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Introduction 

A connected Riemannian manifold (M, g) is said to be isotropy irreducible if for each 

point p E M the isotropy group lip, i.e. all isometries of g fixing p, acts irreducibly on 

TpM via its isotropy representation. This class of manifolds is of great interest since 

they have a number of geometric properties which follow immediately from the 

definition. By Schur's lemma the metric g is unique up to scaling among all metrics 

with the same isometry group. By the same argument, the Ricci tensor of g must be 

proportional to g, i.e. g is an Einstein metric. Furthermore, according to a theorem of 

Takahashi [Ta], every eigenspace of the Laplace operator of (M, g) with eigenvalue 

A:#0 and of dimension k+ 1 gives rise to an isometric minimal immersion into Sk(r) with 

r2=dimM/~, by using the eigenfunctions as coordinates (see Li [L] and w 6 of this paper 

for further properties of these minimal immersions). By a theorem of D. Bleecker [BI], 

these metrics can also be characterised as being the only metrics which are critical 

points for every natural functional on the space of metrics of volume 1 on a given 

manifold. 

From the definition it follows easily that the isometry group of g must act 

transitively on M. Hence (M, g) is also a Riemannian homogeneous space. Conversely, 

we can define a connected effective homogeneous space G/H to be isotropy irreducible 

if H is compact and Adn acts irreducibly on ~/~. Given an isotropy irreducible 

homogeneous space G/H, there exists a G-invariant metric g, unique up to scaling, 

such that (M, g) is isotropy irreducible in the first sense. But if we start with a 

Riemannian manifold (M, g) which is isotropy irreducible, it can give rise to several 
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isotropy irreducible homogeneous spaces G/H since G does not have to be the full 

isometry group of g. The aim of this paper is to classify the Riemannian manifolds as 

well as the homogeneous spaces which are isotropy irreducible. 

If the identity component H0 of H also acts irreducibly on g/J9, then G/H is called a 

strongly isotropy irreducible homogeneous space, and similarly for strongly isotropy 

irreducible Riemannian manifolds. 

The most important examples of strongly isotropy irreducible homogeneous 

spaces are the irreducible symmetric spaces, classified by E. Cartan [C 1,2] in 1926. 

The non-symmetric strongly isotropy irreducible homogeneous spaces were classified 

independently by O. V. Manturov [Ma 1,2,3] in 1961, by J. A. Wolf [Wo 1] in 1968, and 

by M. Kr/imer [K] in 1975, but Wolf in addition studied many of their geometric 

properties. Both the classification of Manturov and Wolf contain some omissions (see 

the correction to [Wo 1]), but the classification of Kr~imer is complete. For an a priori 

proof of this classification for quotients of the classical groups, see [WZ 2]. 

Generalizing a theorem of Wolf [Wo 1, Theorem 1.1] it was shown in [Be, 7.46] 

that a non-compact isotropy irreducible homogeneous space G/H is either flat or is a 

symmetric space of non-compact type. Furthermore, one easily shows that if M is an 

isotropy irreducible Riemannian manifold, then its universal cover is also isotropy 

irreducible, and with the product metric, Mx. . .  x M  is also isotropy irreducible. Hence 

we will first assume that M is compact, de Rham irreducible and simply connected and 

we will prove: 

THEOREM A. Let G/H be a compact, simply connected, effective Riemannian 

homogeneous space which is de Rham irreducible and let Go, Ho be the id-component 

of  G,H. Then G/H=Go/Ho, and if  G/H is isotropy irreducible but not strongly isotropy 

irreducible, then Go/Ho is listed in Table I and II. Conversely, for every entry, in Table I 

and II there exists in general several isotropy irreducible G/H. 

This theorem completely describes the simply connected, compact, isotropy irre- 

ducible and de Rham irreducible Riemannian manifolds which are not strongly isotropy 

irreducible. In most cases one can also easily read off the possibilities for G and H from 

the other columns in Table I and II. Z0 describes the isotropy representation of H0 on 

g/t~ and enables one to determine the action of I2IIHo on g/D, where H is the full 

isotropy group of the metric (see w 3 for details). The entry (/t/H0)min is a subgroup of 

minimal order (not necessarily unique) which is needed to make Go/Ho isotropy 

irreducible. In a few cases there are some finite group problems involved in trying to 

determine all possibilities for G, which we do not try to resolve. E.g. for the biinvariant 
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Table I. Go/Ho simply connected, de Rham irreducible, and rank Ho= rank Go 
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Table II. Go/Ho simply connected, de Rham irreducible, and rankH0<rankG0 

metric on a connected, compact, simple Lie group G one can adjoin any finite subgroup 

F of Aut(G) whose natural representation on ~ is irreducible. Then [GI>(F]/F is an 

isotropy irreducible homogeneous space which is not strongly isotropy irreducible, but 

as a Riemannian manifold it is of course isometric to G. This Riemannian manifold can 

also be presented as [GxG]/AG, in which case it becomes a strongly isotropy irreduc- 

ible symmetric space. 

If M is simply connected and isotropy irreducible, but not de Rham irreducible, 

then M is either flat or isometric to a Riemannian product Nx...xN, where N is 

isotropy irreducible and de Rham irreducible. In the fiat case one can write M in many 

ways as an isotropy irreducible homogeneous space: M=[R"~(H]/H, where H acts 

irreducibly on R n. 

The only entry in Table I and II for which Go is not the full id-component of the 

isometry group is again a compact simple Lie group with a biinvariant metric. 
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In w 6 we describe how to determine the isotropy irreducible Riemannian manifolds 

which are not simply connected. This uses the column Nco(Ho)/HoZ(G o) in Table I and 

II. There are again some finite group problems, which we will not solve completely. 

In w 1 we make some general remarks about isotropy irreducible manifolds and 

describe the most interesting examples we obtain in our classification. In w 2 we discuss 

the general theory of isotropy irreducible manifolds and reduce the classification to the 

case where G is compact and simple. In that case the negative of the Killing form of G 

induces the standard homogeneous metric on G/H, which must be Einstein by the 

above remarks. Such Einstein metrics were classified in [WZ 1]. To select from them 

the candidates Go/Ho which might be isotropy irreducible as Riemannian manifolds, we 

derive a criterion on the isotropy representation X0 of H0 on ~/~ which turns out to be 

necessary and sufficient: 

THEOREM B. Let Go/Ho be a simply connected, compact, effective Riemannian 

homogeneous space with H04:l and Go simple. Then there exists a Riemannian 

homogeneous space G/H with Go, Ho the id-component of G, H and such that G/H is 

isotropy irreducible iff there exists a finite group of automorphisms of ~ which 

permutes transitively the dominant weights of the Ad~0 irreducible summands of g/~. 

In particular all irreducible summands of AdH0 are equivalent up to some (possibly 

outer) automorphism of ~. Included is the possibility that all dominant weights are the 

same, in which case we can choose the finite group to be trivial. This actually occurs 

for the Examples 4 and 6 in Table II. 

We are able to prove Theorem B directly only when G and H have equal rank but 

without the assumption that Go is simple. In the unequal rank case it follows from a 

case by case argument. In these cases we have to determine the full isometry group of 

Go/Ho, in order to see whether an isotropy irreducible G/H exists. This boils down to a 

problem of extending automorphisms of l) to g and is discussed in w 3. The methods in 

w 3 may be of independent interest since they enable one to determine the full isometry 

group of the standard Riemannian homogeneous metric in many circumstances, assum- 

ing that one knows the id-component of the isometry group already. They extend 

results of Cartan [C 1,2] for symmetric spaces and of Wolf [Wo 1] for strongly isotropy 

irreducible spaces. These methods are then applied in 34 and w 5 to the equal and 

unequal rank cases and finish the proof of our classification. 

It would be interesting to have a direct proof of Theorem B also in the unequal 

rank case and without the assumption that Go is simple. It would imply in particular 

that if Go/Ho is a homogeneous space whose isotropy representation is equal to 

15-918286 Acta Mathematica 166. Imprim6 le 17 avril 1991 
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~0)...t~q~ for some irreducible representation ~, then the universal cover of Go/Ho is 

one of Example 4 or 6 in Table II. Presently this only follows if Go is also simple. 

In w 6 we determine which subcoverings are still isotropy irreducible and discuss 

two applications. In the first one we describe the isotropy irreducible homogeneous 

spaces G*/H* with G* connected, and in the second one we study some of the 

geometric properties of the minimal isometric immersions as in [L]. 

We emphasize that, whereas strongly isotropy irreducible is a local condition, 

isotropy irreducible is in general a global one. In many of our examples the group G/Go 
can be very large and gives rise to many global symmetry properties of the manifold 

Go/Ho, most of which are reflected in symmetry properties of the isotropy representa- 

tion Ad/~ 0. We believe that these large global symmetry groups make these examples 

particularly appealing and may be helpful in other geometric considerations. 

It may not be a coincidence that our examples frequently occur in other geometric 

contexts. E.g. in the classification of homogeneous spaces of positive sectional curva- 

ture [Wa], [BB] all the examples are isotropy irreducible as homogeneous spaces 

(although the metrics in general are not) except for the Aloff-Wallach examples 

SU(3)/S 1. Many of our examples also occur in the classification of homogeneous 

isoparametric hypersurfaces [TT] and in the classification of 3-symmetric or k-symmet- 

ric spaces, see e.g. [WG]. In a forthcoming paper we will also discuss the close 

relationship between isotropy irreducible homogeneous spaces and primitive sub- 

groups, as defined in [Go], [GR]. 

