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w 1. Introduction 

Spaces of holomorphic maps between complex manifolds have played a fundamental 

role in such diverse branches of mathematics as analysis, differential geometry, topo- 

logy, mathematical physics, and linear control theory. In seminal work, Segal [Seg] 

studied the homotopy types of the spaces of holomorphic functions of the 2-sphere S 2, 

of closed surfaces of higher genus, and of the spaces of divisors of these surfaces. In 

particular he showed that the space of holomorphic functions of degree k fills out the 

homotopy type of an appropriate function space in a stable range of dimensions 

(roughly up to dimension k-2g, where g is the genus). In this paper we continue 

Segal's program by describing the entire stable homotopy types of these spaces in 

terms of the homotopy types of more familiar spaces. 

A. The spaces Ratk(Cl ~) 

One of our basic results concerns Ratt(2), the space of based holomorphic self-maps of 

the Riemann sphere having degree k. In [Seg] Segal determined the homotopy type of 

(i) During the preparation of this work each of the authors were supported by NSF grants, the second 
author by an NSF-PYI award, and the first and fourth authors by the S.F.B. 170 in G6ttingen. 

(2) This terminology is used because an element fE Rat~ is given by a rational function of one complex 
variable having degree k. That is, f(z)=p(z)/q(z), where p and q are degree k monic polynomials in one 
complex variable with no common roots. 
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Ratk through dimension k (the topological dimension of Ratk is 4k). More recently, 

F. Cohen described a certain multiplicative structure on the Ratk's which, via the 

theory of homology operations, yields additional homological information. This struc- 

ture is presented in [BoMa] where it is used to study the homology of SU(2) mono- 

poles. It is natural to conjecture that the homology classes yielded by these operations 

detect the entire homology of Ratk. The truth of this conjecture is a consequence of the 

following theorem. 

THEOREM 1.1. There is a stable homotopy equivalence 

Rat k ~ g(fl2k, I). 

Here ft, is Artin's braid group on n-strings and K(fl,, 1) is the corresponding 

Eilenberg-MacLane space. By stable homotopy equivalence we mean a homotopy 

equivalence of the corresponding suspension spectra. In this case Ratk and K(flz k, l) 

become homotopy equivalent after suspending 2k times. Thus, Theorem 1.1 implies 

that these spaces have the same homology groups as well as the same generalized 

homology theories (e.g. K-theory, stable homotopy theory, and bordism theory). 

The stable homotopy type of K(fl2 k, l) is well understood and we show how these 

two spaces are related to each another. We need to establish further notation to state 

our results in more detail. Given a space X consider the configuration space 

F(X, k) = {(x 1 .. . . .  x k) C X k such that x i ~= xj if i :#j}. 

The symmetric group 0~ acts freely on F(X,k) and the associated orbit space 

Dpk(X)=F(X, k)/fek is a subspace of the symmetric product space SPk(X)=X~/Sek. 

DPk(X) is often referred to as the deleted symmetric product. Notice that there is a 

canonical k-dimensional vector bundle yk(X) over DPk(X) given by the natural projec- 

tion 

Yk: F(X, k) x •k Rk--~ DPk(X) 

where 5ek acts on R k by permuting coordinates. For X a Riemann surface with one 

boundary component these bundles were studied in detail in [C2M2]. In the case X=R 2, 

the deleted symmetric product is an Eilenberg-MacLane space, 

Dpk(R 2) = K(flk, l) 

where flk is Artin's braid group on k-strings [FAN]. Moreover, in this case the bundle 
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)'k(R 2) is induced by the permutation representation of ilk given by sending a braid to the 

associated permutation of the endpoints of the strings. The Thom space T~'k(R 2) of this 

bundle over the braid group is given by 

Tyk(R 2) = F(R2, .-K)+/\~ k -  (,~l){k),3 

and denoted Dk(S I) for short, where the subscript + denotes a disjoint basepoint and the 

superscript (k) denotes the k-fold smash product. 

In [Seg] Segal defined a natural inclusion map 

ik:Rat~_ j ~ Rat k. 

Let Ratk/Ratk_ 1 denote the mapping cone of ik. The proof of Theorem 1.1 actually 

shows the following 

THEOREM 1.2. (a) There is a homotopy equivalence 

RatJRatk_ j ~ D~(S 1) = D k. 

(b) Ratk is stably homotopy equivalent to V~= I Dj. 

Remark 1.3. It is well known [BP1, CMT] that 

k 

K(fl2 k, 1)= V Dj Sj=l 

and thus 1.1 is really 1.2(b). 

The spaces Dk have well-understood homotopy types [Sn, Ma, BP1, Co]. When 

localized at any fixed prime p, Dk is the Brown-Gitler spectrum [BG, C]. Consequent- 

ly, their modp cohomology groups are certain explicit quotients of the modp Steenrod 

algebra Mp, [Ma, C]. They have had basic applications in topology including embedding 

and immersion theory [BP2, BP3, C2], classical stable homotopy theory [Mah], and 

classification of manifolds [MdMi]. A more complete discussion occurs in [C3]. In 

addition, the cohomology of fin was first given by Fuks [Fu] and by [C]. 

To prove Theorem 1.1 we first identify a generic set E0 in Ratk, consisting of 

elements with no repeated zeros (see 3.2), and show that the natural inclusion of 

E0~Ratk~Q2S 2 homologically surjects onto a well-known piece of H.(Q~S2). This 

establishes a lower bound for the size of the homology of Ratk (see 3.5). Next, we 

analyze Leray spectral sequences associated to a bifiltration of related spaces to show 

that our lower bound is, in fact, an upper bound (see (4.9)). In fact, the generic set E0 
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contains far more homology than Rat~ and hence our arguments show that as the lower 

strata of Ratk, consisting of points with more and more repeated zeros, are added to the 

generic set they precisely cone off the extra homology in E0. 

One can also consider "real rats",  the subspace RRatk of Ratk which consists of 

rational functions p(z)/q(z) where p and q are now assumed to have real coefficients. 

Brockett [Brl] showed that RRatk has k+ 1 connected components RRatk., indexed by 

the set of r - k  (mod2) with Irl<.k. Let s and t be given by s + t = k  and s - t = r  and set 

m=min(s, t). Segal [Seg] showed that RRatk., is homeomorphic to Rat,, and hence we 

have 

COROLLARY 1.4. There is a stable homotopy  equivalence 

Dj. RRat~., ~ J= 

Our analysis for Ratk=Ratk(CP I) extends immediately, with only trivial modifica- 

tion, to Ratk(CW), the space of based holomorphic maps of degree k from S ~ to CW, 

Thus we obtain 

THEOREM 1.5. There is a stable homotopy  equivalence 

k 

Rat~(CP") = V Z~zn-2~JD~ 
s j = |  

where Z q denotes the q-fold (reduced) suspension. 

Certain spaces of holomorphic maps are also of interest in control theory. Indeed, 

many basic questions in linear control theory are related to the orbit space ~(, .... k of 

observable, controllable systems having n inputs, m outputs, and MacMillan degree k: 

k = A x + B u  

y = C x + D u  

here u and y represent the input and output functions of the system respectively. 

Basically, such a system is observable if two different input functions give two different 

output functions and controllable if any output function can be obtained by a suitable 

choice of input function. For the precise definition see, for example, [Kai]. Further- 

more, it is well known that any observable and controllable system has a minimal 

realization (again see [Kai]) where the size of the square matrix A is the MacMillan 

degree. 
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Elements of Atn,m,k a r e  known to be in one to one correspondence, via the Laplace 

transform, with proper rational transfer matrices 

G(s) = C(s I -A  )-I B + D E Mat.• 

of degree k. In turn, proper rational transfer matrices are known to be [HM] in one to 

one correspondence with elements of Ratk(Gn..+m). Hence Rat~(Gn,.+m) denotes the 

degree k holomorphic maps from the Riemann sphere, S z, to the Grassmann manifold 

of n-planes in m+n space, G.,.+m(C), with the compact-open topology. 

In the special case of n inputs and one output (or one input and n outputs) we have 

COROLLARY 1.6. The moduli space o f  observable, controllable linear dynamical 

systems At., l, k o f  tridegree (n, 1, k) is stably homotopy equivalent to V~=j Y~z"-2)JDy. 

Previous work on the topology of At.,,~,,=Ratk(G..m+.) includes [Brl, Br2], [BD], 

[Del], [G], [Hel, He2], [K] and, of course, [Seg]. Note that the most recent computa- 

tional results cited ([Del] and [Hel,  He2]) are quite different in focus from 1.6 in that 

they consider only the rational homology in tridegrees (n, m, k) for general n and m but 

small values of k. Finally, we note that the homology of At ..... k=Ratk(G .... +.) is now 

known for all values of n, m and k [MM]. This computation uses Theorem 1.5 in an 

essential way. 

For practical applications it is more important to understand the cell structure of 

At,. m, k rather than its stable homotopy type. In section 6 we give a conceptually simple 

cell decomposition for these spaces. 

We conclude our remarks concerning Ratk(CW) by noting that there is an alternate 

proof of Theorems I. I, 1.2 and 1.5 that is geometric and combinatorial in nature, rather 

than homological. It is presented in [C2M22]. This second method has the advantage 

that it gives a much simpler approach to the Ratk spaces. On the other hand, the 

approach presented in the current paper has the advantage that we can simultaneously 

analyze a much wider class of "divisor spaces" of which Ratk is the simplest example. 

We now discuss one particular family of such spaces. 

B, The Div spaces 

For any space X, let Divk(X) be the subspace of SPk(X)xSPk(X) defined by 

DiVk(X) = {(~, r/) E spk(x)• the coordinates of ~ and r/ are disjoint}. 

Let Mg be a closed Riemann surface of genus g, and let M~ denote the punctured 
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surface; i.e. Mg with a point deleted. The points of Divk(M~) are thus the classical 

divisors (k roots, k poles) on the surface Mg, hence the name Divk(X) for the general 

construction. Clearly, when g=0, we have that M~=C and so Div~(M~)=Rat~. 

The methods of w 2 -  w 4 give a systematic procedure for computing the homology 

of the bifiltered Div-spaces, Divk, ,(X), (k roots, n poles) of  which Theorems 1.1 and 1.2 

are among the easiest cases. The spaces Divk(Mg) represent the next level of examples 

and are somewhat more complicated. They are also discussed in w 4, but the results 

there are far from complete. Consequently, in the last four sections we concentrate on 

them exclusively. Segal shows that in the limit as n---> oo the space of based holomorphic 

maps of degree n, Hol*(Mg, S 2) has the homotopy type of Map~'(Mg, $2), the space of 

basepoint preserving maps homotopic to the constant map. We strengthen this result 

by identifying the homotype type of Map~'(Mg, $2). In particular, in w 7 we show 

THEOREM 1.7. There is a homotopy equivalence 

Map~(Mg, S z) ~ (ff2SZ)zexXg 

where Xg is the total space of  a fibration 

Q2 S3__., X g.__, (S1)4g. 

This is 7.8 of w and is a useful first step because Holn(Mg, $2). is a critical 

subspace of Divn(M~). When coupled with further results in [Seg] and the results of w 4, 

it leads to an effective procedure to determine the structure of Divk(M~) (see in 

particular 7.15). As an application, in w 8 we determine the rational homology of the 

Divk(M~). 

In w 9 we give a geometric bifiltration of Divn(M e) which parallels the homotopy 

decomposition presented in the previous sections. The various quotients of this bifiltra- 

tion are smash products of Ratt spaces with products of spheres whose "leading edges" 

appear to correspond to the cells in the algebraic decomposition described in w 4. 

However, at this time we do not have sufficient control over the identifications in the 

geometric model to make this correspondence precise. 

In w I0 we study a certain "nonsingular" subspace Zn(Mg) of Divn(Mg). It is 

naturally the total space of a fibration over DP~(Mg) with fiber SPk(Mg - {n}), where {n} 

denotes a set of n distinct points. Z,(Mg) consists of those divisors that have distinct 

roots and is a subspace of generic points in Div,(M~). As such it will be particularly 

important in analyzing the structure of Divk(Mg). We compute the holonomy of this 

fibration and show how, in the genus zero case, one recovers a classical faithful 
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representation of Artin's braid group ~. in the automorphism group of the free group on 

n-generators. 

C. Connection with monopoles and harmonic maps 

There are well-known connections between Ratk(CW), harmonic maps, and Yang- 

Mills-Higgs SU(2) monopoles and we end this introduction by stating another corollary 

of Theorem 1.1. 

First, there is a natural energy functional on the space of C ~ maps from CP j to CP" 

given by 

1 fc [d~(x)12dv~ E(49) = --~ v' 

where ]. ] denotes the norm with respect to the Fubini-Study metric on CP" and dvol is 

the standard volume form on CP ~. The critical points of E satisfy t rDdr  where D 

denotes the induced connection on q~*TCP"| ~. Solutions to this equaton are 

called harmonic maps. 
The complex structure on CP n implies that the above energy functional can be 

written as 

and that the difference 

1 dvol e(O) = y P, 

1 dvol 
-2- JcP' 

depends only on the degree k. Thus the absolute minima are precisely the holomorphic 

maps (or antiholomorphic maps) from CP ~ to CW. When n= 1 all critical points are 

global minima and hence rational maps [EWl, W]. When n> 1 there exist critical points 

(equivalently harmonic maps) which are not rational maps; however, it is still true that 

all minima are given by rational maps and hence are global minima [EW2]. 

