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1. Introduction 

This paper represents part II in our three part series on Raghunathan's  measure 

conjecture (see [R4] for part  I). 

More specifically, let G be a real Lie group (all groups in this paper  are assumed to 

be second countable),  F a discrete subgroup of  G and ~r: G---~F\G the projection 

~r(g)=rg. The group G acts by right translations on F \G,  (x, g)---~xg, x E F \G,  g ~ G. Le t  

r be a Borel probability measure on F\G.  Define 

(*) A(/~) = A(G, F ,a )  = {gEG: the action of  g preserves/ t} .  

The set A(/~) is a closed subgroup of  G. The measure/~ is called algebraic if there exists 

x=x(~) E G such that/~(~r(x) A(/ ,))= I. In this case xA(~)x -l N r is a lattice in xA(/0 x -1. 

Definition 1. Le t  U be a subgroup of  G. We say that the action of  U on F \ G  is 

measure rigid if every ergodic U-invariant Borel  probability measure on F \G  is algebra- 

ic. The group U is called measure rigid in G if its action on F \G  is measure rigid for 

every lattice F o G .  An element u E G is measure rigid if the group {uk: kE Z) is measure 

rigid. Ur--G and n E G are called strictly measure rigid if their action on F \ G  is measure 

rigid for every discrete subgroup F of  G. 

A subgroup U of  G is called unipotent if for each u E U the map Adn is a unipotent  

automorphism of  the Lie algebra of  G. 

RAGHUNATHAN'S MEASURE CONJECTURE. Every unipotent subgroup o f  a con- 

nected Lie group G is measure rigid. 

(i) Partially supported by Guggenheim Foundation Fellowship and NSF Grant DMS-8701840. 



230 M. V, ATr~Ea 

Various versions of this conjecture were stated in [D2] and [M]. It was shown in 

IF1] and [P] that when G is nilpotent the conjecture is true. Also we showed in [R4] that 

every unipotent subgroup of a solvable G is strictly measure rigid. As to semisimple G 

it was shown in [F2] and [D1] that for G=SL(2, R) the conjecture is true. To the best of 

my knowledge this is the only case of semisimple groups G for which the conjecture has 

been settled, although there has been a number of papers [B], [D2], [EP], [F2], [R3], 

[V] which established measure rigidity for certain unipotent subgroups of semisimple 

G. 

This paper represents the first part in our proof of the Raghunathan's measure 

conjecture for semisimple G. To state our results we need to introduce some notations 

and definitions. Let G be a Lie group with the Lie algebra @ and let g E G. Suppose that 

G acts on F\G with r being a discrete subgroup of G. We say that the g-orbit of 

z~(x)EF\G,x~G diverges when n---~oo if there are e~=ynEF, n = l , 2  .... such that 

(xgn) -I Yn(Xg")---~e, when n---~. Note that if r is a lattice in G then a g-orbit diverges if 

and only if it eventually leaves every compact subset of F\G. Obviously, in our 

definition of divergence the " i f "  part of this statement does not necessarily hold when 

F is not a lattice. Define 

D(g) = {xEF\G: the g-orbit of x diverges when n--->oo). 

It is clear that if D(g)=~ for some g E G then F\G is not compact. 

We shall call an element u E @ nilpotent if adu: 6/--->~, adu(v)=[v, u] is a nilpotent 

linear transformation of @. An element g E|  is called R-diagonalizable if adg is 

diagonalizable over R. Also we denote by Z(G) the center of G. 

Definition 2. Let G be a Lie group with the Lie algebra @ and F a discrete 

subgroup of G. 

(1) A nilpotent element u E @ is called horocyclic if there is an R-diagonalizable 

element g Effl and a nilpotent element u ' E @  such that ad,,(u)=g, adg(u)=-2u, 
adg(u*)=2u*. In this case we say that u is "horocyclicfor g" and "g  is diagonal for u".  

(2) An element u E G is called horocyclic if u=exp u for some horocyclic element 
u E ~ .  

(3) An element u E G is called F-horocyclic if u=zexp u for some horocyclic u E 

and some z E Z(G) with zkE F for some k E Z. An element g E G is diagonal for u if 

g=exp g with g being diagonal for u, 

Our terminology in Definition 2 is motivated by the fact that u, g and u* generate a 

Lie subalgebra sl2(u, g) of ~ isomorphic to sl(2, R). It is a fact (see [J]) that if G is a 
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connected semisimple Lie group then all nontrivial elements of one-parameter unipo- 

tent subgroups of G are horocyclic. Also (see [BM]) if r is a lattice in a semisimple G 

which projects densely into the maximal compact factor of G (such r is called 

compatible with G) then every noncentral unipotent element of G is r-horocyclic. Note 

that every u E Z(G) is strictly measure rigid by [R4, Corollary 1]. 

Let g be an R-diagonalizable element of @, gp=exppg, g=gl, ~,~ the eigenspace 

of adg with the eigenvalue 2, ~- (g)=  E (~a, 2<0} and E-=E-(g)=exp  ~-(g). It is clear 

that if g is diagonal for u, then so is cgc -1 for every c EC(u)--the centralizer of 

(exp tu, t~R}  in G. In fact, an element ~ E ~  is diagonal for u if and only if ~=cgc -1 for 

some c E E-(g) N C(u) (see Proposition 1.1 and Theorem I. 1). In this case ~-(~) = ~-(g). 

It is clear that D(g)=D(~) and xE-(g)cD(g) whenever x ED(g). 

We show below (Theorem 1.1) that if g is diagonal for a horocyclic element u E 

then every eigenvalue of ad~ is an integer. Write ~-2=E(~x: ;t~<-2}. Clearly u E ~-2" 
Now let A=A(/~)cG be as in (*) and let ~(A) be the Lie algebra of A (~(A) might be 

trivial). Define ~(A)= ~(A) N @-2, Nu(A)= {n k exp 92(A): k E Z}, where u=z exp u E A for 

some z E Z(G). 

THEOREM 1 (The Main Theorem). Let G be a Lie group and F a discrete subgroup 

of G (not necessarily a lattice). Let u=z exp u, z E Z(G), u E (~ be a r-horocyclic element 

of  G and g E g6 a diagonal element for u, gp=exp pg, gl=g. Let lz be a Borel probability 

measure on F\G such that u E A=A(/z) and the action of  Nu(A) on (F\G,~) is ergodic. 

Then either (1) /t(D(g))=l or (2) cgpc-lEA for some pER,  cEE-(g). In this case 

u E ~(A), csl2(u, g) c- lc~(A)  and/t is algebraic; also xA-- IJ {xA~ i=0 . . . . .  n} for some 

integer n>~O, where x=er(x(/z)) and A ~ denotes the connected component of  A contain- 

ing e. 

In our proof of Theorem 1 we assume that u is horocyclic. This contains no loss of 

generality. Indeed, if u is r-horocyclic then ( r \G , /0  is composed of a finite number of 

ergodic components of Nuk and the action of u k on each of these components coincides 

with the action of the horocyclic element exp ku. 

COROLLARY 1. Let G be a semisimple Lie group. Then 

(1) Theorem 1 holds for all nontrivial elements u of  one-parameter unipotent 

subgroups of  G; 

(2) if  G is connected and r is a compatible lattice in G then Theorem 1 holds for all 

noncentral unipotent elements of  G. 
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COROLLARY 2. Let G be a Lie group and F a uniform lattice in G. Let H be a 

closed subgroup of  G such that H N F is a lattice in H. Suppose that H contains a F- 

horocyclic element of  G. Then the Lie algebra ~ of  H is not trivial and slE(U, g ) c ~  for 

some horocyclic u E ~ and a diagonal g E (~. 

COROLLARY 3. Let G be a Lie group and F a uniform lattice in G. Then the action 

of every F-horocyclic element of  G on F\G is measure rigid. If, in addion, G is 

connected, semisimple and F is compatible with G then the action of every unipotent 

element of  G on F\G is measure rigid. 

Let G=SL(2,R) and F , /~ ,u=expuEA be as in Theorem 1. It is clear that if 

/~(D(g))>0 then g (~ A. This implies that either ~(A) = (0} or ~(A)-- {tu, t E R}. This and 

[R4, Corollary 3] give the following generalization of [D1]. 

COROLLARY 4. Let G=SL(2,R) and F,It, u = e x p u E A  be as in Theorem 1. Sup- 

pose that the action of  u on (F\G,/~) is ergodic. Then either F is a lattice and bt is G- 

invariant or ~ is supported on a closed orbit of  u or of  ut=exptu, tER.  In particular, 

every unipotent subgroup of  G=SL(2,R) is strictly measure rigid. 

Theorem 1 provides some important ergodic theoretic consequences. Namely, it 

allows to classify up to an isomorphism all ergodic joinings of two horocyclic transla- 

tions as well as factors of such translations. More specifically, let G;, i--1,2 be a Lie 

group, ri a lattice in Gi, Via Grinvariant Borel probability measure on ri\Gi=Xi, u ('3 E G, 

u=u ~ x u (2). A u-invariant Borel probability measure/z on X=X~ xX2 is called a joining 

of u (1) on (Xl,V0 and u (2) on (Xz, v 2) if/u(AxX2)=vI(A),p(XlXB)=v2(B) for all Borel 

subsets AcXI ,BcX2 .  The joining vl• will be called the trivial joining. We show 

(Section 7) that if G~ and G2 are connected and a joining/z is algebraic then the groups 

Al(/z) and A2(p) defined by 

A~(/~) = {h ~ Gl: (h, e) E A(/~)}, A2(/~) = {h E G2: (e, h) E A(/~)} 

are closed normal subgroups of Gl and G2 respectively. Here A(/.t)CGl• 

/~(x(~t)A(p))=l,x(p)EX=XlxX2. For eEG2 write F~={YA2(/.t):yEc-lF2 c} and for 

z E X~ let 

~i,(z) -- {y E X2: (z, y) E x(/~) A(/~)}. 
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The set ~u(z) is called the z-fiber of/~. 

THEOREM 2. Let Gi be a connected Lie group, ri a lattice in Gi and u ('~ E Gi, i= 1,2. 

Let iz be an ergodic algebraic joining of  u (1) o n  (XI=I ' I 'XG1,v l) and u (2) on 

(X2=r2xG2,vz). Then there is c EG2 and a continuous surjective homomorphism 

a: GI---)GE/Az(/t) with kernel AI(/Z), a(u(l))=u(2)A2(/z) such that 

~u(I'l h ) =  {r2 e~ia(h): i =  1 . . . . .  n} 

for all hE Gl, where the intersection Fo=a( r l )n  r~ is of  finite index in a( rO and in 

n=lro~(r , ) l  and a(Fl)= {F o[li: i= 1 . . . . .  n}. 

Now suppose that U (i) E G i is ri-horocyclic and g(0 E G i is diagonal for u (i), i= 1,2. It 

is clear that u=u(1)xu (2) is F 1 •  in GI •  2 and g=g(1)• is diagonal for u. 

Also the g-orbit of  x=(xl ,xz )EX diverges in X when n-- ,~  if and only if so do the 

g(1)-orbit of  x 1 and the g(E)-orbit of  x 2 in X 1 and X 2 respectively. We h a v e  l/i(D(g(i)))=O, 

since g(i)E A(vi), i= l, 2. This implies that if/z is a joining of u ~ and u (2) then/z(D(g)) =0. 

This implies via Theorem 1 that all ergodic joinings of  u (1) and u (2) are algebraic. This 

gives the following 

COROLLARY 5 (The Joinings Theorem). (1) Let Gi be a connected semisimple Lie 

group, ri a lattice in Gi and u (i) a unipotent element of  Gi, i= l, 2. Let/z be an ergodic 

joining o f u  (1) and u (2). Then ~ is algebraic and the fibers of  ~t are given by Theorem 2. 

(2) I f  in addition G i is simple, i= l, 2 and /~ is nontrivial then euery fiber of  /~ is finite 

and G1 and G2 are locally isomorphic. 

Corollary 5 generalizes our joinings theorem for Gi=SL(2,R), i= 1,2 obtained in 

[R3]. Some restricted results of  this nature were also obtained in [W2]. As in [R3, 

Corollary 4] we obtain the following 

COROLLARY 6 (The Rigidity Theorem). Let Gi be a connected semisimple Lie 

group, ri a lattice in Gi containing no nontrioial normal subgroups of Gi and u (0 a 

unipotent element of  Gi, i= 1,2. Suppose that the action o f u  (1) on (X1, vl) is ergodic and 

there is a measure preseroing map ~: (XI, vl)-*(X2, rE) such that ~(xu~ 

vl-almost every x EX1. Then there is c EG2 and a surjectioe homomorphism a: G1---)G2 

such that a ( I ' 0cc - l I ' 2c  and ~p(F1 h ) = r E e a ( h ) f o r  vralmost eoery r 1 h E X I. Also a is a 

local isomorphism whenever ~ is finite to one or G1 is simple and it is an isomorphism 

whenever ~ is one-to-one or G1 is simple with trivial center. 
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This corollary generalizes our rigidity theorem for SL(2, R) in [RI]. It was pre- 

viously obtained in [W1], [W2] by methods from [R1] and [R3]. 

Let G, F, v and u E G be as above. A u-invariant measurable partition ~ of (F\G, v) 

is called a factor of n. We denote by ~(x) the atom of ~ containing x E F\G=X. The 

factor ~ is called algebraic if there is a surjective homomorphism a: G---~G such that 

~(xh)=~(x)a(h) for all hEG and v-almost every xEX.  It was shown in [R2,3] that if 

G=SL(2,R) then every factor of a unipotent element of G is algebraic. In general, 

algebraicity of factors of unipotent translations is rather an exception. Indeed we 

showed in [R3] that if n is the n-fold cartesian product Ul x ... xnn of unipotent elements 

uiEGi=SL(2,R), i=l ..... n acting ergodically on (F\G,v n) with G=GlX...XGn, 

F=F1X...• vn=vlX...XVn then every factor of this action has the form H\G/L, 

where H is a closed subgroup of G, containing F and L is a closed group of affine maps 

on H\G centralized by u. Recently, Witte [W3] showed using our main theorem from 

[R5] that this is true for general G and u. 

The ideas and techniques we use to prove Theorem 1 are totally different from the 

methods used by other authors. In [R4] we introduced a dynamical property of 

unipotent group actions, called the R-property, which plays a crucial role in our 

analysis. It is a generalization of the property for unipotent flows which we introduced 

in [R3] and [W1] (in [R3] it is called the H-property and in [W1] the Ratner property). 

Also we make an essential use of the ergodic theory of nilpotent group actions 

developed in [R4] (see also [GE]). All the results from [R4] used in this paper are stated 

in Section 1, so that the paper can be read independently of [R4]. In Section 2 we 

discuss some features of horocyclicity of u, used in the proof of the basic lemma in 

Section 3. In Section 4 we discuss conclusion 1 of the main theorem and devote 

Sections 5-7 to conclusion 2 of the theorem. In Sections 5-6 we shrink the support of/z 

to a homogeneous set and in Section 7 we show that ~ is, in fact, the Haar measure on 

that set. 

The results of this paper were announced in [R5]. 

I wish to thank Paul Chernoff for valuable discussions on various aspects of the 

problem. 

0. Notations 

Throughout this paper unless otherwise stated G denotes a real second countable Lie 

group, equipped with a left invariant Riemannian metric, q6 the Lie algebra of G, e the 

identity element of G, Ada(v)= v(a)=a-lva, adb(V)= [v, b], v, b E q6, a E G. If (3 c ffl then 

exp (3= {exp v: v E (3}. If (9 (H) is a subalgebra of @ (a subgroup of G) then ..~((3) (I(H)) 
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denotes the normalizer of (9 (of H) in (~ (in G). Also g denotes an R-diagonalizable 

element of (~, g(t)=exp tg, g(1)=g, ~2 the eigenspace of adg with the eigenvalue 2, 

~21= E ~2, ~ - = E ~ 2 '  E222~=exp~22], E - = e x p ~ -  
/], 1 ~'~], ~ 2 2  2 < 0  

P2 the projection onto @2 induced by the direct sum decomposition (~=E2~2, 

Z(v)=max{2:p2(v)4=O) if v~:O. Also u denotes a horocyclic element for g, if such an 

element exists, u E ~-2, u(t)=exp tu, t E R, u=u(1) and u* the element in ~2 for which 

[u, u*]=g. A triple (X, d , /0  will mean that X is a metric space with the metric d and a 

Borel probability measure p. We shall always assume that when G acts on a measure 

space (X, p) then (X, p) is a standard B orel space and the action map (x, g )~xg ,  x E X, 

g E G is Borel measurable. 

1. Auxiliary results 

We begin with the study of eigenspaces of adg with g being an R-diagonalizable element 

of (~. 

PROPOSITION 1.1. A vector w E (~ has the form ege -1 for some e E E- if  and only i f  

w=g+v for some v E ~ - .  

Proof. If  w=ege -1 for some e E E -  then 

oQ 

w = g + E  adic (g)/i! = g+v, e = exp c, c E ~ -  
i=1 

and v E ~ - .  Now let w=g+v for some v .E@-. We have e x p w = g . b  for some b E E - .  

Define 

(1.1) 
n 

cn = ]-I(g-kb- lg k) = b-l(g-lb-lg). . . (g-~b-lg ~) E E-.  
k=0 

It follows from the definition of E-  that 

lim e n = e E E- 
n..-+ oo 

exists. We have 
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1) cgc-1 = 2im ( [  k_~0(g-kb-lg~ "g" (g-(n-k)bgn-k) 
Lk=O d (1.2) 

= g n--,lim ( / ~ ( g - k b - ' g ~ ) t  ( k ~ n 0 ( g - ~ - k ' b g ~ - k ) ) \ k = ,  / " = gb = exp w. 

Also it follows from (I.1) that 

(1.3) c = lira [ exp( -nw)  exp ng]. 
]/----~ oo  

This and (1.2) show that 

exp(w/k) = c(k) exp(g/k) c-l(k) = exp(e(k) (g/k) c-l(k)) 

where k E Z + and 

c(k) --- lim [exp( -nw/k )  exp(ng/k)] = c 
n ----~ or 

by (1.3). Thus exp(w/k)=exp(c(g/k)c  -t) for all k= 1,2 . . . . .  This implies that w=cgc -1. 

PROPOSITION 1.2. Let  A be a closed Lie subgroup o f  G (not necessarily connected) 

with the Lie algebra ~(A). Suppose that cgc -I E A  for  some t E E - .  Then 

(1) v E ~(A) whenever v E @-, exp v CA; 

(2) cpx(o)(v)c -1 C ~(A) whenever v E ~(A). 

Proof. We have cg~c -1 =gnc n ~ A, where 

(1.4) 

since e E E- .  

(1) We 

c~ = (g-~cg~) c-1 --> c-l ,  n - - ~  

have Cnlg-n(exp V) g"cn=ex p Adg%(v) E A and exp Adg% (v)-->e, n---~ by 

(1.4), since v E ~ - .  This implies that Adg%(v)E ~(A) for all n>~no and hence v E 2(A). 

(2) We have v=vz+v'  where 2=X(v), va=pa(v) and Z(v')<2. Also 

Adg%(v) = c~l(g-n(v~ +v ') gn) c~ = c~l(e'Znv~ +v '') c n E ~(A) 

n=l ,  2 ....  , where Itv"ll~e"~Hv'll for some a<2 .  This implies that 

lira (enl(V,~+e-X'~v ") On) = ev~ c -1 E ~(A) 

by (1.4), where I l e - X " v " l l ~ e ( a - X ) . l l v , l l ~ O  , n-- ,~ .  This completes the proof. [] 
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PROPOSITION 1.3. Let A be as above. Suppose that exp v EA for some v ~ ~- .  

Then v normalizes ~(A). 

Let 

Proof. We have Adex p o(~(A))=~(A) and Z([w, v])<X(w) for all w E ~ with [w, v]*0. 

{Z(w): 0 4= w E ~(A)} = {Z1 ..... Z,} 

where zl<Zz<...  <Z,. Using induction on k= l  ... . .  n we shall show that [w, v] EE(A) for 

every 0*w E ~(A) with Z(w)=xk. Indeed, let O*w E 5~(A),z(w)=z~. We have 

Adexp o(w) = w+[w, v]+ w' = w+ w o E ~(A) 

where Z(w')<Z([w, v])<Z(w)=zl if w'4=0. This implies that w0=[w, v]+w' E~(A) and 

hence w0=0 since otherwise we would have Z(Wo)<Z(w)=zl. This implies that w'=O 

and [w, v]=0 since Z(w')<Z([w, v]) if w'*O. This proves that [w, v]E ~(A). Now assume 

that [z,v]E~(A) for all 0*zE~(A)  with Z(z)<<,Zk and let 0*wE~(A) ,  X(W)=Zk+l. If 

[W, V]=0 we are done. Otherwise we have 

m(v) 
Adex p v(W) --- w + Z ck adkv (w) E ~(A) 

k=l 

where ek= 1/k! and m(v)=max{k>O: ad~(w)*O}. This implies that 

w o = ~ c k adko(w) E ~(A). 
k=l 

Also Z(Wo)<Z(w) = Zk+l. Therefore 

(1 ,5)  Wp = ad~(w o) = 

m(v)-p 
E ciad~ +i(w) e ~(A) 
i=l 

for all p>0. In particular, Wm(o)_l=Cl adm(~ E E(A) and hence ad~(~ E ~(A). There- 

fore adko(w)E E(A) for all k>~2 by (1.5). This implies that ado(w)E E(A) since w0 E ~(A). 