We would like to thank Alex Rosa for pointing out the relationship of Example 6 in 

w 1 with finite geometries. 

w 1. General remarks and examples 

Let (M, g) be a Riemannian manifold with isometry group G and isotropy group/lp for 

p E M. We say that (M, g) is an isotropy irreducible Riemannian manifold if for every 

p EM,/~p acts irreducibly on TpM via its isotropy representation. This implies that 

must act transitively on M. Indeed, i fp  lies in a principal orbit of G, then/tp leaves the 

tangent space to the principal orbit invariant, and hence this tangent space is either all 

of TpM, in which case G acts transitively, or it is trivial. But the latter case is 

impossible since then G is discrete, which contradicts the fact that/~p is non-trivial for 

each p E M. Hence we can also write M as a homogeneous space G/Hp. 
Conversely, given a connected homogeneous space G/H, where G acts effectively 

on G/H and H is compact, we say that G/H is an isotropy irreducible homogeneous 
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space if AdH acts irreducibly on ~/l~. There then exists a G-invariant metric g on G/H, 
which is uniquely determined up to scaling by Schur's Lemma, and (M=G]H, g) is an 

isotropy irreducible Riemannian manifold in the above sense. But G does not have to 

be the full isometry group of (M, g). In fact even the dimension of G could be smaller 

than the dimension of the full isometry group. Hence an isotropy irreducible homoge- 

neous space gives rise to an isotropy irreducible Riemannian manifold, unique up to 

scaling, but an isotropy irreducible Riemannian manifold can give rise to several 

isotropy irreducible homogeneous spaces. Since such descriptions of the same mani- 

fold as homogeneous spaces in different ways can sometimes be useful, we try to 

classify all isotropy irreducible homogeneous spaces in this paper. We will achieve this 

modulo some finite group problems. 

If (M, g) is isotropy irreducible, then its universal Riemannian cover )9/is also 

isotropy irreducible, since the isometry group of M contains all the covering transfor- 

mations, and all isometrics of M lift to isometrics of M. In fact, the isotropy group of 

p E M is isomorphic to the subgroup of the isotropy group of any/~ E 57/above p which 

normalizes the group of covering transformations, and the isotropy representation of 

one restricts to the isotropy representation of the other. But not every Riemannian 

subcover of an isotropy irreducible manifold is necessarily isotropy irreducible. 

If we start instead with a Riemannian homogeneous space M=G*]H* which is 

isotropy irreducible but not simply connected and let G0 be the universal cover of the 

id-component G~' of G*, then the action of G~' on M lifts to an action of G0 on ~/with a 

possible ineffective kernel NcZ((~o). The isometrics in G* which are not in G~' also lift 

to M, uniquely modulo the deckgroup. Hence these lifts, the deck group and 

CJo]NcI(!(/l, ~) generate a Lie group G which acts transitively on h4 with isotropy group 

H. Then I(I=G]H is isotropy irreducible as a homogeneous space. Clearly dim G-- 

dim G*, and G as well as H cannot be  connected if G*[H* is not strongly isotropy 

irreducible. 

Next, if N is an isotropy irreducible Riemannian manifold, then M=Nx... • 
(k times) with the product metric is also isotropy irreducible, since the isometry group 

of M contains the symmetric group Sk, which acts by interchanging the factors. 

Conversely it follows from the de Rham decomposition theorem that if M is isotropy 

irreducible, simply connected, and a Riemannian product, then M is either flat or all its 

de Rham factors must be isometric to each other. 

Similarly in the homogeneous case. If G[H is isotropy irreducible, then the product 

of G]H with itself k times becomes an isotropy irreducible homogeneous space, if we 

adjoin to Gx ... xG (k times) the symmetric group Sk or a subgroup of it that still acts 
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transitively on the factors. Conversely, if G/H is an isotropy irreducible homogeneous 

space which is simply connected but de Rham reducible, then it is either flat, or Go/Ho 
is the product of K/L with itself k times. To prove this last statement we need the fact, 

proved in w 2, that the metric on Go/Ho is always naturally reductive, if M is not flat. 

Then the de Rham decomposition theorem for naturally reductive spaces (see [KN, 

Theorem X.5.2]) implies that Go/Ho=KI/LI x ... xKk/Lk. But the factors are isometric as 

Riemannian manifolds and since G/H is isotropy irreducible, there exists an isometry 

hiy E H which maps the ith factor into the jth factor. Moreover, hij normalizes Go and 

hence gives an isomorphism of Kg with Kj which carries Li into Lj. 
The flat case is somewhat special and will always be excluded. Notice though that 

R n can be written as an isotropy irreducible homogeneous space in many ways. If we 

represent R n as a homogeneous space, then it is of the form [R~I>(H]/H for any closed 

subgroup HcO(n)  and the isotropy representation of H is given by the embedding 

HcO(n). Hence [R~b(H]/H is isotropy irreducible iff H is an irreducible subgroup of 

O(n). There are many such subgroups, especially since H need not be connected. 

Indeed H can also be a finite group. 

Hence both for the homogeneous spaces and the Riemannian manifolds it will 

suffice to assume first that all manifolds are simply connected, de Rham irreducible and 

not flat. In w 6 we will discuss the non-simply connected case. 

Given an isotropy irreducible M=G/H, since H is compact, we can write g=~90)m, 

where m is Adn invariant and can be identified with the tangent space of M at a point. 

The metric corresponds to an Adn invariant inner product on m. As we will see in w 2, 

one easily reduces to the case where G is compact and semisimple. Hence B, the 

negative of the Killing form of ~, induces the standard normal homogeneous metric gB 

on G/H and from now on we will assume that the metric is of this form. This also means 

that m is chosen so that ~ and m are perpendicular with respect to B. In particular, 

every automorphism of G that leaves H invariant induces an isometry of G/H. 
Let H0 be the identity component of H and let m=ml 0 . . .  0) mk be a decomposition 

of m into Adn0 irreducible summands. Since we assume that G/H is not strongly 

isotropy irreducible, we have k> l .  For G/H to be isotropy irreducible H/Ho must act 

via inner or outer automorphisms on Go, leaving Ht~Go invariant, and permuting 

transitively the irreducible factors mi, at least if all mi are inequivalent. See (2.3) for 

a precise statement. Hence the dominant weights of the irreducible factors m; must 

in particular be equivalent to each other up to some inner or outer automorphism 

of H. 

We end this section with a number of illustrative examples. 
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Example 1. Let G be a compact connected simple Lie group with a biinvariant 

metric. As a symmetric space this is [Gx G]/AG and is strongly isotropy irreducible. 

But there are many other ways to write it as a homogeneous space, most of which are 

not isotropy irreducible. It will turn out that the only other way to write it as an 

isotropy irreducible homogeneous space is described as follows. 

Let F c G  be a finite subgroup, acting on G via the adjoint representation. Then 

G=[G~F]/F with isotropy representation Adlr. Hence, if Adlr is irreducible, [G~(F]/F 

is isotropy irreducible, but not strongly isotropy irreducible. We can also use F to 

construct subcoverings of G since the isotropy representation of G/F is also Adlr. 

Hence if Adlr is irreducible, G/F is isotropy irreducible, but not strongly isotropy 

irreducible. 

More generally, we can take any subgroup F of Aut(G) such that the natural 

representation on ~ is irreducible. Then [G/~F]/F becomes isotropy irreducible and if 

F*~F  n Int(G) is a normal subgroup of F, then G/F* becomes isotropy irreducible if we 

adjoin to G the isometries induced by F but not in F*. 

This example, and the fiat metric on R", are the only examples of isotropy 

irreducible Riemannian manifolds which can be written in several ways as isotropy 

irreducible homogeneous spaces such that the id-components of the transitive groups 

are distinct. 

At first sight the condition on F appears to be a very restrictive one. However one 

can find many examples satisfying this condition, including many of the sporadic finite 

simple groups. We first explain the condition more explicitly for the classical groups. 

If ~r: F---~SO(n) is a faithful orthogonal representation of F, then since the adjoint 

representation of SO(n) is just the second exterior power of the standard n-dimensional 

representation, our condition says that A2~r is irreducible. Clearly we may assume that 

~r is absolutely irreducible. For Jr: F--->Sp(n), since the adjoint representation of Sp(n) is 

the second symmetric power of the standard 2n-dimensional representation, the condi- 

tion becomes S2~r is irreducible. Finally, if er: F~SU(n) ,  then the condition is that 

~r| I is irreducible. Here we can assume that Jr is irreducible and ~r~=~r*. Below we 

give some of the examples we found satisfying these conditions. 

(1) The natural representation of the symmetric group S, on R" is orthogonal and 

splits into the trivial representation on the diagonal and an irreducible representation on 

the orthogonal complement. Let er: S,--->O(n-1) denote this representation. Then, if 

n~>4, A2~r is irreducible, so that O(n -  1)/Sn is isotropy irreducible. The restriction to the 

alternating group A, maps into SO(n - l )  and yields the isotropy irreducible space 

SO(n-D/An (n4:5), which as a manifold is of course the same as O(n-1)/S, .  More 



232 MCKENZIE %VANG AND WOLFGANG ZILLER 

generally, if W is the Weyl group of a compact simple Lie group of rank n, it acts 

naturally on R n and O(n)/W is isotropy irreducible. 