Taubes has shown that the Yang-Mills-Higgs functional associated to the SU(2) 

Yang-Mills equations on R 4 reduced under " t ime"  translation symmetry has, as its 

domain, a space that is homotopy equivalent to the space of C = maps from CP ~ to CP ~ 

[T1]. The global minima for this functional are precisely the solutions to the Bogomol'- 

nyi equations [B] and are called monopoles. Furthermore, the moduli space of such 
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monopoles (up to based gauge equivalence), ~k is a 4k dimensional manifold. Based on 

work of Taubes [TI, T2], Hitchin [HI, H2], and Nahm IN], Donaldson proved the 

following theorem. 

THEOREM 1.8 [D]. For all k there is a natural one-to-one correspondence between 

equivalence classes o f  SU(2) Euclidean monopoles and rational functions; that is, 

~k ~- Ratk. 

In [BoMa] it was shown that the Donaldson correspondence preserves the topolo- 

gies and is actually a homeomorphism. This implies the following corollary of Theorem 

1.1. 

COROLLARY 1.9. There is a stable homotopy equivalence 

~t ,  ~- K(fl2 , ,  1). 
$ 

It is interesting to observe that Donaldson's theorem shows that there exist two 

natural functionals on Q~ S 2 both of which have Rat~ as the solution space of global 

minima. However, these functionals are globally quite different. For example, while all 

harmonic self maps of the Riemann sphere are holomorphic, Taubes [T1] has shown 

that there are non-minimal critical points for the Yang-Mills-Higgs functional. 

We would like to thank S. Boyd, C. Boyer, R. Mazzeo, B. Osgood and R. Schoen 

for helpful discussions during the preparation of this paper. 

w 2. Preliminaries on Ratk, symmetric products, and loop spaces 

Let gatk be the space of (degree k) rational maps f: $2---~S 2 normalized by assuming f 

has exactly k roots, k poles, andf(oo)= 1. Such a functionf(z) can be written uniquely in 

the form 

zk+a~z k- J +"" +ak _ h(z) 
(2.1) f (z)  = 

z*+blz~-I+...+b, m(z) 

where the polynomials h(z) and m(z) have no common roots. A monic polynomial h(z) 

is, of course, completely specified by its roots, and these comprise a set of k not 

necessarily distinct unordered points in C. 

The space of all unordered k-tuples of points in a CW complex X is called the k-fold 

symmetric product of X and is written SPk(X). It is given the quotient topology from 



T H E  T O P O L O G Y  O F  R A T I O N A L  F U N C T I O N S  171 

the identification map XL--->SPk(X), (xj . . . . .  xD ~x~. . . xk ,  where we write the unordered 

k-tuple (Xl . . . . .  xk) as the (formal) product Xl'"Xk. There is a commutative and associ- 

ative pairing 

(2.2) SPk(X) • SPr(X) ---> Spk+r(x),  (xl'" "xk, Y l'" "Y,) ~ x j"  "xl. 'yl'"y r 

and we can write an arbitrary point of SPk(X) as 

i t i t 
x 1 .... x l, i l+.. .+it =k .  

If a basepoint * EX is chosen then there is an embedding 

SPk(X, *)--> Sp~+I(X, *), Xl ... xk ~--> x 1 ... x k. *, 

and in this case the space SP=(X)=SP=(X,  *)=limk_~ SPk(X) is defined. 

The pairings in 2.2 fit together to give a commutative associative pairing 

SP=(X, *)• ,)--> SP=(X, *) 

with limk__,=(*)=* acting as a unit. This gives SP;~(X, *) the structure of the free 

commutative, associative monoid with unit *, generated by X, and we have 

THEOREM 2.3 (Dold-Thom). Let  X be a connected complex, then 

SP~(X, *) = ff-[ K(tzI~(X, Z), i) 
i= 1 

where K(:r, n) is the Ei lenberg-MacLane space. 

THEOREM 2.4 (Steenrod). Let  X be as above, and suppose A is any untwisted 

coefficient group, then 

(a) H,(SP"(X) ,  A)=LIT,= j H,(SPk(X) ,  SPk-~(X), a) .  

(b) H,(SP=(X,  *),a)=lim,_~= H,(SP"(X,  *), a) .  

THEOREM 2.5 (Steenrod). H , ( S I ~ ( X ) , A )  is a functor  only o f  H . ( X , A )  for  all n, 

with X, A as above. 

This functor is given explicitly in [M]. 

In order to describe these groups we first recall the definition of a multi-graded 

algebra over the field F. 
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Definition 2.6. Let # be commutative monoid with unit, then the F-algebra A is an 

#-graded algebra if A = II/e y A I as an additive group, and A 1. As cAi+ J. 

Also, if q~: #--+Z is a monoid homomorphism, then A is said to be q~-commutative if 

ag'al=(-1)~)r176 An #-graded F-algebra A is said to be free q}-commutative if it is 

the tensor product of a polynomial algebra on generators bl with q}(b~) even, and an 

exterior algebra on generators ej with q)(eg) odd, provided the characteristic of F is 

either 0 or odd. If the characteristic is 2, then A is simply the polynomial algebra on the 

stated generators. The number q~(e) is usually called the dimension of e. 

Example 2.7. A=H*(Xx Y; F)=H, Hi+j= . Hi(X; F)(~HJ(Y; F) is naturally a Z + xZ  +- 

graded algebra, which is S-commutative where ~p(m,s)=m+s, and, similarly, 

H*(Xlx...xX,;F) is graded by (Z+) n. 

Example 2.8. A different type of example occurs when we consider SP:~(X, *) using 

(2.2), (2.4), (2.5). Indeed, writing 

H*(SP=(X, *); F) = H H*(SP"(X), Spn-I(x); F) 
n 

we have that H*(SP~(X, *);F) is bigraded by (*, n), dimension and filtration degree. 

This algebra was studied and completely determined in [M] for all locally finite CW- 
complexes. First, since SP~(XV Y, *)=SP~(X, *)xSP~(Y, *), it should not be unexpect- 

ed that each time we add a direct summand homology class a in dimension n>0, the 

resulting graded algebra becomes the tensor product of the algebra associated to 

SP~(M(a), *) and the algebra associated to the previous classes. Here M(a) i s  a 

Moore space of dimension n. That is, H,(M(a);Z)=O if i~n, and Hn(M(a);Z) is the 

direct summand in H, (X;Z)  associated to a. Moreover, the basic bigradings of 

H*(SP~ F) are completely determined in [M]. 

In what follows we only need to consider three examples along with their tensor 

products. These are 

(2.9) H*(SP=(S1); Z) = E[e,, 1)], 

the exterior algebra on a 1-dimensional generator of bidegree (1, 1), 

(2.1 O) H*(SP=(S2); Z) = Z[b~2, l)], 

the polynomial algebra on the 2-dimensional generator of bidegree (2, 1), and 
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( 2 . 1 1 )  H*(SP=(S3); Z/2) = Z / 2 [ t ( 3  ' l ) , f(5,  2),f(9.4) . . . . .  f(2zi+ 1.2 i) . . . .  ] 

S 2i S 4S 2"t'- 'c with q ... q q t )=J~22i+1.2,) where Sq iis the ith Steenrod square. On the other hand, 

for odd p we have 

(2.12) 

H*( SP=( S3) ; Z/p) = E[ t(3" 1), h(2p+ l.p) . . . . .  h (zpi + �91 . . . .  ]@ Z/P[ b(2p+ 2.p) . . . . .  b t2pi + 2.pi ) . . . .  ]. 

In this case, as before; the generators are given as iterations of mod(p) Steenrod 

operations on t 3. Specifically, h (2pi + l.p~) = ~P'-~ ~Pi- "... ~J t3, while b ~zp, + 2 .p~)=flh tzo, + l.#) and 

fl is the mod(p) cohomology Bockstein. 

Returning to geometry, we will be dealing exclusively with the case where X is a 2 

dimensional manifold. For such spaces the following result is well known [And]. 

THEOREM 2.13. Le t  X be a 2 dimensional  manifold wi thout  boundary,  then SP~(X) 

is a 2n dimensional  manifold for  all n. 

We return to our consideration of the Ratk spaces. By identifying a rational 

function with its collection of zeros and poles we may identify Ratk with an open subset 

and hence an open 4k dimensional submanifold 

Rat k c SPk(S 2) x SPk(S2). 

Specifically, 

Ratk= {(x 1 . . .xk,  y j . . . y ~ ) l ~ : x i * Y j * ~  for all 1 < . i , j ~ k } .  

Thus, using Alexander-Poincar6 duality we have 

(2.14) /=/4k-.( SP~(S2)xSPk(S 2) ; F )  ---- H,(Ratk; F) 
[Spk-I(S2) x SPk(S2)] U [SPk(S 2) x SP k - 1($2)] t.J Vk. k 

where the singular set  

Vk. k ~ SPk($2) • SPk(S2) 

is the closed subset of points (xj ... xk, yl-. .  Yk) with xi=y~ for some i , j .  In particular, Ratk 

is the complement of the resultant locus. 

At this point, we return to the natural inclusion 

eval: Ratk--~ (~2S2) k = Map= ~l(S z , S") k. 
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It is well known that each component of ~'~252 has the homotopy type of ff22S 3 due to the 

Hopf fibering 

St--> $ 3 ~  S 2. 

The May-Milgram model for f~ZZzX (for X any connected CW-complex) is given as 

follows 

( 2 . 1 5 )  J2(X) = H F(C, k) x s,~ Xk/eq uivalence 
k=l 

where F(C, k) is the set of k-tuples of distinct ordered points in C, and the equivalence 

relation is given by 

(z l  . . . . .  zk,  0 t  . . . . .  Oh) - ( z t  . . . . .  ~j . . . . .  z ,  0 t  . . . . .  0 j  . . . . .  Oh) 

if and only if 0j=* EX is a fixed basepoint. J2(X) is naturally a filtered space with a 

filtration preserving H-space pairing map 

tz: (J2(X)xJ~(X)--> J2(X). 

See [May, Seg2] for the definition of/z. Moreover, under the homotopy equivalence 

e: J2(X)--->ff~2Z2X of [May, M2], the following diagram homotopy commutes 

J2(X)XJ2(X) " ,  J2(X) 

f22ZZXx Q2y2X *,  f22Z2X 

where * is the usual loop sum. Now recall 

THEOREM 2.16 [Sn]. For any space X the natural projection map 

F(R m, k) xXC--~ F(R m , k)+AX k 

from the equioariant cartesian product to the equioariant smash product has a stable 

section. In particular, this induces a stable splitting 

J2(X) = V F(C, k)+ A •. XA... AX. 
$ 0 k ,  . 

k 

Furthermore, the groups H.(fl2(S1), J~-l(SI); F) are isomorphic to/-l.(Dk; F) where it is 
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customary to denote the k-th summand in the above decomposition for X=S 1, 

F(C, k)kA ~ S k 

as Dk. Finally, writing 

H,(Jz(X); F) ~ U H.(J~(X), J~-'(X); F) 
I 

makes H,(J2(X); F) into an algebra over the set Z+x Z +. 

The following calculation for the homology of J2(S ~) (as an algebra over Z+• Z +) is 

given in [M2]. The result is 

(2.17) 
H.(Jz(S1);  Z / 2 )  = Z/2[e(l ' 1), q(3.2) . . . . .  q(2i*,_l. 2/) , - . - ]  

H.(J2(SI); Z/p) = E[eo. j), e(zp~+~ - l.p') .... ] ( ~ Z l p [  qt2p-2.P) . . . . .  q(2pi-2,p i) . . . .  ]" 

Here, q(2p,-2,p') is the homology Bockstein of e(2p,_l.p, ). Note the close connection 

between these results and the results of (2.11) and (2.12). Recall that the homology 

groups of the spaces Dk are given explicitly by the subgroups of (2.17) consisting of 

elements with second grading degree exactly k. 

Example 2.18. When p=2  the generators for the first few of these groups 

H.(Dk, Z/2) are as follows. For k=2 the generators are e2,.1) in dimension 2, and f~3,2) in 

4 in dimension 4, in dimension 5, dimension 3. For k=4 we have e~1.1 ) e~l,i)f~3.2 ) 

f{~,2) in 6, and3'i7,4 ) in 7. By comparison, in (2.11) we see that the groups with second 

degree 2 have generators t~ in dimension 6 and Sq2(t3) in dimension 5, while the groups 

4 in dimension 12, t~SqZ(t3) in dimension 11, with second degree 4 have generators t 3 

Sq~(t3) 2 in dimension 10 and SqaSq2(t3) in dimension 9. In [BCM] it is shown that 

there is a duality isomorphism between the groups H.(Dk;F) and the groups 

1-14k-*(SPk(S3), SPk-I(S3);F). The process by which this isomorphism is constructed is 

similar to the duality calculation of (2.14). 

As is the case with the Steenrod operations in cohomology theory, in keeping with 

the implicit duality indicated in 2.18, there are homology operations in the category of 

2nd loop spaces. They are given in terms of (Dyer-Lashof) maps 

lpk: F ( C ,  k ) x  5~k(~'~2x)k--~ ~-~2X 
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given by 

~Pk(zl .....  zk, fl . . . . .  L)(~) = {.~((~--Zi) N) if I~-zi[<~N 

otherwise 

where N=(1/ lO6) .min  Izi-zjl. Using J2(X) as a model for ~'~2~-2X w e  can approximate ~pk 

by the maps 

k 

F(C, k) x gk Y~ F(C, j )  x ~ X x  .-. x X - - ,  F(C, w) • ~,,Xx ... xX .  
] j jk 

Here the map on the products of X's is just a shuffle map according to the wreath 

product embedding 5e k f ~ c~.k, and the map 

F(C, k) • ~k F(C,j)  •  •  ~ F(C, kj) 
k 

is defined by 

(2.19) (zl . . . . .  Zk, ~lJ, ~lj . . . . .  ~kj) ---> Zl N ~jj . . . . .  zi+ ~il . . . . .  Z~+ ~kj 

where N is an appropriately large number depending on (min [zi-zj[, max I~ul), which 

will guarantee that the points in (2.19) are disjoint. This construction was first given, in 

this form, in [BV] but such constructions have a long history. 

