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1. Introduction 

Let Pl . . . . .  Pm E Z[z~ ... . .  zn]=Z[z] without common zeros in C n. Hilbert's Nullstellensatz 

ensures that there is b E Z + and polynomials q~ .. . . .  qm E Z[Z] such that for every z E C ~ 

(1.1) b = pt(z) qt(z)+... +Pro(z) qm(z). 

The explicit resolution of the B ezout equation (1.1) consists in giving an algorithm 

to find such polynomials q~ .. . . .  qm. One such algorithm is due to G. Hermann [18] and 

Seidenberg [33]; another one, very effective, has been developed by Buchberger [12]. 

Masser-Wiistholz [28] used Hermann's method to estimate the degree and the size of 

the polynomials q./, and the size of b. Denote by h(P) the logarithmic size of a 

polynomial P E Z[z], i.e., h(P)=the logarithm of the modulus of the coefficient of P of 

largest absolute value. They showed that using the Hermann algorithm one could find 

qt .....  qm satisfying: 

(1.2) max(deg q)  ~< 2(2D) 2~-1, D = max(degp) 

(1.3) maxOoglb],h(q))<.(8D)4• h=maxh(p).  

Recently, using a combination of methods from elimination theory and several 

complex variables, Brownawell [10] has obtained an essentially sharp bound for the 

degrees of polynomials qj satisfying (1.1): 

(1.4) max(degq) <<.ltnD~'+l.tD, g = inf(n, m}. 

(1) This research has been supported in part by NSF Grant DMS-8703072 and by the AFOSR-URI Grant 
870073. 
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Later on, Koll~ir [22] has succeeded in obtaining an even sharper bound using only 

algebraic methods: 

(1.5) max(deg qj) ~< D ~', 

with p as in (1.4). To be completely correct, the inequalities (1.4) of Brownawell and 

(1.5) of Koll~ir are slightly more precise, we refer to the respective papers for the 

details. Later on we will state the precise version of the Nullstellensatz from [22, 

Corollary 1.7]. 

To be able to compare the nature of the algorithmic approach in [12] and the 

construction from [10], a word is necessary about Brownawell's polynomials qi. (The 

polynomials in (1.5) are obtained by a non-constructive argument.) First one proves 

that there exist q*E C[z] satisfying the equation (1.1) with b= 1, with degrees bounded 

as in (1.4). These q* are obtained as integrals over the whole space C n of some 

conveniently constructed kernels. In some sense we whould say the q* are given by 

explicit formulas, but these formulas do not constitute an algorithm. One also obtains 

an upper bound for the absolute value of the coefficients of the qT. This follows from 

the effective bounds for the constant cl appearing in the Lojasiewicz' type inequality 

[10], [30] 

(1.6) ( ~ [pj(z)[2) l/2 >~ Cl( l +l[zH) ~-(n-1)D". 
j = l  

Since the pj have integral coefficients, the existence of q7 implies the existence of 

b EZ +, qjEZ[z] satisfying (1.1) and (1.4); this is simply linear algebra. Namely, the 

equation (1.1) (with b= 1) can be written as a system of linear equations with integral 

coefficients for the unknown rational coefficients of the qj, once the degree of them has 

been estimated. Therefore, we might as well apply this principle with the estimates 

(1.5). One could then ask what is the size of b E Z § and of the polynomials qiEZ[z] 
obtained by solving this system of equations. Setting 6=D ~', and using a lemma of 

Masser-Wiistholz ([28], Lemma 1, section 4) one obtains the estimate 

n+6 n+6 
(1.7) max(logb,h(qj))<~m( 6 ){h+logm+log( 6 )}.  

For m>~n the order of magnitude of the right hand side of (1.7) is essentially 

menD n2 
(I .8) n,,_(l/2 ) (h +log m+ n 2 log D). 
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Note that in special cases where a better estimate than (1.4) is possible, then this 

same Lefschetz' principle provides a better bound in (1.7). Such is the case studied by 

Macaulay [23], [25], when the polynomials p~ . . . . .  Pm have no common points at infinity. 

Then one can find qj satisfying the estimate 

(1.9) deg qj <~ n ( D -  1). 

The corresponding estimate for a and h(qj) is essentially 

(1.10) max(log b, h( qj) ) <~ mn" D"( h + log m + n log n + n log D). 

As soon as there is even a single common point at ~ for Pl .....  p,,, the estimate (1.9) is 

false. This is precisely the situation for the example of Masser-Philippon in [10] 

(I.11) p , = y .  . . . . .  p~162 

for which the best estimate possible for degqi is D " - D  "-~. This example shows that 

(1.5) is practically best possible (cf. [22] for an optimal version). 

One of the objectives of this paper is to obtain a better bound than (1.8) for the size 

of b and the qj. The idea is to use that the choice of qj is not unique and that by losing a 

little bit in the estimate of the degrees of qj, xln2D n instead of D n, the size estimate is 

basically (1.8) where D n2 is replaced by D ~2~ (• x 2 absoslute constants), see Theorem 

5.1 below. 

Our method also depends on complex function theory, except that we have 

succeeded in obtaining by this method a solution qj, b lying directly in Z[z], Z respec- 

tively. Z can be replaced by the ring of integers of any number field. The formulas we 

introduce can also be used to study the question of finding a division formula in C[z] as 

we have done elsewhere [7]. 

The interest of sharp estimates for the degree and size of the polynomials q~ 

appearing in the Nullstellensatz lies in applications to Transcendental Number Theory 

and Computational Geometry. For the last application, it would seem that the algo- 

rithms of Buchberger type can be modified to take into account estimates of degree and 

size (see [13]). Purely algebraic methods appear to be able to improve bounds obtained 

by analytic methods as well as give insight into the algorithmic questions. Such has 

been the case in the period between the two versions of this paper, and we have 

certainly profited from the work of Koll~ir [22], Ji, Koll~ir and B. Shiffman [21], and 

Philippon [32] that appeared between August 1987 and now. One particularly simple 

and tantalizing question which we would like to pose is finding the sharp estimate for 
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the number of arithmetical operations needed to decide whether a system of n quadratic 

equations (with integral coefficients) in n variables has or does not have a solution in C ~ 

(or in R"). 

Apart from the intrinsic interest of the result obtained here, we would like to point 

out the power of the explicit integral representation formulas of the Henkin type, even 

when dealing with problems that are algebraic in nature. Another feature of this paper 

is the crucial role played by multidimensional residues, used as a tool in computations 

and not purely as an abstract concept, as they had been used essentially until now (see 

also [I] and [7]). 

This paper was written while C. Berenstein was on a sabbatical leave supported by 

the General Research Board of the University of Maryland and A. Yger was a visiting 

professor in that institution. An announcement of the results herein appeared in [9]. 

We would like to thank Dale Brownawell, Patrice Philippon and Bernard Shiffman 

for many useful remarks. 

w Residue currents 

We incorporate in this section some results of Complex Analysis which form the basis 

for the rest of the paper. We start by fixing some notation that will be used throughout. 

Let f=(Jq . . . . .  f,) be a C"-valued function, mEN" a multi-index of length 

]m I = m ~ +... + m,. For an integer p E N * we let _p = (p . . . . .  p). Then we denote 

(2.1) 

fm=fT'...f~", F=f l . . . f  ~, 

aS= ay, ^ . . .  ^ a,", = ay,., 
j = l  

tl _ 

Ilfll = Ifjl0 '/2 

k=l ~Zk azk 

n 

k=l aZk 

dy= ay,^...^af,, afj= ayj+ fj, 

where a/azk, a/agk are the standard first order complex derivative operators [17], [20], 

and the functions fj are continuously differentiable. Note that dz=dzlA...Adz, and 

dg=d~iA...Ad~, are particular cases of (2.1). Also note A~= l is always understood in 

increasing order. 

If Q is a (1,0) form, i.e. Q(r = Z~= l Qy (r d~, then aQ is a (1, I) form, and there is no 
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ambiguity in writing for k E N 

(2.2) (~Q)k= aQA...A~Q (k times) 

since (l, 1) forms commute for the wedge product ((aQ)~ 

The space of differential forms of type (j, k) with smooth coefficients of compact 

support in C ~ is denoted @j,k. ~0E @j,k is called a test form. The dual space of 

~n-j,~-k, @'~-j,~-k, is called the space of currents of type (j, k). It can be identified to 

the space of differential forms of type (j, k) with coefficients in the space ~ '  of 

distributions in C ~ [24]�9 

Given n entire holomorphic functions fj defining a discrete variety V = V ( f ) ,  

V: ={zE Cn: fl(z)=...=fn(z)=O}, we can define the Grothendieck residue current ~(1/f) 

as the current of type (0, n) defined on test forms tp E ~ ,  0 by 

(2.3) ( a f ,  q~) = lim~_~0 (-1)~(~-~)/2(2:ri) ~ 2"fc, 'Fl2('~-I)c~f^cP' 

where F=fl  ..... fn and the meaning of the integral on the right hand side of (2.2) is the 

following. First, it is well defined as a holomorphic function of 2 for Re2> 1. Then, the 

product 2~fc ~ IFI 2(a-'~f^ ~ can be analytically continued to the whole complex plane to 

become a meromorphic function of 2, which is holomorphic in a neighborhood of 2 =0. 

In fact, the limit in (2.3) is just the evaluation of this analytically continued function at 

2=0 (cf. [7]). This coincides with the usual definition of the Grothendieck residue 

current [15]. If we want to emphasize the components of f we will write 

In particular 

-1  
= A a - - .  

aZ^...-1 
f L 

Note there is no contradiction between this notation and (2.1). If the holomorphic 

function fj is such that 1/fj is differentiable, it means that J~ has no zeros. Therefore the 

usual differential form a(1/fj)=0, but the Grothendieck residue will also be zero since 

V=O. Furthermore, this observation holds in a local sense also, that is, if supp q9 N V=~  

we have ( ~(1 If), cp ) = O. 

If3~ ..... fn are polynomials defining a discrete (hence finite) variety V and if h is a 

function which is C | in a neighborhood of V we can define the action of ~(1/f) on the 
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form h dz by 

where q~ E @, q0 = 1 on a (small) neighborhood of V. When h is actually holomorphic in a 

neighborhood of V then 

(2.4) ( g f ,  hdz):=lim 1 I f  h(Z)fl(z) dz - l i r a  l f f  dz 
e~0 (2Jri) n i=e .f,(z) ~-,0 (2~ri)" I =e h F ' 

where { / f l=e)  is the smooth cycle {zE C": If(z)l=e,  l<~j<~n)) defined (by Sard's theo- 

rem) for 0<e outside a negligible set, and it is taken to be positively oriented (that is 

d(argfl)A...Ad(argf,)~O on If I--e) (cf. [17], [37]). Furthermore, once 0 < e < < l ,  the 

limit coincides with the integral over {Ill=e}. 
It follows from the fact that the current g(1/f) has support in V that for q~ E 

co,r r 

where the interior sum takes place over multi-indices a, la]<~N, Ca,r In case the 

point ~ E V is a simple zero then ca, r for a~=O and Co, r 1/J(~), J(~)=the determinant 

Jacobian a(fl  ...fn)/a(zl ... Zn) at z=~. More generally, we have the identity ([14], w 1.9) 

for q~E~: 

(2.6) 

where m~ is the multiplicity of ~ as a common zero of fi  . . . . .  fn. Here we use the fact 

that a current can be multiplied by a smooth function g by the rule ( g J ( 1 / f ) , 9 ) : =  

(a(1/f),gq~). Note this multiplication will also make sense if g is of class C N in a 

neighborhood of V, N the integer from (2.5). We remark that in (2.5) the only 

derivatives that appear are with respect to the variable ~ and not ~ (cf. [14], [7]). 

The identity (2.6) allows us to write Cauchy's  formula in terms of residues. 

Namely, let tp E C~(C n) and consider the functions fj(~)=~Fz~, j =  1 . . . . .  n, for z E C ~ 

fixed. Then we have 

In fact this is a particular case of  (2.6), where V= {z}, mz= 1, J=-1. 
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Another property that will play a role is that 

- 1  
(2.8) f j a - y  = 0, j = l  . . . . .  n. 