This completes the proof. [] 

Now assume that g is diagonal for a horocyclic element u, g=[u, u*], u* E @z, 

u E ~-2. Define 

(1.6) 
~ = {v E ~ :  [v, u*] = 0}, 

= �9 ( o ) ) ,  

~ = {v E ~ :  [v, u] = O} 

= { o ) ) .  
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THEOREM 1.1. Suppose that g is diagonal for a horocyclic element u. Then 

(1) every eigenvalue o f  adg is an integer; 

(2) I f 2  is an eigenvalue o f  adg then so is -A; 

(3) ad~-~(w)*0 for  every O~=w E ~ with 2<0;  ad~u(W)~=0 for  every O~=w E ~ with 
2>0; 

(4) 2t>0 for  all 2 E tb and 240  for all 2 E d~. Also ad~u(~z)= ~ for  all 2 E d~ and 

a d J ( ~ ) = ~ _ ~  for all 2 E d~; 

(5) (~ = Z (adk(~x): 2 E ~b, 0--.<k-.<2} = Z (adk..(~): 2 E tb, 0~<k~<-2}; 

(6 ) I f~={v l  . . . . .  v.},O*vi= ~' ad. (wi), kilO, w i E ~ ,  2i:~=2 j, i~=j then ~ is linearly inde- 
pendent. 

Proof. This theorem is well known (see, for instance, [H, pp. 31-34]). The proof 

we give is similar to the proof of an analogous statement for roots of  semisimple Lie 

algebras (see [J]). Let  0=~v E ~a for some 2 ER. We claim that for each k= I, 2 . . . .  

(1.7) 

where 

(1.8) 

[adk~(v), u*] = ak_ 1 adk~-l(v) 

a k = ( k + l ) ( 2 - k ) = a k _ l + 2 - 2 k ,  a0=2 .  

We shall prove (1.7) by induction on k. Let  k= 1. We have 

[ad,(v), u*] = [v, [u, u*]]+[[v, u*], u] -- [v, g] =2v  = aov. 

Now let (1.7) hold for k. Consider 

[adk,+l(v), u*] = [ad~,(v), [u, u*]]+[[adk,(v), u*], u] 

= (2 - 2k) adk~(v) + a k - 1 adk.(v) = ak adk~(v) �9 

This proves our claim. Now let m=m(v)>~O be the largest integer for which ad~(v)*0 

and let ~(v) be the subspace of @ spanned by {ad~(v): O<.k<.m}. The space ~(v) is 

invariant under ad. and ad.. and hence under adg, since g=[u, u*]. We have 

m 

0 = Tr(adg) on ~(v) = Z ( 2 - 2 k )  = (m+l )  (2-m) .  
k=0 

This implies that 2 = m  and shows that 2 is a nonnegative integer when ;t E tb. Hence 

~x={0) for 2<0. 

Now we claim that there exists no wE @x+2 with [w, u]=v. Indeed, suppose 
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on the contrary that such w exists. Let n=n(w)>~O be the largest integer for which 
^ 

0=ad~",(w)~=0. We have 0E ~+2(,+1). We claim that 

(1.9) [ad~,(w), u] = flk adk~?'(w) 

for all k= 1 ..... n and some ilk*0 if n~ > 1. In order to prove (l.9) one should repeat the 

argument in the proof of (1.7), using the relation [v, u*]=0. We have m(O)=2+2(n+ I) 
and therefore 

(1.10) adku(O) * 0 

for all 0-.-<k--,<2+2(n+ 1) by the definition of m(0). This and (1.9) show that v=rad"u+~(O) 
for some r~:0. This and (I.10) imply that 

~+1 admW)+l(v) ad~ (v) = * 0 

which contradicts the definition of m(v). This proves our claim. Using the symmetry 

between u* and u we prove in the same way that 2~<0 for all 2 E o5 and 

(1.11) there exists no w E | with 0 4= [w, u*] E @~,2 E o5. 

Also our argument shows that ad~ (~ )=~  ~ for all 2 E o5 and adS,~(@a)=@_~ for all 2 E o5. 

This proves (4). 

For vE ~z, 0<4  ~o5 set 2~o(V)={tv: tER} and define 

~.(v) = (w E ~-2.:  [w, u*] E ~._l(v)} 

n=l ,2 ,  .... It follows from (1.8) that ak+0 for all k=l . . . . .  4 -1 .  This and (1.11) imply 

that 

(1.12) 
~ , (v )={0}  for n>A 

n n - i  

= adu(v)" + E  E 
i = l  k=O 

n =  1,. . . ,2. 

Now let wE~x,2ER and [w, u*]#0. Let n=n(w)>O be the largest integer for which 

v=ad~,(w)=r We have v E ~a+2, and 2+2n is an integer. This implies that 2 is an integer 

and proves (1). Also w E2),(v). This and (1.12) prove the first identity in (5). Also 

n--<2+2n by (1.12) and hence nI>-2. This implies that ad~-,~(w)=r if 4<0 and 

ad2,~(w) E @-4. This improves (2) and (3) for 4<0. The proofs of (2) and (3) for 4>0 and 

of the second identity in (5) are similar. 
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Now let us prove (6). We can assume that v i ~ ~.  for some 2 ER and all i= 1 . . . . .  n. 

Suppose on the contrary that v-2i= 1 aivi=O for s o m e  aiER and ;tj=max{).i: a i*0}>0 

if n>l .  Then kF(~j -Z) /2=max{k i :  ai*O} and therefore kj k i adu,(v)= by (1.7). ad.,(aj vj)*O 

This contradicts v=0 and proves (6). [] 

We shall use in this paper the ideas and techniques developed in [R4]. Let us state 

the results from [R4] needed for our proofs. 

Let 92 be a subspace of @ and 92 • a subspace of @ complementary to 92. Let p~ 

and p• denote the projection onto 9~ and 92• respectively. For x E @ , h E G  let 

x(h)=Adh(x). 

PROPOSITION 1.4 [R4, Proposition 1.5]. Let  xE92•  E92 and for  n E Z  +, 

k=0, 1 . . . . .  n let h0(n)=e, hk(n)=exp[p~(X(hkl_l(n)))/n] . hk_l(n) exp(y/n). Assume  that 

IIx(h-;'(n))ll<-C for  all n E Z +, k=0, 1 . . . . .  n and some C>0. Then 

In--I 1 exp(x+y) = lim I-[ exp(pl(x(h7, l(n)))/n)'h~ ) 
n---)oo L i=0 

L np --'~ \ i=o 

t] x lira I--[ exp(p~(x(h[l(%))) /% ) expy 
L 5 ~  \/=,F1 

where {np:p=l ,2  . . . .  } is a subsequence of  {1,2 .... }. 

We will also need the following fact, which can be found in [J]. Namely, for 

all sufficiently small x, y E @ one has 

(1.14) expxexpy  = exp x+y+[x,y] /2+ cn(x,y 
= 

where each c,(x, y) is a linear combination with universal coefficients of the commuta- 

tors of the form [zl, [z2, [ .... [z,_l, z,] .... ]]] with zi E {x, y}, i= 1 . . . . .  n and the series in 

(1.14) is norm absolutely convergent. 

Now let b be a nilpotent element of N, 92 a subalgebra of (~, normalized by b and 

921 the orthogonal complement of 92 in (~. 

Note 1.1. We shall often use in this paper orthogonal complements of subspaces of 

N. In fact, arbitrary complements would suffice, but we take orthogonal complements 
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for convenience. Also we can always redefine the Riemannian metric on ~ in such a 

way that the arbitrary complements occurring in the argument would be orthogonal in 

this metric. 

Define 920=92, 92~-=92• and 

(1.15) 92, = {vE92,L1:adT,(v)E92), 92-1= 6~ 

where 92~ denotes the orthogonal complement of ?In in 92~n-1, n= 1,2, .... Note that 

some of the 92, might be trivial. We have ~.~l~• 92i for some r=r (b )EZ  +. For 

v E 92• t E R write b(t)=exp tb and v= E~.= 1 v i, v i ~ 92i, i= 1 . . . . .  r. We have 

t k 
v(b(t)) = Adb~o(v) = adb(Vi) 

i=l = " 

= v~(b, t)+O(b, t)+v'(b, t) 

where 

•177 v~(b, t) = t ad~(vi) E 
i=l  k=i " 

ti-1 ad~-l(v/)= ~ ~)i(b, t) (1.16) O(b, t) = i f - I ) !  
i=1 i=1 

~ i - 2  / k 
v'(b, t) = E ~ adb(Vi)" 

i=2 k=0 

PROPOSITION 1.5 JR4, Corollary 3.1]. There are to(b)=to(b, 92)>2, Q(b)=Q(b, 92)> 

r(b) such that if max{llp Av(b(s)))ll: O<.s<-t}<~O for  some t>~to(b), 0>0 then 

Ila0 (v;)ll ~< Q(b) o/t i-1 for  all i = 2 . . . . .  r; 0 <~ k <~ i - 2  

(1.17) Ilv'(b,s)ll<~Q(b)O/t for  all O<.s<.t  

(Iv-v,{ I ~< Q(b) O/t. 

PROPOSITION 1.6 [R4, Proof of Lemma 3.2]. Given 0 < c < l  there are to(C, b)= 

to(c, b, 92)>1 and 0<to(c, b)=w(c, b, 9~)<1 such that i f  max {llP ~ (v(b(s)))ll:O<.s<.t}---O 

for  some t>~to(C , b), 0>0 and v E 92.L then here are O~so~t a n d j E  {1 . . . . .  r} such that 

w(c, b) 0 <~ Ilp ~(v(b(so)))ll < o 

I~v• s0))l] ~< cl[p• s0))ll. 

16-908283 A c t a  Mathema t i ca  165. Imprim6 le 8 novembre 1990 
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Now assume that 92 consists of nilpotent elements of  ~ and N = e x p  92 is simply 

connected.  Le t  B={bl  . . . . .  bq} be a basis in 92 and for v E 92 let ai(v) be the brcoordinate  

of v. The basis B is called triangular [R4, Definition 2.1] if ak[b~, bj]=0 for all k ~  < 

max{i , j ) , i ,  j E { 1  . . . . .  q}. The basis B is called regular if it is a permutat ion of  a 

triangular basis. All bases in this paper  are assumed to be regular. Le t  tp: Rq---~N be 

defined by 

q~(tl, ..., tq) = exp t I b I exp t 2 b 2 ... exp tqbq. 

The map q0 is a diffeomorphism from R q onto N and 2(A)=m(q0-1(A)), A c N  is a Haar  

measure on N [R4, Proposit ion 2.1], where m denotes a Lebesgue measure on R q and A 

a Borel subset of  N. For  s ~  > 1, i= 1 . . . . .  q define 

Fn(s 1 . . . .  , Sq) = (q0(t I . . . . .  tq): It, I ~ Si, i = 1 .. . .  , q}. 

The sequence Fs(si . . . . .  Sq),minisi---~ is called B-regular [R4, Definition 2.2] if si = 

ptri(s) for some parameter  ~>0  and some functions 0<oi(s) '~ ~ ,  s - - ,~  with 

(1.18) oi(s) oj(s) <<. Ok(S ) for all s I> 1 

whenever a,([bi, bj])#:0, i,j, k E { 1 . . . . .  q}. 

Hencefor th  the symbol Fe(s) or F~(s) will mean a B-regular sequence Fn(sl . . . . .  Sq) 

with s~=oo,(s), i= 1 . . . . .  q for some functions cr/(s) satisfying (1.18). Define 

(1.19) Oe(s) -- (v ~ 92: la,(v)l ~< ~)o-i(s), i = 1 . . . . .  q}. 

It follows from (1.14) and (1.18) that there is 0<Qo<0.1 such that if 0<O<O0 then 

(1.20) hFe(s ) c F3e(s ) for all h E Fe(s), s >~ 1 

(1.21) expvEFe(s )  =~ vEO2e(s), vEOe(s) ~ expvEF2Q(s). 

Define r(s)=min(Qoi(s): i= 1 . . . . .  q} and for v E ~ let 

/3(v, s) = max{l[p• h E Fe(s)) 

v(h)=Adb(v). Also let ~(92) denote  the normalizier of  92 in gr, 92.~ =~(92) N 92 • and p~ the 

projection onto 92~. 

PROPOSITION 1.7 (The R-proper ty  [R4, Theorem 3.1]). There exists to=to(B)>l, 

L=L(B)> I, O<71=rl(B)<I such that i f  vE 92• v(t)>to and fl(v, t)<~O for  some 0>0  then 
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I[p • (v(h) ) -p~(v(h)  )ll <. LO/r( t) 

for  all h E Fe(t) and 
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(1.24) q~(h o h) = q~(h o) hW(h 0 , h) 

where ~ (ho, h) E Fco~( t)~Fo.l~( t). 

The following two results are concerned with ergodic actions of N. Let A denote a 

Haar measure on N. 

PROPOSITION 

0 < ~ <  9. Then 

I~ . (v(ho))-p ~ (v(h))II < eO 

for all h E ho F~,Q(t), all ho ~ F~(t) and all 0 < e < l .  

A sequence FQ(s) is said to be consistent with ~ if there is a constant Q=Q(B, o ) > l  

such that 

p~(v(h)) E dPQ~o(t) 

for all h E Fa(t) and all 0~<a~<O, whenever fl(v, t)~<0, v E (~, [Ivt[<<-O, v(t)>~to(B). 

PROPOSITION 1.8 [R4, Lemma 3.3]. Suppose that Fe(s) is consistent with (~. 

Then there is C=C(B,Q)>-IOLQ/r 1 such that if  fl(v,t)<-O for  some vEg6, i[vIl<~O, 

0<0<0.1C-1Q, v(t)~>max{t0, C-10} =t(O) then 

(1.22) exp v(h) = exp(p~(v(h))+r(v, h)+e(v, h))' I~ = exp(w(v, h)). 1~ 

for  all h E FQ(t), where h E Fco(t) and 

r(v,h)E92,~, [Ir(v,h)[l<<.CO2, e(v,h)E92 l, [le(v,h)ll<<.CO/v(t). 

Now let Fe(s) be consistent with ffl and let fl(v, t)<-O for some v E ~ ,  Ilvl[<.o, 
v(t)>~t(O), 0<0<0 .  IC-10. Let  9(.)=cp(v, �9 ): Fe(t)--->(exp v) N be defined by 

(1.23) q~(h) = h exp w(v, h) = (exp v)" h. (1~)-1 

where w(v, h) and h are as in (1.22). 

1.9 [R4, Corollary 3.5]. Let h0,h0hEFe(t) and h E F t ( t ) f o r  some 
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PROPOSITION 1.10 [R4, Theorem 2.1]. Let N act on a probability space (X,l~) with 

It being N-invariant. Suppose that the action o f  N is ergodic. Then given A ~ X ,  

/~(A)> l - a ,  0 < a < l  and a regular sequence Fe(s) in N there exists Q(A)=X, p(Q(A))= 1 

such that if  xE Q(A) then 

lim inf[2(A n xFQ(s))/2(FQ(s))] >I 1-fl(a) 
$-.-~ oo 

for some 0<fl(a)--*0, when a---~O, where 2(D) for D=xFo(s) is defined to be 
2{h E Fo(s):xh ED}. 

Now let G act on a metric space (X, d, p) with p being a Borel probability measure 

on (X, d). Let 

A = A(G, X,/~) = {g E G: the action of g preserves p}. 

We say that the action of G on (X, d) is uniform if given e>0 there is c(e)>0 such that 

d(xg 1, xg2)<e for all x EX whenever dG(gl, g2)<c(e), gl, gz E G. Let I(N) denote the 

normalizer of N in G. 

PROPOSITION 1.1 1 [R4, Theorem 2.2]. Let G act uniformly by homeomorphisms on 

(X, d,p) with i~ being N-invariant. Suppose that the action o f  N is ergodic. Then given 

e>0 and a nonempty compact subset K c I ( N ) - A  there exist a compact subset 

Y= Y(e, K ) c X  with p(Y)> 1 - e  and 6=6(e, Y)>0 such that d(Y, Yk)>6 for all k E K. 

Note 1.2 [R4, Notes 2.3 and 3.2]. Let �9 be a simply connected subalgebra of 

spanned by 92 and a nilpotent element u E ~ ,  normalizing 92. Let B~= {u, bl .. . . .  bq) be a 

regular basis in �9 with B={bl . . . . .  bq) being a regular basis in 92. Let u=zexpu ,  

z EZ(G),uk~N=exp92,kEZ and Nu={ukN:kEZ}. For a Borel subset AcN~ define 

2.(A)=Ekez2(A N ukN), where for DcukN we define 2(D)=2(u-kD) with 2 being a Haar 

measure on N. Then 2, is a Haar measure on N,. Define 

F(n; s I . . . . .  Sq) = {ugFs(s1 . . . . .  Sq): -n~k<~n} 

and call the sequence F(n; sl . . . . .  sq) regular when mini{n, Si}"'->O0 if FB(sl ..... Sq)= F~(s) 

is regular, n=Qn(s), n(s) ~ oo, s---~oo and n(s)oi(s)<.ak(s), s>-I whenever ak([u, bi])~=O, 

i, kE{1 ..... q} (see (1.17)). Propositions 1.8-1.11 hold also with Nu in place of N. 

One should only substitute ). by ~.u and Fo(s) by the regular sequence F(n; sl .. . . .  Sq) just 

described. 
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PROPOSITION 1.12 [R4, Theorem 5], Let  G act on a metric space (X, d, It) with It 

being N-inoariant. Suppose that gnhg-n---~e, n - - ~  for  all hEN and some gEA and the 

action o f  N is ergodic. Then the action o f  g is mixing. 

Finally we include the following simple fact used in the proof of the main theorem. 

PROPOSITION 1.13. Let  H be a Lie group with a Haar measure R acting on a 

probability space (X, It) with It being H-invariant. Then given AcX,I t (A)=I  and 

F c H ,  R(F)>0 there is X(A, F)cX,  It(X(A, F))= I such that i f  x E X(A, P) then xh E A for  4- 

almost every h E F. 

Proof. It suffices to assume that R(F)<~. Let f denote the characteristic function 

of A. We have 

fxf(Xh) dit = f/(x) dIt =1 

for all h E H. This implies that 

and therefore J'Ff(xh) dR(h)/R(F) = 1 for It-almost every x E X. This implies that for such x 

we have f(xh) EF for R-almost every hEF,  since 0~<f(x)~<l for all x E X .  This completes 

the proof. [] 

2. The significance of horocyclicity 

Throughout this section we assume that G is a Lie group, g an R-diagonalizable 

element of ~ ,  u E (~ a horocyclic element for g, u(s)=exp su, s ER, u=u(1) and @k, 

k=0, + 1 ..... ___m the eigenspace of adg with the eigenvalue k (see Theorem 1.1). Note 

that some of the @k might be trivial. Write ~k=@km,k=0, -+1 ..... ___m, ~ - ~ = ~ - .  We 

have 

k=-m 

- - a  direct sum decomposition. Let Pk denote the projection onto ~k, induced by this 

decomposition. 

We shall use the symmetry arising from horocyclicity of u to obtain the necessary 

tools used in the proof of the basic lemma. 
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Let 92c@ -2 be a subalgebra of  (~ normalized by u. As above we denote by p . (v )  

and p~(v) the projection of  v E (~ onto 921 and 92 respectively. Let  

92i = 92i(U) = { V ~ 9 2  "1- "adiu(v) E 92) i =  1, m + l  
i - l "  ~ " " ~  

920---92, 92~-=92• 92-~-1=~ 

be as in (1.15) for b=u, where 927_ 1 denotes the orthogonal complement of  92i-1 in 92,'L z, 

i= 1,2 . . . . .  m+  1 (see Note  1.1). 

LEMMA 2.1. Let  O*viE92~, i=0 . . . . .  m + l .  Then 

(2.1) z(ad~(v)) ~< 2 i - 2 k - 2  

for all k>~O with adku(vi)*0. 

Proof. It follows from the definition of 92; that 

adk~(vi) * 0 

for all O < . k ~ i - l , i = l  . . . . .  m + l .  Let  us show that 

Z(vi) <~ 2 i - 2  

for all 1 <~i<.m + 1. This would imply (2.1), since X ( u ) = -  2. Suppose on the contrary that 

Z(vi) > 2 i - 2  

Then 

This implies that 

x(ad~l(vi)) > O. 

adiu(Vi)) * 0 

by Theorem 1.1, since u is horocyclic for g. Therefore 

i Z (adu(vi)) > - 2 

and 

i adu(vi) ~ 92. 

This contradicts the definition of 92;. [] 
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It follows from [R4, Proposit ion 1.4] that N = e x p  92 is a simply connected unipotent  

subgroup of  G. Le t  B ~k~ be a maximal set of  vectors in 92 such that g(b)=k for all b E B ~k) 

and (pk (b) :bEB ~k)} forms a linearly independent  set in ~ k , k = - 2  . . . . .  - m .  The set 
- 2  (k) B= t.lk=_m B = {b I . . . . .  bq} is a regular basis in 92. Let  Fo(s), 0<Q<0.1Qo be the B-regular 

sequence in N defined with 

(2.2) oi ( s )=s  k if z ( b i ) = - 2 k  or - ( 2 k + l ) ,  i = 1  . . . . .  q , k = l  . . . . .  m 

and let *o(s) be as in (1.19). 

From now on we assume that u E 92 and u=bl EB. 

Note  2.1. The argument below works for the case u ~ 92 as well. One should only 

substitute N by Nu (see Note  1.2) and Fo(s) by the regular sequence in Nu described in 

Note 1.2. 

LEMMA 2.2. Let  to=to(u) be as in Proposition 1.5 for  b=u and let v E (~, [[vll<~O for  

some 0<0<1 .  Suppose that 

for  some t>~to. Then 

max{llp.(v(u(s)))l l:  o ~< s ~< t} ~< 0 

m 

p . (v(u(s))) = v~ s)+ ~ zj(v, s) 

(2.3) j=l 
p~(v(u(s))) E ~2Qo(S) 

for  all O~s<~t, where Q=Q(u)  is as in (1.17) and 

v~ s) ~ ~0 n 921 iiv0(u, s)ll ~< QO 

Ilzj(v,s)ll<.OO/t j, O<z(z j (v , s ) )<.2  j, j =  1 . . . . .  m. 