There is a homotopy commutative diagram for the Dyer-Lashof map 

(2.20) 

F(C,k)• ~ , k v' e~(~'Z'X) , f~2E2X 

I I• I h 
F(C, k) • jk(J2(X))k ' Jz(X) 

I I X (incl) k lincl 

F(C, k) x ~'k Xk ' J~(X) 

where h is the homotopy equivalence described in [May] and the lower map is the 

surjection onto J~(X)=Jz(X).  

w 3. Generic subspaces of Rat~ and Theorem 1.1 

k /~ k 2 k 2 In w 2 we saw that there is a natural embedding RatkcSP (C)xSP  ( C ) c S P  ( S  ) x S P  ( S )  

as an open 4k-dimensional submanifold. A first attempt at studying Ratk proceeds by 
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projecting onto the first factor SP~(C), 

Pl: Ratk ~ SPk(C), (x~ ... x k, Yl "'" Yk) ~ xl "'" xk. 

There is a natural decreasing filtration of SPk(Y)  given by Xz. . .xg  E Fr(SPk(Y)) if and 

only if we can write 

X 1 ".o X k = (Z 1 " ' "  Zr)2X2r+l . . .  X k. 

In particular 

F o ( S P k ( Y ) ) - F I ( S p k ( y ) )  = DPk(Y)  = {x I .,. xkl x i ~ xj for all i ~=j} 

is the k-fold deleted symmetric product of Y. This space has been studied intensively 

when Y is a manifold in [BCT, BCM, LM], though there have been previous studies in 

special cases. 

When we look at the inverse image of Fr(SPk(C))--Fr+I(SPk(C)) we see that it is a 

fiber bundle with fiber S P k ( C - { X l  . . . . .  Xk_r}) over the point (x I ... x)2Xr+l "" x~_ r. Thus, 

we have a sequence of subspaces, Er, O<~r<.[k/2], filling out Ratk each given as a 

fibering 

(3.l) 
Pl 

S P k ( C -  {x I . . . . .  xk_ r}) ~ Er--* F~(SPk(C))- F r +  j(SPk(C )). 

The fiber SPk(C - {xl . . . . .  xt}) is homotopy equivalent to the torus ($1) ' as long as k>~t 

(see e.g. [M]) and a specific homotopy equivalence can be given as follows. Let  

e=~min{Ixi-xjlli*j ) and embed t copies of sl~--~C - {X I . . . . .  Xt) as the circles of radius e 

about the points xl, x2 . . . . .  x t ,  respectively. Then (SI)t~SPk(C- { x  I . . . . .  xt} ) is the set of 

points (Yl, "",Yk),  Yi C SI centered about xi for i<-t, and Yi--* for i>t .  This equivalence 

naturally extends in the maximal case to give the following: 

LEMMA 3.2. Eo is h o m o t o p y  equivalent  to the total  space  o f  the f iber ing  

(Sl)k----> F(C, k)• ~(SJ)k--~ DPk(C). 

E0 is a generic subspace of Rat~ and, as we have seen in (2.15) it occurs both as the 

basic building block in the May-Milgram model for the double loop space f22S 3 and in 

the Dyer -Lashof  maps of (2.19) and (2.20). When k = l  ,E0 is all of Rah and we recover 

the classical decomposition R a h ~ C * x C - S  ~. Let  0: s l'-+Eo be the naural inclusion of 

the fiber. 
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LEMMA 3.3. The composite evaloO:Sl~-~Rah-->f~ S 2 nmps onto a generator o f  

7t'l (~-~ ~ S 2 , Z)  ~-.~ Z .  

Proof. The generator of 2"g3(S2)=Z is well known to be the Hopf map r/: S3--->5 2, 

defined by regarding S 2 as CP l, which is the orbit space of S 3 under the complex circle 

action (z~, z2)-->(ei~ ei~ Given a differentiable map f: $3-~S 2 we can determine its 

homotopy class by calculating the linking number of f - l (a ) , f f J (b ) ,  for a, b any two 

regular points o f f  in S 2. 

Hence, we study the adjoint of eval00 viewed as a map e(evaloO)=e: SIAS2--->S 2. 

This is given on coordinates as (~, z)~-){z-~, z} where the coordinates in the image S 2 

are homogeneous. What we will do is construct a map /~: S3--~SZ+/XS 2 so that the 

composition is seen to be _+ 1 times the Hopf map. However, we do have to be careful 

about one point. SI+AS2~-sEvs 3, and eIS2--)S 2 is homotopically the identity. Conse- 

quently, by modifying/~ by a multiple of the Hopf map into the S 2 wedge summand we 

can modify the image of the composition e o/a in any way we choose. However, we will 

construct/~ so that the composition 

p ~ $3----> SI+ASZP-~ S 2 

is homotopically trivial where p: SI+AS2---)S 2 is given by (~, z ) ~ z .  p is associated to 

"component shifting", sending h to h*n(id), and it is direct to verify that if eo/u=+_h 

while po/~=0, then, in fact 3.3 will follow. 

We regard S 3 as the join SI*S I =S I x l •  1 with (~, 0, w)-~,  (r l, w)-w,  and define 

by 

/ z (~ ' t '~~176  t=lt~:l where q~(t) = - L - t  . l _ t  

Now, (p o/z)-l(O)={(~, O, w)}~{(r 1 is the boundary of the disk D z given as the set 

of points {(~,t, 1)}. Also, (po/z)-I(i)={(~, 1/2, i)}=S I as well, and the D 2 above is 

disjoint from this circle. Hence, the linking number of the two inverse images is 0 and 

p okt-----0. 

On the other hand when we consider the composite e o/~ we have 

(e o/2)-1({0, *}) = {(,~, 1/2, ,~)} 

while 

(e oB)-l({*, 0}) = {(~, O, w)} ~ {(~)) =S',  
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the same S 1 as above. Consequently, it bounds the same disk D 2. But the circle 

{(~, 1/2, ~)} in S 3 intersects this disk in general position, and in a single point (1, 1/2, 1). 
[] 

It is routine to verify that the following diagram homotopy commutes. 

(3.4) 

F(C,k)• k , Rat~ eval ~ M a p ~ j ( S 2  S2)k 

F(C, k) x ~,(sl) k ~ , J2(S~) .  

Here, the map ~p is the Dyer-Lashof map of (2.19) and (2.20), the first map in the upper 

row is the inclusion of 3.2 and the second map in the upper row is the evaluation map. 

The point is that the analytic functions in Ratk obtained as the image of F(C, k)x~,(S~) k 

can be thought of as having k poles determined by the points of F(C, k) and, for each 

pole, a root lying on a very small circle centered at the corresponding pole. Relatively 

far from each of these k circles the value of the function is uniformly close to 1, and, up 

to homotopy we can pinch off the maps to be equal to 1 in the complement of 

appropriate neighborhoods of the circles. But this is just the model for the loop sum, 

which is given by the lower map % 

Thus, using the stable splitting maps of 2.16 we obtain a collection of maps 

�9 j-: Z~ as eval followed by the inverse of the composition of homotopy 

equivalences J2(SI)---->f~2S 3 and Q2S3---~Map=~j(SZ, S2)k. 

COROLLARY 3.5. For any f inite k>0 the composite stable map 

k k 

V ~i: Ratk'-> V Fj(C)+A~(S J) 
j=l I 

has a stable section. 

Proof. The fact that ~k: Ratk-+Dk(S 1) has a stable section follows from (2.16) and 

(3.4) since (3.4) implies that the projection F(C, k)x(S~)k~D~(S ~) factors through Ratk. 

The corollary is then proved by induction using the fact that in [Seg] Segal showed that 

there are imbeddings 

iq: Ratq--~ Ratq§ I 

12-918286 Acta Mathematica 166. Imprim~ le 17 avril 1991 
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that are compatible, up to homotopy, with the embeddings 

* [ 1 ]: Mapq(S 2, S 2) ~ Mapq+ l(S 2, S 2) 

given by taking the loop sum with the identity map. 

Of course, (3.5) does not assert more than the fact that the stable homotopy type of 

Ratk is at least as big as that of J~(S~). At this point, in fact, it could be much bigger. In 

w we will show, however, that H,(~(SI) ;F)  is also an upper bound for the homology 

of Ratk and, from this, Theorem 1.1 is immediate. 

w 4. The homology of Ratk and Divk(Mg- *) 

We now describe a general method to study the homology of the divisor spaces. As 

Ratk is the simplest example of  such spaces, we will obtain H,(Rat~) as the easiest 

special case. In [C2M22] we give a more direct geometric determination of H,(Ratk); 

however, the methods there, unlike the methods here, do not extend to cover general 

divisor spaces. In fact, the techniques of this section extend without modification to 

cover more general types of spaces; specifically, two colour configuration spaces 

[B6d]. 

A. Dold and R. Thom introduced the space AG(X, *), the free Abelian group 

generated by the points of X with * as identity and (compactly generated) quotient 

topology, in [DT]. Moreover, they showed 

THEOREM 4.1 [DT]. L e t  X b e  a connected cell complex with * a vertex, then the 

natural inclusion 

SP~(X, *) ~ AG(X, *) 

is a hornotopy equivalence. 

We can write each point of AG(X, *) uniquely in the form * or 

{x I ""XrY-(~...ys~(*~xi, yj, xi+)), l ~ i ~ r ,  l <~j<-s} 

and we define AGm, n(X, *)cAG(X, *) as the set of points which can be written in the 

form above with r<~m, s<~n. Clearly, when X=S 2 we have 

Rat k = AGk.k(S 2, ~)-{AGk,  k_I(S 2, oo)UAGk_I.~(S 2, ~)}. 
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Similarly, when X=Mg, a closed Riemann surface of genus g, we have 

Divk(Mg- *) = AGk, k(Mg, * ) -  (AGk, k-I(M~, *) U AG k_ l, k(Mg, *)}- 

More generally, we introduce the notation 

(4.2) Divm,,(X-*) = AG~,,(X,  *)-{AGr~.,_j(X, *)UAG,~_L,(X, *)}. 

Our main object in this section is to obtain spectral sequences converging to the 

homology of the spaces Divm. n(Mg-*). 

Although the doubly filtered space AG(X, *) contains the information we want, it is 

well hidden in the structure. We will now modify the construction (without changing 

the homotopy type) to make the homological information we desire easier to extract. 

We regard AG(X,  *) as a quotient of SP~(X, *)• *) by factoring out the diagonal 

copy of SP~ *). In a manner similar to ([BCM], w 4), we replace AG(X, *) by the 

quasifibering 

(4.3) SP~(X, *) • SP~(X, *)--~ D Y(X) ~ SP~(EX, *). 

We can write D Y(X) explicitly as 

D Y(X) = SP~(X, *)• *)• *)) 

where c(X, *) is the reduced cone on X. The twisting is given by the diagonal inclusion 

SP| . ) eSPY(X ,  ,)z. More precisely, the points of DY(X)  are triples 

((xl"" Xr' Yl"" Ys' (tl' Zl) "'" (tt, Zt)} 

with the identification that when ti=0 the point above becomes equal to 

( ( X I  " ' "  Xr "Zi' YJ" "" Ys "Zi, ( /1 '  Zl) "'" (tt, Zt)} 

with (ti, zi) deleted from the last set of coordinates. The projection onto SP=(EX) is a 

quasi-fibration with fiber SP=(X)xSP=(X).  In particular, this means that there is an 

exact sequence in homotopy and it is not hard to see that the map 

p: D Y(X)---~ AG(X,  *), (Xl "" xr, y l ." ys, "" )~--~(Xl "" XrY~l "" y~ j) 

is a homotopy equivalence. In fact, more is true, and by properly bifiltering DY(X)  we 
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can assume that p induces equivalences of bifiltered spaces. Exactly as in the proof of 

(4.7) of [BCM], we have 

THEOREM 4.4. I f  we bifilter DY(X) by setting 

D Y,. re(X) = ((xl ... x ,, Yt "" Ys, (tl, Zl) "" (tt, Zt)} 

with r+l<~n, s+l<.m, then for all O<m<oo, O<n<oo, we have natural homotopy 

equivalences 

AG,. re(X, *) ---- D Y., re(X). 

For example, the space DYI, I (X)=XxXU cX/(O,x)-(x, x) clearly has the homotopy 

type ofXxX/ (x ,  x ) -*=AGL ~(X, *). It is instructive to work out the next few cases as an 

exercise. 

Since DY,_I,m(X ) and DY,.m_I(X) are both closed subsets of the closed (relative) 

manifold DYe, re(X) Alexander-Poincar6 duality can be applied and gives 

COROLLARY 4.5. Let X be a compact oriented surface without boundary. Then 

Hi(D Y.. re(X)~{ D Yn-i, m(X) O D Yn, m-I(X) } ; F) =/~2(. +m)-;(Oiv., re(X-*); F) 

for any field F. 

Our goal is to compute the homology of these quotients by studying the Leray- 

Serre spectral sequences for the quasi-fibration (4.3) (compare [BCM], w 5). This is 

where the advantage of replacing AG(X, *) by DY(X) becomes apparent. For example, 

when we filter by cells in SP=(ZX) the inverse images become products, and so the E2- 

terms become, by (2.11) and (2.12), quite easy to calculate. 

