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1. Introduction

This paper represents part II in our three part series on Raghunathan’s measure
conjecture (see [R4] for part I).

More specifically, let G be a real Lie group (all groups in this paper are assumed to
be second countable), T a discrete subgroup of G and m: G—>T\G the projection
n(g)=T'g. The group G acts by right translations on I'\G, (x, g)—xg,xEI\G,g€G. Let
u be a Borel probability measure on I'\G. Define

() A(n) = A(G, T, u) = {g€G: the action of g preserves u}.

The set A(u) is a closed subgroup of G. The measure u is called algebraic if there exists
x=x(u) € G such that x(7(x) A(x))=1. In this case xA(u)x ' nT is a lattice in xA(x)x .

Definition 1. Let U be a subgroup of G. We say that the action of U on I'\G is
measure rigid if every ergodic U-invariant Borel probability measure on I'\G is algebra-
ic. The group U is called measure rigid in G if its action on I'\G is measure rigid for
every lattice 'cG. An element u € G is measure rigid if the group {u*: k€ Z} is measure
rigid. UcG and u €G are called strictly measure rigid if their action on I'\G is measure
rigid for every discrete subgroup I of G.

A subgroup U of G is called unipotent if for each u €U the map Ad, is a unipotent
automorphism of the Lie algebra of G.

RAGHUNATHAN’S MEASURE CONJECTURE. Every unipotent subgroup of a con-
nected Lie group G is measure rigid.

(") Partially supported by Guggenheim Foundation Fellowship and NSF Grant DMS-8701840.
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Various versions of this conjecture were stated in {D2] and [M]. It was shown in
[F1] and [P] that when G is nilpotent the conjecture is true. Also we showed in [R4] that
every unipotent subgroup of a solvable G is strictly measure rigid. As to semisimple G
it was shown in [F2] and [D1] that for G=SL(2, R) the conjecture is true. To the best of
my knowledge this is the only case of semisimple groups G for which the conjecture has
been settled, although there has been a number of papers [B], [D2], [EP], [F2], [R3],
[V] which established measure rigidity for certain unipotent subgroups of semisimple
G.

This paper represents the first part in our proof of the Raghunathan’s measure
conjecture for semisimple G. To state our results we need to introduce some notations
and definitions. Let G be a Lie group with the Lie algebra & and let g € G. Suppose that
G acts on I'\G with T being a discrete subgroup of G. We say that the g-orbit of
n(x) ET\G,xEG diverges when n— if there are e+y,EL,n=1,2,... such that
(xg")! ¥.(xg")—e, when n— o, Note that if I' is a lattice in G then a g-orbit diverges if
and only if it eventually leaves every compact subset of I'\G. Obviously, in our
definition of divergence the ‘‘if>’ part of this statement does not necessarily hold when
T is not a lattice. Define

D(g) = {x ET\G: the g-orbit of x diverges when n—x},

It is clear that if D(g)+@ for some g €G then I'\G is not compact.

We shall call an element u € & nilpotent if ad,: &—&, ad,(v)=[v, 1] is a nilpotent
linear transformation of &. An element g€® is called R-diagonalizable if ad, is
diagonalizable over R. Also we denote by Z(G) the center of G.

Definition 2. Let G be a Lie group with the Lie algebra & and T a discrete
subgroup of G.

(1) A nilpotent element © €& is called horocyclic if there is an R-diagonalizable
element g€® and a nilpotent element x*€® such that ad,(u)=g, ad(w)=—2u,
ad,(#*)=2u*. In this case we say that u is ‘‘horocyclic for g’ and “‘g is diagonal for u”’.

(2) An element u€G is called horocyclic if u=exp u for some horocyclic element
u€®.

(3) An element u €G is called I-horocyclic if u=zexp u for some horocyclic u €&
and some z€Z(G) with z€T for some kK€EZ. An element gE€G is diagonal for u if
g=exp g with g being diagonal for u.

Our terminology in Definition 2 is motivated by the fact that u, g and u* generate a
Lie subalgebra sh(u, g) of & isomorphic to sl(2,R). It is a fact (see [J]) that if G is a
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connected semisimple Lie group then all nontrivial elements of one-parameter unipo-
tent subgroups of G are horocyclic. Also (see [BM]) if I is a lattice in a semisimple G
which projects densely into the maximal compact factor of G (such T is called
compatible with G) then every noncentral unipotent element of G is I'-horocyclic. Note
that every u € Z(G) is strictly measure rigid by [R4, Corollary 1].

Let g be an R-diagonalizable element of &, g,=exppg, g=gi1, €, the eigenspace
of ad, with the eigenvalue 4, € (g)=E{€;,A<0} and E"=E (g)=exp €~ (g). It is clear
that if g is diagonal for u, then so is cge™! for every c¢€C(u)—the centralizer of
{exptu,t€R} in G. In fact, an element g €@ is diagonal for u if and only if g=cgc™! for
some c €EE(g) N C(u) (see Proposition 1.1 and Theorem 1.1). In this case €7 (g)=E"(g).
It is clear that D(g)=D(g) and xE™(g)c=D(g) whenever x € D(g).

We show below (Theorem 1.1) that if g is diagonal for a horocyclic element « € ©
then every eigenvalue of ad, is an integer. Write € 2=1{€;: A<-2}. Clearly u€€_,.
Now let A=A(u)=G be as in (*) and let 2(A) be the Lie algebra of A (£(A) might be
trivial). Define N(A)=2(A)N G2, N,(A)={u*exp N(A): kEZ}, where u=zexpu €A for
some zEZ(G).

THEOREM 1 (The Main Theorem). Let G be a Lie group and T a discrete subgroup
of G (not necessarily a lattice). Let u=zexpu,z€Z(G), u€® be a T-horocyclic element
of G and g €® a diagonal element for u, g,=exppg, g1=g. Let u be a Borel probability
measure on T\G such that w€ A=A(u) and the action of Ny(A) on (T\G, ) is ergodic.
Then either (1) u(D(g))=1 or (2) cg, ¢ ‘€A for some pER,cEE (g). In this case
u€L(A), eshu, g) ¢ 'cX(A) and u is algebraic; also xA=U{xA"%"i=0, ..., n} for some
integer n=0, where x=m(x(u)) and A% denotes the connected component of A contain-
ing e.

In our proof of Theorem 1 we assume that u is horocyclic. This contains no loss of
generality. Indeed, if u is T-horocyclic then (T'\G, u) is composed of a finite number of
ergodic components of N , and the action of u* on each of these components coincides
with the action of the horocyclic element exp ku.

COROLLARY 1. Let G be a semisimple Lie group. Then

(1) Theorem 1 holds for all nontrivial elements u of one-parameter unipotent
subgroups of G;

(2) if G is connected and T is a compatible lattice in G then Theorem 1 holds for all
noncentral unipotent elements of G.
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COROLLARY 2. Let G be a Lie group and T a uniform lattice in G. Let H be a
closed subgroup of G such that HNnT is a lattice in H. Suppose that H contains a I'-
horocyclic element of G. Then the Lie algebra $ of H is not trivial and sly(u, g)<9 for
some horocyclic u€® and a diagonal g€ S.

COROLLARY 3. Let G be a Lie group and T a uniform lattice in G. Then the action
of every T-horocyclic element of G on T\G is measure rigid. If, in addion, G is
connected, semisimple and T is compatible with G then the action of every unipotent
element of G on I\G is measure rigid.

Let G=SL(2,R) and TI,u,u=expu€A be as in Theorem 1. It is clear that if
u(D(g))>0 then g& A. This implies that either 2(A)={0} or L(A)={tu, tER}. This and
[R4, Corollary 3] give the following generalization of [D1].

COROLLARY 4. Let G=SL(2,R) and T,u,u=expu€A be as in Theorem 1. Sup-
pose that the action of u on (T\G, ) is ergodic. Then either T is a lattice and u is G-
invariant or u is supported on a closed orbit of u or of w=exptu,t€R. In particular,
every unipotent subgroup of G=SL(2,R) is strictly measure rigid.

Theorem 1 provides some important ergodic theoretic consequences. Namely, it
allows to classify up to an isomorphism all ergodic joinings of two horocyclic transla-
tions as well as factors of such translations. More specifically, let G;,i=1,2 be a Lie
group, T; a lattice in G,, v; a Ginvariant Borel probability measure on I'\G,=X,, u?€G,
u=uPxu?. A u-invariant Borel probability measure u on X=X, XX, is called a joining
of u¥ on (X;,v,) and u® on (X,,v,) if u(AXX,)=v,(A), u(X;XB)=v,(B) for all Borel
subsets AcX,,B<X,. The joining v,;Xv, will be called the trivial joining. We show
(Section 7) that if G, and G, are connected and a joining u is algebraic then the groups
A(u) and A,(u) defined by

A(w)={h€EG,;:(h,e)EA(1)}, A,(w)={hEG,: (e,h)EA(1)}
are closed normal subgroups of G, and G, respectively. Here A(u)cGXGy,
w(w) A(w)=1,x(u) EX=X,xX,. For c€EG, write I‘§={yA2(y):'y€c'1I‘2c} and for

Z€X, let

£,@) = {y€X,:(z,y) Ex(p) A(W)}.
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The set £,(z) is called the z-fiber of u.

THEOREM 2. Let G; be a connected Lie group, T; a lattice in G;and u? €G,i=1,2.
Let u be an ergodic algebraic joining of u" on (X,=I)\G,,v,) and u® on
(X,=T,\G,,v,). Then there is c€G, and a continuous surjective homomorphism
a: G > G, /A, (u) with kernel A\(w), a(@®)=u®Ay(1) such that

& h)={I,cBath):i=1,...,n}

for all hEG,, where the intersection To=a(L')NT5 is of finite index in o(Iy) and in
I3, n=|T\T,)| and a(T))={L,B;:i=1,...,n}.

Now suppose that u® € G, is T-horocyclic and g € G, is diagonal for u?,i=1,2. It
is clear that u=u”xu® is I', xI,-horocyclic in G,XG, and g=g"xg? is diagonal for u.
Also the g-orbit of x=(x,,x,) €X diverges in X when n— if and only if so do the
g"-orbit of x, and the g®-orbit of x, in X, and X, respectively. We have v(D(g")=0,
since g € A(v), i=1,2. This implies that if 4 is a joining of u and u® then u(D(g))=0.
This implies via Theorem 1 that all ergodic joinings of u® and u® are algebraic. This
gives the following

CoROLLARY 5 (The Joinings Theorem). (1) Let G; be a connected semisimple Lie
group, T; a lattice in G; and u? a unipotent element of G;,i=1,2. Let u be an ergodic
joining of u® and u®. Then u is algebraic and the fibers of u are given by Theorem 2.

(2) If in addition G; is simple, i=1,2 and u is nontrivial then every fiber of u is finite
and Gy and G, are locally isomorphic.

Corollary S generalizes our joinings theorem for G;=SL(2,R),i=1,2 obtained in
[R3]. Some restricted results of this nature were also obtained in [W2]. As in [R3,
Corollary 4] we obtain the following

CoroLrLARY 6 (The Rigidity Theorem). Let G; be a connected semisimple Lie
group, T; a lattice in G; containing no nontrivial normal subgroups of G; and u? a
unipotent element of G;, i=1,2. Suppose that the action of ' on (X,,v;) is ergodic and
there is a measure preserving map . (Xy,v;)—(Xa, v2) such that y(xu™)=y(x)u® for
vi-almost every x €X,. Then there is ¢c€G, and a surjective homomorphism a: Gi—>G,
such that a(T'))cc™'Ty¢ and YT h)=T,cah) for vi-almost every T1h€ X,. Also a is a
local isomorphism whenever  is finite to one or G, is simple and it is an isomorphism
whenever Y is one-to-one or G, is simple with trivial center.
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This corollary generalizes our rigidity theorem for SL(2,R) in [R1]. It was pre-
viously obtained in [W1], [W2] by methods from [R1] and [R3].

Let G,T,v and u€G be as above. A u-invariant measurable partition & of (I'\G, v)
is called a factor of u. We denote by &(x) the atom of & containing x EI\G=X. The
factor & is called algebraic if there is a surjective homomorphism a: G—G such that
&(xh)=&(x) a(h) for all h€EG and v-almost every x €X. It was shown in [R2,3] that if
G=SL(2,R) then every factor of a unipotent element of G is algebraic. In general,
algebraicity of factors of unipotent translations is rather an exception. Indeed we
showed in [R3] that if u is the n-fold cartesian product u;X... Xu, of unipotent elements
wE€G,=SLQ2,R), i=1,...,n acting ergodically on (I'\G,v") with G=G;X...XG,,
=T, x...xT,,v"=v,X...Xv, then every factor of this action has the form H\G/L,
where H is a closed subgroup of G, containing T and L is a closed group of affine maps
on H\G centralized by u. Recently, Witte [W3] showed using our main theorem from
[RS] that this is true for general G and u.

The ideas and techniques we use to prove Theorem 1 are totally different from the
methods used by other authors. In [R4] we introduced a dynamical property of
unipotent group actions, called the R-property, which plays a crucial role in our
analysis. It is a generalization of the property for unipotent flows which we introduced
in [R3] and [W1] (in {R3] it is called the H-property and in [W1] the Ratner property).
Also we make an essential use of the ergodic theory of nilpotent group actions
developed in [R4] (see also [GE]). All the results from [R4] used in this paper are stated
in Section 1, so that the paper can be read independently of [R4]. In Section 2 we
discuss some features of horocyclicity of u, used in the proof of the basic lemma in
Section 3. In Section 4 we discuss conclusion 1 of the main theorem and devote
Sections 5-7 to conclusion 2 of the theorem. In Sections 5-6 we shrink the support of u
to a homogeneous set and in Section 7 we show that u is, in fact, the Haar measure on
that set.

The results of this paper were announced in [R5].

I wish to thank Paul Chernoff for valuable discussions on various aspects of the
problem.

0. Notations

Throughout this paper unless otherwise stated G denotes a real second countable Lie
group, equipped with a left invariant Riemannian metric, & the Lie algebra of G, e the
identity element of G, Ad,(v)=v(a)=a"'va,ad,(v)=[v, b],v, bEG,a€G. If H=& then
exp H={expv:vEH}. If H (H) is a subalgebra of & (a subgroup of G) then IJ(H) (I(H))
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denotes the normalizer of § (of H) in & (in G). Also g denotes an R-diagonalizable
element of &, g(r)=exp1g, g(1)=g, €, the eigenspace of ad, with the eigenvalue 4,

i, - A A - -
@AZ—' 2 @l’ @ —z@l’ E}_?—exp@)j, E —exp@

1
A=i=i, A<0

P, the projection onto €&; induced by the direct sum decomposition &=X;&;,
x(w)=max{4: p;(v)*0} if v=+0. Also u denotes a horocyclic element for g, if such an
element exists, ¥ € E_,,u(D=exptu, tER,u=u(l) and u* the element in &, for which
[u, u*]=g. A triple (X, d, ) will mean that X is a metric space with the metric d and a
Borel probability measure 4. We shall always assume that when G acts on a measure
space (X, u) then (X, ) is a standard Borel space and the action map (x, g)—xg,x€EX,
g€ G is Borel measurable.

1. Auxiliary results

We begin with the study of eigenspaces of ad, with g being an R-diagonalizable element
of &.

ProrosiTioN 1.1. A vector wE€® has the form cge™! for some ¢cEE™ if and only if
w=g+v for some VEE™,

Proof. If w=cge™" for some cEE™ then

w =g+2 adi(g)li'=g+v, c=expc,c€EE”

i=1

and vEE~. Now let w=g+v for some vEE~. We have expw=g-b for some bEE".
Define

(L1 c,=]Je* 'g9=b"1g b 'g)...e"b g EE".
k=0

It follows from the definition of E~ that

lime,=c€EE"

n—o

exists. We have
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cge™' = lim <[ (g "b“g")] [H(g'("“k’bg""‘)] )
noe 0 k=0
=glim ( (8" "b"g")) - (H(g“"”‘)bg”“")) =gb=expw.
"% Nk=1 k=0

Also it follows from (1.1) that

—

:J

(1.2)

~
|

(1.3) c= lim [exp(—nw)exp ngl.

n—x

This and (1.2) show that
exp(w/k) = e(k) exp(g/k) ¢~ '(k) = exp(c(k) (g/k) ¢~ '(k))
where k€EZ" and

c(k) = lim [exp(—nw/k) exp(ng/k)] = ¢

n—ow

by (1.3). Thus exp(w/k)=exp(c(g/k)c™") for all k=1,2, ... . This implies that w=cge™'. O

PRrOPOSITION 1.2, Let A be a closed Lie subgroup of G (not necessarily connected)
with the Lie algebra %(A). Suppose that cge™ €A for some c€EE™. Then

(1) vEX(A) whenever vEE ™, expvEA;

(2) ep,, (V)e™ € (A) whenever vE KA.

Proof. We have cg"c™!

=g"c,EA, where
(1.4) c,=(g"cgVc'5e!, now

since c€EE",
(1) We have c,'g"(expv)gc L, =€Xp Ad (v)EA and exp Ad (v)—)e n—v by
(1.4), since v€ €. This implies that Ad (v) E (A) for all n=n, and hence vE L(A).
(2) We have v=v,+v’ where l—x(v) v,l—pl(v) and y(v")<A. Also

Adg,zc = c;'(g”"(vﬁ-v’) ghe,= c;l(e’l"vﬁ-v”) c, EX(A)

n=1,2,..., where [jv"||<e"||v’|| for some a<Aa. This implies that

Jlim (c; (v, +e ") e,) = cv, ¢ EQ(A)

by (1.4), where |le™*"v"||<e®||v’||—0, n—. This completes the proof. O
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ProPOSITION 1.3. Let A be as above. Suppose that expv€EA for some vEE™.
Then v normalizes X(A).

Proof. We have Ad,,, LR(A)=2(A) and y([w, v])<x(w) for all w €S with [w, v]+0.
Let

(w): 0% wELA)} = {)1, - Xn}

where y;<y,<...<y,. Using induction on k=1, ..., n we shall show that [w, v] € (A) for
every 04w € 2(A) with y(w)=yx,. Indeed, let 0w € X(A), x(w)=y;. We have

Adexpv(w) = w+[u), v]+w, = w+w0 € B(A)

where y(w")<x([w, v])<y(w)=y, if w'=0. This implies that wy=[w, v]+w’' € X(A) and
hence wy=0 since otherwise we would have y(wy)<y(w)=y;. This implies that w'=0
and [w, v]=0 since y(w")<x({w, v]) if w’+0. This proves that [w, v] € X(A). Now assume
that [z, v] €R(A) for all 0%z €YA) with y(z)<y; and let 0F+wER(A), y(W)=yx;4,. If
{w, v]=0 we are done. Otherwise we have

m(v)
Ad,,,, W) = w+ Y, c,adkw) € YA)
k=1
where ¢,=1/k! and m(v)=max{k>0: ad)(w)+0}. This implies that

miv)

wy = kZI c,adkw) € R(A).