Proof. We have 

v = p• = v• 

p~(v(u(s))) = p~(v  . (u(s))) + v~(u(s)).  

It is clear that v~(u(s)) E Oo(S), since Iiv~]] ~< 0. This says that we can assume v E 92• We 

have 

p• = p ,  (O(u, s)) + p  . (v'(u, s)) 
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m+l  s i_  1 

O(u,s)= E (i-I)! 
/=1 

m + l  

~ a d ~ l ( v g  ) = E Og(u, s) 
g=l 

m + l  i - 2  k m + l  i -2  

v'(u,s) = E E -fir. adk(vg)= E E V;,k(U' S) 
g=2 k=O k!  i=2 k=O 

for all O<.s<.t by (1.16), where v; denotes the projection of v onto 9~g. It follows from 
(1.17) and Lemma 2.1 that 

z(Oi(u, s)) <. o, i = l  ..... m+l  

Z(V;,k(U, S)) <~ 2i -2k-2  

IIv,' k(u, s)ll ~< Q O/ti-k-I , 

for all O<<.s<~t. This implies that 

p ~ (v'(u, s)) = ~ zi(v, s) 
j=l 

Ilzj(v, s)ll < QO/t j, z(zi(v, s)) <<. 2j, 

for all O<~s~t. Also 

where 

We have 

where 

i=2  ..... m+l ,  k = 0  ..... i -2  

j = l , . . . , m  

z(v ~ ~ 0, IIv~ < Qo 

v ~ = v~ s) = p.(O(u, s)). 

Iho~(o(u(s)))-o~(u, s)ll ~ Qo 

m + l  m+l  k 

v~(u, s)= E E ~ adk.(v/) 
i=l k=i k .  

by (1.16). It follows from Lemma 2.1 that 

(2.4) Z (adk,,(vi)) ~< 2i- 2k- 2 
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ifadku(v/)*0. Also 

k 
-~.l. adku(o i) <~ QOsk/t i-1 <~ QOs k-i+l 

for all O<<,s<<,t by (1.17). This, (2.2) and (2.4) imply (2.3). 

LEblMA 2.3. Suppose that v E ~•  and 

m 

v = v ~  zj 
j=!  

where 

Then 

v ~ 1 7 6  ~, Ilv~ Ilzjll<r/t j, zi~.e2~n~ • 

m 

p• = f(v ,  h)+ x Zh, j 

(2.5) j=l 

p~(v(h)) E (I~QQmax{t, r}(t) 

for all h E FQ(t) where 2 > 0  is a constant and 

f (v ,  h) = v~176 E @o N ~• 

v~176 ~, ~hE@-2n~ ~, 

Zh,je ~2JN~  • , IlZh,:ll <~ O_~'/d, 

Proof. Recall that 

We have 

It is clear that 

(2.6) 

IIo~ ~< Ore 

j = l  . . . . .  m. 

v(h)=Adh(v). 

m 

v(h) = v~ + ~ zj(h). 
j= l  

v O ( h )  o , , 

t~>l. 
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[] 
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~ ~ ~-2 ('1 ~• t2h E ~Qt,o(t) 

for some QI>0 since Z(v~ Now let us assume for simplicity that 

h = exp(Qttb), b EB 

z (b)=-21  or - (2 l+1) ,  lEZ +. 

We have 

where 

re(h) ^k~kl re(h) 

, /h)-zj = X aa (z ) = Xpk  
k = l  " k = l  

_~ 0 tt r 

kl<j kl>j kl<j 

pk, je  ~2j-zk, IIp~,/I < Q2Q7/fl-kt 

for some Q2>0, k =  1 . . . .  , m ( h ) ,  j =  1 . . . . .  m and therefore 

vO,je go, o IlVh,jll < Q2 e7 

a~,j E OQ~y(t). 

This and (2.6) imply (2.5) if we set 

and note that 

~ = ~ + ~  ~ , j ,  v ~ = p ~  v ~ . h, j  
j = l  

m 

p ~ ( v ( h ) ) - a  - ah,j ~ Q3 Q~ 

for some Q3>0. This completes the proof. [] 
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COROLLARY 2.1. Suppose that 

(2.7) max([~o• 0 ~< s ~< Qt} ~ 0 

for  some o E ~ ,  lloll-<0,0<0<l and some t>~to/O. Then 

p• = vO(h)+~h+Zh 

p~(v(h)) E ~PQo,~(t) 

for  all h E Fa(t) and all O<~a<~p, where 

v~ E ~o N ~• IIv~ -< QO 

zhsg  Ilzhll<.Oo/t 

and Q=0(B, O)>20_Q/Q m is a constant. 

Proof. We have using (2.7) and Lemma 2.2 

r n  

V "~" vO"}-~ Zj+Vg~ 
j=l 

where v ~ E @o N ~• [Iv~ v~ E ~,  Ilv~l[~<o and zj E @~J N ~1 ,  [izjll<~QO/tjQj" This and 
Lemma 2.3 imply the corollary. [] 

Corollary 2.1 shows that Fe(s) is consistent with ~6. This and Proposition 1.8 imply 

the following 

COROLLARY 2.2. There exists C=C(B, Q)~>10L(B)Q(B)/q(B) such that (I.22) holds 

for  Fe(s) and (1.24) holds for  cp where cp is as in (1.23). 

Now let (9 be a subalgebra of @-=@-1 and �9177 the orthogonal complement of �9 in 

~ .  Let /~={bl  . . . . .  /;,) be a regular basis in ~ and FQ(s) be the/~-regular sequence in 

H=exp ~ defined with 

(2.8) Oi(S ) = S -x~b?, i= 1 . . . . .  n. 

Let ~0(~)=~(Y))N ~~ Note that ad~m+l(v)=0 for all b C~,  v E ~ .  

Now let 

(2.9) max{lho~A0(h))ll: h ~ Fp(t)) ~< 0 
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for some t~to(B)/Q, 0<0<1 and some O=v+z E fffi with v E ~0, ilvll_<o, ilzll<o/t2m+l. Then 

(2.10) IL%l(z(h))ll ~< Q_O/t, p~(0(h)) E ~0oa(t) 

for some Q=0(/~)>I,  all h E~'a(t) and all 0~<a~<p. This implies that 

(2.11) ILp~(v(h))ll -< 20 

for all h E FQ(t), if to(/~) is sufficiently large. Also p~(v(h)) E @o N ~• and @o is consistent 

with Fo(s). We have using the R-property 

t[o #•162 <~ 2L(B) O/tQ 
(2.12) 

IIp~A0(h))-p~<~)(v(h))ll ~< 3L(/~) O/tQ 

for all hEFo(t). Using this, (2.10), (2.11) and Proposition 1.8 we get the following 

PROPOSITION 2.1. There exists C=C(p,B)>~IOL(B)Q(B)/rl(B) such that i f  (2.9) 

holds for some 0<0<0.1C-lp, t~>max{t0(/~) p-l, C/0p} =t0(p, 0) and O=v+ z E (~, v E ~o, 

Ilvll-<o, Ilzli~o/t 2m+l then 

(2.13) exp 0(h) = exp(p.z~<~)(v(h))+r(v, h)+t(0, h)). i] = (exp o3(0, h)) 1] 

for all hEFe(t), where r(v,h)E ~ l  ~o (�9 IIr(v, h)ll -< C0 2, ~(0, h) E ~ ,  I1~(0, h)ll<-CO/t, fi E 

~'co(t). 

Now let (2.9) hold for some t~{(~,O) and let r  be defined by 

q3(h)=hexp o5(0, h). Using Proposition 1.9 we obtain that 

(2.14) qb(h o h) = r h. 75(h o, h) 

for all ho, h 0 h E ~'Q(t), h E F~(t), where ~(h0, h) ~ ~'co~(t). 

3. The basic lemma 

In this section we assume that q6, g, g=expg and u are as in Section 2 and use the 

notations of that section. Also we choose for convenience a Riemannian metric on @ in 

which the subspace ~k, k=0, + 1 ..... +m are mutually orthogonal (see Note 1.1). Recall 

that some of the ~k might be trivial. 
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We assume that G acts uniformly by homeomorphisms on a metric space (X, d) 

with a Borel probability measure ~. By [R4, Proposition 1.1] the group A=A(G, X, p) is 

a closed Lie subgroup of G. We denote by ~(A) the Lie algebra of A, which might be 

trivial. Define 

(3.1) 92 = ~(A) n ~-2 ,  ~ = ~(A) n ~ -  

~ - =  ~-1. We assume that u=exp u E A. Then u normalizes ~(A), 92 and g) by Proposi- 

tion 1.3. 

We shall construct a special decomposition of (~ induced by ~(A), which plays a 

crucial role in the proof of the main theorem. 

Let 9.11=9-/l(u)={v E 92• adu(v)E 92} and let ~=~1+92.  It follows from Lemma 2.1 

that ~ 0 .  Note that @kc92 ~ for all k > - 2  by our choice of the Riemannian metric 

on 6~. 

We say that a set Q of vectors in (~ is a k-set, k=0, + 1 .. . . .  __+m ifx(v)=k, Ilvll-- 1 for 

all v E Q and {pt(v): v E Q) is linearly independent in ~k. For n E Z define 

v(n) = n/2 if n is even; v(n) = (n+l)/2 if n is odd 

and set v(v)=v(z(v)). It follows from Theorem 1.1 that if Z(v)>0 then ad~(~ and 

(3.2) 
Z (ad:(O)(v)) = 0 

z(ad~(~)(v)) = - 1 

if ;~(v) is even 

ifz(v) is odd. 

Let ~• be the orthogonal complement of 9./~ in 92_L and let W (k), k= 1, ..., m be a maximal 

k-set in ~• such that 

(3.3) ad~(k)(v) E ~(A) 

for all v E W (~), k= 1 .. . . .  m. Note that some (or all) of the W Ck) might be empty. 

Let ~ = ~ ~  ~• Let ~1) denote the orthogonal complement in @k of the subspace 

spanned by {p~(w): w E W (k)} ifW(k)*~ and set ~l)=@ k if W(k)=~, k= 1,2 ..... m. Let 

be the subspace of 92 -L spanned by ~ and ~,l), k= 1 ..... m. It follows from the 

definition of W (k) that 

(3.4) 

for all 0*v E ~ with X(v)>0. Also 

spanned by W <k), k= 1 .. . . .  m. 

ad](V)(v) ~ ~(A) 

(~=~f~+~+~,  where ~9 is the subspace of ~3 • 
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Now we shall construct by induction a sequence 23z . . . . .  23m+1 of subspaces of ~ by 
the following procedure. Set 

232 = (V~ ~1: adZ.(v) fi 92} 

and assume that 232 . . . . .  23n have been constructed. For k= 1 ..... m let Y~) be a maximal 

k-set in 23. and let ~ n = ~  ~ N 23.. Note that for some (or all) k the set Y~) might be empty. 

Let ~") be the orthogonal complement in ~"-~) of the subspace of ~"-~) spanned by 

{pk(v): v E (k) Y(nk)~=~ and if let ~ be the orthogonal Y. } if ~(.)_t~(.- l)  (k)_ ~ k  --~k Yn -~5. Also 
complement of ~ .  in ~._~ and ~. the subspace spanned by ~" )and  ~., k= l  ..... m. 
Define 

23n+1 {V~9~n: n+l = ad. (v) E92}. 

This completes our construction. Let 

m+l m+l 
23=  Z 23i' ~ =  Z ~ i  = ~0f']~'L 

i=2 i=2 

and let ~ be the subspace of 23 spanned by Y-~ Im+l m (k) --Vn= 2 LI~= 1Y. .  We have 

(3.5) 23 = ~ + ~ ,  ~ = 2~+23+~. 

Next we shall decompose ~ .  We have ~)c~ .  Let 

We have ~(~)=~0(~)=~~ Also ~(�9 if uE92. Let ~ be the 

orthogonal complement of ~(�9 in ~ and let ~ = ~ + ~ .  We have 

(3.6) (~ = 29+~+~+~(~)) .  

Now let u'E@2 be such that [u,u*]=g and let ~2=@2 be spanned by 

{pz(w), w E W(2)}. We can assume without loss of generality that u* E ~ )  if u* ~ ~2. 

Then u* E 232 if u E 92. In this case we assume that u* E y~2). Define 

m+l 
(k) _ 

ff~---- U U Yi -(1~1 . . . . .  ~Pt} = Y  
i=2 k>i-I 

y - q / =  (c 1 ..... Cr}. 



ON MEASURE RIGIDITY OF UNIPOTENT SUBGROUPS OF SEMISIMPLE GROUPS 255 

It follows from the definition of W that if u* r ~2 and uE 92 then u* EW (since in this 

case u* E Y~2~cqJ) and hence g2:#~. In case u* r ~2 and u r 92 the set qJ might or might 

not be empty. Thus if u* r ~z then 

(3.7) either W ~= | or u ~ 92. 

We shall show in subsequent sections that when G acts by right translations on 

(X=F\G,p)  and the action of Nu = {u%xp 92: k E Z} is ergodic then the following holds. 

If W : ~  or ur then p(D(g))=l. Otherwise there is x E X  such that p(xexp(29+ 

~((0)))= I. The following basic lemma makes a first step towards this goal. Namely, it 

shows that there is a set A c X  of positive p-measure such that if x, y E A are sufficiently 

close and y---x exp 0 for some 0 = w +y +f+  i, w E 29, y E ~, fE  5, i E ~ (~) with [1 w[[ small 

then Ilyll and Ilfll ought to be small. The order of magnitude is also important. In order 

to state this lemma define 

(3.8) 

m 

W = t.I W (k) = { w l  . . . . .  w p }  
k = l  

29(a't)= { wE29: w =  s a~wi'[a~[<<'at-v(w')'i= .. . . .  P}  

where a>0  is small and t> l  is large. Also for v E g6 let w(v),y(v),f(v) denote the 

projection of v onto 29, ~ and ~ respectively. The set qJ U (Y--W)={~Pl .....  q~l, cl .... .  Cr} 

is a basis in ~.  Let el(V) and ~pj(v) denote the crcoordinate and the ~0Tcoordinate of y(v) 

respectively, i= 1 .. . . .  r;j= 1 . . . . .  I. 

LEMMA 3.1 (Basic). Suppose that the action o f  N~ on (X, d,p) is ergodic. Then 

there are constants 0 < O < l , 0 < c t < l , C > l  with the following property. Given 

0<0~<O, e>0 there are t(e, 0)>1,0<7=7(e,  0)<1 and a compact A =A(e, O)cX, p(A )> 

1-e  such that i f  x, y E A, y=x exp i, exp v exp i z, i,, i 2 E ~(~), v E ~ ,  Ilil II, IIizll, Ilvll~<7 and 
w(v) E 29(a0, t) for  some t>~t(e, O) then 

}ci(v) I <~ COt -x(C~), i = 1 .....  r 

I~Oj(v)[ ~< COt -~%), j = 1 . . . . .  1 

I[f(v)[[ < COt -~ 

for some fl>O. (In fact, fl can be taken to be 1/2(m+l).) 
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To prove Lemma 3.1 we use Proposition 1.11 and the R-property for Nu and Hu. 

From now till the end of this section we assume that u E ~ and note that our argument 

below works for the case u ~ ~ as well. One should only substitute N by N. and Fe(s) by 

the regular sequence in N. described in Note 1.2. We begin with the study of the 

decomposition (3.5). 

LEMMA 3.2. I f O * v E ~ i , i = 2  ..... m + l  then 

(3.9) ad~ l(v) r ~(A). 

Proof. We have 

(3.10) ad~ l(v) ~ 

for all 0*v E ~i by the definition of ~3;. First let us prove (3.9) for 0*v E ~3i with X(v)~<0. 

It follows from (3.10) that ad~a(v)~=0 and ~(ad~l(v))~-2(i-1)~<-2,  since i>--2. This 

implies that ad~l(v)E @-2 and therefore ad~(v)g/~(A) by (3.10) and the definition 

of ~.  

Now let Z(v)>0, 04=v E ~3i. Then v(v)<<.i - 1, since ad~~ ~ 92 by (3.4), but 
i adu(v) E ~ by the definition of ~3i. If v ( v ) = i -  1 we are done by (3.4). Let v(v)<<-i-2. Then 

Z(v)~<2(i-2) and therefore z(ad~l(v))<~2(i-2)-2( i  - 1)=-2.  This and (3.10) imply that 

ad~-l(v) ~ ~(A). This completes the proof. [] 

Henceforth p• denotes the projection of v onto 92 • 

LEMMA 3.3. There exists O<c=c(u, A)~<0.1, 0<w=~o(c, u)<l  and {=[(c, u)>l  such 

that i f  o E ~ and 

max([Ip• 0 -< s ~< t}  = 0 

for  some 0<0<1, t>-[ then there is O<.so=so(c, 0, v, t)<<-t such that 

IIp . (v(U(So) ) )ll >I o~o 

p • (v(U(So)))+r ~ ~(A) 

for  all rE (~ with Ilrll<. lOcl~ • (o(u(so)))[I. 

Proof. We shall use Proposition 1.6. Write 

~i = ad/u--l(~i) 
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i=2 ..... m + l .  We have using Lemma 3.2 

~/Ns {0), p•163 {0}, i= 2, ..., m+ l. 

Let O<c=c(u, A)~<0.1 be so small that if w E m+l I'Ji=2 P.L(~i) then 

(3.11) w+r gi E(A) 

for all rE I~ with ]]r[l<~2Ocllwll. Now let t-=t0(c, u, 92)>1, 0<to=to(c, u, 92)<1 be as in 

Proposition 1.6 and let t~>t~ It follows then from Proposition 1.6 that there is O<--.so<-..t 
andjE {2 ..... re+l} such that 

(3.12) 
IIp.(v(U(So)))[I/> too 

IlP ~ (V(u(so)))-p z (Oj(u, So))ll <~ cllp i (Oj(u, So))ll 

where 0j(u, So) is proportional to ad/,--l(vj) and vj denotes the projection of v onto ~j. We 

have p• so))Ep• This, (3.11) and (3.12) imply the lemma. [] 

It follows from the definition of 92 and (9 that 

(921 n ~-2) n ~(A) = (0), (g~ n ~ - )  n ~(A) = (0). 

We shall assume that 0<c<0.1 in Lemma 3.3 is so small that if ~E921N@ -2, 

~' E (0 -L N @- then 

(3.13) ~+rt~E(A), ~ '+r '  r  

for all r, r 'E (g with Ilrll~lOcll~ll, IIr'll~lOcll~'ll. 
Now let B={bl  . . . . .  bq)  be a regular basis in 92, U=bl and Fe(s) the B-regular 

sequence in N=exp92 defined in (2.2) with some fixed 0<p<0.100. Now we shall 

specify the choice of 0. Let C=max{C(B, •), C(/~, 0)), to=max{to(B), t0(B)}, r/= 

min{r/(B), q(/~)} (see Corollary 2.2, Proposition 2.1 and the R-property) where/~ is a 

regular basis in @ and ~'e(s) the/~-regular sequence in H = e x p ~  defined in (2.8). Let 

0<01<1 be so small that if rE(B, v t ~ ( A )  and Ilvll~<20,, then expv~A.  Let 

(3.14) O = 0.01 min{0j, OctoC-Z}, a= O. 1 cC-I 

where c and to are as in Lemma 3.3 and let 0<0<O be fixed. Define 

O=O.lcOC -I, Oo=wO, a(O)=r 

17-908283 Acta Mathematica 165. Imprim6 le 8 novembre 1990 
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We shall denote by ~ the closure of the set 

{v e ~(92): o. 10o < Ilvll ~< 20, v+r~ E(A) for all rE (S with Ilrll ~< cllvll) 

and define K = e x p  ~'. The set K is a compact  subset of  I (N) -A ,  which might be empty. 

Now let w E ~ ( a ,  t). Write vi=v(wi) and recall that vi~ > 1 for all i= I . . . . .  p. We have 

w(u(s))= 2 2 s i 
i=1 j=0 -ff 'adlu(CXiwi) 

= - -  au,'vi'[o~i wi ) i=l j=o J : ad/"(aiwi)+ 
i=l lYi[ 

22'  -t- S . i=, j=~,§ f l  adJ"(ai w;) = w'(s) + ib(s) + w,~(s) 

where tb(s) E ~(A), w~(s) E 92 and 

,(3.15) IIW(s)ll ~< Ca, IIw'(s)ll ~< Cat-' 

for all O<_s<~t by (3.3), (3.8) and (1.17). We have tb(s)EE(A) and Z(ff~(s))~<0 by (3.2). 

Therefore ffJ(s)E ~(92) and p.(tb(s))=p~(W(s)), where p.~ denotes the projection onto 

92~,=~(92) N 92J-. This and (3.15) imply that if w E ~(a,  t) then 

Ilp • (w(u(s ) ) ) -p~(w(u(s ) ) ) l l  <<- Cat-' 
(3.16) 

Ilp@(w(u(s)))ll <~ Ca(1 + t  -1) 

for all O<.s<~t. 

For 0E(g write O=w+v+p, where wE29,  rE23, p E ~  (see (3.5)) and let 

fl(O, t)=max{llp• h E F o(t)}. 