Now we assume the coefficients F are the field Fp, or the rationals Q. The formulae 

in (2.11) and (2.12) show that the EZ-terms for the entire spaces DY(X) are trigraded 

differential Hopf algebras of the form 

(4.6) ~ I  (E[ei, o, eo,,] | @r[f,,f2] | . . . . .  gi . . . .  ] | .... .... ]. 
I 

Here, hi is the suspension of the ith generator of HI(Mg;Z) in ZMxcSP=(ZMg), and 

g, gi, flgi map to the corresponding classes in H.(SP=(S3);F) under the suspension of 

the pinching map Mg-->S 2. In other words, they come from the suspension of the 
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orientation class [M e] in H3(SP=(ZM~);F). Of course, ei. o, eo.i,fl and f2 correspond to 

the classes on the two copies of SP=(Mg) in the fiber. The trigrading degrees are given 

by 

(4.7) 

Generator Trigrading 

ei. o (1, 1,0) 

eo. i (1,0, 1) 

hi. o (2, 1, 1) 

fj (2,0, 1) 

(2, l, o) 

g (3,1, 1) 
gi (2pi+ 1, pi, pi) 

flgi (2pi+ 2, pi, pi) 

with the first trigrading degree being the dimension of the element, and the last two 

degrees, of course, index the grading in DY,. , , .  Also, gi, flgi are zero if F=Q. The 

algebra F[z(2r, s. t)] is the divided power algebra. It has a copy of F with generator yj(x) in 

each tridegree (2rj, s j,  tj), is zero elsewhere, and 

Yj(x)oY~(z) = ( j j V )  yv+/X). 

In the special case where X = S  2 the terms ei.j and hi are not present so we get the 

much simpler form 

(4.8) 

Generator Trigrading 

f, (2,0, l) 

(2, 1, o) 

g (3, 1, 1) 
gi (2pi+ 1, pi, pi) 

flgi (2pi+ 2, pi, pi) 

Here is the process for obtaining the information about H,(Rat) and H,(Div) from 

these spectral sequences. We use the following diagram to obtain a filtration of the 

spaces given in 4.5 which are homotopy equivalent to Ratk and Divk, respectively, with 

explicit E2-terms. 
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E i i / ( E i  j i U E i i - l ) "  El. i ~ 

Bi  

SP xSP 

1 
+ E 

, s P = ( X x )  

Here E;,; is the subspace of E=DY(X) consisting of points having filtration degree 

<~(i, i) and B;cSP=(ZX) is the subspace of SPi(EX). Note that while the projection map 

~r: El, i----~Bi is not, in this context, to be regarded as a fibering, we can still examine the 

associated Leray spectral sequence for H.(E;,i) induced from the natural filtration of 

cells in Bi. Indeed, we have that 

~C, I(sPJ(Zx)-  sp j - I ( zx ) )  = spi-J(x) • spi-J(x) • (sPJ(Ex)-  spJ-1(ZX)) 

in Eij. This is why the E2 term for the spectral sequence for H.(E;.i/(Ei_l.iOEi, i_l)) is 

the direct summand of E2(Ei, i) consisting of those groups of filtration degree (*, i, i). 

Consider the terms in tridegrees (*, k, k) appearing in (4.8). They give rise to a 

quotient spectral sequence converging to H*(Rat~, F) as in 4.5, where Ratk denotes the 

one point compactification of the open manifold Ratk (recall (2.14)). This can be 

written, on comparing with (2.11) and (2.12), as 

H (flf2)JH*-4J(Spk-J(s3)' SPk-J-I(S3); F). 
J 

Moreover, from 2.18, we can identify thejth piece above with the dual of H.(Di; F). But 

this implies that the lower bound of 3.5 is actually an upper bound. Consequently, we 

have 

THEOREM 4.9. 
phism, 

The composite maps V]=j ~j of 3.5 induces a homology isomor- 

k 

H.(Rat , ;  F)--> H H.(Dj; F). 
j=l 

This completes the proof of 1.2 and thus I. 1. 

Next we return to a general discussion of the spectral sequences in the cases of the 

Div spaces. The Hopf algebra structure implies that the dual of rill is the polynomial 

algebra A[u*]. There are differentials given by 
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(4.9) 

d2(hi)  --  ei, 0+e0. i 

d2(g) = ~ (ei.oeo.i+g-ei+g.oeo.i)+fl+f2 
1 

d2(g i) = d2(flg i) = O. 

Moreover eij, ]~, f2 are infinite cycles. 

For hi and g, this follows from the diagram 

H,(CMgU a%Mg• Mg• ~ , H,_I(Mg• 

H,(cM e, Mg', F) s , H,_1(Me; F) 

which describes, as we have seen in 4.4, the structure of the (1, I) filtration piece of the 

spectral sequence. The triviality of the differentials on gi, flgi follows from naturality 

and comparison with the spectral sequence of the entire quasifibration (4.3). 

There are also higher differentials on the gi, flgg which depend in part on the genus 

g. For a further discussion see w 5 of [BCM]. 

When we take the associated spectral sequences for the subquotients 

Divm.n(Mg-*)/a, the associated E2-term is the direct summand of the EZ-term given in 

4.6 above consisting of those elements of exactly tridegree (*, m, n). By naturality, the 

differentials for the subquotients, when they first appear are generated by the differen- 

tials above. 

Since d2(hi) has lower bidegree than hi, this differential becomes 0 in the subquo- 

tient spectral sequence. Moreover, since it has lower filtration degree d2(h3=d~(h3 and 

it must be an infinite cycle, as are the )'j(h3 for all j, i. However, 

g 

d2(g) = Z el, o eo, i+g-e i+g,  oeo, i 
1 

is non-zero unless g=0,  i .e .  Mg=S 2. The injection 

H,(Div m_ 1. n(Mg-*))--~ H,(Div m. n(Mg-*)) 

corresponds to multiplication (in cohomology) by f~'. Similarly, multiplication by f~' 

corresponds to increasing the second index by 1. Again, what is happening is very 

similar to the discussion in w 5 of [BCM]. 
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In more detail, the terms of degree (k, k) have the form 

(4.11) Z h~'.., hVee(f~fz)Wet, o eo. J K(I, J) H,(SPr(S3), spr-l(S3), F) 

where 

r= k -  Z v i -w-II l - Igl  and 
ff4/I-IJI if IJI ~< I/I 

K(I, J) = [f~4-111 otherwise. 

Thus the E~ term looks like the effect of a sum of dual D r ' s ,  specifically a sum of terms 

of the form 

2(vl+'"+vg)+2w+k/l+[KI z2(vl+"+Vg)+2w+lll+[KJto*_)" *'. or Z (D~) 

However, the space cannot split since, as we have seen, the differentials are non- 

trivial, although those we have been able to find only affect the el.0e0. J terms in the 

decomposition above, not the vj or w indices. This suggests the possibility of a wedge 

decomposition over the vi and w indices. (See the remarks after 7.15.) 

In the special case of S 2, the cycle embedding techniques of [Car] can be used to 

show that E2=E ~ for all the relative sequences above. However, the arguments in the 

proof of (4.9) give a direct proof of this fact. 

More study is needed to completely determine the differential structure for these 

spectral sequences when g>0. The geometric information in [M] should be useful for 

this. In sections seven through nine we take a somewhat different approach to the 

study of Div.(Mg-*) by imputting the homological results obtained in this section into 

an analysis of a function space point of view begun by Segal [Seg]. 

w 5. The homology of Ratk(CP") 

In this section we extend the analysis of the previous sections, with only minor 

modification, to cover the spaces Rat~(CP n) and establish Theorem 1.4. Using homoge- 

neous coordinates, a base point preserving holomorphic map S2--~CP n of degree k is 

given by an n+ l  tuple 

(foCz) . . . . .  f . ( z ) )  

where each fi(z) is a degree k monic polynomial in one complex variable and the f ' s  
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have no common zero. Consequently, the natural embedding 

(5.1) Ratk(Cp~) ~ SP~(C),+ i 

cataloging the roots of the fj (z)'s exhibits Ratk(CW) as the complement of the subspace 

(A"C) o (SPk-l(C))" c (SPk(C)) "+l. 

That is, Ratk(Cl ~) is the complement of those points in (Spk(c)) "+l where at least one 

point in each k-tuple is a particular point z E C, so there is a "diagonal" image point, 

along with k -1  others in each k-tuple, which explains the A"C term in the expression 

above. In strict analogy with (2.14), we have 

(5.2) H,(Rat~(Cl~)/a) = H , ( S P k ( S 2 ) n + I / { s p k - I ( s 2 )  n U A n s  2 o Spk - l (S2)n} ) .  

As before we decompose Ratk(Cl ~) by projecting onto the first factor of the natural 

inclusion (5.1). Again, the inverse image of Fr(SP~(C))-Fr+I(SP~(C)) is a fiber bundle 

Er(n) over the point (x l...xr)zxr+l...xk_ r with fiber (S/~'(C))"-A"(xt .....  x~_r). Since 

C"-A"(z)=S 2"-~ the fiber has the homotopy type of the space (SZ"-~) k-r. A specific 

homotopy equivalence can be constructed exactly as in (3.1). 

As expected the generic set Eo(n) for Ratk(CW) is easily identified with the basic 

building block both in the May-Milgram model and in the Dyer-Lashof maps for the 

double loop space f2ZS 2"+~. 

LEMMA 5.3. Eo(n) is homotopy equivalent to the total space o f  the fibering 

F(C, k) • ~k(S 2"- ~)k. 

The analogs of (3.3), (3.4) and (3.5) are now immediate. 

LEMMA 5.4. When k= 1, 

Eo(n ) = Ratl(Cp ") ~ S 2.-I • 

and the composite 

eval 
S 2n-1 ,--> Ratl(CP ~) --> s S 2n+j 

maps onto a generator o f  H2~_l(f2 ~ Sz~+!;Z)=Z. 

C O R O L L A R Y  5.5. For any finite k>0 the composite stable map 
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k k 

V ~s: Ratk CW ~ V Fs(C) + A ~(S ~z~- ~)s) 
j = l  I 

has a stable section. 

As zcz~-z)JDi(SI)~-Dj(S z~-1) [CMM], 5.5 gives the lower bound needed to establish 

Theorem 1.4. 

Hence, as before, we consider the space 

Dyn+J(X) = SP~(X,  ,)"*J •  *)) 

where the twisting is given by the (n+ 1)-fold diagonal inclusion 

A"+I: SP~(X,  *)---> SP~(X,  .)"+J. 

The resulting space DY"+1(X) is (n+l)-graded, the grading degree (i0 .....  in) corre- 

sponding to maps 

c - - ,  c ~ z , - > ( f o ( z )  . . . . .  f . ( z ) )  

with f monic of degree ~<ij, and, as before, there is an equivalence 

(SP=( X ,  *)'+j/A'+I(SP=( X,  *)))% ..... i,,)~- D Y"+I(x)% ..... i,,) 

where we (n+ 1)-grade D Y"+~(X) by setting the (n+ D-grading of 

0 n n 
(x~ . . .  Xro . . . . .  X~ "" Xr~ ( t j ,  ZO . . . . .  % ,  Zt)) 

equal to (to+l, r ,+l  . . . . .  r ,+l) .  The resulting Leray spectral sequence has E2-term 

V[fo . . . . .  L ]  | E[ g . . . . .  gi . . . .  ] OF[  .... flgi . . . .  ] 

where the (n+2)-grading of J] is (2, 0 .....  1,0 ... 0) with the 1 in the (i+ 1)st position, o fg  

is (3, 1, 1 ..... 1), of gi is (2pi + l , p  i . . . . .  pi) and of  fig i is (2pi + 2 ,p  i . . . . .  pi). Therefore the 

terms of bidegree (*, n+ 1, n+ 1 .. . . .  n+ I) must have the form 

~m( L ' A  " " L )  0 l.'(g, pti](g ), flp[il(g) . . . .  ) 

where m<~n+ 1 and v( ) is a "homogeneous" polynomial of (n+l)-degree 

( n - m + l  .. . . .  n - m + l ) .  

Now Theorem 1.4 follows by a direct comparison argument. 
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w 6. A cell decomposition for Ratk(CP") 

We now give a cell decomposition for Ratk(CPn)--~,.l .k~L~.k, the moduli space of 

observable, controllable linear dynamical systems of tridegree (n, 1, k) and (1, n, k), 

respectively. 

Ratk(CW) is an open manifold and any finite decomposition into regularly embed- 

ded open balls of varying dimensions must, of necessity, contain balls whose closures 

are not compact. Specifically, we now construct a decomposition into a finite number 

of cells of the one-point compactification Ratk(CW) § having the ideal point + as its 

only vertex. The adjoined point + will denote the limit of any sequence of rational 

maps [~(z) .....  ~(z)] having the property that the moduli of the zeroes of some ~(z) 

tend to oo as m tends to infinity. These cells, with + deleted, give a decomposition of 

Ratk(CP n) into a finite number of convex regions and should be useful in applications to 

control theory. 

The following cell decomposition, while conceptually quite simple, is not minimal. 

Furthermore, the combinatorics used to describe the attaching maps are sufficiently 

complicated so that it is non-trivial to recover the homological calculations given in the 

previous sections. However, our decomposition does have the advantage that the cells 

we give are convex and very easy to describe. Also, it may be quite hard to find a 

smaller decomposition which consists of convex cells. 