Therefore, ~(1/f) vanishes on the Co-submodule of @r 0) generated by j] . . . . .  fn. 
The three properties (2.5) (conveniently modified), (2.6), and (2.8) hold also for 

entire functions fj. 

LEMMA 2.1. Let K be a subfield of C, fa . . . . .  f ,  E K[z] defining a discrete variety V, 
g E K[z]. Then 

Proof. By (2.6) we have 

Z mr g(~) E K. 
r 

~vmr (J~ f ,  gdzl �9 

By elimination theory [36] 

depending only on the j th  variable such that 

there are polynomials qi . . . . .  q, EK[z], qj- a polynomial 

n 

(2.9) qk = Z hk, JfJ' hk,JE K[z]. 
j = l  

Let us denote A=det(hkj)kj. The transformation law for the residue states that for any 

function g smooth in C" one has: 

(~ f ,  g d z ) = ( A ~ l ,  gdz I, 

(cf. [7, Proposition 2.5]). In particular 

Z m ~ g ( ~ ) = ( ~ l ,  AJgdz). 

To finish the proof, it is enough to show that for any monomial za=z~ I ... % zn, we have 

(~(1/q),z~dz) EK. To compute this value we can apply (2.4): 

/ ,--,0 (2sri) n i=, q l ' " q n  
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[I '"  1 f o = l l m -  / Zj 
j=l ,-~o 2xi J]qjl= e qj(zj) 

n( = E rest /qj(t) , 
jffiJ qj(~)=o 3 

where res# h denotes the usual one variable residue of the function h at the point ft. The 

easiest way to compute the inner sums is to recall that, for rational functions of one 

variable, the sum of the residues over all the poles plus the point at ~ is zero. Therefore 

E re s t /qj(t) = - r e s  taJ/qs(t) = a_ t, 
qj(fl)=O p 

where t~J/qs(t)=att%...+ao+a_l/t+a_2fl2+.., in a neighborhood of ~.  The coefficients 

ak are rational linear combinations of the coefficients of qj. Hence each sum is in K. [] 

COROLLARY 2.2. Let K be a numberfield o f  degree e, f l  . . . . .  f , ,  g as in Lemma 2.1. 

Let ~0=(~ . . . . .  ~ )E V, then g(~0) is an algebraic number o f  degree <<.e(Er162 I f  

maxjdeg fj=D then the degree o f  g(~o)~eD ~. 

Proof. Let M=Er number of finite zeros of fl . . . . .  f , ,  and denote 

~ ... . .  CM these zeros, each repeated according to its multiplicity. Then the polynomial 

1-[MI(X--g(~j)) has coefficients in K. In fact, the symmetric functions of g(r can be 

written as rational combinations of the elementary symmetric functions (Newton sums) 

[36], i.e., as rational combinations of 

M 

g(r = E 
j = l  ~'EV 

by Lemma 2.1. The last statement follows from Bezout's theorem. 

LEMMA 2.3. Let K, fl  . . . . .  f ,  as in Lemma 2.1. Let rEK(z) without any poles on V, 

then (a(1/f),rdz) EK. 

Proof. Let ql . . . . .  qn be the same as in the proof of Lemma 2.1. Let r=g/p, g, p 

coprime polynomials in K[z], V(p,f~ ... . .  f , )=~ .  The difficulty in carrying over the proof 

as in Lemma 2.1 consists in that p could vanish on some points of V(q~ . . . . .  qn) \V .  (In 

the application of the transformation law for the residue one had to assume h was 

globally smooth, it would be enough to know it is smooth in a neighborhood of 
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V(qt ..... q,) but  if  r has  a pole  the re  we canno t  app ly  tha t  fo rmula . )  W e  first  show we 

can in fact  a s s u m e  this is not  the  case .  

L e t  N be  the  in teger  def ined  b y  (2.5) and  cons ide r  the  po lynomia l  

(2.10) P = 20p+ 21fN+l +.,. + ;t~f~ +l. 

By L e m m a  1 f r o m  ([281, sec t ion  4), we can  choose  2o . . . . .  ;t, E Z  such tha t  P does  not  

vanish on V(ql ..... qn). In  par t i cu la r  ;t0:~0. T h e r e f o r e  we can  set  ;to = I and ;~ . . . . .  2 ,  E Q. 

F r o m  (2.5) it fo l lows now tha t  

f P  

since g/p and g/P coinc ide  and  have the s a m e  der iva t ives  up  to o rde r  N at  each  point  

o f  V. 

Since we are  now a s suming  tha t  r has  no poles  on V(q~ ..... qn) we have,  as in 

L e m m a  2.1, 

(O f ,  r d z ) = ( O 1 ,  Ardz> �9 

This t ime Ar is a ra t iona l  func t ion ,  hence  we canno t  r educe  ourse lves  to  the  case  o f  

monomia l s  as in L e m m a  2.1. T o  o v e r c o m e  this diff iculty let us fac tor ize  each  qj in K[t] 
into i r reducible  fac tors :  

(2.10) qJ= qjn, ... qjn~, qj, kEKtt], S = s(j), n k E Z  +. 

F r o m  (2.4) we can  take  0 < e < < l  so that  A(z)r(z) is ho lomorphic  in {Iqjl<~e, l~<j~<n} = 

{[ql~<e} and 

< 1 ) =  1 ~ A(z)r(z)dz 
c5 , Ar dz (2Jri)" i=, qt(zl) ... q,(z,) " 

This integral  can  be  c o m p u t e d  one  var iable  at a t ime.  Fixing z ' ,  z '  =(zz . . . . .  z,), we have 

fq h(z 1, z') f ,  ( 2  h(Zl'Z')/[ql(Zl)/qnl~k(Zl)]~ (2.11) l_~ dzi = ~ res  -------------~ - �9 
2~ri l(Zl)l=e ql(zt) k=l \ql,k(a)=OZl =a (ql k(ZO) ,] 

Fix k, let v=nk, Q=ql,k, A = n u m e r a t o r  in the in ter ior  sum of  (2.11). The  ze ros  o f  Q 

are all s imple ,  let  t h e m  be  cq . . . . .  % .  W e  can  fac to r i ze  Q(t) as fol lows: 

Q(t) = ( t - a  0 (Q'(aO+...) = ( t -a  0 Rl(t), 



78 C. A .  B E R E N S T E I N  A N D  A .  Y G E R  

Rl(t) is a polynomial in t with coefficients in K[a~]. For  a different root aj we will have 

Q(t)=(t-aj)R~(t), where the coefficients of  Rj are obtained by replacing al to aj 

everywhere in the computat ion of  R~. The function A is holomorphic at t=ct 1 . . . . .  a~, 

since the different irreducible factors of  ql have no common zeros. Therefore  A(t)/Q(t) 
has a pole of  order  exactly v at t=a~. 

A(t) 1 cF -1 A(t) 
(2.12) res - -  - - -  

t=al (Q(t)) ~ ( v - I ) !  dt v-1 (R~(t)) ~ t = a  I 

This expression is now a rational expression in cq (and z') with coefficients in K, such 

that the residue at t=aj is obtained simply by replacing a 1 by aj everywhere.  Therefore  

A(t) 
Z res 

qi.k(a)= 0 a (ql,k(t)) nk 

is a rational function in K(z'). Furthermore ,  we note that the portion of  the denominator  

of A(t) which depends on z' is p(t,z'). The expression (2.12) will have a common 

denominator which is p(al, z')L Hence the inner sum of  (2. I 1) has no poles for z' a zero 

of the product  q2(z2).., q~(z~). The same thing holds therefore for the expression (2.11). 

Now we can iterate the procedure  and conclude that (g(1/q) ,Ardz)EK.  Hence  

( O(1/f),r dz) E K. [] 

Remark 2.4. Later  on we will need a quantitative version of  the fact that 

(0 ( l / f ) ,  rdz) E K. For  this purpose we will use the local character  of  the residue current  

0(l / f) .  That is by using a partition of  unity {q0r we have 

(~(1/f) ,  r dz) = Er v (a(1/f) ,  q~ r dz), 

~vr near ~. We can further  assume that r is the only zero of  V(q~ . . . . .  qn) lying in the 

support of  q0r and that r is holomorphic on supp ~ .  Therefore  for each term of  this sum 

we can apply the transformation law for residues without changing r at all, i.e., 

(2.13) (a  f ,  r d z t = ~ v ( O 1 ,  A r c p c d z t = ( O + , A r d z t v ,  

where we have introduced the last notation to indicate it is only the points of  V that 

count. Note there are many less points in V than in V(q~ ..... qn). In the first case one 

has at most D n points, while in the second one might have as many as D "2 points. 

In Section 3 we will need the following result from [7]: 
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THEOREM 2.5 (cf. [7, Proposition 2.4]). Let fl . . . . .  f ,  be n polynomials in C" defining 
a discrete variety V, q7 a test function, m an n-tuple of non-negative integers. Then the 

function defined for Re2 sufficiently large by 

2 (--1)n(n-1)/2 I IFiZ(n+lrnl)2 
(2.14) n2 fm ffff ̂  qJ dr 

(2hi) n J lifll =~"+lml) 

has an analytic continuation to the whole plane as a meromorphic fuction. Moreover, 
this continuation is holomorphic at 2=0 and its value at this point is given by 

mt ) 
(2.15) (n+lml)! \ fro+! q~d~ , 

where m!=ml! ... m,!, m+_l=(mt+ l  . . . . .  mn+ 1). 

w 3. Division formulas 

The division formula we obtain here generalizes our previous representation formulas 

for solutions of the algebraic Bezout equation. We had originally considered them from 

the point of view of deconvolution (cf. [3], [5], [6]). The same techniques can be applied 

to entire functions, but to simplify we will only consider the algebraic case [7]. 

Throughout this section we will assume we have M polynomials Pl . . . . .  pMEC[z] 

such that 

(3.1) M ~ n ,  

and that the first n satisfy the following property: 

(3.2) 
3 •  c > 0  and d > 0  such that when ll~ll>~ n we have 

( j=~l IPJ( ~)12 ) l/2 ~ ctl~lld" 

Since the first n polynomials play a special role, it is convenient to adopt the 

notation f = ( ~  . . . . .  fn)=(pl . . . . .  pn), hence (3.2) can be written as IIf(~)tl~>cll~l( and it 

implies that the variety V= V(f)  is discrete. We also let 

(3.3) max (deg fj) = D. 
l <~j<~n 

For every polynomial pj (I~<j~<M) we can find polynomials gj,k of 2n variables, 
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with degree ~<degpj in each variable, such that for every z, ~ E C n we have 

(3.4) pj (z ) -p j  (~) = ~ gj, k(z, ~) (z~- ~k)" 
k=l 

For instance, we can take 

& k(z, ~) = pj(r . . . . .  r z~ . . . . .  z , ) -p j ( r  . . . . .  Ck, zk+~ . . . . .  Zn) 
' Zk-- ~k 

If pj E Z[z], d e g p F D  j , then gj, k E Z[z, ~], deg g~, k~<Dj and h(gj, k)<<.h(pj) +2n log(Dr+ 1). 

THEOREM 3.1. Assume  (3.1) and (3.2) hold. Let  P be a polynomial in I(pl ,  ...,pM) 

and let Ul . . . . .  uM be any funct ions holomorphic in a neighborhood s o f  V such that 

(3.5) P=ulp1+...+uMp~ in ~ .  

Then for  q E N satisfying 

(3.6) dq >I d e g P + ( n -  1) (2D-d)+ 1, 

and, for  any z E C n we have 

P(z) = Iml~q -n~ fm+!' j=l ~ Uj [ gl n(Z' ") "'" gn, n(Z'') gj, n(Z,') dr frn(z) 

I f , ( z ) - f , ( . )  . . .  L ( z ) - L ( . )  p j ( z )  

(3.7) 

where m E N ~, m+ 1_ =(ml+  1, m2+ 1 . . . . .  m,,+ 1), and the dot in the determinant repre- 

sents the variable ~ on which the residue current ~(1/f m+!) acts. 

Remark  3.2. (i) The only term in the sum (3.7) that a priori might not belong to 

1(pl . . . . .  pM) is that one corresponding to m=(0  . . . . .  0). In that case the development of  

the determinants along the last row shows that either one has a multiple of  pj(z) for 

some j, I<.j<.M, or a multiple of  3~(~) for some j, l<~j<~n. This last type of  term vanishes 

since ~(1/f) annihilates the ideal generated by the fj. Therefore (3.7) has the form 

P(z) = A l(Z) P1(Z) +...  +Am(Z) PM(Z). 