LEMMA 3.4. Given O<d<O. lcOo, T > I  there exist t(d, T)> T and 0<y=~,(u, d, T)<O 

such that if OE~,  O=v+w+p, IIo11~<~ and 

(3.17) w E 29(a(0), t), fl(O, t) = 0 

for some t>~t(d, T) then there exists ht E Fv(t) such that 

(3.18) exp 0(h) = exp(k(0, h)+z(0, h)). li = exp co(0, h). 1] 
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for  all h E h t F~Q(t), where 

(3.19) fiEFc0(t), k(O,h)E,~, IIz(O,h)ll<~,4d, z(0, h ) E ~  • 

Proof. Let 0<v<O.ld be so small that if 0 E q6, 110]1~<7 and fl(O, t')=Oo/2 for some 

t '> l  then 

(3.20) t ' ~  > max{T, 10t 0 {mC/QdOo} = t(6, T) 

where [ is  as in Lemma 3.3. Now let 1lolls<7 and let (3.17) hold for some t>,--t(d, T). In 

particular, we have 

max{]lp• 0 <~ s <. tQ} <- O. 

We have using (3.16) 

p ~ (o(u(s))) = p .  (v(u(s))) + p  l (w (u(s))) + p  • (p) 

(3.21) Ilpx(w(u(s)))-p~(w(u(s)))ll ~ Ca(O) ~9-1t -1 ~< 0.016 

Jlp-~(w(u(s)))l[ <~ O. 1C0o(1 +6) 

for all O~s<~Qt. Suppose first that 

(3.22) max {llP • (V(U(S)))i{: 0 <. s <~ Qt} >I O. 

By Lemma 3.3 there exists So E [t(6, T), t] such that 

(3.22) IIp . (v(u(So)))ll >I 0o, P • (V(U(So)))+r ~ ~(A) 

for all rE (~ with Ilrll<~lOcllp~(v(u(so)))ll. Write 6=llp• We have using the R- 

property 

(3.24) 
IIp • (o(U(So)))-p~(o(U(So)))lr ~ co~to <<- o. Id 

p~(o(U(So))) = p$(v(u(so ) ) )+p~(w(u(so) ) )+p~(p) .  

This and (3.21) imply 

(3.25) 
[[p • (v(u(So) ) ) - p ~  (v(U(So) ) )l[ ~ 0.36 

[[p,~(o(u(so)))-p~(v(u(so)))-p~(w(u(so)))ll ~ o . 1 6 .  



260 M. RATNER 

Therefore 

(3.26) 0.90 ~< I Ip~(o(u(s0)))ll ~< 1.16 ~< 1.10 

since 6~<0. lcOo~<0.16. We have using the R-property 

(3.27) Ilp.~(O(h))-p~(o(u(so)))ll <. 60 <. o. 16 

for all h E U(So)F~oe(t ). Now we use (1.22) and Corollary 2.2 to write 

(3.28) exp 0(h) = exp(p.~(O(h))+r(O, h)+e(0, h)). li 

for all h E Fe(t), where 

liEFco(t), r(0, h)E92.~, IIr(O,h)tl<--C02<-0.1cO 

(3.29) 

e(O, h) E ~• I1~(0, h)ll ~< CO~to <- O. 16 

by our choice of 0. Now set 

k(O, h) = p.~(v(U(So)))+p~(w(U(So)))+r(d, h) E 23(~). 

We have using (3.21), (3.26) and (3.29) 

0.700 ~< 0.70--. < Ilk(o, h)ll ~< 1.20<~ 1.20 

IIp.~(O(h))+r(O, h)-k(0 ,  h)l[ ~< 0.66 

for all h E u(s o) F~e(t) by (3.27). Finally, it follows from (3.21), (3.23) and (3.29) that 

k(O, h )+r  (~ ~(A) 

for all rE@ with Ilrii<<.cllk(O, h)][. This shows that k(O, h ) E ~  and (3.18), (3.19) hold for 

all h E u(s 0) F~o(t). This proves our lemma for the case (3.22), if we set ht=u(s0). 

Now assume that 

(3.30) max {llp • (o(u(s)))ll: 0 <~ s <~ Qt} < 0. 

Then there exists ht E Fe(t) such that 

(3.31) IIP.(0(h,))ll = 0. 
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We have using Corollary 2.1 and the R-property 

[Ip • (O(h,))-p~(O(h,))lI <~ CS/tQ <~ O. 1~ 
(3.32) 

p • (O(ht) ) = v~ 

where IIv~ lc8, ~h, E ~t I n ~-2, iiz,,ll<~cO/tQ<~O. 1~. This implies 

0.90 ~< tl~,ll ~ 1.18 

IlP~(O(h))-~h,II ~< 0.5C8. 

This gives via (3.13) 

(3.33) p~(O(ht))+r q. ~(A) 

for all rE ~ with Ilrll<.-.5cllP~(O(h,))ll. As above we use the R-property to get 

(3.34) IIP6(O(h))-P~(O(h,))ll ~ ~8 

for all h E h t F~e(t). Now set for h E h t F~oe(t) 

k(O, h) = p~(O(hr))+r(O, h) E ~(92) 

where r(O, h) is as in (3.28). We have using (3.31), (3.32), (3.29) and (3.34) 

0.78 <~ Ilk(0, h)l[ ~< 1.38 

IIP~(O(h))+r(O, h)-k(0,  h)ll ~< 0.3~ 

for all hE h/F~e(t). Finally, it follows from (3.29) and (3.33) that 

k(O, h)+r (~ ~(A) 

for all rE @ with Ilrll<.cllk(o, h)ll. This shows that k(0, h)E ~ and (3.18), (3.19) hold for 

every h E h t F~6e(t ). This completes the proof. [] 

Now we shall prove a similar lemma for H, using (3.13) and Proposition 2.1. Let/~ 

and Fe(s) be as in Proposition 2.1. For 0 E g6 write 

fl(o, s) = max{llp~AO(h))ll: h E ~'o(s)}. 
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LEMMA 3.5. For a given 0<6<0 .  lcO, T> I let t(6, T) be as in (3.19). Suppose that 

fl(O, t)=O for some t>lt(6, T) and some 0 E (~, O=z+v, v E G ~ Ilvll<6 with I[zll<~o/t 2m+1. 

Then there exists h t E Fo(t) such that 

(3.35) exp(O(h)) = exp(k(0, h)+ z(O, h)). li = exp o)(t), h). !] 

for all h E ht ~'q6p(t), where k(O, h) E,q, 1~ E ~'co(t), z(O, h) E ~-' ,  IIz(O, h)[l~<4O. 

Proof. Let h t E Fe(t) be such that 

IIP~(O(h,))ll-- 0. (3.36) 

We have using (2.12) 

(3.37) 

It is clear that 

IIpo~(O(ht))-pa~(~_,)(v(ht))ll <~ CO/t <~ O. 16 

NP ~ ( O(ht) ) - P  ~ (v(ht) )N = IIp,-,~(z(ht))ll< co / t  ~ o. 16. 

p~• = p,:~(v) + ~h, 

for some ~hE G- n ~  • since vE G ~ This implies that 

IlP~(O(h,))-~h,]l < 6+0.16 ~< 0.2c0. 

This implies via (3.13) and (3.37) that 

(3.38) p~t(~)(v(ht))+r q. ~(A) 

for all r E (~ with ]]ril<~4ciiP~r We have using Proposition 2.1 

(3.39) exp 0(h) = exp(p~o(~)(v(h))+r(v, h)+e(O, h)). fi 

for all h E ~'o(t), where fi E Fc0(t), r(v, h) E ~0 ( �9  [[r(v, h)]l~<CO2~<0, lcO, e(C~, h) E 

�9177 lie(0, h)ii<---CO/to<~O.16. We have using the R-property and the definition of t(6, T) 

(3.40) I[p~(~)(v(h))-p.~oiJv(h,))lI <. 260 

for all h E h t F~0Q(t). Define 

k(O, h) = p~(~)(v(ht))+r(v, h) E ~(9~). 
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We have using (3.38) 

k(O, h)+r ~ ~(A) 

for all rE q6 with Ilrll<~cllk(o, h)l[. This, (3.36) and (3.37) say that k(O, h)E ~. Also 

]lp~k(e)(v(h))+r(v, h)-k(O, h)]l ~< 260 

for all hE htF~6Q(t ) by (3.40). This and (3.39) complete the proof of the lemma. [] 

COROLLARY 3.1. If2~+~4={0} then ~4:(3. 

Proof. Let 0=~v+jE23+~. If v4=0 then [Ip• when s---*~. Then (3.17) 

holds for some t>-t(6, T) and O=v, if Ilvll is sufficiently small. If v=0 then j * 0  and 

j@ ~(,~), j E  ~0 and hence fl(j, t ) ~ ,  when t---~oo. Then fl(j, t)=O for some t>~t(6, T) if 

IlJll is sufficiently small. It follows then from (3.18) and (3.35) that ~4=~. [] 

Now let x =  expv for some vE92 • (some vE#)l). If Ilvll is sufficiently small then 

there is a neighborhood ON(e)cN (On(e)cH) and a diffeomorphism 9: ON(e)--*xN 

(q~:On(e)~xH) such that 9(y)=yexpvy (r for every y EON(e) (zEOri(e)) 

and some VrEg~ -L (0zE~-). We choose O in (3.14) so small that if Ilvll 5O then 

(3.41) 
[[2(B)/A(9(B))]- 11 ~< 0.01 

I[2(A)/2(cp(A))]- 11 ~< 0.01 

for every Borel subset B=ON(e) (AcOit(e)), where ~.(9(B)) 0,(q3(A))) is defined to be 

2(x-19(B)) (2(x-l~b(A))) with 2 being a Haar measure on N (on H). 

Now let v E ~ ,  expv=x and fl(v,t)<~O (fl(v,t)<,O) for some t>~t(6, T). Let 

9: Fe(t)~xN (4: ~'p(t)--->xH) be as in Corollary 2.2 (as in (2.14)). Namely, 

9(h) = h exp c0(v, h) = xh(ll-l), h E Fe(t) 

r = h exp ~b(v, h) = xh(l]') -1, h E Fo(t) 

where w(v, h) and ~O(v, h) are as in (3.18), (3.35) and 

1] E Fco(t) c Fo.lo(t), h' E ~'co(t) c ~'o.l.o(t). 
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This, (1.24), (2.14) and Corollary 2.2 imply that q0, r are injective and 

(3.42) 
qo(Foft)) ~ xF2eft), 

q~(hF~(t)) ~ q~(h) F2~(t), 

q~(Fe(t)) c xF2e(t ) 

q~(hF~(t)) c t~(h) F2~(t) 

for all h EFe(t ) (hE~'e(t)), all 0 < a < l  with hFa(t)cFe(t)(hFa(t)cFo(t)).  It follows also 

from (3.41) (via the fact that the Haar measure 2 and the Riemannian metric on G are 

left invariant) that 

1[2(B)/2(q~(B))]- 11 ~< 0.01 
(3.43) 

112(A)/2(~(A))]- 11 ~< 0.01 

for all Borel subsets BcFe( t  ) (AcFe(t)) , where 2(q0(B)) and ;t(~(A)) are as above. These 

relations will be used in the proof of Lemma 3.6 below. To state this lemma let us go 

back to the decomposition @=~i~+~+~+~0( �9  For  0 E @ write O=w+v+j+i and for 
v E 23 write _ r~m+l V--L,n= 2 O n , O n e 2 3  n. 

LEMMA 3.6. Suppose that the action o f  N on (X, d,/~) is ergodic. Then given e>0 

there are t (e)>l ,  0<7=7@)<1 and a compact A = A ( e ) c X , ~ ( A ) > I - e  such that if  

x, yEA,  y=xexpi lexpOexpiEfor  some il,i2E ~0(~), 0E(~, tli, ll, 11i211, II011~<~ ', o=w+v+ 
j+i and w E ~(a(O), t) for some t~t(e) then 

IlJll ~< COt-1/2(m+'), IIv.II ~< COt"-I 

for all n=2 . . . . .  m + l .  

Proof. If 23+~={0} then the lemma is obvious. Suppose that 23+~=~{0}. Then 

K4:~ by Corollary 3.1. Recall that K c I ( N ) - A .  

Let 0 < r < l  and 0<~(a )< l  for 0 < a < l  be defined by 

r = min{A(Fe(s))/A(Fze(S)), 2(Fe(s)/2(F2e(s)) } 

~( a) = min { 2(F~ae/4(s) )/2(F2e(s) ), A(F~lae/4(S) ) /A(F2e(S)  ) ) . 

Note that r and ~(a) do not depend on • and s by [R4, Proposition 2.1]. 

Let 0 < a l < l  be so small that 10fl(Ctl)<0.01r, where O<fl(a)<a is as in Proposition 

1.10. Let  Y=Y(aI ,K)cX,  f l ( Y ) > l - a l  and 6(al, Y)>0 be as in Proposition 1.11. We 

have 
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(3.44) d(Y, Yk) > di(a~, Y) 

for all k ~ K. 

Let  0<c~=cg(al, Y)<I be so small that if dG(e, z )<6  then d(x, xz)<0.16(al ,  Y) for all 

xEX.  Let  ~=0.1 min{c~,c00) where c and 00 are as in (3.14). Let  O<az<O.Olr be so 

small that lOfl(a2)<O.Olr~(6). By Proposition 1.10 there is AlcX , /u (A l )>l -a2  and 

Zl>l such that i f xEA~,  t > r  1 then 

(3.45) 

2( Y N xFq~e/2( t) )/A(F ~e/2( t) ) > 1-f l(a 1) 

A(YNxFv~o(t))/2(F~oo(t)) > 1-fl(cq) 

2(YN xF~e/2(t))/A(F~e/2(t)) > 1 - f l (a  0 

).(yN xFq6e(t))/2(F~e(t))> 1-f l (a 1) > 1-0.001 r. 

Using again Proposit ion 1.10 we get a compact  A c X ,  l~(A)>l-e  and r2>l  such that if 

xEA,  t>z2 then 

(3.46) 

Define 

2(A 1 NxFo(t))/2(Fe(t)) > 1 --fl(Ct2) > 1-0.001r~(6) 

2(A 1 N xFz~(t))/2(F2e(t)) > 1 - f l ( a  2) 

2(A 1 N xFe(t))/2(Fe(t)) > 1 - fl(az). 

2(A 1 N xF2e(t))/2(FzQ(t)) > 1 -fl(a2). 

T= T(e) = max{rl ,  rz} , t(e) = [t(O, T)] 2(re+l), ~ = 7(e) = 7(6, T) 

where t(6, T) and 7(6, T) are as in L e m m a  3.4. 

Now suppose that x, y E A, y =x exp il exp 0 exp i2 for some i 1, i z E ~0((~), 0 E (~, 

IIilll, 11i211, {[011~ ~ and 

(3.47) 0 = w+v+j+i,  w E 29(a(0), t) 

for some t>~t(e). Suppose that v+0.  We claim that 

(3.48) m a x  {llp • (v(u(s) ))ll: 0 <~ s <. Qt} < 20. 
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Indeed, suppose on the contrary 

T~t(cS, T ) ~ f ~ t  such that 

/~(0, n = 0 

that (3.48) does not hold. Then there exists [: 

by (3.16) and (3.20), where fl(O,f) is as in Lemma 3.4. Set i l=expi l , i2=exp(- i2) ,  

~=xi 1, 3~=yi2, h(il)=ilhi~ -1 , h E N. We have y=$  exp 0 and 

(3.49) xh(i 1) i I exp(~o(O, h)) i 2 = $~v(h) i 2 = phlli 2 = yh(if l) h(if 1) 

for all h(il)E Fo(t), where ~v(h) and 1~ E F0.1.o(t) are as in (3.42). Here 

h(i~ l) E F~+y(t) ~ Fl.lQ(t), l](if l) C F0.Jo+~(t) c F0,z.o(t ). 

It follows then from (3.42), (3.43), (3.45), (3.46), (3.49) and the definition of A that there 

are ht E FQ(t) and h E h t F~Q(t) such that 

xht(i l)EA 1 , s 

xh(il) C Y, . f~(h)  i 2 E Y 

s i I = xh(il) �9 i 1 �9 k(0, h)- z(0, h) "i 2 = xh(i 0 k(0, h). 6(0, h) 

for some k=k(~, h)E K and dG(e, b(t~, h))~<46<6. This implies that 

d(Y, Yk) < 6(al, Y) 

in contradiction with (3.44). This proves (3.48). It follows then from (1.17) that 

IIv~ ~< 2OO/(to) ~-j < c o / f  -~, n = 2 . . . . .  m+ 1. 

We have d=z+p ,  where z = w + v , p = j + i  and Ilzll<.Ol -<2m§ where I=tJnlm+l)>t(c~, T). 
Arguing as above and using Lemma 3.5 we show that fl(0, l)<O and 13(p, 1)<.20. Now 

we use the R-property to get 

IlJll = l ip - i l l  ~< 2LO/lo <~ CO/l <~ COl -l/2(m+l). 

This completes the proof of the lemma. [] 

Proof  o f  Lemma 3.1. Let  C > I ,  0<19<1, 0<ct<l  be as in (3.14) and (3.41) and let 

0<0--.<19, e>0 be given. Let  t(e)=t(e, 0), ~,=y(e)=~(e, 0) and A=A(e)=A(e,  O) be as in 
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Lemma 3.6. Let x, y EA, y=x exp il exp 0 exp/2, i~, i 2 E ~0(~)), ][i11], Ilizll, II0ll~<~ ', o=w+v+ 
j+i and w E W(a(O), t) for some t>~t(e). Then 

(3.50) [[j[[<~ COt -l/2(m+l), [Iv,[[<~CO/t n-l, n = 2  .. . . .  m + l  

by Lemma 3.6. We have 2~-9~+~-v'+123n,-~, -~n=2 v,=y(vn)+d(v,), where y(vn)E~N~3 ., 

d(v,) E ~ N 23 n. It follows from (3.50) that 

(3.51) lid(on)l[ ~< (~O/t ~-' <<- CO/t -1, ]IY%)II ~< (20/tn-1 

for some C>I  and all n=2, . . . ,m+l .  Let 

W~={~flEW:FE2~n}, C n = { c E Y - W : c E 2 ~ } ,  n = 2  ... . .  m+ l .  

We have 

This and (3.51) show that 

y=y(v . )=  s ~(y)N+ 2 c.(y)c. 

I~fl(y)l ~< c'o/t n-~ ~ c'o/t v(v), ~p E w ,  

Ic(y)[ ~< C'O/t "-~ ~ c '  o/t x(C), c C C, 

for some C '>  1, since v(v)<,n- 1 for all v E 2~n with Z(v)>0 by (3.4) and Z(c)<-n- 1 for all 

cEC, by the definition of Y-W. This, (3.50) and (3.51) complete the proof, since 
0 "d- rn+l f (  )=Y gn=2 d(v.). [] 

4. Divergence of g-orbits 

In this section we assume that G acts by right translations on (X=F\G, d,/~) with F 

being a discrete subgroup of G and use the notations of Section 3. Thus A=A(G, F,/z), 

~=~(A)  N @-2, N=exp ~,  u is horocyclic for g, u=exp u, N~= {ukN: k E Z}. Let �9 

denote the &ball at O in (~, O~(G)=exp�9 and let :r: G--~X be the covering 

projection :r(h)=Fh. For x EX define 

(4.1) A(x) = 0.5 max{d > 0: :r is one-to-one on xOa(G),xEer-l{x}}. 

Now let gp=exppg, p ER, g=g~. Recall (see the introduction) that the gp-orbit of x EX 

is said to diverge when n---~ if A(xg~)-+0, when n ~ .  Let D(gp)={x EX: the gp-orbit 

o fx  diverges when n-+~}. It is clear that D(gp)=D(gq) for all p, q E R  +. 
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Let W be as in (3.7) for the decomposition ~ = 2 9 + ~ + ~ + ~ ( ( 9 )  induced by s In 

this section we shall prove the following theorem. 

THEOREM 4.1. Suppose that the action of  N. on (X, kt) is ergodic and either t t t*~  

or u ~ 92. Then p(D(g))= 1. 

Let us show that conclusion 1 of the main theorem follows from Theorem 4.1. 

Indeed, it is contained in the following corollary. 

COROLLARY 4.1. Suppose that the action o f  N. on (X,~t) is ergodic and  cgpe -1 ~ A 

for some p>0 and all c E E-. Then/z(D(g)) = 1. 

Proof. It follows from Proposition 1.1 that - p g + v r 1 6 3  for any v E @-, since 

egpC -l CA for all t E E - .  This implies that if O=pu*+v' with Z(v')~<l then 0 r since 

v(0)=l and adV(~ where v=adu(v')E@-. This implies that u*r 

subspace of @2 spanned by {p2(w): w E W(z2)}. Then either W * ~  or u r 92 by (3.7) and 

/t(D(g)) = 1 by Theorem 4.1. [] 

We shall prove Theorem 4.1 assuming as before that u E 92 and note that for the 

case u ~ 92 one should only substitute ~0(g)) by ~(g)) and H by I-I, in the argument 

below. 

The proof of Theorem 4.1 is based on Lemma 4.1 below which says roughly 

speaking that if A c X  is as in Lemma 3. I then A can be covered by small boxes of the 

form xexpH where H is a parallelopiped in (~ with faces parallel to ~ ,  ~, ~ and ~0(~) 

adjusted to the rate of expansion by Ad z and the number of these boxes is much smaller 

than the reciprocal of the area of the (W, u2)-face of H. We begin with the description of 

these boxes. 

Define dp=~U W and for a subset Dcdp define 

v(D) = E v(v), z(D)= E Z (v)" 
v~D vED 

Also define 

(4.2) M = Z((P)- v(W). 

In view of Lemma 3.1 we introduce the following notations. For v E ~ let ~(v) be X(v) or 

v(v). For t~> I, a>0  define 
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27~(t, a) = {v e ~ + ~ :  Ici(v) I ~< at  -e%), i = 1 . . . . .  r, IVdj(v)l ~< at -~%), 

(4.3) j = 1 . . . . .  l, IIf(v)ll < ~rt-~} 

~=(t, o) = {w ~ ~ :  la,(w)l < eft -~(w'), i = 1 . . . . .  p} 

~ ( t ,  o) = 2B~(t, a)+2~(t ,  a). 

