real analytic mappings between complete dual 

pairs is equivalent to that o f  real analytic mappings between convenient dual pairs. 

Hence the latter category is also Cartesian closed. 

Proof. The second category is a full subcategory of the first. A functor in the other 

direction is given by associating to every dual pair (E, E ' )  the dual pair (E, Eb), where 

E b := {2: E---~ R: 3. is linear and bounded} 

= {2 E C~ R): 2 is linear} 

= {~.: E---~ R: 3. is linear, ~.ocE C~ for all cEC~ 
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Functoriality follows since the real analytic mappings form a category. One composite 

of this functor with the inclusion functor is the identity, and the other is naturally 

isomorphic to the identity, since E b and E '  generate the same bornology and hence the 

same C ~ and C~-curves by 1.10. [] 

Convention. All spaces are from now on assumed to be convenient and all function 

spaces will be considered with their natural bornological topology. 

6.2. COROLLARY (Canonical mappings are real analytic). The following mappings 

are C~ 

(1) ev: C~ F ) x  U---~ F, (f, x) ~--~f(x), 
(2) ins: E---~ C~ E x  F), x ~ (y ~ (x, y)), 
(3) ( )A:c~~176 G), 

(4) ( )V:c~  G- .C~176  

(5) comp: C~ G)xC~ F)---~ C~(U, G), (f, g)~--> fo  g, 

(6) C~ , ): C~(E2,EO•176 F2)--~ C'~176 Cr176 

(f, g)~-->(h~-->go hof) .  

Proof. (1) The mapping associated to ev via Cartesian closedness is the identity on 

C~ F), which is C ~ thus ev is also C ~ 

(2) The mapping associated to ins via Cartesian closedness is the identity on E x F ,  

hence ins is C ~ . 

(3) The mapping associated via Cartesian closedness is (f;x, y)~-~f(x)(y), which is 

the C~-mapping ev o (ev x id). 

(4) The mapping associated by applying Cartesian closedness twice is 

(f;x;y)--~f(x, y), which is just  a C ~ evaluation mapping. 

(5) The mapping associated to comp via Cartesian closedness is just  

(fi g; x)) ~--~f(g(x)), which is the C~ ev o (id x ev). 

(6) The mapping associated by applying Cartesian closedness twice is 

(fi g; h, x) ~--~g(h(f(x))), which is the C~ ev o (id x ev) o (id x id x ev). [] 

6.3, LEM~A (Canonical isomorphisms). One has the following natural isomor- 

phisms: 

(1) C~ C~(W2, F)  ~ C~(W:, U~ F)), 

(2) C~ C=(W2, F)) = C=(W2, Co(w1, F)). 

(3) CW(W~, L(E, F)) m L(E, C~ F)). 

(4) C~ t~176 F)) -~ I~ C~ F)). 
(5) C~ Lipk(X, F)) ~ Lipk(X, C~ F)). 
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In (4) X is a l=-space, i.e. a set together with a bornology induced by a family of  

real valued functions on X, cf. [5], 1.2.4. In (5) X is a Lipk-space, cf. [5], 1.4.1. The 

spaces l| F) and Lipk(W, F) are defined in [5], 3.6. I and 4.4.1. 

Proof. All isomorphisms as well as their inverse mappings, are given by the flip of 

coordinates: f-->f, where f(x) (y): =f(y) (x). Furthermore all occurring function spaces 

are convenient and satisfy the uniform oW-boundedness theorem, where 5 ~ is the set of 

point evaluations, by 5.5, 5.8, 4.6, and by [5], 3.6.1, 4.4.2, 3.6.6 and 4.4.7. 

That f has values in the corresponding spaces follows from the equation 

f(x)=ev, of. One only has to check that f itself is of the corresponding class, since it 

follows that f ~ f  is bounded. This is a consequence of the uniform boundedness 

principle, since 

(ev~ o (-)) ( f )  = ev~(f) = f(x) = eVx o f =  (ev~). ( f) .  

That f is of the appropriate class in (1) and (2) follows by composing with 

c I E C~I(R, Wl) and C~2(2, c2): C2(W2, F)--->C~2(R, R) for all 2 EF '  and cz E C~2(R, W2), 

where flk and ak are in {~,6u} and fi~<~ak for kE{1,2).  Then C32(~.,c2)ofoc1 = 

(C3t0, ci) ofo c2)-:R---~C~(R, R) is C ~' by 5.1 and 5.10, since C~'0., cl)ofo c2: R---~ 

W2--~Ca'(W~, F)--~C~I(R, R) is C ~2. 

That f is of the appropriate class in (3) follows, since L(E,F) is the c~-closed 

subspace of C~ F) formed by the linear C~-mappings. 

Tha t f i s  of the appropriate class in (4) follows from (3), using the flee convenient 

vector space ll(X) over the l~-space X, see [5], 5.1.24, satisfying l~(X, F)-~L(II(X), F). 

That f i s  of the appropriate class in (5) follows from (3), using the free convenient 

vector space 2k(x) over the Lipk-space X, see [5], 5.1.3, satisfying Lipk(X,F)-~ 
LO.~(X), F ). [] 

Definition. A C='~-mappingJ~ U• V--~F is a mapping for which 

fE  C~(U, C~(V, F)). 