(2) A finite subgroup of SO(3) (respectively SU(2)) satisfies the isotropy irreduc- 

ibility condition if it is conjugate to the tetrahedral, icosahedral, or octahedral (resp. 

binary tetrahedral, binary octahedral, or binary icosahedral) group. The subgroups of 

SO(3) of course follow from (1) since they contain the alternating group and if F c ~ c G  

with G/F isotropy irreducible, then G/d~ is also isotropy irreducible. 

(3) All the Mathieu groups have irreducible orthogonal representations satisfying 

the isotropy irreducibility condition. For Mll the representations have dimension 10 

and 11, for M12 there are two 11-dimensional representations and for M22, M23, M24 there 

is a representation of dimension 21, 22, 23 respectively. As for unitary representations 

such that ~r| is irreducible, there are none for Ml~, Mi2, or M22, but one each for 

M23,/1//24, both of dimension 45. All this is verified using character tables in [CCNPW]. 

(4) Among the other sporadic finite simple groups one obtains a unitary representa- 

tion of dimension 1333 for the Janko group J4, and orthogonal representations for the 

Baby Monster group B, the Fischer group Fi22, the Harada-Norton group HN, the 

Thompson group Th, the McLaughlin group McL, and the Conway groups Co2, Co3 of 

dimension 4371, 78, 133, 248, 22, 23, and 23 respectively. Similarly one can easily 

obtain a number of orthogonal, unitary, and symplectic representations from [CCNPW] 

among the finite simple groups of Lie type. 

Although a complete enumeration of all such groups is probably complicated, an 

answer to the following questions would be of interest: 

(a) For each compact connected simple Lie group G, does there exist a finite 

subgroup FcAut(G)  such that F acts irreducibly on fi? 

(b) Is there a characterization of those finite groups F which admit a faithful 

representation ~r: F---~Aut(G) for some compact connected simple Lie group G such 

that F acts irreducibly on ~? 

Example 2. Let H be a compact, simply connected, simple Lie group with center Z 

and let A H  be the diagonal subgroup of G=Hx... xH (n times). The isotropy represen- 

tation of G/AH is equal to ( n - l ) A d n ,  where m={(X1 ..... Xn)l XiEb and EXi=0). 

Notice though that the decomposition of m into Adn irreducible summands is highly 

non-unique. The symmetric group Sn acts on G=Hx... xH as outer automorphisms by 

permuting the factors. Since this action keeps A H  invariant, it induces isometries of 

the standard normal homogeneous metric on M=G/AH. If we add these isometries to 

G, then M becomes an isotropy irreducible homogeneous space. Notice that S~ does 
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not interchange the AdA+ / irreducible factors of any fixed decomposition of m, and that 

it acts trivially on the collection of dominant weights since they are all the same. M is 

simply connected, but not yet effective, ([Hx-..  xH]/AZ)/(AH[~Z) being the effec- 

tive version. 

Isotropy irreducible subcoverings are obtained by dividing G by a central subgroup 

such that Sn still acts by isometries. E.g. {[(H/A)x...• is 

isotropy irreducible for any AcZ.  
M is a symmetric space if n=2 (and hence strongly isotropy irreducible), but is not 

strongly isotropy irreducible if n>2. 

Another description of this example is obtained by observing that as a manifold 

G/AH is equivariantly diffeomorphic to H x  ... x H  (n-1  times), an explicit map being 

given by 

(gi ..... g,) AHE G/AH.---~ (gl g~-i .....  g,-1 g~-l) E Hx . . .  xH.  

The isotropy irreducible metric on G/AH corresponds under this map to a left invariant 

metric on Hx.. .xH,  which one easily checks is given at the identity by 

, "--" 12 1 2 I (X, .... Xn-')l 2= ~a~+ ---~- ~ X; 

This metric can thus be viewed also as follows. Starting with the metric on H x  ... x H  

(n-  1 times) which is the (n -  1)-fold product of a biinvariant metric on H with itself, we 

can fibre Hx . . .  x H  by left cosets of A H  and multiply the metric in direction of these 

fibres by (n- 1)/n, while leaving the metric unchanged in the direction perpendicular to 

the fibres. 

If one starts with this left invariant metric on Hx.. .•  (n-1  times) it is more 

difficult to see all the isometries that are necessary in order to make it isotropy 

irreducible. Besides the left translations on Hx. . . xH  one needs the isometries 

(Ad(g) .....  Ad(g)), g E H, the interchange of any two factors, and the special isometries 

(gl  . . . . .  gn-l) ''~ (gl  g~-I . . . . .  gi-I gYa 1, g~-l, gi+l g~l . . . . .  gn-I g~-l) 

for each i= 1 ..... n -  1. 

Notice that on this manifold there exists another isotropy irreducible metric, 

namely the (n-1)-fold product of a biinvariant metric with itself. This metric is not 

isometric to the above example, since the metric on G/AH is de Rham irreducible, as 

follows from [KN, Theorem X.5.3] and the fact that the metric on G/AH is given by 



234 MCKENZIE WANG AND WOLFGANG ZILLER 

the standard normal homogeneous metric. Hence this manifold has two non-isometric 

isotropy irreducible metrics. This phenomenon does not occur among strongly isotropy 

irreducible manifolds. 

Example 3. Let H=G2cSpin(7)cSpin(8)=G. The isotropy representation of G/H is 

t~7~)~7 , where q~7 is the seven dimensional representation of G2. G2 has no Outer 

automorphisms and one easily sees that the normalizer of G2 in Spin(8) is Z(G)H, and 

hence does not induce any new isometries on G/H. But there are outer automorphisms 

of Spin(8) which keep G2 invariant and hence induce further isometries of G/H. For 

example, the triality automorphism of Spin(8) fixes G2 and one easily checks that it 

does not keep the decomposition of m into irreducible summands invariant. Hence, if 

we add this isometry to Spin(8), G/H becomes an isotropy irreducible homogeneous 

space. On the other hand, the order 2 automorphism keeps the decomposition q~7(~)~7 

invariant. 

As a manifold G/H is diffeomorphic to S7xS  7 (see e.g. [WZ 2, p. 575, Example 4]). 

But the Riemannian metric is de Rham irreducible, as follows from [KN, Corollary 

X.5.4]. The product metric of a round sphere metric with itself is of course also 

isotropy irreducible. Hence this manifold is again an example which carries two non- 

isometric isotropy irreducible homogeneous metrics. From our classification it seems 

to follow that Example 2 and 3 are the only manifolds which can carry more than one 

isotropy irreducible metric. Although this is most likely the case, a rigorous proof 

would involve showing that none of the examples in Table I and II are diffeomorphic to 

each other or to a strongly isotropy irreducible space or to products of such, which is 

not easy to do. As far as we know, even among the strongly isotropy irreducible 

homogeneous spaces, such a program has not been carried out. 

There are several Riemannian homogeneous subcoverings, obtained by dividing 

Spin(8) by a subgroup of its center, but the only subcovering for which the triality 

automorphism descends to an isometry is that obtained by dividing by the full center, 

i.e. (SO(8)/Z2)/G2, which is diffeomorphic to Rp7xRP 7. 

This example also arises naturally in the following context. As a homogeneous 

space the Cayley plane is F4/Spin(9). Then Spin(8)cSpin(9) acts on the Cayley plane 

with principal orbits Spin(8)/G2. As we move through the principal orbits, the induced 

metric achieves, up to scaling, every Spin(8)-invariant metric on Spin(8)/G2. In particu- 

lar, the standard normal homogeneous metric is achieved on a specific principal orbit. 

Example 4. Let H=SO(k)•  .. .xSO(k) (n times)cSO(nk)=G be given by the usual 

diagonal embedding. One easily sees that Ei<i[id ~ . . . ~ Q k ~ . . . ~ Q k ~ . . . ~  id] is the 
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isotropy representation of H and that the outer automorphisms of H which interchange 

the SO(k) factors extend to inner automorphisms of G, which therefore lie in the 

normalizer of H. Thus conjugation by these elements induce isometries fixing (H) and 

if we add these to G, we obtain an isotropy irreducible homogeneous space. 

There are further isometries which are not needed to make G/H isotropy irreduc- 

ible, but which can be used to produce subcoverings that are also isotropy irreducible. 

They are all of the form Ad(diag(+ 1, ..., _+1}), 

The space G/H can also be described as the set of all oriented flags 

V~ ~ V2c... c Vn=R "k with dim Vi=ik. These flags can be represented by an element A of 

SO(nk) such that the first ik columns span Vi. If we denote the columns of A by 

w~ .... .  wnk, then the isometry which interchanges the ith andjth factor in H, but viewed 

as a right translation on G/H, acts on the flags by interchanging the vectors 

w~i_~)~+ ~ .... , W~k with the vectors W~_~)k+ ~ . . . . .  W~k. They form a group S, of isometries 

which are fixed point free. Additional isometries are obtained by changing the orienta- 

tion of one or several of the subspaces V;, i= 1 .. . . .  n -1 .  These isometries can be 

viewed as right translations on G/H by D=diag{+l  . . . . .  +1) where D contains an even 

number of -1  on the diagonal. This group Z~ -1, which acts freely on G/H, gives rise to 

many isotropy irreducible subcoverings of G/H, including the space of unoriented flags 

in R nk. One can also divide out by S, or subgroups of Sn to obtain isotropy irreducible 

subcoverings. This subgroup has to be chosen so that it acts transitively on the set of 

unordered pairs. If nk is even, there exists one additional isometry, given by reflecting 

a flag in a hyperplane. But the component of the full isometry group containing this 

isometry does not contain any fixed point free isometries. For more details see w 4 and 

w 

Similar examples arise by using SU(k) and Sp(k) instead of SO(k). 

