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1. Introduction 

In this paper we deduce algebraic decay rates for the total kinetic energy of weak 

solutions of nonstationary Navier-Stokes equations in exterior domains f t c R " ,  n~>3: 

%v 
+ v . V v - A v + V p = O  i n  (0 ,~ )xQ 

~t 

V . v = 0  in ( 0 , ~ ) x f l  (NS) 

vial=O; v-->O as Ixl-->~, 

vlt= o = a. 

Here v=(v l  . . . . .  v , )  and p denote, respectively, unknown velocity and pressure, while 

a = ( a l  . . . . .  an) is a given initial velocity. By exterior domain we mean a connected open 

set t2 whose complement is the closure of the union of a finite number of bounded 

domains with C oo boundaries. For problem (NS) the existence of a weak solution in L 2 

was first established by Hopf [16] for an arbitrary L2-initial velocity. The uniqueness 

and the regularity of Hopf's weak solutions are still open questions. 

The square of the i f-norm of the fluid velocity v is proportional to the kinetic 

energy of the fluid under consideration; so in view of the presence of the viscosity term 

Av and the no-slip boundary condition vial=0, it is reasonable to expect that the 

solution v would decay in L 2 as t ~ oo. However, it is in general not easy to deduce the 

expected L 2 decay property for the Navier-Stokes problem in unbounded domains. 

This L 2 decay problem was first raised by Leray [24] in the case of the Cauchy problem 

in R 3 and then was affirmatively solved by Kato [20] for the Cauchy problem in R 3 and 

R 4 by using the fact that Leray's weak solutions become regular after a finite time. 



190 BORCHERS AND MIYAKAWA 

In this paper we are interested in the L 2 decay property of weak solutions of the 

exterior problem (NS). Since we want to discuss also the case of space dimensions >4, 

in which the regularity after a finite time of weak solutions can no more be expected, 

we have to employ another approach different from that of [20]. Our approach adopted 

here is based on the Fourier analysis for closed linear operators in Banach spaces and 

extends those of Schonbek [33, 34], Kajikiya and Miyakawa [18], Botchers and 

Miyakawa [3] and Wiegner [43], all of which were developed in the case of entire 

spaces R" and halfspaces R+, n~>2. This approach does not require the regularity of 

weak solutions and, moreover, provides apparently optimal decay rates. 

To explain our approach, let us consider the linearized version of (NS), namely, 

the Stokes problem in exterior domains: 

200 Av~176 in (0 ,~)xt2 
Ot 

V.v~ in (0, oo)xt2 
(s) 

v~ v~ as 

v~ = 0 = a. 

It is known [4] that the map a--->v~ t~O, defines a bounded analytic semigroup of 

class Co in each L r space, l < r < ~ ,  of solenoidal vector fields. As in our previous work 

[3], we want to state our decay results in the form of the comparison of the decay rates 

of weak solutions v with those of functions v ~ corresponding to the same initial data as 

v. To do so, we need first analyze decay properties of v~ and then find an appropriate 

estimate on the nonlinear term v. Vv which ensures that the low-frequency components 

ofv. Vv can be made as small as we please as t---~. To this end we use as our basic tool 

the negative of the generator of the above-mentioned semigroup, namely, the Stokes 

operator A=Ar in L r spaces. Due to the boundedness and analyticity of the correspond- 

ing semigroup, the fractional powers of Ar are defined in the standard manner as in [21, 

22, 26, 42]. Using the recent result of Giga and Sohr [13], which guarantees the 

existence o f  bounded pure imaginary powers of At, we apply the complex interpolation 

theory of Banach spaces to examine the domains of the fractional powers and thereby 

establish an embedding theorem of Sobolev type involving the fractional powers. This 

embedding theorem, stated in Section 4, enables us to analyze decay properties of 

functions v~ as well as to find a nice estimate on the nonlinear term v. Vv. These 

results on v ~ and v. Vv combined with general calculation schemes as developed in [3, 

18, 33, 34, 43] eventually yield the desired L 2 decay results for weak solutions of (NS). 
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As shown in Section 5, our estimate on v" Vo automatically gives a definite algebraic 

decay rate for its low-frequency components depending only on the space dimension n. 

This indicates that in general we cannot expect that our weak solutions themselves 

would decay more rapidly than the nonlinear term, even when the corresponding 

functions o ~ decay in L 2 exponentially. 

In [25] Maremonti discussed L 2 decay problem for (NS) in three dimensions. 

Applying the energy integral method of Heywood [15], he proved that if a is in LrnL 2 

for some l<r~<2, then there is a weak solution which decays in L 2 like the correspond- 

ing solution o ~ of (S). This result does not reflect the presence of the nonlinear term, 

because, as will be shown in Section 2, in his case the nonlinear term decays more 

rapidly than the function o ~ and the decay property of his weak solutions is determined 

by that of o ~ Our results thus include that of [25] as a special case (see Theorems A and 

B in Section 2). 

Using the boundedness of the semigroup a-->v~ in general U spaces, we can 

show (see Lemma 5.2) that any weak solutions decay in Lq-norms, n/(n- l)~<q<2, if the 

corresponding initial data belong to U n L  2 for some l<r<.n/(n-1). This improves the 

same type of result of Galdi and Maremonti [10, 25] and implies in particular that the 

weak solutions treated in our Theorem A in Section 2 decay in L q, r<~q<.2, with explicit 

rates in case r<q<~2, if in addition r<2n/(n+2); see Theorem C in Section 2. 

Our main results are stated in Section 2. Sections 3 and 4 are devoted to the study 

of the Stokes operator A ,  Since in our case A, has no bounded inverse, the study of 

fractional powers requires more careful arguments than in the case of bounded domains 

as treated in [12]. We use homogeneous Sobolev spaces to examine the domains of 

fractional powers by means of the complex interpolation theory, and prove that the 

functions Vu and All2u have equivalent L~-norms provided l< r<n .  The same result is 

given in [13] for l<r<n/2 and l<r<~2. To extend the range of r to l < r < n ,  we consider 

the stationary Stokes problem with singular data and deduce a coercive estimate on L r- 

Dirichlet norms, l< r<n ,  of solutions. The desired equivalence of Vu and Al/2u in 

appropriate L ~ spaces is then deduced through an interpolation argument, and this gives 

us an embedding theorem of Sobolev type for domains of fractional powers. 

The above-mentioned estimate for the stationary Stokes system with singular data 

was first deduced by Cattabriga [6] in the case of three-dimensional bounded domains. 

We first extend Cattabriga's result to the case of general space dimensions and then 

apply the cut-off argument as developed in [4] in order to decompose our problem to 

the cases of entire spaces and bounded domains. This is carried out in Section 3. 

The present work was initiated while the second author was visiting the University 
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of Paderborn in 1986--87. We wish to thank Professors R, Rautmann and H, Sohr at the 

University of Paderborn for a number of stimulating and helpful discussions and 

valuable suggestions. 

2. Main results 

We introduce some notation and definitions. Given a domain f2 of R", we denote by 

Co(f2) the set of scalar, as well as vector, C~176 with compact support in g2. 

C~.o(f2) is the set of solenoidal vector fields on f2 with components in Co(f2). For 

simplicity we use the same notation for denoting spaces of scalar and vector functions 

unless otherwise Specified. Lr(f~), l<~r<~oo, is the usual Lebesgue space with norm 

II" IIr=ll'llr, Q; and for nonnegative integers k , / / , r (Q)  denotes the U Sobolev space with 

norm is the/-P'~-closure of Co(~2). When fl is unbounded, we 

need also the homogeneous Sobolev space/~0'r(Q) defined as the completion of Co(Q) 

in the norm 

IIV ullr = tla~ 
lal=k 

where ~=%~' ... ~", ~i=O/3xi and lal=al + . . . + a ,  for any multi-indices a=(al , . . . ,  a,) of 

nonnegative integers. The bracket ( .,. > stands for the duality pairing between various 

Banach function spaces which extends the standard LZ-inner product for real-valued 

functions. H-k'r(t)), and l:I-k'r(t2), l < r < ~ ,  denote the dual space of /~0'r'(D) and 

I~o" r' (f~), r' =r/(r- 1), respectively. 

We now define the notion of weak solution of problem (NS). For an exterior 

domain s of R", n~>3, we denote by L[,(f~), l < r < ~ ,  the U-closure of C~,o(Q). Then we 

have the Helmholtz decomposition of Lr-vector fields: 

Lr(f~) = Lr(f~)+Gr(~2) (direct sum) 

L~(f2) = {u 6 Lr(Q); V, u = O, u. via a = O}; (2.1) 

Gr(Q) {?p fiLr(ff2); r - = p 6 z,,o c ( e ) } ,  

where V- u is understood in the sense of distributions and the normal component u. vl~ n 

of u is well defined in the dual space w-l/"'(%f~) of the fractional Sobolev trace space 

WV"~'(3~) = Wt-1/r"r'(~g2). Further we have ([28]) 

L~(g2)* = L~(g2); G'(g2) = L~(f2) • (2.2) 



NAVIER--STOKES EQUATIONS 193 

where * means the dual space and " the annihilator. The results (2.1) and (2.2) are 

proved in [28, 37] for three-dimensional exterior domains, but the proofs given [28] 

applies also to higher-dimensional case. 
= oo Let a6L2(O).  A function v in L (0, ; L2o(f~))NL2(O,oo /~'2(ff2)) is called a weak 

solution of problem (NS) if v is continuous from [0,oo) to L2(~) in the weak topology, 

v(0)=a, and the identity 

f t f, (v( t ) ,$( t ) )+ ((Vv, V $ ) + ( v . V v ,  d~))dr= (v(s),q)(s))+ (v,q~') dr (2.3) 

holds for all O<~s<.t<~ and ~b 6 c l ( [ 0 ,  oc); L 2 (~-~)) ['1C~ oo);//01 '2 (~'-~) [-] Ln(~-~)). Here 

r and (Vv, V$)=r.i(Siv , %,~p ); the requirement that ~b be in L"(g)) is necessary 

in order for the nonlinear term in (2.3) to be well defined. In the usual definitions of 
2 2 weak solution the function v is required only to be in Lloc([0,oo);Lo(fl))NLlo c ([0, m); 

/t0 L2 (•)). However, since all the weak solutions constructed so far satisfy the energy 

inequality: 

fO t IIo(t)ll~+2 IIXToll~dr~ Ilall~ 

for all t~>O, we adopt our present definition. Since the weak continuity of v necessarily 

follows from (2.3), our definition of weak solution agrees with the usual ones (see [23, 

27, 30, 35]). 