6.4. THEOREM (Composition of C~'~ Let f: U• and g:UI• 1---~V 
be C ~'~, and h: UI-~U be C ~. Then 

f o (h o prl, g): U 1 • V~-~F, (x, y) ~-,f(h(x), g(x, y)) 

s C ~" ~. 
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Proof. We have to show that the mapping x ~ ( y ~ f ( h ( x ) ,  g(x, y)), UI---~C~ F) is 

Co,. It is well-defined, since f and g are C ~ in the second variable. In order to show that 

it is C ~ we compose with 2,:  C~(V1, F)--~C~(V1, R), where A E F '  is arbitrary. Thus it is 

enough to consider the case F = R .  Furthermore, we compose with c*: CO,(VI,R)--~ 

Ca(R, R), where c E Ca(R, V0 is arbitrary for a equal to co and ~ .  

In case a =  oo the composite with c* is C ~ since the associated mapping U~ •  

i s f o (hopr l , go ( idxc ) )  which is C =. 

Now the case a=w. Let Ic_R be an arbitrary open bounded interval. Then 

c* o~: U1--~C~(R, G) is C ~ where G is the convenient vector space containing V as an 

c=-open subset, and has values in the open set {1': 7(i)~-V)~-C~'(R,G) �9 Thus the 

composite with c*, c o m p o ( f o h ,  c*o~) is C =, since foh:  UI~U~CO, (V ,F)  is C ~176 

c* o~: U ~ C ~ ( R ,  G) is C = and comp: C~(V, F ) x  {~, E C~ G): y(i)~_V)~Co,(I, R) is 

C ~, because it is associated to ev o (id • ev): C~(V, F)  • {V E CO,(R, G): 7(i)-~ V) x I---~R. 

That ev: {yEC~ G): ),(i)~_V} • is C ~ follows, since the associated mapping is 

the restriction mapping C~(R, G)---~C~ G). [] 

6.5. COROLLARY. Let f: U---~F be C ~ and g: UI• be C~176 then 

fog:  U1XVI-->F 

is C ~'~ 

Let f'. U• V---~F be C ~' ,o and h: U1 ~ U be C ~ then f o  (h • id): U1 x V---~F is C ~' % [] 

The second part is a generalization of  Theorem 5.11. 

6.6. COROLLARY. Let f: EDU---~F be C% let I ~ R  be open and bounded, and a be 

co or o~. Then f , :  Ca(R,E)~{c: c(i)c_U)~Ca(1, F) is C% 

Proof. Obviouslyf,(c): = f o  c E Ca(l, F) is well-defined for all c E Ca(R, E) satisfying 

c(i) u. 
Furthermore the composite of f ,  with any C&curve 7: R--~{c: c(])~_ U} ~Ca(R, E)  

is a C~-curve in Ca(l, F) for fl equal to w or ~.  For fl=a this follows from Cartesian 

closedness of the Ca-maps. For a~:fl this follows from 6.5. 

Finally {c:c(i)~_U)~_Ca(R,E) is c~-open, since it is open for the topology of 

uniform convergence on compact sets which is coarser than the bornological and hence 

than the c=-topology on Ca(R, E). Here is the only place where we make use of the 

boundedness of 1. [] 

6.7. LEMMA (Free convenient vector space). Let U=E be c~-open in a convenient 



THE CONVENIENT SETI'ING FOR REAL ANALYTIC MAPPINGS 143 

vector space E. There exists a free convenient vector spaces Free(U) over U, i.e. 

for every convenient vector space F, one has a natural isomorphism CO'(U,F)~ 

L(Free(U), F). 

Proof. Consider the Mackey closure Free(U) of the linear subspace of CO'(U, R)' 

generated by the set {eVx: x C U}. Let t: U~Free(U)~CO'(U, R)' be the mapping given 

by x~-->ev~. This mapping is C ~ since evfo t = f  for every f E  C~(U, R). 

Obviously every real analytic mapping f: U---~F extends to the linear bounded 

mapping f: C~(U, R)'--~F", 2 ~ (l ~ 2  (l of)). Since f coincide s on the generators eVx with 

f, it maps the Mackey closure Free(U) into the Mackey closure of F~_f(U). Since F is 

complete this is again F. Uniqueness of f follows, since every linear real analytic 

mapping is bounded, hence it is determined by its values on the subset {evx: xE U} that 

spans the linear subspace having as Mackey closure Free(U). [] 

6.8. LEMMA (Derivatives). The derivative d, where 

df(x) (v) := d t=of(X + tv), 

is bounded and linear d: C~(U, F)--.C~ L(E, F)). 

Proof. The differential df(x) (v) makes sense and is linear in v, because every real 

analytic mapping f is smooth. So it remains to show that (f,x, v)~df(x)(v) is real 

analytic. So let f, x, and v depend real analytically (resp. smoothly) on a real parameter 

r or s. Since (t, s)~-~x(s)+tv(s) is real analytic (resp. smooth) into U~_E, the mapping 

r~((t ,  s)~-->f(r)(x(s)+tv(s)) is real analytic into CO'(R2,F) (resp. C~ Composing 

with 

tit=0" CX~ F)--~ CO'(R, F) C~(R2, F)---~ C=(R, F)) (resp. 

shows that r~--~(s~--~d(f(r))(x(s))(v(s))), R~C'~ is real analytic. Considering 

the associated mapping on R 2 composed with the diagonal map shows that 

(f, x, v) ~--~df(x) (v) is real analytic. [] 

The following examples as well as several others can be found in [5], 5.3.6. 