Example 5. If rank H - r a n k  G, we will see that a necessary and sufficient condition 

for G/H to be isotropy irreducible as a Riemannian manifold is the existence of a group 

of outer automorphisms of ~ which acts transitively on the set of dominant weights of 

the AdHo irreducible factors of m. Hence for almost all the examples in Table I it is 

obvious that G/H is isotropy irreducible, without any computation. 

One particularly interesting example is [SU(5)x SU(5)]/A ZscEs, which is the only 

maximal subalgebra of maximal rank such that the corresponding homogeneous space 

is not strongly isotropy irreducible. Hence all maximal subalgebras of maximal rank 

give rise to isotropy irreducible homogeneous spaces. 

Another interesting example is G/T, where G is a compact, simple, centerless Lie 
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group such that all roots of g have the same length, and T is a maximal torus in G. Then 

the Weyl group acts transitively on all roots and hence transitively on the irreducible 

factors of the isotropy representation of G/T. If we add these isometries to G, G/T 
becomes an isotropy irreducible space. Further isometries are obtained from the 

diagram automorphisms of ~. 

Example 6. Let G0=E7 or E8 and H0=[SU(2)]7/Z24 or [SU(2)]a/Z24. The isotropy 

representations are given in Table I. It turns out that in order to make Go/Ho isotropy 

irreducible, we have to add a group of automorphisms of Go which is a subgroup of the 

group of automorphisms of the projective plane (resp. affine 3-space) over the field F2 

of 2 elements. To explain the connection, we consider first the case of E7. 
Each copy in the isotropy representation of Go/Ho is described by a 4-tuple of 

integers from 1 to 7, where e.g. (1234) corresponds to the representation 

1 1 1 1 o|174174174174174 

of [SU(2)] 7. We can instead describe this representation by the complementary 3-tuple 

of numbers (567) and thus obtain 7 such 3-tuples. These 3-tuples correspond to all 

possible lines on the projective plane over F2 as follows. Label the points in this 

projective plane by 1=(1,0,0), 2=(0, 1,0), 3=(0,0, 1), 4=(1,1, 1), 5=(0,1,1), 6=(1,0, 1), 

7=(1, 1,0). Then each line goes through precisely 3 points and we can label a line by 

these points. We again obtain 7 3-tuples, and the 3-tuples in both cases agree. An 

element of It/Ho corresponds to a permutation of the integers 1 to 7, which preserves 

the 4-tuples and hence the 3-tuples which describe the isotropy representation. Thus it 

is described by a transformation of the projective plane which preserves lines, and 

therefore by an element of Aut(P2(F2))=PGL(3, 2)=GL(3, 2). Hence I?I/Ho=GL(3, 2), a 

simple group of order 8.7" 3. The 7-Sylow subgroup Z7 is generated by the matrix 

or equivalently by the permutation (1254673). It permutes the lines transitively and 

hence, if F~Z7, then [GoN, F]/[HoNF] is isotropy irreducible. 

For the case E8 we have to relabel the circles according to the scheme 1--~0, 2--~5, 

3---~4, 4--~1, 5-*3, 6---~7, 7---~2, and 8--~6. Then the isotropy representation becomes 

(0145) ~ (2367) ~ (0347) ~ ( 1256) ~ (0246) ~ (1357) ~ (0136) ~ 

(2457) ~ (0127) ~ (3456) ~ (0235 ) ~ (1467) ~ (0567) ~ ( 1234) 
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We now put these 4-tuples in 1-1 correspondence with the set of 2-planes in 3- 

dimensional affine space over F2. We label the points of this space with the integers 

from 0 to 7 as before. Then each 2-plane contains exactly 4 points, and if we describe 

the 2-plane by this 4-tuple of numbers, we obtain the same set of 4-tuples as above. 

Hence an element of 1r corresponds to a transformation of affine 3-space which 

takes 2-planes to 2-planes, and therefore an element of T(3, 2)XGL(3, 2), where T(3,2) 

are the translations in F~. This group has order 2 3. 168. If Z7 denotes the 7-Sylow 

subgroup of GL(3,2) as above, then T(3,2)t~Z7 already acts transitively on the 2- 

planes, and one easily sees that there is no subgroup of smaller order which does. 

Hence, if F~T(3, 2)~ZT, then [Go t~F]/[HoI~F] is isotropy irreducible. 

It would be interesting to obtain a better understanding of the relationship of these 

examples with the corresponding finite geometries. 

w 2. General theory 

The first result is essentially already contained in [Be, 7.46], but we include a proof 

here for completeness. 

(2.1) THEOREM. Let M=G/H be an isotropy irreducible Riemannian homogeneous 

space. Then: 

(a) I f  M is non-compact, M is either flat or G/H is a symmetric space o f  non- 

compact type. In either case, M is simply connected. 

(b) I f  9 is not semisimple, then M is fiat. 

Proof. Let B be the Killing form of 9. Since G/H is effective and H is compact, it 

easily follows that B[~ is negative definite (see e.g. [Be, 7.35 and 7.36]). Hence we can 

choose an Adn invariant complement m with B(D, m)=0. BI~ is a symmetric Adn 

invariant bilinear form, and so is the metric g. Hence Bl~=cg for some constant c. If 

c>0, then (9,1~) is a symmetric pair of non-compact type and hence so is G/H. If c<0, 

then B<0 and hence g is semisimple and compact. If c=0, then m is the nullspace of B 

and hence an ideal. In particular [m, m ] c m  and since [m, m] is Adn invariant, isotropy 

irreducibility implies [m, m]=m or [re,m]=0. But if [m, m]=m, then m would be 

semisimple, which would contradict B[m=0, since m is an ideal. Hence m is abelian, 

which implies that any G-invariant metric on G/H is flat. A flat homogeneous metric is 

isometric to the product of the flat metric on R k and a flat metric on T n-k (see e.g. 

[Wo 2, 2.7.1]). Since M is isotropy irreducible and non-compact, M must be isometric 

to R n. This proves (a) and (b). [] 
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We already saw in w 1 that we can assume that M is simply connected and de Rham 

irreducible. We will do so now. 

(2.2) THEOREM. Let M=G/H be a simply connected, compact, isotropy irreducible 

Riemannian homogeneous space which is also de Rham irreducible. I f  g is semisimple 

but not simple, then G/H is the Example 2 of  w 1. 

Proof. Let Go and H0 be the id-component of G, H. Since M is compact and simply 

connected, Go acts transitively on M and the isotropy group, which must be connected, 

is equal to H0. We can assume that the metric on M is the standard homogeneous 

metric and hence [KN, Corollary X.5.3] implies that M is de Rham reducible iff 

g=f i lG. . .G~,  and b=blG. . .G0~ with OiC~i and k~>2. 

Let m be an Adn invariant complement of 0. If g is semisimple but not simple, let 

go be a non-trivial simple ideal of g and let ~l be the ideal Ad~go). If ~l is not all of ~, 

there exists a complementary Ad/~ invariant ideal ~2. Decompose 0 into ideals such that 

b = b l G b2 G A 03, where b ig  b3 are subalgebras of ~i and A b3 is embedded diagonally 

into 03@ 03c ~1 G fi2. Then m = ml G m2G A m3, where mi are orthogonal complements of 

0iGb3 in gi and Am3--{(X,-X)IXEb3}cO3Gb3~gIGg2. 03=1=0 since otherwise M 

would be de Rham reducible. Hence Am3~=0 and since m; and Am3 are Ad~/invariant, 

we have m~=m2=0. Since G/H is effective, this implies b~=0~=0 and hence gl=g2=b3 

with b embedded diagonally. 0 must then be simple, since otherwise M would be de 

Rham reducible. Hence G/H is as in Example 2. 

We can therefore assume that Ad/-/(g0)=fl. Hence g=fi~G.. .G~,,  k~>2, where ~i 

are isomorphic simple ideals permuted transitively by Ad~/. In particular b is invariant 

under the automorphisms which permute the gi. Let :ri be the projection of g onto gi. 

Then 0*=:rl(b)G...G:r~(0) is AdH invariant and contains b- Hence either b*=b or 

b *= ~. If 0*=b (which includes the possibility of 0=0), then b=blG. . .Gbk  with bi~ gi, 

which implies that M is de Rham reducible. Hence b *= g, in other words, :ri(b) = gi. For 

each simple ideal b~ of D, :ril~ is either an isomorphism onto ~i or trivial, and if 02 is a 

second simple ideal of ~, then Jl;il~)ldi:O implies :ri[~2=O since [h and b2 commute. Hence, if 

0 is not simple, M is again de Rham reducible. Thus b is simple and :ril ~ is an 

isomorphism onto gi for each i. We can therefore assume that g = 0 G ' - ' G b  and b is 

embedded diagonally, which is Example 2 in w 1. [] 

We can now assume that G is compact and simple and hence the metric is given by 

the standard normal homogeneous metric gB, which also must be Einstein. In [WZ 1] 

we classified all simply connected effective homogeneous spaces such that G is simple, 
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compact, and such that the standard normal homogeneous metric is Einstein. To select 

among these manifolds the ones that are isotropy irreducible, we prove: 

(2.3) THEOREM. Let G/H be an isotropy irreducible homogeneous space which is 

not strongly isotropy irreducible and assume that ~=1=0. Let ~=l~ )m be an AdH 

invariant decomposition, t a maximal abelian subalgebra o f  [~ and d# a fundamental 

system of  roots o f  (~), 0. Given any AdH0 irreducible summand m0 of  m, there exist 

elements hi . . . . .  h k of  H such that m=Adh~(mo)O...0)Adhk(mo) is a decomposition o f  m 

into AdH0 irreducible summands. Furthermore F={hEHIAdh(t)ct  and A d ~ q b ~ }  

permutes transitively the dominant weights o f  the Adtt ~ irreducible summands o f  rrt. 