Now let C > I ,  0 < e < l ,  0<ct<l  be as in Lemma 3.1 and let 0 < 0 < O  be chosen later. 

Define 

2~(t) = ~ ( t ,  CO), 2~(t) = 2B~(t, a(O)/a) 

(4.4) ~e(t) = 2~(t) + ~ ( t )  

where a(O)=aO and we set for technical reasons a =  10"'. We have 

Z([v, w]) <-z(v)+z(w) 
(4.5) 

v([v, w]) ~ v(v)+ v(w) 

for all v, w with %(v),z(w)>-O. This implies via (1.14) that if z, v E 4~$(t) then 

exp(z + v) = exp z exp(v+ v '+i ' )  

for some v' E ~ ( t ,  K~ CZO2), i' E ~o(g)), }li'll<~K~ C202t -z~ and some K&~I. Using the fact 

that ~0(~9)c~ ~ we get via (1.14) 

(4.6) exp(z+ v) = exp z exp(v + O) exp i 

for some O E ~ ( t ,  KC202), iE~So(~)) , Ilill<.KCZOZt -z~, if 0 is sufficiently small, where 

K>-Kx. Now set b=4 and choose 0 < 0 < O  so small that if we define 

(4.7) 

then 

(4.8) 

We have for O in (4.6) 

(4.9) 

0 = lO0~KCzObm/a 

(1 +O)Z(r < 3/2. 

0 E ~ ( t ,  Oa(O) b-"/(t) c O~(bt). 



270  M. RATNER 

For 1 I = 2 9 + ~ + ~  and y>O write 

B(11, 7) = {exp v exp i: v E 1t, i E .~0(~9), Ilill ~ 7} 
(4.10) 

B~(7, t) = B ( ~ ( t ) ,  7). 

The set xB~(7, t), x E X will be called a (~, t)-box at x. 

For a given 0<e<0.1  let A=A(e,  0), t(e)=t(e, 0), 7(e)=7(e, 0)~<0 be as in Lemma 

3.1. Also for 0<7<7( t )  let 

(4.11) r(7) = max{t(e), (1007) v~}. 

LEMMA 4.1. Given 0<7<7(e) ,  r>r(7)  there exists n(y , r )> l  such that for  every 

integer n>ln(y, r) there are a~(n) . . . . .  aM(,)(n) E X such that 

M(n) 
A c tJ ai(n) B(a~X(t,),y) 

i=1 

where tn=rbn/(l+O) ", M(n)=Lb "M, M is as in (4.2) and L=L(y,  r ) ~ l ,  a~>l are con- 

stants. 

The proof  of  this lemma uses Lemma 3.1 and is given in an appendix at the end of 

this section. 

In order to derive Theorem 4.1 from Lemma 4.1 we need to make an observation. 

Let I] be a Lie subgroup of  G with the Lie algebra ~ and let ~ = 21 + ~2 + (~ be the direct 

sum of ~ and some subspaces ~l, ~ 2 c N .  For 11i~i ,  i=1 ,2  and D o G  write 

B(111,112) = {exp u 1 exp v2: v I E 112, u2 E 112} 

B(111,112) .D = {bd: b E B(11 l, 112), d E D}. 

Now let v be a (]-invariant Borel probability measure on X. Suppose that 

YB(111,112) O3((]) c xOa(x)(G) 
(4.12) 

v(yB(II1,112) 0~((;)) > 0 

for some 11i~6(~i ) , i=1 ,2 ,  0<6<0.1A(x) ,  x, y E X .  It is a fact that (4.12) implies that 

(4.13) v(yB(111,112) "DI) A(D1) 
v(yB(H1, 1t2) 'D2) :'(D2) 
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for all Borel subsets DI, DzcO6(G), )].(D2)>0, where ;t denotes a right invariant Haar 

measure on (]. Expression (4.13) will be used in the proof of Theorem 4.1. Now let 

H(dp) = {ad](O)(v)/llad~(O)(v)l}: v e r }. 

It follows from Theorem 1.1 that adZy(v)*0 for all 0:#v with Z(v)>0 and 

(4.14) z(adZ(V)(v) ) = - y, (v). 

This implies via the definition of W and tIS that H ( ~ ) c 6  (recall that we assumed u E 6). 

Also IH(qb)l=iqbl and H(~)  is linearly independent in 6 by Theorem 1.1. Let 

H = ( h l  . . . . .  hs} be a basis of unit vectors in 6 ,  containing H(~).  (One can show that, in 

fact, H(d#) is a basis in 6.)  We have z ( H ) ~ - Z ( ~ )  by (4.14). 

For vE(~, t ~ R  and a subspace ~ c @  define 

We have 

(4.15) 

Define 

v(t) = g-t  vg,, ~( t )  = g_,~g, .  

Z ( v ( t ) ) = Z ( v ) ,  v E ~ ,  t E R  

IIv(t)ll<eZr vE~ ,  t~>0, 

H(t )  = (h(t)/llh(t)l]:h E H) = {h~(t) .....  hs(t) ) 

H(t) = exp �9 

The set H(t)  is a basis of unit vectors in 6(t). For v E 6(t) let hi(t, v) be the hi(t)- 

coordinate of v. Define 

lI0(t) = {v E 6(0:  lhi(v, t)l ~< 6}, Us(t) = exp lib(t). 

We have using (4.15) 

g_t l] a( O) g t c  { t) E 6(t): Ihi( t, v)] ~< be tz(hl), i = 1 . . . . .  s } . 

This implies that 

(4.16) '~(g-t Us(0) gt)/A(U~(t)) <~ Ce~ ~ Ce-tZ(r 

for all t~>0, all 0<6<1 and some C>0, where ~. denotes a Haar measure on H(t). 
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Now let ~c be a subspace of ~0(S)) complementary to ~.  We can rephrase Lemma 

4.1 as follows. Given 0<7<7(e), r>r(y) there exists n(y,r)>l  such that for every 

n>..-n(7, r) there are al(n) . . . . .  aM(~)(n) E X such that 

M(n) 
A c t9 ai(n) B(a~X(t,), �9169162 

i=1 

where t,, M(n) and a>0  are as in Lemma 4. I. Write 

We have 

(4.17) 

o = ln(b/(1 +0)) > 0. 

g_,o B(a~Z(t,), �9 g,o c O 2 m a x { 7  ' ar_,}(G) 

for all n E Z + by the definition of tn, ~x(tn) and the fact that �9176 

Proof  o f  Theorem 4.1. We shall show that if W4=~ then/~(D(go))= i. For 0<6<1 

define 

K(6) = {xEX: A(x)>~ 106) 

A(6) = {x EA: xgo, E K(6) for infinitely many n E Z+). 

We claim that/~(A(6))-0 for all 0<6<1.  Indeed, we have 

A(6) = N kJ A,(8) 
k=O n=k 

(4.18) 

where 

A~(6) = {x E A: Xgon E K(6)}. 

Let O<7<?(e), r>r(?) be so small that 

(4.19) max{y, ar -1) ~ 6. 

For n~n(y,  r) let 

a, ,  i = A,, ~(6) = a,(6)  N [ai(n)B(a~X(t,), �9162 

i= 1 . . . . .  M(n). We have 

M(n) 

(4.20) a,(6)  = kJ An, ~. 
i=1 
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Suppose that/t(A,,i)>0 and let xEA, , i .  Write x,=xgo, EK(5). We have using (4.17) 

A,, i go, c (ai(n) go,) (g-o, B(a~X(t,), �9162 go,(g-o, Ur(0) go,) 
(4.21) 

= (ai(n) go,) (g-o, B(a~X(t,), �9 go,).Uy(no) = x,  Oa(x.)(G) 

by (4.19) and our definition of K(5). Now let / , ,  be the Borel probability measure on X 
defined by 

kt,(E) =/~(Eg_,o) 

for every Borel subset E = X .  It is clear that /~n is invariant under the action of 

H(no)=g_,oHg,o. It follows now from (4,13), (4.16), (4.21) and the definition of/~, that 

k t ( A , ,  i) = ltn(An, i g,o) ~< 2(g-,o Uy(0) g,o)/2(Uy(no) ) 

<- Ce -z(*)"~ = C'(b(1 +0)-1) -nx(~) 

for all n~n(7,  r). This and (4.20) imply that 

#(An(6)) <~ C(b(1 + 0)-1)-'xc'~)M(n) 

<~ CL( 7, r) (b( 1 + 0) - 1) -nx(,~)bn(X(qJ)-v(v)) 

= s  1 + O)nz(o)b-nv(qJ) <~ s 

for all n~n(~,, r) by (4.8), the definition of b=4 and the fact that v(W)~>l, since u)4:~. 

This implies that the series Z/~(A,(5)) converges and therefore/~(A(5))=0 by (4.18). We 
have 

oe  

a riD(go) = a -  tJA(1/k) 
k=l 

and hence 

/x(A riD(go)) =/z(A) > 0. 

This implies that/z(D(go))=l, since xNcD(go) for all xED(go) and the action of N is 

ergodic. This completes the proof. [] 

Appendix 4.1 

Here we shall prove Lemma 4.1. Let 0<7<),(e) and r>r(~) be given. Let x E A  and 

B=xB(~(r ) ,  0.17). Define 

18-908283 Acta Mathematica 165. Imprim~ le 8 novembre 1990 
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(4.22) ~ = ~(B) = { v E ~ ( r ) :  x exp v exp i E A for some i E ~o(~), I Iill ~< o. 17}. 

write tn=rb"/(l+O) n, n = l , 2  ... . .  V_1=7o=0, 7,=E~_--olt~ -~, f l=l/2(m+l) .  We have 7,<0.17 

for all n, since r~>r(7). 

For ~ = @ ,  z E ~  define ~ ( z ) = ~ - z .  It is clear that 

(4.23) ~ ( z ,  t) = ~ ( t ) - z  = 2 ~ ( t )  

for all z E ~ ( t ) ,  t>~ I. 

LEMMA 4.2. For every n E Z + there are yj(n), ..., y~(,)(n) E B(~ ,  7,-1) such that 

s(n) 
exp ~ = 13 y~(n) B(2~(tn),  yn) 

i = l  

and s(n)<~b"~(w). 

Proof. In view of (4.23) it is enough to show that for every n EZ + there are 

yl(n) . . . .  , y~(.)(n) E B(~ ,  Y.-1) and zl(n) . . . . .  Zs(.)(n) E 29~(t.) such that 

s(n) 
(4.24) exp ~ = 13 yi(n) B(~(z i (n) ,  t,), y.) 

i = l  

where s(n)<~b "~(w). We shall prove this by induction on n. For  n=0 set s(0)= 1, yl(0)=e, 

zl(0)=0. Suppose that (4.24) holds for n. In order to prove it for n + l  it is enough to 

show that if y E B(~ ,  Y.-l), z E 2B~(t~) and 

~ .  = {v E ~ ( z ,  t.): y exp vexp iE exp C for some iE ~0(~), [[iH <~ 7n) 

then there are s: l<<.s<<.b~(W)=b(W), ql . . . . .  q~ E exp C .  and z~ . . . . .  z~ E 2B~(t.+l) such that 

s 

(4.25) exp ~n c 13 qiB(~V(zi, t.+ O, tn~). 
i = 1  

We have 

~V(z, t n) -- 2~V(z, tn)+ ~v(tn). 

Let u I . . . . .  Ub(w) E 2~V(z, tn) be such that 

b(W) 

(4.26) 2~V(z, tn) -- 13 (ui+2~V(btn)). 
i = l  
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(Note that 29V(z, t.) is a parallelopiped with sides parallel to w~ of length a(O) t~v~')/(t. In 

(4.26)-we partition 29~(z, tn) into parallelopipeds whose wrsides have the length 
-v(w i) a(O) (bt,) /~. There are exactly b(W) of such parallelopipeds.) We have 

b(W) b(W) 
~ v  + v ~ v ,r (z, tn) = 13 (t l  i ~ ( b t , ) + ~  (t~)) = 13 (ui+~.(tn)). 

i=1 i=1 

Let z~E Z(t.) be such that ui+z~=qi E ~,~ and set q~=exp qi. We have 

qi+Z(z[, t.) = ui+z;+ ~(z  ~, t.) = ui+ ~(t.) .  

Also if v E ~(z~, tn) then 

It follows then from (4.9) that 

where 

This implies that 

V V C ,-" v vE22~ (bt,)+293 (t,) 2 ~  (t,). 

exp(qi+ v) = q~ exp 0 exp { 

0 E ' ~ "  ' ~(zi, t,,/(l+O)), {E ~0(S)), II;11 

Now suppose that 

exp(ui+~(t ,))  = ~ ' qi B(z(zi, t ,/(1 + 0 ) ) , t ~ ) .  

exp(q;+v) E exp Cn. 

It follows then from (4.27), Lemma 3.1 and the definition of  C that 

0 E ~ V ( z i ,  tn+j )+~( t ,+ l )  = ~V(Z i, t,+ 1) 

for some z;E2~(t,+l) .  This proves (4.25) and completes the proof  of the lemma. 

In order to prove Lemma 4.1 we need to partition further the sets 

yi(n) B(2~"(t~), 7n) 

from Lemma 4.2. 

[] 
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For  v E @ with g(v)>0 and a > 0  define 

a(v) = min(a ,  g ( v ) - v ( v ) } .  

Note that if g(v)= 1 then v(v)= 1 and therefore a(v)=0.  Le t  ~+~( t )  be as in (4.4) with 

~(v)=(v+a) (v) and let 

j(tP) = max {z (v ) -v (v ) :  v E #P } 

r(fl) =j (  ~P )/fl E Z +. 

For  each rE Z + with l~r<.r(fl)  and l<.k<.m define 

~vk+r~(t ) = (V ~ ~v+(r-1)fl: la,(v)l ~< a(O) t-(v+rl3)(w')/{I, I%(v)l < COt-(v+r~)(cP), 

Iwj(v)l ~ COt -(v+r for all w i, %, ~r)j with X(Wi),X(Cp),Z(V)j) ~ k) .  

Also define 

~ + r  = {v E ~ + r  "~k �9 Ici(v)] ~< COt-X(~), i =  1 . . . . .  r} 

m 

~ + r  = CI ~+ r  
k=l  

Now let w E ~  k . , ,  r E d . k +  1 (t) from some l~d<<-2 m<~')+u. Arguing as in (4.6) and 

using (4.7) we get 

(4.28) e x p ( w +  v) = exp w exp 0 exp i 

for some ,,~ ~"-"k+l 

It follows from Lemma  4.2 and Lem m a  3.1 that 

sfn) 
exp ~ = LI Yi(n) B(2~02v(t.), 7.) 

i = 1  

for all n E Z  +. Now let n E Z  + be fixed and let y=yi(n) for some iE {1 . . . . .  s(n)}. Le t  

~ .  = {v E 2~v(t.):  y exp v exp i E exp ~ for some i E ~0(~), Ililt~<v.} �9 

Let  q E B ( ~ . , 0 . 0 1 7 )  and let 

~k, r(q) = {V E d ~ + r  q exp v exp i C exp ~ .  for some i E ..~0(g)), Hill <~ 0.1y} 

where l <~k<~m - l ,  O<~r<~r(fl), l ~ d ~ 2  m(r@+ l). 
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LEMMA 4.3. There are ql, ..., qs E exp Qk, r(q) such that 

$ 

B ~,+r/~ -/~ exp~k,r(q)  c 19 qi ( 2 d ~ + j  (t~),t~) 
i=1 

where s~<(~+l) [~k+d, ~k = {ve  r = k} and I kl denotes the cardinal number o f ~  k. 

Proof. The proof  is similar to that of  Lemma 4.2. Let  p ( k ) = ( ~ + l )  ICk+~l and let 

m I .. . .  , mpr E d ~ + r  be such that 

p(k) p(k) 
~ v + r f l l "  t ~ v+r~ (4.29) . . . .  k ,'~J ~ I.,I (mi+d~k+ 1 (t~)) = U (miq'~k+l(tn)). 

i=1 i=1 

Let zi E ~k+~(tn) be such that qi=mi+zi E ~.~_Zk.r(q). Set q / = e x p q ,  We have 

mi+ ~k+|(t n) = q i '~  ~k+t(Zi ,  t~). 

Let v E ~k+l(Zi, v+rfl t~)~2d~k+ 1 (t,). We have using (4.28) 

exp(qi+v) = q~ exp 0 exp i 

for some vE2d~k+ 1 (tn), iE~0(~) ,  [[iJl~<t~ 2~. It follows now from 

~k,r(q) that if q~+v E ~k, r(q) then 

- v + r ~  v E 2dVARk+l (t~). 

This and (4.29) complete the proof  of  the lemma. [] 

For  O<.r~r(fl) define 

the definition of  

~(r) = {v e r  0 <-Z(V)-V(v) <~ rE} 

k(r) = min(x(v): v E r  ~> 2. 

Let  now n(~, v)>l  be so large that 

(4.30) t~ ~ mr(E) <. 0.01y 

for all n>~n(~, r). 

COROLLARY 4.2. Let  O<~r<~r(fl)- l, n>~n(y, r), q E B ( ~  n, mrt~'), 

~r(q) = {V E dV2Rv+r q exp v exp i E exp ~n for  some i E Do(g)), Ilill<~mrtJ}, 
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where d=2 mr+l. Then there are p~), n(r) . . . .  er(r) ~ B(~r(q), mtJ)  such that 

r(r) 

exp mr(q) ~ I.I piB(2mdgff~v+(r+l)3(tn), mtJ )  
i=l  

~m 
where v(r)~<(~+ 1) i=k(r)[~il 

Proof. We have srPv+r ~--qT~v+('+l)~tt ~ This and Lemma 4.3 imply the corollary. 
,r ~ \ ' n  ! - -  "J" V k ( r )  - 1 " , ~ n ; "  

[] 

It follows from the definition of  v(v) that X(v)-v(v)=k whenever X(v)=2k or 2k+ 1. 

This shows that k(r)=2k for all (k-1)/fl<~r<k/fl, l<~k~<j(~). This implies that 

(4.31) i = = (Z( ~)-v(cp 
r=0  i ) '= 

where ~j={v C dp: Z(v)-v(v)=j}. 

COROLLARY 4.3. Let n>~n(y, r). Then there are bt(n) ..... b~(.)(n) E B ( ~ ,  mr(fl) t J )  
such that 

6(n) 

(4.32) exp '~"~n c IO bi(n) B(2m~3)+l~Z(tn), mr(fl) t2 ~) 
i=1 

where 0(n)~<(~+ 1) (z(v)-~(r 

get 

Proof. For r=O let q = e  E B ( ~ , ,  0). We have ~ 0 ( q ) = ~ , .  Applying Corollary 4. I we 

r(0) 

exp ~ ,  c 1.3 Pi (0)  B(2m+l~ff~v+3(t,), mt-n 3) 
i= I  

E( n 
where pl(0) . . . . .  P~(0) E B(~ , ,  mtJ)  and r(0)~<(~+ 1) ,.~,0)1~,1. Note  that ~Z(t,)=~Y~+r(~)~(t,). 
This and (4.31) show that we need r(fl) successive applications of  Corollary 4.2 to get 

(4.32). This completes the proof. [] 

Proof of  Lemma 4.1. Let  ~= {x 1 B ( ~ ( r ) ,  0.1 y) . . . . .  XL~ B ( ~ ( r ) ,  0.1y) ) be a cover of  

A by (v,r)-boxes at x I . . . . .  xL1EA. Let n(y,r)  be as in (4.30), n~>n(y,r) and let 

~(~ 0.17) be as in (4.22), i=1 . . . . .  L1. It follows from Lemma 4.2 and 

Corollary 4.3 that there are al(n) . . . . .  aM(n)(n) E "--i=~ ~L1 ~ i ~ "  nell"), 0.27) such that 

A ~ t3~=(1 ~) aj(n) B(2m~(3)+l~x(t~), 0.3y) 
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where 

M(n) <~ L 1 s(n) (~+ 1) (z(e~- ~('~)~/~ ~ Ls(n) b "(x(*)-~(~')) <~ Lb "(x~'~)-~(*)+~(w)) = Lb "M 

for some L=L(7, r )> l .  This completes the proof of the lemma if we set a=2 m~)+~. [] 

5. Conclusion 2 of  the Main Theorem 

From now till the end of the paper we assume that G and (x=r\G, d,/z) are as in 

Section 4, N = exp ~ ,  ~ =Q(A) N ~-2 and Cgp c- l E A for some c E E-,  p E R. It follows 

from Proposition 1.2 that u ~  and cuc -1E~(A), since u = e x p u E A .  Also we assume 

that the action of N is ergodic. 

Let A~=c-lAc and let /xc be the Borel probability measure on X defined by 

/tc(E)=~t(Ec -I) for every Borel subset E c X .  It is clear that A~=A(G,F,/ac). Also 

gp E A~, u E 2(A~), 9~=c-192c=E(Ac) N ~-2 and the action of exp 97~ on (X,/~c) is ergodic. 

It is clear that bt, is algebraic if and only if so is/~. This says that we can simply assume 

without loss of generality that go E A, u E ~(A) and prove that then slz(u, g)c~(A)  and g 

is algebraic. 

We have/z(D(g))=0, since gpEA. This implies via Theorem 4.1 that tF=N. Using 

(3.7) and u E ~  we conclude that u*+vEffi3 for some v with Z(o)<2. Therefore 

ad,(u*+v)= - g + v '  ~E(A) for some v' with )~(v')<0 by the definition of ~D2. This implies 

that gEI3(A) by Proposition 1.2. We shall show later that u* E~(A), too. 

Let us note that the set W in (3.7) depends on the choices of bases and complemen- 

tary spaces occurring in the construction of ~ and ~3 (see Note I. 1), while the fact 

t F , ~  or tF=~) and Theorem 4.1 do not depend on those choices. 