(ii) In the case M = n +  1 and V(pl . . . . .  pM)=f~ this theorem improves upon Theorem 

3 [6] and its applications in [3]. 
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(iii) Note that the conditions (3.5) and P EI(pl . . . . .  PM) are equivalent by Cartan's 

Theorem B [20]. 

Example 3.3. Le t  M = n + l ,  V(Pl ..... p,,+l)=(~, pjEZ[z]. For  P=I we can take 

u l = . . . = u , = 0 ,  u,+l=l/p,+ 1. In that case Lemma 2.3 implies that (3.7) gives a Bezout 

formula in Q[z], that is 

1 = pl(Z) A l (Z )+ . . .+pn+l ( z )An+l (Z )  

with Aj E Q[z]. Note that the result remains true if Q is replaced by a number field K and 

Z by the field of integers 6K of  K. 

Proof of  Theorem 3.1. The germ of the idea of this proof goes back to our papers 

on deconvolution [5], [6] except that here we have to deal inevitably with multiple 

zeros in V. In the recent past we have found that the best way to treat this question is 

through the principle of analytic continuation of the distributions [fl 2m~ as functions of 2 

[7]. We also use the recent work of Andersson-Passare on integral representation 

formulas [2]. 

Let  us fix once and for all 0 E @(f2), 0 =  1 in a neighborhood of V. 

Let  Q> 1 so that f~e = {~ E cn: II~II<Q} _~supp O u {z}. Let  )~ E @(f2 e) such that g = 1 in 

a neighborhood of supp t9 U {z}, O~<Z~<I. 

Consider the differential form Q0 = Qo(z, ~) given by 

? /  - - 

(3.8) Qo : = "  . . . . .  Ej=,(~j-zj) d~j 
t , - z t ~ ,  ii~_zll----~ 

l f w  is an open set such that zEw and Z=I  on to then Q0 is C ~ in w•  n. Let  

(3.9) F0(t) = (1 + t) N, 

with N any integer >n .  

For 2EC,  R e 2 > l + l / n ,  let Ql=Ql(z, ~,2) be the differential form (with the nota- 

tion of (2.1)): 

n 

(3.10) Q1 := IF(~)l 2a z~=,f~(r a j  
iif(~)llz ' 

where the differential forms Gj=Gj(z, r are given by 

(3.11) Gj := ~ gj, k dCk . 
k=l 

6-918285 Acta Mathematica 166. Imprim6 le 15 f6vrier 1991 
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The coefficients of Gj are therefore polynomials in z and ~. Q1 is of class C 1 and a 

polynomial in z. If we let Re 2>> 1, we can make Q1 of class C t for any l given. With q as 

in (3.6) let 

(3.12) Fl(t) = (1 + t) q. 

Finally, define a third differential form Q2 = Q2(z, ~) by 

M 

(3.13) Q2 := 0(~) E u~-(O Gj 
j=l 

and let 

(3.14) r2(t) := t. 

These three differential forms are of type (1,0) in ~, hence they can be associated 

to C~-valued functions, simply take the coefficient of d~j as its jth component. Using 

their bilinear products with the vector valued function z - ~  we can construct three 

auxiliary functions q)j. We have 

(3.15) qb0 := (Qo(z, ~ ) , z -~)  = (1-Z(~)) 2 (~j-~j)(zj-~j)=Z(~)-l ,  
I I r  ~ i~, 

n 

~1 : =  (Ol( z, ~ , Z ) , z - ~ }  - IF(OIZ~ ~f~(r z-r 
IIf(U)ll 2 j=, 

(3.16) - ]F(~)12x 2 g ( r  gj, k(z, ~)(zj-r 
IIf(~)H 2 2=1 

n 

_ tF(r 2a E~( r162  ' 
IIf(r  2 j=, 

by (3.3). 

The last one is given by 

M 

(3.17) ~2:=(Q2(z , r162162162162 
j = l  

Note that in a neighborhood of V we have qb2=E~l uj(~)pj(z). 
As a function of ~ consider the product 

(3.18) r ~ q~ = F o ( ~  o) Fl( t~ 1) F2(~2),  
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for z fixed and 2 fixed, R e 2 > > l ,  this is a C "+l function of compact support since 

F0(~0)=g(~) N. Furthermore 

(3.19) q0(z) = P(z). 

We need one more piece of notation: for 0~<j~<2, and 5 a non-negative integer 

denote 

(3.20) ~ ) =  r)a)(z, ~):= d~ Fj(t) . 
dt a t=~/z, ~) 

(Recall that ~1 depends also on 2.) 

The following lemma will allow us to compute P(z) with the help of Cauchy's 

formula (2.7) applied to q0 (cf. [2]). Its proof will be postponed to the end of the proof of 

Theorem 3.1. 

LEMMA 3.2. With the above notation we have, for  R e2>>I ,  

f~ l~(a~ 1-4a0 t2 0 - 

P(z)=(2~i)n qb2(Z'r Z -0 -1 (g~Oo(z,r A(OcQI(z,r ~ 
o ao+al =n 50! 51! 

(3.21) 
1 ~ .  x O  Z l  - a 0 - a I - 

+ (2hi) '~ . . . . .  5o!Cq~ (OcQo(z,~)) A(OcQI(z, r AOcQz(z,r 
O a O + a l  r a n - 1  

The next step will be to study the analytic continuation of this formula as a 

function of 4. For that purpose, we compute explicitly (0r a, l<<.a~n, always for 

Re2>>l .  To simplify we simply write 0 for 0r Let us write first 

Then 

(3.22) 

I1  - 

A -  EJ=IfjGj 
ilfl/Z , Q1 = IFI 2xA. 

(OQ1) k = IFlZXk(OA)k + ZklFI 2<*x-1)F-O-f AA A (OA) k-j . 

A is a C = form off the variety V. The form (0QI)  n c a n  be written in a slightly different 

way by denoting 

j=~ II/ll z~j" 
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Then 

(cSQ1)n = y=l alpjAGj = ( -  1)~"-~)n/2n!j=~A O~OjA Gj. 

We have 

OV2j = IFI2~ -z7 , ~ (  ~.lFI 2~-' ,  22 

Hence 

IFI 2~" ~ IF,2<a.-l) . 

j=lO~J=~ Of+2 Ilfll ~" ~ k<j s<k 

l e i th .  .  .o ^sllill2^ A E. 
Ilfll 2~"+ 1) j ~ l  K J j<k 

Note that OF-Ek<(F/fk)Ofk and gllfll2---r~fkfffk. Since0fkAOfk=0 we have 

(3.23) 

" I FI~" IFI2a" IF122" 
A O~j = ~ a f  + n 2 ~ a f  - Ilfll 2 

j=l [if I[ 2" Ilfll 2" Ilfll 2~'§ 
tFI  2~tn 

= n 2 ~ O f .  

(3.24) 
IFI22n n 

(OQ,)" = (--1)~"-')"/Zn!n2 ~ O f  A A Gj. 
Ilfll J=' 

Following the principle we introduced in [5] we have to transform, using Stokes '  

theorem, some terms in (3.21) to make them more singular. In this case we apply this 

idea to the second term of (3.21), the term with a0=0, a j= n-1 .  Then 

cS(F~oO) F].- l)(cSQi).- 1 ̂  Q2) = VoO)Fie.-1) -(0Q1) .-1 ^cSQ 2 

+r(o 1) F~ "-1) cSZ ̂  (cSQJ) "-I^,, ~2n _~rt~ -,r(")c50, A (cSQj) "-I ^ Q2. 

Recall that F~0 ~ has compact  support in f2 o and that ~x^Q2=0,  since g = l  on suppv a. 

Therefore 

fnr(~176 A(gQ,Y-'AQ2 " - o  - ,  , , - ,~ ;1 ,  , , , . , ~ ;2  ~ 0  --1 
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To' simplify the computation of this last integral, let us introduce polynomials A:,t 
(l<~j<~n, l<~l<~M), and A0, by 

(3.25) G I A . . . A C r j A . . . A G n A G I  = Aj, ld~,  

and 

(3.26) G 1 ̂ . . .  ^G .  = Aod~. 

Note that A~,F(-  I) "-J A 0. 

Now we can compute the integrand above as follows: 

- g ~  ^(gQ0n-'  ^Q2 = -  (f: (z)-fj (~)) g~pj ^ g~Pi ̂  Gj ^Q2 
\ . i  = 1 

=(.1)(~ ^ g~0~ ^~(-1)~(g(z)-g(O) A G, ^Q2 
\ J = l  j=l k=l 

k*j 

= (-1)(~-2)(n-1)/2nt2 If[ ~" ~ 

a ~(-1)J(f~(z)- f i (O)Aj. , (z .  O0(~)u~(O d~. 
I=l 

Recall that we have already computed in (3.24) the term with a0=0 in the first integral of 

(3.21). Let us write now (3.21) as a sum of the contributions from ct0=0 in both integrals 

and the other terms put together: 

(3.27) 

P(Z) = 
(-- 1)(n'l)n/2 n,~. r (~  r(n) 

(2~ri)" ~ ilfll~" Of 

\ j , I  

Let us call T(z, 0 the term between brackets in (3.27). Let us show that in the set 

where O= 1 this term is exactly the determinant that appears in the final formula (3.7). 

First we observe that since on supp# we have P(O=E~I  u~(Opj(O then 

M 
'~'2(z, ~) = ~ ufiOpj(z). 

j=l 
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Now we can expand the determinants in (3.7) by the last row and obtain T(z, ~). This 

function is therefore holomorphic on ~ in a neighborhood of V. 

To evaluate (3.27), we will use the fact that both terms are holomorphic functions 

of 2 for Re2>>l  and that they have analytic continuations to the whole plane as 

meromorphic functions. We will further see that they are both holomorphic at 2=0, 

hence P(z) will appear as 

limR(2, z)+lim (of the first term in (3.27)). 
2---*0 2---}0 

We proceed now to verify these statements for the first term of (3.27). We have 

~ - ~  q 
( q  n ) ! ( d P l + l ) q  n _  

j= l  

iF122k _ q' (qkn)(l_[FI22)q-.-k ~ ~f'(~)fm(z) 
(q-n)! Ilfll 2. Iml=k m. 

_ q, ~(q--n~lFl2xk(q~ k -k  ) k!-m m z 
(q--n)' \ k  ] ~ \  j=0 ( q - J ) ( - 1 ) J l F I 2 ~ '  ( ~  - - f  ( ~ ) f ( ) ~ "  

\lml=k m! ] 

In order to apply Theorem 2.5, we fix a k, a multi-index m, [m[ =k, and an indexj in 

the expansion of F~ n). The corresponding term in (3.27) is then, up to a factor fro(z), 

( -  lY("-w2 f IFlZ~(J+k+") fm ~f ̂  (zNT) d~, 
(3.28) (2~ri) ~ n2 Ck. mj [ifll2t~+lml) 

fie 

where 

Replacing 2 by 

Ck'mJ=(--1)Y(q--n)! rn! -k ,, j /" 

n+lml 
j+k+n ) 2, 

we are in the situation of (2.14) up to the new constant 

, ( n + k )  
Ck'mJ= n+k+j Ck'mJ" 

(Note Z = 1 in a neighborhood of V, hence zNT is holomorphic there.) Therefore, by 

Theorem 2.5, the analytic continuation exists, it is holomorphic at 2=0 and its value at 
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this point is 

(3.29) C~k'm'J (n+lm[)! \ fro+! zNTdr " 

Note that the value in (3.29) is independent of the choice ofz .  We need to evaluate the 

constant obtained by adding over all values of j .  

(3.30) 

q-n-kE q~k (. n+k ) 
Ck'm= C'k'm'J= n+k+j Ck'md 

jr0 jr0 

__ q, k, ( q k n ) q ~  k ( J ) (q-n)! m! " j=0 (-1)J  q-  - k  m+k n+k+j 

This sum can be computed in terms of the beta function. Namely, 

q-n-k ( q - n - k ]  l fo 1 
;__~o (--1)J \ j / n+-k+j 

(l__U)q-n-kun+k-ldu 

= B(n+k, q - n - k +  1) = 

We find 

m~ 
(3.31) (n+lml)! q,m = 1. 