Proof. We choose a set of representatives {hi} of H/Ho such that Adh, leaves t 

and �9 invariant. Then EiAdhi(mo)cm is Ad n invariant and hence m=E;Adhi(rrt0). 

After reindexing, there is a subset {hi . . . . .  hk} such that m=OiAdh~(m0). If hEF,  

m=Adh(m)=~iAdh(Adhi(mo)) is another decomposition of m into AdH0 irreducible 

summands and hence Adh permutes the dominant weights. For G/H to be isotropy 

irreducible, F must permute these weights transitively. [] 

Remarks. As we saw in Example 2 and 3 in w l, Adh, h E F, need not permute the 

irreducible summands mi=Adhi(m0), although this will necessarily be the case if all mi 

are inequivalent as Adn0 representations. The same examples also show that there can 

be only a single dominant weight among the irreducible summands. 

As a consequence of (2.3), all the Adn0 irreducible summands of m must be 

equivalent to each other up to some inner or outer automorphism of ~. Using this 

criterion, one can easily select from [WZ 1] all the candidates for isotropy irreducible 

spaces with G simple. The result is given in Table I and II, except that item 4 in Table II 

should be deleted. We will actually see that all these spaces are isotropy irreducible. 

To proceed further, we have to determine the full isometry group of all the 

candidates. We first do this for the id-component, and then (in the next section) for the 

full isometry group. 

(2.4) THEOREM. Let M=G/H be a simply connected isotropy irreducible homoge- 

neous space which is not strongly isotropy irreducible. Then Go is the id-componnt o f  

the isometry group unless 

(a) G/H=[Rn~H]/H is flat with isometry group Rn~O(n). 

(b) G/H=[K~F]/F with K connected, compact, and simply connected and 
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F~Aut(K) a finite subgroup acting irreducibly on f. Here the id-component of the 

isometry group is (K• acting via left and right translations on K. 

Proof. If M is fiat, we are in case (a). If M is not fiat, the de Rham reducible case 

immediately reduces to the de Rham irreducible case by the comments in w 1, and by 

(2.1) we can assume that G is semisimple. By [WZ 1, Theorem 5.1] and the note added 

in proof in [WZ 1], if Go is a simple Lie group, then Go is the id-component of the 

isometry group, unless we are in the case of a biinvariant metric on a compact simple 

Lie group, which is case (b). 

If Go is semisimple but not simple, we are in the case of Example 2 of w 1 as follows 

from (2.2). For this example G0=[H• ... • and we can argue as follows. If Go 

is the id-component of the full isometry group of M, then G0 is semisimple by (2.1). If 

G0 is simple, it easily follows from [O, Table VII] that G0 = Go. If G0 is not simple, then 

G0/H0 is again as in Example 2 of w 1 and hence M is diffeomorphic to L x  . . .xL for 

some compact, simple, simply connected Lie group L with G0=[Lx ..- xL]/AZ(L). But 

from H•215215  it easily follows, using rational and Z2 cohomology rings, 

that both products contain the same number of factors and that H=L. Hence Go=Go. [] 

Remark. If G/H is an irreducible symmetric space, it is well known that Go is the 

id-component of the isometry group. For strongly isotropy irreducible homogeneous 

spaces, Wolf showed [Wo, Theorem 7.1] that Go is the id-component of the isometry 

group, unless G/H=Spin(7)/G2=S 7 with isometry group 0(8) or G/H=G2/SU(3)=S 6 

with isometry group 0(7). 

w 3. Extensions and restrictions of automorphisms 

In this section we let M= Go/Ho be a simply connected, effective homogeneous space 

with Go connected, compact, semisimple, and H0 compact. On M we consider the 

standard normal homogeneous metric gB and we assume furthermore that Go is the id- 

component of the isometry group of gs. Let G be the full isometry group of gB with 

isotropy g r o u p / t  and hence M= G/I?t. The goal of this section is to determine G/Go or 

equivalently ft/Ho. Every element o f / ~  gives rise to an automorphism of g via the 

adjoint representation Ad~ of G, whose kernel is C~(Go)=centralizer of G O in G. 

Let 

Aut(g, b) = {automorphisms of g leaving ~ invariant} 

and 

Int(~, 1~) = {inner automorphisms of g leaving fi invariant}. 
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Then we have: 

(3.1) THEOREM. Under the above assumptions, the restriction of Ad O to I71 in- 
duces isomorphisms 

(a) /-l~Aut(~, 0) which is also equal to the set of automorphisms of Go leaving 11o 
invariant. 

(b) I?t/Ho ~- Aut(g, ~)/Ado(Ho) ~Aut(6, ~)/H o 

(c) Noo(Ho)/Z(Go)~Int(6, ~) 

(d) Noo(Ho)/H o Z(Go)=Int(~, 0)/Ado(H0). 

Proof. Ad O clearly maps H into Aut(6,0). The kernel is C0(G0)N/~. If 

g E Co(G o) fl H, then g is an isometry of G/H fixing the coset (H), whose differential at 

(H) is the identity, Thus g-- l ,  which shows that Addl~q is injective. To show surjecti- 

vity, let 9 E Aut(g, 0)- Then 9 induces an automorphism q~ of G0, the universal cover of 

Go, which leaves invariant H0, the connected subgroup of G0 with Lie algebra 0. Hence 

induces an isometry of (G0//~ 0, gB). Since Go/Ho is simply connected, Go/fflo=Go/Ho 
and so ~ also induces an automorphism of Go leaving H0 invariant and hence an 

isometry of (Go/Ho, gB) fixing (H0). So ~ E/-t, which proves (a) and (b). Restricting Ad O 

to Noo(Ho), the kernel is Co(Go) n NGo(Ho)=Z(G o) and the image clearly lies in Int(fi, 0)- 

Surjectivity is clear in this case, which proves (c) and (d). [] 

We will determine I~/Ho and NGo(Ho)/HoZ(Go) in all our examples, the second 

group being necessary to determine the Riemannian subcoverings of Go/Ho which are 

isotropy irreducible. We proceed as follows. Let q~ be an automorphism of 0. We must 

determine all extensions (if any) of 9 to automorphisms of g. Clearly, for the existence 

of extensions we need only consider outer automorphisms of 0. To determine the 

number of extensions modulo Ado(H0), we have to determine all automorphisms q0 of 

which fix ~. If ~0 is inner, then q0=Ad(g) with g E Cro(Ho). Hence we have to determine 

Coo(Ho)/Z(Go)Z(H o) as well as those outer automorphisms of ~ that fix 0. For the latter, 

we only need to determine which elements of Aut(~)/Int(g) have representatives that 

fix 0. 

If rank0=rank g, all these questions are answered by the following result: 

(3.2) THEOREM. Under the above assumptions and rank ~=rank g the following 
hold: 

(a) Let q~ be an automorphism of ~, which, after composing with a suitable inner 
automorphism of 0, satisfies 9( t ) c t  and q~*(~)cd), where t is a maximal abelian 
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subalgebra o f  ~ and q~ a fundamental system of  roots o f  (D, t). Then cp extends to an 

automorphism o f  g i f f  it permutes the dominant weights o f  the Ad~lHo irreducible 

summands o f  m. 

(b) Z(G0)=I and CGo(Ho)=Z(Ho). Furthermore any two extensions of  an automor- 

phism of~ are equal mod Adc(Z(H0)). In particular, any two extensions are either both 

inner or both outer. 

(c) I f  ~ = ~ ) ~ ,  where ~ is semisimple and ~ abelian, then 121/Ho is isomorphic to 

the subgroup F o f  automorphisms o f  ~ which are sums o f  automorphisms o f  ~s and 

linear isomorphisms o f  ~ and which permute the dominant weights o f  the AdclH0 

irreducible summands o f  rrt. Hence Go/Ho is isotropy irreducible as a Riemannian 

manifold if  F in addition acts transitively on these weights. 

Proof. Let ~ ,  be the Add]no irreducible summands of m with dominant weight ~'i" 
Since rank ~ =rank ~, f is a maximal abelian subalgebra of ~ and hence all the weights of 

ark, are roots of g. This implies that all ar~, are inequivalent representations. Assume that 

q9 permutes the Ai, then it permutes the ~t~i and their weights, and hence all the roots of 

g. So (p[~ admits an extension to an automorphism t~ of g which leaves ~ invariant. 

O'l~O(ff--I fixes tc~) and hence ol~oq0-1=Adx for some xET.  Therefore q0 extends to 

Adj -1 or .  The converse clearly holds also and hence (a) is proved. 

Z(G0)= 1 since Go/Ho is effective and Z(Go) is contained in every maximal torus of 

Go and hence in TcHo. Similarly Cqo(Ho)ct'lr=Ho T=Z(H o) and hence C~o(Ho)=Z(Ho). If 

99 and ~p are two automorphisms of g with  01 =Wl , then (p and ~ agree on every 

maximal abelian subalgebra of ~ and hence tpovd-l=Adx with xEZ(Ho). This proves 

(b), and (c) follows from (a) and (b). [] 

Therefore in the equal rank case, the fact that every entry in Table I is isotropy 

irreducible is almost obvious from the representation Z0 of Adclz~ on rrt. In the unequal 

rank case the following observations will help. 