We can now state our main results. 

THEOREM A. Let n~>3, a ELf(f2) and let v ~ be the solution of  problem (S) with 

v~ 

(i) There is a weak solution v of(NS) with the following properties: (a)IIv(t)llz-,0 

as t---~oo. (b) I f  in addition ]]v~ -a) as t--,oo for some a>0,  then Ilv(t)ltE--O(t -~) 
as t---~oo, where fl=min(a, n/4-e) and e is an arbitrary number such that 0<e<l /4 .  

(c) The function v(t)-v~ satisfies ]lv(t)-v~ -n/4+'/2) as t-,oo. (d ) I f  in addition 

Ilv~ -~) as t--)oo for some a>O, then Ilv(t)-v~ -r) as t---~oo, where 

y=n/4-1/2+a if  a<l/2; and 0<7<n/4 is arbitrary in case a>~l/2. 

(ii) I f  a weak solution v o f  (NS) satisfies the energy inequality o f  the following 

f o rm"  

13-908283 Acta Mathematica 165. Imprim6 le 8 novembre 1990 
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fs 
t 

IIv(t)ll +2 IIXTvll  d~ ~ IIv(s)ll  for  s = O, a.e. s >0 and all t >t s (E) 

then v possesses all the properties (a)-(d) described in (i). 

Part (i) asserts the existence of a weak solution with properties (a)-(d) for any 

initial data a E L](f2), while part (ii) asserts that any weak solutions satisfying the 

energy inequality (E) have properties (a)-(d). We note, however, that the existence of a 

weak solution satisfying (E) is known only when n=3,4 (see [20, 24, 29]), and, 

moreover, it seems impossible to deduce (E) for general weak solutions in case n~>5. It 

is also proved in [29] that the energy inequality (E) implies property (a). Our part (ii) is 

thus an improvement of the decay result established in [29]. 

Theorem A was first proved by Wiegner [43] for the Cauchy problem, with 

fl=min(a, (n+2)/4). The same result can be deduced also in the case of halfspaces if we 

use various estimates given in [3]. Contrary to these cases, our Theorem A provides 

slower decay rate: fl=min(a, n/4-e) .  As will be shown in Sections 4 and 5, this is 

mainly because our embedding theorem for domains of fractional powers holds only for 

the exponents l< r<n .  

When a ELr(f~)NLE(f~) for some l< r<2 ,  one can take a=(n/r-n/2)/2 as shown in 

Section 4. Hence in this case f l=a and we obtain the following, which is due to 

Maremonti [25] in case n=3. 

THEOREM B. I f  a ELf(f2)NLE(Q)for some l< r<2 ,  and n>~3, then there is a weak 

solution v o f  (NS) such that Ilv(t)llE=O(t -7) as t-~oo, where 7=(n/r-n/2)/2. The same 

holds for any weak solutions satisfying energy inequality (E). 

Our final result concerns the behavior of Lq-norms, q<2, of weak solutions. The 

following improves the same type of results of Galdi and Maremonti [10, 25]. 

THEOREM C. / f  n~>3 and aELr(ff2)fqL2o(f2) for some l<r<<-n/(n-1) with r< 

2n/(n+2), then the weak solution given in Theorem A lies in the space L~(O,oo;Lq(~)) 

for all r<<.q<~2; and we have Ilv(t)llq=o(t -~) as t---~oo, with ~l=(n/r-n/q)/2 provided q<2. 

Theorems A and C will be proved in Section 5, after preparing necessary material 

in Sections 3 and 4. In what follows we use the summation convention and C denotes 

constants which may vary from line to line. 
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3. The Stokes operator over an exterior domain 

We first define the Stokes operator and discuss its basic properties, let P=P~ be the 

bounded projection from L~(f~) onto L~(f~), l < r < ~ ,  associated with the Helmholtz 

decomposition (2.1). The operator 

Au = ArU = - P r  AU, u 6D(Ar)  = L~ (f~) fl H~o" r(Q) n H2'r(ff2) (3.1) 

is called the Stokes operator in Lr(Q). The equation A u = P f  is equivalent to the 

stationary Stokes system: 

- A u + V p = f ,  V . u = 0  in f , ;  
(SS) 

v ia l=0;  u---~O as [xl~oo. 

Since (SS) is elliptic in the sense of Douglis and Nirenberg, elliptic regularity theory as 

given in [I] implies that Ar is a densely defined closed linear operator in L~, (f2) and, for 

each m= 1, 2 . . . . .  D(A m) is contained in HZm'r(f2) with the graph-norm equivalent to 

11"l12m,~" The dual operators of P~ and A r are given by 

e* = P~,, A* =A~,, r' = r/(r-1) (see [9]). (3.2) 

It is known [11, 37] that -Ar  generates an analytic semigroup (e-tar; t>~O} of class Co. 

In this paper, however, our subsequent argument is based on the following improve- 

ment of the results of [11, 37], which is due to [4] and [13]. In what follows the 

complexifications of various function spaces will be written with the same notation as 
the original real ones. 

THEOREM 3.1. I f  n>~3 and l < r < ~ ,  then for  each O<e<x/2 there is a constant 

c~=c(e,r,n,Q) so that for  all u6Lr(ff2), tf iR and all complex numbers 24=0 with 

larg2[~:r-e, we have 

(i) II(~ +a)-aull <.c, lZl-'llullr. 
(ii) IlVZ(~+a)-'u}l <.c, llull~ provided l<r<n/2. 
(iii) The pure imaginary powers (~.+mr) it, )~>0, are defined as bounded linear 

operators on L~ (f2) satisfying the estimates 

I)(2 + Ar)i'ullr <. c /l'lllull r. 

Parts (i) and (ii) are proved in [4] and part (iii) in [13]. By (i) we can define the 

fractional powers Ar ~, a~>0, as in [21, 22, 26, 42]. Part (iii) is proved in [13] only for).=0; 
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but one can easily verify that the proof of [13] actually asserts our version (iii) stated 

above. Part (iii) enables us to study the domains of Ar ~ with the aid of the complex 

interpolation theory. From (i) we can deduce 

r - t A  r PROPOSITION 3.2. (i) The analytic semigroup te ; t~O) is bounded. 

(ii) For each a>~O we have the estimate 

Ilaae-'aull~<.ft-~ uEL~,(Q), t>0. (3.3) 

(iii) For each a~>0, 

IIA~(Z+A)-~ullr<.Cllull . u~L~(~) ,  ~.>0. (3.4) 

(iv) The operators A~, a>-O, are all injective. 

Proof. The boundedness of the semigroup and estimate (3.3) for integers a~>0 are 

well known; see for instance the argument in [19, p. 491]. Application.of the moment 

inequalities [22]: 

IIA~ullr <~ CIIA~ull~ IIA~ull~ -~ 0 ~ a < ~ < ~, <~ 1, 0 = (7-~)/(~'-a) 

then yields (3.3) for general a~>0. Estimate (3.4) follows from Theorem 3.1 (i) and [21, 

Proposition 6.3]; see also [26]. Now ifAru=0, then elliptic regularity theory implies that 

u E Lq(f2) for some q>2. Thus, assuming without loss of generality that the origin is 

outside ~), we easily see that 

f~ lulZlxl-"dx = o(logR) R ~ w. a s  

n (Ixl-<R} 

Hence the uniqueness theorem of Chang and Finn [7, Theorem 6] implies that u=0. 

This shows that all integer powers of A r are  injective. If A~+au=0 for some integer 

m~>0 and 0 < a < l ,  then we obtain by (3.2), 

0 = m+a 1-a qg> for all q~ (A~ a,ar '  q~) = ( u,Am+'--r' ED(A'fl '+')" 

This shows u ED(Am+I),  Ar z+l u=0 and therefore u=0. Thus, all powers Ar ~, a~>0, are 

injective. The proof is complete. 

By injectivity of Ar ~ the map u~tlAaullr defines a norm on D(Ar~), so we can 

introduce the Banach space 
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a _ _  D r - the completion of D(A~) in the norm IIA a" lit (3.5) 

Our aim in this and the next sections is to characterize some of these spaces concretely 

in terms of the complex interpolation theory with the aid of Theorem 3.1 (iii). To do so, 

we begin with the following result of Bogovski [2] which shows existence of a 

continuous right-inverse for the divergence operator with zero boundary condition in a 

bounded domain. 

PROPOSITION 3.3. Let D be an n-dimensional bounded domain, n~2, with locally 

Lipschitz boundary. Then there exists a linear operator S: Co (D)--*Co(D) ~ such that for 

all fE  Co(D), 

Ilsfllm+,,~<<.fllfll~,r, m = 0,1,2 ..... l < r < ~ ,  (3.6) 

with C depending only on m, r and D; and 

V. S f = f  for all fE  CO(D) with f fdx = 0. (3.7) 
JD 

Here II'llm,r is the norm of I-lm'r(o). 

From (3.6) it follows that S extends uniquely to a bounded operator from 

H~0'r(D) to/-~0 +m'r(D) ". We refer to [5] for a complete proof of Proposition 3.3 which is 

roughly described as follows: We first consider the case where each point in D is 

connected by a segment in D with a point of a fixed open ball B such that /~cD. The 

operator S is then expressed as 

fo Sf(x)= G(x,y)f(y)dy, G(x,y)=(x-y)  h(y+t(x-y))t~-ldt, 

in terms of any fixed function h E CO(B) such that .[ hdx= 1, and the proof is carried out 

with the aid of the Calderon-Zygmund theory [40] on singular integrals. The general 

case is then treated by reducing the problem to the case stated above by means of a 

partition of unity. It is also shown in [5] that the method of proof illustrated above 

yields the following, which is important in the next section. 

PROPOSITION 3.4. The operator S restricted to {fECo(D); Sofdx=O} extends 

uniquely to a bounded operator from H-I"(D) to L'(D)". 

We now prove an estimate on solutions of the stationary Stokes system (SS) with 
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singular data which extends a result of  Cattabriga [6] obtained in the case of bounded 

three-dimensional domains�9 In what follows the norm of the space /1-m'r(f2), m>0,  

l < r < ~ ,  is denoted by [. ]_m,r=l'l_m,r,f~. 

THEOREM 3.5. (i) Let n~>3, l<r<n, u 6D(Ar), p ELr(f2) and f = - A u + V p .  Then the 

estimate 

I lVullr + [lPllr ~< Clfl-,,r (3.8) 

holds with C independent o f  u and p. 