In fact, in the case gEA there is a natural way to construct ~ and ~ ,  provided by 

Theorem 1. i and Proposition 1.2. More specifically, it follows from Proposition 1.2 that 

~(S)) and every nontrivial ~ N~(A), -m<~p<~q<~m all have bases, consisting of eigen- 

vectors of adg. Here m is the maximal eigenvalue of adg. Let 

~ = {v ~ ~ :  [v, u*] = 0},  o3 = {;t: ~ 4= {0}} 

be as in Theorem 1.1, 2t>0 for 2 E o3. It is clear that if w ~ ~x, 2>0 then 

(5,1) ad](a)(w) = ad~(Z)(z) 

for all z 6 {adk,(w): 0~<k~<2/2}. For 0<2 E 03 define 
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~x = {v e ~x: ad:(X)(v) E ~(A)} 

and let ~ be a subspace of ~x complementary to ~x. Let 29 and ~ be the subspaces 
spanned by {adk~(w): w E ~ ,  0<2Eo3, 0~<k<M2} and {ad~,(y): y E ~ ,  0<2E&, 0~<k<M2} 

respectively. It follows from Theorem 1.1 that a~+~(v)=0 for all vE~x. This implies that 

adX~(y)~ 92 for all 0~=yE~a, since otherwise we would have y e w  and W=~ .  This 
implies that 

(5.2) adZ.(y) ~ ~(A), y e ~x 

by the definition of ~x. 

PROPOSITION 5.1. (1) Let v E ~ x f o r  some 2>0. Then r e 2 9  i f  and only i f  ad~,(v)E 
~(A) for  some v(2)<<.k<~2; 

(2) The subalgebra ~ = ~ - N ~ ( A )  is spanned by 

{ad~(w): w E ~ ,  0<2 E o3, 2/2<k~<2}. 

Proof. If v E 29 then ad~(v) E ~(A) for all k~v(2) by (5.1) and the definition of 29. 
Now let v=l=0 and adk~(v)E ~(A) for some v(A)~<k~<2. It follows from Theorem 1. I that 

k i  t t ^ there are non-zero vl . . . . .  v, E ~ such that v=v~+.. .+v,  and vi=ad,(vi)for some v;E ~x~, 
~'I t A+kl 2+kl  O<,;.iEd~,ki=(2i-2)/2, 21>22>...>). ~. We have adu(Vl)=ad . (vl)=ad . (v)E$(A). 

Therefore o' 1E ~a~ by (5.2), Vl E 29 and adk~(Vl)E ~(A), since k~v(,~). This implies that 

adku(V - v 1) E $(A). Applying this argument n times we get vi E 29 for all i= 1 . . . . .  n. The 
proof of (2) is similar [] 

It follows from Proposition 1.2 that if v E (~, %(v)>0 and ad~(~ ~(A) then 

ad~(~162 E ~(A) and therefore pz(o)(v) E 29 by Proposition 5.1. This shows that 29 is 
indeed as required in Section 3. Now we define bases in 29, ~ and ~ by 

(5.3) 

W =  (adk.(w)/lladk~(w)ll: w e  Wx, O< A E ~,  O~<k<~./2} = {Wl .. . . .  wp) 

Y = (adk~(y)/lladk~(y)[[: y E ~'x, 0 < 2 E &, 0 < k < M2} = (c 1 . . . . .  Cr) 

H = {ad~(w)/lladk.(w)ll: w E ~ ,  o < 2 E ~, 2/2 < k <~ 2} = {h I . . . . .  hp} 

where W~, I)x are bases of unit vectors in ~x and ~ respectively. We have Y= Y - V  
since W=~.  We now define ~ to be the subspace spanned by {adk,(y): y E ~x, 0<~, E o3, 
2/2~<k<2-1). Thus @ = 2 9 + ~ + ~ + ~ ,  where ~ = { v E  @: ad,(v) E 92). It is clear that 
ad~(v) E ~ for all v E (~. 
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It follows from Proposition 1.2 that ~ and ~0(~)--~((9)tl @0=~ are spanned by 

eigenvectors of adg. Let ~x={y6~x:adX~(y)E~0(g~)} and let 3 -  be the subspace of 

~0(~)) spanned by (ad~(y):yE~x, 0<2E&}. We have 8 - + ~ = @ - n ~ 0 ( ~ ) .  Also let 

~0 = ~0 tl ~0((9). We have 

~0(~) = ~ + 3 - + 3 0 .  

Finally let ~ be a subspace of ~3 complementary to ~0(~). Summarizing we have 

(5.4) N = ~ + ~ + ~ + 3 + g ~  

where ~ = ~ + ~ ,  3 = 3 - + 3 0 .  
Now let ~ be any of the subspaces in (5.4) with the chosen above basis {el . . . . .  e,} 

of eigenvectors of adg. For y>0 def ine  

lIr(~) = v E ~: v = ~ el(V)e i, lei(v) I < Y 
i=l 

and let a compact A = A ( O , e ) c X , / ~ ( A ) > l - e ,  0<e<0.1 be as in Lemma 3.1 for some 
0<0<O,  specified later. Set 

A = A(A) = min{A(x ) :xEA}  > 0  

where A(x) is defined in (4.1). In this section we shall prove the following 

THEOREM 5. I. Given 0<c3<A there exists a subset X (~)cX ,  ~t(X(di))>0 such that i f  

xEX(6)  then 

/~(x exp l/~(2B+~o) exp H~((9)) > 0. 

The proof of this theorem begins with the following lemma. 

LEMMA 5. I. Given 0<t~<A there exists Xl(6)cX,/~(Xl(6))>0 such that i f  x ~Xl(6) 

then 

/2(x exp 1I~(~t3+ ~+~o ) exp 1J~(~9)) > O. 

The proof of this lemma is based on Lemma 5.2 below analogous to Lemma 4.1. 

Let ~x(t) and r(V) be as in (4.4) and (4.11) respectively. Recall that W = ~  in (4.3). 

LEMMA 5.2. Given 0<7<y(e) and r>v(y) there exists n(y, r )>l  such that for  each 

integer n>~n(y, r) there are al(n) . . . . .  aL~n)(n) E X such that 
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L(n) 
(5.5) a = LI ai(n) [exp(a~Z(rb")+Hy(~))] Uy(H) 

i=l 

where U~(H)=exp l/[~(g)), L ( n ) ~ L b  ~z~w) and L=L( 7, r )> l ,  a > l ,  b> l  are constants. 

The proof of Lemma 5.2 uses Lemma 3.1 and is given in an appendix at the end of 

this section. Write 

9](n) = a~X(rbn)+ l]~(~), Bi(n ) = ai(n) (exp 9](n)) UT(H). 

It follows from (4.5) that if x EBi(n), i= 1 . . . . .  L(n) then 

(5.6) Bi(n) ~ x[exp(3~(n))] U3y(H). 

Now let 29x(t) be as in (4.4) and let 

~x(t) = { v E  ~ :  Ici(v)l < c o t  i =  1 . . . . .  r} .  

Set a=lnb.  It follows from the definition of ~x(t) and the fact ~c@ ~ 3 - c @ -  that 

(5.7) g~" 9~(n) g~ = a2~X(r)+a~Z(r)+LI~(,.qo)+ C , (~  + 3 - )  

for all n~>l,0<7<l,  where 

(5.8) ~ . ( ~ + S - )  = llb-~ 3 ). 

Proof  o f  L e m m a  5:1. Let 0<6<A be given and let 0<7<7(t) and r>r(7) be such 
that 

max(3y, 3at -1} ~< 0.16. 

Let n( 7, r) be as in Lemma 5.2 and let n0~>n(7, r) be so big that b-n'~<0.16 for all n>-no. 

For n~>l we have 

Bi(n ) gn = (ai(n) g~o) exp(gS n ~(n) g~) (g~n U~(H) g~,) c (ai(n) g~) exp(g~ n ~(n) g~) UT(H) 

= ~di(n ) .  

Now let n>~no and A , = A  NAg~ n. We have kt(A,)>l-2e,  since g E ~(A). Define 

J~ = {i:/~(A, NBi(n)) > 0}. 
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It follows from (5.6) and (5.7) that 

~'di(n ) c x i O~x~)(G ) 

for all i~)~ and some x iEA,  where O~<~>(G) is as in (4.1). This implies via (4.13) and 

(4.16) that 

(5.9) /x(Bi(n) ) = Ix(Bi(n ) g~) ~< D/~(Qi(n)) b "x~m = D~(ff2i(n)) b -"x~w) 

for all iEJ , ,  n>~n o and some D>I ,  where z(H)= S~=l)(,(hi)=-EP=lZ(w~)=-z(W) (see 

(5.3)). Define 

Jn = (i E J~"/~(~2~(n)) ~ (1-  2e)/2DL} 

where L=L(7, r )> l  is as in (5.5). We have 

A . -  O (A, N Bi(n)) ~ O Bi(n). 
"~Jn iEJ,~ 

This implies via (5.9) and the definition of J,  that 

~u( tJ Bi(n)) >~ #(A,)-I~( U (A,f~B~(n))) 
i~.J n iq.J,, 

>~ li(A, ) -  E/~(Bi(n)) >" (1-2e)/2 > 1/4 
i~J,~ 

since L(n)<~Lb "x~w). Now let 

X ,  = X,(6) = ( 13 Bi(n)) g~o. 
i g J ,  

We have p(X,)>~ 1/4 for all n>~no. If x E X, then xg~"fi Bi(n) for some i E J,  and 

f2i(n ) c x exp(g~'(3~(n)) g~). U3y(I-1) = x exp[~a(2~3+~ + 30) +3 ~ , ( ~ +  5 - ) ]  Ua(H) 

by (5.6) and (5.7). This implies that 

(5.10) t~(xexp[II,~(2~3+~+~o)+3C,,(~+3-)].U,~(H))>(1-ZE)/ZDL 

for all x E X , ,  n>~no. Now let 

X~ = X1(6)= N tJ X, = {xEX: x E X ,  for infinitely many n >/no}. 
i=n o n=i 
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We have/.~(Sl)~ 1/4 and 

/~t(x exp[H~(29+~+~0) ] U~(H)) > 0 

for all xEX1 by (5.8) and (5.10). This completes the proof of the lemma. [] 

Next we shall eliminate ~. To do so let us look closer at the subspaces 29 and 6 .  

Let 

K= {adk.(w): wE 2~z, 0<2Eo5,  0~<k~<2} 

and let ~ be the subspace of ~ spanned by /<. For v E/< there is a unique 2(v)E o3, 

z(v) E ~3~ and O<~k(v)<~2 such that v=adku(V)(z(v)). Also �9  ~- .  We have 

(5.11) [v, u] E ~,  [v, u*] E 

whenever v E R (see (1.7)). 

PROPOSITION 5.2. Suppose that vE(~, wEK, k(w)<2(w) and (1) [v,[w,u]]ER, 

(2) [Iv, u*], [w, u]] E R. Then Iv, w] E ~. 

Proof. We have 

kl = [[v, [w, u]], u*] E 

by (5.11) and (1). We have using (1.8) 

kl = [v, [[w, u], u*]]+k2 = (k(w)+ 1) (,~(w)-k(w)) Iv, w]+k2. 

where k2 E ~ by (2). This implies that [v, w] E ~,  since k(w)<2(w). [] 

PROPOSITION 5.3. Let v, w be eigenvectors of adg, vE~ and wE~.  Then 

(1) [v, w] E ~9 ifz(w)<~O; 
(2) [v, w] E ~ ifz(w)>O and Z(v)<-Z(w); 

(3) [v, w] ~ + ~ 0  ifx(v)=-x(w); 
(4) [v, w] E 29 if -Z(w)<z(v)~<- 1. 

Proof. Let z be an eigenvector of adg. It follows from Theorem 1.1 that 

i f z ( z )=0  and [z,u]E~) then zE~ '+~0 
(5.12) 

i f z ( z )>0  and [z, u ]E~+~0 ,  then [z,u]ER and zE29. 
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(1) If%(w)<0 then w E 2(A) and hence [v, w] E g), since Z([v, w])<0. 

(2) We shall prove (2) by induction on %(w) assuming with no loss of generality that 

wEK. Then k(w)<Z(w) since X(w)>0. Let %(w)=l and Z (v )< - l .  We have [w, u]E�9 

Z([v, u*])~<0. It follows then from (1) that Iv, [w, u]] E ~0 and [Iv, u*], [w, u]] E ~. This 

implies [v, w] E g) by Proposition 5.2. Now suppose that (2) holds for all w with 

%(w)E{0,1 . . . . .  n - l } ,  n > l .  Let %(w)=n and %(v)<-n. We have %([w,u])=n-2, 

%(v)<-(n-2) ,  %([v,u*])<-(n-2). This implies by the inductive hypothesis that 

Iv, [w, uJ] E~,  [[v, u*], [w, u]] E~ .  Therefore Iv, w] fi~) by Proposition 5.2. This proves 

(2). 
(3) Let %(v)=-Z(w). We have Z([v, u])<-%(w) and %(v)<-%([w, u]). This implies 

via (1) and (2) that [Iv, w]], u] E g) and hence Iv, w] E ~ + ~ 0  by (5.12). 

(4) We shall prove (4) by induction on %(w). Let %(w)=2 and %(v)=-1. We have 

Z([w, u])=0, X([v, u ] )=-3<-%(w) .  This implies by (1) and (2) that [Iv, w],u] E~ and 

hence Iv, w] E29 by (5.12), since X([v, w])>0. Now assume that (4) holds for all w with 

Z(w) E {1,2 .. . . .  n -  1}, n>2. Thus 

(5.13) [ v , w ] E ~ + ~  0 foral l  vE~), Z(w)E{1,2 .. . . .  n - l } ,  n > 2 .  

Now let %(w)=n and -n<z(v)<~ - 1. To show that Iv, w] E 29 we use induction on Z(v). 

Indeed, let %(v)=-n+ 1. We have %([v, u ] ) = - n -  l<-%(w). Therefore [Iv, u], w] E �9 by 

(2). Also Z([w, u ] ) = n - 2  E { 1,2 . . . . .  n -  1 } and hence Iv, [w, u]] E g) by (5.13). This im- 

plies that [Iv, w], u] E ~ and hence [v, w] E 29 by (5.12). Now assume that 

(5.14) Iv, w] E ~ + ~ 0  for all v with - n  <~Z(v) <~ - n + k  

where l~<k<n-1.  Let X(v)=-n+k+l.  We have -n<~z([v ,u])=-n+k- l<-n+k.  

Therefore [[v, u], w] E ~ +  ~0 by (5. I4). Also Iv, [w, u]] E ~ + 40 by (5.13). Therefore 

[v, w]E29 by (5.12), since Z([v, w])>0. This completes the proof of (4) and of the 

proposition. [] 

COROLLARY 5.1. The space 29 is a Lie subalgebra o f  ~ ,  normalized by So. 

Proof. Let w E 2~ N ~p, u ~ 2~ N ~q, p, q>0. For k, l>~O write 

zk,,= [adku(W), ad',(v)]. 

We have 

ad~+q([w, v]) = z = Z ak, t zk. t 
k, I: k+l=p+q 
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for some ak, l E R. If both z(ad~(w))=p-2k<~O and z(adl,,(v))=q-2l<<,O then zk, t E ~(A) by 

the definition of 29. Now let p - 2 k > 0 .  Then q-21=- (p+q) - (p -2k )<- (p -2k )  and 

therefore zk, l E @ ~ ( A )  by Proposition 5.3. Thus zk, lE~(A) for all k, l: k+l=p+q. This 

implies that z E 2(A) and therefore [w, v] E 29 by Proposition 5.1. This proves that 29 is 

a subalgebra of (~. Now let iE 30 and a~,,= [ad~(w), adt~(i)], k, l>~O, k+l=p. If k=p,/=0 
then adP(w)E�9 and ak,/E�9 since iE3o=~0(�9 If -p<p-2k<~O then l>0 and 

adk,(w),adt,(i)E~(A) and hence ak, tC~(A). If p - 2 k > 0  then - 2 l = - p - ( p - 2 k ) <  

- ( p - 2 k )  and hence ak, tE ~(A) by Proposition 5.3. This proves that adP([w, i])E2(A) 

and hence [w, i] E 29 by Proposition 5.1. This completes the proof. [] 

Now we shall prove Theorem 5.1. First let us note that if 6>0 is sufficiently small 

then the map (v, h ) ~ e x p  vexp h from lla(29+~+~+3)x116(�9 onto a neighborhood of 

e is a diffeomorphism. If y = e x p v e x p h  we write v=v(y),h=h(y). Also v(y)=w(y)+ 

c(y)+f(y)+z(y) where w(y) E 29, c(y) E 9, f(Y) E ~, z(y) E 3. Let cz(y) (w~(y)) denote the 

projection of c(y) (w(y)) onto ~ N @~ (29 N ~ ) ,  2= 1 ..... m. We will need the following 

quantities 

(5.15) 
d = max{ll[v, wlll: v, w ~  ~ ,  Ilvll = Ilwll = I} 

r /= min{ll[v, u]ll: v~@~,  2 > 0 ,  Ilvll = 1} > 0  

Recall that [v, u]4=0 for all O~vE @)~ with 2>0 by Theorem 1.1. 

Proof of  Theorem 5.1. Let 0<O<A be given and let 0<60<b be so small that 

lOmbod m <. O. D1. 

Let X(do)cX, #(X(d0))>0 be as in Lemma 5.1 and let 

Y= {(x, xy): x E X(c~0), y E B(60) } 
(5.16) 

B(60) = exp 1ta0(29 + ~ + 30) exp 1~I%(@). 

For 2=1 ..... m and a>0  define 

Y(a, 2) = {(x, xy) E Y: IIr t> a}. 

It is enough to prove that 

#(Y(a,  2)) = 0 
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for all a > 0  and 2= 1 .. . . .  m, where f i=p • First let us prove that 

ft(Y(a, 1)) = 0 

for all a>0 .  Indeed, suppose on the contrary that ft(Y(a, 1))>0 for some a>0 .  Since the 

action of u,• on X• preserves fi, there is an arbitrary small O<t<a/2 and 

(x, xy) E Y(a, 1) such that (xu,, xyu,) E Y. We have 

(5.17) u_, yu t = exp(Ad,,(v(y))) exp(u_ t h(y) u,) = exp(v(y, t)). h(y, t) 

for some v(y, t) E 1J~0(29+ ~ + 30), h(y, t) E Uao(H), since u_, yu, E B(60), if t is sufficiently 

small. In particular, 

(5.18) f(v(y, t)) = 0 = z-(v(y, t)). 

We shall get a contradiction to (5.18). We have 

v(y) = w(y)+c(y)+Zo(y) 

Ad, (v(y)) = v(y)+f_~(t)+O(t)+t~(t) = 0(y, t)+/~(y, t) 

where 

O(t)=O(t,Y)EE @~, IlO(t)ll<-26o mdt<~O'lqt 
24--1 

(5.19) tz(t)=t~(y,t)= E t~z(t), /~(t)E�9 [f)(t)l[<~26odtV(-z)<<.O.l~lt 
2<0 

andf_l(t)=f_j(t, y) denotes the projection of Adu,(c(y)) onto @-l" We have 

f-l(t) = t[cl(Y), u]+Ol(t)E ~+3- (see the definition of ~ and 3 - )  

(5.20) [[Ol(t)[[ ~< 260 dt 2 <- O, l~lat 

[If_l(t)][ I> Ilcl(y)[[ qt-O. Irlat >I 0.91Ic1(y)fl r/t 

since [[Cl(y)[[~>O~. Note that for/~-l(t) and h-2(t) in (5.19) we have 

(5.21) h~_l(t) = t[wl(y), u] +O(fl), /~_:(t) = t[z0(y), u] +O(t 2) 

where [[O(t2)[[~<0. lr/t2~<0, lr/Jt. Here [Zo(y), u] E �9 since zo(y) E 3oC~o(�9 

Now we shall use Proposition 1.5 to represent Adu,(0(y, t)+/~(y, t)) as the product 
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exp(v(y,t))fi(y,t) for some v ( y , t ) E 2 B + ~ + ~ + ~ = @  • and some fi(y, t)EH. Here 

0(y, t)E ~ ' .  Let  h=exp  h with h=  E4< 0 h A being as in (5.19). In view of Proposition 1.5 

we have to look at Adh(O(y, t)). Let  P-l  denote the projection of Adh(0(y, t)) onto ~-1. 

We have 

P-1 = f - l ( t )  + [c,(y), h-2] + [z0(Y), h_,] + [wl(y), h_ 2] + O(/2) 

=f_~(t)+ [c~(y), h_2] +/~+ O(t 2) 

w h e r e / ~ E ~  by Proposition 5.3 and 

II[c,(Y), h-2]ll ~< 0. l~tllc~(y)ll ~< 0.211f-~(/)ll 

110(/2)11 ~< 0. lr/t 2 <~ 0. lrlat <- O. lllCl(Y)llr/t ~< 0.211f_l(t)ll 

by (5.20). This implies that for each h E H satisfying (5.19) the projection of Adh(O(y, t)) 

onto ( ~ + 3 - )  N @-1 is f_l(t)+f_l(t, h), where I I f - l ( t ,  h)l l~<0.411f-l( t) l l  �9 This implies via 

(1.14) and Proposition 1.5 that if 60 is sufficiently small then 

max{ f(v(y, t)), z-(v(y,/))} > 0 

contradicting (5.18). This proves that ~(Y(a, 1))=0 for all a>0 .  

Now let us show that f~(Y(a, 2))=0. We can assume without loss of generality that 

cl(y)=0 for all (x, xy)E Y. Suppose that #(Y(a, 2))>0 for some a>0 .  Arguing as above 

we get O<t<a/2 and (x, xy) E Y(a, 2) such that (xut, xyut) E Y. Thus 

u_ t yu t = exp(u(y, t)). h(y, t) 

where v(y, t), h(y, t) are as in (5.17) if t is sufficiently small. In particular, 

(5.22) 

We have 

f(v(y, t)) = 0. 