6.9. EXAMPLE. Let T: C=(R, R)--*C=(R, R) be given by T(f)-- f ' .  Then the continu- 

ous linear differential equation x'(t)=T(x(t)) with initial value x(0)--Xo has a unique 

smooth solution x(t)(s)=xo(t+s) which is however not real analytic. 



144 A. KRIEGL AND P. W .  MICHOR 

Proof. A smooth curve x: R---~C=(R, R) is a solution of the differential equation 

x'(t)=T(x(t)) if and only if 

~ Yc(t, s) = -~s ~(t, s). 

Hence we have 

d ~(t, r - t )  = 0, 

i.e. :f(t, r - t )  is constant and hence equal to 2(0, r)=xo(r). Thus Yc(t, s)=xo(t+s). 

Suppose x: R~C=(R,  R) were real analytic. Then the composite with 

ev0: C=(R, R)---~R 

were a real analytic function. But this composite is just x0=ev0ox, which is not in 

general real analytic. [] 

6.10. EXAMPLE. Let E be either C=(R,R) or C'~ Then the mapping exp,: 

E--.E is C ~ has invertible derivative at every point, but the image does not contain an 

open neighborhood o f  exp.(0). 

Proof. That exp. is C ~ was shown in 6.6. Its derivative is given by 

(exp.) ' ( f)  (g): t~--~g( t) e f(t) 

and hence is invertible with g~--~(t~--~g(t)e -fit)) a s  inverse mapping. Now consider the 

real analytic curve c: R ~ E  given by c(t) (s)= 1-(is) 2. One has c(0)= 1 =exp.(0), but c(t) 

is not in the image of exp. for any t4=0, since c(t)(l/t)=0 but exp.(g)(t)= eg(t)>Ofor all g 

and t. [] 

7. Spaces of sections of vector bundles 

7.1. Vector bundles. Let (E,p, M) be a real analytic finite dimensional vector bundle 

over a real analytic manifold M, where E is their total space and p: E---~M is the 

projection. So there is an open cover (U~)~ of M and vector bundle charts ~0~ satisfying 

ElUa:p_l(Ua ) W,, , Ua• 

P l  I prl 



THE CONVENIENT SE'ITING FOR REAL ANALYTIC MAPPINGS 145 

Here V is a fixed finite dimensional real vector space, called the standard fiber. We 

have 0Pa o ~p~ 1) (x, v)= (x, ~p~(x) v) for transition functions ~pr Uo~ = U~ fl Uf--, GL(V), 

which are real analytic. 

If we extend the transition functions ~p~r to ~a~: O~-OGL(Vc)=GL(V)c, we see 

that there is a holomorphic vector bundle (Ec,Pc, Mc) over a complex (even Stein) 

manifold Mc such that E is isomorphic to a real part of EclM, compare 3.10. The germ 

of it along M is unique. 

Real analytic sections s: M-OE coincide with certain germs along M of hol0mor- 

phic sections W-oEc for open neighborhoods W of M in Mc. 

7.2. Spaces of  sections. For a holomorphic vector bundle (F, q, N) over a complex 

manifold N we denote by X~(F) the vector space of all holomorphic sections s: N-oF, 

equipped with the compact open topology, a nuclear Frrchet topology, since it is initial 

with respect to the cone 

(pr2 o ~a), 
~ ( F ) - o  ~ ( F I U  ~) , W(U~, c k) = ~(U~, C) k, 

of mappings into nuclear spaces, see 3.2. 

For a subset A~_N let ~(F]A) be the space of germs along A of holomorphic 

sections W-OFIW for open sets W in N containing A. We equip ~(FIA) with the locally 

convex topology induced by the inductive cone ~f(FIW)--,~(FIA) for all W. This is 

Hausdorff since jet prolongations at points in A separate germs. 

For a real analytic vector bundle (E, p, M) let C~(E) be the space of real analytic 

sections s: M-OE. Furthermore let C~(EIA) denote the space of germs at a subset A ~M 

of real analytic sections defined near A. The complexification of this real vector space 

is the complex vector space ~(EcIA), because germs of real analytic sections s: A-OE 

extend uniquely to germs along A of holomorphic sections W-oEc for open sets W in 

Mc containing A, compare 3.11. 

We topologize C~ as subspace of ~(Ec[A). 

For a smooth vector bundle (E, p, M) let C=(E) denote the nuclear Frrchet space 

of all smooth sections with the topology of uniform convergence on compact subsets, in 

all derivatives separately, see [18] and [5], 4.6. 

7.3. THEOREM (Structure on spaces of germs of sections). I f  (E,p, M) is a real 

analytic vector bundle and A a closed subset o f  M, then the space C~(EIA) is 

convenient. Its bornology is generated by the cone 
OPt), 

C~(E[A) ~ C~(UafqA ~ Ua, R) k, 

10-908282 Acta Mathematica 165. Imprim~ le 22 aolat 1990 
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where (Ua, ~Pa)a is an arbitrary real analytic vector bundle atlas of E. I f  A is compact, 

the space C~(EIA) is nuclear. 

The corresponding statement for smooth sections is also true, see [5], 4.6.23. 

Proof. We show the corresponding result for holomorphic germs. By taking real 

parts the theorem then follows. 

So let (F, q, N) be a holomorphic vector bundle and let A be a closed subset of N. 