We begin with the simplest case, Ratk=Ratk(CPJ), as the extension to the 

general case will be evident. Recall from w 2 (particularly the discussion preceding 

Proposition 2.14) that we may view Ratk as the open 4k dimensional submanifold of 

SPk(C)xSPk(C)cSPk(S2)xSPk(S  2) which misses the points at infinity and the singular 

set Vk, k. Thus, Alexander-Poincar6 duality, on the simplicial level, implies that it is 

sufficient to give a cell decomposition of 

Rat[ = SPk(S2) • SPk(S2) 
[SPk-I(S z) • SPk(SZ)] 13 [SPk(S z ) • Spk-I(s2)] U VI~" I~ " 

Let i2={(q,tz)[O<<q,tz<l} denote the closed unit square in C and ]z={(fi,tz)l 

O<fi, tz<l } denote the interior of 12. By fixing a homeomorphism between C and the 

open unit square F in C one obtains a homeomorphic model of Rat~ where all of the 

roots and poles lie inside the open unit square. Thus we may work with the homeomor- 

phic model 

sek(Iz) • SPk(l z) 
Rat[ 

[ Spk-  l(lZ ) • SPk(iz) ] 13 [ SPk(i2) • Spk-  I(iz)] 13 Vk ' k" 
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where, by abuse of notation, the entire boundary O I 2 = f l - F  in/z is identified to the 

distinguished base point. 

Hence, for each point (x~ . . . . .  x,,  y l . . . . .  y~) E Rat, we can write each xi= (tl.i, t2. ;) and 
each yT(rLj, rz.y) where 0<tl. v r i j< l  for every i , j  and I. Since the xi's and yfs are 
unordered in their respective symmetric products, it follows that we can use the 

following obvious lexicographical order to uniquely represent each point in Rat, by the 

pair 

(6.1) 

where 

{((tl, , ) ( t , . , ) ~  ( ( r , .  , )  (r , .k))} 

t2,1 ' . . . ,  k t 2 , k / / '  r2,1 ' . . . ,  r2.k 

(1) tl,l~tl,2~...<~tl,k and if t l . i = t l , i + l  then t2 . i~ t2 ,  i+ I. 

(2) r l , l ~ r l , 2~ . . . ~ r l . k  and if rl.i=rl,i+l then r2.i~r2.i+ I. 
Next consider a pair of k-tuples given by (6.1). If one forgets the difference 

between the t's and r's and simply regards the point as a 2k-tuple of points in i 2 there is 

a permutation of the entries which brings the 2k-tuple into proper lexicographical order. 

For example, the permutation (243) corresponds to bringing the point 

to the 4-tuple 

1[3if'  \ \  1/2 ] ' \  7/9 //J 

((1/3] (5/12]~ /{11/24] 1/2]~ ( 
2/3/'\1/2 / / ' \ \  7/9 ] ' \ l / 3 / / J  

which is in proper lexicographic order. 
Of course, the process of bringing any point in SPk(I2)• 2) represented as in 

(6.1) to a lexicographically ordered 2k-tuple may correspond to several permutations. 

However, for any p E Rat\, the condition that (t L i, t2.;)~(r L j, rz . j )  for all i and j insures 
that the associated permutation is unique. Formally we have 

Definition 6.2. Let  

p = ( \ \ t2 ,1 /  .... \ t 2 , k / /  \ \ r 2 . 1 /  . . . . .  r2.k 

be a point in 

Rat k = SPk(F) x SPk(F) ~ Rat~- 
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where the t's and r 's are ordered as above. We say that oE Sr is the kth order shuffle 

ofp if ~ is that unique permutation of the columns ofp  which preserves two properties. 

First, it preserves the internal ordering in the t's and the r 's  respectively. Second, it 

maps p to the ordered 2k-tuple 

(((.,,). ..... 
rE,1 \rE. 2,/I/ 

where rl,l<~rl.2 <....<~rl,2k and if rl,i----rl.i+ ] then r2.i~r2,i+ I. 

That is, a is the kth order shuffle of p if it intertwines the t's and r's into a 

lexicographically ordered 2k-tuple while preserving the respective internal orderings. 

As mentioned above it is manifest that to each p E Ratk there corresponds a unique kth 

order shuffle a(p)E b~2k. In this way one may partition the points of Ratk into disjoint 

sets labelled by elements of the symmetric group 5e2g. 

It is quite natural to try to use this partition of Ratk indexed by the kth order 

shuffles to build a cell decomposition for Ratk. However, the kth order shuffle 0 itself 

does not keep track of whether a strict inequality or equal sign occurs at each position 

in the 2k-tuple r~,l<~ ... <.rl,2k as the t's and r's are lexicographically intertwined. To 

index the cell structure and associated boundary maps it is necessary to incorporate 

this additional bookkeeping, as even the most trivial example demonstrates. 

Example 6.3. Rat~ has a cell decomposition with: 

(1) Two open 4-cells 

' - ( ( ( t " ) ( rNl~]  t''<r'' } 
e 4 -  t21 \ZEJ// t2j and r2j arbitrary 

{ / ( r l l )  ~/t ' l~ I r ' '  < tll } 
e~= r2) \t21// t21 and r21 arbitrary " 

(2) Two open 3-cells: 

e 3 -  t21 r21 . t 2 1 < r 2 1 J  

{ ( ( r " ) ( t "~[ r"=t"  I 
e~= r21 \t21J/ r21<t2))" 

(3) The 0-cell +. 
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(4) The attaching maps in the cell structure are obtained by computing the closures 

of each cell, which, in turn, are obtained by considering limit points of sequences in 

each open cell. Notice that in the induced chain complex the boundary homomor- 

phisms are given by 

~(e~)=e~-e~ a(e~)=O 

a(e~)= e~-e~ a(e~)=0. 

This is to be expected from (2.14) as Rah=S I. Thus, the cell structure and boundary 

maps may be completely described by the indexed 6e2 permutations (keeping track of 

whether or not the t and r columns are interchanged and whether or not tl. l=rj. I) 

(id)(,<), (12)(<) ,  ( id ) (<)  and (12)(<) 

corresponding to e~, e4 2, e~, and e~ respectively. 

More generally, to each kth order shuffle o f  6e2k there corresponds a family of 

indexed kth order shuffles 

(6.4) or( ~ "'" ~ 
\~ "'" %,2k-J/ 

where: 

(1) Each ol,y is either a < or = sign. 

(2) If O1, j is an < sign then there is no condition on o2, j. In what follows we will 

write o2, j as * (meaning no equality/inequality condition) in this case. 

(3) If ol,y is an = sign then 024 is either a < or = sign. 

Of course, many index kth order shuffles represent points in SPk(I 2) x SP*(I z) that 

are collapsed to the base point +. However, once again, to each interior point 

p E RatkcRat [ there corresponds a unique indexed kth order shuffle 

o(o:::o) 
That is, while every point in [SPk-I(I 2) x SPk(I2)] tJ [SPk(fl)x SP k- 1(12)] U Vk. k (which may 

formally correspond to many degenerate indexed shuffles) is collapsed to the base 

point, the indexed kth order shuffles corresponding to non-base points in Rat~- further 

partition Ratk into disjoint sets. We shall see that these indexed kth order shuffles can 
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be used to label our cell decomposition. Before proceeding to the general case it is 
instructive to work through the following example. 

Example 6.5. Rat~ has a cell decomposition with 
(1) Six 8-cells indexed by 

where ere 6:4 runs through id, (23), (243), (123), (1243), and (13)(24). 
(2) Eighteen 7-cells indexed by 

05 06) 

where ere 5e4 runs through id, (23), (243), (123), (1243), and (13)(24) and the indices 
associated to each permutation run through 

.1 * , < and �9 

(3) 24 6-cells. 
(4) 18 5-cells. 
(5) Eight 4-cells indexed by 

id(= < <)(13)(24)(_- < <)  

id(~ < : ) ( 1 3 ) ( 2 4 ) ( <  < =) 

( 1 2 3 ) ( < -  < ) =  (243)(< = < ) . =  

(6) Two 3-cells given by 

i d ( :  < : ) a n d  (13)(24)(= < : ) .  

(7) The base point + (which contains all 86 degenerate a's). 
(8) The following table summarizes the number of cells corresponding to each o 

and 27 associated indexes. 
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8 
"7 

6 

5 

4 

3 

degenerate 

Total 

id (23) (234) 

1 1 1 

3 3 3 

5 3 4 

5 1 3 

3 [  1 
1 

9 19 15 

27 27 27 

(123) ( 1 2 4 3 )  (13)(24) Total 

1 1 1 6 

3 3 3 18 

4 3 5 24 

I 3 1 5 18 

1 3 8 
1 2 

15 19 9 86 

27 27 27 162 

(9) The rules for computing the boundary homomorphisms in the associated chain 

complex can also be given. For example, 

+( .<<. . t )  ,~(.< .<)< ,~3,(.< ~ .  <)< 
+4<. <. <.)),~,(: <. <.)+~2~C=<.)< 

(23)(<, < <)(123)(< < ~) + 

,o(.< = < . ) ,2<<<: )  < * 
0(243)(< <, ,<:)=(243)(< < < ) .  --(23)(~ < ~ ) ,  

8((13)(24)(~ = : ) ) <  =(13)(24)(Z = - ) <  

0((243)(< < <)) = 0 " ,  

Definition 6.6. Let os be an indexed kth-order shuffle, and let e(os) be the set of 

pERat~ whose unique indexed kth order shuffle is o~; that is, 

e(o s) = {p E Rat~l as(p)  = os}. 

Furthermore, we say as and e(os) are proper if e(as) contains a point of Rat~- different 

from the base point +. 
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Since e(a,) is described by a series of  order relations on the t 's and the r ' s  we have 

LEMMA 6.7. For each proper indexed k-th order shuffle os, e(os) is an open convex 

cell. 

Thus we have 

PROPOSITION 6.8. There is a cell decomposition of  Rat~" with one zero cell, namely 

+, and one open convex cell for every proper indexed k-th order shuffle 

4::::~ 
To describe the closure of  each cell one takes limit points of sequences in the open 

cells and from this analysis it is easy to recover the attaching maps and the boundary 

maps on the chain level. It is routine to see precisely how such limit points arise. First, 

if one replaces an arbitrary < sign in the indexed shuffle o, by an = sign we will obtain a 

new indexed shuffle o~, and it is easy to see that e(o,,) must form part of the boundary of 

e(as). However, if the < sign occurs between two t 's (or two z's), it is easy to see that 

e(t%,) occurs twice in the boundary with opposite orientations and thus the two copies 

combinatorially cancel when computing the boundary map O on the chain level. 

Second, for certain indexed shuffles o,, there are sequences of points Pn E e(a~) which 

converge to a point q ~ e(a~,). In these cases it is straightforward to check that q E e(o~,) 

for some other permutation a '  (with the same index set s'). This is most easily seen by 

considering the possible reordering of the second row of points in e(a~). In this case, 

there is an element 0 E 5e2k such that 0o '=o .  Let  c(o', s') be the number of times, 

counting orientations, that e(aj,) occurs in the boundary of e(os). It is instructive to 

verify part 9 of example 6.5 in this way. 

LEMMA 6.9. The boundary map on the chain level for the cell decomposition given 

in 6.7 and 6.8 is given by the formula 

8(e(a)) = X c(o', s') e(a],) 
0', $' 

where 

(1) s' runs through index sets obtained from s by replacing one < sign by an = 

sign. 

(2) (o', 0) runs through all pairs such that Otr'=a as described in the paragraph 

above. Notice that o' remains equal to o in many cases. 

13-918286 Acta Mathematica 166. Imprim~ le 17 avril 1991 
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In addition, the closue o f  each cell is given by 

e(a s) = t3 e(a~,) 
O'.S' 

where o' and s' are as given above. 

Finally, if we extend the indexed kth order shuffles to ordered n+ 1 tuples of points 

in SPk(I z) in the manner described in definition 6.2 and (6.4) above we obtain 

PROPOSITION 6.10. There is a cell decomposition ofRatk(CP") +, with one vertex +, 

and with one open convex cell e(o) for every proper indexed k-th order shuffle o f  the 

n+l  ordered tuples in [SPk(lZ)] "+l. 

Remark 6.11. This cell decomposition specializes to that given by Fox and 

Neuwirth [FoN] for (F(R 2, k)/Sek) § In addition, Fuks [Fu] used that cell decomposition 

to give the mod 2 homology of the braid groups. 

w 7. The homotopy type of Map*,.(Mg, CP~VCP ~) 

In the remainder of this paper we concentrate on the spaces Div~(M~) where, to ease 

notation, we are writing M e - * = M '  e. To begin we review some facts from [Seg] relating 

to the connection between holomorphic maps of degree n from Mg--~S 2, points on the 

divisor space, continuous maps Me--~S 2, and continuous maps Mg--~CP~VCP ~. Then 

we prove a splitting theorem, 7.8, for the first and give partial results (see, in particular, 

7.15) for the second. We remark that we are extending Segal's work here only in that 

we obtain better control of the relevant mapping spaces. We hope that by comparing 

the results for the Div spaces given in sections 4 and 5 with the structure of the mapping 

spaces described in this section it will eventually be possible to determine the exact 

structure of the Div spaces. 

Definition 7.1 [Seg]. Map*(Mg, S 2) is the space of based maps (*--~1) of degree n 

from Mg--~S 2, F*(Mg)cMap*(Mg, S 2) is the subspace consisting of holomorphic maps. 

Associated to a E F*(Me) are its roots and poles, hence an element in Divn(M'e), and 

the basepoint condition assures that this defines an embedding F*(Mg)~Divn(M'g). 

Segal also constructs a map Div,(M'g)--~Map*.~ (Mg, CP~VCP~), together with various 

commutative diagrams (see w 4 of [Seg]). (The components of Map*(Mg, CP~VCP ~) are 

indexed by the degrees of the map on the top cell to the to V-summands of CP~VCP ~, 
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and consequently are isomorphic to Z x Z . )  The salient points for  our  discussion here 

may be summarized in 7.2 and 7.3 which are key steps in the proof  of 7.8: 

PROPOSITION 7.2. (a) The inclusion F * ( M )  ~ Map*(Me, S 2) is a homotopy equiv- 

alence through dimension n - 2 g .  