Also y(wy)<y(w)=y,,,- Therefore
mw)—p
(1.5) w,=adwy) = >, c;ad’"(w) € LA)
i=1
for all p>0. In particular, w,,,_,=c, ad"”(w) € 2(A) and hence ad“(w) € 2(A). There-
fore adﬁ(w) € (A) for all k=2 by (1.5). This implies that ad,(w) € 2(A) since w, € (A).
This completes the proof. (W

Now assume that g is diagonal for a horocyclic element u, g=[u, u*], u* €E,,
u€€_,. Define

€, = (vEC,: [v,u]1=0}, €,={vEG, [v,u]=0}

(1.6) . .
o={AC,*{0)), o={iC, +{0}).
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THEOREM 1.1. Suppose that g is diagonal for a horocyclic element u. Then

(1) every eigenvalue of ad, is an integer;

(2) If 4 is an eigenvalue of ad, then so is —A;

3) ad;f(w)=i=0 Sfor every 0w €€, with A<0; adﬁ(w)#O for every 0w €€, with
A>0;

(4) A=0 for all A€E® and A<0 for all A€Ew. Also adﬁ(@?%l)=@:‘,1 for all A€W and
ad;X€)=C_, for all 1€ a;

(5) B=1{ad“€,): A €, Osk<A} =T {ad".(€,): 4 € w, 0sk<—A)};

6) If €={v,, ..., U,},0%v;= ad’,j"(w,-), k=0, w€ @Ali, AL, i%j then € is linearly inde-
pendent.

Proof. This theorem is well known (see, for instance, [H, pp. 31-34]). The proof
we give is similar to the proof of an analogous statement for roots of semisimple Lie
algebras (see [J]). Let 0+v € €, for some A ER. We claim that for each k=1,2, ...

(1.7) [adk), u*] = a,_, ad*"!(v)
where
(1.8 o= (k+1D)(A=K) = o, +A—2k, a,=A.

We shall prove (1.7) by induction on k. Let k=1. We have
[ad,(v), u*] = [v, [u, w*]1+[[v, «*], ul = [v, g = Av = ayv.
Now let (1.7) hold for k. Consider
[adi (W), u*] = [adi), [u, u*]]+[[adiw), u*], u]
= (A—2k)ad*(v)+q,_, ad“(v) = a, adk ().

This proves our claim. Now let m=m(v)=0 be the largest integer for which ad'(v)+0
and let 2(v) be the subspace of & spanned by {ad‘(v):0k=m}. The space L(v) is
invariant under ad, and ad . and hence under ad,, since g=[u, u*]. We have

0="Tr(ad,) on Lw)= Y,A-2k) = (m+1) A—m).

k=0

This implies that A=m and shows that A is a nonnegative integer when A€ . Hence
€,;={0} for 1<0.
Now we claim that there exists no w€€,,, with [w,u]=v. Indeed, suppose
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on the contrary that such w exists. Let n=n(w)=0 be the largest integer for which
v=ad,.(w)#+0. We have 0€E,,, . ,,. We claim that

(1.9) [adiu(w), u] = B, adls ' (w)

for all k=1,...,n and some B;=0 if n=1. In order to prove (1.9) one should repeat the
argument in the proof of (1.7), using the relation [v, ¥*]=0. We have m(0)=A+2(n+1)
and therefore

(1.10) adX(@) +0

for all 0<<k<A+2(n+1) by the definition of m(¢). This and (1.9) show that v=rad;‘+‘(0)
for some r=#0. This and (1.10) imply that

ad*'(v) = ad;*'(v) # 0

which contradicts the definition of m(v). This proves our claim. Using the symmetry
between u* and u we prove in the same way that A< for all 1€ & and

(1.11) there exists no w€® with 0+ [w, u*] €C,, 1€ &.

Also our argument shows that adfl((@ /1)=@3—  forall LEd and ad;f((é ,1)=@_,1 for all 1€ &.
This proves (4).
For vE€EE;,0< A€ set By(v)={tv:tER} and define

B,v)={weE€,_,,: [w,u*]€B,_(v)}

n=1,2,.... It follows from (1.8) that a;=%0 for all k=1,...,A—1. This and (1.11) imply
that

B,w)={0} for n>4
(1.12) .

B,0) = ad’@)+ >, >, adkE,_,), n=1,...,A.
i=1 k=0

Now let wE€E;,AER and [w, u*]+0. Let n=n(w)>0 be the largest integer for which
v=ad].(w)*0. We have v € ¢ 1+2,a0d A+2n is an integer. This implies that 4 is an integer
and proves (1). Also w€%B,(v). This and (1.12) prove the first identity in (5). Also
n<A+2n by (1.12) and hence n=—A. This implies that adj’(w)+0 if <0 and
ad;f(w) € €_,. This improves (2) and (3) for 1<0. The proofs of (2) and (3) for A>0 and
of the second identity in (5) are similar.
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Now let us prove (6). We can assume that v; €&, for some AER and all i=1,...,n.
Suppose on the contrary that v=17 a,v,=0 for some a;€R and A;=max{i;: a;+0}>0
if n>1. Then k;=(4;—A)/2=max{k;: a;+0} and therefore adI;f;(v)= ad';f;(ajvj)#:O by (1.7).
This contradicts v=0 and proves (6). O

We shall use in this paper the ideas and techniques developed in [R4]. Let us state
the results from [R4] needed for our proofs.

Let 9t be a subspace of & and N+ a subspace of & complementary to 9. Let py
and p, denote the projection onto N and N* respectively. For xEG,h€EG let
x(h)=Ady(x).

ProrositioN 1.4 [R4, Proposition 1.5]. Let x€ENL,yEN and for n€EZ*,
k=0,1,...,n let ho(n)=e,hk(n)=exp[pm(x(h,:_1,(n)))/n]-hk_l(n) exp(y/n). Assume that
|lx(h; '(n))||<<C for all n€EZ*,k=0,1,...,n and some C>0. Then

n—1
exp(x+y) = lim [H exp(p , (x(h; L(n)))/n) -hf,")]

=] i=0

n,~1
(1.13) = l: lim (H exp(PJ.(x(hi_l(”p)))/nP)>:|

p=® N\ i=0

0
X [ lim ( T exn pm(x(hi"l(np)))/np))] expy

n —w . —
P i=n, 1

where {n,:p=1,2,...} is a subsequence of {1,2,...}.

We will also need the following fact, which can be found in [J]. Namely, for
all sufficiently small x, y €E® one has

n=3

(1.14) exXpxexpy = exp (x+y+[x, y]/2+z clx, )’)>

where each c,(x, y) is a linear combination with universal coefficients of the commuta-
tors of the form [z, [z, [..., [2Zu—15 2] ...}]] with z;€ {x, y},i=1, ..., n and the series in
(1.14) is norm absolutely convergent.

Now let b be a nilpotent element of &, it a subalgebra of &, normalized by b and
N+ the orthogonal complement of N in .

Note 1.1. We shall often use in this paper orthogonal complements of subspaces of
. In fact, arbitrary complements would suffice, but we take orthogonal complements
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for convenience. Also we can always redefine the Riemannian metric on & in such a

way that the arbitrary complements occurring in the argument would be orthogonal in
this metric.

Define =N, Ay =N+ and

(1.15) A, ={veEU,_;adjwEN}, U =6

where 2 denotes the orthogonal complement of %, in %> ,n=1,2,.... Note that
some of the 2, might be trivial. We have %l-Z’_,?I for some r=r(b)EZ*. For
VvEN', tER write b(f)=expth and v=L|_,v, v,€U, i=1,...,r. We have

v(b(¢) = Ady(v) = ZZ ;adi(v)

11k0

= vy(b, )+0(b, +v'(b, 1)

where
vy(b, 1) = zlkZ—ad’,j(v)GER

(1.16) (b, f) = 2 i adi"(v) = 2} o4b, 1)
v'(b, 1) = 22——ad"(v)

i=2 k=0

Prorosition 1.5 [R4, Corollary 3.1]. There are ty(b)=ty(b, N)>2, O(b)=0(b, N)>
r(b) such that if max{||p, (v(b(s)))||: 0ss<t}<0 for some t=1t4(b), >0 then

lladi@)|| < Q) 0/£~" forall i=2,...,r; 0<k<i=2
(1.17) [lo'®, s)||< Q) OIt forall 0<s<t
lo—v,{|< Q(b) 1.

ProrosiTioN 1.6 [R4, Proof of Lemma 3.2]. Given 0<c<1 there are tyc, b)=
toc, b, J)>1 and 0<wlc, b)=w(c, b, W)<1 such that if max{||p, (v(b(s)))||:0<s<t}=0
for some t=ty(c, b), 0>0 and vEN* then here are 0=<sy<t and j€{1,...,r} such that

w(c, b) o< |p, (b)) <6
”p_L(v(b(so)))_Pl(ﬁj(b) so))” = Cnpi(ﬁj(b; so))“

16—908283 Acta Mathematica 165. Imprimé le 8 novembre 1990
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Now assume that % consists of nilpotent elements of & and N=exp I is simply
connected. Let B={by, ..., b,} be a basis in I and for v € N let a(v) be the b-coordinate
of v. The basis B is called triangular [R4, Definition 2.1] if axlb;, b1=0 for all k<
max{i,j},i,j€{1,...,q}. The basis B is called regular if it is a permutation of a
triangular basis. All bases in this paper are assumed to be regular. Let ¢: R?—>N be
defined by

@t} ..., t)= expt bexpt,b,...expt b,.

The map ¢ is a diffeomorphism from R? onto N and 1(A)=m(¢ '(A)), AcN is a Haar
measure on N [R4, Proposition 2.1], where m denotes a Lebesgue measure on R?and A
a Borel subset of N. For s,21,i=1, ..., q define

Fp(sp, oy s) ={@lt), ..., )|t <s,i=1,..., q}.

The sequence Fg(sy, s §g), min;s;—o0 is called B-regular [R4, Definition 2.2} if s;=
00i(s) for some parameter 0>0 and some functions 0<o(s) } ©, s— o0 with

(1.18) o(s)afs)<aos) foral s=1

whenever a,([b;, b))*0,i,j,k€{1,...,q)}.
Henceforth the symbol F,(s) or Fg(s) will mean a B-regular sequence Fg(sy, ..., s,)
with s;=pa(s),i=1,..., q for some functions o(s) satisfying (1.18). Define

(1.19) @, (s) = {vEN:|a(v)| <ofs),i=1,..., q}.

It follows from (1.14) and (1.18) that there is 0<ge<<0.1 such that if 0<p<g, then
(1.20) hF,(s) c Fy,(s) forall hEF,(s), s=1

(1.21) expuv€ F(s) = v € D,,(s), vE€ CDg(s) = expvEF,(s).

Define 7(s)=min{ga{s):i=1,...,q} and for vE® let

B, s) = max{||p.(v(h))||: hEF(s)}

u(h)=Ady(v). Also let J(N) denote the normalizier of N in &, NF=IJ(M) NN+ and pj the
projection onto Ny.

Prorosition 1.7 (The R-property [R4, Theorem 3.11). There exists te=ty(B)>1,
L=L(B)>1,0<n=n(B)<1 such that if vE R*,7(t)>1y and B(v, H<O for some 6>0 then
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llp  (v(h)) —pi(wM))|| < LO/(z)
Sor all hEF (1) and

lIp . (v(hp)—p , (v(h)|| < €6

for allh€EWGF,, (1), all hyEF,(t) and all 0<e<l.

neQ

A sequence F,(s) is said to be consistent with & if there is a constant Q=0(B, 0)>1
such that

pa(v(h)) € @ 4,4(1)
for all h€F (¢) and all 0<<sa<p, whenever (v, )<0,vE G, ||jv||<8, 1(t)=t(B).

Prorosition 1.8 [R4, Lemma 3.3]. Suppose that ¥,(s) is consistent with ®.
Then there is C=C(B,0)=10LQ/m such that if B(v,)<0 for some vEGS, ||v||<8,
0<6<0.1C™ o, ©()=max{ty, C"'0}=1(6) then

(1.22) exp v(h) = exp(pi(v(h))+r(v, h)+&(, h))-h = exp(w(v, b)) h
for all hNEF (1), where h€ F (1) and
rw,WENL, [nv, W) <CO, ew, WERNE, |le(w, b)]| < COM).

Now let Fy(s) be consistent with & and let S(v, <6 for some vE®, |v||<6,
(H=1(0),0<6<0.1C""o. Let ¢()=9¢(v, - ): F,(t1)—(expv) N be defined by

(1.23) @) =hexpw(v, h)=(expv)-h-(h)™!
where w(v, h) and h are as in (1.22).

ProrosiTioN 1.9 [R4, Corollary 3.5]. Let ho,hoh€F,(1) and hEF(1) for some
0<0<p. Then

(1.24) @(hy h) = @(hg) hy(hy, h)
where y (hy, h) EFcg5()=F, 15(0).

The following two results are concerned with ergodic actions of N. Let 4 denote a
Haar measure on N.
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ProrosiTioN 1.10 [R4, Theorem 2.1]. Let N act on a probability space (X, u) with
u being N-invariant. Suppose that the action of N is ergodic. Then given AcX,
wA)>1—a,0<a<l1 and a regular sequence Fy(s) in N there exists Q(A)=X, u(Q(A))=1
such that if x€ Q(A) then

liminf[A(A N ng(s))//l(Fg(s))] =1-B(a)

s—>®

for some 0<f(a)—0, when a—0, where A(D) for DcxFy(s) is defined to be
A{hEF,(s): xh€ D}.

Now let G act on a metric space (X, d, u) with u being a Borel probability measure
on (X,d). Let

A =A(G, X, u) = {g € G: the action of g preserves u}.

We say that the action of G on (X, d) is uniform if given £>0 there is c(¢)>0 such that
d(xg,, xg,)<e for all x€X whenever dg(g;,g)<c(e),g,8.€G. Let I(N) denote the
normalizer of N in G.

ProrositioN 1.11 [R4, Theorem 2.2]. Let G act uniformly by homeomorphisms on
(X, d, u) with u being N-invariant. Suppose that the action of N is ergodic. Then given
e>0 and a nonempty compact subset KcI(N)—A there exist a compact subset
Y=Y(e, K)cX with y(Y)>1-—¢ and §=05(¢, Y)>0 such that d(Y, Yk)>6 for all KEK.

Note 1.2 [R4, Notes 2.3 and 3.2]. Let § be a simply connected subalgebra of &
spanned by Jt and a nilpotent element « € &, normalizing 0. Let Bo={u, by, ..., b,} be a
regular basis in © with B={b,,...,b,} being a regular basis in . Let u=zexpu,
Z2€Z(G),u* ¢ N=exp N, k€Z and N,={u*N:k€Z}. For a Borel subset AcN, define
A(A)=Z,c, (A NU*N), where for Dcu*N we define A(D)=A(u™*D) with A being a Haar
measure on N. Then A, is a Haar measure on N,. Define

F(n;s,, ..., sq)={u"FB(s1, ceey sq): —n<ksn}

and call the sequence F(n;s,, ..., s,) regular when min/{n, s;} — if Fg(sy, ..., sq)=Fg(s)
is regular, n=gn(s), n(s) 1 %, s—» and n(s) os)<o,(s), s=1 whenever o(lu, b;])+0,
i,k€{1,...,q} (see (1.17)). Propositions 1.8-1.11 hold also with N, in place of N.
One should only substitute A by 4, and F,(s) by the regular sequence F(n;s, ..., s,) just
described.
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ProrositioN 1.12 [R4, Theorem 5]. Let G act on a metric space (X, d, p) with u
being N-invariant. Suppose that g"hg™"—e, n—® for all hEN and some g€ A and the
action of N is ergodic. Then the action of g is mixing.

Finally we include the following simple fact used in the proof of the main theorem.

ProrositioN 1.13. Let H be a Lie group with a Haar measure A acting on a
probability space (X,u) with u being H-invariant. Then given AcX,u(A)=1 and
FcH, MF)>0 there is X(A, F)cX, w(X(A, F))=1 such that if x€EX(A, F) then xh € A for A-
almost every h€F.

Proof. It suffices to assume that A(F)<. Let f denote the characteristic function
of A. We have

ff(Xh)du=ff(x)du=l
X X

for all h€H. This implies that

f < f f(xh) d,u> dAh)/A(F) = f [( f fixh) d/l(h)) / l(F)):l du=1
F\Jx xL \Jr

and therefore [gf(xh) dA(h)/A(F)=1 for u-almost every x € X. This implies that for such x
we have f(xh) €F for A-almost every h€F, since 0<f(x)<1 for all x€X. This completes
the proof. O

2. The significance of horocyclicity

Throughout this section -we assume that G is a Lie group, ¢ an R-diagonalizable
element of &, u€® a horocyclic element for g, u(s)=expsu, s ER,u=u(1) and §,
k=0, t1,..., m the eigenspace of ad, with the eigenvalue k (see Theorem 1.1). Note
that some of the €, might be trivial. Write €*=E* k=0, %1,...,tm, € '=E". We
have

—a direct sum decomposition. Let p, denote the projection onto &, induced by this
decomposition.

We shall use the symmetry arising from horocyclicity of u to obtain the necessary
tools used in the proof of the basic lemma.
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Let @2 be a subalgebra of ® normalized by u. As above we denote by p, (v)
and pg(v) the projection of v€E® onto N+ and N respectively. Let

A=Aw)={veUL rad(WEN}, i=1,...,m+]
A =N, AL=N:, AL =G

be as in (1.15) for b=u, where ;| denotes the orthogonal complement of %,_,in A,
i=1,2,...,m+1 (see Note 1.1).

LEMMA 2.1. Let 0%v,€%U,,i=0,...,m+1. Then
@2.1) x(adi()) <2i-2k-2
for all k=0 with ad(v)=*0.

Proof. 1t follows from the definition of %; that

adX(v) =0
for all O0<k=<i—1,i=1,...,m+1. Let us show that
x(v)<2i-2
for all 1<si<m+1. This would imply (2.1), since y(u)=—2. Suppose on the contrary that
x(v)>2i-2
Then
x(ad"(v)) >0.
This implies that
ad'(v)*0
by Theorem 1.1, since u is horocyclic for g. Therefore
x(adf‘(v,.)) > -2
and

adi(v) ¢ N.