Then ~(FIA) is a bornological locally convex space, since it is an inductive limit of the 

Fr6chet spaces ~(FIW ) for open sets W containing A. If A is compact, ~(FIA) is 

nuclear as countable inductive limit. 

Let (U~, ~p~)~ be a holomorphic vector bundle atlas for F. 

Then we consider the cone 

~(FIA) , Yg(U~nA =_ U~,C k) = ~(UaAA =_U~,C) k. 

Obviously each mapping is continuous, so the cone induces a bornology which is 

coarser than the given one, and which is complete by 3.13. 

It remains to show that every subset ~=_Yg(FIA), such that (ua), (~)  is bounded in 

every Yg(Ua NA=_ Ua, C) k, is bounded in Yg(F[W) for some open neighborhood W of A in 

N. 

Since all restriction mappings to smaller subsets are continuous, it suffices to show 

the assertions of the theorem for some refinement of the atlas (Ua). Let us pass first to a 

relatively compact refinement. By topological dimension theory there is a further 

refinement such that any dimRN+2 different sets have empty intersection. We call the 

resulting atlas again (U~). Let (K~) be a cover of N consisting of compact subsets 

K~=_ U~ for all a. 

For any finite set M of indices let us consider now all non empty intersections 

U~:= t3~e~t U ~ and K~a:=t'l~e~aK ~. Since by 3.4 (or 3.6) the space Yg(A NK~a~U~a, C) is 

a regular inductive limit there are open sets W~ ~ U~a containing A n K~a, such that 

~I(A NK~) (more precisely (~p~),(~I(AnK~)) for some suitable vector bundle chart 

mappings ~p~) is contained and bounded in Y((Wa, C) k. By passing to smaller open sets 

we may assume that Wa=_W& for M1_~r Now we define the subset 

W:=t,l~a ~ '  where W~:= W : a \ ~  K ~ 

W is open since (K~) is a locally finite cover. For x E A let M:= {a: x E K~), then x E Wa. 
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Now we show that every germ s E 03 has a unique extension to W. For every zd the 

germ of s along A NK, has a unique extension s s to a section over W,  and for ~r 

we have s,l[Wa2=s ~. We define the extension Sw by swlW~c--s~l~'~. This is well 

defined since one may check that ff'~r W~2_cl~',ln~2. 

03 is bounded in Y#(FIW) if it is uniformly bounded on each compact subset K of 

W. This is true since each K is covered by finitely many Wa and 03 IA n Ka is bounded in 

~(Wa, C). [] 

7.4. Letf:E---~E' be a real analytic vector bundle homomorphism, i.e. we have a 

commutative diagram 

f 
E , E '  

M , M '  
f 

of real analytic mappings such that f is fiberwise linear. 

LEMMA. I f  f is fiberwise invertible, then f*:  C~176 given by 

( f ' s )  (x) := (fx)-I(s(f(x)), 

is continuous and linear. 

I f  f=IdM then the mapping f , :  C~(E)---~C~(E'), given by s~-->fo s, is continuous and 
linear. 

Proof. Extend f to the complexification. Here for the compact open topology on 

the corresponding spaces of holomorphic sections the assertion is trivial. [] 

7.5. Real analytic mappings are dense. Let (E,p,M) be a real analytic vector 

bundle. Then there is another real analytic vector bundle (E' ,p' ,M) such that the 

Whitney sum E@E'---~M is real analytically isomorphic to a trivial bundle MxR~---~M. 

This is seen as follows: By [7], Theorem 3, there is a closed real analytic embedding 

i: E ~ R  k for some k. Now the fiber derivative along the zero section gives a fiberwise 

linear and injective real analytic mapping E ~ R  k which induces a real analytic embed- 

ding j of the vector bundle (E,p, M) into the trivial bundle MxRk---~M. The standard 

inner product on R k gives rise to the real analytic orthogonal complementary vector 

bundle E':=E • and a real analytic Riemannian metric on the vector bundle E. 
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Hence an embedding of the real analytic vector bundle into another one induces a 

linear embedding of the spaces of real analytic sections onto a direct summand. 

We remark that in this situation the orthogonal projection onto the vertical bundle 

VE within T(MxR k) gives rise to a real analytic linear connection (covariant derivative) 

V: C~215 C~ If c: R--,M is a smooth or real analytic curve in M, we have 

the parallel transport Pt(c, t) v E Ec( 0 for all v E Ec(0) and t E R which is smooth or real 

analytic, respectively, on RxEc(0). It is given by the differential equation 

Va Pt(c, t) v=0. 

7.6. COROLLARY. I f  • is a real analytic linear connection on a vector bundle 

(E,p, M),  then the following cone generates the bornology on C~ 

Pt(c, )* 
C~ , Ca(R, E,(0)), 

for all cECa(R, M)  and a=to, o~. 

Proof. The bornology induced by the cone is coarser than the given one by 7.4. A 

still coarser bornology is induced by all curves subordinated to some vector bundle 

atlas. Hence by Theorem 7.3 it suffices to check for a trivial bundle, that this bornology 

coincides with the given one. So we assume that E is trivial. For the constant parallel 

transport the result follows from Lemma 5.3. The change to an arbitrary real analytic 

parallel transport can be absorbed into a Ca-isomorphism of each vector bundle c*E 

separately. [] 

7.7. LEMMA (Curves in spaces of sections). (1) For a real analytic vector bundle 

(E,p, M)  a curve c: R--~C'~ is real analytic i f  and only i f  the associated mapping 

~: R• is real analytic. 