(n+k-1)!(q-n-k)!  
q! 

Therefore, the value at 2=0 of the first term in (3.27) is exactly the right hand side of 

(3.7). We stress once more that the value we obtained is independent of the choice ofx. 

To end the proof we need to study the analytic continuation of Rift, z) and evaluate 

it at 2=0. We assume first that R e 2 > l + l / n .  In R0., z) we have all terms (3.21) where 

a0>0. Introducing the auxiliary differential forms 

s =  S= 
j=l j=l 

we have 

(3.32) 
~zAS + ( l - z )  { Ej~ 1 d~j^d~j S^S  

~Qo [[r 2 ~k [[r 2 II~---~Z[[4 / " 

This shows that 0Q0 is identically zero in a neighborhood of suppOU {z} by the 

conditions imposed on X. Since there is a factor O in Q2, it follows that all the terms with 

a0>0 in the second integral of (3.21) are identically zero. 
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Consider now the term with ao=n in the first integral. Let  us rewrite 

(3.33) (I)l..~ 1 = 1-IFI2~+IFI 2~ ~ Ojj(z) = 1 -IFIZ% [FIEXB, 
j = l  

where oj=oj(~)=fj(~)/llf(~)H 2. On the support of 0Q0 we have that B is C ~ since Z = 1 on 

a neighborhood of the singular points of IIf( )l1-2, namely V. Since F is a polynomial, it 

follows (for instance by the Weierstrass'  Preparation Theorem or Hironaka's  Resolu- 

tion of Singularities) that on the ball g)o we have that IF[ -~ is integrable for some e>0. 

Whence, the term with a0=n, which is given by 

(2eti)" 

for R e Z > l + l / n ,  and depends on 2 only in the factor (l+tI)l) q, is holomorphic for 

R e 2 > - e .  Its value at 2=0 is obtained simply by taking 2=0 in the expression of qb~. 

That is, the value at 2=0 of (3.34) is 

(2~ri) n dP 2 X U-n Bq( g Qo)n" 
0 

We now have left the case O<ao<n, a~=n-ao, to consider. By (3.22) we have 

(~Q~)~ as the sum of two terms. We study first the one that does not contain the factor 

2. As we have just  shown, A is smooth on the support of ~Q0 and the whole integral is 

holomorphic for 2=0. Its value, obtained by simply setting 2=0,  is the following 

(3.36) l (N) (q ) ft cb2ZN-~~176 
(23ri)n a~ al u 

The other term can be written as a linear combination of integrals of the form 

'~ ~ ] F]2(r;~-I)F-'~AC' 

r an integer ~Gtl, C a smooth form of compact support. By Theorem 1.3 [7], this 

function has an analytic continuation as a meromorphic function of 2, whose value at 

2=0 is, up to multiplicative constants 
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which is the residue on the hypersurface F=0.  Since F divides the test form FC, this 

residue is zero. 

At this point we can summarize what we have just done by saying that 2~R(2 ,  z) 

has an analytic continuation which is holomorphic at 2=0, and 

(3.37) Ro=R(~,z)l~= O- 1 ~ ~ ( N ) (  q ) (2:ri)" n-j  (~2zN-JBq-(n-J)(OQ~ A(OA)n-J" 
t~J =1 

By now we are essentially in the same situation as in the new Andersson-Passare proof 

of the Andersson-Berndtsson integral representation formula (cf. formula (6), proof of 

Theorem 2, [2]). They show we can let Z tend to the characteristic function of g2e and 

use the fact that for a smooth form 9, and r integral/> 1, one has 

Since B=(~I+I)I~= 0 and A=Q~Ia= 0, the formula (3.37) is just the boundary term in the 

Andersson-Berndtsson formula for the single pair (A, t q) (cf. [2], [7]): 

(3.38) ~0 n--1 Ro = 1 r 1 { q ~Bq+j+I-.,,S^(OS)J^(OA)"-t-J 
(2zti)" Z 2fi.\n_l_j/ ii _zllZ(j+,) ' D e j=O 

where 0=0~. 

The last step of the proof is to verify that the estimates on A, B that we can obtain 

from the hypotheses are enough to let 0---~ in (3.38). 

Since llf( )ll >cll ll if II ll x we have that for g>x  the following two estimates 

hold: 

IBI ~ const. II~ll -d, 

Ilargest coefficient of (0A)"-1-J I ~< const.ll~ll z ( ~  

Furthermore qb2=P on af~ 0. If follows that the worst term in the sum corresponds to 

j=0.  From this we conclude that, since 

d e g P + ( n -  1) ( 2 D - d ) +  1 < dq 

by (3.6), the integral in (3.38) tends to zero when Q---)~. 

This concludes the proof of Theorem 3.1, except for the proof of Lemma 3.2. [] 
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Proof of Lemma 3.2. The defining properties (3.18) and (3.19) show that q0 is a C n+l 

function of compact support in f2Q which for a fixed z satisfies cp(z)=P(z). Cauchy's 
formula (2.7) states that 

(3.39) ( O ~@z , q)(~) d~ ) = cp(z) = P(z). 

The proof of this lemma consists in evaluating the residue in the left hand side of (3.39) 

using the particular form of q0. It simplifies the computation of this residue to consider 

the slightly more general form of tp: 

(3.40) q0(r = r(~, (Q(z, ~), z-r 

where F is an entire function of n+v variables (~, t), Q=(Q1 . . . . .  Qv) a vector of (1,0)- 
differential forms in r of class C ~+1, (Q,z-~):=((Ql,z-~) ..... (Qv, z-~)). For a 

multi-index a of v components, we write, as above, 

(3.41) F(~); = D~' ...Ov~vF:= 0n F [ 
Ota I t = (O(z,  r  

Let c~=(-1)(~-n~/2/(2Jri)~. From (2.3) we see that 

(3.42, ( 0 ~ _ 1  Z, q)(r d~) = lim cn/ :  f 1-~I (~j-zj) 
.u -->0 . J  j= I 

2(/x-l) 

qg(~) de ̂  de. 

We compute the analytic continuation of this integral which is originally defined for 
Rep>0. 

One can easily verify that: 

d (  / , /n-I  I]--'[n 2(/~- 1) 

- -  cp( ~) d~2 ̂ ... ^ d ~  A d ~ l  

n 2(p - 1 ) 

=/u n j~= (~j-zj) cp(~)d~^d~ 

n-1 n 2~-1)  

+ ( -  1)~-I ff-~---- [r lZ" l-I(~j-zj) d~2A...Ad~.Agcp^dr 
~l - -Zl  j=2 

Here d, g are only computed with respect to ~. Since the first term is the exact 

differential of a form of compact support, we have by Stokes' Theorem: 
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(3.43) 
f 

~ 2(#-1) 
, 12n (~j--Zj) (p(~) d~^d~ 

Ir ~ n f ~ In-1 (~j--Zj) 12t~'-'~d~2 .̂..̂ d~.̂ gqĴ d~. 
= ( - 1 )  J ~---~- zl j=z 

From (3.40) we have 

g~ -- Dkr %-~j) gQk,j(z, ~) 
k=l j= 

where we recall Ok--~j=l Qk,jd~j. Let us rewrite Oq~ as follows 

v 

(3.44) gq~ = - ( ~ l - z 0  Z Dk F gQk, 1 +R~. 
k=l 

The analytic continuation of the two separate terms obtained by replacing (3.44) into 

(3.43) exists by Theorem 1.3 [7]. The second one is a sum of integrals of the form: 

(l<<.k~v, 2<~i<~n). 

/~"-~ D~r  ( z i - r  dr i^d~. 
r  j=2 

Since the two distributions 

I~-z112~ ' r  -zl ~e-'l 1-~I~=2 (~-z~) I~-~ 

depend on different variables, their analytic continuations as distribution-valued 

meromorphic functions can be multiplied (this is just their tensor product). The 

first one is holomorphic for #=0, the second one leads to the residue current 

g(1/(~2-z2)) ^... A g(1/(~n--Zn)). But the remaining differential form is in the ideal gener- 

ated by the functions defining this current. Therefore the value of this product at #=0 is 

null. 

We can therefore forget R~ and consider only 

(3.45) (--1)n-1/-t n-1 [~-z~[ 2~ (r d~zA...Adr OkFgQk, 1 Ad~. 

In ([7], Proof of Theorem 1.3), we have shown, in a much more general situation, 

not only that the analytic continuation of (3.45) is holomorphic at p=0,  but its value is 
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exactly the same as the one obtained from 

(3.46) (-1)~-'/~ "-' IeI(~;-Zj) d~z^...^d~n^ 2DkFgQk, ,  ^d~. 
j=2 k= l  

(This also follows from the above remark on the product of the distributions of separate 

variables.) It is clear now what the general procedure is, the only point to verify is that 

the factor ( z l - ~ )  does not reappear when we apply Stokes' theorem. For this, it is 

enough to compute v - Ek=I(ODkFAOQk, 1)" 

~ gDkrgQk,,= DiDkF (zi-r i ^cSQk, 1. 
k = l  k= l  j = l  

The term (z1-~1) is the coefficient of Z~k=IDjDkFOQ;,IAOQk. 1 which is 0 by the 

anticommutativity of the wedge product. 

After iterating this procedure a total of n times, and some algebra, one obtains, 

(a=(a, ,  a 2 ..... a~), a!=al! ... %!) 

( g ~ _ l  Z, q0(~) d~) - 1 1r(~)(gQ1)~,^... ^ - ~ (OQ~). 

Note that 0Qj are (1, 1) forms which absorb the d~ term from (3.44). For a detailed 

version of this algebraic computation see ([2], Proof of Theorem 1). The statement of 

the lemma follows from the explicit form of F in this case, we just use that D~F=0. [] 

w 4. On the Noether's Normalization theorem 

In this section we reconsider the classical Noether's Normalization theorem [38]. 

Before we do that we need to recall some well known facts about the heights of 

polynomials in Z[z], 

For a polynomial p(z) = E ral~d Ca za E Z[Z], we let 

(4.1) H(p) = max I%l, h(p) = log H(p), 
ct 

h(p) is called the (logarithmic) height ofp .  Some easy properties of the height followsl 

Let C~=(n~+_d~l)=number of monomials in n variables of degree exactly d and 

Cd=("+~d)=dimension of the vector space of polynomials in n variables of degree at 

most d. We have C~t~<(l+d) n-1 and Cd<~(l+d) ~. 
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Let p, q E Z[z], degp~<d, then 

(4.2) H(pq) <~ Call(p) H(q). 

If one changes coordinates by z=Aw, A an invertible matrix with integral coeffi- 

cients, and defines q E Z[w] by q(w)=p(Aw), then degp=deg q and 

(4.3) 

where IIAIt=max lai, jl, A=(ai, ) .  

H(q) <~ C'a(nllAII)dH(p), 

PROPOSITION 4.1. Let Pl . . . . .  pMEZ[z~ . . . . .  Z,] defining a variety V in C n. Assume 

dimV=k, O<~k<,n-1 (for the sake o f  simplicity, we take here k=0 to mean that V is 

either empty or discrete). Let d=maxl~<j~<Mdegpj and ~=maxl~<j~<Mh(pj). One can find 

an invertible n• matrix A=(ai, j) with integral coefficents such that 

(i) IlAll<~xd3+"r 
(ii) After the change of  coordinates z=Aw, qi(w)=pj(Aw), let ~3 be the ideal 

generated by the qj in Z[w]. There are n - k  polynomials QiE~5 such that 

IQl(W) = d, d,-I ql.O Wl +Wl ql. l(W2 . . . . .  Wn)+... 

q2,0W2 +W2 q2,1tW 3, ..., Wn)+... (4.4) Q2(w ) = d 2 d 2 - 1  . - 

dn k dn k ~1 " 
[,Q,-k(w) = q,-g,o Wn=7+Wn"---k q,-k,l(W,-k+l . . . . .  W,)+... 

with 

(4.5) d I = deg QI <~ d, d i = deg(Q0 <~ ~d i+1 (i >I 2) 

and 

(4.6) h(Q i) <- xdi+ l(~ + d log d), 

where ~=~(n) is an effective constant that depends only on n. 