(b) The map " ' * Dlvn(M'g)--->Mapn ' n(Mg, CP | VCP | is a homotopy equivalence through 

a range which increases with n. 

(This is Proposit ion 4.1 and 4.2 of  [Seg].) 

PROPOSITION 7.3. There are homotopy fibration sequences 

$3---> CP~VCP ~ ~ CP~ x C P  ~ 

oo # 
S 2 - ~  CP | V CP --> CP ~ 

where O(a, *)=a,  0(*, b)=b -l .  Moreover, the following is a commutative diagram o f  

fibrations 

(7.4) 

S 3 = 

S 2 

l 
Cp~ A 

, S 3 

, CP~VCP ~ 

, CP~176 ~ 

) * 

o , Cp~ 

1: 
0 .~ Cp~ 

where h is the H o p f  fibering, A is the diagonal map and O(a, b)=ab -1. 

Proof. This proposit ion is a special case of  T. Ganea ' s  theorem [Ga] that 

the homotopy fibre of  A V B ~ A x B  is Z(f2AAf2B).  We check that the fiber of  

0: CP~VCP~---~CP | is S 2. Indeed,  the fiber is the total space of  the fibration over 

CP| ~ induced from the path, loop fibration 

S1---> S~__> Cp ~ 

over CP ~. But this is just  

S ~ = S 2. S~ U s I = ZS  l 
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The proof that the middle column is also a fibering is identical, and (7.4) follows easily. 
[] 

COROLLARY 7.5. There is a commutative diagram of homotopy fibration se- 
quences 

Map*(Mg, S 3) = ) Map*(Mg, S 3) , * 

1 l 
Map*(Mg, S 2) , Map,.n(Mg ' CP| 0. ' Map*(Mg, CP | 

Map*(Mg, CP =) ' Map*,n(Mg, CP=xCP ~) ' Map*(Mg, CP| 

In 7.5 we can identify most of  these space without difficulty. Thus we have 

LEMMA 7.6. (a) Map*(X, YxZ)=Map*(X, Y)xMap*(X, Z). 
(b) Map*(Mg, CP| 2g. 

(c) Map*(Mg, $3)=f~2S 3 x (f2S3) 2g. 

Proof. (a) is clear. For  (b) we have that Map2'(X, CP | is an Abelian monoid using 

the multiplication in CP|176 2) to define a product structure on the mapping space. 

It also has the homotopy type of a CW complex by a theorem of Milnor [Mil]. On the 

other hand zti(Map~'(X, CP| Z) since, by adjointing, a based map 

f: S i---> Map~'(X, CP ~) 

corresponds to a map SiAX--->CP | Thus :t,(Map~(X, CP~ Z) and (b) follows. 

To prove (c) we can analyze Map*(Mg, S 3) by using the cofibering sequence 

(7.7) 3 - -~v3 --~Vig~ ~ --~ vS2--~ ... 
1 I 

where f , ( [S ' ] )=  Ix 1, x2] [x 3, x4] ... [x2g_ ,, X2g ] E ~r,(V~ g S ' )=F(x ,  . . . . .  X2g ) . This gives the 

fibration sequence 

). Map*(S 2, $3)---~ Map*(Mg, $3)---~ Map* S 1 , S 3 --~ Map*(S I , S 3) 
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whence a principal fibering ~2S3--->iap*(Mg, S3)-.-->(ffJS3) 2e with classifying map 

f* :  (~$3)2g = Map (2Vg St,S3)---> Map(St, S 3 ) = ~ S  3. 

To prove (c) we will show that f*  is null homotopic. Since S 3 is a group, f*  is given by 

f*:  MaP(2Vg S', ~BS 3) ---> Map(S', f2BS 3) 

which is equal to 

COROLLARY 7.8. 

fibration 

Z f* :  M a p ( ~  S 2 , S 3 ) ---> Map(S 2 , S 3) 

where Z f: S2--->V2e S 2 is the suspension of f. But Yf  is a commutator in an Abelian 

group, and is hence zero. [] 

Map*(Mg, S2)~XgX(~~S3) 2g where Xg is the total space of  a 

Q2S3 -o Xg - ,  (Sl) 2g. 

Proof. From (7.7) there is a fibering 

(7.9) ~2($2), --> Map~*(Mg, S 2) -~, (flS2) 2g, 

and from 7.6 we have the fibering 

flZS3 x (QS3)2g--* Map*(Mg, S 2) --~ (S l)Zg, 

Of course  (~'~2S2)n~-~-~2S3 , and ~S2=SI• 3, so we can rewrite 7.9 as 

~2S3 -~ Map*(Mg, S 2) - ,  (S l)Zg x (g)S3) 2g. 

Now (7.9) is classified by f*:  (~'~$2)2g.---->~$2, which can, by the use of the second 

fibration, be seen to be homotopic to the composite 

(sl)2gx(~~S3)2g--.> (sl)2g---> ~-~S 2. 

7.8 follows. [] 

This completes our discussion of the space Map*(Me, S 2) with path components 

that are the limits of the based holomorphic maps from Mg to S 2. We now turn to the 
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space Map~• CP~VCP ~) with components approximated by the spaces of divisors 

Div~(Mg). 

We apply (7.7) again to obtain the fibration sequence 

(7.10) f~2(Cp~ VCP ~)---> Map[• CP ~ VCP ~) ~ Q(CP ~ VCP~) 2g ~ D(CP ~ VCP~). 

The key space here is ~(CP~VCP ~) and we have 

LEMMA 7.11. Q(CP~VCP~)~-SI•215 There are generators 

e 1, e 2 6H1(f2(CP~VCP~); Z), and, on these classes, the multiplication 

in homology, 

H,(f2X; Z) |  Z ) ~  H,+, , (~X;  Z) 

induced from the loop sum is given by e~=e~=0, while e I ez~=e2e I. In fact e I e2+e2e 1 

represents the class in the Hurewicz image o f  the generating sphere in 

H2(f2(CP~VCP~);Z) coming from :t2(g2S3). Note that this Hurewicz image gives a Z 

direct summand in homology. 

Proof. From 7.3 there is a fibration sequence 

f2S3 s--~ Q(CP VCP )---~ f2(CP xCP ~) = SIxS  I. 

Let el: SJ---~Q(CP~VCP ~) be chosen so that tyej: S2--~CP~VptcCP~VCP ~ represents a 

generator for the first summand x2(CP~). Similarly, choose e2 so that tre2 represents a 

generator for the second summand. Using the loop sum map, (*), we can lift P to a map 

l=el*e2: SI• and, again using loop sum, we exend it to a map 

1': ~~S3>(SI xSl-.-> f2(CP~VCP~)x~(CP~VCP~)-~ f2(CP~VCP~). 

This gives the desired homotopy equivalence. 

Next, since the generator r3 6x3(CP~VCP ~) is the Whitehead product [oej, ae2] it 

follows that the class of ~2('t" 3) is given by the Samelson product of e, and e2. Passing to 

homology, the second part of 7.11 follows. [] 

We now look more closely at the map f *  in (7.10). From the definition o f f  as the 

product of commutators [xl,x2] [X3,X4]  . . .  [X2g_l,X2g ] it follows that f*  is given as the 

following composition 
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I x;,,Zg 
f2(CP VCP )~g---> (~'~2(CP~176176 2 ") (~'~(Cp~ VCP~)Eg) 2 

.4g 
shuff ~ ,~(CP~VCP~)4g --> V2(CP~VCP =) 

where Z is the inverse map with respect to the loop sum z ( f ) ( t )= f (1 - t ) ,  (cannonical 

anti-automorphism in homology) and 

shuff(vj . . . . .  V2g, Z(vl) . . . . .  Z(V2g)) 

= (v~, vz,Z(vO,z(v2), v 3, v4,Z(vs),Z(v4) . . . . .  vzg_,, vz~,X(vz~_,),Z(vzg)). 

COROLLARY 7.12. The composite map 

j2g s 
(~-~$3)2g-...-> Q(CP~VCP~)2el..> Q(CP=VCP =) 

is homotopically trivial. 

Proof. We can factor the composition in 7.12 as 

A zg 1 x x  zg shuff ,4g incl 
~"~(S3)2g .._> (~"~(83)2g) 2 ) (~~(83)2g) 2 > (~'-2(sS)2g) 2 _..> ~'~(S 3) ..-> Q(CP=VCP=). 

As we observed above, S 3 is a topological group so the loop sum on f~(S a) is homotopy 

commutative. Consequently we can replace shuff by the map 

s h u f f ' :  ( v I . . . . .  V2g' X ( V I) . . . .  Z (V2g)) ~ ( V 1' ~ (V I), U2' ~ (V2) . . . . .  V2g' ~ (V2g))' 

and the composition of this map with .4g is homotopy trivial. [] 

We next analyze the map f*  on the piece (SJ)4gcQ(CP~VCP=) 2g. To do this, note 

that it is just the loop sum of g copies of the composition for two factors, 

(SIxS') 2 c K2(CP~VCP~) 2 [x"x2]) f2(CP~VCP~). 

Let eu, e~2 represent the two generators in 7.11 for the first term, and e2~, e22 represent 

the corresponding generators for the second term. Now z . ( eo )=-e  o. and, as 

X,(aofl)=(-1)lall#lZ,(fl)ox.(a), we have that x.(eoe~k)=--e~keO. Thus, we must calcu- 

late the effect in homology of the composition 

1 2 2 id2xzZ 
(S~xSb: ~ ((S!•  ) ~ ((S~xSb:): -~ S'xS~xf~(S3).  
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First recall that 

(a) A(eu) = eli| 1 + I | 7. 

(b) A(e0-|174 ). 

Next, using these facts, 7.1 1, and the known effect of Z in homology, it is a direct 

calculation to verify that first [xl,x2]*(eij)=O for all i,j. Second, in dimension two we 

have [xl, x2]*(eu| [xl, x2]*(eo.| while 

(7.13) en| I and el2| r 

Fur thermore  [xi,x2]* is trivial on n3((sl)4; Z), however, in dimension 4 the map is non- 

trivial and we have 

(7.14) ell e22 el2 e21 ~ (e I e2+e2el) 2 

where the squaring operation above is with respect to loop sum. This term generates a 

Z-direct summand Z in H4(ff2(CP~VCP| coming from H4(f~(S3); Z). From this we 
have 

COROLLARY 7.15. The map (SI)4g---~")(CP| ~) obtained by restricting f*  to 

(sl) 4g satisfies the property that there is no (non-trivial) product decomposition 
(S1)4g~-A• so that f*  restricted to (S I) 4e is a composition 

P2 h 
A XB--~ B---~ f~(CP| 

Additionally, f*  factors through a map ~b: ((~-~S3)x(S1)2)2-.-~-~S3t-...~S3x(S1)2, 

Proof. From (7.14), the image of H4g((SI)4g;Z)=Z is generated by (eleE+e2el) 2g 

where the product is induced in homology from the loop sum. But since 

H,(~"~(S3); Z)=Z[p2] is a polynomial algebra under loop sum, this class is non-zero and 

the first statement follows. 

The only thing that remains to be checked is that the map 

(Sl)4g---~ ~2(Cp| VCP | = S I • j xf~(S 3) 

factors through ~($3). But maps into SI• l, (which is the Eilenberg-MacLane space 

K(Z 2, 1)) are completely determined by the induced map in cohomology in dimension I. 

Since we have already seen that the homology map in dimension 1 is zero, and there is 

no torsion in H.(f~(CP| the map in cohomology is just the dual map, on 

Hom groups. Consequently, it is also zero in dimension 1, so 7.15 follows. 
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It should be true that the map f*:  (Q(CP~215 3) 

factors as a composition 

p2 • • h 3 incl 1 2 3 ~~(S3)2gx(s1) 4g---~ (sl)4g---> ~~(S )----> (S ) x~'~(S ) = ~(CP~VCP~). 

Consequently, there should be a decomposition 

Map~• CP ~ VCP | _- (Z) 2 • ff~(S3) 2g • Yg 

where Yg is the total space of a (principal) fibering 

~'~2(53)----.> yg..-.> ( s l )  4g. 

However, the above argument does not quite prove this since the map on the terms of 

the product does not generally determine the map on the entire product space. 

But in homology the map is, in fact, determined by the discussion above, since, 

rationally we have H*(g2(CP~VCP| Q)--E(el, eE)| and, consequently the coho- 

mology map is determined. Dualizing and using the fact that H.(~(CP~VCP~);Z) is 

torsion free, the cohomology map determines the map in homology as well. 

w 8. The rational homology of Divk(Mg) and Yg 

Segal proved that H,(Divk(M'g);Z)~H,(Divk+t(M'g);Z ) is a monomorphism for all k 

under the "collar" inclusion, and adjoining this fact to Segals' proposition 4.2, we have 

lira Div~(M'g) -~ Map~,o(M2g, CP~ VCP~). 

Let p E H2(f2(S3); Z) be a generator, Then p*: f2(S3)--~CP | defined by p*(t)=p is a 

rational homotopy equivalence so 7.10 and 7.15 give 

COROLLARY 8.1. MaPo,0(M2g, CP~VCP ~) has the rational homotopy type of the 

product (f]S3)2gx Wg where Wg is the total space of  the principal fibration 

(8.2) S l ---> Wg---> (Sl) 4g 

with k-invariant e 1 LJ e2+e 3 tJ e4+ ... +e 4g-1 LIe 4g. 