Ad,  (v(y)) = w(y) + c(y) + eo(t) + O(t) +/z(t) = 0(y, t) +/~(y, t) 

where O(t)EEz.0~z,  /~(t) satisfy (5.19), (5.21) and eo(t) denotes the projection of 

Ad.(v(y)) onto G0. We have 

eo(t ) = t[c2(y), u]+(Zo(y)+ t[w2(y), u])+Ol(t) = fo(t)+ ko(t) 

(5.23) IlOl(t)ll  ~< 0. lrlat, ko(t) E ~(~)), fo(t) E ~ and 

H fo( t)H >1 Hc2(y )Hrlt-0.1~l ctt >I 0.9Hc2(y)[ir/t. 
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Now let h E H ,  h = e x p h  with h satisfying (5.19) and let p0 be the projection of  

Adh(0(y, t)) onto @0. We have 

(5.24) 
Po =fo(t)+ko(t) + [c2(Y), h-e] + [w2(Y), h-2] + [w,(y), h_ 1] + O(t2) 

= fo(t) + [c2(y), h_2] + k(t) + O(t 2) 

where as above 

(5.25) IIO(t2)/I ~< 0.1,1at, I[[c2(y), h-2]H <~ O. l~tl[ce(Y)ll ~ 0.2[If0(t)ll 

and k ( t )E~+3( �9  by Proposition 5.3. Note  that we have used the fact that c~(y)=0 in 

(5.24). Expressions (5.23) and (5.25) imply via Proposition 1.5 that f(v(y, t))4:0 contra- 

dicting (5.22). This proves that/~(Y(a, 2))=0 for all a>0 .  

To prove that fi(Y, a ,2 ) )=0  for all 2=  1 . . . . .  m we use induction on 2. Suppose that 

/x(Y(a,2))=0 for all a>0 ,  2=1 . . . . .  n, 2<~n<m. We can assume that 

(5.26) c i (y )  = 0 

for all i=1, ..., n and all (x, xy)E Y. Suppose on the contrary that fi(Y(a, n + l ) ) > 0  for 

some a>0.  As above let O<t<a/2 and (x, xy) E Y(a, n+ 1) be such that (xut, xyu,) E Y. We 

have for v(y, t) as in (5.17) 

cn_ 1 (v(y, t)) = 0 

by (5.26), since n - l~> l .  We have 

Adu (v(y))= v(y)+en_l(t)+O(t)+l~(t)= 0(y, t)+/~(y, t) 

where O(t)EEx.n_ 1 @~,/~(t) satisfy (5.19), (5.21) and en_ l denotes the projection of  

Adu(v(y))-Wn_l(y) onto ~ - 1 .  We have 

en_l(t) = t[c~+l(y), u]+t[w~+~(y), u]+O(t 2) = c~_~(t)+ dJn_~(t) 

where as above 

][O(tZ)I]<~O.Djat, dJ~_l(t)E~N@~_ 1, c,_l(t)E~N@n_l 

HCn_,( t)l[ >I Hc~+l(y)[lrlt-0. l~lat >I 0.9Hc ~+ l(y)Hrlt. 

Now let h E H be as in (5.19) and let P~-1 denote the projection of Adh(0(y, t)) onto @~-1- 

18 t-908283 Acta Mathematica 165. Imprim~ le 8 novembre 1990 
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We have 

P n - 1  = w.-,(Y)+Cn-l(t)+tb.-'(t)+ [c.+I(Y)' h-z]+[w"+l(Y)' h-z] 

+ [w.(y), h_l]+O(t 2) = C._l(t)+[c.+l(Y), h-2]+fv+O(t2) 

where IlO(t2)ll~<O.lrlat and 

II[c,+l(y), h_z]ll < 0. l~llC,+l(y)llt < 0.2[[c,_,(t)][ 

and lbE~3 by Proposition 5.3, since n~>2. Thus for each hEH,  satisfying (5.19) the 

projection of Adh(0(y,t)) onto ~N@,_ 1 is C~_l(t)+cn_l(t,h), where llc,_~(t,h)[[~ < 

0.211Cn_~(t)ll. This implies via (1.13) and (1.14) that 

c._ l(v(y, t)) * 0 

contradicting (5.26). This completes the proof of the theorem. [] 

Appendix 5.1 

Here we shall prove Lemma 5.2. The proof is somewhat similar to that of Lemma 4.1. 

For v C (~ let ~(v)=Z(v) ( 1 - a ) + a ,  where a=  1/4(m+ 1)2=fl/2(m+ 1) and/3= 1/2(m+ 1) 

is as in Lemma 5.1. Note that ~(v)=l if g(v)=l and max{v(v),g(v)-fl}<~(v) if 

l<g(v)~m. Write 

P 

~(w) = ~ ~(w~). 
i=l  

We set for technical simplicity b=24~m+1)2. With this choice of b the number b ~~ is an 

integer for all v E (~. Now let 29~(t), ~3~(t) and ~ ( t )  be as in (4.4), where 0 is chosen so 

small that for 0 defined in (4.7) we have 0<1. Recall that W=~.  It follows from (4.5), 

(4.9) and (1.14) that if z, v E 4 ~ ( t ) ,  t~>l then 

(5.27) exp(z + v) = exp z exp(v + 0) exp i 

for some 0E t-ad~(bt)ct-a~(bt) and some i E ~0(�9 [lill ~t-2€ 
Now let 0<y<7(e) and r~>r(7) be given. Let xEA and B=xB(~r where 

B(I~,v), 1~c29+23+~ is as in (4.10). Define 

(5.28) ~ = ~ ( B ) =  {vC~(r):xexpvexpiCA for some iE~o(�9 [IiH~<0.1V}. 
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v ,n - I  ~-fl Write t,=rb", n = l , 2 ,  ..., 7_~=9Zo=0, 7 , = ~ = o  t~ . We have ~, <0.1~z for all n. 

LEMMA 5.3. For every n ~ Z  + there are y~(n), ..., y~r E B ( ~ ,  y~_~) such that 

s(n) 
exp ~ ~ 13 Yi(n) B ( 4 ~ ( t . ) ,  ~,.) 

i=1 

where s(n)~b n~(w). 

n-1  1 +  - a  Proof. We have Jl(n=]~Ik=0( t~ )~<2 for all n by our choice of  r and b. Also 

~ ( z ,  t ) = ~ ( t ) - z c 2 ~ ( t )  for all z E ~ (t). This shows that it is enough to prove that for 

every n E Z + there are yl(n) . . . . .  ys~.)(n) E B ( ~ ,  7 . - 0  and zl(n) ..... z~.)(n) E 233~n(t.) such 

that 

s(n) 
( 5 . 2 9 )  exp ~-~ = 13 Yi(n)  B(~n(Z i (n ) ,  t.), y.) 

i=1 

where s(n)<~b "~(w) and 2~(t.)=er.29r ~ - ~ ( t . ) - J r . ~ ( t . ) .  We shall prove this by 

induction on n. For  n = 0  set s(0)= 1, yl(0)=e,  z~(0)=0. Assume that (5.29) holds for n. In 

order to prove it for n + l  it is enough to show that if y E B ( ~ , 7 . _ ~ ) ,  zE2~3~(t.) and 

~n  = { v  E ~ "  " w.tz, t.): y exp v exp i E exp ~ for some l E ~0(�9 [lill ~ 9'~} 

then there are s: l<~s<~br W), qj . . . . .  q~ E exp C .  and z I . . . . .  z n E 29.+~(t.+j) such 

that 

$ 

(5.30) +~, ~ exp ~ c 13 q i B ( ~ n + l ( Z i  , t~+l), t~ ) .  
i=1 

We have 

~ ( z ,  t n) = 2~(Z, t.)+ ~( t . ) .  

Let  u 1 . . . . .  Ub(e, w) E 29~(z, tn) be such that 

b(~, W) 

2~3~(z,t,)= 13 (ui+29~(bt,)). 
i=1 

We have 

b(~, W) b(~, W) 

~n (Z ,  ~ tn) = U (ui+~n(btn)+~n(tn)) = U (Ui+~n(tn)). 
i=1 i=1 
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Let  z[E ~n(tn) be such that ui+z[=qiE ~n and set qi=expqi . We have 

qi-k ~n(Z~, t n) = tli"b Z~-k ~n(Z~ , t n) = Ui'k-~n( tn). 

Also if v E ~n(z[, tn) then 

v E 429~(bt~)+423~(t,)c4~(t,). 

It follows then from (5.27) that 

exp(qi+v) = qi exp 0 exp [ 

where 0 E (1 + t~ ~) ~,(t ,)-z~, [E ~0(�9 I lill~<tJ �9 This implies that 

exp(ui+ ~(tn)) ~ qi B((1 +tn -~) ~n(t,)-z~, t~).  

Now suppose that 

exp(qi+ v) E exp ~ , .  

It follows then from Lemma 3.1 and the definition of ~ that 

t,+l)+93,+l(tn+l) = ~,+l(Zi, t,+l) 

for some zi E 2~9~+l(tn+l), since ~(v)>>-v(v) if z(v)>~ 1. This proves (5.30) and completes the 

proof of the lemma. [] 

For  l<.k<.m define 

~ ( t )  -- {v E ~e(t): lai(v)l ~< a(O) t-x(w')/fl, I%(v)l ~< co t  -z(r for all i,p with 

z(wi), x(%) <~ k} 

~ ( t )  -- {v ~ ~ ( t ) :  I%(v)l ~< c o t  -~%), p = 1 . . . . .  r}. 

We have ~e(t) = ~ ( t )  since ~(v) = 1 if Z(v) = 1. Also 

(5.31) ~z(t) ~'~ = ~ m ( t )  = ~JY~(t). 

Now let w 6. d ~ ( t ) ,  ~ v E d~k+l(t) for some l~<d~<2 m+2. Arguing as in (5.27) we get 

exp(w + v) = exp w exp t3 exp i 

for some ~ E 2 d ~ + l ( t ) ,  i E ~0(�9 Ilill ~<t-2~, since ~(v)>x(v)-fl  and 0<1 in (4.7). 
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It follows from Lernma 5.3 and Lemma 3.1 that 

s(n) 
exp ~ = LI Yi(n) B(4~](t~), 7n) 

i=1 

for all n f iZ  +. Now let n f iZ  + be fixed and let y=yi(n) for some ifi {1 . . . . .  s(n)}. Let  

~ .  = {o E 4~]( t . ) :  y exp o exp i fi exp ~ for some i fi ..~0((9), Ilit} <~ 7.}. 

For q E B ( ~ , ,  0.017) and l<<.k<<-m let 

~-~k(q) = {v E d k ~ ( t , ) :  q exp v exp i E exp ~ ,  for s o m e / E  ~0(~), Ilill ~ 0.01y} 

where dk=2 k+~. The proof  of  the following lemma is identical with that of  Lemma 4.3 in 

Appendix 4.1. 

LEMMA 5.4. There are ql,- .- ,  qr(k+l)Eexp ~-'k(q) such that 

r(k+ 1 ) 

exp ~-~k(q) ~ LJ qiB(dk+ 1 ~f~k~+l(tn), tn -~) 
i=1 

. . . .  X(~k+ l)--~(~k+ 1 ) where r(k+ 1)~<(t, + l) and ~k = { w fi W: Z(w) = k}. 

Now let n( 7, r)>l  be so large that tn#m~<0.017 for all n>~n(y, r). 

COROLLARY 5.2. Let  n>-n(y, r). Then there are bl(n) . . . . .  b~(,)(n) E B(~ , ,  m t J )  such 

that 

~(n) 

(5.32) exp ~n c LI bi(n) B(2'n+z~z(tn), m t J )  
i=1 

and 6(n)<.(t.+ 1) x(w)-~w). 

Proof. For k = l  let q = e E B ( ~ n ,  0). We have ~ l ( q ) = ~ , ,  d1=4. Applying Lemma 

5.4 we get q~ . . . . .  qr(2) E exp ~ l (q)  with 

r(2) 

exp ~ ,  c t3 qiB(d 2 ~2~(tn), tn -~) 
i=1 

where r(2)~<(tn+l) x(~)-~(r In view of (5.31) it is clear that we need m successive 

applications of  Lemma 5.4 to get (5.32). [] 

Proo f  o f  L e m m a .  5.2. Let  ~= {x 1B(~(z-), 0.19/) . . . . .  xs B(~(~-), 0.17)} be a cover of  

A by (~,r)-boxes at x I . . . . .  x L E A .  Let  n(7, r) be as above, n>>-n(y,r) and let 

19-908283 Acta Mathematica 165. Imprim6 le 8 novembre 1990 
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~(i)=~(xiB(~(r),O. ly)) be as in (5.28), i=1 ..... L 1. It follows from Lemma 5.3 and 

Corollary 5.2 that there are al(n) . . . . .  aMr t3~glxiB(�9 ~~ 0.2y) such that 

M(n) 
A ~ 19 aj(n) B(2m+2~x(tn),0.37) 

j=l 

where M(n)<~L 1 s(n)(t,+ 1)xr162 "xr for some L=L(~,, ~)>1. This completes the 

proof of the lemma if we set a =2 m+2. [] 

6. The support of /~ 

Let 30=~0N~(~9) be as in Theorem 5.1. Define 3(A)=30N~(A). We have 3(A)+~)= 

~0(~) N ~(A). Set ~ = ~ + 3 ( A ) + ~ .  In this section we shall prove the following theorem. 

THEOREM 6.1. (1) The subspace ~ is a Lie subalgebra of  @. 
(2) There exists x E X  such that /~(xL)=l, where L denotes the connected Lie 

subgroup of G with the Lie algebra ~. 

It is clear that ~(A)c~.  We shall show later that ~=~(A) and L =A ~ Let 50 be a 

subspace of ~3 N @0 complementary to 30. It follows from Proposition 5.3 that 

[wa, h_a] E (~ n @0) u 60 c 30+,% 

for all h_ a E ~ N @-a, 2>0 and all w E ~i~, where wa denotes the projection of w onto ~a. 

Define 

30. 

(6.1) 

~i~= {w E ~i~: [w a, h_a] E 30 for all h_a E~N @_ a, 2 > 0 } .  

PROPOSITION 6.1. The subspace ~c?2~ is a Lie subalgebra of  ~2~, normalized by 

Let  wE~fq~p, V ~ n ~ q ,  p,q>O and let hE~)lq~_(p+q). We have Proof. 

[[w, v], h] = [w, [v, h]]+[w, h], v]. 

Also [v, h] fi ~ N @_p, [w, h] E ~ n @_q by Proposition 5.3. This implies that [[w, v], h] E 

30 by (6.1), since w, v E ~[9, and proves that ~ is a subalgebra of ~ .  Now let i E 30 and 

h E g) N ~_p. We have 

[[w, i], h] = [w, [i, h]]+[w, h], i] E 30 
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where [i, h] E (0 n g_p, since i E 3oC~(~)  and [to, h] E 30, since w E ~ .  This proves that 

[to, i] E ~ and that 8o normalizes ~ .  

LEMMA 6.1. Given 0 < 6 < A  there is ~'(6)cX,/~(X(6))>0 such that i f  xEYf(c)) then 

/~(x exp Lt~(~+ 80) exp 1~(~)) > 0. 

Proof. The proof is similar to that of Theorem 5.1. Recall that the basis H of 

defined in Section 5 consists of eigenvectors of adg. For h E f~_~=�9 N @_~, 2>0 let 

~ (h)  = { w E a N  @~: [w, h] E 80} 

and let ~• be a subspace of ~ N ~ complementary to ~(h) .  Define 

= (h ~ n :  ~ l ( h )  �9 (0}) 

= min(llJo([w, h])ll: hEH,  w E ~• IIwll = 1) > 0  

where jo(V) denotes the projection of v E ~0+8o onto ~3o. 

Now let 0 < ~ < A  be given and let 0<~0<c3 be so small that 

2mpc~o d <~ O. 1 

where d is as in (5.15) and p=ca rdH.  Let X(C~o)~X,/u(X(CSo))>O be as in Theorem 5.1 

and let 

Y = ((x, xy): x EX(6o), y E B(6o)) 

B(60) = exp 1.ta0(~t~+ 80) exp lla0(Y)). 

For a>0,  2= 1 ..... m define 

Y(a, 2) = {(x, xy) E Y: max{llw• Y)II: h E/irn g-a)  I> a)  

where wz(h, y) denotes the projection of wa(y) onto ~• It suffices to prove that 

(6.2) 12(Y(a, 2)) = 0 

for all a>0  and all 2=1 ..... m where/i=/z• 

First let us prove (6.2) for 2= 1. Suppose on the contrary that ~(Y(a, 1))>0 for some 

a>0. Then there is (x, xy) E Y(a, 1) and an arbitrary small O<t(h)<a/2, h E/-]r_I=HN ~-1 

such that 
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(6.3) (x exp(t(h) h), xy exp(t(h) h)) E Y 

since the action of  exp th • exp th, h E H on X •  preserves g. Le t / /=h(y)  E H-1 be such 

that 

IIw_~(L Y)II-- max{llw• y)ll: h E/at_ 1 }/> a. (6.4) 

Write 

We have 

t = t(h), ht = exp th. 

h_ t yh t = exp(Adh (v(y))) (h_ t h(y) h,) = exp(v(y, t)) h(y, t) 

where v(y, t) E 1I~o(29+ ~o), h(y, t) E U~o(H) by (6.3), since h_ t yh t E B(6 o) if t is sufficiently 

small. In particular, 

jo(v(y, t)) = O. (6.5) 

We have 

Adh,(v(y)) = w(y)+eo(t)+O(t)+l~(t) = 0(y, t)+/~(y, t) 

h(t) = h(y, t) = 2 / ~ _ a ( 0 ,  /~(t) E �9 N @_,~ 

(6.6) z>0 

I Ig_z(t)ll ~< 2~0 dt ~ <- O. l~t ~ 

and eo(t) denotes the projection of Adh (v(y)) onto @o. We have 

(6.7) eo(t) = z0(Y) + t [ w l(y),/~] + O(t 2) = io(t) +jo(t) 

where IIo(t2)11<2~0 mdt2<_O, leat, io(t) E 50, Jo(t) E ~0 and 

(6.8) IlJo(t)[I t> IIw~(h, Y)ll~t-0. l~at  >- 0.9r y)ll 

by (6.4). Now let h = e x p  h E H with h being as in (6.6) and let P0 denote the projection of  

Adh(0(y, t)) onto @0. We have 

(6.9) Po = io(t) +Jo(t) + [wj (y), h _ j] + O(t 2 ) 

where O(t) E Zz. o @~, IlO(t)H<~2mbodt<.o. let, 
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where IIo(t2)[l~0. l~at and 

/[A([wl(Y), h-l]ll ~< 2P6o dttlwj_(l~, Y)[t ~< O. 1 ~tllwl(tf, Y)I[ ~< o-211A(t)[[ 

by (6.4) and (6.8). Thus for each h, satisfying (6.6) we havej0(Adh(0(y, t)))=jo(t)+jo(t, h), 

where IlJ0(t, h)ll~<0.2llJo(t)l[. This implies via (1.13) and (1.14) that j0(v(y, t))*0 contra- 

dicting (6.5). This proves that ft(Y(a, 1))=0 for all a>0 .  

To prove that ft(Y(a, 2))=0 for all a > 0  and all it= 1 . . . . .  m we use induction on it. 

Suppose that ft(Y(a, it))=0 for all a > 0  and all it= 1 . . . . .  n. We can therefore assume that 

(6.10) [w~(y), h_x] E ~o 

for all (x, xy) E Y, h_~ E ~) N @_z, 2= 1 . . . . .  n. Now suppose that ~(Y(a, n+ 1))>0 for some 

a>0.  As above there exists (x, xy)E Y(a,n+l) and sufficiently small O<t(h)<a/2, 
h E/t-(n+1) such that 

(x exp(t(h) h), xy exp(t(h) h)) E Y. 

Let/~=/f(y) E/4-(,+1) be such that 

I[wj (fi, y)ll = max{llw L(h, Y)II: h E n_r t> a 

and let t=t(//), h t=ex p th. We have h_ t yh ,=exp v(y, t).h(y, t) where as above 

(6.11) Jo(v(y, t)) = O. 

We can now repeat the above argument writing 

in (6.7) and 

eo(t) = z0(Y) + t[w,+ 1(Y),/~] + O(t2) = io(t) +Jo(t) 

Po = io( t)+jo(t)+ [w n+ l(Y), h-,+1] + [o(t)+ O( tz) 

in (6.9), where O(t 2) is as in (6.9), 

by (6.10) and 

/o(t) = ~ [w~(y), h ~ ]  E 30 
2=1 

IlJ0([w,+ l(y), h_r ~ O. lCtl[w~ (fi, y)[[ ~ 0.2llA(t)ll. 
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This implies that j0(v(y, t))+0, contradicting (6.1 1). This completes the proof of the 
lemma. [] 

LEMMA 6.2. Let ~ be a subalgebra of 29 possessing the following property: given 
0<6<1 there is x=x(6) EX such that 

Then ~=29. 

/a(x exp 116(~) exp H6(~o) exp 116(~)) > O. 