This proposition is the usual Noether's Normalization theorem with good esti- 

mates on the degrees and heights of the polynomials Qj and on IIAII (better than the ones 

obtained using Elimination theory). 

Remarks. (1) This proposition still holds when the polynomials piE C[z], except 

that in this case we obtain only (i) and the estimates for the degrees di. 
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(2) From now on we will keep the notation u for any effective constant depending 

only on the number of variables n, even if the value of the constant changes from 

occurrence to occurrence. Whenever it is convenient, we will also assume u to be a 

positive integer. 

Before starting the proof we must recall what is a ring with a size (91, t) [32]. 9t is a 

commutative Noetherian ring with identity, Po1(91) is the algebra of polynomials in 

infinitely many variables with coefficients in 91, 91" the set of invertible elements of 91. 

Then the (logarithmic) size t is a map 

t: Po1(91)---~ {-oo} OR+ 

such that: 

(1) t (0)=-o~,  t (u)=0 if uE91*. 

(2) t ( fg )=t ( f )+t (g )  for every f ,  g E Po1(91). 

(3) There are constants c~>l,  c2~>0 so that if we denote t ( f ) : = t ( f ) +  

c21og(m+ 1)deg(f) ,  where m is the number of variables appearing in f ,  then 

t(f l  + . . .  +fk) ~< cl max { t(fl) . . . . .  t(fk)} +c2 log k. 

(4) There is a constant c3~>1 such that iff=r~J~x ~, then 

max t(f~) ~< c 3 t ( f ) .  

The simplest example of  such a ring is 91=C[zl . . . . .  Zm] with t ( f )=d~ degree 

of f as a polynomial in the z ,x  variables. In this case c~=l,  cz=0, and c3=1. 

LEMMA 4.2. [32, Theorem 5]. Let (91, t) be a ring with a size, 91 being a regular 

ring, ~ its quotient field and ~ the algebraic closure o f  f. Let Pl .. . . .  Ps in 91[xl,..., Xm] 

have degree less than ~, 631,  and size t(Pi)<~H. I f  the polynomials P1 ..... Ps have no 

common zeros in ~m, there is an element b E 91 such that b is in the ideal generated by 

P1 ..... Ps in 91[Xl . . . . .  xm] with size estimated by 

t(b) < c4(m ) d~'(1 +H/z), 

where/z=min{s, m +  1} and c4(m)=(3cZ+l(8mc+ 1)) '~+2, where c=max(c  I , c 2, c3). 

For the proof of Proposition 4.1 we use the following lemma. 

LEMMA 4.3. Given a family o f  polynomials F 1 ..... F , ~ Z [ T  1 . . . . .  Tl] IX 1 . . . . .  Xv]= 

Z[T] [X] without common zeros in the algebraic closure of  the quotient field o f  Z[T]. 
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Assume further that for every j, l<~j<~r, they satisfy 

(i) if d~ of  Fj as a polynomial in all the variables T, X then d~ 

(ii) if h(Fj)=(logarithmic) height of  Fj as a polynomial in the variables T,X, then 

There exists a polynomial b E Z[T] in the ideal generated by the Fj in Z[T] [X] such 

that 

(4.7) deg b = degrb  <~ 4c(v)kt-~+l 

where c(v)=(3v+2(24v+ 1)) "+z,/t=min{r, v+ I}, and 

(4.8) h(b) <~ 10c(v)kt~ u+l(~ + (v+  1) log( '~+ 1)). 

Proof. We fix a constant C>0,  to be chosen later, and define a function 

t: Pol(Z[T])---~ { -  ~ } U R+ by frO) = -  ~ and, if P E P o I ( Z [ T ] ) \  {0}, 

f0f01 (4.9) t(p) CdegTP+ ... log[P(e , i2zol = . . . ,  e , e . . . . .  e 11 d O 1 . . ,  d ~ v ,  

where v denotes the number of  variables of  P as a polynomial with coefficients in Z[T]. 

We claim that t is a size for the ring Z[T] with constants Cl, c2, c3 independent of  C. 

First observe that properties (1) and (2) of  the definition above are immediate from 

(4.9)�9 

Let  us write P=E~ P~(T)X ~= E a, a aa,~T~X ~. Introduce the Mahler measures 

(f0 f0 ) M(P) = exp ... log IP(e n'~~ .. . . .  en'~r I dO l ... d ~  , 

M(P~) = exp ... log (e '2'~~ e '~'~~ dO 1 dO I 

Mahler 's inequality [26] as rewritten by Philippon [31, Lemma 1.13] states that, if 

do=d~ dl=degTP, d2=degxP, 

do! do! 
M(P~) ~ /~!(do_l/~]) ! M(P) <~ fl!(do_d2)!M(P) 

and 

dlW (do) dWdt �9 2 "  1" 
la~,al <~ a!(dl-[al)! M(P~) <~ d2 --~. -~. M(P). 
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Hence 

(4.10) 2 fa~,~l ~< 2d~ 1) d2 (l+ 1) d' M(P). 
a,  fl 

It is clear that 

(4.11) M(P) ~ ~ la~,al. 
a,  fl 

It follows also from [26] that M(P)~>I, M(P~)~>I. (This inequality depends on the 

fact that the polynomial has integral coefficients.) 

We can now proceed to verify properties (3) and (4) of the definition of size: Let 

R1 . . . .  RkEPoI(Z[T]), write Rj=E~/~,,t~) T~v~ �9 , ~ , ~ ,  A .  (The number of X variables might 

change from polynomial to polynomial.) Then, by (4.11) 

M(R 1 +... +R k) <<- ~ ~J) <~ k max ~ r.(i) ,,~,~ Ua,~ �9 
j . a ,  fl J a, fl 

Suppose, to simplify, that the maximum is achieved for j =  1, let v be the number of 

variables X of R1. Then we can apply (4.10) (using that dt<-d~+d2, d t=degrR 1, 

d2=degxRO 

E lanai ~< (2(v+ 1)) d2 (2(1+ 1)) d' M(R,). 
a , f l  

Hence 

t(R 1 +... + R k) <~ (C+2l+2) max(degr R;)+log k+2 log(v+ 1) degxR 1 +log M(R 1 ) 
i 

where 

t(P) = t(P)+2 log(v+ 1) degxP. 

Since M(P)~>I, maxi(CdegrRi)<.maxit(Ri)<.maxiTr(Ri). Let us assume that C~>21+2, 
then 

t(R~ +... +R,) ~< 3 max;}(Ri)+2 log k. 
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This proves condition (3) with c1=3 and c2=2, which are independent of C (as long as 

C>~2l+2). Using (4.10) and (4.11) we obtain 

max t(P~) ~< 2i(P), 

so that ca=2 in condition (4). The claim is therefore true. 

To continue the proof of Lemma 4.3, we apply Lemma 4.2 with ~=Z[T] ,  t as 

above, C=max(2l+2, ~ ,  (v+ 1) log(~ + 1)), to the given polynomials Fi, ..., Fr E 9t[X]. 

Therefore, there is an element b E Z[T] with size estimate 

where/~=min{v+ I, r}, and c(v)=(3"+z(24u+ 1)) "+2. From here we can obtain an estimate 

of the degree of b and of the height of its coefficients. Namely, 

Cdeg b <~ c(v) ~' (1  +v(C~+ ~+(v+ I)log(m+ 1))). 

Dividing by C we conclude that 

deg b <~ 4c(v) #~u+l, 

as required. For the estimate of the height of the coefficients of b, we have 

h(b) <~ (log 2) deg b +log M(b) <~ (log 2) deg b + t(b) 

~< ((log 2)+C) 4c(v)/l~b u+~ 

<~ 5Cc(v) ~7s '+1 

<~ lOc(v)itT~u+~((o+(v+ 1) log(~ + 1)). 

This concludes the proof of  the lemma. [] 

Remark. The point of this lemma is that the estimate of the degree of b given in [32, 

Theorem 5] is much worse than (4.7), since it was also dependent on g). 

Proof o f  Proposition 4.1. We can assume that none of the polynomials p~ .. . . .  PM is 

a constant, if it is zero we eliminate it from the list, if it is a non-zero constant the result 

is trivial. Let dl=degp~, and p~ be the leading homogeneous term of p~. By [27, 

Theorem 1] there is a point ai=(all . . . . .  a l n ) ~ . Z  n such that lai,jl<~ndj+l and p~(al)4:0. 

Clearly a~ 4:0. We can choose n - 1  elements of the canonical basis of C" so that the n x n 

matrix AI with first column al, completed by them, is invertible. We now make the 

7-918285 Acta Mathematica 166. Imprirn~ le 15 f~vrier 1991 
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change of  variable z=A1 ~, obtaining polynomials F~ (~) =pj (A 1 ~), j =  1 . . . . .  M. The first 

one will be 

Fl(~) = p~(al) ~ dt +lower degree terms. 

If k = n -  1, we take A=A~, Qi =F1, and we will be done. We assume therefore that 

k<n-1.  Consider now the polynomials Fj as polynomials in 91[~z], 91=Z[~2 . . . . .  ~,]. 

These polynomials F~, .... FM have no common zeros on ~-~, f the quotient field of  9l, 

because o f  the assumption that the dimension k<n-1 .  Moreover, maxj<~9~n deg Fj=dl  as 

before, and their heights can be bounded using (4.3): 

(4.12) 

max h(~)  ~< log C'd+dlog(n[lAl [1)+log max h(p i) 
1 <~j~n 1 <~j<~n 

g(n) (d log d+  b), 

where x(n) is an effective constant. 

We can now apply Lemma 4.3. We find b2 ~ 91, i.e., b2 E Z[r . . . . .  ~n], in the ideal 

generated by F1 . . . . .  FM in Z[~l . . . . .  ~n]=91[~1], such that 

d z = deg b 2 <~ 8c(1) d 3 

h(b 2) ~< 20c(I) d3(x(n) (d log d+  b)+2 log(d+ 1)) 

~< ;~d3(b +d log  d) 

for a new value of  the constant ~. 

By the same [27], Theorem 1] we find a2=(0, a2,1,-'-, az,n)E Z n, [az,jl<~(n-1)dz+l, 
b~(a2)+0. Complete the pair el =(1 ,0  . . . . .  0), az, to a basis of  C n using the elements of  the 

canonical basis, so that the matrix A2 with these columns is invertible. We change 

variables again with z=AzA~ rl, and we obtain two polynomials in the corresponding 

ideals of  Z[~/] of  the form 

G~(r/) -- gl,0 r/d%( terms of  degree ~<dl) 

d 2 
G2(r]) = G2(~ ' )  = g2,0 r]2 +(terms of degree ~<d2), 

with q'=(r/2 . . . . .  r/n). Their heights can be estimated by ~da(h+dlogd), an est imate that 

also holds for all the polynomials pj(AzA~I). It is clear now what the inductive 

procedure is. Proposition 4.1 is therefore correct. [] 
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Remark 4.4. In case we have L non-trivial finite families of polynomials in n 

variables, with corresponding ideals/j and varieties Vj, dim Vj=kj, one can proceed as in 

Proposition 4.1 simultaneously for all the families. Namely, led d be a common bound 

for the degrees of all these polynomials. Then there is an invertible n • n matrix A with 

integral coefficients satisfying 

(4.13) IIAl,I <~ xL"d3":-n(n-1)/2 

such that, after the change of, coordinates z=Aw,  we can find, for every j, polynomials 

Qj, 1 . . . . .  Qj, n-kj in the corresponding ideals ) :  of Z[w], of the form given in part (ii) of 

Proposition 4.1. The bounds for their degrees still remain (4.5) and the bounds for their 

heights are 

(4.14) h(Qj, i) ~ ~d+ l(~ + d log(Ld)). 

PROPOSrrION 4.5. Let Pl . . . . .  PM E Z[Zl,..., z,] be as in Proposition 4.1, d>~3. There 

is a linear change o f  coordinates z=Aw,  A an invertible matrix with integral coeffi- 

cients, ItA}l<~d 3§ 1)/z, and Strictly positive constants e, K such that if  qj (w) =p~ (A w), 

then 

:= (w E Cn: log max Iqj (w)l < log e-d"(log(1 +llwt12)) 
I~j~M 

=_ : =  c " :  <-K(I+IW.-k+I}+...+]W.t)) 

/~=min{M, n}. Moreover, we have 

(4. l 5) K <~ exp[• l (~3 + d log d)]. 