The curve c: R--,C~ is smooth i f  and only i f  O: R x M - - , E  satisfies the following 

condition: 

For each n there is an open neighborhood Un o f  R x M  in R• and a 

(unique) Cn-extension 6: U,---~Ec such that 6(t, ) is holomorphic for  all t ~ R. 

(2) For a smooth vector bundle (E,p, M)  a curve c: R--,C=(E) is smooth i f  and 

only i f  d: RxM--- ,E is smooth. 

The curve c: R--,C~~ is real analytic i f  and only i f  ~ satisfies the following 

condition: 

For each n there is an open neighborhood U, o f  R•  in C x M  and a 
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(unique) C"-extension ~: U,--->Ec such that ~(,x) is holomorphic for all 

xEM. 

Proof. (1) By Theorem 7.3 we may assume that M is open in R m, and we may 

consider C~ R) instead of C~ The statement on real analyticity follows from 

Cartesian closedness, 5.12. 

To prove the statement on smoothness we note that C~ R) is the real part of 

g(M_Cm, C) by 3.11, which is a regular inductive limit of spaces Yf(W, C) for open 

neighborhoods W of M in C m by 3.6. By [13], Folgerung on p. 114, c is smooth if and 

only if for each n, locally in R it factors to a Cn-curve into some Yf(W, C), which sits 

continuously embedded in C~(W, R2). So the associated mapping RXMc_~Jx W--->C is 

C n and holomorphic in the second variables, and conversely. 

(2) By 7.3 we may assume that M is open in R m, and we may consider C| R) 

instead of C| The statement on smoothness follows from Cartesian closedness of 

smooth mappings, similarly as the C~-statement above. 

To prove the statement on real analyticity we note that Ca(M, R) is the projective 

limit of the Banach spaces C~(M/, R) where Mi is a covering of M by compact cubes. By 

Lemma 1.11 the curve c is real analytic if and only if it is real analytic into each 

C~(Mi, R), by 1.6 and 1.7 it extends locally to a holomorphic curve C--->C~(Mi, C). Its 

associated mappings fit together to the required C~-extension ~. [] 

7.8. COROLLARY. Let (E,p,M) and (E',p' ,M) be real analytic vector bundles 

over a compact manifold M. Let WcE  be an open subset such that p(W)=M, and let 

f: W--->E' be a fiber respecting real analytic (nonlinear) mapping. 

Then C=(W):={sEC=(E): s(M)~_W} is open and not empty in the convenient 

vector space Ca(E). The mapping f , :  C=(W)-->C=(E ') is real analytic with derivative 

(do f ) , :  C~(W) • C~ where the vertical derivative do f: W• is given 

by 

dof(u, w) := ~ f(u+tw). 
a t  o 

Then C~176 s(M)~W} is open and not empty in the convenient 

vector space C~ and the mapping f ,:  C~ ') is real analytic with derivative 

(dr f , :  C~215176176 

Proof. The set C| is open in C~(E) since it is open in the compact-open 

topology. Then C~ is open in C~ since CO(E)---~C| is continuous by 3.12 and 

7.3. 
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Now we prove the s ta tement  for C~ the p roof  for Ca(W) is then similar. 

We check that  f ,  maps  C~ to C~ and maps  smooth curves to smooth  

curves. 

I f  c:R-->C~176 is C ~ then ~ :R•  is C ~ by L e m m a  7.7. So 

( f ,  o c) ̂  = f o  ~: R• is also C ~ hence f ,  o c: R--~C~ is C% 

If  c: R~C~176 is smooth,  for each n there is an open neighborhood Un of 

R •  in R •  and a Cn-extension #: Un~Ec Of ~ such that ~(t, ) is holomorphic.  The 

mapping f:  W-->E' has also a holomorphic  extension f :  Ec2_Wc-->E'o Then f o #  is an 

extension of ( f ,  o c) A satisfying the condition in L e m m a  7.7, so f ,  o c: R ~ C ~  ') is 

smooth. [] 

8. Manifolds of analytic mappings 

8.1. Infinite dimensional real analytic manifolds. A chart  (U, u) on a set d~ is a 

bijection u: U--->u(U)c_Eu f rom a subset  U~_~ onto a c~-open subset  of  a convenient  

vector space Ev. Two such charts  are called C~ if the chart  change 

mapping u o v-l: v(Un V)-->u(Un V) is a C~ between c~-open subsets 

of convenient  vector  spaces.  A C~ on ~ is a set of  pairwise C~ charts  

on d~ which cover M. Two such atlases are equivalent if their union is again a C~ 

A C~ on M is an equivalence class of  C~ A C~ M is a set 

together with a C'O-structure on it. 

The natural topology on d//is the identification topology,  where  a subset  W~_d/t is 

open if and only if u(Un W) is c*-open in E v  for all charts  in a C~ belonging to the 

structure. In the finite dimensional t rea tment  of  manifolds one requires that this 

topology has some properties:  Hausdorff ,  separable or metrizable or paracompact .  

In infinite dimensions it is not yet  clear what  the most  sensible requirements  are. 