This contradicts the definition of ;. O
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It follows from [R4, Proposition 1.4] that N=exp ) is a simply connected unipotent
subgroup of G. Let B® be a maximal set of vectors in 9% such that y(b)=k for all b€ B®
and {pi(b): b€ BP} forms a linearly independent set in &, k=—2,...,—m. The set
B=U;2_ BY={b,,...,b} is aregular basis in N. Let F,(s), 0<0<0.1g, be the B-regular
sequence in N defined with

2.2) ofs)=s* if y(b)=-2k or —Qk+1), i=1,...,q k=1,...,m

and let ®,(s) be as in (1.19).
From now on we assume that u €t and u=b, €B.

Note 2.1. The argument below works for the case u ¢t as well. One should only
substitute N by N, (see Note 1.2) and F,(s) by the regular sequence in N, described in
Note 1.2,

LemMA 2.2. Let ty=ty(u) be as in Proposition 1.5 for b=u and let vE S, ||v||<8 for
some 0<6<1. Suppose that

max{|lp, W(s)))|:0ss<r} <6

Sfor some t=ty. Then

P, () = ', )+ . 2(v, 5)
Jj=1

2.3)
Pén(v(u(s))) € (DZQQ(S)

for all 0<s<t, where Q=Q(u) is as in (1.17) and
V(u, 5) EE NN, ||, 5)|| < 06
2w, o)l < 0O/, 0<y(z{v,9)<2j, j=1,...,m.
Proof. We have
v=Dp,(V)+py(v) = v, +vy
Pa(v(s)) = py(v, (u(s))) +vguls)).

It is clear that vy(u(s)) € @ (s), since ||vy|| < 6. This says that we can assume vE N*. We
have

p,(w@(s))=p, (0, s))+p (V' (u,s))
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where

m+1 i—1 m

+1
0(u, 5) = 2 (s predi @)= > 64w, s)

i=1

m+1 i=2 m+1 i=2
V' (u, 5) = 2 Z Is(— adi(v) = >, > ] (u.9)
i=2 k=0 i=2 k=0

for all 0=<s=<t by (1.16), where v; denotes the projection of v onto U;. It follows from
(1.17) and Lemma 2.1 that

x0Lu, ) =<0, i=1,..,m+1
x W] (u, $)) <2i-2k-2
ot e, )| < QOIE1, i=2,...,m+1, k=0,...,i—2

for all 0<s=. This implies that
P,y )= E z{v, s)
j=1

llzfv, )| < QOIF, x(zv,s) <2, j=1,....,m
for all 0<ss=<t. Also

x@) =<0, |V<Qo

where
v’ =0%u, s) =p, (0(u, 5)).
We have
|lps(v(a(s)))—vg(u, )| < Q6
where

vg(u, 5) = '"2 2 —Is;- ad‘(v)
k=i

i=1
by (1.16). It follows from Lemma 2.1 that

24 x(@dt(v)) < 2i-2k~2
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ifadX(v)+0. Also

k . .
% adk(v)|| < QM1 < QOst*!

for all 0<s<t by (1.17). This, (2.2) and (2.4) imply (2.3).

LeMMA 2.3. Suppose that vER* and

m
v= v°+2 z
j=1

where
VEE R, Wse lgllsvt, Z€EYnN*, =1
Then
p. (M) =fO, W+, z, ;
@.5) =

Pr(v) €D p, avie (D)
for all hEF (¢) where O>0 is a constant and
fw,h)=v"+0+E EC' NN+
wWeEE NN, EEEINNY, (W< Qo
2, €CYNNY, iz, (IS Oy, j=1,....m.
Proof. Recall that
v(h) = Ad,(v).

We have
v(h) = ')+, z,(h).
j=1

It is clear that

(2.6) v'(h) = '+ & +aj,

249
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where
EEEINNY, q€ Dy .o (0)
for some ;>0 since y(v%)<0. Now let us assume for simplicity that

h=exp(ot'b), bEBR

¥b)y=-21 or —Q+1), IEZ",

We have
mh) o m(h)
= ot Kooy —
g)—5= >, S -adf@)= > by,
k=1 " k=1
- _ 0
= 2 pk,j+pj/l,j+2 Pr;= E Prjtn 8ty
K<j K>j kl<j
where

P ;€ @2, e il < Q, oyl
for some Q,>0,k=1, ..., m(h), j=1,..., m and therefore

U:):,je €, “U?.JH < 0,0y

&, € E2nML, o € Py o, (0.

0
Uw‘)

This and (2.6) imply (2.5) if we set

o

1l
—

m
g}.: ‘51’-‘*'2 g;;,j’ v?.:p_J_(
=1

J

zh’}.=p_L<zj+ E pk,i)

i—ki=j

and note that

< 0,0y

pavm)—ap— >, a
j=1

for some Q;>0. This completes the proof.
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CoRroLLARY 2.1. Suppose that
2.7 max{|p, (v 0<s<ot} <6
for some vE®, ||v]|<6,0<0<1 and some t=ty/p. Then
p (M) =1"()+&,+z,
Po(v(h)) € Dy (1)
Sfor all WEF (1) and all 0sa<p, where
L) EECNNE,  |[v°h)|| < 08
ELEETINNY, Z, €NY, o/l < 00/t
and Q=Q(B, 0)>20Q/o™ is a constant.

Proof. We have using (2.7) and Lemma 2.2
v= v°+2 Zt+uy
Jj=1

where 1’ €GN, [[VY|<Q0, vy €N, [juyll<O and z,€ EYNN*, ||z]|<Q6/t/e’. This and
Lemma 2.3 imply the corollary. 0

Corollary 2.1 shows that F,(s) is consistent with &. This and Proposition 1.8 imply
the following

COROLLARY 2.2, There exists C=C(B, 0)=10L(B) O(B)/n(B) such that (1.22) holds
for Fo(s) and (1.24) holds for ¢ where @ is as in (1.23).

Now let § be a subalgebra of & =E"! and $* the orthogonal complement of £ in
®. Let B={b,,...,b,} be a regular basis in § and F,(s) be the B-regular sequence in
H=exp o defined with

2.8) a()=s"" i=1,...n

Let So(.@):S(@)ﬂ@o, ?sé(@)=£‘so(®)ﬂ@i. Note that ad,z,’"“(v)=0 for all bED, vEG.
Now let

2.9) max{|lp,.(6M): hEF, (1) <6
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for some r=t,(B)/o,0<6<1 and some 5=v+z € & with v € G, ||v||<6, ||z||<6/£™+'. Then
(2.10) P z)[| < 06/1,  po(0(h)) € P (t)
for some O=0(B)>1, all h€F,(f) and all 0<a<p. This implies that

@.11) llp,. (o) <26

for all h €F,(9), if 1o(B) is sufficiently large. Also p o () E E°n$* and €°is consistent
with Fg(s). We have using the R-property

g (@) ~py, o (0| < 2L(B) O/t
(2.12)

PG —p,,. o, CW)I| <3L(B) Ot

for all hEF‘Q(t). Using this, (2.10), (2.11) and Proposition 1.8 we get the following

ProPOSITION 2.1. There exists C=C(g, B)=10L(B) Q(B)n(B) such that if (2.9)
holds for some 0<0<0.1C g, r=max{t((B)0™',Cl60}=fy(0, §) and i=v+zE,vEE,
|lvll<, ||z]|<6/™*" then

2.13) - exp 0(h) = exp( pSol ( @(v(h))+r(v, h)+&(5, h))-h = (exp @@, h))h
for all hEF (1), where r(v,h)€ ILD), ||rv, h)||<CE, &, h) € D™, ||e@, h)||<CO/t,h€
F_‘ce(l‘)-

Now let (2.9) hold for some t=t(p, §) and let q'J:FQ(t)—-)(exp 0)H be defined by
@(h)=hexp &(7, h). Using Proposition 1.9 we obtain that

(2.14) @(hyh) = @(hy) -h-yi(hy, h)

for all hy, hyh €F (1), h€ F5(1), where 4i(hy, h) € Fy4(2).

3. The basic lemma

In this section we assume that &, g, g=expg and u are as in Section 2 and use the
notations of that section. Also we choose for convenience a Riemannian metric on & in
which the subspace €, k=0, 1, ..., =m are mutually orthogonal (see Note 1.1). Recall
that some of the &, might be trivial.
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We assume that G acts uniformly by homeomorphisms on a metric space (X, d)
with a Borel probability measure u. By [R4, Proposition 1.1] the group A=A(G, X, u) is
a closed Lie subgroup of G. We denote by £(A) the Lie algebra of A, which might be
trivial. Define

3.D) N=QANE2, H=LA)NE"

€ =E"!. We assume that u=expu € A. Then u normalizes 2(A), N and $ by Proposi-
tion 1.3.

We shall construct a special decomposition of & induced by £(A), which plays a
crucial role in the proof of the main theorem.

Let A=, ()={vEN*:ad,(v) EN} and let P=U;+N. It follows from Lemma 2.1
that B<=E’. Note that E,cRN* for all k>—2 by our choice of the Riemannian metric
on &.

We say that a set Q of vectors in & is a k-set, k=0, £1, ..., tm if x(v)=k, ||v||=1 for
all v€ Q and {p,(v): vE Q} is linearly independent in €,. For n €Z define

vin)=n/2 if nis even; v(n)=(n+1)2 if n is odd
and set v(v)=v(x(v)). It follows from Theorem 1.1 that if ¥(v)>0 then ad’”(v)#0and

x@d" @) =0 if y(v) is even
3.2
x@dPW)=-1 if x(v) is odd.

Let 5+ be the orthogonal complement of ¥, in N+ and let W®, k=1, ..., m be a maximal
k-set in LB such that

(3.3) ad’®(v) € L(A)

for all v€ W®, k=1, ..., m. Note that some (or all) of the W* might be empty.

Let =€"nR*. Let € denote the orthogonal complement in €, of the subspace
spanned by {py(w):w€ W®} if WP=+p and set €=, if W¥=3,k=1,2,...,m. Let
B be the subspace of N* spanned by & and €, k=1,...,m. It follows from the
definition of W® that

(3.4 ad’¥(v) ¢ (A)

for all 0+v €D, with y(v)>0. Also G=W+L,+P, where W is the subspace of R+
spanned by W%, k=1, ..., m.
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Now we shall construct by induction a sequence 8,, ..., 5, ., of subspaces of % by
the following procedure. Set

B, = {vEDY,:ad*(v) EN}

and assume that %8,, ..., B, have been constructed. For k=1,..., m let Y* be a maximal
k-set in B, and let ©,=E’nB,,. Note that for some (or all) k the set ¥ might be empty.
Let € be the orthogonal complement in &~ of the subspace of &{""" spanned by
{P):v€YP} if YP+@ and EP=Er Y if YW=0. Also let L), be the orthogonal
complement of D, in ¥),_, and B, the subspace spanned by € and D, k=1,...,m.
Define

B, = {(vER:ad " (v) EN}.

This completes our construction. Let

m+1 m+1

L= B, D= D=C"ng*
i=2 i=2

and let ) be the subspace of B spanned by Y=U"" U7, Y¥. We have
3.5) B=9+D, G=[W+BV+NP.
Next we shall decompose 3. We have H=. Let

SO =I(H)NB.

We have J(9)c=Io(D)=CE"nI(D)=IMN). Also J(H)=IJy() if uEN. Let I be the
orthogonal complement of 3(H) in B and let F=D+J. We have

(3.6) G =BVB+Y+F+3(9).

Now let u*€E, be such that [u,u*]=g and let &,=E, be spanned by
{p2(w), wE W}, We can assume without loss of generality that u* € GV if u*¢ &,.
Then u* €8, if u€N. In this case we assume that u* € Y P, Define

m+1

¥=uU U Y¥={y,...p}cY
=2 k>i—1

Y-¥={c,...,c}.
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It follows from the definition of W that if u* €& €, and « €N then u* €W (since in this
case u* € YPcW) and hence W+. In case u* ¢ €, and u ¢ N the set ¥ might or might
not be empty. Thus if u* & €, then

3.7 either ¥+ @ or u¢MN.

We shall show in subsequent sections that when G acts by right translations on
(X=T\G, u) and the action of N,= {u" expN: kEZ} is ergodic then the following holds.
If Y+=@ or u¢N then u(D(g))=1. Otherwise there is x€X such that u(xexp(LB+
J(9))=1. The following basic lemma makes a first step towards this goal. Namely, it
shows that there is a set AcX of positive yu-measure such that if x, y €A are sufficiently
close and y=xexp v for some o=w+y+f+i, wEW,y €Y, fEF, i €I(H) with ||w]|| small
then ||y|| and || f]| ought to be small. The order of magnitude is also important. In order
to state this lemma define

W=u wh= {wy, ..., wp}
k=1
(3.8)
BWa,t) = {we%: w= iaiwi, |a,-|$at_v(wf),i= 1,...,p}

i=1

where a>0 is small and r>1 is large. Also for v€® let w(v),y(v),f(v) denote the
projection of v onto 8, ¥ and F respectively. The set ¥ U(Y—W)={y1,..., ¥, C1, ..., Cr}
is a basis in §). Let c¢,(v) and y;(v) denote the c-coordinate and the y;-coordinate of y(v)
respectively, i=1,...,r;j=1,...,L

Lemma 3.1 (Basic). Suppose that the action of Ny on (X, d, 1) is ergodic. Then
there are constants 0<0O<1,0<a<1,C>1 with the following property. Given
0<0<@, >0 there are (g, 0)>1,0<y=y(¢, 0)<1 and a compact A=A(e, O)cX, u(A)>
1—¢ such that if x,y €A, y=xexpi, eXxp vexpi,, i}, i,€ (D), vES, |lis|, |li,]|, |lv|<y and
wv) EW(@b, 1) for some t=1t(¢, 0) then

cv) <COr™ i=1,..,r
le;

W|<coY, j=1,..,1
Y;
L f@)|| < Cor™?

for some B>0. (In fact, B can be taken to be 1/2(m+1).)
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To prove Lemma 3.1 we use Proposition 1.11 and the R-property for N, and H,,.
From now till the end of this section we assume that u €t and note that our argument
below works for the case u ¢ 9 as well. One should only substitute N by N, and F,(s) by
the regular sequence in N, described in Note 1.2. We begin with the study of the
decomposition (3.5).

LEMMA 3.2. If 00 €D, i=2,...,m+1 then
3.9 ad”™'(v) § LA).
Proof. We have
(3.10) ad™ ') ¢ N

for all 0s=v €, by the definition of ;. First let us prove (3.9) for 0%v € B; with x(v)<O0.
It follows from (3.10) that ad’,'(v)*0 and y(ad '(v))<—2(i—1)<-2, since i=2. This
implies that ad’ '(v)€ €2 and therefore ad’ '(v)§ &(A) by (3.10) and the definition
of 9.

Now let y(v)>0, 0v€®W, Then v(v)<i—1, since ad;(”)(v) ¢N by (3.4), but
ad’(v) € N by the definition of B;. If v(v)=i—1 we are done by (3.4). Let v(v)<i—2. Then
x(v)=<2(i—2) and therefore x(adf‘"(v))SZ(i —2)—2(i—1)=-2. This and (3.10) imply that
ad’ !(v) ¢ Q(A). This completes the proof. O

Henceforth p, (v) denotes the projection of v onto N*.

LeMMA 3.3, There exists 0<c=c(u, A)<0.1, 0<w=w(c, u)<1 and t=t(c, u)>1 such
that if vEB and

max{||p, wuGs))|:0<s<1} =6
Sfor some 0<0<1, t=t then there is 0<sy=s¢(c, 6, v, )<t such that
[P, (u(sp))|| = w8
P (w(u(sy))+r & L(A)
for all r€® with ||r||<10c||p  (v(ulso)))]|-
Proof. We shall use Proposition 1.6. Write

8,=adi"(B)
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i=2,...,m+1. We have using Lemma 3.2

3,02A) = {0}, p,(BINRA)={0}, i=2,..., m+L.
Let 0<c=c(u, A)<0.1 be so small that if w€ U™}'p (3, then
(3.11) w+ré¢ LA)

for all r€® with ||r]|<20cljw|]. Now let f=ty(c, u, ®)>1, 0<w=w(c, u, W)<1 be as in
Proposition 1.6 and let ¢=¢. It follows then from Proposition 1.6 that there is 0<so<t
and j€{2,...,m+1} such that

P, (s = wb
(3.12)

lip  ((als)—p @G, s)l| < cllp O fu, sp)]

where 04u, s) is proportional to ad{,“(vj) and v; denotes the projection of v onto B;. We
have p, (9(u, s)) € p ,(8)). This, (3.11) and (3.12) imply the lemma. O

It follows from the definition of 9 and $ that
A nEHNA) = {0}, (H*NE)INLA)={0}.

We shall assume that 0<c<0.1 in Lemma 3.3 is so small that if EERNE2,
E'E€EHTNE then

(3.13) E+ré& 2(A), E+r¢ER(A)

for all r, ' €® with ||r||<10c|(&||, ||7’||<10c]|&']|-

Now let B={by,...,b,} be a regular basis in 9,u=b, and F,(s) the B-regular
sequence in N=exp R defined in (2.2) with some fixed 0<p<0.1p,. Now we shall
specify the choice of 6. Let C=max{C(B,g),C(B, o)}, to=max{ty(B),t(B)},n=
min{7n(B),n(B)} (see Corollary 2.2, Proposition 2.1 and the R-property) where B is a

regular basis in © and Fo(s) the B-regular sequence in H=exp $ defined in (2.8). Let
0<6,<1 be so small that if vE®, v§ (A) and |jv||<26,, then expv & A. Let

(3.14) ©=0.01min{0,,ocwC?}, a=0.1cC”!
where ¢ and w are as in Lemma 3.3 and let 0<8<® be fixed. Define
0=0.1c6C™", 6,=wb, a(0)=ad.