(ii) I f  n>~2, p 6 Lr(ff2) and 1 < r <  ~,  then Vp 6 I?t -l' r(ff2) and we have 

I[Pllr ~< ClVPI-,,r (3.9) 

with C independent o f  p. 

(iii) I f  n>-2 and q is a distribution on s such that Vq6/1-1"r(~)for some l < r < ~ ,  

then Vq=Vp for some p in Lr(Q). 

THEOREM 3.6. If n~>3 and l<r<n, then we have the estimate 

[IVUlIr<.CsuPI<Vu, Vv>I for u6D(Ar) , (3.10) 

where the supremum is taken over all v fi C~,o(f~) with IlVVlIr, = 1. 

Remark. When f~ is bounded and n=3,  estimate (3.8) is due to Cattabriga [6] and is 

valid for l<r<oo.  As shown below, this result of [6] is true in all dimensions n~>2. 

Kozono and Sohr [45] have also proved (3.8) and (3.10) for n'<r<n. Although the 

arguments in [45] are almost the same as ours, we give here the detailed proofs since 

our results cover a broader range l < r < n .  In what follows Al'r H~,o(f2) denotes the 

/~1, r_closure of C~, o(f2). 

Proof o f  Theorem 3.6. We deduce Theorem 3.6 from Theorem 3.5. For  u in D(Ar) 
�9 ^ l , r '  :~ we regard g = - A u  as an element m H~,o(Q) , the norm of which we denote by [l" [l*. By 

AI, r, the Hahn-Banach theorem one finds an fE/~- l ' r (Q)  with f = g  on H~,o(Q) and 

Ifl-l,r =llgll*. By a theorem of De Rham [32, Theorem 17'], f - g = V p  for some distribu- 

tion p on Q; and by Theorem 3.5 (iii) we may assume that p ELf(g2). Applying (3.8) to 

f = g + ? p = - A u + V p  we find in particular that 
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IIVullr <<- CIf]-l ,r = CIIgH*. 

By definition of the norm ]l" I[*, this proves (3.10). 

It remains now to prove Theorem 3,5. The proof will be carried out in several 
steps. We begin with the case of entire spaces R", n~>2. 

PROPOSITION 3,7. Let  n>~2 and l<r<o~. 
(i) If p E Lr(R"), then Vp E/~-1' r(R, ) and the estimate 

IIPIIr, R,<-CIVPI_I,r,R . 

holds with C independent o f  p. 

(ii) f f  q is a distribution on R" with VqEIgl-l'r(Rn) for some r, then there is a 

(unique) funct ion p ELr(R ") with Vq=Vp. 

(iii)/f u E/to11~(R"), p E L~(R ") and f =  -Au+Vp,  then the estimate 

IlVUIIr, R, +IIPIIr, R . <- Clf[-1,r,R, (3.11) 

holds with C independent o f  u and p. 

Proof. (i) Since the reverse inequality is obvious, we may assume that p is in 
C~(R"). By an elementary calculation, 

f x--y p(x) = c n i x _ y l .  (7p)(y)  dy -- Kj* (Ojp). 

For q~ E Co(R" ) we have 

I(P, ~0)1 = I(Kj.  (ajp), r gj*q~) I. 

Thus, if Kj .  q~ is in/-)~' ~'(R"), the Calderon-Zygmund theory [40] on singular integrals 
yields 

I ( (Ojp, Kj *~)l ~< [VPI_I,,,R,IIVK * dP[l~,,a,<~ ClVPI_1,r,R.II~IIr, ,R.  

and the proof of (i) is complete. We thus need only show that Kj * q~ E H~' QR"). Let 

r be such that 0~<~<1; r if ]x]~<l; ~=0 if ]xl~>2; and set r162 

Obviously CNKj.* q~ E CO(Rn). We write 

IIV(l - ~u) Kj * tilt,  R. --< I1(1 -- ~N) VKj * r . ~  II(V ~N) Kj * *11~, . ~  -= IU§ 
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Since VKj * d? E Lr'(R n) by the Calderon-Zygmund theory, IN--->O as N--> ~.  To handle JN 

we fix M>0  so that supp ~p is contained in the ball of radius M centered at the origin. By 

an elementary calculation, 

i (f )r (JN) r' <~ c g  -r' dx Ix-yl~-n iq~(y)[ dy 
JN<~I<~2N I<~g Ify )r 

c g - r ' ( g - M )  r'(l-n) dx I~(Y)I dy 
JN<~IxI~2N I<~g 

<~ CNn(l-r')---> 0 as  N---> or, 

since r ' > l .  This proves that Kj* dp E/t~ ' r ' (Rn) .  

(ii) Let  ['=l~r be the projection associated with the Helmholtz decomposition of 

Lr(Rn). Since _Pu=u-Vp, where p solves Ap=V. u in R ~, 

(Pu)i = (6jk+RjRk) u k, j = 1 . . . . .  n, 

in terms of the Riesz transforms [40] R=(R1 .. . . .  R,,) and Kronecker 's  symbol 6jk. Thus 

we can directly decompose I:I-I'r(Rn)=R([')+N(['), because the Riesz transforms are 

bounded linear operators in /t-l 'r(R"). We write Vq=u+VpER([')+N([') with 

p = - ( - A ) - l / 2 R . g  for some g=(gj)E H-I'r(R"). As in the proof of (i), one can show the 

boundedness of the Riesz potential ( - A )  -1/2 from Lr'(R ~) to /~ ' r ' (R ' ) ;  so by duality, it is 

bounded from /~-l'r(Rn) to Lr(R~). Hence pELr(Rn). Since A(q-p)=V'u=O,  

A(V(q-p))=O. Since V(q-p)  EI:I-l'r(Rn)cH-l'r(R"), elliptic regularity theory implies 

V(q-p) E H~'r(R~) and so V(q-p)=O. 

(iii) We first show that if p is a scalar function in/~0 ~' r(Rn), then 

IlVPlIr, Rn < CIAPI_Lr, R ~ (3.12) 

with C independent o fp .  By the Hahn-Banach theorem we can take g=(gj) from Lr(R ~) 

so that - Ap = V. g and lAp I_ L ~, Rn = I Igllr, R n" We approximate g in U-norm by smooth and 

compactly supported gm and set p m= ( - A)  -1V'gm, where ( - A )  -~ means the convolu- 

tion with the standard fundamental solution of - A .  Then Vpm=R(R "gin) converges in 

Lr-norm to some fELr(R"); and by the Helmholtz decomposition, f=Vq  for some 

q E Llroc(Rn). But then, as m---> ~ ,  

-Apm = V.gm-->-A p = - V . f =  - A q  

in the distribution topology, so A ( q - p ) = 0  and therefore A(V(q-p))=0. Since 
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V(q-p) E Lr(Rn), Vq=Vp. Estimate (3.12) follows from Vp=Vq=R(R �9 g) and Lr-bound - 

edness of the Riesz transforms. 

We can now prove (3.11). From the equation -Au=l~f, the boundedness of 15 in 

/-]r and estimate (3.12) it follows that 

tlVUlIr, R~ < CIPfI_~,r,R, <" Clfl_~,r,R,. (3.13) 

Hence from (i) and the equation Vp=f+Au we obtain 

[IPlIr, R n ~ ClVPI_I,r, Rn ~ C(IfI_I,r,R.+ IAuI_I,r,R n) 

<<- C(IfI_I,r,~,+IIVuIIr, R,) <- CIfI_a,,,R," 

Combining this with (3.13) yields estimate (3.1 I). The proof is complete. 

We next consider the case of bounded domains and extend the result of Cattabriga 

[6] to all dimensions t>2. 

PROPOSITION 3.8. Let D be a bounded domain with smooth boundary in R n, n>~2, 
and let l<r<oo. 

(i) I f  p ELr(D), then Vp EH-1'r(D) and 

P-- fD p r,O ~ C]IVPII-I'r'D 

with C independent of  p, where ~-D means integration over D with respect to the 
normalized Lebesgue measure and I1" [I-l,,,D is the norm of H-I'r(D). 

(ii) I f  q is a distribution on D with Vq E H-I' r(D), then Vq=Vp for some p E Lr(D). 
(iii) 1 r I f  u E o: o(D) and p E Lr(D), then f= - Au + Vp E H- 1, r(D ) and 

IIVUIIr'D+ P-f9 ,,D <'cllfl[-l'r'D 

with C independent of  u and p, where 1,r H~,o(D) is the HI'r-closure of  Co, a(D). 

Proof. (i) Proposition 3.3 implies that the divergence operator 

V. : H~' r' (D) -'---> Lr'(D) 

has the closed range 

R(V')= { fELr'(D); fDfdX=O ).  

(3.14) 
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Hence (i) is obtained by duality and the closed range theorem [44]. 

(ii) Consider the gradient operator 

V: L"(D) ---> H -1' r(D). 

By the proof of (i) the range R(V) is closed and 

R(V) = N(V. )• = {u C H~' r'(D); V.u = 0} • 

It suffices therefore to show that (Vq, u)=O for all u CN(V.). Take uj from Co(D) so 

that uj---.u in HI'r'(D) and so V.u j~V 'u=O in Lr'(D). By Proposition 3.3 the functions 

vs=uFS(V.uj) are in C~o(D) and satisfy 

Ilu-vslll,r,,o < Ilu-u ll,,r,,o+lla(v'u)lh,r,,o 

< Ilu--u III,r,D+CIIV'ujIIr'D 

---~0 as j---> ~. 

Since (Vq, v j )=- (q ,  V. vj)=0, we obtain as j - - -~ 

I(Vq, u)l = I(Vq, u-vs)l <~ IlVqll-l,,.,DllU-vslh,r',D~O" 

This proves (ii). 

(iii) Let A=Ar be the Stokes operator in Lr(D). By Giga [12], 

1/2 _ 1, r r D(A r )-H~ (D)NLo(D), 

which equals l,r H~,o(D) in view of the proof of (ii), and we have the estimate 

C-IIIVulIr, D < Ilal%llr, D CIIVulIr, D, U ~D(Ay2). (3.15) 

Assume first that u E D(Ar) and p E HI'r(D). Then AU=PDfi where PD is the projection 

associated with the Helmholtz decomposition of tr(o). Since {A~!Ev; v E C~,~(D)} is 

dense in Lr'(D), (3.15) yields 

1/2 1/2 . oo 
IlVulIr, D < C[[A1/2UHr, D = C sup{I ( m)/2 u, a r, v ) l / liar, Vllr,,D, v E Co, o(O)} 

<~ CsuP{l(eDf, V>I/IlVvlIr',D; CL,(D)).  