Hausdorf f  does not imply regular. I f  ~ is Hausdor f f  and regular, and if all modeling 

vector spaces admit smooth  bump functions,  any locally finite open cover of  d/t admits 

a subordinated smooth  parti t ion of unity. 

Mappings between C~ are called C a or C ~ if they are continuous and 

their chart representat ions are smooth  or real analytic, respectively.  

The final topology with respect  to all smooth  curves coincides with the identifica- 

tion topology on a C~ So the following two s ta tements  hold: 

A mapping f:  d~--->~f between C~ is C a i f f o c  is C ~ for each C~-curve 

in M. 

f is C ~ if it is C a and f o  c is C ~ for each C~ in dL 
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The tangent bundle TM---.M of a C~ M is the vector bundle glued from the 

sets u(U) • via the transition functions (x, y) ~( (u  o v-l) (x), d(u o u-l) (x) y) for all 

charts (U, u) and (V, v) in a C~ of M. 

8.2. THEOREM (Manifold structure of C~ N)). Let M and N be real analytic 

manifolds, let M be compact. Then the space C~ N) o f  all real analytic mappings 

from M to N is a real analytic manifold, modeled on spaces C~ o f  real analytic 

sections o f  pullback bundles along f'. M--> N over M. 

Proof. Choose a real analytic Riemannian metric on N. See 7.5 for a sketch how to 

find one. Let exp: TN~_ U--.N be the real analytic exponential mapping of this Rie- 

mannian metric, defined on a suitable open neighborhood of the zero section. We may 

assume that U is chosen in such a way that (nN, exp): U--->N• is a real analytic 

diffeomorphism onto an open neighborhood V of the diagonal. 

For fE  C~ N) we consider the pullback vector bundle 

~ f  
M• x T N  ~ f * T N  , TN 

f 
M ~ N .  

Then C~(f*TN) is canonically isomorphic to the space 

C~(M, TN):= {h E C~ TN): Yguoh = f }  

via s~->(z~f) o s and (IdM, h)e-h. 

Now let 

Uf := {gEC~ N): (f(x),g(x))E V for all xEM)  

and let uf: Uf-->C~ be given by 

uf(g) (X) = (X, exp,2)(g(x))) = (x, ((TI;N, exp)-I v (f, g))(x)). 

Then uf is a bijective mapping from U f onto { sEC~ whose 

inverse is given by ufl(s)--expo(~Tvf)os, where we view U ~ N  as fiber bundle. Since 

M is compact, us(Uf) is open in C~ for the compact open topology, thus also for 

the finer topology described in 7.2. 
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Now we consider the atlas (Uf, Uf)$eC~(M,N ) for C'~(M, N). Its chart change map- 

pings are given for s E ug(Ufn Ug)~_C~ by 

(ufo Ug 1) (s) = (Id M , (~r u , exp)-1 o (f ,  exp o (jr~v g) o s)) 

= (r71 o r e ) , ( s ) ,  

where rg(X , Yg(x)):=(x, expg(x)(Ye(x))) is a real analytic diffeomorphism 

rg: g*TN ~_ g'U---, (gXldN)-l(V) ~ M•  

which is fiber respecting over M. Thus by 7.8 the chart change ulo Ugl=(r71 ore) * is 

defined on an open subset and real analytic. 

Finally we put the identification topology from this atlas onto the space C'~(M, N), 

which is obviously finer than the compact  open topology and thus Hausdorff .  

The equation ulOUgl=(rf 10Tfg), shows that the real analytic structure does not 

depend on the choice of  the real analytic Riemannian metric on N. [] 

Remarks. If  N is a finite dimensional vector space, then the structure of  a real 

analytic manifold on C~ described here coincides with that of  the space 

C~ of sections discussed in 7.2, because the exponential  mapping of  any 

Euclidean structure is the affine structure of N. 

8.3. THEOREM (Co-manifold structure on Ca(M, N)). Let M and N be real analytic 

manifolds, with M compact. Then the smooth manifold C=(M, N) with the structure 
from [18], 10.4 is even a real analytic manifold. 

Proof. For  a fixed real analytic exponential  mapping on N the charts (Uf, uf) (from 

8.2 with C ~ replaced by C ~, which agrees with those from [18], 10.4, see also [5], 4.7) 

for fECO(M,N) form a smooth atlas for C~ since C~ is dense in 

C~(M, N)  by [7], Proposit ion 8. The chart changings ufo u~ -1 = ( r f  1 o re) * are real analyt- 

ic by 7.8. [] 

8.4. Remark. I f M  is not compact ,  C~ N)  is dense in C=(M, N) for the Whitney- 

C=-topology by [7], Proposit ion 8. This is not the case for the ~- topology from [18], in 

which C=(M, N) is a smooth manifold. The charts Uf for fE C~ N) do not cover 

Ca(M, N). 

8.5. THEOREM. Let M and N be real analytic manifolds, where M is compact. 
Then the two infinite dimensional real analytic vector bundles TC~ and 
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C~ TN) over C~ N) are canonically isomorphic. The same assertion is true for 

C~(M, N), 

Proof. Let us fix an exponential mapping exp on N. It gives rise to the canonical 

atlas (Uf, uf) for C~(M, N) from 8.2. TC~(M, N) is defined as the vector bundle glued 

from the transition functions (r, s)~(ui(Ugl(r)), d(uyo ug 1) (r)s). Then T(exp) composed 

with the canonical flip on T2N is an exponential mapping for TN, which gives rise to the 

canonical atlas (U0os, Uooy ) for C~(M, TN), where 0 is the zero section of TN. Via some 

canonical identifications the two sets of transition functions are the same, as is shown 

in great detail in [18], 10.11-10.13 for the analogous situation for smooth mappings. [] 

8.6. LEMMA (Curves in spaces of mappings). Let M and N be finite dimensional 

real analytic manifolds with M compact. 