(3.3) THEOREM. Under the above assumptions and rankS<rank g the following 

hold: 

(a) I f  ~ is a maximal subalgebra in g, then Cco(Ho)=Z(G o) and Z(H0)= 1. 

(b) Let Go be simple but not o f  type D4, and assume that Ho is semisimple and that 

the representation o f A d d z  ~ o n  m contains no trivial representations. I f  q9 is an outer 

automorphism of  g that fixes ~, then there exists some integer q such that q9 q is an 

involutive automorphism with fixed point set ~_~. In particular (g, ~) is a symmetric 

pair. 
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(c) I f  in addition to the assumptions in (b), D is a maximal subalgebra in g and 

(fi, ~) is not a symmetric pair, then I?t/Ho is isomorphic to the subgroup of diagram 

automorphisms of ~ that extend to automorphisms of g. 

Proof. Let g E CGo(Ho) and let Cg be the centralizer of g in Go. Then HocC~ and 

since g is contained in a maximal torus T of Go, we have g E TcC~ and rank 

C~ G 0. The maximality of ~ in g now implies C~ since C~ would contra- 

dict rank ~<rank g. Thus g E Z(G o) and so C6o(Ho)=Z(Go). In particular Z(Ho)= 1 since 

Go/Ho is effective. This proves (a). 

To prove (b), we first observe that the assumptions imply that CGo(H o) is finite. 

Indeed the Lie algebra of C6o(H o) is equal to 8(fi)(~mo, where mo is the subalgebra of m 

on which Adoln0 acts trivially. Now q~ induces a diagram automorphism of ~ of order 2 

since ~ is simple 4:D4. Then there exists an outer automorphism o of g with order 2 

inducing the same diagram automorphism as cp. A theorem of de Siebenthal [Wo 2, 

8.6.9], applied to the group Aut(g), implies that we can find x, gEGo such that 

9=AdeoooAdxOAdgl and [o, Adx]=0. Then cp2=AdgoAd2xOAdgl=Adgx~g_l is inner. 

Now y=gx2g -1 E Cc0(H o) because (p fixes b and hence yq= 1 for some integer q. But then 

(p2q=id, and (pq is an involutive automorphism, which implies (b). (c) follows from (a) 

and (b). [] 

w 4. The case of equal ranks 

(4. I) THEOREM. Let G/H be a simply connected, compact isotropy irreducible homoge- 

neous space which is de Rham irreducible, but not strongly isotropy irreducible. I f  

rank H=rankG,  then (Go, Ho) can be found in Table I and conversely, every entry in 

Table I is an isotropy irreducible Riemannian manifold with full isotropy group I?t. 

Proof. As explained earlier, the entries in Table I and Z0 are collected from [WZ l] 

and in most cases (3.2) easily implies that Go/Ho is isotropy irreducible and also 

explains the entries for I2I/Ho and (/4/H0)min. The global form of Go and H0 (which is not 

given in [WZ 1]), easily follows in most cases from the fact that Z(Go)=l and 

H0=/10/Ker (Z0), where H0 is the universal cover of/4o. The only somewhat tricky case 

is no. 7, which we discuss separately. In this case the isotropy representation X0 was 

listed incorrectly in [WZ 1]. 

For the entry NGo(Ho)/HoZ(Go)=NGo(Ho)/Ho we only have to determine which 

outer automorphisms of [9 extend to inner automorphisms of g. Of course, in most of 

the cases g has no outer automorphisms and hence N~o(Ho)/HoZ(Go)=fI/H o. 

16-918286 Acta Mathematica 166. Imprim~ le 17 avril 1991 
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We now discuss some of the cases separately and use the numbering in Table I. 

Example no. 2. S(U(k) x. . .  x U(k))/Znkc SU(nk)/Z,,k (n factors). 

It is clear that the outer automorphism on the semisimple part determines what 

linear isomorphism is needed on the center of b in order to permute the Adn0 irreducible 

summands. The group Sn acts as outer automorphisms on ~) by permuting the simple 

factors of b. The interchange of the ith and jth simple factor extends to an inner 

automorphism of ~, i.e. conjugation by 

I 
"~ 

I 
0 I 

I 

I 
- I  0 

I 

I 

where I is the k x k  identity matrix. The diagram automorphism of a single factor does 

not extend to g, since it does not preserve Z0, but if we take the product of all diagram 

automorphisms of all simple factors, then it coincides with X-->-X t, which is an outer 

automorphism of ~. This outer automorphism clearly commutes with S~ and hence 

I?t/Ho= S, x Z 2 and N6o(Ho)/H o Z(Go) = S,,. 

Example no. 3. [SO(k)x... xSO(k)]/Z2~SO(nk)/Z2 (n factors, k even). 

This is similar to the previous example, except that the outer automorphism 

Ad(Ii,k_ 0 of each simple factor (where Ii,k_ 1 is the matrix d iag{- l ,  I .... .  1}) does 

extend to the outer automorphism Ad(diag{I ..... ILk_ ~ .. . . .  I}) of g. Thus the product of 

an even number of such outer automorphisms of b extends to an inner automorphism of 

~. Hence I?t/Ho=(Zz)n~S, and NGo(Ho)/Ho=(Z2)n-I~(Sn, where S~ acts o n  (Z2)n by 

permuting the generators. 

In both no. 2 and no. 3 (and similarly no. 4), it is difficult to determine subgroups of 

I?-I/Ho of minimal order that still make Go/Ho isotropy irreducible. This is equivalent to 

finding subgroups of S~ of minimal order which act transitively on the set of unordered 

pairs and depends strongly on the value of n. 
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Example no. 6. [Spin(8)xU(1)xU(1)]/(Z4xZ2)cE6/Z3. 

As we will see, the representation X0 of Go/Ho was given incorrectly in [WZ 1]. 

We first determine the global form of H0. On the level of Lie algebras we have 

inclusions ~b t (8)Gu(1)Gu(1)c~in(10)~u(1)ce6 .  Since Z(G0)= 1, the global form of 

Go is E6/Z3 and since Z(Spin(10))=Z4, Z(E6) must be contained in the u(1) factor of 

~pin(10)Ou(1). The isotropy representation of ~l~in(10)~)u(1) in e6 is 

[o o o<o,| 

which has kernel AZ4cZ4xU(I)=Z(Spin(10))• and hence [Spin(I0)xU(1)]/ 

(Z3X AZ4)cE6 /Z3 ,  which we can also write as [Spin(10)• since Z3 is 

contained in U(1). 

Next we claim that the global form of ~o(8)~)u(1) in ~pin(10) is 

[Spin(8) • U(1)]/A Z2= Spin(10). Indeed, if we lift the inclusion SO(8) x SO(2) ~SO(10) 

to a homomorphism Spin(8)x U(1)---,Spin(10), it has kernel ( -1 ,  - l ) .  Furthermore, the 

generator of Z(Spin(10))=Z4 is equal to (e, i), where e is the kernel of one of the spin 

representations of Spin(8). Hence 

Ho = {[Spin(8)•215 = [Spin(8)•215215 

w h e r e  Z 2 is generated by ( -  1, - 1, 1) and Z 4 is generated by (e, i, i). 
To determine the isotropy representation Z0, we first observe that the isotropy 

representation of SO(8)xSO(2)cSO(10) is given by 

and since U(1)--+SO(2) is the double cover, the isotropy representation of 

[Spin(8)xU(1)]/AZ2~Spin(10) is equal to 

i o 21 o-O<o| 

Furthermore the representation o - o - o <  ~  of ~in(10) restricted to ~l~in(8)0)n(1) 

becomes 

[o 0<o,4 o<o 
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Hence Z0 is equal to 

Lo-o<o,| t | l,. 

In [WZ 1] the 2 over t was mistakenly replaced by 1. 

We now check that Go/Ho is isotropy irreducible. If q0 is an outer automorphism of 

such that q~l~i,(s) is the triality automorphism, we need a linear isomorphism on t ~ t  

whose transpose takes (2,0) to +(1, 1), (1, 1) to + ( - 1 ,  1), and ( - 1 ,  1) to ___(2,0). One 

easily checks that the only possibilities are 

w h i c h  takes (2,0) to +( I ,  1), (1, 1) to + ( - 1 , 1 ) ,  and ( - 1 ,  1) to u These ~0_+ extend 

to automorphisms 9• of  e6- Hence Go/Ho is isotropy irreducible as a Riemannian 

manifold. 

Next ,  if r is an outer  automorphism of [? such that rl~i~(s) is the order 2 diagram 

automorphism of gpitff8), then tit** must take (2, 0) to +(2, 0), ( - 1 ,  1) to +(1, 1) and 

(1, 1) to + ( - 1 ,  1). The only possible choices are 

These r• again extend to automorphisms f• of  e6. 

To determine the group I2I/Ho, one easily checks the following identities rood Ad~0: 

-6 r -2 q% = 1, = 1, f2+ 1, -4 - -3 - -  = _ =  ~ + = r  r+ ~0+ = r  f+ = f_ ,  ~+~+r+l r 

by verifying them on ~l~in(8) and t ~ t  separately. Hence  I:I/Ho is isomorphic to S 3 X Z 2 ,  

with $3 generated by -2 9% and f+, and Z, generated by -3 -3 . q%. Notice that cp+ acts as id on 

gpin(8) and as - i d  on t o t .  