Since (PDfi V)=(f i  V) for vE C~,o(D), the last terms is estimated as 

< Csup{I ( f ,  w)l/IlVwllr',D; w e Co(D) } = Cllfll-l,r,D" 
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This, together with part (i), yields (3.14) in case u E D(Ar) and p 6Hl'r(D). The general 

case is then treated through approximation. The proof is complete. 

Proof  o f  Theorem 3.5. (i) Take ~p E Co(R") with q~= 1 in a neighborhood of the 

complement of Q, and let u E D(Ar), p ELf(D), l<r<oo. Choosing open balls B1 and B so 

that 

N (supp ~p) c B 1 c/~1 c B, 

we decompose u as follows: 

b /=  b/l-q-L/2; 

U 1 = ~Jt / -S(V~/) . /d)  ~ D(Ar, Bnf~), u z = ( l -V)  u+S(VI~, u) E D(A,R,), 

where S is the operator given in Proposition 3.3 with D a neighborhood of supp V V such 

that/5 is compact in B N f2. Since S(VW. u) E H3o ~ r(D) if u E D(Ar), we always understand 

that S(V~p. u)6H03'r(R ") by setting S(V~0. u)=0 outside D. Ar, snn and Ar, Rn denote the 

Stokes operator on B N ~ and R", respectively. Now l e t f = - A u + V p ;  by direct calcula- 

tion we have 

fl --- - Aul + V(VP) = Vf+PVV/-  2V~0. Vu-  uA~p + AS(V V �9 u). 

Applying (3.14) with D =B N f2 yields 

(3.16) 

IlVudlr+ll~'pllr ~f(llLLl-~,r,D + yz ~PP ) 

<. c( (IIWTII_~,r,o+IIVW. VuII_~,~,D+IIuA~II_I,~,D 

"}-IIAS(Vlff" R)II_I,r,D-I-I[pVl/)[I_I,r,D + ~ lffp ) 

~<c(IV,fl_l.r+lvW.Vul_,.,+luA,/,l_l.r+llVS(VVa.u)llr 
(3.17) 

where [[ ' [ [ - l , r  is the norm of H-l 'r(~). We estimate the right-hand side as follows: Since 

suppVv=BNQ and since ~ E Co(f~) vanishes on Of2, it follows from the Poincar6 

inequality that 
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I(Wf, r ~ ) l  ~< Ifl-,.rllV(ve~)llr' 

Clfl-l,r(llV~llr'+ll~llr'.D) ~< Clfl-,.rllV~ll~' 

where D=B N ~, and C depends on ~. Hence we have 

I~Pfl_,,r<~Clfi_,,r (1 < r <  oo). (3.18) 

Next, Proposition 3.3 yields 

IlVS(V~o.u)ll~<-CllV~o.ullr<-fllullr, suppvw (1 < r <  ~) .  (3.19) 

On the other hand, the Poincar6 inequality yields 

I(VW "vu, ~)l = l( vu, (VW)~)l = l( u, (V2w) r ) I 

<- C [lUllr, supp vw(l l~)llr,,o + llV q~llr ,) <. C Ilullr, supp vwllV e~llr, ; 

I(u6~0, ~ )l ~< CllUllr, sup~vwll~ll,' O ~< Cllullr, su~pvwllVq)llr" 

We thus have 

IV~Vul - , , ,~ f l lu l l~ ,~u~w;  luAWl-l,~Cllullr,~u~p~w ( 1 < r < o o ) .  (3.20) 

From (3.17)--(3.20) we obtain 

"VUlII~+IIWPI'r<'C(IIflII-"r'~ (3.21) 

<-C(,fl-,.~+lJull~.suppvw+,~VWll-,.r+fWP) �9 

Consider now the function fE=-Au2+V((1-~p)p) on R ". By (3.11) we have 

IlVu:llr+ll(1-W)pHr <~ Clf:l_ ~,r, ~" (3.22) 

We first discuss the case where n'<r<oo. Taking ~02EC~(Q) such that ~pz=l in a 

neighborhood of supp(l-~p) and ~p2=0 in a neighborhood of aft ,  we find that, for 

e Co(R"), 

(f2, ~b) = (A,~fl2,) = ( f, ~02q~)-(f , , ,2@). (3.23) 

Next, choose v2~E Co(B) such that ~pl=l in a neighborhood of B~. Since fl vanishes 

outside B1, we see that (f l ,  ~P2r (f~, ~'~ V22r So (3.23) gives 
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Applying Sobolev 's  inequality yields, with 1/(r')*= 1/r'-1/n, 

IlV(w2 ~)ll,, ~< C(llV~,ll,, R~ IIr R~ < C(llV4,11,, R~ [[q~ll(r,),, R") 
cIIVe, II,,,R.; 

IIV(w~ ~2 @r'o <~ C(IlVC~tI.,,R.+tlCV(W, W~)II., R.) 

~< c(llV~llr,,~~ I1~11(.,).,~.) ~< CIIV~IIr,,~~ 

Thus (3.24) implies that 
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(3.24) 

Admitting this lemma for a moment,  we continue the proof  of  Theorem 3.5. Let  

l<r<~n'. Since (f2, q~) = (Vu2, V~) - ((1 -~p)p, V. ~O), we may replace q0 E Co(R n) by 

r/=q~+c, where c is a constant vector. We fix c so that 

fB rl dx = O. 
I 

Using the functions ~0~ and q~2 introduced above, we then obtain 

<A, ~> = (A, ~) = (f,  ~2 ~ ) - ( f , ,  ~, w2,~). 

Using the Poincare inequality: 

[[O[[r',B ~ C ( llV (/)[lr',B q- fBl ll dx ) 

(3.27) 

(3.28) 

LEMMA 3.9. I f  r>~n, the space I2I~"(f2) contains all the smooth functions which are 
constant for large Ixl and vanish in a neighborhood of af2. 

[f2[-1,r R" ~ C([f[-1 ,+[[fl[[-l,,,D)- (3.25) 

Combining (3.21), (3.22) and (3.25) gives 

I[Vbll[rq-l[pl[r~C(lf[_l,r"}-l]l.tllr, stlppV~p"[-llpV~d]l_l,rq- fD~p ) (3.26) 

t oo for n < r <  , with C independent of  u and p. To discuss the opposite case l<r<-n', we 

need the following lemma. 
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and (3.27), we see that 

IIV(~: r/)llr, ~ C([IVq~[I~,,R,~-t177V~0ZlIr,,R,) 

<~ C(llVe~llr, R,+ll~llr',B) <~ CIIVr 

IIV(w~ ~:'7)II,',D ~< C(llV~llr, ~.+I,TV(V:,~0:)II~, ~) 

~< C(IIV~II,,,~.+II~II,,,~) ~< CIIV~llr,,~,. 

Since ~p2r/E/l~'~'(f~) by Lemma 3.9 (3.28) implies (3.25) and we obtain (3.26) for 

l<r<~n'. 

Now fix l < r < n  and suppose the estimate (3.8) is false; then there are sequences uj 

and pj with IlVujll,+llpj[l~---1 a n d  [fjl_l,r-")0, where fF -Au j+Vp: .  We may assume that 
uj~u  weakly in /q01'r(ff~) and pj---~p weakly in Lr(g2). Then, since u j~u  weakly in 

Lr*(~), 1/r* = 1 / r -  1/n, we obtain for q~ E D(A~,) n D(A(~,),), 

( fj, dp ) = (Vui, Vdp ) = (uj, a(,.,), cp ) --', (u, a(,,,), (p ) = O. 

Since (r*)'<r', D(A,,)ND(A(~,y) is dense in D(A(r,),) with respect to the graph-norm; so 

(u,A(~,yq~)=0 for all ~bED(A(~,),) and therefore uED(Ar*),Ar*u=O. Hence u=0. But 

then, f : ~ - A u + V p = V p = O  in the distribution topology, and we get p=0 because 

p CU(ff2) and g2 is an exterior domain. We have thus proved that u j~0 weakly in Lr*(f2) 
and p j~0  weakly in U(g2). In particular, u j~0 weakly in H~'r(r and since U * c U  on 

suppV% it follows that uj is bounded in H l'r in a neighborhood of supp V~p. The 

Rellich-Kondrachov compactness theorem [8] now implies that 

uF-~0 in Lr(suppV~p) and pjV~p-->0 in H-l'~(f~). 

Since, clearly, ~n ~ppj---~0 by the definition of weak convergence, we deduce 

lYjl-,, ~+ Ilull~, suppvw + lip2 Vv'll-l, ,+ ~ ~0p~. 0 
.to 

and by (3.26), IlVujllr+llpjllr----~O: a contradiction. This proves (3.8). 

(ii) Fix l < r < ~  and suppose there is a sequence p~ such that I[p:llr=l and 

IVpjl_j- ,0  as j - - ,~ .  We may assume that pj----)p weakly in Lr(f2). For any bounded 

domain D c Q  the restriction map induces a bounded linear operator from H-~'~(f~) to 

H-I'~(D); so Proposition 3.8 ensures the existence of constants cj=cj(D) with pTc:-->O 
in U(D). Then, cj=(cj-pj) +pimp weakly in U(D) and so p=constant=0. We thus find 
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that pj~O in L~(D) for any bounded D=g2. Now let ~0 be the function exploited in the 

proof of (i). By Proposition 3.7 and the argument used in estimating f2 in the proof of (i), 

we obtain 

I1(1-v2) (Pj--Pk)IIr, R, ~ flY((1-V2) (PJ-Pk) )l-l,r,lr 

<~C (IV(pFp,)l_,,r +rIV { W(pFp)ll-,,~,Bno) 

C (IV(pj--Pk)l_l,r +l~)j--Pkllr, Bnn)--') O. 

Hence pj--~O in Lr(~2): a contradiction. This proves (ii). 

(iii) We regard (1-~p)q as a distribution on R". Since q EL~(BN •) by Proposition 

3.8, we see as in the proof of (ii), 

]V((1-W) q}l-1, r,R" ~< c(IVql-,,~+[lqllr,8,~) < + ~" 

Hence Proposition 3.7 (ii) ensures the existence of a function p EL'(R") such that 

7p =V((1-q)) q) in R". Thus, 

Vq = V((1-y2)q)+V(y2q) = V(p+y2q) in g2 

and the function p+y2q E Lr(~) is the desired one. The proof is complete. 