Proof  Let A be the matrix A given by Proposition 4.1, Qi the corresponding 

polynomials. Let V'={wEC":q l (w)= . . .=q~w)=O} .  If w E V '  then Qi(w)=0 for 

j= 1 .. . . .  n - k .  In particular, the equation 

dn k dn k--1 
0 =  Qn_k(W)=qn_k, oW,, _i+W,, -i q,,_k.l(W,,_k+l .....  W,)... 

implies that 

Iw.-kl KlO +lw._k+,l+... + iw.I), 

by a well known estimate on the location of the zeros of a polynomial of one variable. 

Namely, all the roots si of an algebraic equation of degree 6 in a single variable 
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aosa+a~ sa-J +...+aa = 0 

(4.16) [s il <. max 16( a /  ao) I I~ 
) 

Using that degq,_k.;~<i we obtain from (4.5), (4.6) and (4.16) that 

K l <~ ud n-k+l exp[ud"-k+]([)+dlog d)] 

~< exp[ud*-k+l([~ +dlog d)]. 

Iterating this process we find that 

v'___ (w Ec": Iwd+...+lw.-kl <<-K'(l+lw._k+d+...+lw.I)} 

for some K '>0  with same type of estimate (4.15). To conclude the proof we only need 

to show that whenever all the qj are small at a point w, this point is close to a point V'. 

More precisely, let d(w, V')=min{ 1, dist(w, V')}, where dist(w, V') denotes the Euclid- 

ean distance from the point w to the variety V'. From the result in [21] one concludes 

that there is a positive constant A>0 such that 

log max [qj(w)] >>- - A + d "  log(d(w, V')/(1 +llwll2)) 
I <.j<~M 

(A is not an absolute constant). Choosing e>0 so that A +log e~<0, every w E ~ satisfies 

d(w, V') <~ 1. 

It is now clear that by changing the constant K' slightly one obtains the inclusion ~c_fS 

we were looking for. 

Remark 4.6. As in Remark 4.4, we see that given L finite families of polynomials, 

there is a change of coordinates z = A w  and constants e>0, K>0 such that for the jth 

family qj, l ... . .  qj, Mj (after change of coordinates) 

. -  C~: < log e -d 'qog(1  + Ilwll2)} ~ , j . -  {wE log max Iqj, i(w)l 
J~<i~<Mj 

=_ %= (wEe": Iwd+...+lw.-kjl <-g(l+lw._kj+,l+...+lw.I)} 

where/zj=min{n, Mj}, kj=dim Vj, Vj the zero variety of the jth family Pj.I . . . . .  Pj, M/The 
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matrix A has the estimates given in Remark 4.4. The constant K has the estimate 

(4.17) K ~< exp[ud "-k'+j(~+dlog(Ld))], 

with k' =min(kj, I<~j<~L}. 

Remark 4.7. From the remark following the statement of Proposition 4.1, we can 

now conclude that Proposition 4.5 is still true when we consider polynomials pj with 

complex coefficients, with the obvious exception that we do not have the bounds (4.15) 

for the constant K. 

w 5. Effective bounds for the size of the coefficients in the Bezout identity 

In this section we will study the Bezout equation for polynomials in Z[z]=Z[Zl . . . . .  z~]. 

We remind the reader that for us n~>2, the case n = 1 being well known as a consequence 

of the Euclidean division algorithm. 

Using the division formula (3.7) we will prove 

THEOREM 5.1. Let  Pl . . . . .  pNEZ[z] without common zeros in C ~, degpj<.D, D>-3, 

h(pj)<~h. There is an integer b E Z +, polynomials ql . . . . .  qNE Z[z] such that 

satisfying the estimates: 

(5.2) 

(5.3) 

pl ql +. . .+pNqn = b, 

deg qj ~< n(2n+ 1) D n, 

h(qj) <. ~t(n) Dan+3(h+log N + D log D) 

Log b ~< ~(n) DS~+3(h +log N + D  log D), 

where ~(n) is an effective constant which can be computed explicitly following step by 

step the proof  below. 

Remark. We remind the reader that all constants are effective but, if they are not 

explicitly mentioned to be absolute constants, they will be denoted by the same letter u 

and they will depend only on the dimension n. We assume moreover that u is an integer 

whenever necessary. We keep track of the dependency on N, h and D, the values from 

the statement of Theorem 5.1. Once and for all, we assume n>~2 and D~>2. 

We start by some preparatory considerations that will allow us to construct 
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auxiliary polynomials fl  . . . . .  f ,+t in the ideal ~ generated by Pl . . . . .  PN in Z[z], for which 

the hypotheses from Theorem 3.1 will be satisfied. 

As a first step, we adapt the proof of Lemma 2 in [28, section 4] to obtain the 

following 

LEMMA 5.2. There are integers 2j, k, l<~j<-n, l<~k<-N such that the polynomials 

N 

(5.4) gJ = Z 2j, kPk, 
k=l 

have the property that for any non-empty subset J__{1 ..... n} the variety 

Vj={zEC: gj=O for j E J }  

is either empty or o f  pure dimension n - # ( J ) .  Moreover, the 22.k can be chosen so that 

(5.5) I jlkl (o+  1)"-'. 

Proof. We start by taking gl =P~- Let  erl . . . . .  err be the distinct irreducible polynomi- 

als in the factorization of p~ in C[z], then r<.D. Since the original collection Pl, ...,PN 

have no common zeros, for any l, l<.l<.r, not all the Pk are divisible by eri. By Lemma 1 

[28, Section 4] there a r e  ,~2 ,k~Z,  ];t2,kl~<D such that if 

N 

gz = ~ '~2. k Pk, 
k=2 

then the ideal (gl, gz) is either C[z] or a proper ideal of rank 2 and degree <-D 2. 

We will show now how to construct g3, the general case is handled by induction. 

There are two cases which have to be dealt with separately. If  (g~, g2) is C[z] then we 

consider the irreducible factors v~ . . . . .  vs of  gl g2. The previous argument allows us to 

construct g3 in this case, so that both (g~, g3) and (g2, g3) are either C[zJ or proper ideals 

of rank 2 and degree ~<D 2. Since s~<deg(g~ g:)<~2D, the size of the coefficients is at most 

2D. The most interesting case occurs when (gl, g:)g:C[z]. This ideal is unmixed. We 

consider all the ideals ~ . . . . .  #t in the primary decomposition of (g~, g:). We have now 

t+s ideals (vj) . . . . .  (vs), .91 . . . . .  .-r and we know that t+s<.D2+2D<-(D+ 1) 2 (cf. [27], p. 

85). By the same Lemma 1 in [28, Section 4] we can find ;t3,kEZ, I;t3,kl~<(D+l): such 

that if 

N 

g3 = Z ~'3,kPk' 
k=3 
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then (gl, g2, g3) is either C[z] or a proper ideal of rank 3 and degree ~<D 3, and the ideals 

(gl, g3) and (g2, g3) are either C[z] or proper ideals of rank 2 and degree <~D 2. 

To construct gj+l we have to consider the primary ideals corresponding to all 

proper ideals of the form (gil . . . . .  gil) with i 1 . . . . .  i I E { 1 , . . . , j  }. The total number of these 

primary ideals is at most Di+jDJ-I+. . .+jD<.(D+I)J .  The rest of  the argument is the 

same as above. [] 

Another little lemma from linear algebra will prove useful. 

LEMMA 5.3. Given an integer C>~I there are n linear forms  LjEZ[w] such that 

(a) H(Lj)<~xC "-l (l~<j~<n) 

(with x as usual an effective constant depending only on n) and 

(b) there is a strictly positive constant  y (depending on n and C) such that for  every 

k, l<~k<<,n, for  every J~_{l, ..., n}, # ( J ) = k ,  we have 

(5.6) E lL3(w)t ~ 711wtl 
jEJ  

whenever 

(5.7) 

Proof. We 

Iw,l+... § ~ C(Iw._,+ll+... +lw,I). 

note that for k=n, the condition (b) is exactly the condition that 

L~ . . . . .  L ,  be linearly independent. 

Let  B be any n x n  matrix with integral coefficients such that every minor of B=(fl,j) 

is different from zero. From [27, Theorem 1] one can obtain an explicit estimate of IIBII 
depending only on n. Let  us denote by A the maximum absolute of any minor of B. It is 

clear that A<~n! HB[[ n. Let  M = n C A +  I and define, for l<.i<-n, 

(5 .8 )  L i (W) ~-" ~i, 1 Wl "~i ,  2 M w 2  + ""  +fli, n M"-Iw~ �9 

The estimate (a) being obvious, we need to show (5.6) for an arbitrary k. For k=n,  

it is clear since the determinant of the coefficients of the Li is just M "("-~)/2x det B=r To 

see the idea, consider the case k= 1. We have 

IZe(w)l t-- Mn-11W.I--M"-2A(Iw~I+...+Iw,-~I) 

>I (M " - l -Mn-2  AC)  IW nl >1 M"-Z[w,I >t C M"-211wll, 

in the cone given by the inequality (5.10) for k= 1. 
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For the general case we consider the set J={ 1 .. . . .  k} 

Consider the system of equations 

(5.9) 

to simplify the notation. 

n-k 

t31,,_k+l M"-kW,_k+ l +." . +t31,,, M"-1w,, = L~ (w) -  E fll,jM'i-'wj, 
j = l  

I 

n-k 
n-k n-I Lk(Z)_  E f ln_k , jMJ- lwj .  flk, n-k+l M Wn-k+l+, . .+f lk ,  n M Wn = 

j = l  

Eliminating any 

n - k +  I <.j<.n: 

(5.10) 

of the variables w,_~+ 1 . . . . .  w n by Cramer's rule, we obtain for 

k n-k 

A M  J-l% = ~ ,  ai, jLi(w)+ E ~i, j M i - l w i  , 
i=l i l l  

where A denotes a certain (n -k )x  (n-k)  minor of B and ai, i, 7i, y are certain other minors 

of B. In the cone defined by (5.7), the identity (5.10) leads to the inequality 

A~IL/w)I~ > ~ ai, jLi(w) >>-]A[MJ-'IwjI-M"-k-'A }w,I 
i=1 

I> M"-klwjI--~-k-'AC(Iw.-k+, I+'." + IW.I). 

Adding the inequalities f o r j = n - k +  1 . . . . .  n, we obtain 

k,a~ ILi(w)l ~ - ~ - '  Iw;I (:u-k~c) 
i= 1 j=n-k + I 

~>cM"+'llwll. 

This is an inequality of the form (5.6), concluding the proof of the lemma. [] 

We are finally ready to start the proof. 

Proof  o f  Theorem 5.1. The first step is the construction of auxiliary functions 

f~ .. . . .  f~ E ~ satisfying (3.2). 

Let gl, ..., g, be given by Lemma 5.2. It follows immediately from the statement of 

that lemma that 
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(5.11) deg gj <~ D, 

(5. I2) h(g) ~< ~t(h +D+log N). 

If J c  { 1 . . . . .  n),  ~*(J) = k, 1 <<.k<~n- 1, then the family @j of polynomials (g)j e j either 

defines a complete intersection variety of dimension exactly n - k  >> - 1, or is such that the 

ideal (gj)jes is C[z]. By Remark 4.6 there is a change of coordinates z=Aw and constants 

e>0, K>0 such that 

~ j  := {w: ]]w]] >t 1, log max ]gj(Aw)] ~loge-D"log(l+]lwl]2)} 
jEJ  

is contained in the cone 

: =  {w c": 

The total number of such families is 2"-2,  hence from (4.17) we obtain 

(5.13) K ~< exp [xD"(h +log N+D log D)]. 

We apply Lemma 5.3 to obtain n linear forms LjfiZ[w], with heights estimated by 
~r K " -1 .  

Let p=~ where ~f is a positive integer such that ~ and consider the 

function 

(5.14) 9j.(w) = (Lj(w))Ogj(aw) (1 ~<j~< n). 