Notice that Wg is a K(:t, 1) where 7~ is a free nilpotent group of class 2. The Serre 

spectral sequence for (8.2) has only 2 rows, the 0-row and the 1-row, so only the d2- 
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differential is non-trivial, and H*(We; Q)=H,(E[e  j . . . . .  e4g,f]) with 6ei=O, l~<i~<4g, and 

6f=eleZ+e3e4+...+e4e-le 4g. We can write this cochain complex schematically as 

SO 

(8.3) 

E[e I . . . . .  e4g]f--., E[e 1 . . . . .  e 4g] 

H* (Wg; Q) = Z 1 Ker(t.l(e 1 e 2 +..- + e 4~- l e4g)) 

~)E[e I . . . . .  e4g]/(E[e 1 . . . . .  e4g](el e2 +...+e4g-l e4g)). 

This complex was studied in [BCM]. In particular it was proved there that 

LEMMA 8.4. The map 

I.J(el e2 +... +e4g-J e4g): E[e J . . . . .  e 4g] ~ E[e 1 . . . . .  e 4g] 

is injective in degrees <~2g, and surjective in degrees >~2g. 

In particular this shows that Hi(Wg; Q)=QOti.g) where v(i, g) is given explicitly as 

f (4/g)-(i~) for i<~2g 

(8.5) o ( i , g ) = ~ 4 g  4g - l ) - ( i+0 for 2g<i<~4g+l  

for i > 4 g + l .  

For example, in the first few cases this gives the table 

x~ 0 I 2 3 4 5 6 7 8 9 

1 1 4 5 5 4 ! 

2 1 8 27 38 22 22 38 27 8 1 

3 1 12 65 208 429 572 429 429 572 429 

4 1 16 119 544 1 600 3 808 6 188 7 072 4 862 ~ 862 

Of course the determination of  the rational cohomology of  the space Divk(M~) now is 

given by putting a bigrading on 

H,(Wg; Q)• H,((g2S2)2g; Q) --- H,(Wg; Q)| . . . . .  hzg ] . 

But, using (4.7), this is easily accomplished, h; has bidegree (2, 1), and the elements in 

Hi(Wg; Q) have bidegree ( j , j ) .  Then, the rational homology of Divk(M~) is given by all 

the classes above with second degree ~<k. 
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We conclude this section by noting that the rational homology of W e (see (8.5)) is 

the rational homology of the classical configuration spaces (equivalently, braid groups) 

of M'g. 

w 9. A geometric bifiltration of Div.(M~) 

In this section we construct a geometric bifiltration of Div,(M~) where the quotients are 

"recognizable" smash products of Ratt with products of spheres�9 This bifiltration 

closely corresponds to the homotopy decomposition of Map.(M~, CP = V CP =) discussed 

in sections 7 and 8. It is not sharp however, in that the bifiltration has too many copies 

of these smash products to give Div,(M~) without identifications, so in homology there 

must be considerable cancellation. This cancellation corresponds, in some sense, to the 

effect of amalgamating roots in our generic subcomplexes. 

THEOREM 9.1. There is a bifiltration by cofibrations 

�9 r,, , Div.(M'g) Dlv n (M'g) 

for O<,r, s<~n satisfying the following properties: 
iv 0 0 , (1) D n' (Mg)=Ratn. 
" V  n n t " ! (2) DI ,,' (M'g)=Dlv.(Mg). 

(3) There is a natural homotopy equivalence o f  the subquotients 

�9 r s t " r - I  s a--~. r s - I  Dive,' (Mg)/Dlv n ' 0 . . t~lv~ =(Rat,_m)+ADivrs(M'g, DZ)/Divr_l s UDivr, s_ 1 

where re=max(r, s). 

(4) Divr, s(M'g-DZ)/Divr_l,s LJ DiVr. s_ 1 is homotopy equivalent to a wedge o f  spheres 

of  dimensions <~r + s. 

Proof. Let Y c X  be a subspace. Recall that Segal defined 

SP=(X, Y) = SP=(X/y -  *) 

and 

Q(x, Y ) c  sP=(X, y)• Y) 

to be the subspace consisting of pairs (~, ~) having disjoint coordinates. We define 

Div..k(X, Y) 
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to be the intersection of Q(X, Y) with the image of 

SPn(X, Y)xSPk(X, Y)~ SP| Y)• Y). 

Of course, when Y=*, we recover the Div spaces defined in (4.2). As before, to 

simplify notation, set Divn(X,Y)=Div~.~(X,Y) and Div~.k(X)=Divn, k(X,~). Thus 
�9 r $ I C " P Div~(D2)=Divn(S2-Po)=Rat~. For O<.r, s<<.n we define Dive,' (M'g) Dtv~(Mg) as follows. 

Definition 9.2. 

Div~'S(M'g)={(~, r/)E Div,(M'g) such that at least n- r  of the coordinates in 

and n - s  of the coordinates in ~/lie in/52cM'g}. 

Notice that Div~163176 and Div~'~(M'g)=Div~(M'g). The following point 

set argument finishes the proof of the first two parts of Theorem 9.1. 

LEMMA 9.3. The natural inclusions 

niv~-LS(M~) ~ niv~"(M~) and nivrn'S-l(m'g) ~ Divr"(M'g) 

are cofibrations. 

Proof. We will prove the first of these inclusions is a cofibration as the second case 

is obviously handled in exactly the same way. It suffices to construct a collar around 

Div~-l"'(M'g)=Div2~(M'e). To do so notice that Div~-I'~(M'g) is a closed subspace of 

Dive,' ~(M'g) and its boundary (i.e., the complement of its interior) is given by 

aDiv~,-l'*(M ') -- {(~, r/) E Div~,'*(M'g) such that ~ has at leastn, r+ 1 coordinates 

in/52 but no more than n - r  coordinates in the interior of the disk int(D~)}. 

Now let 

J =  /52n ~ c  g '  

where ~ is the union of the 2g closed handles in M~. Thus J is the disjoint union of  2g 

closed intervals. Let v j c  ~ b e  a closed tubular neighborhood. Thus 1,1 is a disjoint union 

of 2g closed disks. Consider the closed neighborhood of Dlv," r--|,S(M,g), in DIV n"  r S(M,g), 
given by 

/f-l,s__ {(~, r/)~ Div,~'S(Mg) such that at least n-r+ 1 of the coordinates 

of ~ lie in 152 O D}- 
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Notice that there is a natural embedding 

�9 ~-l s ' 00Dlv.  " ( m ' g ) X I ~ U .  " Dlv n ' (M'g) �9 r - I  s , r - I  s 

thus making a collar around �9 ~-l,~ , �9 �9 , Dlv,  (Mg) in Dw,'  (Me). 

We now complete the proof  of  Theorem 9.1, part 3. A non-basepoint in 

�9 r s t �9 r - I s  Dlv.' (M'g)/Dlv. ' 0 Div~ s-I 

has a unique representation as a pair (~, 7)E Div.(M~) where ~ and 7 have exactly 

n - r  and n - s  of  their respective coordinates lying in /)2. ff  ~._~ and q.-s  denote 

the unordered collection of  these coordinates,  then (~.-r, 7 . - )  is an element of  

Div._r,._s(1)z). Let  p(~, 7) E Q(M' e, 1)2) be the natural projection�9 Clearly p(~, 7) lies in 

Div., s(M'~, ])2)=Q(M'g, 1)2). We define 

hr, s: �9 r , s  i �9 r - l , s  _ , _ , _ , , _ Dlv n (M')/DIv. 0Div~'S-l-->(Divn r..(1)2))+ADiv~s(M'g-1)2)/Divr I st-JDivrs 1 

by the formula 

hr, s(~, ,7) = (~ . - .  7.-s)xP(~, 7). 

We leave it to the reader to check that hr, s is well defined and continuous. To see that 

h,_ s is actually a homeomorphism consider the map 

gr.~: (Div._~, ._s(1)2))+ ADivr, s(M'g-1)Z)/Divr_,,~ O Dive, s-1 -'-> Divr' s(m'g)/niv7 l's U Dive' s- 

defined as follows. Represent  a point in 

(Div._r,._s (/~2))+ A D i v r ,  s(M'g-I)2)/Div~_l,s U Dive, s- 

by a pair (~.-r, r/.-s) x (~r, rL) E Dive_r, ._s(/) 2) X Divr, s(M'g, 1)2). We define 

g~,~((~.-. 7 . - s )x(~ .  7~)) = (~ . - .  ~;  7 . - .  7,). 

Again one can check that this formula yields a well defined, continuous map which is 

inverse to hk. Part 3 of  Theorem 9.1 then follows from an observation of  Segal [Seg] that 

Divp, q(1)2)=Ratm where m=min(p ,  q). 

Next ,  recall that the complex (II2gJl(S2))x ($1) 4g, where JI(S 2) is the James model 

for V~S 3, which appeared in w 7 has a natural bifiltration. Let  Fk(J1(S2)) denote the CW 
skeletal filtration, and give the torus M~=S~xS ~ the bifiltration defined by 
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Fo.o(MI) = *, 

FI.o(MI) = SIx* ~, 

Fo.I(MO = *xS I, 

Fj. l(Mi) = S 1 •  1 = Mi 

where * denotes the appropriate basepoint. The bifiltration on J(S2)• is given by 

in 

Fp.q(J(S2)• = U Fk(J(S~))• 
r = 0  

where m=min(p, q). This bifiltration induces the product bifiltration on II2~,(J~(S2)• 

Part 4 of Theorem 9.1 is a consequence of 

PROPOSITION 9'5. There is a homotopy equivalence 

D,vp, q(M;,,D 2) epq. (H2e • �9 - = \ ( J I ( S 2 )  

Thus Divv.q(M' ~, b2)/Divp_j.q U Divp.q_l is a wedge of spheres of dimensions <-p+q, 

Proof. There is a homeomorphism of bifiltered spaces 

Div~(M'~ -/~2) ~ H Dive(12' a012) 
2g 

where I=[0, 1] and 0012=[0, 1] • {0, I} E Oflcl 2. The 2g copies of I -~ in the above product 

decomposition corresponds to the 2g handles in M' r Thus, to prove Proposition 9.5 we 

are reduced to showing that there is a homotopy equivalence 

Divp. q(I 2, ~012) = Fp. q(J, (S 2) • M~) 

where the right hand side is the bifiltration of Jj(S2)• described above�9 

Segal [Seg, Proposition 3.2] showed 

LEMMA 9.6. There is a homotopy equivalence 

f: Q(F, OoF)-~ f2(CP~VCP~). 

Recall from 7.3 that there is a homotopy fibration sequence S3--~CP~VC ~---~ " 
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CP=•  ~. The inclusion C P ~ V C P = ~ C P = •  = induces an isomorphism on the sec- 

ond homotopy group Jr2(~-) and hence 

Q(CP~VCP=)--~ff2(CP= • CP =) = S I •  1= Mj 

is an isomorphism on the level of  ~rj. This fact, and the loop space multiplication 

defines a section 

which in turn defines a splitting 

O: M l -'-> ~(CP= VCP =) 

E2(CP ~ V CP =) _3> ~"~S 3 X M 1 --~ J l  (S2) X M I . 

Thus, using 9.3 the Divp, q(12,0o I2) defines a bifiltration (up to homotopy) of  

JI(S2)• We will now prove that it is the filtration claimed in Proposition 9.5. To do 

this we first describe a certain multiplicative structure on Q(I 2, Oo I2) that is compatible 

with the loop space multiplication on ~ (CP  = VCP~). 

Let  102=[0, 1/3]• 1], and I~=[2/3, 1]• 1]. Let 00/~ be [0, 1/3]• 1} and 

[2/3, 1] • {0, 1 }, respectively. The natural homeomorphisms 

ho: ([z 0o12)._~ (102, 0oi 2) and h,: (I 2, aoI2) ---) (l~, 0oI ~) 

define homeomorphisms 

and 

h0: Divp, q(i2, 00/2)  ~ Divp. q(I02, O o I~) 

hi: Divp. q(I 2 , a 012) ~ Divp. q(l~, a o I~) 

There is a pairing 

/~: Divp. q(l 2 , 0 012) • Divr. s(1 z, a o I z ) ~ Divp +u. r+s(l 2 , a o 12 ) 

defined by the composit ion 

/~: Divp. q(I 2, 0 012) X Divr. s(f ,  a o 12) 

h~215 Divp, q(I~, 0 o I 2) • Divr, s(I~, 0 o I~) ~ Divp +q, r+s(I 2 , a o f )  
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where the last map is the natural inclusion. These pairings extend to an Ao, operad 

action on Q(I2,aoI 2) in the sense of May [May] and Segal's equivalence 

Q(11, ao11)--,f2(cP| ~176 preserves this multiplicative structure. We will use this 

structure to define a filtration preserving equivalence 

Jr ($2) x M l ~ Q(11, a o i2). 

First of  all, consider the map o: S j • 2, a011) defined by the formula 

a(s, t) = ((1/3, s), (2/3, t)) E DiVl, 1(12, a011) c I2/OollXI2/a011. 

Clearly the composition 

S I x S  1 ._~ DiVl, 1(1 l, a011) ~ Q(11, ao11) ~ SP| ao11)xSP| a011) = S 1 x S  l 

is a homotopy equivalence, and so e defines the section of V2(CP~VCP ~) discussed 

above. We now describe a map fn:FnJl(S2)--->Divn, n(11,aoI 2) which combinatorially 

models the inclusion map f: QS3--->f~(CP| | described above. Notice that f f a c t o r s  

as a composition 

f.. nS3 n_.~ ~ nS2 n_~ g n (CP~VCP ~) 

where rI:S3--->S 2 is the Hopf  map, and g:S2-->CP~VCP ~176 is the element of 

arE(CP|174 defined to be the sum of  the generators of each of the factors 

:r2(CP| We give a combinatorial description of ff2g using the James model JI(S 1) for 

V~S 2. Let a: Sl-->Div1(11, a011) be the composition 

A O �9 
a :  S I -----> S 1 x S  1 ~ Dlvl, 1(12, ao 11). 