To determine N60(Ho)/H o Z(Go) , we examine which one of  these automorphisms 

extend to inner automorphisms of  e6. First observe that -2 q% must be inner since the 

group of diagram automorphisms of  r has order 2. Next  observe that -3 ~+ and f+ must 

be outer, since they act non-trivially on the center of  e6, which is generated by 

(1, 1, e 2~'/3) in [Spin(8) • U(1) x U(1)]/(Z4 • Z2). Hence  N6o(Ho)/H o Z(G o) is isomorphic to 

$3, sitting diagonally in $3• and is generated by r and " -3 r+ q0+. 

Examples 8 and 12 were discussed in w 1 and hence this finishes the proof  of  (4.1). 
[] 
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Remark. To  determine the group structure of t~, we observe that since Z(G0)=I, 

every extension of Go is determined by the character G/Go~Aut(Go)/Int(Go) and since 

there exists a lift Aut(Go)/Int(Go)---~Aut(Go), G is the semidirect product of Go with 

G/Go=I2I/Ho. In most cases Go has no outer automorphisms and hence G=Go• 

In the remaining 4 cases the discussion of the examples usually contains an explicit lift 

I2I/Ho--)Aut(Go) which describes the semidirect product structure of (~. 

w 5. The case of  unequal ranks 

(5.1) THEOREM. Let G/H be a simply connected, compact isotropy irreducible homoge- 

neous space which is de Rham irreducible, but not strongly isotropy irreducible. I f  

rank H<rankG,  then (Go, Ho) can be found in Table II and conversely every entry in 

Table II is an isotropy irreducible Riemannian manifold with full isotropy group fI, 

with the exception of  no. 5. 

Case no. 5 is isotropy irreducible as a Riemannian manifold, but Go is not the id- 

component of the isometry group. See w 1, Example 1 for a discussion of this case. 

Proof. As explained earlier, the entries in Table II are obtained from [WZ 1] and 

(2.2). We will now check for each entry that Go/Ho is isotropy irreducible as a 

Riemannian manifold. We also need to determine the global form of Go and H0 as well 

as thegroups I~l/Ho and Nco(Ho)/HoZ(Go). We will use the numbering in Table II. 

Example no. 1. SO(k)x.. .  xSO(k)cSO(nk) (n factors, k odd). 

The diagram automorphisms which interchange two simple factors extend to inner 

automorphisms of g as in the corresponding equal rank case. But they do not 

extend uniquely. Indeed CG0(H0)=Z~-I since C~o(Ho)~S(O(k)• by Schur's 

lemma. If n is odd, then Z(G0)=I and Go has no outer automorphisms. Hence 

ffI/Ho =N~o (Ho)/Ho Z(Go) = (Z2)n-1 ~ a n . 
If n is even, then Z(Go)=Z2 and hence Cco(Ho)/Z(Go)=Z~-2, which implies that 

Nco(Ho)/HoZ(Go)=Z~-2~S n. But now Go has, modulo Int(~), exactly one outer auto- 

morphism and we have to determine whether a representative of it fixes ~. This is the 

case since Ad(diag(-Ik, I k . . . . .  Ig}) is outer and fixes ft. Hence we have again 

I?t/Ho=(Zz)n-II~,S,. Notice that in both cases, n even and n odd, (Z2) ~-l consists of 

Ad(g) with g=(+Ik,... ,  +Ik) and hence S~ acts on (Z2) n-l =(Z2)~/Z2 via permutations on 

Z~. 

Example no. 2. ~o(n)~o(n)cdo(n~).  
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We first describe the global form of Go and Ho. The homomorphism SO(n) x SO(n) 

~SO(n  2) given by the tensor product representation is injective if n is odd and has 

kernel Z2={___(I, 1)} if n is even. To determine if the quotient is simply connected, we 

observe that SO(n)x{1}cSO(n)xSO(n)--->SO(n 2) is just the diagonal embedding of 

SO(n) into SO(n2):A--*(A ... . .  A). Since A-->(A, I .... .  I) is always injective on etl, it 

follows that if n is odd, SO(n2)/[SO(n)xSO(n)] is simply connected and effective. 

If n is even, say n=2k, then the fundamental group of each SO(n) factor goes 

to 0 in SO(n2). But [SO(n)xSO(n)]/Z2 has a third generator in :q, represented 

by tr:Sl--~[SO(n)xSO(n)]/Z2 where o(O)=(R(O) ..... R(O))x(R(O) ..... R(O)), O<-O<-at, 
and R(O) is a 2x2 rotation of angle 0. Going into SO(n 2) this becomes 

(R(20) .....  R(20), I .... .  1) with k 2 rotations R(20). This loop in SO(n 2) is therefore non- 

trivial iff k is odd. So if k is odd, i.e. n - 2  (rood 4), SO(n2)/([SO(n)x SO(n)]/Z2) is simply 

connected. To make it effective one divides out by Z(SO(nE)) -Z2  to obtain 

Go=SO(n2)/Z2 and Ho =( lO( n2)/ZE) X ( SO(n2)/Z2). 
If k is even, i.e. n - 0  (mod4), this space has :q=Z2. To obtain the simply 

connected space, consider the lift i*:[SO(n)xSO(n)]/Z2-->Spin(n 2) of the inclusion 

i: [SO(n)xSO(n)]/Z2-->SO(n2). The lift i* is injective since i is. Furthermore ( -L  I)E 
[SO(n)x SO(n)]/Z2 maps to the center of Spin(n 2) under i* since i((-l, I))=-I. There- 

fore Spin(n2)/i*([SO(n)x SO(n)]/Z2) is simply connected, but not effective. The effective 

version is (Spin(n2)/Z2)/[(SO(n)/Z2)x(SO(n)/Z2)]. Note that Spin(n2)/Z2 is not equal to 
SO(n2). 

We proceed to determine 1?1[Ho. We first observe that any automorphism of 

which extends to ~ does so uniquely by (3.3) (c). Next consider the outer auto- 

morphism q0 of 0 which interchanges the simple factors. Let o: Rn|174 be 

given by o(u|174 Then oEO(R "2) and one checks easily that Adol~=q0. Since 

R~| ~= A2Rn~S2R ~ and since al^2R,=-id and Ols2R,=id, it follows that the fixed point 

set of Ado is SO(A2R")• Since an involutive automorphism is inner iff the 

fixed point group has equal rank, Ado is outer iff n - 2  (mod 4). If n is even, we must also 

consider the order 2 automorphism of each simple factor. One checks that the 

involution corresponding to the first simple factor is induced by A d ,  where 

r: R"|174 is given by r(u|174 Clearly r=/,~2_, and hence Ad~ is 

inner. Furthermore Ado~ induces the order 2 automorphism of the second simple 

factor. Hence I2I/Ho=N6o(Ho)/HoZ(Go)=Z2 if n is odd. If n is even I:l]Ho=Ds, the 

dihedral group of order 8, and N%(Ho)/H o Z(Go)=D 8 if n - 0  (mod 4) and =Z2 x Z2 if n - 2  

(rood4). In all cases the group (H/H0)mi. is equal to Z2 and given by Ado. 

Example no. 3 is similar and is left to the reader. 
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Example no. 4. A(K/Z(K))c(Kx...• 

If g=(g~ . . . . .  gn) ENGo(no), then g~lgiEZ(K) for all i and hence gEHoZ(Go), 
i.e. N~o(Ho)/HoZ(Go)= 1. 

Secondly, any outer automorphism A of [~ extends to the outer automorphism 

(A ..... A) and one easily sees by (3.3) that, modulo Ad/~0, any outer automorphism of 

that fixes ~ is an outer automorphism that permutes the simple factors of ~. Hence 

I:I/Ho=S,• where D is the group of diagram automorphisms of f. 

Example no. 5 was already discussed in w 1. 

Example no. 6. G2cSpin(8). 

Since G2 has no outer automorphisms, to determine Nco(Ho)/HoZ(Go), we only 

need to compute Cco(Ho). But if g E CGo(H o) and g ~ Z(Go), then g and H0 are contained 

in C~g, and hence in a connected maximal subgroup of maximal rank in Spin(8). But the 

only such groups have Lie algebras u(4), ~o(2)0)~o(6), or ~o(4)~o(4) ,  which do not 

contain ~2. Thus Cco(Ho)=Z(Go) and hence NGo(Ho)/HoZ(Go)=I. 
The triality automorphism of Spin(8) has fixed point set G2 and there exists an 

order 2 outer automorphism of Spin(8) which has fixed point set Spin(7)=G2. Hence 

I:I/Ho=S3 and (~/H0)min=Z3. 

Example no. 7. ~o(8)c~u(8)ceT. 