Proof. For k= 1 . . . . .  m let ff~k) be a maximal set of  unit vectors in 2~ such that 

Z(v)=k for all v E 1~ k) and {pk(v): v E I~  k)} is linearly independent in ~k, k= 1 . . . . .  m. The 

set W-LIk= l "  - m ~ i ] ( k ) = { / ~ )  1 . . . .  , tO,} is a basis in 2~. For 0<6<1  and t > l  define 

{ s / 
~ ( 6 ,  t) = w ~ ~ :  w = ~ ]  wi ~i, I~1 ~< 6 t  - ~ ' ~  �9 

i = 1  

As in the proof of Lemma 5.2 (see Appendix 5.1) we show that for all sufficiently small 

6>0 and every integer n > l  there are al(n) . . . . .  aL(n)(n) E exp ]]a~(~) such that 

L(n) 

exp 1I~(2~) c t.I ai(n) exp(a2~(d,  b")) 
i = 1  

where L(n)<.Lb nz(~), b, a, L =L(6)>  1 are constants and 

s 

i = 1  

Define 

B,(6) = exp(a2~(6,  b")) exp lJ6(~0) exp 1t6(�9 

We have 

L(n) 

B(O) = exp H6(2~ ) exp 116(~0) exp H~(g))c t.J ai(n) Bn(6 ). 
i = 1  

Now suppose on the contrary that 2~ is a proper subspace of 29. Then 

(6.12) Z(I~') ~<;z(W)- 1. 
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Let  K be a compact  subset  of  X with /~(K)>0.9 and let 6>0  be so small that 

lOa6<~A(K)=min{ A(x): x E K} (see (4.1)). Let  x=x(6) EX be such that 

/ ~ ( x B ( 6 ) )  = a >  0. 

Set cr=lnb. Since the action of  go on (X, kt) is ergodic (see Proposition 1.12) there is 

/~cxB(6),/~(/~)>0.9a and no> 1 such that if y E/~ and n>~no then the relative frequency of  

K on the orbit interval {y, yg,, . . . . .  yg~} is at least 0.8. We claim that for every n>-no 

there is n<~k(n)<~2n and a subset  D(k(n))cB such that 

(6.13) 
kt(D(k(n)) >>- 0.3/~(/~) I> 0. l a  

D(k(n)) go k(n) c g .  

To prove the claim we apply a standard argument based on the Fubini theorem. 

More specifically, for every n>~no and every y E/~ the relative frequency of K on 

{ygn . . . . .  yg]n} is at least 0.3. Let  

Is {(y,k): yEB,  kE {n . . . . .  2n}, ygkCK} c B •  n 

where In= {n . . . . .  2n}. Let  v be the probability measure on BXln, which is the product  of  

kt/kt(/~) and the normalized counting measure on In. We have v(/~)~>0.3. This implies via 

the Fubini theorem that there exists k=k(n)E In such that 

(/~//~(/~)) (_g n (/~ x { k})) > 0.3. 

Define 

D(k) = {y EI~: (y, k) E I~}. 

It is clear that D(k) satisfies (6.13). We have k=k(n)-.o~, when n--,oo. Also 

L(k) L(k) 

(6.14) D(k) = t.J D(k) N (xai(k) Bk(6)) = t9 Di(k). 
i=1 i=1 

Let J =  {i:,u(Di(k))>O}. We have 

Di(k ) gk ~ = (xai(k) gka) exp(g~k(a2~X (6, bk)) gko) exp Lt~(~o) �9 Uo(k, H) 

= (xa;(k) gko) exp(g~k(a~3X(6, bk)) gk) exp LIo(~o). U~(H) = zi Oa(zi)(G) 

for some zi E K and all i E J by the definition of 6. Here  
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U6(k, H)=exp(h E (9: [hi(h)l<.bb kz~h?, i= l . . . . .  p} 

and H={h  I . . . . .  hp} is the basis of eigenvectors in (9 used above, This implies via (4.13) 

and (4.16) that 

#(Di(k)) =/u(Di(k) g~) ~< CbkXa 4) 

for all i E J  and some C>I ,  where z ( H ) = - z ( W ) .  This and (6.14) give 

lz(D(k)) <~ CL(k)b -kx(w) <~ CLb k(x~ce)-x~w)) <~ CLb -k 

by (6.12). Thus lt(D(k))-->O when k=k(n)-->~. This contradicts (6.13) and completes the 

proof of the lemma. [] 

It follows from Proposition 6.1 and Lemmas 6.1 and 6.2 that ~ = 2 ~ .  Thus we get 

the following 

COROLLARY 6.1. [W~, h-a]E~ofor  all w E ~ ,  h_~E(gN~_~, 2>0. 

Next we shall substitute S0 by ~(A) in Lemma 6.1, To do so we shall use 

Proposition 1.11 and the H-regular sequence Fe(s) in H defined with 

oi(s ) = s -x(h'), i = 1,. . . ,p.  

It follows from Corollary 6.1 that if w E 29, z E S0 and h E H then 

exp Adh(w+z) = exp(z+ tb(w, z, h) + s z, h))- h(w, z, h) (6.15) 

where 

~=tb(w,z ,h)E2~,  ~=s and fi=l](w,z,h)EH. 

For x EX, y=x  exp(w+z) define q~ =%,, y: xH---~yI-I by 

q)x,y(Xh) - -  yh(h) -1 = xh exp(z+tO+D. 

Let 0<0<1 be so small that if Ilwll, Ilzll~<0 then 

(6.16) 
112(B)/2(r II <~ 0.1 

~(xFe(1)) ~ yF2e(1) 

for all 0<0<1 and all Borel subsets BcxFe(1),  where as before 
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~.(B) =2 {h E Fe(1): xh EB)  

with ~ being a Haar  measure on H. Also we will need 

r = 2(Fo(s))/~.(F2o(s))) = 2 -p, Q, s > O. 

LEMMA 6.3. Given 0 < 6 < A  there is ) ( ( 6 ) c X ,  p()~(6))>0 such that i f  xE)~(6)  then 

(6.17) p(x  exp 116(~+~(A)) exp 1t6(~)) > 0. 

Proof .  Let  Ki, i-- 1,2 . . . .  be nonempty compact  subsets of exp 30 such that 

o o  

CJ K i ~-- exp[LI0(~0)-~(A) ]. 
i= 1 

Now let 0 < a < 0 .  l r  be so small that fl(a)<<.O. 1, where fl(a) is as in Proposition 1.10. It 

follows from Proposition 1.11 that there are Y, cX,  p ( Y 3 > l - a  and 6i>0 such that 

(6.18) d(Y,-, Y~k) I> 6; 

for all kEKi, i=1 ,2  . . . . .  

Now let 0<6<0 .1  min{0, A) be given and let 0<Qi<I be so small that if wE2~,  

zE30,  [[wl[, 11z[[--<6 then 

(6.19) [[2(w, z, h)[I < O. 16, 

for all hE Foi(1), where 2(w, z, h) is as in (6.15). Using Proposition 1. l0 we get X i ~ X ,  

/z(Xi)>0.9 and t~> 1 such that if x E Xi, t>t~ then 

2(Yi N xFoi(t))/~(Fo~(t)) >I 1 - 0.2r 

2(Yf N xF2oi(t))/~(F~,(t)) I> 1-0.2r .  

Since the action of  g=g_~ is ergodic on (X,p) (see Proposition 1.12) there is X ~ X ,  

/zO() = 1 such that if x EX then the relative frequency of  Xi on {x, xg . . . . .  xg n} tends to 

/u(Xi) when n--->oo for all i = l , 2  . . . . .  Now let X ( 6 ) c X , / x ( X ( 6 ) ) > O  be as in Theorem 5.1 

and let f f(6)=X(6)N)~',/zO~'(6))>0. Let  us show that if x E)~'(6) then (6.17) holds for x. 

Define 

) ( =  {x EX: ~.(RNxFI(I))/~.(FI(1)) = 1} 

/~(6) = (x exp 1~6(2~+ ~0) exp 1I~(5~)) N X, x E )1"(6). 
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Here p(X)= 1 by Proposition 1.13 and p(/~(6))>0. We claim that 

(6.20) /~(cS) c x exp 116(~i~+ 3(A)) exp LI~(~). 

Indeed, let xy E/~(cS), y= (exp 0(3'))" h(y) = ~h(y) for some v(y) = w(y) + z(y), h-- h(y) E U~(H), 

w=w(y)ELI~(~), z=z(y)ELI~(30). We have to show that 

(6.21) z = z(y) E ~(A). 

Suppose on the contrary that z E 30-3(A) .  Then exp z E Ki for some i= 1,2 . . . . .  Since 

xyEJ( there is a Ex~F0.01ei(1)NX. Now let r i>l be so big that 

t}e-ri<0.1t~i, er~> t i. 

It follows from the definition of X that there is z-~>r~ such that 

a~=ag *EX i, x~=xg *~.X r 

Set t=e ~, 37,=x~,g *, a, E 3~ F0.01e~(t). We have from the definition of Xi 

2(Yi N a~ F2ei(t))/A(F2e,(t)) I> 1 -0 .2r  

2(Yi N x~ Fe,(t))/A(Fei(t)) I> 1-0.2r  i> 0.8. 

This implies via (6.16) that 

2( Yi N Yr F2ei(t))/2(F2ei(t)) ~> 1-0.3r  
(6.22) 

2(9( Yi N x, Fe~(t)) N ~9, F2o~(t))/2(Fze~(t)) >I 0.7r 

where 9=%~,yr 3~ =x, exp(z+ w~), w~=g-~wg ~, Iiw~ll<~6e-~<~o. 16 i. It follows from (6.22) 

that there is cE Yi such that 9(c)E Y,-. Also c=x~h~ for some h~EFQ,(t), h~=g-~hg ~ 

for some h E Fe,(1). We have from the definition of 9 

9(c) = c exp(z+ tO,+2) 

where tb,=g-*t0g *, IItor[l<~be-r~<0.16i and t0=zb(z, w,h), s163 w,h) are as in (6.15), 

I1 11 <0.1 ; by (6.19). This implies that 

d(9(c), c exp z) ~< 0.26i 

which contradicts (6.18), since expz E K;, c, 9(c)E Y. This proves (6.20) and (6.21) and 

completes the proof of the lemma. [] 
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Now let 

2~= {wE29: [w~,h_a] E3(A) for all h_~ E g)N @_~, 2 > 0 } .  

Repeating the argument in the proof of Proposition 6.1 and Lemma 6.1 we get the 

following 

LEMMA 6.4. (1) The space ~ is a Lie subalgebra of  29, normalized by ~(A); 

(2) Given 0 < 6 < A  there is f ( (6)cX,  p(J['(6))>0 such that if x Ef((6) then 

/~(x exp 1I~(2~+ ~(A)) exp lIo(g))) > 0. 

Proof o f  Theorem 6.1. (1) It follows from Lemmas 6.4 and 6.2 that 2~3=29. This and 

Proposition 5.3 imply that E=29+3(A)+(9 is a Lie subalgebra of ~ .  

(2) Lemma 6.4 asserts that there is x EX such that kt(xexp lld(~))>0. This implies 

that/~(xL)=l, since zH~xL  for every zExexpLI~(~) and the action of H on (X, k0 is 

ergodic. This completes the proof. [] 

7. Algebraicity of/t 

Let L e G ,  xEX,  #(xL)= 1 be as in Theorem 6.1. Let v be the Riemannian volume on xL 

induced by a left invariant Riemannian metric on L via the local diffeomorphism 

l---~xl, I E L. It follows from the definition of L that v is invariant under the action of g on 

xL. Also it is invariant under the action of H and W since H and W consist of unipotent 

elements. Here W denotes the Lie subgroup of L with the Lie algebra 29. We shall 

show in this section that v is finite and coincides with/~ up to a factor. This would imply 

that xLx-1N F is a lattice in xLx- 1, x C Jr- 1 {x} and/~ is L-invariant. Write 

~ (A)+~  = C,  Q6(x)=xexplI6(~)  

W6(x) = x exp 116(29). 

If 0<6<0.1A(x) is sufficiently small then for each yEQ6(x) and each zE W6(x) the 

intersection W106(y) N Qlo6(Z) consists of exactly one point p =p(y, z). Define 

W(y) = W(p) = {p(y, z): zE W~(x)} 

Q(z) = Q(p) = {p(y, z): y E Qo(x)} 

B~(x)= U W(y). 
y e Q~(x) 
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We have 

Bb(x)= t.J Q(q)=  t.I W(s) 
q E W(p) s E Q(p) 

for all p EBb(x). We can assume without loss of  generality that i.z(Bb/z(X))>O. 

PROPOSITION 7.1. There exists BcBb(x) with v(B)=v(Bb(x)) such that i f  z E B then 

zg -n EBb(x) for  infinitely many n E Z +, where g=gl.  

Proof. Since the action of  g on (X,/~) is ergodic (Proposition 1.12) there is C~Bb(x), 

/~(C)=/~(Bb(x)) such that if y E C then yg-nE Bb/2(x) for infinitely many n E Z § Since 

~ c ~ ( A )  there is CoBb(x),/t(C)=/~(Bb(x)) such that if z E C then 

2(C O Q(z))/2(Q(z)) = 1 

by Proposition 1.13 where 2 denotes a Q-invariant measure in zQ, with Q being the Lie 

subgroup of  L with the Lie algebra ~ .  Pick z0 E C and define 

B = k.I W ( y ) .  
yECNQ(z O) 

It is clear that v(B)=v(Bo(x)). Now let zEB.  Then zE W(y) for some yEC.  We have 

d(yg -n, zg-n)--*0, when n---~ and yg-nEBb/2(x)for infinitely many n E Z § This implies 

that zg -~ EBb(x) for infinitely many n E Z +. [] 

For  zEB  let n(z)=min{n~l:zg-nEBb(x)} and let cp:B---~Bb(x) be defined by 

q~(z)=zg -n(z). It is clear that the map q~ preserves v and therefore v(cp(B))=v(B)=v(Bb(x)). 

This implies that we can assume without loss of generality that q~(B)=B. Define 

Q = (y E xL: y = zg -k for some z E B, 0 ~< k < n(z)}. 

The action of  g on (g2, v) is measure preserving. Let  ~ be the Borel measure on xL 

defined by ~(D)=v(D N f2) for  every Borel subset DcxL .  

LEMMA 7.1. (1) V(Q)<oo; (2) /~=~/V(f2). 

Proof. L e t f b e  a continuous function on xL with compact  support  and l e t f~=Sfd~ .  

Since the action of  g on (xL,/~) is ergodic, there is a subset CfcBb(x),/~(Cf)=/~(Bb(x)) 

such that if y E Cf then 
n--1 

(7.1) Sn,f(y ) = Z f ( y g - i ) / n  ---~ f~, n---~ oo. 
i=0 
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Let  r be such that if z E (~s then 

2(Cfn Q(z) )/2(Q(z) ) = 1. 

Pick s E Cf and define 

B f =  BN U W(y) 
y E Cfl Q('g) 

ff~f = {co E f2:o9 = zg -k for some z E B s, 0 ~< k < n(z)}. 

We have v(ff2f)=v(f2). Now let z EBf. Then z E W(y) for some y E Cf. We have 

This and (7.1) imply that 

d(zg -n, yg-n)--* 0, n---~ ~.  
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Proof of  the Main Theorem. In view of  Lemma 7.1 it remains to prove that v=~. 

To do so it suffices to show that for every p E xL 

~'( 0o .16(p) - -~ '2)  = 0 

Sn,S(Z)--' L, n--, 
for all z EB s, since f is uniformly continuous. Also 

(7.2) S,,y(to)--+f~, n--+ 

for all co E ~s. Now let f be nonnegative with fu#0.  It follows then from the Fatou 's  

lemma that 

s176 s 0 - + =  

This proves that v ( Q ) < ~ .  Now we use (7.2) and the Dominated Convergence Theorem 

to get 

for every continuous function f on xL with compact  support. This proves that 

~=,~/v(f~). [] 
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where O~(p)=pOy(e) and O~(e) denotes the ball of radius 7 in L centered at e. Let  

BcBe,(x) be as above and let 13cB, v(B)=v(B) be such that i fyE/~  then 

)c(B N W(y))/2(W(y)) = 1 

where 2 denotes a W-invariant measure on yW. Define 

g) = {o)E Q: o)g-n 6/~ N Bo/2(x) for infinitely many n E Z+}. 

We have v((2)=v(f~), since p = 9 =  ~/v(f2) and the action of g on (f2, p) is ergodic. If  co E (~ 

then Wx0~(o)) g -nc  W(y) for some n E Z § and some y E/~. This implies by the definition of 

/1 that 

and hence 

;t(w106(~o ) g-n NB)/2(Wlo~(~o) g-n) = 1 

2(W10d$((~o ) n ~'~)/~(Wlo~(~o)) = l 

for all co E (2, since f2 is g-invariant. Now let 

(2 = {o9 E g2: 2(~ N Qlo6(~o))/J.(Qlo6(O))) = 1}. 

We have 

(7.3) v((~) = v(f~) 

by Proposition 1.13, since f=/~ is Q-invariant. It follows now from the definition of if2 

that if co E (2 then 

(7.4) v(B~(o)) n f2) = v(B~(o))). 

Here B~(o)) is defined to be er(tbB~(e)), where tbEer-l(co}, Jr denotes the projection 

zc(h)=rh, h E G and B~(e) is defined by zr(iB~(e))=B~(x), ~ E ~r-t{x}. It follows now from 

(7.3) and (7.4) that 

v(B,~(oJ) N (-2) = v(B,j(o)) ) 

for all co E (2. Now let p 6 xL. Then we can find x=o)l . . . . .  o)n such that 04 E B~(o)i_ 1) N ~ ,  

i=2 . . . . .  n and Oo.l,~(p)cBo(c%). This implies via (7.4) that 

v(Oo.16(p)-f2) = 0 

and proves that v=9. 
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We have just proved that L e A .  This implies that ~=~(A),  since 2 ( A ) c ~  by the 

definition of s Therefore L =A ~ Now let us show that xL =xA. Indeed, suppose on the 

contrary that there is ~t6A such that xar We have ~t-~La=L and hence xLa=x~tL, 

xLa n x L = ~ .  This implies that ~(xL~x)=0. This gives a contradiction since the action of 

tt preserves ~ and/t(xL)= 1. This completes the proof of the main theorem. [] 

Proof of Theorem 2. Let/~ be an ergodic algebraic joining of u (~) on (XI=FI\G1,1/1) 

a n d  u(E) on(X2=r2\GE, V2). We have /~(xA)=l for some x=(xl,X2)EX=XlxX2, 
where A = A ( / 0 c G  1 x G 2. Let H =  {z I 6 G1: (z 1, z 2) E A for some z 2 6 G2} and let H(6)= 

H f) O~(G1). We have 

/~(x, O~(G,)• 2) =/~(x, H(~) • 

if 6>0 is sufficiently small. This implies that 

vl(x I O+(GO) = vt(x t H(6)) 

since/~ is a joining. This implies that O~(G~)=H(6) since H is a subgroup of G~ and 1' 1 a 

Haar measure on G~. Therefore G~cH, since GI is connected. This implies that for each 

h E Gl there is 1] fi G2 with (h, 1~)6 A. Applying the same argument to GE we get that for 

each 1] E G2 there is h 6 G1 with (h, fi)6A. Then (h, fiA2)cA, where 

and hence 

A 2 = A2(~t) = {z 6 G2: (e, z) 6 A }  

(e, laA21a-l)cA, l~A211 -j c A  2 

by the definition of A2. This proves that A~ is a normal subgroup of G2. Similarly, we 

show that AI is a normal subgroup of Gt. We have 

(h ,  IIA2) = ({h} •  NA.  

Define a(h)---llA2. We have a(u~ since u=(u(l),u(2)) 6A. Also a is a continu- 

ous, surjective homomorphism from G1 onto G2/A2. We have 

(7.5) 
~(F 1 h) = ~(F1) a ( h ) ,  h C G 1 

~(L)  = u A(~) 
y e t  1 
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where A(y)=r2ea(y)  for some e E G2 and A(~/I)=A(y2) if A(y0 NA(72)~=~. Thus 

oo 

~ ( r  l) = t9 a i 
i=1 

where Ai=A(yi) for some 7iEFI and AiNAj=f~ if i:r Also for y=F1 h we have 

r oe 

(7.6) ~(y) = ~(r 1 h) = t9 A i o ~ ( h )  = I.,I Ai(Y ). 
i=1 i = l  

Now let py be the probability measure on X2 such that 

At(C) = ( Aty(fy )dvl(y) 
dx I 

for every measurable CcX~ • where Cy= {z EXz: (y, z) E C), y E X1. We have 

(7.7) kty(A) = pyum(Au(2)) 

for all measurable AcX2 ,  since At is u=(u  ~), u~2))-invariant. Define 

f ( y )  = max {Aty(Ai(Y)): i= 1,2 .. . .  }. 

It follows from (7.7) that f i s  constant on orbits of u I1) and hencef(y)=fl>O for vl-almost 

every y ~X1, since the action of u ~1~ on (XI, v0 is ergodic. Now let 

C = {(y, z) EX: z EAi(y) with/zy(Ai(y)) = [3}. 

The set C is u-invariant and/~(C)>0. Therefore/~(C)= 1, since the action of u on (X, At) 

is ergodic. This implies that Aty(Ai(y))=Aty(Aj(y))=13 for all i , j=l ,  2 . . . .  and vj-almost 

every y EX~. This proves that there exists n~>l such that 

n 

~(y) = 13 Ai(y) 
i=1 

for all y EXI, Ai(y) NAj(y)=(~, i#:j, since the union in (7.6) is a disjoint union. We have 

n 

~(r I) = O A i 
i= 1 

where Ag=r2 ca(,//) for some Yi E r l ,  i= 1 . . . . .  n. This and (7.5) imply that for each y E F~ 

there is 7i such that 

(7.8) a(y) a(y~ -1) E (c-lF2 c) A 2 = ~ .  
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Let  ro=a(L) ~ F~. Express ion  (7.8) shows that for every a(y) E a ( r l )  there is a(?i) with 

a(y) a(y,71) E F o. Therefore  a ( r 0 =  {F o a(yi): i= 1 . . . . .  n}. Also F o a(yi)4=F o a(yj) if i* j ,  

since F2ea(Yi)e:r2ca(yi). This shows that n=lFo' ,a(r l)  [ and completes  the proof  of  the 

theorem. [] 
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