We claim that for some constant 6>0 (6 depends on K, N, D, e, ~ and I]w]]>> 1 we 

have 

(5.15) (j=~ ,(pflw), 2) 'n>~6,,w,,(~-')~". 

(The value of 6 plays no role whatsoever in the proof of Theorem 5.1 below.) Namely, 

by [22, Proposition 1.10] there are two positive constants et,e~ (they depend on the 

polynomials gj, ..., g.) such that: 

(5.16) For Ilwll ~ 0~, we have log max Igj(Aw)l >~ logel-D"log(l+tlwlt).  
1 <~j<~. 

Taking 0: sufficiently large, for I{wll>~Oz>~9~ we have 

log e I -D" log(1 + ]lwl]) ~> log e -D"  log(1 + Jlw]l). 
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It follows from (5.14) that the set {w E Cn: I]w]l~>Q2} can be written as the disjoint union 

of the sets 

~j:  {w ~ c": Ilwll >I ~2, log [gj (Aw)] <~ log e-D" log(1 + Ilwll) i f j  E J 

and log ]gj (Aw)[ > log e -D"  log(1 +llwrl) if j ~ J }, 

where J is any subset of {1 ... . .  n}, l~<#(J)~<n-1. Any point of ~ j  is contained in ~j ,  

and a posteriori in ~k, k=~(J) .  By the definition of the Lj 

(5.17) Eltt(w)l~>~'llwll if wEZj .  
jCJ 

Hence, for some j0 ~ J, IZto(W)l>..-(~/n)llwll, so that 

[%(w)l = Itto(w)l~lgyo(Aw)[ >1 (~/n)'llwll ~ II ~(1 + Ilwll) -D~ I> 611wlU - ' ~ 1 7 6  

proving (5.15). 

We define now 

(5 .18)  fj  (z) : = ( (det  A) Lj (A-'z)) D gj (z). 

The linear forms Lt(w ) found in Lemma 5.3 have their heights bounded by 

H(Lj) ~< xK"-1 = exp [xD"(h +log N+D log D)], 

after an eventual change of constant x which depends only on n. Therefore, the height 

of the corresponding linear forms A t (z)= (detA)L t (A-lz), in the original variables, can 

be estimated by 

(5.19) H(Aj) = exp [xDn(h +log N+D log D)], 

using that I[(detA)A-~ll<~n! IlAll"<~xD ~3 and the formula (4.3). With this notation, the 

functions fj defined by (5.18) are given by 

f~ (z) = (A t (z))% (z), (5.2o) 

where 

(5.21) 1~ = ~ 

We know therefore that for some constants 7>0 and 0>0 we have, for I[z[[~>O, 

(5.22) IIf(z)ll i> yllzll ~ - ' ~  
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with f=( f i  . . . . .  fn). Moreover, the number 92 of common zeros of the fs, without 

counting multiplicities, is at most 

n 

(5.23) I--i (1 +deg gj) ~ xD n, 
j = l  

as shown by the classical Bezout estimate. It is convenient to introduce the auxiliary 

polynomials 

(5.24) 

Then 

(5.25) 

and 

(5.26) 

c j  (z) : = A~z) gj(z). 

max deg doj I> D+ 1, 
J 

max h(~j) ~< ~D"(h +log N+D log D). 

One last auxiliary polynomial fn+~ is obtained as a linear combination 

f,+l = s + ""+~'NPN' 

2~EZ, [2i1<~92<.~D n, in such a way that 

{z e c " :L(z )  =...=L+l(z) = 0} = {z ~ c" :  r  =... =~.(z) =L+l(z) = 0} = ~ .  

The existence of such f,+l is given by Lemma 2 in [28, section 4]. We have 

(5.27) h(f,+l) <~ h+logN+nlogD+x.  

The sequence f~ ..... f~+~ fits exactly in the situation of Example 3.3 with 

d=(74#-1)D n and 7CDn+D instead of D. Since n~>2, D>~3, as soon as ~W~>2n, we get 

nW' -n>(n- l )7 /V+n ' l -4  2 
o n - I  , 

so that the condition (3.6) is fulfilled for P =  1, q=n, (~ instead of d, and ~CDn+D 

instead of D. We shall from now on choose ~ 

It follows that there are polynomials Aj E Q[z] satisfying 

n + l  

(5.29  a i f  = 1. 
j=l 
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They are explicitly obtained from the formula 

(5.30) 
I [gl,l 

1 

le,,n 
If,(z) 

�9 "" gn, 1 

�9 " " g n ,  n 

�9 .. L ( z )  

gn+ I, 1 \ 

d~l = 1, 
gn+l,n 

L + ~ ( z )  

where the gj.k are given by the formula following (3.4)�9 It remains to estimate the 

degrees of the Aj, find a common denominator b E Z + of their coefficients, and obtain a 

good bound for the coefficients of the polynomials bAj, which are now in Z[z]. 
It is immediate that 

deg Aj ~ n( 2n + I) D n. 

Rewriting (5.29) in terms of the original polynomials pj and clearing denominators 

we have 
N 

~_~ qjpj= b 
j = l  

with qj E Z[z], 

deg qj ~ < n(2n+ 1)D". 

Before proceeding to the estimate of the common denominator 19, we need to recall 

a few definitions from Algebraic Number Theory. Given an algebraic number a one 

denotes 

lal = max{la'l: a '  conjugate of a over Q} 

s(a) = max{log den(a), loglal), 

where den(a)=denominator of a=smallest  integer d>0 such that da is an algebraic 

integer. 

Finally, let p E Z[zl,..., zn], al ..... an algebraic numbers, and fl=p(al ..... an). To 
estimate den(fl) and s(fl), let rj>-degzp=degree ofp  with respect to the variable zj. Then 

n 

(5.31) den(fl) is a divisor of I-I  (den(% "))'j, 
j = l  

and 

(5.32) 
n 

s(fl) <<. h(p)+ Z (rjs(aj)+log(rj+ 1)). 
j = l  
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Later on we will also need to estimate the denominator of the inverse of an 

algebraic number a (a+O). If N(a) denotes its norm and d a denominator of a one can 

use that N(da) is a denominator for (da)-k Therefore 

log den(a- l) ~< log den((da)-l) ~< log N(da) 

(5.33) ~< (deg a) s(da) <~ 2(deg a) s(a). 

In order to apply these inequalities to formula (5.30), we need to estimate a 

common denominator for all the rational numbers of the form 

~ 1  ~* d (5.34) Q * : = (  7 'f-~+~ r  Ikl<~n(2n+l)D"' 

which appear as coefficients of the polynomials Aj. 

LEMMA 5.4. There is a common denominator b E Z § for  the rational numbers ~, 

defined by (5.34) such that 

log b ~< nDsn+3(h+log N+D log D), 

where ~=x(n) is an effective constant depending only on n. 

Proof. We rewrite (5.34) by letting ~=(qb I . . . . .  ~.) ,  g=(gi . . . . .  g.) and 

1 _ g_~- !  

f~ a~ 

Therefore, the rational numbers Qk are linear combinations with integral coefficients of 

rationals of the form 

(5.35) 

with 

1 ~k / 
c5 ~_D,fn+l d~ , 

[k[ ~< n(2n+ 1)D"+n(2nD"- I) ~< n(4n+ 1) D". 

The coefficients of these linear combinations: do not play any role because we are, for 

the moment, only interested in the denominators. 

To compute explicitly the residues (5.35) we can use an observation from [7], 

Proposition 2.5 and following remark. It shows that it is enough to find n polynomials 

bl ..... b, E Z[z], bj a polynomial on the single variable zj, all of them in the ideal 
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generated by O~ ..... O, in Z[z]. To find these polynomials b~, we apply first Lemma 4.3, 

with T=zi, X=(zl  . . . . .  zs-~, zj+i,-.,, z,) to the family ~l  .... , O,. In this way, we obtain 

intermediate polynomials 

(5.36) 

and 

(5.37) 

B:(z) = Bs(z~), B:e ,t,, Z[z]+ .... O.Z[z],  

degBj ~< nD "+1, 

h(Bj) <~ ~D z"+ I(h+log N + D log D). 

Regretfully, we have no information at this point on the degrees of the polynomials B:. k 

that appear in the representation Bs=r,7,=~B:kO ~. To solve this problem we apply 

Rabinowitsch's trick and [32, Theorem 4]. For a fixed j ,  let T~>degBs-, consider the 

polynomials in Z[z0, zl .... .  z~] (z=(zl .....  z,) as always) 

The first one has degree at most 2T, the others of degree ~<D+I. We may assume 

2T~>D+I and T ~ t D  n+~. Their heights are bounded by ~D2"+l(h+logN+DlogD). By 

[32, Theorem 1] there exist an aj E Z*, and polynomials So . . . . .  S,, E Z[zo, z~, ..., z,,] such 

deg[( t-zrBj(z))  So] ~< (n+4) 2T(D+ 1)" 

deg(Si qb i) ~< (n+4) 2T(D+ 1)", 

h( a i) <~ ~2 TD3"+ l ( h + log N + D log D ) , 
(5.40) 

<~ ~D4"+ Z( h + log N + D log D), 

and 

(5.41) as. = (1-zrBj)S0+S l ~l  +..-+Sn qb. 

Following [10] we decompose Si as 
T-1 

si (z0, z) = ~ ]  si,,(z~, z) z0 ~ 
k=0 

The identity (5.41) implies that 

(5,42) a.i = (1 - z r B j  (z)) So, o(Z~, z)+S~,o(Zro, z) ~,(z)+. . .  +S,,, o(zg, z) O,,(z). 

1-z~B: (z), 4Pl(z) . . . . .  ~.(z). 

that 

(5.38) 

(5.39) 
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Replace z~ by X, then one has 

d e g x  Si, o ~ 2(n + 4) (D + 1)". 

Therefore, as in Rabinowitsch's trick we let X= 1/Bj and define 

(5.43) bj = ajBy, V = 2(n+4) (D+ 1)". 

We have 

(5.44) ba = ~ aakqb k, 
k=l 

with aak E Z[z] satisfying the estimates 

(5.45) d e g  ajk ~ ;r  2n+l 

The height of the ajk is unknown but the height of bj can be bounded using (5.37), 

(4.2) and (5.40). 

Let us now take M=n2p, to guarantee that the polynomials b~ are in the ideal 

generated by the entries of qb -~. We have from (5.44) that 

(5.46) b~t = s ~(M) ~jk r 
k=l 

for some a)~)E Z[z]. Let AM=det(aJ~)), then 

(5.47) 

~(M) ~ ~,~lA/'-12n+ 1 .~ ~,/')3n+l deg "yk . . . . . . . . . .  

deg A M <~ xD 3"+1. 

From the law of transformation of residues (2.13) we conclude that 

8 1 p ,  f51 de = CSb~ . , Jn+~ / ~  

with ~={zECn:  r } and b=(bl, ..., bn). Since AM has integral coeffi- 

cients and we only worry about the denominators of the algebraic numbers that appear 

as the residues at each point a E ~ in the last formula, we can reduce ourselves to look 

for a common denominator of all the numbers 
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(5.48) (~  1 ~' d ~ ) a 6 ~ 3 ,  
b u  f.+l a' 

where [k[<~n(4n+ 1)Dn+deg A g  <~uD3n+k 

The quantity (5.48) has the advantage that it can be computed by an iteration of the 
usual formulas of the Residue Calculus in one variable. We have profited already from 
this remark in the proof of Lemma 2.3. Let a = (aj ..... an) in ~3. Let v s. be the multiplicity 
of aj as a zero of Bs., then vj>~ I and 

Bj(Zj) = (Zj--aj)vj Oj(Zj), 

with OjEZ[aj] [zj] defined by this identity and Oj(aj)4~O. Let 

(5.49) a = (a l  . . .  an) M, 

and YYJ~=(MTv I - 1, ..., Myv  n -  1). Then 

[~D21 = My(v 1 +...  +vn) -  n, ~)~! = (Myv I - 1) !... (Myv n -  1) !. 

This vector ~R depends on the point a. 
The function r247 is holomorphic in a neighborhood of a, hence 

( g  lb_u, fn+,~* de)  a-- --ctl 1~92, \/8l~lok ~ ( a ) ' s z  ~ ] (5.50) 

where 

(5.51) O , ( z ) = ~  
Z k 

L+j(z) 
(Ol(zO... On(Zn)) -My. 