17-908283 Acta Mathematica 165. Imprimé le 8 novembre 1990
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We shall denote by & the closure of the set
{vEIM): 0.1, < ||v|| <26, v+ré (A) for all r€® with ||r|| < c||v||}

and define K=exp §. The set K is a compact subset of I(N)—A, which might be empty.
Now let w €LW(a, ). Write v;=v(w;) and recall that v;=1 for all i=1, ...,p. We have

w(u(s)) = ﬁ‘, 2 —ad’ /(o w)

i=1 j= 0
v~ .
—iz—ad’(a w)+2—ad (a,w)
i=1 j= 0
+i Z i_;ad’,;(ai w,) = w'(s)+W(s)+wyls)
i=1 j=y+1J"

where wW(s) € X(A), wy(s) EN and

(3.15) lli(s)|| < Ca, |jw'(s)||<Cat™

for all O=s=r by (3.3), (3.8) and (1.17). We have (s) € 2(A) and y(i@(s))<0 by (3.2).
Therefore w(s) € I(N) and p, (W(s))=p3(i(s)), where p3 denotes the projection onto
~—As(3?) NMR*L. This and (3.15) imply that if w € W(a, 1) then

|| P (w(u(s)))—p3(wu(s))|| < Cat™
(3.16)
P3| < Ca(l+:7")

for all Oss<t.
For 0€® write =w+v+p, where wEW, vEYW, pEV (see (3.5)) and let

B(@, y=max{|jp  (G)||: REF,(®)}.

LEMMA 3.4. Given 0<6<0.1c8y, T>1 there exist t(0, T)>T and 0<y=y(u, d, T)<o
such that if 0E®, o=v+w+p, ||0||<y and

(3.17) weEW(a(0),n, B, =0
for some t=1(3, T) then there exists h,€F (1) such that

(3.18) exp o(h) = exp(k(©, h)+z(@, h))-h= exp (@, h)-h
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for allh€ENF , (1), where

nde

(3.19) REF (1), kG, WER, |0 h)||<46, z(@h)ER:.

Proof. Let 0<y<0.10 be so small that if 6 € ®, ||v||<y and B(5, t')=0y/2 for some
t'>1 then

(3.20) t' = max{T, 10t,imClod0,} = 5, T)

where ¢ is as in Lemma 3.3. Now let ||7]|<y and let (3.17) hold for some =#(6, T). In
particular, we have

max{||lp (0(u(s)|: 0<s <10} <86.

We have using (3.16)

p (©((s)) = p () +p, w(s))+p,(p)
(.21 P (w(s))—p3wu(s)))|| < Ca(@) o' <0.015

P53 w(u(s))|| <0.1ch,(1+0)

for all 0=s<pt. Suppose first that
(3.22) max{||p ws))|:0<s <ot} = 6.
By Lemma 3.3 there exists so€[#(6, T), ] such that
(3.22) llp s ]| =6y, P (vulsy))+r&LA)

for all r€® with ||r]|<10c]|p  (v(u(sy)))||. Write §=||p, (L(u(sy)))||. We have using the R-
property

llp L (©(u(s))—p3@uisy))|| < CH/to < 0.1
(3.24)

p3@((sy)) = p3vulsy))+p3wulsy))+p35(p).

This and (3.21) imply

[l (v(u(s))—p3 (vulsy)))|| < 0.36
(3.25)

|lp3 @(ulsy))—p3 vulsy))) —p5(wls)))|| <0.16.
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Therefore

(3.26) 0.99 < ||pivu(sy))|| < 1.16 <1.10

since 0=<0.1¢6,<0.16. We have using the R-property

(3.27) [|p3 @) —p3 (s < 66 <0.16

for all h€ u(s,) F,5,(0). Now wé use (1.22) and Corollary 2.2 to write
(3.28) exp o(h) = exp(p3(3(h))+r(@, h)+&@, h))-h

for all h€F,(¢), where

REF (D), r@,hEN, |Ir@ h)||<CH<0.1c0
(3.29)

@0, h)ENL, |le@, h)|| < COltg<0.10
by our choice of 8. Now set
k(8, h) = p3(v(u(sy))+p5wulsy))+r(@, h) € I(RN).
We have using (3.21), (3.26) and (3.29)
0.76,<0.76 < ||k(0, h)|| < 1.26 < 1.260
[| 3 (@(h))+ (5, h)—k(B, h)|| < 0.60

for all h€u(s) F,; (1) by (3.27). Finally, it follows from (3.21), (3.23) and (3.29) that

née

k@0, D) +ré¢ UA)

for all r€® with ||r||<c]||k(@, h)||. This shows that k(5, h) € R and (3.18), (3.19) hold for
all h€u(sy) F500- This proves our lemma for the case (3.22), if we set h,=u(so).
Now assume that

(3.30) max{||p, (GuGs))|:0<s< ot} <6.
Then there exists h, EF,(¢) such that

(3.31) llp,@(h)|| = 6.
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We have using Corollary 2.1 and the R-property

lp (@h)—p3(@h))|| < CO/to < 0.1
(3.32)
p () =v’(h)+§, +z,
where {[v°(h)||<C#=<0.1¢8, & ENN €2, ||zh,||$C0_/tQSO.16. This implies
0.90 <&, <1.16
lp5@Mh)—§, || <0.5¢6.
This gives via (3.13)
(3.33) p3(@h)+r & L(A)
for all r€® with ||r||<5c||p3(d(h,)||. As above we use the R-property to get
(3.34) | p3(@M)—p3(0h)|| < 66
for all h€h, F, (7). Now set for h€h,F,;,(¢)
k(@, h) = p5(0(h,))+ (0, h) € I(N)
where r(0, h) is as in (3.28). We have using (3.31), (3.32), (3.29) and (3.34)
0.76 < ||k(3, h)|| < 1.36
|| p3 @) +r(0, W) —k(, h)|| < 0.36

for all h€h F_, (r). Finally, it follows from (3.29) and (3.33) that

t * ndg
k@, h)+r¢ 2AA)
for all r€® with ||r||<c||k(@, h)||. This shows that k(7, h) €& and (3.18), (3.19) hold for
every h€h,F,, (r). This completes the proof. O

Now we shall prove a similar lemma for H, using (3.13) and Proposition 2.1. Let B
and F,(s) be as in Proposition 2.1. For 6€ & write

B, s)= max{||p,.(oh)]:h€ F,(9)}.
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LEMMA 3.5. For a given 0<8<0.1c8, T>1 let 15, T) be as in (3.19). Suppose that
B, =0 for some t=1(d, T) and some HEG, =z+v, vEC", |[v||<d with |jz||<6/F".
Then there exists h, EF,(t) such that

(3.39) exp(i(h)) = exp(k(0, h)+z(3, h)) -h=expa(®, h)-h

for all hEN,F , (1), where kD, h) EK, h€ F, (1), 25, h) EN*, ||z(D, h)||<40.

née

Proof. Let h,EF,(r) be such that
We have using (2.12)

1P (0B ) =P, o (W) < CO/t <O 16
(3.37)

||P@L(5(h;))—17bx(v(hz))” = ||pr(z(h,))||S Co/t<0.19.
It is clear that

P b)) =p, . ()+§,

‘SDL
for some g,,,e E n$H*t, since v€EL. This implies that

1P (B(h)—&, || < 6+0.16 <0.2¢6.

This implies via (3.13) and (3.37) that

(3.38) (v(h)+r & X(A)

Py
for all r€® with ||r||<d4c||py.  (h)]|. We have using Proposition 2.1
3¢

(3.39) exp v(h) = exp(pxé(@(v(h))-*-r(v, h)+¢(, h))-h

for all h€F (1), where h€ Fgy(2), r(v, h) € I3 (D)=I(N), ||r(v, h)||<C#<0.1ch, @, h) €
9™, ||e(0, h)||<CO/to=<0.16. We have using the R-property and the definition of #(3, T)

(3.40) 123 @) =P ., W) < 200

for all h€h,F, ; (). Define

nde

k(0. h)= psé(@(v(h,))+r(v, h) € I(N).
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We have using (3.38)
kD, h)+r ¢ L2(A)
for all r€® with ||r||<c||k(v, h)]|. This, (3.36) and (3.37) say that k(5, h) E&®. Also

1151 6,0 () +r(v, W) —k(B, )|} < 206

for all hE h, F,;,(r) by (3.40). This and (3.39) complete the proof of the lemma. O
CoroLLARY 3.1. If B+J+{0} then S+D.

Proof. Let 0%v+j €L +J. If v=+0 then ||p, (v(u(s)))||—, when s—. Then (3.17)
holds for some r=1(d, T) and o=v, if ||v| is sufficiently small. If v=0 then j+0 and
JE3(9), jEE® and hence §(j, t)—>, when t—w. Then 3(j, /)=6 for some t=1(9, T) if
|7l is sufficiently small. It follows then from (3.18) and (3.35) that § 3. O

Now let x = expv for some vEN* (some vE€DH™). If |ju|| is sufficiently small then
there is a neighborhood Oy(e)eN (Oy(e)=H) and a diffeomorphism ¢: On(e)—xN
(¢: Ou(e)—xH) such that @(y)=yexpuv, (¢(z)=zexps,) for every yEOn(e) (z€Ogle))
and some v, EN* (7,€H*). We choose © in (3.14) so small that if ||v||<5© then

[[A(B)/A(@(B))]—1] <0.01
(3.41)
[[A(AYA(@(A)]—1]<0.01

for every Borel subset BcOy(e) (AcOgy(e)), where A(p(B)) (A(@(A))) is defined to be
Ax"'p(B)) (Ax"'@(A))) with A being a Haar measure on N (on H).
Now let v€®, expv=x and B(v,nN<6 (B(v,)<6O) for some t=:(,T). Let
@:F,()—>xN (¢: I_*},(t)—>xH) be as in Corollary 2.2 (as in (2.14)). Namely,
@) =hexpw(, h)=xh(h™"), hEF,®)
@(h)=hexpd(, h)=xh(h’)"', hEF, 1)

where w(v, h) and @(v, h) are as in (3.18), (3.35) and

hEF () Fo,,(8), h EF (0 Fo']g(t).
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This, (1.24), (2.14) and Corollary 2.2 imply that @, ¢ are injective and

P(F(0) cxFy (1), @F (1) = xFy (1)
(3.42)

F (1) = (M) F, (1), @hF, (1)) < @h) F,, (1)

for all hEF,(1) (WEF (1)), all 0<a<1 with hF(1)<F (1) (hF,()cF, (). It follows also
from (3.41) (via the fact that the Haar measure A and the Riemannian metric on G are
left invariant) that

[[A(B)/A(@(B))]—1| =< 0.01
(3.43)
[[AA)/A(@(AN]-1]<0.01

for all Borel subsets B<F(7) (Ach(t)), where A(p(B)) and A(@(A)) are as above. These
relations will be used in the proof of Lemma 3.6 below. To state this lemma let us go
back to the decomposition =+ LB+ J+I (). For 7 €® write s=w+v+j+i and for
vEY write v=X""'v , v, €B,.

n=2 “n>

LEMMA 3.6. Suppose that the action of N on (X, d, u) is ergodic. Then given €>0
there are He)>1, 0<y=y(e)<1 and a compact A=A(e)cX,u(A)>1—¢ such that if
x,yEA,y=xexpi,exp Uexpi, for some i,,i,€I(D), 0ESG, ||i|l, ||5,ll, ||0]|<y, o=w+v+
J+iand wEB(a(B), 1) for some t=t(¢) then

lill < corV¥m+D y || < COo"!
forall n=2,...,m+1.

Proof. If B+J={0} then the lemma is obvious. Suppose that B+J+{0}. Then
K+@ by Corollary 3.1. Recall that KcI(N)—A.
Let 0<r<1 and 0<Z(a)<1 for 0<a<1 be defined by

r = min {A(F (5))/A(Fy,(5)), A ()/AF,,(5))
£(@) = min {AF, oy (S VA, (), A, o0 ()/AE ()}

Note that r and &(a) do not depend on ¢ and s by [R4, Proposition 2.1].

Let 0<a;<1 be so small that 108(a;)<0.01r, where 0<f(a)<a is as in Proposition
1.10. Let Y=Y(a,,K)cX, u(Y)>1-—a, and d(a,, Y)>0 be as in Proposition 1.11. We
have
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(3.44) d(Y, Yk) > 8(a,, Y)

for all KEK.

Let 0<d=4(a;, Y)<1 be so small that if dg(e, z)<d then d(x, xz)<0.1d(a,, ¥) for all
x€X. Let 6=0.1 min{4, cfy} where ¢ and 6, are as in (3.14). Let 0<a,<0.01Z(5) be so
small that 108(a;)<0.01r5(6). By Proposition 1.10 there is A;,cX,u(4;)>1—a, and
7,>1 such that if x€A,, >7, then

MY O XF, 5, o OVA(F,5,0(0) > 1—Bay)
ACY 0 xF, 5 (OV/A(F, 5, () > 1—B(a,)
(3.45) _ _
AY NXF, 5, (DVA(E,5,0(0) > 1—-B(ay)

MY NxF, 5, (OVAF,5,(8) > 1—B(a;) > 1-0.001r.

Using again Proposition 1.10 we get a compact AcX, u(A)>1-¢ and 1,>1 such that if
x€A, t>1, then

MA, an@(t))/l(FQ(t)) > 1-f(ay) > 1-0.001r(0)
AN szg(t))M(Fzg(t)) >1-8(ay)
(3.46) 3 )
AA, anQ(t))//l(Fg(t)) >1-0B(a,).
AAN szg(t))//l(Fzg(t)) >1-8(a,).
Define

T=T(e) =max{r,,1,}, He)=I[3, TV, y=9()=y,T)

where t(d, T) and y(3, T) are as in Lemma 3.4.
Now suppose that x,y€A, y=xexpijexpvexpi, for some i,i,€JI\(D), 1EG,
llE4ll, Iz,ll. {lol|l<y and

(3.47) 0=w+v+j+i, we€W(a(H),r)
for some #=t(e). Suppose that v=0. We claim that

(3.48) max{||p,(v(u(s))||: 0 < s < ot} < 26.
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Indeed, suppose on the contrary that (3.48) does not hold. Then there exists f:
T<t(d, T)<t<t such that

po,H)=06

by (3.16) and (3.20), where B(7,¢) is as in Lemma 3.4. Set i,=expi,, i,=exp(—i),
X=xi,, y=yi, h(i,)=i,hi;’,hEN. We have y=xexp ¢ and

(3.49) xh(, )i, exp(w(0, h))i, = Z@(h) i, = yhhi, = yh(, 'y h(i; )
for all h(i,) €F,(1), where ¢(h) and h€ F, () are as in (3.42). Here
h(i;YEF, () < F (0, hG5)EF,,,, (1) cFy, 0.

It follows then from (3.42), (3.43), (3.45), (3.46), (3.49) and the definition of A that there
are h,€F,(f) and h€h,F ; (¢) such that

nde
xh(i,)€A,, %p(h)i,€A,
xh()EY, xph)i,€Y
Xp(h) i, = xh(i,) i,-k(@, h)-z(0, h) -i, = xh(i,)) k@, h)- 8D, h)
for some k=k(5, h) €K and dg(e, 87, h))<46<4. This implies that
diY, Yk)<d(a,, Y)
in contradiction with (3.44). This proves (3.48). It follows then from (1.17) that

v/l <206/10)" ' < COIF™", n=2,...,m+]1.

We have o=z+p, where z=w+v, p=j+i and ||z||<61"*"*", where I=1"2"*D>y{, T).
Arguing as above and using Lemma 3.5 we show that (5, 1)<@ and S(p, [)<26. Now
we use the R-property to get

17l = ||lp—ill < 2L6/lo < CO/l < COr~ 2+,

This completes the proof of the lemma. |

Proof of Lemma 3.1. Let C>1, 0<®<1, 0<a<1 be as in (3.14) and (3.41) and let
0<6=<0, £>0 be given. Let t(e)=1(¢, 0), y=p(e)=y(¢, ) and A=A(e)=A(¢, 6) be as in
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Lemma 3.6. Let x, yEA, y=xexpi;expuexpiy, i;,i, € I,(D), lli,ll, li,]l, |[o|<y, o=w+v+
J+iand w€ W(a(0),r) for some t=1(¢). Then

(3.50) | <CO YDy < CO/!, n=2,...,m+1

by Lemma 3.6. We have B=9+D=5"B v, =y(v,)+d(v,), where y(v,)EHNSB,,
d(v,) EDn,. It follows from (3.50) that

3.51) ld@yl| < Col < o', |y, <Coin!
for some C>1 and all n=2,...,m+1. Let
W, ={yeW:p€B,), C,={cEY-V:c€B,), n=2,...,m+1.

We have

y=yv,)= z w(y)w+2 c(y)e.

pEW, c€C,

This and (3.51) show that
(| <COI' <COY, peW,

(M| <C'OI 1< C'O/P, ceC

n

for some C'>1, since v(v)<n—1 for all v€ B, with y(v)>0 by (3.4) and y(c)<n—1 for all
c€C, by the definition of Y—W. This, (3.50) and (3.51) complete the proof, since
f@)=j+E74} d,). =

4. Divergence of g-orbits

In this section we assume that G acts by right translations on (X=T'\G,d, 4) with T
being a discrete subgroup of G and use the notations of Section 3. Thus A=A(G, T, ),
N=LA)NE2, N=expN, u is horocyclic for g, u=expu, Ny={u*N: k€ Z}. Let Ds(®)
denote the d-ball at O in &, O4G)=expLs(®) and let m: G—X be the covering
projection s(h)=Th. For x € X define

4.1 A(x)=0.5max {6 >0: z is one-to-one on x0,(G),xEx"'{x}}.

Now let g,=exppg, pER, g=g;. Recall (see the introduction) that the g,-orbit of x€X
is said to diverge when n->c if A(xgy)—0, when n—oo. Let D(g,)={x€X:the g,-orbit
of x diverges when n—}. It is clear that D(g,)=D(g,) for all p, gER".
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Let ¥ be as in (3.7) for the decomposition &=+ 9+ F+3I(9) induced by L(A). In
this section we shall prove the following theorem.

THEOREM 4.1. Suppose that the action of N, on (X, u) is ergodic and either $+@
or u€éN. Then W(D(g)=1.

Let us show that conclusion 1 of the main theorem follows from Theorem 4.1.
Indeed, it is contained in the following corollary.

COROLLARY 4.1. Suppose that the action of N, on (X, ) is ergodic and cg, cl¢A
for some p>0 and all cEE". Then u(D(g))=1.

Proof. 1t follows from Proposition 1.1 that —pg+v& Q(A) for any vEE™, since
cg, ¢ '¢ A for all cEE". This implies that if o=pu*+v’ with x(v)=<1 then 7 ¢ W, since
v(®)=1 and ad’®@)=-pg+v, where v=ad,(v')EE". This implies that u*¢ &,—the
subspace of €, spanned by {p,(w): w € W?}. Then either ¥=+@ or u¢N by (3.7) and
u(D(g))=1 by Theorem 4.1. a

We shall prove Theorem 4.1 assuming as before that u € R and note that for the
case €N one should only substitute Io($H) by I(9) and H by H, in the argument
below.