Proof o fLemma 3.9. Take ~ E Co(R n) such that ~= 1 for Ix[~<l and ~=0 for Ixl~>2, 

and let r162 For any u satisfying the assumption, we easily see that if r>n, 

IIV(u-u u)IIr = cllv~Nllr~ < CN -1+"/~----> 0 as N---> 

and this proves the result for r>n. In case r=n, IiV(uCu)[[ . is bounded, so the result 

follows from Mazur's theorem [44] if we take suitable convex combinations of the 

functions Ur The proof is complete. 

Remarks. The condition r<n in Theorems 3.5 and 3.6 is optimal. Indeed, when 

r~n, it is known [5] that the smooth functions which are bounded near the infinity and 

vanish on af~ belong to/-)~' r(f~); consequently, the functions u=c-Wq~-V~p composed 

of a constant vector c, a double layer potential Wq0, and a single layer potential V~p 

belong to/4~'r(f2) and solve problem (SS) with f = 0  and u--,c as together with 

some p, provided 

(1/2+W)q~=c-Vy2 on 0f2. 
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This last equation can be solved by the standard method presented for instance in [23]. 

Thus (3.8) and (3.10) are not valid for r>~n. 
Estimate of the form (3.10) was first deduced by Simader [36] in the case of the 

Dirichlet problem for the Laplacian in a bounded domain. Recently, Kozono and Sohr 

[45] have also proved (3.10) for n'<r<n.  If n'<r<n,  then n'<r'<n; so (3.8) and (3.10) 

are valid also for r', and this means that problem (SS) with fE/ t - l ' r (Q)  is always 

uniquely solvable in/t~'r(Q) provided that n'<r<n.  For other types of estimates on 

(SS) we refer the reader to [39] and [45]. 

Estimate (3.8) is deduced from (3.10) via (3.9). Indeed, if u ED(Ar), p s and 

f=  -Au+Vp,  then for all ~ 6 C~,o(ff2) 

so (3.10) gives 

l( vu, Vq~ )l = I ( f ,  ~ )[ ~ [fl-LrllVqSnr , 

I lVu[lr~f l f l_Lr (1 < r < n ) .  (3.29) 

From (3.9) and the equation Vp=f+Au  it follows that if l < r <  n, 

IIPllr <~ ClVPI_,,r <~ C(Ifl_,,r+lAul_l,) 
(3.30) 

<~ C(tfl--1, r+ IlVUtlr) ~< c l f i - l , r  

From (3.29) and (3.30) we obtain (3.8). 

Estimate (3.10) is essential in establishing in Section 4 an embedding result for 

domains of fractional powers of the Stokes operator. 

4. Fractional powers of the Stokes operator and interpolation spaces 

In this section we examine the domains of fractional powers of the Stokes operator and 

establish an embedding result of Sobolev type with the aid of the complex interpolation 

theory of Banach spaces. This is done by Giga [12] in the case where f~ is bounded and 

therefore the Stokes operator possesses the bounded inverse in each L~(Q), 1 <r  < oo. In 

our case, however, the Stokes operator is not boundedly invertible and so we have to 

deal with our problem more carefully. The fractional powers of the Stokes operator in 

an exterior domain are studied also in the recent paper [13] of Giga and Sohr. We shall 

improve their interpolation result by applying Theorem 3.6. This improvement enables 

us to deduce in the next section apparently optimal decay rates for the L2-norms of 

weak solutions of problem (NS). 
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First we define the homogeneous Sobolev space /~'~(R"), l < r < ~ ,  of fractional 

order s~>0 to be the completion of Co(R ") in the norm 

IIV~ull~,R. = IIF-'I~I~ FUlIr, R= (4.1) 

where F is the Fourier transformation and [~l s the multiplication operator in the phase 

space. When s~>0 is an integer, it follows from the Calderon-Zygmund theory [40] that 

/~0'r(R ") agrees with the one defined in Section 2. Since the multiplication by 

O<s<n, corresponds to the convolution by the Riesz potentials, it follows from 

Sobolev's lemma [31, 40] that 

IlulIq, R. <clIVsulIr, R., uEH~'r(R ") if 1/q=l/r-s/n>O. (4.2) 

We next recall a Sobolev type inequality which is valid for functions on exterior 
m - domains. For an exterior domain f2 in R n, n~>3, we denote by C~0)(f2), m=0, 1,2 .. . . .  the 

set of all restrictions to ~ of functions in Cg'(R"). The following result is due to [4], [10] 

and [29]. 

LEMMA 4.1. There is a constant C depending only on n~>3, l<r<n, and if2 such 
that, with l/r*= I/r-  1/n, 

Ilullr* fllVullr, for all uEC~o)(('2). (4.3) 

Obviously, estimate (4.3) can be extended to a more general class of functions by 

taking completion. 

We further recall a few basic notions in the complex interpolation theory of 

Banach spaces. Given an interpolation couple {X0,X1} of complex Banach spaces, 

F(Xo, X1) denotes the space of all functions f(z) defined to be continuous from the 

closed strip {0~<Rez~<l} of the complex plane into X0+Xl, analytic in the interior 

{0<Rez<l} ,  and such that the maps: t~ f ( j+i t ) ,  j=0 ,  1, are bounded and continuous 

from R to Xj. Here i is the imaginary unit and Xo+X~ is the Banach space 

{y=xo+xl;XjESj,j=O, 1) with norm 

I ly l lx0+x,  = inf{llxollxo+llx, llx,; y = X0"l-g l}  " 

By the three-lines theorem F=F(Xo, X1) is a Banach space in the norm 

If  IF = max{sup IIf(it)llXo, sup IIf(l+it)llx,}. 
t t 

14-908283 Acta Mathematica 165. Imprim6 le 8 novembre 1990 
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By [X0, Xdo, 0~<0<~1, we denote the complex interpolation space beteen X0 and XI with 

norm 

lulo = i n f ( l f l F ;  f E  F(Xo,X,),  f ( O) = u), 0 < 0 < I. 

For basic facts in complex interpolation theory, we refer to [31] or [41]. If s<n/r, (4.2) 

shows that both U(R n) and/-)~'r(R") are continuously embedded into L'(Rn)+Lq(Rn), 

1/q=l/r-s/n,  so (Lr(Rn),/~0'r(Rn)} is an interpolation couple (see [41]). Likewise, by 

letting )`~0 in Theorem 3.1 (ii) and applying (4.3), we see that (L~(fD, D~} is also an 

interpolation couple provided 2<n/r. 

THEOREM 4.2. I f  l < r < ~  and 0~<0~<1, then with equivalent norms, 

[U(R"),/~0"(R~)]0 =/~0 s' r(R~) for  0 <- s < n/r; (4.4) 

~ _ o for  2<n/r .  (4.5) [L~r(~"~), Dr]  0 -- D r 

Proof. (i) We may assume 0<0<1 and O<s<n/r, since otherwise the result is 

trivial. Let A=(-A)S/2=F-11~ISF. Applying Michlin's multiplier theorem [41], we see 

that, as bounded operators in Lr(R"), 

ItZ()`+A)-~II<~M for all X>0,  (4.6) 

IIAa()`+A)-aI[~<M a (0~<a~<l) forall  ) .>0,  (4.7) 

II().+m)i'l]<.M.e*l~l (e>0)  for all t f iR and ) .>0.  (4.8) 

Let w E D(A) and consider the function f(z) = e ~z-~ ().+A) -(z-~ w, ). > 0, which is con- 

tinuous for 0<~Rez~<l and analytic for 0 < R e z < l ,  with values in Lr(Rn). Since 

f(it)  E Lr(R"), f(1 + it) E D(A)~/4~' ~(R ") and f(O) = w, we obtain by (4.6)-(4.8), 

[O)[o ~< max{ sup []f(it)llr, R., sup Ilmf ( l + it)llr, R, } 
t t 

~< C max{lt()`+A) ~ t.]dllr, Rn, IIA().+A)-' ().+A) ~ WlI~,R.} 

< CII().+A) ~ wild, R.. 

Since the constant C is independent of ).>0, letting ).--->0 yields 

IWlo ~ CI[A~ (4.9) 
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To show the converse, let g(z) denote an arbitrary function expressed as a finite linear 

combination of functions of the form exp(bz z +Vz) b with 6>0, y E R and b E D(A). Since 

(2+A)Zg(z),2>O, is continuous in 0~<Rez~<l and analytic in 0 < R e z < l ,  with values in 

U(R"), we obtain 

[IA~ R. ~ Cl[(2+m) ~ wlr~,R. < C inf max sup [[(2+A)i+itg(j+it)l]~,R . 
g(O)=w j=0, 1 t 

by the three-lines theorem. Letting 2---*0 and using (4.8) gives 

IIA~176 < c inf max sup [[AJg(j+it)[lr, R .. 
g(O)=w j=O, l t 

Since D(A) is dense in both o f  Lr (R ") and ~s,r n H i (R) ,  it follows from the argument in [41, 

Section 1.9] that 

IImOWllr, R . ~ Clwlo. (4.10) 

By (4.9) and (4.10) we obtain (4.4). 

(ii) To show (4.5) we have only to replace (4.6)-(4.8) by the estimates given in 

Theorem 3.1 and Proposition 3.2. The proof of (4.4) then applies with no change. The 

proof is complete. 

The Riesz transforms R=(R1 . . . . .  Rn),Rj=F-5(i~j/[~I)F, are bounded operators in 

/~0'r(Rn), so the projection/~ associated with the Helmholtz decomposition of Lr(R n) 
defines the bounded projection f rom/~ '  r(R") onto the subspace/t~' ~(R n) of solenoidal 

vector fields. Since 16 extends to a bounded projection o n  Lr(Rn)+I?-lSo'r(Rn), Theorem 4.2 

and a standard argument in the interpolation theory [41, Section 1.2.4] together yield 

r /t AS, [Lo(R ),Hor(Rn)]o= I21~ 0~<0~<1, O~s<n/r .  (4.11) 

P R O P O S I T I O N  4 . 3 .  (i) H~,a(~"~)-(V^5'r - E / ~ ' r ( ~ ' ~ ) ;  V'v=O}for l < r < o o .  
( i i )  r 5 _ ~ 1 , r  [Lo(f2), Dr] 5/2 - H~, o(g2) /f 1 <r  <n/2. 