(1) A curve c: R---~C~ N) is real analytic if  and only if  the associated mapping 

~: RxM--oN is real analytic. 

The curve c:R--->C~ is smooth if and only if ~:RxM-->N satisfies the 
following condition: 

For each n there is an open neighborhood U, of  R•  in R• and a 

(unique) C~-extension ~: U,--->Nc such that ((t, ) is holomorphic for all t E R. 

(2) A curve c: R--->C~(M, N) is smooth if and only if  ?: R• is smooth. 

The curve c: R--->C~(M, N) is real analytic i f  and only if  ~ satisfies the following 
condition: 

For each n there is an open neighborhood U, o f  R x M  in C• and a 

(unique) Cn-extension ~: U,-->Nc such that 6( ,x)  is holomorphic for all 

xEM.  

Proof. This follows from 7.7 and the chart structure on C~(M, N). [] 

8.7. COROLLARY. Let M and N be real analytic finite dimensional manifolds with 

M compacL Let (Ua, u~) be a real analytic atlas for M and let i: N--,R n be a closed real 

analytic embedding into some R ~. Let ykl be a possibly infinite dimensional real analytic 
manifold. 

Then f: J/I--~C~(M, N) is real analytic or smooth if  and only if 

C~(u~ I, i) of'. Jtt---> C~ Ua), R n) 

is real analytic or smooth, respectively. 
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Furthermore f: A/I---~C=(M, N) is real analytic or smooth if  and only if  

C~(u ~ 1, i)of: At---> C~(u a( U ~), R") 

is real analytic or smooth, respectively. 

Proof. By 8.1 we may assume that At=R. Then we can use Lemma 8.6 on all 

appearing function spaces. [] 

8.8. THEOREM (Exponential  law). Let At be a (possibly infinite dimensional) real 

analytic manifold, and let M and N be finite dimensional real analytic manifolds where 

M is compact. 

Then real analytic mappings f:J~---~C~ and real analytic mappings 

f: J/lxM---~N correspond to each other bijectively. 

Proof. Clearly we may assume that J/( is a c~ subset in a convenient  vector  

space. Lemma 8.7 then reduces the assertion to Cartesian closedness, which holds by 

5.12. [] 

8.9. COROLLARY. I f  M is compact and M, N are finite dimensional real analytic 

manifolds, then the evaluation mapping ev: C~(M, N)xM---~N is real analytic. 

I f  P is another compact real analytic manifold, then the composition mapping 

comp: C~(M, N ) •  C~ M)---~C~(P, N) is real analytic. 

In particular f . :  C~(M, N)--,C~ N') and g*: C~'(M, N)--*C~ N) are real ana- 

lytic for fE  C~'(N, N') and g E C~ M). 

e v  =Idc,o(M,N) Proof. The mapping v is real analytic, so ev is it by 8.8. The mapping 

comp A = ev o (Idc~(M ' N) • ev): C~ N) • C~(P, M) • P--) C~(M, N) • M--~N is real analyt- 

ic, so also comp. [] 

8.10. LEMMA. Let Mi and Ni are finite dimensional real analytic manifolds with 

Mi compact. Then fo r fE  C=(N1, N2) the push forward f .:  C~(M, NI)---~C=(M, N z) is real 

analytic if and only if f is real analytic. For fEC~ the pullback 

f* :  C=(M1, N)----~C~(M2, N) is, however, always real analytic. 

Proof. If  f is real analytic and if g E C'~ NO, then the mapping ufog of ,  o Ug I is a 

push forward by a real analytic mapping, which is real analytic by 7.8. 

Obviously the canonical mappings const: N1--~C~(M, N~) and evx: C=(M, N2)--~N2 

are real analytic. I f f .  is real analytic, a l s o f = e v x o f ,  ocons t  is it. 
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For the second statement choose real analytic atlases (Uia, ui~)ofMi such that 
2 1 f (U~)~ U~ and a closed real analytic embedding j: N---~R ". Then the diagram 

f* 
C~(M1, N) , C~(M2, N) 

C~((R/)-l'J) ~ I c~(("2)- 1 'j) 

C ~ 1 1 n ~ 2 2 R n (ua(Ua),R ) , C (ua(U~), ) 
~4oio~4)-')* 

commutes, the bottom arrow is a continuous and linear mapping, so it is real analytic. 

Thus by 8.7 the mapping f ,  is real analytic. [] 

8.11. THEOREM (Real analytic diffeomorphism group). For a compact real analyt- 

ic manifold M the group Diff'~ of  aU real analytic diffeomorphisms of  M is an open 

submanifold o f  C~ M), composition and inversion are real analytic. 

Proof. Diff~ is open in C~ M) in the compact open topology, thus also in 

the finer manifold topology. The composition is real analytic by 8.9, so it remains to 

show that the inversion inv is real analytic. 