The proof of Theorem 4.1 is based on Lemma 4.1 below which says roughly
speaking that if AcX is as in Lemma 3.1 then A can be covered by small boxes of the
form xexpIT where I is a parallelopiped in & with faces parallel to 28, 2), % and J($)
adjusted to the rate of expansion by Ad, and the number of these boxes is much smaller
than the reciprocal of the area of the (W, W)-face of I1. We begin with the description of
these boxes.

Define ®=WU W and for a subset Dc® define

WD)= D vw), (D)= D, 1 ).

vED v€ED

Also define
4.2) M = y(®)—v(P).

In view of Lemma 3.1 we introduce the following notations. For v € & let £(v) be ¥(v) or
v(v). For =1, 0>0 define
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Bé(t, 0) = (VED+F: )| <at ™, i=1,...,r, [y )| <or ™V,
4.3) =L, |l fo)|<ot™)
(1, 0) = {wEB: |aw)| <ot ™™, i=1,...,p}
&t 0) = B, 0)+ B4, 0).

Now let C>1, 0<0O<1, 0<a<1 be as in Lemma 3.1 and let 0<6<® be chosen later.
Define

BE(1) = B, CO), B = Wi, a(0)/a)

(4.4) S = WD) +BE()

where a(8)=af and we set for technical reasons a=10"". We have

x(v, wl) < x()+x(w)
4.5)
v([v, w]) < v(v)+v(w)

for all v, w with y(v), y(w)=0. This implies via (1.14) that if z, vE4S4(1) then
exp(z+v) =expzexp(v+v'+i')

.for some v’ € &5(t, K, C*6%), i’ € I3(9), ||i'||<K, C*6*t% and some K,=1. Using the fact
that 3o(9)=E® we get via (1.14)

(4.6) exp(z+v) =expzexp(v+o)expi

for some 0 € &(t, KC?0?), i€3,(9), |i|<KC?*6* %, if 6 is sufficiently small, where
K=K,. Now set b=4 and choose 0<0<® so small that if we define

4.7) 6 = 100aKC20b™/a
then
4.8) (146 ® < 3/2.

We have for 9 in (4.6)

4.9) 0E S, Ba(0) b~™la) = 64 (by).
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For UcB4+Y+F and y>0 write

B(l1,y) = {expvexpi:vEW, i€I(D), lli|| <y}
4.10)
Bé(y, ) = B(G4(1), 7).

The set xB%(y, t), x €X will be called a (&, #)-box at x.
For a given 0<e<0.1 let A=A(g, 6), t(e)=t(¢, 0), y(e)=y(g, 0)<0H be as in Lemma
3.1. Also for 0<y<y(e) let

@.11) () = max{1(), (100y)"#}.
LeEMMA 4.1. Given 0<y<y(e), t>1(y) there exists n(y,7)>1 such that for every

integer n=n(y, 1) there are a,(n), ..., ay,,(n) €X such that

M(n)
Ac U afn)B@&(1,),y)
i=1

where t,=tb"/(1+60)", M(n)=Lb™, M is as in (4.2) and L=L(y, ©)=1, a=1 are con-
stants.

The proof of this lemma uses Lemma 3.1 and is given in an appendix at the end of
this section.

In order to derive Theorem 4.1 from Lemma 4.1 we need to make an observation.
Let G be a Lie subgroup of G with the Lie algebra &and let &=2,+2,+&be the direct
sum of ®and some subspaces 2;, 2,c®. For l,cg;, i=1,2 and D=G write

B, 1)) = {expv, expv,:v, EU,, v, €U}
B,,11,)-D={bd:bEBU,,UI1,),dED}.
Now let v be a G-invariant Borel probability measure on X. Suppose that

yB(U,, I1,) 04(G) = x0,(G)
(4.12) ]
v(yB(l1;,11,) 04G)) >0

for some U,cOs(L),i=1,2, 0<0<0.1A(x), x, yEX. It is a fact that (4.12) implies that

V()’B(ul, uz) ’ D1) _ A(D1)

4.13 =
( ) V(}’B(ul, uz) ’ Dz) i(Dz)




ON MEASURE RIGIDITY OF UNIPOTENT SUBGROUPS OF SEMISIMPLE GROUPS 271

for all Borel subsets D;, D,c0s(G), A(D,)>0, where A denotes a right invariant Haar
measure on G. Expression (4.13) will be used in the proof of Theorem 4.1. Now let

H(®) = {ad/V@)/ad:)]: vE @}.
It follows from Theorem 1.1 that ad*”(v)+0 for all 0==v with x(v)>0 and
(4.14) 2@dzV)) = —x().

This implies via the definition of W and W that H(®)<$ (recall that we assumed « € 9).
Also |[H(®)|=|®| and H(®) is linearly independent in © by Theorem 1.1. Let
H={hy, ..., h} be a basis of unit vectors in ©, containing H(®). (One can show that, in
fact, H(®) is a basis in .) We have y(H)<—y(®) by (4.14).

For v€®, tER and a subspace £ define

vi)=g_,vg, [=g_Lg,.

We have

xw@)=xw), vEG, tER
“4.15)

vl < e|v]|, vEG, t=0.
Define

H(t)= {0 |()||:h € HY = {hy(D), ..., B (D)}

H(t) = exp O(2).

The set H(r) is a basis of unit vectors in $(z). For v€H(t) let hiz, v) be the hl(n)-
coordinate of v. Define

U0 = {vEDH: Ih(v, 1) <0}, Ust)=exp Uy®).
We have using (4.15)
g 1,0 g,c{vEHD: ot v)| <™, i=1,..,5}.
This implies that
(4.16) Mg, Uy(0) g YA(Uy(1) < Ce™ ) < Ce™™@

for all £=0, all 0<d<1 and some C>0, where A denotes a Haar measure on H(?).
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Now let §° be a subspace of J() complementary to $. We can rephrase Lemma
4.1 as follows. Given 0<y<y(e), T>1(y) there exists n(y,7)>1 such that for every
n=n(y, 1) there are a,(n), ...,a M) € X such that

M(n)
Ac U a(n)B@&H(1,), ©9%) U, 0)
i=1

where ¢,, M(n) and a>0 are as in Lemma 4.1. Write
o =In(b/(1+6))>0.
We have

(4.17) g_,,B@c(t,), O,99)g,, <0 )

2max{y, ar'}

for all n€EZ* by the definition of ¢,, ©*(t,) and the fact that Dy(@c)cSo(@)c@o.

Proof of Theorem 4.1. We shall show that if W@ then u(D(g,))=1. For 0<d<1
define

K(0)={x€EX: Ax)= 100}
A(0) = {x EA: xg,, € K(d) for infinitely many n€Z"}.

We claim that u(A(0))=0 for all 0<d<1. Indeed, we have

.18) AG)=N UA®

k=0 n=k

where
A,(0)= {xEA: xg,, EK(5)}.
Let 0<y<y(e), v>1(y) be so small that
4.19) max{y, ar™'} <é.
For n=n(y, 7) let
A=A, (6)=A,0)[an) B@SHt,), OO U,0]

i=1,...,M(n). We have

M(n)

(4.20) A= UA,,
i=1
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Suppose that u(A,, )>0 and let x€A, ;. Write x,=xg,, € K(5). We have using (4.17)

An, i gon < (ai(n) gon) (g—an B(a @x(tn)’ Dy(@c» gan(g-on Uy(o) gon)
4.21)

< (@) o) (8o BaEH(1,), ©,(9)) 8r) Uy(n10) = x, 0, (G)

by (4.19) and our definition of K(J). Now let u, be the Borel probability measure on X
defined by

MAE) = u(Eg_,,)

for every Borel subset EcX. It is clear that u, is invariant under the action of
H(no)=g_,, Hg,,. It follows now from (4.13), (4.16), (4.21) and the definition of u, that

A, ) = w4, 8, <Ag_, UL 0g,)AU, no)
< Ce ¥ = C(b(1+6) ") ®
for all n=n(y, r). This and (4.20) imply that
A, B) < Cb(1+6)™) ™ M(n)
< CL(y,7) (b(1+6) 1) " @pn@=(¥)
= L(1+6y*@p=W < [(3/8)"

for all n=n(y, t) by (4.8), the definition of b=4 and the fact that ¥(¥)=1, since ¥+ .
This implies that the series L x(A,(5)) converges and therefore #(A(6))=0 by (4.18). We
have

AND(g)=A— UA(l/k)
k=1

and hence

wAND(g,) = u(A)>0.

This implies that u(D(g;))=1, since xNcD(g,) for all x€ D(g,) and the action of N is
ergodic. This completes the proof. O

Appendix 4.1

Here we shall prove Lemma 4.1. Let 0<y<y(e) and >7(y) be given. Let x€A and
B=xB(£"(7),0.1y). Define

18908283 Acta Mathematica 165. Imprimé le 8 novembre 1990
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4.22) Q=0(B)={vE&"(r):xexpvexpi€A for some i € I (D), ||{|| <0.1y}.

Write £, =tb"/(1+6)", n=1,2, ..., y_,=1,=0, v,=Li5at:?, B=1/2(m+1). We have y,<0.1y
for all n, since t=1(y).
For ©c@®, z€& define ©(z)=S—z. It is clear that

(4.23) Bz, 1) = S —z = 2840
for all z€S4(r), t=1.

LemMA 4.2. For every n€Z" there are y,(n), ey YoM EB(L, v, _,) such that

s(n)
exp L < U y{(n)B23'(t,),7,)
i=1

and s(n)y<b™™.

Proof. In view of (4.23) it is enough to show that for every n€Z* there are
Vi), s YoM EB(LQ, v, ) and z,(n), ..., z,,(n) € W'(z,) such that

s(n)
(4.24) expQ < U y(n) B(&"(z(n),1,),7,)
i=1

where s(n)<b™™). We shall prove this by induction on n. For n=0 set s(0)=1, y,(0)=e,
Z1{0)=0. Suppose that (4.24) holds for ». In order to prove it for n+1 it is enough to
show that if yEB(Q, y,_,), zEW'(r,) and

£,={vES"(z,t,):yexpvexpi€exp L for some i €I (D), ||il| <v,}
then there are s: 1ss<b*™=b(W), q,, ...,q,Eexp Q, and z,, ..., 2, EW'(r,,,) such that

s
(4.25) expQ, « U q,B(&"(z, t,.1), ;7).
i=1

We have
&'z, 1,) =Wz, 1,)+B"(,).

Let uy, ..., uyy, €BW'(z, t,) be such that

W)

(4.26) Wz, 1,)= U uA+Wbe,)).
i=1
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(Note that W’(z, 1,) is a parallelopiped with sides parallel to w; of length a(6) t;V(wf)/d. In
(4.26) -we partition '(z,t,) into parallelopipeds whose w-sides have the length
a(9) (btn)_v(w")/d. There are exactly b(W) of such parallelopipeds.) We have

b(W) b(W)
Sz, t)= U (u+Wht )+B"(t)) = U (u;+Z(1)).
i=1 i=1

Let z/€X(z,) be such that u+z/=q,€ L., and set q;=exp g;. We have
q+2(z), 1) = uHz+ 32, t) = u+X(2,).

Also if v€X(z],1,) then

v E2W (bt )+2V7(1,)=2E7(1 ).
It follows then from (4.9) that
explgi+v) = q,expvexpi
where
0E Tzt J(1+0)), [EI(9), |[i||<tr
This implies that
exp(u,+3(1)) < q,B(2(z,, 1 [(1+8)), 7).
Now suppose that
exp(g;+v)Eexp L.,
It follows then from (4.27), Lemma 3.1 and the definition of . that
0E W (z;, 1, )+ (t,.) =Sz 1,1y
for some z,€ W’(z,, ). This proves (4.25) and completes the proof of the lemma. O
In order to prove Lemma 4.1 we need to partition further the sets
Y B2S(,),7,)

from Lemma 4.2.
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For v€® with x(v)>0 and a>0 define

a(v) = min{a, x(v)—v(v)}.

Note that if y(v)=1 then »(v)=1 and therefore a(v)=0. Let S"*(s) be as in (4.4) with
Ev)=(v+a)(v) and let

J(®) = max{y(v)—v(v): vE D}
r(B)=j(P)BEZL".
For each r€Z* with 1<r<r(f) and 1sksm define

S () = (V€SI o) <a@) 1P ™a, e )| < cor TP,

)] < Cor-PY for all w,, ¢, y; with y(w), x(c,), x(¥) <k}.

Also define

Mr+B(r) = (€SP o) < COHY, i=1,...,r)

M2 = N W),

k=1

Now let w€ dS*(1), v€ dS; (1) from some 1<d<2™"P*V_ Arguing as in (4.6) and
using (4.7) we get
(4.28) exp(w+v) =expwexpiexpi

for some GE€2dS}HP, i€ J,(D), ||ilj<t™*.
It follows from Lemma 4.2 and Lemma 3.1 that

s(n)

exp Q< U y(n)BRIT(,),v,)
i=1

for all n€EZ*. Now let n€Z" be fixed and let y=y{(n) for some i€ {1, ...,s(n)}. Let
0, ={v€2W(t): yexpvexpi€exp L for some i€ I (D), (lili<y,}-
Let q€EB(L,,0.01y) and let
Q, (@)= {vEAM*(1,): qexpvexpi€exp £, for some i € Jy(9), ||i| <0.1y}

where 1ksm—1, 0<r<r(f), 1<d<2™P+D,
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LEMMA 4.3. There are qq, ..., q; €Eexp Q. q) such that

expQy, (@) = U q;BRAM T, 1.7)
i=1

where ss(t‘f,+1)l§"*‘l, &= {VE®: x(v) =k} and |§,| denotes the cardinal number of g,.

Proof. The proof is similar to that of Lemma 4.2. Let p(i"c)=(t‘Z+I)K"+lz and let
my, ..., myg € dI*(z,) be such that

p(k) plk)
(4.29) amre ) = U (m+dDT P ) = Um+Z,,,(1)).
i=1 =1

Let z,€X,,,(t,) be such that g;=m+z,€ 2, (q). Set g;=expq;. We have
m+Z () = g+ %,z 1,)-
Let v€T,, (2, t,)=2dM, P(r,). We have using (4.28)
exp(g,+v) = q,expoexpi

for some GE€2dS;TP(t), i€I,(D), |li|<t;*. It follows now from the definition of
£, Aq) that if g,+v€ L, (q) then

0 € 2dIE Tt ).
This and (4.29) complete the proof of the lemma. a
For 0<r<r(f) define
n(r)={vEDL:0<y(v)—v(v)<rB}
k(r) = min{y(v): vEDP—n(n} =2.
Let now n(y, t)>1 b¢ so large that
(4.30) P mr(8)<0.01y
for all n=n(y, 7).
COROLLARY 4.2. Let Osr<r(f)—1, n=n(y, 1), € B(Q,, mrt?),

Qq)={vEdP*"(1,): qexpvexpiEexp Q, for some i EIWD), ||i|<mrtP},
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where d=2""*". Then there are p\’, ..., p(,?,) €B(L,(q), mt;P) such that

o(r)
exp,(q)c U p,.B(Z'"dEIR"”’“)ﬁ (t,), mt;P)
i=1

where 1( r)$(1§+ 1)2'{’;*"’ IC‘(.

Proof. We have I0"*"(1 )= Y4(z,). This and Lemma 4.3 imply the corollary.
d

It follows from the definition of v(v) that x(v)—v(v)=k whenever y(v)=2k or 2k+1.
This shows that k(r)=2k for all (k—1)/f<r<k/B, 1<k<j(®). This implies that

g m 1 @)
(4.31) f‘, D el == D JEl= (@) v @)
r=0 i=k(r) p j=0

where §;={vED: y(v)—v(v)=/j}.

COROLLARY 4.3, Let n=n(y, 7). Then there are by(n), ..., bs,\(n) € B2, mr(B) t;ﬂ)
such that

o(n)
(4.32) exp L, < U bn) BR™ PS¢t ), mr(B) ;P
i=1

where 3(n)<(f5+ 1)« @)~ @VE

Proof. For r=0let q=e €B(L.,, 0). We have Qy(q)=£,. Applying Corollary 4.1 we
get

7(0)
expQ, = U p(0) BQ™ M *A(1.), mt;)
i=1

where p,(0), ..., P € B(L,, me;?) and 7(0)<(+1)" Note that &x(z,) =0 P¥(z,).
This and (4.31) show that we need r(j3) successive applications of Corollary 4.2 to get
(4.32). This completes the proof. O

Proof of Lemma 4.1. Let €={x, B(&"(z),0.1y), e X B(&"(r),0.1y)} be a cover of
A by (v,7)-boxes at xl,...,xLIEA. Let n(y,7) be as in (4.30), n=n(y,7) and let
Q(’7=®(x,.B(@"(t), 0.1y) be as in (4.22), i=1,...,L;. It follows from Lemma 4.2 and
Corollary 4.3 that there are a,(n), ..., ay,,(n) € U, x,B(Q®,0.2y) such that

A c UYD a(n)BR™P*S(,),0.3y)
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where

M(n) < Ll s(n) (tﬂ+ 1)(z(<1>)-—V(<IJ))/ﬂ < Ls(n) bn(x(<1>)—v(<1>)) < Lbn(x(‘b)—v(d))H(W)) = Lb"M
n

for some L=L(y, )>1. This completes the proof of the lemma if we set a=2"AM g

5. Conclusion 2 of the Main Theorem

From now till the end of the paper we assume that G and (X=I'\G, d, ) are as in
Section 4, N=exp M, N=LA)NE"? and cg,c ' EA for some cEE™, pER. It follows
from Proposition 1.2 that 4 €% and exc™ ! €(A), since u=expu €EA. Also we assume
that the action of N is ergodic.

Let Ac=c'Ac and let u. be the Borel probability measure on X defined by
UdlEY=u(Ee™!) for every Borel subset EcX. It is clear that A.=A(G,T,u). Also
g,EA, u€L(A, N.=c 'Nc=2(A)nE* and the action of exp N, on (X, u.) is ergodic.
It is clear that y is algebraic if and only if so is #. This says that we can simply assume
without loss of generality that g, € A, u € 2(A) and prove that then sl (u, g)c2(A) and u
is algebraic.

We have u(D(g))=0, since g, € A. This implies via Theorem 4.1 that ¥=@. Using
(3.7) and u€N we conclude that u*+v€EW for some v with x(v)<2. Therefore
ad,(i*+v)=—g+v € Z(A) for some v’ with y(v')<0 by the definition of I¢. This implies
that g €Z(A) by Proposition 1.2. We shall show later that u* € %(A), too.