^l ' r~ H o  ' o(~)]o-Ho, ~(~), (iii) [Ho, o(f~), ^ 5,,1 _ ^l,r 

where l<rj<n, j=0 ,  1, 0~<0~<1, and 1/r=(1-O)/ro+O/rv 

Proof. (i) For simplicity we " -i r write X=H~', o(f2) and Y the right-hand side of (i). Since 

X is closed in Y, it suffices to show that X is dense in Y. LetfEffl-5'r '(~),r '=r/(r-1),  
and suppose f = 0  on X. By [32, Theorem 17'], f=Vq for some distribution q on f2. By 
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Theorem 3.5 (iii), we may assume that qELr'(f~). Now, given vE Y, take a sequence 

vjE Co(f~) such that IIV(vj--o)llr--'0. Since V. vj---~V, v=0 in LLnorm, we obtain 

(f ,  v) = lim (f ,  oj) = lim(Vq, vj) = - l im(q ,  V.oj) = 0. 
j-...c w j--, oo j.-.., oo 

Hence f=0  on Y and the result follows from the Hahn-Banach theorem. 

(ii) Let D = R n \ ~  and let E and Eb denote, respectively, the extension operators: 

E: c~0)(~)o C2(R"); E~: C2(b)-, C2(R n) 

with the following properties. 

(El) suppEb u (u E C2(/))) is contained in a fixed open ball B~/) .  

(E2) Eb extends uniquely to bounded operator: I-Is'r(D)---~Hs'r(Rn), for all l<r<oo 

and s = 0, 1,2. 

(E3) The operator E satisfies the estimate 

IlVSEUllr, Rn<~C(llVSullr+llUllr,~nB), uEC~o~(f~), s=0 ,1 ,2 .  (4.12) 

These operators can be, constructed in the standard manner via local maps since af~ is 

smooth by assumption. If 1 < r  <n/2, it follows from Lemma 4.1 and H61der's inequality 

applied to the last term of (4.12) that 

IIV'EUlIr, R.<-CIIV*ulIr, uEC~o)(f~), l<r<n/2 ,  s = 0 , 1 , 2 .  (4.13) 

Hence, if/Y~, r(f~), s =0, 1,2, denotes the I Iv ~. I[r-completion of C~0)(f2), then (4.13) asserts 

that E is bounded from/~'r(f2) to/Y~'r(R") for l<r<n/2, s=0, 1,2. Now, letting 2---~0 in 

Theorem 3.1 (ii) gives the estimate IIV2ullr<~CllAullr, l<r<n/2; so by Lemma 4. I, asser- 

tion (i) and the obvious estimate Ilmullr<~CllVZullr, we find that if l<r<n/2, 

Drl__ Lo q~(~2) n~q~0',ql(f~)nH2,'(f2), 1/q:= 1/r-j/n, j=  1,2. (4.14) 

Hence by (4.13), E: D~---~/t 2' r(R") is bounded when 1 <r<n/2. It thus follows from (4.4) 

and (4.5) that E: D~/2---~I:I~ ' r(Rn) is bounded, and we get 

IlVUtlr ~< IIVEUlIr, RO ~ cIIa ~%llr, l<r<n/2, (4.15) 

which shows the continuous embedding: ~/2 ^z r D r ----~n~', 0(~2) in view of assertion (i). 

To prove the converse, we define the function Zu, u E Co ~, o(R"), by 

Z u  = )'f2 U-- ) '  f~nBEb Y D U +  S ( V ' ~ ' ~ n B E b  ) 'DU), U E C~o(R~), (4.16) 0, 
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where Yx means restriction to X and S is the operator given in Proposition 3.3 with 

respect to the bounded domain fl nB. We regard the last two terms on the right-hand 

side as defined on g) by setting = 0 outside B. Since 

V'y~nsEbTDu=-V'(u-) ,nnsEbyDu) in f~NB, 

since by the definition of Eb, 

(O/OV)J(U--yf,~BEbYDU)Iou=O for j = O ,  1, 

where v is the unit outward normal to Of~, and therefore since 

foo vua  
= - I .  V. u dx = 0 (v = the unit outward normal to OB) 

c l i f f  

Proposition 3.3 shows that V. Zu = 0 in ~ ,  S(V. Yn nn Eo ~'D u) ~. H 2" r(g2 fl B), and 

IIV2S(V'~',~nBE:'o u)llr <- C(IlVZE~ ~'D UlIr.B+IIV'~',~oBEb ~',, ulIr,,~,8) 

<- c(IlVZulIr, o +IlVulIr, o +IlulIr, D) 

<- C(IIV2ulIr, R.+IlVulIq,,R.+IlulIq2,R.) 

<_ cllvZullr.,,. (1/qj= I/r-j/n, j =  I, 2). 

Furthermore, by Proposition 3.4, 

IlS(V "~,n,B Eb Yo u)llr = IlS(V" ~', nB Eo ~'o u)llr, (~oB <- CllV'r',nBEo YD ull-l,r, n0B 

<- CIIEb ~'o ullr.~ <- CllUHr, R.. 

Since the term ynnBEb'/ou in (4.16) is similarly estimated, we see by (4.14) that the 

operator Z is bounded from /tz'r(R") to D~ and from L~(R ") to L~(f]), respectively. 

Hence (4.5) and (4.11) together imply that Z is bounded from H~'r(R") to D~/2. Since 
1/2 ^l , r  ^ l , r  D r =H~,o(f~) and since ZEo=I on H~,o(Q), where E0 means the zero-extension of 

^l,r  functions defined on g2, we obtain for u fi H~, o(f2) 

Ila t/ZUllr = IIA1/2ZEo Ul[r <~ CliVE0 ullr, R. -- CllVull. (4.17) 

By (4.15) and (4.17) the proof of (ii) is complete. 
^l ,r  (iii) By definition and Lemma 4.1, Z is bounded from/~l, r(R, ) to H~,o(g2) provided 



214 B O R C H E R S  A N D  M I Y A K A W A  

l < r < n .  Hence ZP is bounded from [tl'r(Rn) to H~i~,(f2) if l < r < n .  Here we shall use 

[ff]lo'ro(Rn),[~Ilo'rl(Rn)]o-- /II, r(Rn), 0 < ~ 0 ~ < 1 ,  

(4.18) 
where l < r 2 < n , j = 0 , 1  and 1/r=(1-O)/ro+O/r 1, 

postponing its proof until the end of this paragraph. We thus have 

Z / 5 : / ~ o l ' r ( R n ) - - >  [/tlo:rO(~),/'tlo:rl(~'~)] 0 is b o u n d e d .  

Since ZPEo u=u for u E/~ '  ~(Q), it follows that 

lulo = IZPEo ulo CIIVEo ullr, RO = C I l V U l I r  . (4.19) 

"1,5 5 Conversely, interpolating between the operators V: H0,o(Q)--~L (~), j=O, 1, we see that 
^ 1, r 0 ^ l, r I r V: [Ho, o(f2), is hence Ho, o(Q)]e--~L (~2) bounded; 

IlVUllr Clulo" (4.20) 

By (4.19) and (4.20) the proof of (iii) is complete. 

It remains to prove (4.18). By Sobolev's inequality we see that if l < r < n ,  then 

V: t~llo'r(R")----~Lr(R ") is bounded, injective, and the range R(V) is closed. We show that 

R(V)=R(I-Pr)=N(Pr).  Since R(V)cR( I -Pr ) ,  we need only show that R(V) is dense 

in R(I-Pr) .  By the Helmholtz decomposition and the property P*~=A,, r'= 

r/(r-1), l<r<oo,  we easily see that R(I-Pr)*=R(I-Pr , ) .  Thus, if Vg 6R(I-Pr,)  vanishes 

on R(V), then Ag=0, and so A(Vg)=0. Hence Vg=0 and we get R(V)=R(I-Pr)  by the 

Hahn-Banach theorem. Now we apply the complex interpolation to see that 

~l , r0  n ~ l , r l  n 
V: [H 0 ( R ) , H  0 ( R ) ] 0 ~  [R(I-Pr,) ,R(I-Pr,)] o 

is a bounded bijection. Hence we have only to show that 

[R(I-Pr0), R(I-15q)]o = R(I-Pr) ,  l/r = (1 - O)/ro+ O/r I . (4.21) 

But, since/5 is a bounded projection on each Lr(R"), l < r < ~ ,  (4.21) follows from [41, 

Section 1.2.4, Theorem]. The proof is complete. 

We are now ready to prove the following, which is our key result in this section. 
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THEOREM 4.4. (i) I f  l<r<o% then the estimate 

[IA1/2ull,.~ CllVullr, u E D ( A ) ,  

holds with C independent o f  u. 
(ii) I f  l < r < n ,  then we have 

IlVullr <CIIa'/Zullr, u E D ( A ) ,  

with C independent o f  u. 
1/2__ ~ l , r  (iii) I f  l < r < n ,  then D r -H~,o(f~). 

Proof. By (4.15) and (4.17) both (i) and (ii) are valid for l<r<n/2. Also, in c a s e  

r=2, both (i) and (ii) are obvious, since A2 is the self-adjoint operator associated with 

the bilinear form (Vu, Vv) on Lz(fD nH~'2(f2). Now let r1=2 and l<ro<n/2 with r0<rl. 

By the above and estimate (3.4) with a =  1/2 the operator V0.+A) -1/2 extends uniquely to 

bounded operators from L2(f2) to L~J(s j=0,  1, with operator-norms independent of 

2>0. By interpolation, it thus follows that the same operator is bounded from L~,(fD to 

U(Q) for all ro<~r<.rl with operator-norm independent of 2>0. This proves (ii) for 

l<r~<2. Now let 2<r<oo; since R(A~?) is dense in L~'(f2), it follows from (ii) with 

r=r '<2  that, for uED(Ar), 

IIA l/Zull, = sup I(A~/2 u, A~f 2 v )l / t~4 'nvl[~, = sup [(Vu, Vv)[ [ 11A1%11~, 
o o 

IWullr sup(llVvll,,/IlA1/2Vllr,) ~ CllVullr. 
o 

We thus conclude that (i) holds for 1 <r  <n/2 and 2~<r< oo. Choosing rl---2 and 1 <ro<n/2 
with ro<rl, and then interpolating between the operators A 1/2.. Hoio(f~)_._~Lo(ff2),j=O, ~ 1 rj rj " 1, 
we see by Proposition 4.3 (iii) that (i) holds also for ro<~r<<.rl=2. The proof of (i) is 

complete. To finish the proof of (ii) we take an arbitrary l < r < n  and apply (3.10), as 

well as assertion (i) above with r=r', obtaining 

IlVullr ~ C sup l(Vu, Vv)l/llVvllr, = Csupl 1-1/2~-[t r u, A~!=v)l/llVvllr , 
v l;  

CIIA I/2ulIr sup(llA '/2VllrJ IlVvllr,) ~ CllA V2ullr 
o 

for u ED(Ar). This proves (ii). (iii) is easily obtained from (i), (ii), Proposition 4.3 (i), and 

the fact that D(Ar) is dense in D(A~n). 
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Theorem 4.4 enables us to deduce an embedding theorem of Sobolev type for 

domains of fractional powers. 