Let c: R---~Diff~(M) be a C~-curve. Then the associated mapping d: RxM---~M is C ~ 

by 8.8 and (invoc) A is the solution of the implicit equation d(t, (invoc)^(t,x))=x and 

therefore real analytic by the finite dimensional implicit function theorem. Hence 

inv o c: R---~Diff~(M) is real analytic by 8.8 again. 

Let c: R---~Diff~ be a C~-curve. Then by Lemma 8.6 the associated mapping 

d:RxM--.M has a unique extension to a Cn-mapping RXMc~_JxW--~Mc which is 

holomorphic in the second variables (has C-linear derivatives), for each n~ > 1. The same 

assertion holds for the curve inv o c by the finite dimensional implicit function theorem 

for Cn-mappings. [] 

8.12. THEOREM (Lie algebra of the diffeomorphism group). For a compact real 

analytic manifold M the Lie algebra of  the real analytic infinite dimensional Lie group 

Diff~~ is the convenient vector space C~(TM) of  all real analytic vector fields on M, 

equipped with the negative o f  the usual Lie bracket. The exponential mapping 

Exp: C~(TM)---~Diff~ is the flow mapping to time 1, and it is real analytic. 

Proof. The tangent space at IdM of Diff '(M) is the space C~(TM) of real analytic 

vector fields on M, by 8.5. The one parameter subgroup of a tangent vector is the flow 

t ~--~F1 x of the corresponding vector field X E C~(TM), so Exp(X)= FIx which exists since 

M is compact. 
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In order to show that Exp: C'~176176 M) is real analytic, by the 

exponential law 8.8 it suffices to show that the associated mapping 

Exp A = FII: C'~ x M---~ M 

is real analytic. This follows from the finite dimensional theory of ordinary real analytic 

and smooth differential equations. 

For XE C~ let Lx denote the left invariant vector field on Diff '(M). Its flow is 

given by FILtX(f)=foExp(tX). The usual proof of differential geometry shows that 

d 

d 
dt 

d 
dt 

d 
dt 

d 
dt 

dt 

(FILx) * Lr) (e) 
o 

0(T(FIL~) OLrO F1Lx) (e) 

o T(FIL-~ )(L r (e o Fl x) 

0 (T(F1L-~) T(FlX)o y) 

0(T(FltX) o yo  FiX) 

(FiX_t) * Y= - [X,  Y]. 
o 

[] 

8.13. EXAMPLE. The exponential map Exp: C~(TS l)--~Diff~(S l) is neither locally 

injective nor surjective on any neighborhood of  the identity. 

Proof. The proof of [24], 3.3.1 for the group of smooth diffeomorphisms of S 1 can 

be adapted to the real analytic case: 

q~n(0) = 0+ 2~r + l s i n n  0 
n 2 n 

is Mackey convergent (in UId) to Id s, in Diff~(S l) and is not in the image of the 

exponential mapping. [] 

8.14. Remarks. For a real analytic manifold M the group Diff(M) of all smooth 

diffeomorphisms of M is a real analytic open submanifold of C~(M, M) and is a smooth 

Lie group by [18], 11.11. The composition mapping is not real analytic by 8.10. 

Moreover it does not carry any real analytic Lie group structure by [22], 9.2, and it has 

no complexification in general, see [24], 3.3. The mapping 
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Ado Exp: C~(TM)--~ Diff(M)--~ L(C~(TM), C~(TM)) 

is not real analytic, see [19], 4.11. 

For x 6 M the mapping evx o Exp: C~(TM)-~Dif f (M)~M is not real analytic, since 

(evxoExp) (tX)=FlX(x) which is not real analytic in t for general smooth X. 

The exponential mapping Exp: C~(TM)~Diff(M) is in a very strong sense not 

surjective: In [6] it is shown, that Diff(M) contains an arcwise connected free subgroup 

on 2 ~~ generators which meets the image of Exp only at the identity. 

The real analytic Lie group Diff~'(M) is regular in the sense of [22], 7.6, where the 

original concept of [23] is weakened. This condition means that the mapping associating 

the evolution operator to each time dependent vector field on M is smooth. It is even 

real analytic, compare the proof of Theorem 8.12. 

8.15. THEOREM (Principal bundle of embeddings). Let M and N be real analytic 

manifolds with M compact. Then the set Emb~'(M, N) o f  all real analytic embeddings 

M ~ N  is an open submanifold of  C~ N). It is the total space o f  a real analytic 

principal fiber bundle with structure group Diff '(M), whose real analytic base mani- 

fold is the space o f  all real analytic submanifolds o f  N o f  type M. 

Proof. The proof given in [18], section 13 or [5], 4.7.8 is valid with the obvious 

changes. One starts with a real analytic Riemannian metric and uses its exponential 

mapping. The space of embeddings is open, since embeddings are open in C~(M, N), 

which induces a coarser topology. [] 

8.16. THEOREM (Classifying space for Diff'(M)). Let M be a compact real analyt- 

ic manifold. Then the space Emb~ 12) of  real analytic embeddings of  M into the 

Hilbert space 12 is the total space of  a real analytic principal fibre bundle with structure 

group Diff~ and real analytic base manifold B(M, 12), which is a classifying space 
for the Lie group Diff~~ 

Proof. The construction in 8.15 carries over to the Hilbert space N=l 2 with the 

appropriate changes to obtain a real analytic principal fibre bundle. Its total space is 

continuously contractible and so the bundle is classifying, see the argument in [20], 

section 6. [] 
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