By the definition of tr it is immediate that when composed with the inclusion 

DiVl ' 1(I 2, ao I2) t_.> Q(11, a011 ) = ff2(Cp~ VCP ~~ 

that a represents the class g E zt2(cP~vcP|176 The H space structure 

of Q(11, a011) defined above then allows us to extend a to a map of H spaces 

a: Jl(Sl)---* Q(11, a011) 

which models the map f/g: f~S2-->fl(CP|174 Notice that a is a filtration preserving 
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map taking the nth James filtration to Div.,.(I 2, 0o/2): 

a.: F.(Jl(Sl))-* Div.. n(12, 0 012). 

211 

There exists a well known combinatorial model for the Hopf map f~r/: ~')S3-"9~"~S 2 

given as a map j: JI(S2)-->J~(S l) which doubles the James filtration; that is, given by 

maps j.: ~(SZ)-->J~"(S~). Equivalently, it takes the CW skeletal filtration of JI (S  2) tO the 
James filtration of Jl(Sl); i.e., j.: F.(JI(SE))-.J~(SI). We define 

fn: Fn(Jl(S2)) ~ Div., .(12, 0 o 12) 

to be the composition 

Jn an 
fn: z ~ n I ~ . 2 Fn(Jl(S )) JI(S ) Dlv, n(I, 0o/2). 

By construction this models the map f: QS3---~Q(CP| ~) described above. Now 

consider the map 

(9.7) hp,q: Fp, q(J|(S2)•  Divp, q(12, a0 D2) 

defined to be the union of the map 

fk• 
Fk(Jl(S2)) x Fp_k, q_k(Ml) ~ Divk, k(12, a012) • Divp-k, q-k(12, aO 12) ~-~ Divp, q(l 2, a 0 I2). 

These maps give a combinatorial model for the splitting 

~S3•  = Q(CP~VCP~). 

Finally, Proposition 9.5 will be proved once we verify the following. 

LEMMA 9.8. The map 

hp, q: Fp, q(Jl(S2)• Divm q(I 2 , ao I2) 

is a homotopy equivalence. 

Proof. The classical James-Milnor stable splitting of J~(S 2) says that J~(S 2) splits as 

a wedge of the subquotients of the James filtration and, hence, of the skeletal filtration. 

This induces a canonical splitting of JI(S2)xM~. Therefore the composition 

14-918286 Acta Mathematica 166. Imprim6 le 17 avril 1991 
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hp 
Fe, q(J1 ($2) x M 1) ~q Dive, q(l 2, a 012) ~-~ Q(I 2, a 012) ~- g)(CP ~ V CP ~) = J I(S 2) • MI 

has a stable retraction and thus induces a monomorphism in homology. Hence  he q 
induces a monomorphism in homology. Let Dpq be the subquotient 

Dive ,  q = Fp q(J1 (32) X M I) /Fp_ I. q U Fp.q_ . 

Thus De, q is a wedge of  spheres. Let 

~r 2 X ep.q: SP (Dp, q)----~, SP (Fp.q(Jl(S ) M O) 

be the map induced by the James-Milnor  splitting. By induction it is enough to show 

that the composition 

e h k 
Oe P ' q  ~e "~ ~ " 2 2 SP (De, q)-* SP (Fp.q(JI(S')• SP (DlVp, q(I , a 0 I ) )  

~-~J SP=(DivR, q( I2, a0 I2))/Dive - L q 0 Dive. q_ l 

induces a monomorphism in homology. This is proved using the fact that there is a 

splitting map 

r: Dive, q(I 2, 0 0/2) ~ Sp= (Div v- l, q( I2, Oo I2) U Dive, q_ i(12, 0 012)) 

as in Segal [Seg]. We leave the details of  this argument to the reader. 

Remark 9.9. Of  course,  as seen in w 7, the cofibration sequences in Theorem 9.1 do 

not stably split. However,  just  as in the discussion preceeding 7.8, the trifiltration 

Divr'S(M'g) of  Map*(Mg, CP=VCP =) stably lifts to a trifiltration Dlv,' (M'g) of 

Map*(Mg, S 3) where all the natural inclusions do stably split. 

w 10. The generic subspace of Div(M~) 

In our discussion of  Ratk we used a generic subspace to gain control of  H.(Ratk). In the 

case of Divk(Mg) there is a similar subspace of  generic points. In it we can see many of 

the structures inferred so far in our discussion--but  much work remains to bring our 

understanding of  these new spaces to the level of  our understanding of  the Ratk's. We 

define these "non-singular" subspaces of  Divn,k(M~) as follows. 
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Definition 10.1. Y.,k(M~) is the subspace of SP"((M'e)xSPk(M'e) given by disjoint 

pairs (A, B) when A lies in DP"(M'g)=F(M'~, n)/Ae.. 

Since SPk(M'g) is a quotient of (M~) k, we write ~:., k(M~) for the pull-back in the 

diagram 

2.. , ( M' e) -----~ D P"( M'e) • ( M'e) k 

Z.,,(Me) * DPn(M'e) x SPk(M'e) 

Notice that there are fibrations 
r ~ r t (1) z:X.,g(Mg) DP"(Mg) with fibre SPk(M'g-{n}) where {n} is a subset of M e 

having cardinality n and 

(2) ~ .  Zn, k(Me) DP (M e) with fibre (M'e-{n}) k. 

Clearly there are cross-sections for :r and ~ together with a stabilization map 

a: Z.. k(M'e) ~ Z., k+ I (M'e) 

which induces an isomorphism on :rl if k>~2. We study the K(G, l)'s given by 

Z.(M~)= Uk Z., k(M'e) and Z., ~(M'e). 

PROPOSITION 10.2. (i) There are maps I: E.(M'e)---~E.+I(M' e) so that Z.(M') is sta- 
bly equivalent to 

V Zs(M'e)/Zi_ ,(M') 
I <~i<~n 

(where Zi(M'e)/Zi_,(M'g) is the cofibre of  I). 
(ii) There are fibrations with cross-sections 

SP•(M'z - {n } ) ~  Z.(M')---. DPn(M' e) 

and 

t k . _ ~  t ~ n r (M' e -  {n}) Z., k(Mg) DP (M e) 

, 2 with monodromy given below. Restricting to Me=R in the second fibration with k= 1, 
the monodromy is Artin' s faithful representation of the braid group B. into Aut(F.), the 
automorphism group of  the free group on n letters [Ar]. 
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As the Hurewicz map zq(SP~(M'g-{n}))--*HI(SP| is an isomorphism, 

we shall compute the action of xI(DP"(M'g))on HI(SP| The situation is 

slightly different for Z~. k(Mg) as the fundamental group of  M'g-{n} is non-Abelian. To 
fix notation, we first give generators for HI and Xl of M'g-{n}. (See figure 10.3.) 

x2j-I x2j 

0 0 0  
Yi-1 Yi Yi+l 

Fig. 10.3. Hl(M'g-{n};Z) 

A basis for Hl(M'g-{n};Z) is given by Xl . . . . .  x2g, y~ . . . . .  y, where xiory i is the 

fundamental cycle of the embedded circle by the same name in the picture. (See figure 

10.4.) 

~'~" a3 "~ "~ ~ 

Fig. 10.4. arl(M'~-{n},*) 
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To be precise, define 

(i) ru: S~---~DP"(M'g) by r0(~)=(1,2 . . . . .  i -  I, 0:(~), i+ 1 ..... n) where 0j. is an embed- 

ding of S 1 indicated in our picture and 

(ii) aj: S~--->DW(M'g) by oj(~)=(1,2 . . . . .  j - I ,  Sj(~),;tj(~),j+2 . . . . .  n) where q~j and ).j 

are the pictured embeddings of  [0, 1]. 

PROPOSITION 10.6 [Sc]. The maps to, l<.i<<.n, l<-j<-2g and aj, l<-j<<-n, represent 
generators of zfl(Dl~(M'g), *) where *=(1,2 . . . . .  n). 

Proof. Exercise (from the fibrations DP"(M'e)--.B~ . and F(M'g-{n},j)--->M'g-{n} 
with fibre F(M' e -  {n+ 1 } , j -  1)). 

To analyze the action of :h(DP"(M'e), *) consider the fibration 

SP| ---> Z~(M~)--> DP"(M'~). 
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We shall construct an isotopy of M~ which induces a homotopy commutative diagram 

(10.7) 

I•174 n , Z.(M'g)' 

l l Xconstant [~ 

Ix{*} a , DP"(M'~) 

where a runs over r 0 and e,.. 

Case I: oj. Consider the "half Dehn twist" G interchangingj and j +  1 which is the 

identity outside of the outer annulus. (See figure 10.8.) 

Fig. 10.8 

Observe that there is a commutative diagram 

(10.9) 

t ixSP~(M,g_{n})  H ,  y.n(Mg ) 

I x  {*} oj �9 F(M'g, n) 

where H(t, A)=((G(t, 1), G(t, 2) .. . . .  G(t, n)), G(t, A)). Thus there is a homeomorphism of 

SP| given by sending A=H(O,A)  to H(1,A). Notice that oj fixes x 1 . . . . .  Xzg, 

and Yi for i*-j or j +  1. In addition oj(yj)=yj+ 1 and %.(yi+0=yj. 



THE TOPOLOGY OF RATIONAL FUNCTIONS 217 

Case II: r U. Let  G be the isotopy given by the annulus in figure 10.10. 

i 

Fig. 10.10 

Notice that ri,j_ I fixes x k if k * 2 j  andr;i,j_l(X2j)=-x2j+yr 

A similar picture, see figure 10.11, gives that r~.2j fixed y~, 

k+ 2 j -  1, while Ti, 2j(xi, 2j- 1) = -x2 j -  l + Yr 

l <~i<~n, and x k if 

i ~" X2j_I " ~ ' ~ ~  

Fig. 10.11 

We record the above observations, 
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P R O P O S I T I O N  1 0 . 1 2 .  (I) tTifixes Xk, l~<k~<2g, 

(2) tTi(Yi)=Yi+ 1 and r 

(3) 

( x  k if  k#~2j {xt, 
Z'i'2j-l(Xk) = --X2j+Y i i f  k=2j' ri'2j(x*) = -x , + y  i 

if  k , 2 j -  1 
and ri3 fixes Yr 

if k = 2 j - 1  

Finally, we restrict attention to the monodromy for ~.., I(M'g)-*DP"(M'g) as the 

action obtained for Z., k is the diagonal action on (M'g-{n}) k. Thus it suffices to give the 

action of  oi and r 0 on ak and ilk. 

t ..._> t Case I: a i. Let  G be the isotopy IXM'g Mg given in case I of  the action of  cri on 

H, SP~(M'g - {n}) above. Define 

/t•r: ~ __> ^ , IxM'~-{n} Z. ~(M'p 

by I?I(t, m)=((G(t, I) .... , G(t, n)), G(t, m)) (as m ~ { 1 . . . . .  n}, /( t  is well-defined). 

Notice that there is a commutative diagram 

Ix(M'g-{n}) ~ ,  Z~,,(M'g) 

oj 
I x  {*} , DP~(M'g) 

and so there is a homeomorphism of Me-{n  } sending m to G(l ,m) .  Notice that the 

generators a 1 ..... azg are fixed as is fli, if i*j  or j +  I. Finally O" i sends fli to fli+l and 

fli+l t o  ] ~ + l l ~ i f l i +  l by inspecting the picture. 

Remark 10.13. By the above restriction of  the action of  cri on :ri(M'g-{n}) with 

Mg=R 2 we get Artin's faithful representation of  Bn--->Aut(Fn) where B,  is Artin's braid 

group and Aut(F~) is the automorphism group of  the free group on n letters. This 

representation is, of  course,  quite useful and occurs widely in the literature [Ar], [Bi]. 

Case II: to.. Consider the isotopy G: I• e given in the analysis of  the action 

of r~/ on HI(SP~(M'g-{n})) given above. Again define / t :  I x  (Me-{n})' --->̂ Xn, l(M' e)' by 

I~l(t, m)=((G(t, 1) . . . . .  G(t, n)), G(t, m)) to get a commutative diagram 

r U 
I x  {*} , Dt~(M'g). 
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The homeomorphism of  Mg-{n}  obtained by sending m t o / t ( 1 ,  m) has the following 
r effect on :r l (Mg-{n},  *). 

ilk if k aF i 
(1) rv(flk)= x~lflixu if k = i  

where  xu=(fll  ... l i_l)-l(ctj)  ( i l l ' ' "  ti--1)' 

(2) I a k if k<~2j -2  

y-laxj_ly if k =  2 j - 1  

ri'zJ-l(a*)= IZ-l%4a~l_lfl-la2j_li if k= 2j 

01. -1 R - I ~  R ~,~-lt2k2 if k > 2 j  with 2 =  2j-l~ 2j-lt", 

where  fl=(fll"'" t i - l )  ( t i )  ( l l  "'" t i - I  )-1 and 

I tX k 

a2j - l f l l  

(3) ri, 2j(ak) = ifl_la2j fl 

09- lak 60 

if k <  2 j - i  

if k =  2j -1  

if k= 2j 

if k > 2 h  with t,o=Ctxjly-lazjy where Y=fli(fll ""fli-1) -1 

with fl as above. 

[And] 
[Ar] 
[A J] 

[ai] 

[B6d] 

[BCT] 

[BCM] 

[BI 

[BV] 

[BoMa] 

[Brl] 
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