COROLLARY 4.5. Let n~>3, l<r<n, O<-s<n/r and 1/q= 1/r-s/n. Then the estimate 

Ilull~ ~ CllA~/Zullr, u ED(A~ r2) (4.22) 

holds with C independent of  u. 

Remark. Estimate (4.22) holds for l < r < ~  in the case of entire and halfspaces 

provided only that n~>2 and 1/q=l/r-s/n>O. For the entire spaces, this is easily seen 

from the well-known estimates on Riesz potentials [40]. For the case of halfspaces, we 

refer the reader to [3]. 

Proof of Corollary 4.5. First observe that D~/2cLr*(gD, 1/r*-1/r-1/n, by Theorem 

4.4 and the Sobolev inequality, and therefore {L~,(g2), D~/2} is an interpolation couple. 

The proof of Theorem 4.2 then applies to yield 

r 1/2 _ DO~2 [La(~),Dr ]o --r (0~<0~<I) if l < r < n .  (4.23) 

From (4.23) and the Riesz-Thorin theorem it follows that D~ with continuous 

injection if l < r < n  and 1/q= 1/r-O/n. Now let s=k+O, where k is a nonnegative integer 

and 0~<0< 1, and take m so large that D(A~')cD(A~/2), 1/q= 1/r-s/n, which is possible by 

the regularity theory for problem (SS) [1]. If we set 

I/qo=l/r-O/n and 1/qi=I/qo-j/n, j = 0 , 1  ..... k, 

then, by assumption on r and s, we have q=qk and l<qi<n for j = 0  ..... k - l .  It thus 

follows that 

Ilullo < CIIA'/2ullak_, ~ ... ~ C IIA~2ulIao ~ CIIA~%llr 

for u ED(Am). The case of general u ED(A~/2) is treated through approximation. The 

proof is complete. 

Corollary 4.5 is now applied to deduce the so-called LP-L q estimates for the 

semigroup { e-tA; t~>0}. 
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COROLLARY 4.6. (i) If l<q~<r< oo, then the estimate 

[[e-tAul{~ <. Ct-<n/q-"/r)/Ellull q, u 6 Lq(•) (4.24) 

holds with C independent o f  u and t>0. 

(ii) Ile-'Aullr---,O as t~oo for all u fiLr(g2) and l<r<oo.  

(iii) I f  l<q<.r<n, then 

IlVe-'aull, <<. C t - l / 2 - ( n / q - n / r ) / 2 t l U l l q ,  u 6 tq(f2) (4.25) 

with C independent o f  u and t>0. 

Proof. (i) Assume first that l < q < n  and take O<s<n/q with 1/ro-1/q-s/n<l/r.  

Since q<r<ro, H61der's inequality and the boundedness of the semigroup yield 

- t A  - t A  a - t A  l -c t  - t A  a 1 - a  {le ul{~<-CII e ull~011e Ullq <-Clle ull~011ullq , 

with a = ( I/q-1/r)/(1/q- I/ro) = (n/q-n/r)/s. 

By Corollary 4.5 and (3.2) we conclude that 

Ile-'aull~ ~< cIIaS/2e-'aullq Ilulllq -~  <~ Ct-~ 

which shows (4.24) for l<q<n .  We next consider the case n<-q<.r< oo. Take l<r0<n; 

then the foregoing result and the boundedness of the semigroup together show that if 

we set T=e -ta for fixed t>0, 

T: L~(g2) ~ Lr(g2) is bounded with bound ~< M; and 

T: L~~ ~ L~(ff2) is bounded with bound ~< Ct -("/~~ 

Interpolating between these two cases gives the boundness of T from Lq(Q) to L~,(f2) 

with bound <<.Ct -~"/q-"/r)/z. The proof is complete. 

(ii) ff u fi C0~,o(f2), then u fiLq(Q) for any l<q<r ;  so the result follows from (1). 

Since C~,o(g2) is dense in Lr(g2), the result follows in general case from the boundedness 

of the semigroup. 

(iii) Since l < r < n ,  Theorem 4.4 and estimate (3.2) together yield 

IlVe-'aullr ~ C{{A1/Ze-'Aullr = CllA '/2e-'a/2e-'a/2ul{r ~ Ct-'/211e-ta/Zull ~. 

Applying (4.24) to the last term gives (4.25). The proof is complete. 
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Remarks. Iwashita [17] has recently proved (4.25) for l<r<.n. In the case of 

halfspaces, (4.24) holds also for q= 1 (resp. r= oo) under an appropriate assumption on r 

(resp. q); see [3]. 

Proposition 4.3 (i) was first proved by Heywood [14] for r=2. Our proof of 

Proposition 3.8 (ii) indicates also that, for a bounded domain D, 

1,r H~,o(D)= {uEH1o'r(D); V.u=O},  l < r < o o .  

This result was also proved by Heywood [14] for r=2. 

5. Proof of main results 

We are now in a position to prove our main results, namely, Theorems A and C in 

Section 2. We begin by establishing the following, which is our key lemma in this 

section. Let 

A2= ~.dgx 

be the spectral decomposition of the nonnegative self-adjoint operator A2. 

LEMMA 5.1. Let 0<e<l /4  and 0+Q=l+2e  with 0>10, ~>~0. Then there is a constant 
C=C(e, O, ~, n, f2) such that 

liEge(u" V) o112 < cAn/'-~i~~ IIA~%112 (5.1) 

for all 2>0, u ED(A ~ and v ED(A~/2). 

Proof. Let q=n/(l+2e), l/r=l/2-O/n and 1/s=l/2-p/n so that 1/q+l/r+l/s=l. 
Since V. u=0, an integration by parts and HOlder's inequality together yield 

IIE~ e(u. V) o112 = sup I( u .VE~ q0, v)l ~< Ilullr Ilvlls sup IIVE~ ~llq 
q0 q0 

where the supremum is taken over all q9 in the unit ball of L~(fD. Since 2<q<n,  

Theorem 4.4 and the fact that E~ q~ ED(A~)cD(A~) together imply that 

IIVE~ ~llq ~< Cllal/2Ex ~11~. 
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Since l/q= 1/2-o/n with a = n / 2 - 2 e - l ,  Corollary 4.5 gives 

L )" . n / 2 - 2 ~  i t ~  E,  _112 ~ z- ,~n/ /2-2e  [ [ A 1 / 2 E x ~ l l 2 q ~ C l ] A ( ~  C l ~ aul t /~,  z~x WII2 - r  ~ t .  . 

Combining this with Ilull,<Clla~ and IIvll,<cllao%ll 2 yields (5.1). 

Remark. On entire and halfspaces estimate (5.1) takes the form 

[[Exe(u. V) vii2 -< c~,("+2)/41]u112 [[vllz. (5.2) 

The proof is given in [3, 18]. The parameter ;~ will be identified with t -1 in deducing L z- 

decay rates; thus our estimate (5.1) yields the rate t "-n/4 caused by the presence of the 

nonlinear term, while (5.2) gives t -(n+2)/4 in the case of entire and halfspaces. 

5.1. Proof  o f  Theorem A. We give a detailed proof of assertion (ii) and then 

describe an outline of the proof of (i), since the proof of (i) is almost the same as, and in 

some sense easier than, that of (ii). Let v be a weak solution of (NS) with v(0)=a, 

satisfying the energy inequality: 

i' IlvU)IIN+2 IlVvllNdr<llv(s)ll~ for s = 0 ,  a.e. s > 0 ;  and all t ~ s  (E) 

and let 2=2(0 be any smooth positive function of t>0. From the estimate 

Ilvol122 = IIAl'201l~ = z dlIE z vii 2 >! z dllE z vl} 2 >/2(llvll~-ItE~ vll~) 

and from (E) it follows that 

IIv(t)ll~+ ~(0 IIv(r)I1~ d t  <. IIv(s)ll~+ ;t(r)IIExr v(r)ll~ dt .  (5.3) 

The last integral in (5.3) is well defined in the sense of Lebesgue, since the function 

T(,L r)= IIE~ v(r)ll2 is monotone in 2 for each fixed r and measurable in r for each fixed 2. 

To estimate the term IIEx(, v(r)ll~ we go back to the definition of weak solution. In (2.3) 

we set $(r)=e-(t-r)aE 2 qg, q9 E L Z( Q), which is legitimate since Ex cp E tn(~-'2 ) ,  and obtain 

(Exv(t), eft) = (E~e-(t-~)Av(s), q))-- (v-Vv(r), e-(t-OAE~cfl) dr 

= (e~e-('- '%(s),q~)+ (v, v. VE~e-"-~)aqJ) dr 
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for t>~s~O. The last term is estimated as in the proof of Lemma 5.1 and we obtain for 

O<e<l/4, 

l' IIE~ v(t)ll2 ~< IlEa e-(t-s)ao(s)ll2 +C~, "/4-~ IIA1/2+~/zvII~ dt 
-IS 

2+c~"/4-~[ ' I1~ II~ -2~dt IIE~ e-(t-s)ao(s)ll ilaV2v +2,11o 

/ '  f t \ (1 + 2e)/2 [ f t \ (1 - 2e)/2 

\*IS / \~'$ / 

Here we set s=0 and use the estimate J'o IlVvll~ dr ~< Ilall]/2 which follows from (E), to get 

IIE~ v(t)H2 ~< Ile-'Aalt2+C2 "/4-~ HvH~ dr) . (5.4) 

Substituting (5.4) with 2=2(t) into (5.3) yields the following inequality for y(t)= IIv(t)ll~: 

It y(t)-g(t ,s)+ ~.(r)y(r)dt<~.y(s) a.e. in sE(O,t), (5.5) 

with g(t, s) = 2 ).(r)ll e-tAal]~ + C,~,n/2+l-2e(r) Ilvll~ do dr. 