Let us note that the set ¥ in (3.7) depends on the choices of bases and complemen-
tary spaces occurring in the construction of 28 and T (see Note 1.1), while the fact
Y+ or =@ and Theorem 4.1 do not depend on those choices.

In fact, in the case g€ A there is a natural way to construct 8 and 8, provided by
Theorem 1.1 and Proposition 1.2. More specifically, it follows from Proposition 1.2 that
(%) and every nontrivial €1nL2(A), —m<p<q<m all have bases, consisting of eigen-
vectors of ad,. Here m is the maximal eigenvalue of ad,. Let

€, ={vE€EC  [v,u*]=0}, o={AE, *{0}}
be as in Theorem 1.1, A=0 for A€ . It is clear that if w € €;, A>0 then
CRY ad’P(w) = ad’@(z)

for all z € {ad(w): 0<<k<A/2}. For 0<A€ & define
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B, = (vEE,: adP(v) € LA)}

and let ?j,l be a subspace of €; complementary to 2®,. Let I8 and 9 be the subspaces
spanned by {ad‘(w): w€W,, 0<i €D, 0<k<A/2} and {ad'(y): yEY),, 0<AE€d, 0<k<A/2}
respectively. It follows from Theorem 1.1 that ad’;“(v)=0 for all UE@,I. This implies that
adﬁ(y)di% for all 0=|=y€@,1, since otherwise we would have yEW and W=+@. This
implies that

(5.2) ad*(y) € 2(A), y€P),
by the definition of 9),.

PROPOSITION 5.1. (1) Let vE€ €, for some 2>0. Then vEW if and only if adk(v) €
(A) for some v(A)<k<A;
(2) The subalgebra =€~ nYA) is spanned by

{adkw): wEBW,,0<A € b, AR<k<A}.

Proof. If vE then ad(v) € YA) for all k=v(A) by (5.1) and the definition of 8.
Now let v+0 and ad’;(v)e 2(A) for some v(A)sk<A. It follows from Theorem 1.1 that
there are non-zero vy, ..., v, € €; such that v=v,+...+v,and v,:ad’,i"(v{) for some v/€ € iy
0<ALEd, k=(A~A)2, A>A>..>A,. We have ad'(v)=ad "(v,)=ad""1v)€LA).
Therefore vy EQABAI by (5.2), v1€L and ad'lj(vl)e 2(A), since k=v(1). This implies that
ad“(v—v,) € R(A). Applying this argument n times we get v;E for all i=1,...,n. The
proof of (2) is similar a

It follows from Proposition 1.2 that if v€®, y(v)>0 and adz(”)(v) € YA) then
ad’®)( Py(v)) € £(A) and therefore Py (v) € B by Proposition 5.1. This shows that W is
indeed as required in Section 3. Now we define bases in 28, ) and by

W= {adiw)/ladiw)||: wEW,, 0< 1€, 0<k<A2} = {w,,...,w,}
(5.3) Y= {ad{(yl|ad*)|: yE ¥;, 0<AE€D, 0<k< A2} ={c,,...,c,}
H = {adiw)/|ladiw)|: wEW,, 0< A€, A2<k<A}={h,, ..., h,}

where W;, ¥, are bases of unit vectors in 2?3,1 and @1 respectively. We have Y=Y-W
since W=. We now define D to be the subspace spanned by {ad*(y):y € 23,1, 0<l€w,
A2<k<i—1}. Thus =W+ Y+D+R, where L={vE€G:ad,(v)EN}. It is clear that
ad*(v) €% for all vEE,.
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It follows from Proposition 1.2 that P and Jy(H)=I ()N E°=R are spanned by
eigenvectors of ad,. Let 9—1={y€§)1: adX(y) € ()} and let 3~ be the subspace of
Jo(9) spanned by {adi(y):y€P,, 0<A€d}. We have 3 +P=E nNJe(P). Also let
Bo=€,NJ(D). We have

<:5()('@) = ©+8—+80-
Finally let ¥ be a subspace of 8 complementary to Jy($). Summarizing we have
(5.4 G =W+Y+F+3+9

where F=D+F, 3=3"+3,.
Now let & be any of the subspaces in (5.4) with the chosen above basis {ey, ..., e,}
of eigenvectors of ad,. For y>0 define"

uy(@) = {UE C.v= 2 ei(v) €; le'z(v)l < V}

i=1

and let a compact A=A(6, e)<X, u(A)>1-¢, 0<e<0.1 be as in Lemma 3.1 for some
0<60<0, specified later. Set

A =A(A)=min{A(x):xEA}>0
where A(x) is defined in (4.1). In this section we shall prove the following

THEGREM 5.1. Given 0<O<A there exists a subset X(0)X, u(X(6))>0 such that if
XEX(J) then

u(x exp Us(B+3,) exp Uy(H)) > 0.
The proof of this theorem begins with the following lemma.

LEMMA 5.1. Given 0<0<A there exists X,\(0)cX, u(X,(0))>0 such that if x € X,(3)
then

wx exp Us(W+Y+3,) exp N4(9)) > 0.

The proof of this lemma is based on Lemma 5.2 below analogous to Lemma 4.1.
Let &*(r) and 7(y) be as in (4.4) and (4.11) respectively. Recall that ¥=0 in (4.3).

LEMMA 5.2. Given 0<y<y(e) and t>1(y) there exists n(y,)>1 such that for each
integer n=n(y, 1) there are a\(n), ..., arm(n) € X such that
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L)
(5.5) Ac U afn) [exp@ (b +11,(3)] U, )

where Uy(H)=eXp uy(sﬁ), L(n)<Lb™ W™ and L=L(y,1)>1, a>1, b>1 are constants.

The proof of Lemma 5.2 uses Lemma 3.1 and is given in an appendix at the end of
this section. Write

R(n) = a4 (@b"+U(3), B(n)=afn)(expR(n) U, H).
It follows from (4.5) that if x €EB{(n), i=1,...,L(n) then
(5.6) B(n) c xlexp(3NR(n))] U, (H).
Now let B3(¢) be as in (4.4) and let

() = {(VEY: e v)| <COFY, i=1,...,r}.

Set o=Inb. It follows from the definition of S*(¢) and the fact F=E° 3 <&~ that
(5.7 g," R(n) gg=aB(@)+aP (0)+1U(3)+L,E+37)
for all n=1,0<y<1, where
(5.8) L,@+3) <, _(F+3).

Proof of Lemma 5.1. Let 0<d<A be given and let 0<y<y(¢) and r>1(y) be such
that

max {3y, 3ar™'} <0.16.

Let n(y, 7) be as in Lemma 5.2 and let ne=n(y, 7) be so big that b~"<0.16 for all n=n,.
For n=1 we have

Bi(n) g, = (a(n) g;) exp(g," N(n) g;) (g," U,(H) g7) < (a((n) g;) exp(g, " N(n) g;) U, (H)
=Q(n).

Now let n=ny and A,=ANAg,". We have u(A,)>1-2¢, since g€ L(A). Define

J, = {i: (A, NB(n)) > 0}.
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It follows from (5.6) and (5.7) that
Q(n) € x;04,)(G)

for all i€J, and some x;€EA, where 0,,(G) is as in (4.1). This implies via (4.13) and
(4.16) that

5.9 H(B(n) = u(Bn) g)) < Du(Q(n) b = Dp(Q(m)) b~

for all i€J,, n=n, and some D>1, where y(H)=ZX", x(h)=—LL y(w)=—x(W) (see
(5.3)). Define

J,={i€J, u(Qn)) =(1-2¢)2DL}
where L=L(y, 7)>>1 is as in (5.5). We have

A,— U, NBm) = U Bfn).
iJ, i€J,

This implies via (5.9) and the definition of J, that

u(U B(n)= (A )—u( U (A, 0B ()
ieJ, g,

= 4i(A,)~ D, WBn) = (1-26)2> 1/4
i€,

since L(n)<Lb™W), Now let

X,=X,0)=(U B(n)g,

We have u(X,)=1/4 for all n=n,. If x€X, then xg," € B/(n) for some i€J, and
Q,(n) < xexp(g;"(3R() £) - Uy (H) < xexp[Uy(W+Y) + 3)+3L,(F+37)] - Us(H)

by (5.6) and (5.7). This implies that

(5.10) px exp[ U+ Y+ 39)+3L,(F+ 37)] - Us(H) > (1-2¢)/2DL

for all x€X,, n=ny. Now let

o <

X, =X,(®= N U X, ={x€EX:x€X, for infinitely many n = n,}.

i=ng n=i
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We have u(X)=1/4 and
px exp[U,(8+9+ 3] U,(H)) >0
for all x€X; by (5.8) and (5.10). This completes the proof of the lemma. a

Next we shall eliminate ¥). To do so let us look closer at the subspaces 28 and 9.
Let

K= {ad‘w): wEW,, 0<A1€d, 0<k=<2)

and let & be the subspace of & spanned by K. For v€EK there is a unique A(v) Ed,
2(v) €, and 0<k(v)<Ai such that v=ad““(z(v)). Also H=8nE~. We have

.11 [v,u] ER, [v,u*]EK
whenever vE & (see (1.7)).

PROPOSITION 5.2. Suppose that v€E®, wEK, k(w)<A(w) and (1) {v, [w, u]]ER,
) [[v, u*], [w, u]]EK. Then [v, w] EK.

Proof. We have
ki=[[v, w, ull, u*] €K
by (5.11) and (1). We have using (1.8)
ki = [v, [lw, ul, u*]]+k, = (k(w)+ 1) Aw) —kw)) [v, w]+k,.
where k, €& by (2). This implies that [v, w] € &, since k(w)<A(w). O

PROPOSITION 5.3. Let v, w be eigenvectors of ad,, vEDH and wER. Then

(1) [v, w1 €9 if y(w)=<0;

@) [v, W] €D if x(w)>0 and x(W)<—x(w);
B3) v, Wl EK+E, if x(v)=—x(w);

@ [v, W EW if —y(w)<y(w)<-—1.

Proof. Let z be an eigenvector of ad,. It follows from Theorem 1.1 that

if y(z)=0and [z,u]€EDH then z€@+@30
(5.12)

if (z)>0 and [z, u]€@+(§0, then [z, u] ER] and zEW.
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(1) If x(w)<0 then w € (A) and hence [v, w] €9, since x([v, w])<0.

(2) We shall prove (2) by induction on y(w) assuming with no loss of generality that
wEK. Then k(w)<A(w) since x(w)>0. Let y(w)=1 and y(v)<—1. We have [w, u]€ 9,
x([v, w*)=<<0. It follows then from (1) that [v, [w, u]] €D and [[v, u*], [w, u]] €D. This
implies [v, w]€H by Proposition 5.2. Now suppose that (2) holds for all w with
2r(w)€{0,1,...,n—1}, n>1. Let y(w)=n and y(v)<—n. We have x(w,ul)=n-2,
xv)<—(n-2), y(v, v*P<—(n—2). This implies by the inductive hypothesis that
v, lw, ]l €D, [[v, u*], [w, u]] €. Therefore [v, w] € H by Proposition 5.2. This proves
).

(3) Let y(v)=—x(w). We have y([v, ul)<—x(w) and y(v)<—x((w, «]). This implies
via (1) and (2) that [{v, w]], u] € and hence [v, w] €§+G§o by (5.12).

(4) We shall prove (4) by induction on y(w). Let y(w)=2 and y(v)=—1. We have
2w, u)=0, x([v, ul)=-3<—yx(w). This implies by (1) and (2) that [[v, w], u]€H and
hence [v, w] € by (5.12), since x([v, w])>0. Now assume that (4) holds for all w with
xw)€{1,2,...,n—1}, n>2. Thus

(5.13) [v, wW]ER+E, forall vEY, yw)€E(L,2,....,n—1}, n>2.

Now let y(w)=n and —n<y(v)<-—1. To show that [v, w] €28 we use induction on x(v).
Indeed, let y(v)=—n+1. We have y([v, u])=—n—1<—y(w). Therefore [[v, u], w]E€ H by
(2). Also y([w, ul)=n—2€{1,2,...,n—1} and hence [v, [w, u]| €D by (5.13). This im-
plies that [[v, w], u] € § and hence [v, w} €W by (5.12). Now assume that

(5.14) v, W] EQR+E, for all v with —n<y@)<-n+k

where 1sk<n—1. Let y(v)=—n+k+1. We have —n<y([v, ul)=—n+k—-1<-n+k.
Therefore [[v, u], w] € R+, by (5.14). Also [v, [w, u]] € R+E; by (5.13). Therefore
(v, w]ELW by (5.12), since x([v, w])>0. This completes the proof of (4) and of the
proposition. a

COROLLARY 5.1. The space B is a Lie subalgebra of &, normalized by 3.
Proof. Let wEBWNE,, v€WNE,, p, g>0. For k, 120 write
71 = [ad(w), ad\()].

We have

ad? (w, o) =z= D, @z,

kI k+l=p+q
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for some a, ,€R. If both y(ad!(w))=p—2k<0 and y(ad!(v))=g—2I<0 then z; ;€ XL(A) by
the definition of 8. Now let p—2k>0. Then g—-2I=—(p+q)—(p—2k)<—(p—2k) and
therefore z; ;€ H=(A) by Proposition 5.3. Thus z; ;€ X(A) for all &, [: k+I=p+q. This
implies that z € 2(A) and therefore (w, v] €W by Proposition 5.1. This proves that 28 is
a subalgebra of . Now let i€ 3, and a; ;= [adfj(w), adL(i)], k, 120, k+1=p. If k=p,[=0
then ad(w)€H and o, ;€H, since i€ Joc=Io(H). If —p<p—2k=0 then >0 and
adi(w),ad () €R(A) and hence a €R(A). If p—2k>0 then —2I=—p—(p—2k)<
—(p—2k) and hence ;€ 2(A) by Proposition 5.3. This proves that ad’([w, il) € (A)
and hence [w, /] €2 by Proposition 5.1. This completes the proof. O

Now we shall prove Theorem 5.1. First let us note that if >0 is sufficiently small
then the map (v, hA)—expvexp h from Us(W+Y+F+ 3)xUs($H) onto a neighborhood of
e is a diffeomorphism. If y=expvexph we write v=uv(y), h=h(y). Also v(y)=w(y)+
c(y)+(y)+z(y) where w(y) €T, c(y)€?), f(y) €F. z2(y) € 3. Let ci(y) (wi(y)) denote the
projection of ¢(y) (w(y)) onto YNnE,; (WNE,), A=1,...,m. We will need the following
quantities

d=max{||[lv, wlll:v, w€G, [jvf| = ||w|| = 1}
(5.15)
n = min{||[v, ul||: vEE;, 1 >0, ||v|]|=1}>0.
Recall that [v, u]#0 for all 0%=v € &, with >0 by Theorem 1.1.
Proof of Theorem 5.1. Let 0<d<A be given and let 0<dy<d be so small that
10moyd™ <0.17.
Let X(dg)cX, u(X(d¢))>0 be as in Lemma 5.1 and let
Y= {(x,xy): x€EX(S,), YEB(y)}
(5.16)
B(9,) = exp 1160(%3+@+ 8o exp 1160(5{)).
For A=1,...,m and a>0 define
Y(a, 2) = {(x, xy) E Y: ||c;(y)l| = a}.

It is enough to prove that

aY(a,4))=0
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for all a>0 and A=1,..., m, where g=uXu. First let us prove that
@Y(a,1))=0

for all o>0. Indeed, suppose on the contrary that a(Y(a, 1))>0 for some a>0. Since the
action of w,Xu, on XXX preserves g, there is an arbitrary small 0<r<a/2 and
(x, xy) € Y(a, 1) such that (xu,, xyu,) €Y. We have

5.17) u_, yu, = exp(Adur(v(y))) exp(u_,A(y)u,) = exp(v(y, 1)) -h(y, 1)

for some v(y, HE 1150(253+@+80), h(y, HE Uéo(H), since u_,yu, € B(d), if 7 is sufficiently
small. In particular,

(5.18) fly, ) =0=2z"(u(y, ).
We shall get a contradiction to (5.18). We have
u(y) = w(y)+c(y)+2,(y)
Ad, () = vy)+f_(D+O0WM)+h(t) = oy, ) +A(y, 1)

where

O =0t y) € D, €, [|00)]| <28, mdt <0.151

A+—1

(5.19) KO =y, 0= D k), KOED, |h]|<28,d"P<0.1nt

<0
and f_\()=f-,(#, y) denotes the projection of Ad, (c(y)) onto €_,. We have
fo®O=1t[c(y),u]+O,()EF+3™ (see the definition of F and 37)
(5200  ]|0,(0)]| <28,dF <0,1nat
@l 2 e Wl 7e=0.1at = 0.9(lc, Wl
since ||c;(y)||=a. Note that for £_,(f) and A_x) in (5.19) we have
(5.21) h_((O) = t{w,(y), u] +OE),  h_y(O) = t[zy(y), u] + O

where [|O(#)||<0.192<0.1yat. Here [zq(y), u] € 9, since zo(y) € Jo=To(D).
Now we shall use Proposition 1.5 to represent Adul(ﬁ(y, +h(y, ) as the product
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exp(u(y, D)i(y,) for some u(y, )EW+Y+F+3=9H* and some h(y,r) EH. Here
0(y, ) €H*. Let h=exph with h=I,_, h, being as in (5.19). In view of Proposition 1.5
we have to look at Ady(é(y, ). Let p_, denote the projection of Ady(0(y, ) onto €_;.
We have

P_y = f @+ [, 0D, h_g)+[2(0), h_y]+H[wi(3), h_,]+O)

=, O+[c(y), h_,] +Hh+0{)
where h € $ by Proposition 5.3 and
lI[e1@), A]Il < 0. 1ntle, (| < 0.2]| 7, @l
lo@)|| <0.152 <0.1nat < 0.1||c,y)||nt < 0.2|| f_, D]

by (5.20). This implies that for each h € H satisfying (5.19) the projection of Ad,(6(y, £))
onto (D+37)nE_, is f_,(+f_,(t,h), where || f-(z, h)||<0.4]|f_,(#)||. This implies via
(1.14) and Proposition 1.5 that if §, is sufficiently small then

max{ f(v(y, 1)), z"(v(y, )} >0

contradicting (5.18). This proves that a(Y(a, 1))=0 for all a>0.