We rewrite the derivatives in (5.50) using the Leibniz product formula and obtain 
an expression of the form 

1 1 1 n)) 
~, a~ . . . . .  an, L+l(a)'  01(a0 .. . . .  On(a ' 

where ~k is a polynomial in Z[XI, ...,X2n+1]. Let ()j=degxs~ k, then it is easy to see that 

6j<~uD 3n+2 (1 ~<j~n) 

6~+ 1 ~ [~[+ I ~ gD s~+1 

6~+~+j~My+Myv j~gD 3n+~ (1 ~ j ~ n ) .  
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(It is hard to estimate v i better than by degBj, i.e., v~cD"+l.)  

From the observation (5.31) we see now that a denominator of the residues 

is 

1 ~k > 
b M,L+ 1 de 

aN, ~ (den(aj))~Jx(den(1/f~+l(a)))~~ I-I (den(1/Oj(aJ)))~+~+j" 
j=l j f l  

This expression depends a priori on the multiindex k, but taking the largest 

possible value for the 6 i we obtain a denominator which is valid for all the k that appear 

in the computations. That is, we should consider the integer ba given by 

/ ~ 
(5.53) ha:= aN!  den(%) xden(1/f~+~(a))xllden(1/Oj(c~)) , 

\ \ j = l  / j = l  

for some integer x=x(n). 

The next step is to estimate the denominators that appear in (5.53), still for a fixed 

a 6 ~ .  For aj, we use that Bj(a~)=0, hence den(aj) divides the leading term of Bj. 

Therefore 

(5.54) max log den(a j) ~< max h(Bj) <~ xD2n+l(h +log N+D log D). 
J J 

For the other terms we use (5.33). We need first to know the degree of the algebraic 

numbers f,+l(a) and Oj(aj). Our previous Corollary 2.2 allows us to conclude that 

(5.55) deg(f,+t(a)), deg(0j (aj)) ~< (D+ I) n, 

since ~ is defined by equations of degree ~<D+ 1. 

To find s(aj) we use again the equation Bj(aj)=O. The conjugates of aj are solutions 

of the same equation, hence their absolute can be estimated by the inequality (4.16). 

Then 

Hence, 

log lail ~ log(deg Bj)+h(Bj). 

(5.56) max s (a j) ~ ~r 2n + 1 (h +log N+ D log D). 
3 

8-918285 Acta Mathematica 166. Imprim6 le 15 f~vrier 1991 
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Therefore, formula (5.32) gives the upper bounds 

n 

s(fn+~(a)) <" h(fn+l) + E (Ds(%)+log(D+ l)) ~< ~D2n+2(h+log N+D log D). 
j=l 

The values Oj(aj) are also explicitly given in Z[aj], namely 

0 (a) = 8 vJ'(a)/v/ 

height of the polynomial B~O(t)/v/ is at most H(Bj)• aeg~. Use again (5.32) T h  e to 

obtain 

s(Oj(ai)) <<. xD3"+ 2(h +log N + D log D). 

From (5.33) we conclude 

(5.57) log den(1]fn+ l(a)) ~< 2 deg(f~+ l(a)) s(f~+ l(a)) ~< uD3"+2(h +log N+D log D), 

and, for l<~j<~n, 

(5.58) log den(1/0 r (aj)) ~< xD 4" + 2(h + log N+  D log D). 

These computations lead to the following estimate for log ha: 

(5.59) log b~ ~< xD7"+3(h +log N+D log D). 

We know that #(2~)<~(2D+1)" 

reasoning shows that if we define 

by the Bezout estimate. Moreover, the above 

(5.60) b=  1-[ b~, 
aE~ 

then b is a denominator for any coefficient in the formula (5.30), hence it can be taken 

as the value in the statement of this theorem. We have 

log b ~< xDS"+3(h +log N+D log D), 

from (5.59) and (5.60). This is precisely the statement of the lemma. [] 

To finish the proof of Theorem 5.1 we only need to estimate h(qj). Given that we 

know a common denominator for all the rational numbers that appear in the formula 

(5.30), it is enough to find an upper bound of the absolute values of these coefficients. 

This can be done analytically, again by estimation of residues. 
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LEMMA 5.6. The rational numbers Ok defined by (5.34) satisfy the estimate 

(5.61) log+lqkl ~< ,tDSn+l(h+logN+DlogD), 

for Ikl<,n(2n+ 1)DL 

Proof. We use the notation of the previous lemma, in particular, ~3 is the variety 

defined by ~ .. . . .  ~n. It is also exactly the set of common zeros of J] .....  f , .  Therefore, 

as we have already said in the previous lemma, O! ..... On,f,+ 1 do not have any 

common zeros in C n. It follows from [11, Theorem A], applied to ~bl .. . . .  On, that for 

any a E ~  

log If.+~(a)l I> - ( D +  1)"[1 l (n+ 1)5(D+ 1)+(n+ 1) 2 max{h(Oj) (1 ~<j ~< n), h(L+0} 

+2(n + 1) 2 log+llall]. 

From (5.26) and (5.56) we conclude that 

(5.62) log If.+ a(a)l I> - ~D 3"+ ~(h +log N+D log D). 

If we take a ball B(a, rl) centered at a and of radius r], log !/= 

-xD3"+l(h +log N+D log D), the same inequality (5.62) holds in B(a, ~1) (with a slightly 
different constant ~). 

There are at most (D+I)" points in ~ .  Divide the ball B(a,~l) in (D+I)"+I  

concentric shells, one of them does not contain any points in ~.  Hence, on the sphere 

Sa that lies half-way between the boundaries of this shell, we have 

d(r ~)  ~> 77 , ~ES~. 
2((D+ 1)"+ 1) 

We can now apply the local Nullstellen inequality in [9, Theorem A] to the family 

O1 ..... O,. At any point ~0 in Sa we obtain 

log max I%(~0)1 ~ - ( 2 D +  1)" [1 l(n+ 1) 5 (D+ 1)+(n+ 1) 2 max h(Oj) 
l <~j<~n l <~j<~n 

+2(n+ 1) 2 log+llall-(n+ 1) 2 log d(~, ~)] 

>I -xD4n+l(h +log N+D log D), 

due to the choice of r/. Let i be index for which IOi(~0)l=maxl_<j_<, IOj(~0)l. We have 

Oi (C0)=Ai (~0) gi (r and 
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Therefore 

log Ig,(r ~ h(g;)+n log(D+ 1)+D log +11r 

~< ~D2n+2(h +log N+D log D). 

log IA~ (~0)l I-- - gD4n + l(h +log N+D log D). 

Hence, recalling that f,.=A/~gi (cf. (5.21) and (5.22)), we get 

log If,(r = log I,I,,(~0) I + (w- 1) log Im, (~0)1 

/> -gDS~+~(h+log N+D log D). 

We conclue that on any point ~ E S~, 

(5.63) log tl/(~)11 = log I fx (~)l 2 
1/2 

>I -xDS"+l(h +log N+D log D). 

This inequality holds for any a ~ ~ .  

Let us consider the family of closed balls B~ such that aB,~=Sa. To simplify the 

reasoning, we order the a E ~3 so that the radii of the B~ are decreasing, ~3 = {a,.: 1 <~i<~v}. 
Consider the auxiliary sets QI=B1, f~2=Bl\B2, ~3=B3\(B1UB2), etc., disregarding 
the empty ones. These domains are disjoint, ~_~U;~g, and the surface area of any aQ~ 

can be estimated by to2n_l(D+ l)~r/2~-~, to2~_~=surface area of unit sphere in CL 

We have that 

: E (5.64) @k "7" " 

Each sum between parenthesis in (5.64) can be computed using the Bochner-Martinelli 
formula [17]: 

( ~ k d ~ \ - ( n - l ) ' f ~  ~k .J /a (2~ri) n ~,+,, ( j~l  #__A n ) E ~ Ir 1 n - 7 ~  ) jlf(~)N -2" (-1)J-if j  ~flAdr . 
aE~n~i "= l * j  I 

We know the behavior of every term in this integral, and the bound 

log + [O,i <~ gDSn+ 1( h +log N+D log D) 

is now immediate. [] 
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Let us recall that in the formula (5.30) the right hand side can be written as 

I 1 + c51,__~1 A~+l(z ' 

(5.65) 

- g f ' L + i  i=1 

where  A i denote the n x n minors that appear when we develop the determinant in (5.30) 

along the last row. The last term is zero because the residue current is evaluated on a 

form which is locally in the ideal generated by 3'] . . . . .  f~. Therefore, let us denote by 

r, c~tCkz t the polynomial in 2n variables which represents the whole determinant in 

(5.30) or one of the minors A l . . . . .  An+ I. Since we are using the gi,j defined after (3.4), it 

follows that Ck, t E Z. The height of this polynomial can be estimated in terms of the 

heights h(j~), namely 

max log Ick, A ~< ~( max h(fj)+logD). 
k,I  l~<j~<n+ 1 

Recallfj.=A~gj, l<~j<~n, hence 

h(fj) ~< p(h(Aj)+log n)+h(gj) <~ xD2n(h+log N + D  log D). 

This estimate is also valid for h(f~+~) (see (5.27)). It follows that 

max log I ck, t[ ~< uD2"( h + log N +  D log D). 
k,l 

The polynomials multiplying fl  ...... f~+~ in (5.65) are in Q[z]; they are of the form 

_ r  

In this sum, Ikl<~n(2n+ 1) D n, hence 

log }era, tl ~< log u + n 2 log D + max log I c,, t} + max log Iokl 
k,l k 

~< uD 5~+ l(h +log N + D  log D). 

Summarizing, the formula (3.40) can be written in the form 

1 = A l f l + . . .  +A,,+tf,~+ t, 
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with good estimates on the degrees of the polynomials Aj E Q[z]. Furthermore, we have 

an estimate for the logarithm ;t of the largest absolute value among the coefficients of all 

the Aj given by 

(5.66) 2 <~ uDS"+l(h+logN+DlogD).  

It is clear that a common denominator for all the numbers Ok is also a common 

denominator for all the coefficients of the Aj. By Lemma 5.4 we have a common 

denominator b EZ + so that the polynomials defined by fi.j=bAj, will have integral 

coefficients and satisfy 

and 

(5.67) 

h(Aj) <~ log b +2 ~< uDS"+3(h +log N + D  log D), 

A~f~+ . . .+A .+ IL§  = b. 

Finally, we write explicitly the polynomials fj in terms of p~ .. . . .  PN, replace in 

(5.67) and use Lemma 5.2 to estimate the height of the resulting qjEZ[z], which 

therefore solve the equation 

qlPl+. . .+qNPN = b. 

One easily sees that the above estimate for the h(Aj) remains valid for the h(qi). This 

concludes the proof of Theorem 5.1. [] 

(1) The essential property of Z that we have used is that Pol(Z[X1 .. . . .  Xm]) could be 

equipped with a size t. We can replace Z throughout by the ring �9  of integers of a 

number field K. The constant u will depend not only on n but also on [K: Q]. 

(2) In the first version of this paper we had succeeded in proving this result with a 

smaller and explicit constant x(n). This was done under the additional assumption that 

the variety of zeros at oo of the p~ . . . . .  PN was discrete. This indicates that the exponents 

in (5.1), (5.2) and (5.3) are not optimal. In fact, from [32, Theorem l] one knows that 
_ m there is a formula b--~i=lPiqi, with log b<<,xD"(h+DlogD). 

(3) It would be particularly interesting for the case dl =... =tiN=2 to improve all the 

above estimates. 

(4) In the related problem, given a polynomial f in the ideal generated by P l . . . . .  PN 

in C[z], find optimal bounds for the degrees of polynomials qjEC[z] such that 

f =  Pl ql =.. '+PNqN, 



EFFECTIVE BEZOUT IDENTITIES IN Q[z~, ...,zn] 119 

it is known that  in general max  deg qj>~D 2~ (essentially). One can prove by analytic 

methods that i f p l  . . . . .  p~  define a discrete variety V or, if N < n  and dim V = n - N ,  then 

one can find q~ with maxdegq~<~degf+uD ~ (see [8]). It  would be interesting to obtain 

also bounds for  the heights when f ,  Pl . . . . .  PN E Z[z]. 
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