We now want to apply Gronwall's lemma to (5.5) with respect to s. Consider the 

function h(s)=ft~Z(r)y(r)dt, which is a.e. differentiable in (0, t) with h' ~L~(6, t) for 

small 6>0. From (5.5) we have 

h'(r) = -X(r)y(r) ~< -,~.(r) [h(r)+y(t)-g(t, r)]. (5.6) 

Now let H~>0 be a function solving H'(r)=X(r)H(r). Multiplying (5.6) by H and then 

integrating over [s, t] yields 
~ t  

(It( t)-  It(s)) y(t) ~ H(s) h(s) + It '  (r) g(t, r) dr, 

since h(t)=0. Applying (5.5) to the right-hand side above and integrating by parts, we 

obtain, since g(t, t)=0, 

I-I(t) y(t) <~ It(s) y(s)-  H(t) g'(t, r) dr. (5.7) 

Now choose ;t(r)=mr -1, re>O, so tha t / - / ( r )=~ and H ' ( r ) = m ~  -1. Since (5.7) holds for 
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a.e. s~>0 and since y(s) is bounded,  taking m sufficiently large we can pass to the limit 

s---~0 in (5.7) to obtain 

y0 r (y0 [[o(t)ll~<-Ct -m ms"-ll le-Saall~ds + Ct-m sm-n/2-1+2e Iloll~dt ds. (5.8) 
dO 

Since IIo(r)lla<llall2 as seen from energy inequality (E), the last term of (5.8) is ~Ct~-nn; 
hence assertion (a) follows from the convergence Ile-'aall2--,O (t--*~). To prove (b), 

suppose that Ile-SAall2<.Cs -~ and IIo(s)ll2<.Cs-aO; then (5.8) implies tlo(t)ll2<<.Ct -al with 

ill=rain(a, n/4-I/2+flo(1-2e)) so far as f10<l/2. This shows (b) for O<a<n/4-1/2 and 

fl0=0. If  a~n/4-1/2,  then the foregoing observation allows us to start with fl0 = 1 /4-e  

and, by definition of  ill, we obtain (b) for a<n/4-I/4.  When a~n/4-1/4, we can take 

fl0 = 1/2-e,  and thereby arrive at the conclusion in all cases. 

We next prove assertion (c). Let  w(t)=v(t)-v~ with v~ Since v~ 
satisfies (E) with equality sign, direct calculation gives 

I' Ilw(t)llN+2 [IVwll~dr=llv(t)llN+llv~176 

+2 (llVvll~+llVo~ Vv~ (5.9) 

~t 
<-IIv(s)ll~+llv~ v~ (Vv, Vv ~ dr  

for a.e. s> 0  and all t~s. We insert r176 into (2.3) and get for O<s<.t, 

y; f (v(t), v~ +2 (Vv, Vv ~ dt+ (v. Vv, v ~ dr = (v(s), v~ J$ 
since (v~ ~ Using this to eliminate the last integral in (5.9) we have 

IIw(t)ll~+2 IlVwll~dr<llw(s)ll~+2 (v.Vv, v ~ (5.10) 

for a.e. s > 0  and all t~s. The integrand of  the last term is estimated as 

I(v. Vv, v~ = I(w. Vv ~ w)+(v~  ~ w)l 

<~CIIAn/4-~v~176 2 IIA~'%It2+IIA~176 2 tlA~/2wllg, 

where 0 < e < l / 4  and O+Q=a+fl=l+2e; recall the proof  of  (5.1). We set O=Q=l/2+e, 
a=2e, fl= l and apply the moment  inequality to get 
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i ( v . V v  ' v O} i~  c An/4-ev 0 ( A1/2 w l+a~ [[ ]]2 [[ [[2 []wU~-2e§176 
(5.11) 

< 1  ilVwll~ + CllAn/4_~vOll~/._2~ ) ilwll~ + C[iAn/4_~vOll ~ ilA~v0ll~. 

Since A2 is nonnegative and self-adjoint, IIA'v~ - '  and IIA'v~176 
for y~>0; hence from (5.10) and (5.11) we find that 

IIw(t)ll~+ IlVwll~dr--< IIw(s)ll~+c [r-'llwH~ +<~/211v~ dr 
(5.12) 

with 7=(n/2-2e)/(1-2e) = n/2+d, 6 = e(n-2)/(1-2e), 

for a.e. s>0 and all t>~s. The remaining argument is nearly the same as in the proof of 

(a). We estimate IlVwll2=llAl'%ll ~ from below, using the spectral measure Ex; use (2.3) 

as in the proof of (a) to obtain 

IIE~ w(t) [12 ~< C2"/4-~ v dr ; 

and finally take ~(r)=mv -1 with large m. This process leads us to 

Hw(t),[~ ~ ct-m fot [ srn-~'[lw[l~ + sm-n/2llu~ + sm-n/2-1+2~( foS [lv,l~ dr) l-2e] ds 

[ ;  ; t 
~c t l -n /2  t -1-~ Ilwll~ds+t-' IIv~ t-' Ilvll~ds 

Since IIw(s)ll~<.llv(s)ll~+llo~ as s - ~  by assertion (a), this proves (c). Assertion 

(d) is easily deduced from (b) and (5.13). This completes the proof of (ii). 

To prove (i), we use the approximate solutions vk, k= 1,2 ..... obtained by solving 

the integral equations: 

vk(t) = e-tAak - e-(t-~)AP(J k v k" V) vk(s) ds, (AP) 

where Jk=(I+k-lA2) -1-[n/4], ak=Jka , and [b] is the integral part of the real number b. 

Existence and uniqueness of a regular solution oh of (AP) defined for all t~>0 and 

convergence of (a subsequence of) ok are discussed in [3] and [29] along the idea of [38]. 

Since ok satisfies (E) with equality sign and since IIJkll-~-<l as bounded operators in 

L 2 (Q), one can repeat all of the foregoing arguments to get the desired results for each 

function vk. But, as readily seen from the foregoing arguments, all the estimates needed 



NAVIER--STOKES EQUATIONS 223 

in the proof of (ii) are uniform in approximation parameter k, and so we obtain the 

existence of a function v E L=(0, oo; L2o (g2)) N L2(0, oo ;/~.2 (g2)) with desired decay prop- 

erties by passing to the limit k--->oo; see [3, 18] for the details. This function v satisfies 

the identity: 

h(t)(v(t),w)+ (Vv, Vw) hdr+ (v.Vv, w)hdv= (v,w) h'dv+h(s)(v,(s),w) 

(2.3') 

for all wEH~'Z(~)NL~(~2), t~s~O, and hECl([s, t];R). This is verified as in [29, pp. 

464-466]. Although in [29] only the case n=3, 4 is discussed, the argument given there 

applies to all dimensions n~>3 due to the requirement w E Ln(~2). That (2.3') implies (2.3) 

is proved in [27, p. 638]; so the function v is the desired weak solution of (NS). The 

proof is complete. 

5.2. Proof of Theorem C. We begin with the proof of the following 

LEMMA 5.2. If  l<r<~n'<~q<~2, n'=n/(n--1), n>~3, and a6L2o(~)NLr(~), then all 
weak solutions v of (NS) with v(O)=a belong to L~o r ([0, oo); Lr(Q))NL=(0, oo; Lq(Q)). 

Further we get lim,~= I]v(t)llq=O provided q<2.(') 

Proof. We insert ~)(r)=e-(t-r)Aq), q9 E C~,o(Q ), for (2.3) and obtain 

fs t (v(t), cp ) = (v(s), e - ( t - s )A~o > - -  ( V" V V(r), e-r > dr (5.14) 

for all t>~s>-O. By the H61der and Sobolev inequalities we have 

[ ( v. Vv, e-('-~ ) l ~ CIIqgllr, tlVll2r,/(r, 2)IIVVII 2 

 <Cll ll , Ilvll  v IlVvllz (5.15) 

< CIl ll , Ilvll  -"/' '  [[Vvl[~ +n/r'. 

(5.15) and (5.14) with s=0 yield 

][v(t)[[r<. CE lla]]r + fot[]v[]~-n/r' l]Vv]]~+"/r' dv]. (5.16) 

This shows that v is in Lloc([O, oo);Lr(Q)) and in particular, on taking r=n', in 

L~(O, oo; Ln'(Q)). Hence v E L~(0, oo; Lq(ff2)) for n'<.q<~2. Then (5.14) and (5.15) together 

imply 

(5 The same result was obtained also by Professor H. Sohr (private communication). 
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for all t>Is~O, and therefore IIv(t)ll.,--,0 as t--,= by Corollary 4.6 (ii). This implies for 

n' <~q<2, 

IIv(OIIq-< IIv(t)ll(f q-1/2)/(1/"'-1/2) IIv(Ollff ~ --' o as t ~ o o .  

The proof is complete. 

We now prove Theorem C. By Theorem B, 

IIv(t)ll2 <.C(l+t) -a with fl=(n/r-n/2)/2>l/2, 

and so J'o Ilvll~ds is finite. Hence (5.16) yields 

Ilv(t)ll, ~< c [  Ilallr + ~I ~ Ilvll~ -'/'' ,lVvll~ +~/'' dr] 
i/ f ~  \ l /2-n/2r'l /  ~'~ \ l / 2 + n / 2 r ' -  I 

~<C Ilall,+~J ~ Ilvll~dr) (,Jo IIVvll~dr) J' 

and therefore vEL~(O, ~;  L'(Q)). (5.14) and (5.15) then imply, for t>-s>-O, 
\ 1/2-,/2r' / f = \ 1/2+n/2,"] 

Ilv(t)llr<~C[lle-('-s)av(s)llr+(fffllVvll~ d~) IJsllVvll~d~) J 

and we conclude that IIv(t)llr'-->O as t-->~ by Corollary 4.6 (ii). Thus we obtain for 

r<-q<2, 

IIv(t)llq <<- IIv(011~ - a  IIv(t)ll~ = o ( t - ~ ) ,  a = ( 1 / r -  1/q)/(1/r- 1/2) 

and afl=(n/r-n/q)/2. This completes the proof of Theorem C. 

Remarks. Lemma 5.2 asserts in particular that if an initial velocity is in 

Lr(~) n L 2 (fZ) for some 1 <r<~n', then all the corresponding weak solutions also belong 

to Lr([2) for a.e. t>0. The converse to this statement is an open question. 

As for the behavior of L2-norms of general weak solutions, the following is known: 

Given any a EL2 (Q), every weak solution v with v(0)=a satisfies 

f 
t+l  

lim Ilvll~ds = 0. ( 5 . 1 7 )  
t---~ r . I t  
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See [27] for the proof.  Our  p roof  of  L e m m a  5.2 is in fact  a simple modification of  the 

proof  of  (5.17) given in [27]. 
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