Now let us show that g(¥(a, 2))=0. We can assume without loss of generality that
¢i(y)=0 for all (x, xy) € Y. Suppose that g(¥(a, 2))>0 for some a>0. Arguing as above
we get 0<t<a/2 and (x, xy) € Y(a, 2) such that (xu,, xyu,) € Y. Thus

u_, yu, = exp(u(y, 1)) -h(y, ?)
where v(y, 1), h(y, ) are as in (5.17) if ¢ is sufficiently small. In particular,
(5.22) Sy, ) =0.
We have
Ad, W(y)) = w(y)+c(y)+e,()+O0W) +h(t) = 0y, H+A(y, 1)

where O()EZ, ., €,, A(r) satisfy (5.19), (5.21) and ey(¢) denotes the projection of
Ad“'(v(y)) onto &,. We have

eo() = tfe)(y), u]+(zo(y) +t{w(y), u)+0,( = So@O+ky(®
(5.23) (10,@]<0.1nat, k(NHEID), f(HED and

16l = lle,(Wlint—0.15at = 0.9]|c, (W)t
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Now let h€H, h=exph with h satisfying (5.19) and let p, be the projection of
Ady(d(y, ) onto &;. We have

Do =KO+ k(D) +[cy(¥), h_g]+[wy(¥), h_,]+[w,(¥), h_]+O()

(5.24) ,
=fO+][cy(y), h_,] +Hk(D+O(F)

where as above
(5.25) 0| <0.1nat,  ||[cxy), h_ )l <O.1nt]le, (W] < 0.2]| /)|

and k(f) € I+3I(H) by Proposition 5.3. Note that we have used the fact that ¢,(y)=0 in
{5.24). Expressions (5.23) and (5.25) imply via Proposition 1.5 that f(v(y, #))+0 contra-
dicting (5.22). This proves that i(¥(a,2))=0 for all a>0.

To prove that a(Y, a,1))=0 for all A=1, ..., m we use induction on 1. Suppose that
u(¥(a,A))=0 for all a>0, A=1,...,n, 2<n<m. We can assume that

(5.26) cdy)=0

for all i=1,...,n and all (x,xy) € Y. Suppose on the contrary that g(Y(a, n+1))>0 for
some a>0. As above let 0<t<a/2 and (x, xy) € Y(a, n+1) be such that (xu,, xyu,) EY. We
have for v(y, ?) as in (5.17)

€t Uy, ) =0
by (5.26), since n—1=1. We have
Ad, () = vy)+e,_,(D+O0W+(1) = 6y, D+Aly, 1)

where O(H)€L,,, €, h(r) satisfy (5.19), (5.21) and e,_, denotes the projection of
Adut(v(y))—wn_l(y) onto € _,. We have

e,1(0) = t[c, ), ul+t{w, (), u] + O = ¢,_(H+,_ (1)
where as above
o) <0.1pat, W, (HEBWNE,_,, c,.,OEINE,_,
licn- 1N = lle, 1 Plpt=0.17at = 0.9]c,,, , (¥l
Now let h€H be as in (5.19) and let p,_, denote the projection of Ad,(d(y, 7)) onto €, _,.

18t—908283 Acta Mathematica 165. Imprimé le 8 novembre 1990
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We have

Puoy =W, M+, (O+D,_,()+ [€p1®)s h_2]+[wn+1(y), h_,]

+[w, (), o]+ 0 = ¢, (D+[Cosy D), hp] T +O(F)
where ||O(#)||<0.17at and
l[cas1¥), A0l <O. 1llc,s W< 0.2]lc,_, @]

and €W by Proposition 5.3, since n=2. Thus for each h€H, satisfying (5.19) the
projection of Ad,(d(y,#)) onto Yn€,_, is ¢, (O+c,(t,h), where |c,_,(z h)j|<
0.2||c,—;@)||- This implies via (1.13) and (1.14) that

c,_,wy,))*0

contradicting (5.26). This completes the proof of the theorem. O

Appendix 5.1

Here we shall prove Lemma 5.2. The proof is somewhat similar to that of Lemma 4.1.

For v€E® let &(v)=x(v) (1—a)+a, where a=1/4(m+ 1)’=8/2(m+1) and =1/2(m+1)
is as in Lemma 5.1. Note that &w)=1 if y(v)=1 and max{v(),xv)—pF}<E@) if
1<y(v)<m. Write

p
EW) = >, Ew).
i=1

We set for technical simplicity h=2%"*1", With this choice of b the number 5" is an
integer for all v€ . Now let 8%(z), B(r) and S4(r) be as in (4.4), where 6 is chosen so
small that for § defined in (4.7) we have <1. Recall that ¥=@. It follows from (4.5),
(4.9) and (1.14) that if z, v€E4&5(), t=1 then

(5.27 exp(z+v) = expzexp(v+d)expi

for some 0 € 1~ *0&5(br)ct~*S4(bt) and some i € Jy(D), |lil|<r .

Now let 0<y<y(e) and r=1(y) be given. Let x€EA and B=xB(&%(1),0.1y), where
B(lL,y), UcW+ B+ is as in (4.10). Define

(5.28) Q0 =0(B)={vESH1): xexpvexpi€A for some i € IJ(D), ||i|| <0.1y}.



ON MEASURE RIGIDITY OF UNIPOTENT SUBGROUPS OF SEMISIMPLE GROUPS 291

Write £,=1b", n=1,2, ..., y_,=%,=0, v,=L{Z, t". We have y,<0.1y for all n.

LEMMA 5.3. For every n€Z" there are y,(n), ..., ¥y,,(n) €B(Z, y,_,) such that

s(n)

exp D < U y(n BES(,), 7,)

where s(n)<b™W),

Proof. We have x,=II'_}(1+;*)<2 for all n by our choice of 7 and b. Also
Sz, N=31)—z<=2&5(1) for all z€ S4(z). This shows that it is enough to prove that for
every n€Z" there are y,(n), ..., ¥, (n) EB(Q,y, ) and z,(n), eor 2y (M ERRE(E,) such
that

s(n)
(5.29) exp < < U y(n) B(Si(z(n), 1,),7,)
i=1

where s(m)<b™™ and (s )=mx, W), Si(t,)=n,S%(t,). We shall prove this by
induction on n. For n=0 set s(0)=1, y,(0)=e, z;(0)=0. Assume that (5.29) holds for n. In
order to prove it for n+1 it is enough to show that if yEB(L,y,_,), z€ Wi(z,) and

Q,={vEGH(z,t,): yexpvexpi€exp L for some i€I(D), [l <v,}

then there are s: 1<s<b*™=p(€, W), q,,....q,€exp , and z,,...,2, €/, (¢,,,) such
that

(5.30) expl,c U qu(@§+l(Zi’ Lyrt)s t;ﬁ)-
i=1
We have
Gz, t) = Wiz, 1,)+Bi(t,).
Let uy, ..., uye w) € B5(z, £,) be such that
b, W)
Wiz, 1) = U (u+BE(be)).
i=1

We have

b, W) b(E, W)
Sz, t)= U uATEG)+Bi )= U WA+, 1).
i=1 i=1
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Let z/€ T, (z,) be such that u,+z/=q,€ £, and set g,=expgq,. We have

g+3 (2 t)=u+z+Z (2, 1,) = u,+Z, (1)
Also if vEZ (2}, t,) then

vE 4%5(1}zn)+4%5(z")c4§5(z,,).
It follows then from (5.27) that
exp(g,+v) = q,expuexp!

where 6E€(1+1,%) T (t,)—z), 1€ J,(9), |i||<t;?. This implies that

expu+3(t,)) c q, B+, T (1) -z, 1,;7).
Now suppose that

exp(g;+v)Eexp L.

It follows then from Lemma 3.1 and the definition of £ that

vE QBEH(Z,‘J tn+1)+%§+l(tn+l) = §§1+1(2i’ Los1)

for some z,€ W%, (¢, ), since E)=v(v) if X(v)?l. This proves (5.30) and completes the
proof of the lemma. |

For 1sk=sm define
Bi(0) = {vE BX1): |ayv)| < a(@) £ **//a, |c,(v)| < COr 7 for all i, p with
1wy, x(c,) <k}
W) = {VE BLD: e, )| <COH Y p=1,....1}.

We have S4(1)=&5(1) since &(v)=1 if y(v)=1. Also

(5.31) St = S () = DED).

Now let w € dSi(r), v € dS, (1) for some 1<d<2""?. Arguing as in (5.27) we get

exp(w+v) = expwexpuvexpi

for some 0 € 2dSE, (1), i€ I,(9), |lil|<r ¥, since Ev)>y(v)—pB and 6<1 in (4.7).
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It follows from Lemma 5.3 and Lemma 3.1 that

s(n)
exp O < U y(n) BADE(,),v,)
i=1

for all nEZ*. Now let n€Z" be fixed and let y=y(n) for some i€{1,...,s(n)}. Let
L, = {vE4ME(t): yexpuexpi€exp L for some i€ Iy(D), |li| <y,}
For q €B(£2,,0.01y) and 1<k<m let
@ = {vEL, Di(t,): qexpvexpi€exp L, for some i € Iy (D), [|i]| <0.01y}

where d,=2**1. The proof of the following lemma is identical with that of Lemma 4.3 in
Appendix 4.1.

LemMA 5.4. There are qy, -.-, Q4 € €Xp L(q) such that

k+1)
exp £4(q) = U1 q;B(d,.,, M, (1,), ;7)

where 1(k+1)s(tn+l)X(C"*‘)_E(C*“) and {,={wEW: y(w) = k}.
Now let n(y, 7)>1 be so large that ¢,# m=<0.01y for all n=n(y, 7).

CoROLLARY 5.2. Let n=n(y, 7). Then there are by(n), ..., by, (n) EB(L,, mtP) such
that

d(n)
(5.32) exp £, = U b(n) BQ™S(t,), mt;*)
i=1

and S(n)<(t,+1yW-EW),

Proof. For k=1 let q=eEB(L,, 0). We have {,(q)=L,, di=4. Applying Lemma
5.4 we get qy, ..., q, €exp Q,(q) with
7(2)
exp L, < U q,B(d, D), ,°)
i=1

where r(Z)s(tn+1)x@2)_§(€2). In view of (5.31) it is clear that we need m successive

applications of Lemma 5.4 to get (5.32). d

Proof of Lemma. 5.2. Let &={x, B(&%(7),0.1y), o Xp B(&%(1),0.1y)} be a cover of
A by (& 1)-boxes at xl,...,xLIEA. Let n(y,r) be as above, n=n(y,7) and let

19-908283 Acta Mathematica 165. Imprimé le 8 novembre 1990
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QP=Q(x;B(5%1),0.1y)) be as in (5.28), i=1,...,L,. It follows from Lemma 5.3 and
Corollary 5.2 that there are a,(n), ..., dy, (") € UL, 5 B(Q9,0.2y) such that

M(n)
Ac U a(m)BQ"*&*(t,),0.3y)
J=1

where M(n)<L, s(n) (¢, + 1™ *M<p™™ for some L=L(y, 1)>1. This completes the
proof of the lemma if we set a=2""2, a

6. The support of u

Let 3o=€,nJ(H) be as in Theorem 5.1. Define 3(A)=8,n2(A). We have B(A)+H=
Se(D) NL(A). Set L=+ 3(A)+. In this section we shall prove the following theorem.

THEOREM 6.1. (1) The subspace L is a Lie subalgebra of ®.
(2) There exists x€X such that u(xL)=1, where L denotes the connected Lie
subgroup of G with the Lie algebra L.

It is clear that 2(A)=2. We shall show later that =2(A) and L=A’. Let J, be a
subspace of *f N €, complementary to 8. It follows from Proposition 5.3 that

[, h_,] E@NEYUE, = 3o+,

forall i_€HNE_,, 1>0 and all w €W, where w, denotes the projection of w onto €;.
Define

W= {wEBW: [w,, h_,] €3, for all h_,EHNE_,, 1>0}.
ProrosiTiON 6.1. The subspace W= is a Lie subalgebra of L, normalized by

Bo-

Proof. Let wERWN @p, vEBWN €,, p,g>0 and let heong We have

-(p+a)*

6.1) [[w, vl, h] = [w, [v, A]]1+[w, k], V).

Also [v, IEHNE_,, [w, 1EHNE_, by Proposition 5.3. This implies that [[w, v}, K] €
3o by (6.1), since w, v €T, and proves that W is a subalgebra of L&. Now let i € 3, and
hE€HNE_,. We have

[[w, i1, Al = [w, [i, h]]+[w, A}, i1 € 3o
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where [i, ]]EDHNE_,, since i€ Zo=I(H) and [w, h] € 3y, since w €. This proves that
[w, 1€ W and that 3, normalizes I8,

LEMMA 6.1. Given 0<0<A there is X(0)<=X, u(X(0))>0 such that if x € X(6) then
u(xexp 116(2;3+ Fo exp 14(9)) >0.

Proof. The proof is similar to that of Theorem 5.1. Recall that the basis H of
defined in Section 5 consists of eigenvectors of ad,. For h€9H_;=HnE€_;, 1>0 let

W(h) = {we€WNE,: [w, h] € 3o}
and let (k) be a subspace of WNE,; complementary to W(#). Define
H={h€H: BW"(h)* {0}}
¢ = min{||jo([w, hD||: hEH, w EBW*(h), |lw]| =1} >0

where jy(v) denotes the projection of v € Fo+ 3, onto .
Now let 0<d<A be given and let 0<y<<d be so small that

2mpdyd=<0.1¢

where d is as in (5.15) and p=card H. Let X(d¢)=X, u(X(dy))>0 be as in Theorem 5.1
and let

Y = {(x, xy): x EX(y),y EB(9)}
B(d,) = exp 1160(‘153+ 3y exp 1160(@).
For a>0, A=1, ..., m define
Y(a, ) = {(x, xy) € Y:max{||lw.(h,y)|: hEHANCE_;} = a}
where w, (k,y) denotes the projection of w;(y) onto Z8(k). It suffices to prove that
6.2) A(¥(0, 1)) =0

for all a>0 and all A=1,...,m where g=uxu.

First let us prove (6.2) for A=1. Suppose on the contrary that g(¥Y(a, 1))>0 for some
a>0. Then there is (x, xy) € Y(a, 1) and an arbitrary small 0<t(h)<a/2, h€ H_,=HnG_,
such that
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(6.3) (xexp(t(h) h), xyexp(t(h) h)) EY

since the action of exp thxexpth, h € H on XXX preserves ji. Let h=h(y) € H_, be such
that

(6.4) llw, (h, p)l| = max{|jw (o, y)||: hE€H_,} = a.
Write
t=th), h,=expth.
We have
h_, yh, = exp(Ad, (v(y))) (h_ h(y) h) = exp(v(y, 1)) h(y, )

where v(y, 1) € 1160(%3+ 8y, h(y, D€ U, (H) by (6.3), since h_,yh, € B(d,) if ¢ is sufficiently
small. In particular,

(6.5) Jo(u(y, 1)) =0.
We have

Ady, (0(y)) = w(y)+e()+OW+h(D) = By, D+h(y, 1)

where O() € X, ,, |0)]|<2md, dr<0.1¢t,

K= h(y, = > h_,(n, KHEHNE_,
(66) A>0
Ih_(0)]| <28,dt* < 0.1t
and e((r) denotes the projection of Adh’(v(y)) onto &,. We have
(6.7) eo() = 2o+ H{w, (y), A]+O0() = i(0)+jo(0)
where ||O(£)||<26, md’<0.1&at, i)(H) € 3y, j,() €, and
(6.8) il = |lw (B, y)||5t—0.1Eat = 0.95¢||w , (h, y)||

by (6.4). Now let h=exp h € H with / being as in (6.6) and let p, denote the projection of
Ady(¥(y, 1)) onto €,. We have

(6.9) Po= i(D+jgO+[w,(y), h_,]+O()
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where ||0(#)||<0.1at and
o [wi @), -l < 2p0g dtljw (A, y)| < 0.1&t|lw , (&, y)| < 0.2/ @)

by (6.4) and (6.8). Thus for each h, satisfying (6.6) we have j,(Ad,(5(y, )))=j,()+Jjy(t, h),
where ||j,(¢, h)|[<0.2|j,(?)|]. This implies via (1.13) and (1.14) that jy(v(y, £))#0 contra-
dicting (6.5). This proves that i(¥(a, 1))=0 for all a>0.

To prove that i(Y(a, A))=0 for all >0 and all A=1,...,m we use induction on A.
Suppose that 4(Y(a, 1))=0 for all a>0 and all A=1, ..., n. We can therefore assume that

(6.10) [w,(V),h_;] €3,

forall (x,xy)€Y, h_,€HNE_,, A=1,...,n. Now suppose that a(¥(a, n+1))>0 for some
a>0. As above there exists (x,xy)€ Y(a,n+1) and sufficiently small 0<#(h)<a/2,
h€H_,,,, such that

{xexp(r{h) h), xyexp(t(Yh)) E Y.

Let h=h(y)EH_,,,,, be such that

llw, (r, y)l| = max{[fw, (h, YIl: hREH (01} =
and let r=#(h), h,=exp th. We have h_,yh,=expuv(y, 1)-h(y, £) where as above
6.11) Jo(v(y, ) =0.
We can now repeat the above argument writing

eo(t) = Zo(y) + [, (¥), K] +O) = iy(D)+jy (1)
in (6.7) and

Do = if(D+joO+[w, . (), b, ]+ HD+OE)

in (6.9), where O(#%) is as in (6.9),
i) =2 [w,¥),h_;]€ 3
i=1

by (6.10) and

1o (@ i) ey DIl < 018t a0 (R, )] < 0.2 o).
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This implies that jo(v(y, £))+0, contradicting (6.11). This completes the proof of the
lemma. a

LEMMA 6.2. Let B be a subalgebra of B possessing the following property: given
0<0<1 there is x=x(8) €X such that

p(x exp U, ) exp U,(3,) exp U4(H)) > 0.
Then W=12.

Proof. For k=1, ...,m let W® be a maximal set of unit vectors in %8 such that
x()=k for all v€ W® and {p (v): vE€ W®} is linearly independent in €, k=1, ...,m. The
set W=UpL, W¥={w,,...,,} is a basis in . For 0<d<1 and r>1 define

@(5, N = {wEQB; w= Ewi W, |w| < 51—X(wi)}.
i=1

As in the proof of Lemma 5.2 (see Appendix 5.1) we show that for all sufficiently small
0>0 and every integer n>1 there are a,(n), ..., a; ., (n) €exp U,;(W) such that

L(n)

exp 116(253) c U a(n) exp(aﬂi%"(d, bM)
i=1

where L(n)<Lb*™) b, a, L=L(5)>1 are constants and

(W)= 3(w).

i=1
Define
B,(0) = exp(aZ¥*(8, b") exp Uy(3,) exp Uy(©).
We have |
L(n)

B(6) = exp U,(Z8) exp Uy(3,) exp () U a(n)B,().

Now suppose on the contrary that ® is a proper subspace of 8. Then

(6.12) 2 (W) < 5x(W)—1.
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Let K be a compact subset of X with w(K)>0.9 and let 6>0 be so small that
10ad<A(K)=min{A(x): x€E K} (see (4.1)). Let x=x(3) €X be such that

u(xB()) =a>0.

Set o=Inb. Since the action of g, on (X, u) is ergodic (see Proposition 1.12) there is
BcxB(0), u(B)>0.9a and ny>1 such that if y € B and n=n, then the relative frequency of
K on the orbit interval {y,yg,,...,yg,} is at least 0.8. We claim that for every n=n,
there is n<k(n)<2n and a subset D(k(n))cB such that

u(Dk(n)) = 0.3u(B) = 0.1a
(6.13)
D(k(n)) gk c K.

To prove the claim we apply a standard argument based on the Fubini theorem.
More specifically, for every n=ny and every y€B the relative frequency of K on
{vg, ..., yg¥"} is at least 0.3. Let

K={(y,k):yEB, k€ {n, ..., 2n}, yg*€K} c BxI,

where I,={n, ..., 2n}. Let v be the probability measure on BxI,, which is the product of
w/u(B) and the normalized counting measure on I,. We have »(K)=0.3. This implies via
the Fubini theorem that there exists k=k(n) €1, such that

(uu(B)) (KN (Bx{k}))>0.3.
Define
D(k)={y€B: (v, k) EK}.

It is clear that D(k) satisfies (6.13). We have k=k(n)—, when n—x. Also

L(k) L(k)
(6.14) D(k) = U D(k)n (xa,(k) ByS)) = U Dk).
i=1 =1

Let J={i: u(D(k))>0}. We have
Dy(k) gk = (xa (k) g5) exp(g; “(@T8 (8, b)) £) exp 114(3y) - Uytk, H)

< (xafk) g5 exp(g, (a8"(, b)) g) exp 11,(3) - Us(H) < 2,0,,,(G)

for some z;€ K and all i €J by the definition of . Here
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U,(k, H)=exp{h € §: |h(W)|<6b™ ™, i=1, ..., p}

and H={h, ..., h,} is the basis of eigenvectors in © used above. This implies via (4.13)
and (4.16) that

w(D (k) = w(D (k) gt) < CH*™
for all i€J and some C>1, where y(H)=—x(W). This and (6.14) give
4
u(D(k)) < CL(k)b™ %™ < CLY* 1M < cp b+

by (6.12). Thus u(D(k))—0 when k=k(n)— . This contradicts (6.13) and completes the
proof of the lemma. O

It follows from Proposition 6.1 and Lemmas 6.1 and 6.2 that R=8. Thus we get
the following

CoROLLARY 6.1. [wy, h ;1€ 3¢ for all w€W, h_€EHNE_;, i>0.

Next we shall substitute 8, by 3(A) in Lemma 6.1. To do so we shall use
Proposition 1.11 and the H-regular sequence Fy(s) in H defined with

—x(h; .
ofs)=s"", i=1,

s D
It follows from Corollary 6.1 that if w €28, z€ 3, and h€H then
6.15) exp Ady(w+z) = exp(z+w(w, z, h)+Z(w, z, h))-h(w, z, h)
where
w=ww,z, HEW, z=zZ(w,z,h)€Zy and h=h(w,z, h)EH.
For x€X, y=xexp(w+z) define ¢=¢, ,: xH—yH by

@, ,(xh) = yh(h)™' = xhexp(z+iw+2).
Let 0<@<1 be so small that if ||w||, ||z]|<@ then

[[AB)A(@(B)]-1]<0.1
(6.16)
@(xF (1)) c yF,,(1)

for all 0<g<1 and all Borel subsets BcxF,(1), where as before
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A(B)=A{h€EF,(1): xh€B}
with A being a Haar measure on H. Also we will need
r=AF,($))/AF,,HN=2", 0,5>0.

LeMMA 6.3. Given 0<8<A there is X(8)=X, u(X(8))>0 such that if x€ X(S) then
(6.17) px exp U,(B+3(A)) exp Uy(9)) > 0.
Proof. Let K,,i=1,2, ... be nonempty compact subsets of exp 8, such that
U K, = exp[ll,(8)- 3A)].
Now let 0<a<0.1r be so small that 8(a)<0.1, where B(a) is as in Proposition 1.10. It
follows from Proposition 1.11 that there areY;cX, u(Y)>1—a and ;>0 such that
(6.18) d(Y;, Y;k)=9;

for all kEK,, i=1,2,....
Now let 0<0<0.1 min{0, A} be given and let 0<g;<1 be so small that if w €,
Z2€ 3o, ||lwl], ||z||<0 then

(6.19) (12w, z, h)|| < 0.16;

for all hEFQA(l), where Z(w, z, h) is as in (6.15). Using Proposition 1.10 we get X;cX,
#(X»>0.9 and 1,>1 such that if x EX,, r>¢, then

ACY,NXF, (D)/A(F, (1)) = 1-0.2r
AN xFy, (D)/A(F, (1) = 1-0.2r.

Since the action of g=g_, is ergodic on (X, u) (see Proposition 1.12) there is XX,
w(X)=1 such that if x€X then the relative frequency of X; on {x,xg,...,xg"} tends to
u(X;) when n— for all i=1,2,.... Now let X(6)=X, u(X(6))>0 be as in Theorem 5.1

and let X(6)=X(9) N X, u(X(5))>0. Let us show that if x € X(d) then (6.17) holds for x.
Define

X = {x EX: AX nxF,(1))/AF(1) =1}

B(9) = (xexp Us(BW+3y) expUs(DNNX, x€EX().
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Here u(X)=1 by Proposition 1.13 and u(B(5))>0. We claim that
(6.20) B(0) = xexp Us(W+3(A)) exp Us(D).

Indeed, let xy€EB(S), y=(expu(y))-h(y)=yh(y) for some v(y)=w(y)+z(y), h=h(y) EUs(H),
w=w(y) ENs(2W), z=2z(y) EUs(8y). We have to show that

(6.21) z=z(y) E B(A).

Suppose on the contrary that z € 38— 3(A). Then expz €K, for some i=1,2,.... Since
xy€X there is a €x§F,,,,(1)NX. Now let 7>1 be so big that

de 1<0.16; e'>t.
It follows from the definition of X that there is 7=7; such that
a,=ag'€X, x,=xg €X,.
Set 1=¢", y,=x38",a, € F q, (). We have from the definition of X;
AY;Na Fy, (0)/A(F,, (1)) = 1-0.2r
AYNx, F, (D)/AF, (1) =21-0.2r=0.8.

This implies via (6.16) that

MY,N 3, Fop (O/AF,, (1) = 1-0.3r
(6.22)

M@(YiNx, F o (D)NF, Fap (/A (1)) = 0.7r

where ¢=¢, ,,y,=x,exp(z+w,), w,=g 'wg’, ||lw,||<de "<0.16,. It follows from (6.22)
that there is c€Y; such that ¢(c)€Y;. Also c¢=x h_ for some h,EFQ‘_(t), h =g 'hg’
for some h€ F,(1). We have from the definition of ¢

@(c) = cexp(z+w,+2)

where w, =g "wg’, ||,||<de "<0.16, and w=1i(z, w,h), Z=%(z, w, h) are as in (6.15),
||1Z]|<0.16; by (6.19). This implies that

d(g(c), cexpz)<0.26;

which contradicts (6.18), since expz €K, ¢, ¢(c) € Y. This proves (6.20) and (6.21) and
completes the proof of the lemma. a
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Now let
W= {wEBW: [w,, h_,] €3(A) for all h_,EHNE_,, A>0}.

Repeating the argument in the proof of Proposition 6.1 and Lemma 6.1 we get the
following

LEMMA 6.4. (1) The space B is a Lie subalgebra of W, normalized by 3(A);
(2) Given 0<6<A there is X(0)cX, u(X(0))>0 such that if x€X(0) then

pu(xexp Us(T+3(A)) exp U5(9)) > 0.

Proof of Theorem 6.1. (1) It follows from Lemmas 6.4 and 6.2 that 9=%8. This and
Proposition 5.3 imply that =%+ 3(A)+$ is a Lie subalgebra of &.

(2) Lemma 6.4 asserts that there is x € X such that u(xexp ls(2))>0. This implies
that u(xL)=1, since zHcxL for every z€ xexp Us(L) and the action of H on (X, u) is
ergodic. This completes the proof. O

7. Algebraicity of u

Let LcG, x€X, u(xL)=1 be as in Theorem 6.1. Let v be the Riemannian volume on xL
induced by a left invariant Riemannian metric on L via the local diffeomorphism
1—xl,1€L. It follows from the definition of L that v is invariant under the action of g on
xL. Also it is invariant under the action of H and W since H and W consistyof unipotent
elements. Here W denotes the Lie subgroup of L. with the Lie algebra 8. We shall
show in this section that v is finite and coincides with u up to a factor. This would imply
that xLx~'nT is a lattice in xLx ™!, x€x~'{x} and u is L-invariant. Write

BA)+H =9, Qsx)=xexpUs()
Ws(x) = xexp Us(2B).

If 0<6<0.1A(x) is sufficiently small then for each y € Qs(x) and each z€ Ws(x) the
intersection W,,(y) N Q,05(2) consists of exactly one point p=p(y, z). Define

W(y)=W(p) = {p(y, 2): 2E€ W;s(x)}
Q@)= 0(p)={p(y,2): y € Qs(x)}

B,x)= U W(y).
yeQé(X)
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We have

Bsx)= U Q@@= U W)
2EW(P) SEQ(P)

for all p € B;(x). We can assume without loss of generality that u(B;,(x))>0.

ProproSITION 7.1. There exists BcBs(x) with v(B)=v(Bs(x)) such that if zE B then
28 "€ By(x) for infinitely many n€Z", where g=g;.

Proof. Since the action of g on (X, u) is ergodic (Proposition 1.12) there is C<B;(x),
#(C)=u(Bs(x)) such that if yEC then yg "€ B,,(x) for infinitely many n€Z". Since
Lc¥(A) there is CcBs(x), u(C)=u(Bs(x)) such that if z € C then

AMCNOQYMQ(@) =1

by Proposition 1.13 where A denotes a Q-invariant measure in zQ, with Q being the Lie
subgroup of L with the Lie algebra .. Pick z,€ C and define

B= U W(y).
yECNQ(zy)

It is clear that v(B)=#(Bs(x)). Now let zEB. Then z€ W(y) for some y €C. We have
d(yg™", zg"")—0, when n— o and yg "€ B;,(x) for infinitely many n € Z*. This implies
that zg™" € Bs(x) for infinitely many n€Z*. O

For z€B let n(z)=min{n=1:zg "€ Bs(x)} and let ¢:B—Bs(x) be defined by
@(z2)=zg~"@. It is clear that the map ¢ preserves v and therefore v(@(B))=v(B)=v(Bs(x)).
This implies that we can assume without loss of generality that g(B)=B. Define

Q={y€ExL:y=zg " for some zEB, 0<k<n(2)}.

The action of g on (L2, v) is measure preserving. Let ¥ be the Borel measure on xL
defined by #(D)=v(D n Q) for every Borel subset DcxL.

LemMma 7.1. (1) »(Q)<oo; (2) u=v/v(Q).

Proof. Let fbe a continuous function on xL with compact support and let f,= [ fdu.
Since the action of g on (xL, ) is ergodic, there is a subset CycBs(x), u(Cp=u(Bs(x))
such that if y € Cy then

n—1
(7.1 S,y = Zf(yg‘i)/n > f, n—o®.
i=0
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Let CreBy(x), u(Cp=u(Bs(x)) be such that if z€ C; then

MCNQ@NMQ() = 1.

Pick 7€ Crand define

B,=Bn U W(y)
yECfﬂQ(Z')

Q={w€Q:w = zg~* for some Z€B, 0<k<n(2)}.

We have »(Q)=v(Q). Now let z€ B;. Then z € W(y) for some y € Cy. We have
d(zg™", yg ") >0, n— .
This and (7.1) imply that
S,,,f(Z)—US,, n— o
for all z€ By, since fis uniformly continuous. Also
(7.2 S, r(@—f, n—>x

for all w €Qy. Now let f be nonnegative with f,#+0. It follows then from the Fatou’s
lemma that

fv(QQ) = j;dvslimf S,,yfdv=ffdv<oo.
o Q

n—©
27

This proves that v(Q)<o. Now we use (7.2) and the Dominated Convergence Theorem
to get

f,,=ffdv=fSn,fdvefﬁdv=v(9)f#
Q Q Q

for every continuous function f on xL with compact support. This proves that
u=vv(Q). O

Proof of the Main Theorem. In view of Lemma 7.1 it remains to prove that v=v.
To do so it suffices to show that for every p € xL

V(O 15(p)—)=0
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where O,(p)=pO,(e) and O,(e) denotes the ball of radius y in L centered at e. Let
BcB,(x) be as above and let BcB, v(B)=v(B) be such that if y €B then

ABONW))AW(y) =1
where A denotes a W-invariant measure on yW. Define
Q= {w€Q: wg "€ BNB,,(x) for infinitely many n€Z"}.

We have »(Q)=w(Q), since u=7=/v(Q) and the action of g on (Q, x) is ergodic. If v €Q
then W,i4(w) g "< W(y) for some n €Z* and some y € B. This implies by the definition of
B that

AW 0(0) g " NBYAW,g4(@)g ™) = 1
and hence
AW g5(@) N QAW o s(w)) = 1
for all w €Q, since Q is g-invariant. Now let
Q= {wEQ:AQNQ,05(@)/AQ 05w =1}
We have
(7.3) wQ) = v(Q)

by Proposition 1.13, since #=u is Q-invariant. It follows now from the definition of Q
that if @ €Q then

(7.4) Y(Bs(w) N Q) = v(Bs(w)).

Here Bs(w) is defined to be n(@Bs(e)), where @ €n~'{w}, = denotes the projection
a(h)=Th,h€ G and Bj(e) is defined by 7(XBs(e))=Bs(x), €~ {x}. It follows now from
(7.3) and (7.4) that

W(Bs(w) N Q) = v(Bs(w))

for all w € Q. Now let p € xL. Then we can find x=w, ..., w, such that ;€ Bs(w,_)N Q,
i=2,...,n and O, s(p)=By(w,). This implies via (7.4) that

V(Oo_w(p)_g) =0

and proves that v=v7.
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We have just proved that LcA. This implies that 8=2(A), since 2(A)c{ by the
definition of 2. Therefore L=A°. Now let us show that xL=xA. Indeed, suppose on the
contrary that there is o € A such that xa ¢ xL. We have o"'La=L and hence xLa=xaL,
xLanxL=. This implies that #(xLa)=0. This gives a contradiction since the action of
o preserves u and u(xL)=1. This completes the proof of the main theorem. O

Proof of Theorem 2. Let u be an ergodic algebraic joining of uV on (X;=I'\Gy, 7))
and u® on (X,=I,G,,v,). We have u(xA)=1 for some x=(x,x,) EX=XXX,,
where A=A(u)cG,XG,. Let H={z,€G,: (z,,2,) EA for some z,€G,} and let H(d)=
HNO(G,). We have

ﬂ(xl Oo(Gl)XXz) = ,u(xl H(a)xXz)
if 0>0 is sufficiently small. This implies that
v,(x; 05(G,)) = v,(x, H(O))

since u is a joining. This implies that Os(G,)=H(J) since H is a subgroup of G; and v; a
Haar measure on G,. Therefore G,cH, since G, is connected. This implies that for each
h€EG, there is h € G, with (h,h) € A. Applying the same argument to G, we get that for
each h€G, there is h€G, with (h,h) EA. Then (h, hA,)cA, where

A=A, ()= {2€G,:(e,2) EA}
and hence
(e, hA,h")c A, hA,h7'cA,

by the definition of A,. This proves that A, is a normal subgroup of G,. Similarly, we
show that A, is a normal subgroup of G,. We have

(h,hAg) = ({h} XG)NA.

Define a(h)=hA,. We have a(u’)=u®A,, since u=u™®,u®)€EA. Also a is a continu-
ous, surjective homomorphism from G, onto G,/A,. We have

&I h)=&T)ath), hEG,
(7.5)

EIr)= U A(y)
yETL,
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where A(y)=T;ca(y) for some ¢ € G, and A(y))=A(y,) if A(y,)NA(y)+2. Thus
&I = ‘91 A,

where A;=A(y;) for some y;ET; and A;NA;=2 if i%j. Also for y=I';h we have

1.6 50) = 50 = U A ath) = UA()

Now let u, be the probability measure on X, such that

wC)= f u,(C,) dv,(y)
X,

1

for every measurable C—X;XX,, where C,={z€X;:(y,2) €C},y€X,. We have
7.7 /uy(A) = ,uy“m(A“(Z))
for all measurable AcX,, since u is u=(u?, u?)-invariant. Define

f(y) =max{u (A (y):i=1,2,...}.

1t follows from (7.7) that fis constant on orbits of u” and hence f(y)=8>0 for v;-almost

every y €X;, since the action of u® on (X,,v,) is ergodic. Now let

C={(y,2) EX: z€EA(y) with u,(A(y)) =B}.

The set C is u-invariant and u(C)>0. Therefore u(C)=1, since the action of u on (X, w)
is ergodic. This implies that u,(A{y))=u,(A{y)=p for all i,j=1,2,... and 1;-almost

every y€X,. This proves that there exists n=1 such that

aw=gAm)

for all y € X;, A(y)NA(y)=D, i#j, since the union in (7.6) is a disjoint union. We have

E(rl) = —L_—J1 A,'

where A;=T;ca(y;) for some y;ET,, i=1, ..., n. This and (7.5) imply that for each y€ET,

there is y; such that

(7.8) a(y)a(yy)E(c'T,0A,=T5.
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Let ¥y=a(T)nT5. Expression (7.8) shows that for every a(y) € a(I'y) there is aly;) with
aly) a(yi_l)EI‘o. Therefore a(f)={T,aly):i=1,...,n}. Also Fyaly)*Laly) if i%j,
since T, ca(y)+T,ca(y;). This shows that n=|[(\a(I';)| and completes the proof of the

theorem. a
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