The understanding of this case rests upon a description of E7 due to E. Cartan. Let 

( , ) denote the negative of the Killing form of [9=30(8) as well as its extension to a 

hermitian form on l~c. On the 56-dimensional space ~c0)[3c there is a skew-symmetric 

form w as well as the Hermitian form ( , ) • ( , ) which we again denote by ( , ). Then 

Sp(~c~c ,W)N SU((~c0)~c, ( , )) is a compact connected Lie group isomorphic to 

Sp(28). In the following we will refer to this Lie group as Sp(28). As usual we describe 

the elements of Sp(28) as matrices of the form 

(a 
with AA*+BB*=I and ABt=BA t. In particular the subgroup SU(28)cSp(28) has the 

form 

(a O) 
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On Dc~0c we have the following homogeneous polynomial of degree 4: 

J(X, Y) = Pf(X)+Pf(Y)- l t r ( X Y X Y ) +  ~ I  (tr(Xy))2, X, YE 0c = 60(8, C) 
/ 4  I O  

where Pf(X) denotes the Pfaffian. E. Cartan has shown that E7 is the largest connected 

subgroup of Sp(28) that leaves J invariant (see [C 2, 143-144] and ]Fr 1,2]). We first 

observe that the invariance group of J is actually connected: 

(5.2) LEMMA. E7 is the largest subgroup of Sp(28) leaving J invariant, 

Proof. Let L be the invariance group of J. Then it follows from the result of Cartan 

that E7cLcSp(28).  But Sp(28)/E7 is strongly isotropy irreducible (see [Wo 1]) and 

hence r is a maximal subalgebra in d~0(28). This implies L~NSp(28)(E7). Since E7 has no 

outer automorphisms NSp(28)(E7)/E7=Csp(28)(E7)/Z(E7) and the argument in (3.3) (a) 

implies CSp(28)(E7)=Z(Sp(28))=Z(ET) (notice that Sp(28)/E7 is not effective). Hence 

L=E7. [] 

With this description of ET, SO(8)/Z2 has a natural embedding into it given by the 

composite 

Ad 
S0(8)/Z2---> SO(O, ( , )) = SU(Oc, ( , )) = SU(28) ~ Sp(28) 

because A ESO(8) is mapped to the transformation of DcO0c given by (X, Y)---> 
(AXA ~, AYAt), which clearly leaves J invariant. Thus ET/(SO(8)/Z2) is simply connected 

and effective. 

We can also easily describe SU(8)/Z2~E7 with SO(8)/Zz=SU(8)/Z2. Indeed 

SU(8)/Zz~SU(Dc, ( , )) is given by A---~(X---~AXA t) and hence A E SU(8)/Z~ acts on 

bct~bc via the embedding SU(bc)c--Sp(28) as (X, Y)---~(AXAt, AyA  t) and this clearly 

leaves J invariant and contains S0(8)/Z2. 
Since E7 has no outer automorphisms, ft/Ho=N%(Ho)/HoZ(Go). An order 2 outer 

automorphism of SO(8)/Z2 is given by Ad(I7 ~),which extends to the inner automor- 

phism Ad(diag{~ .. . . .  ~,-~}), ~=e ~i/8, of SUf8)/Zz and hence to an inner automorphism 

of E7. 

To see that the trialityautomorphism r of 0 extends to an inner automorphism of e7 

will be more complicated and is discussed in the remainder of this section. 

First we observe that r extends to an inner automorphism of do(0). In fact 

r E SO(0) since r 3= 1 implies det r=  1. The embedding of 0 into do(0) is given by X~adx  
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and since r o ad x o r-1 = ad~(x) it follows that Ad(r), r E SO(~), induces r on ~. r E SO(~) 

goes into 

and hence the automorphism T of [1 extends to the inner automorphism Adr of g~(28). 

We will see that T~E7, but that it will be in E7 if we modify T with an element of 

Csp(2s)(SO(8)/Z2). In fact r has an extension to an inner automorphism of e7 iff TA E E7 
for some A E Csp(28)(SO(8)/Z2). 

(5.3) LEMMA. 

2,/t fi C} ~ Sp(1). (a) Csp(28)(SO(8)/Z2): {(-;)J/  ~.I) 1212+1/~12=1' 

(b) CE7(SO(8)/Z2) is the quaternion subgroup of  Sp(1) of order 8. The Center of E7 

corresponds to the center of the quaternion subgroup and hence 

Proof�9 If 

commutes with 

CET(SO(8 ) /Z2 ) /Z (E7)  = Z 2 x Z 2. 

(A 

Ad(C 

then A and B commute with Ad(C) and hence A =2I and B=/~I, which implies (a). 

To prove (b), let 

g = -/21 E CE7(SO(8)/Z2). 

Then g maps tcOtcc~)c~)Dc to itself and leaves J invariant. Let 

t 0 x I ~ t  
- -X  1 0 

X = "'. and 
0 

--X 4 

0 

--Yl 
Y= 

Yl 
0 

my 4 

and notice that 
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1 (x~ Y~ +x~ Y~ + x~ Y~ Y~) J(X, Y) = x I x 2 x 3 x 4 +el Y2 Y3 Y4- 2 

1 2 
+ ~-(Xl Yl +x2 Y2 +x3 Y3 +x4 Y4) �9 

Comparing coefficients of the monomials x~ x 2 x 3 x 4 and 2 2 xj yj in J(X, Y)=J(g(X, Y))-- 

J().X+/uY,-IJX+]tY), we obtain/],4+~4=1 and 1214+1#14-41~,]21/~12=1. Since 

the only solutions are 3,=0 and/~o= 1, or ~=0 and ~4= 1. Now one easily checks that all 

possibilities actually leave J invariant and together they form the quaternion group of 

order 8. [] 

To proceed further, we need the following identities involving the triality automor- 

phism: 

(5.4) LEMMA. Let X,  YE ~c. Then we have: 
(a) Pf(r(X)) = _1 pf(x)_~6 tr(X 4) +~(tr(XZ)) 2 

(b) tr(r(X)4)= 12 Pf(X)+~(tr(X2))2-~ tr(X 4) 

(c) tr(r(X) r( Y) r(X) r( Y)) - t r (r (X)2r(y)2)=tr(XYXY)- tr (X2Y 2) 
(d) tr(X4)+tr(r(X)4)+tr([r2(X)]4)=](tr(X2))2 

(e) tr(r(X)2r(y)2) + tr([r2(X)]2 [r2(y)]Z) =~ tr(X z) tr(y2) +�89 tr((X y)2)_tr(XYXY). 

Proof. Let X, YEb=do(8). (a) and (b) are equations in a single variable X, and 

since each entry in the equations is Adsot8) invariant, it is sufficient to check them on a 

maximal abelian subalgebra tc~o(8), which is easily done. Since both equations are 

polynomials in the entries of X and Y, they also hold for X, YE bc. 

To prove (c) we use the fact that r is an automorphism of ~c and that the Killing 

form is invariant under r. Hence tr([r(X),r(Y)]2)=tr(r([X, Y])2)=tr([X, y])2). Writing 

this out using IX, Y ] = X Y - Y X ,  we obtain (c). 

To prove (d), we observe that (a) and (b) imply 

tr(r(X)4) +tr(r~(X) 4) = 12 Pf(X) + 3 (tr(X2))2_ 1 tr(X 4) 

+ 12 Pf(r(X)) + 3  (tr(r(X)2))2_ 1 tr(r(X)4) 

= _ tr(X 4) + 3  (tr(X2))2. 

Finally, (e) is obtained from (d) by polarization. First note that 

tr((X+ y)4) + tr((X- y)4) = 2 tr(X 4) + 2 tr( Y 4) + 4 tr(X Y X  Y) + 8 tr(X 2 y2). 
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Using this equation to expand the left hand and right hand side of 

tr{X+ y)4+ [z(X+ y)]4+ [rZ(X+ y)]4} +tr{(X- y)4+ [z(X- Y)14+ [,2(X- y)]4} 

= -~{tr((X+ y)2)}2+ -~{tr((X- V)2)} 2 

we obtain (e). [] 

We now prove that r extends to an automorphism of e7. Let 

A--  - r  i i  E Csp(28)(SO(8)/Z2). 

We will try to find 2, ~ such that TA E E7. This will be satisfied if 

J(X, Y) = Y(2r(X)+/zr(r), -#r (X)+ir (Y)) .  

Since TA maps t c + t c  to itself, we may compare coefficients of monomials on the left 

and right hand side for (X, Y)Etc0)tc. Doing this for x~y~, we get 22~2+~2/j2+ 

21;tl21/~12= 1, while comparing the coefficients for x I x 2 x 3 x 4 we obtain h4+bi4+6h2# 2= -2 .  

Since I;t1%1/~12=1 also, we easily see that h4=--1/4 and either h=# or h = - # .  So a 

necessary condition is 

A =  - 2 I  )~ or A =  2I i with = - 1 / 4 .  

We may focus on the first possibility as the two differ by 

(0 
which lies in CE,(SO(8)/Z2). We will show that with this choice of A, irA E E7. 

Let A=~.u and B=~X. Then 

J(h3(x) +it(Y), -h3(X) +it(Y)) 
= J(3(A +B), 7:(,4-B)) 

= Pf(3(A+B))+Pf(3(A-B)) 

_ I tr(3(A +B) r (A-B)  3(a +B) 3(A-B))+ ~ 6  [tr(3(A +B) 3(A-B))] 2 

= 121tr(r2(A+B)4)+--ltr(r(A+B)4)--12(tr(r(a+B)2))2 
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1 tr(r2(A_B)4)+~tr(r(A_B)4)__~_f2(tr(r(A_B)2)) 2 
+ 12 

_ 1 tr((A +B) (A-B) (A+B) (A-B))+ ltr((a+B)2(a-B)2) 

_ 1 tr(r(A +B) 2 r(A-B) 2) + ~ (tr(A 2-B2)) 2 

= -  -~-4 tr(r(A +B)')--~4tr(r(A-B,')+ -~6 (tr((A +B)2))2+ -~6 (tr((a-B)2))2 

- 121 tr((A+B)4)__~_2 tr((A_B)4) - 4 (tr((A+B)2))2- ~ (tr((a-B)2))2 

- tr(ABAB) + tr(A2B 2)- 1 tr(r(A +B) 2 r(A -B) 2) + ~ (tr(A 2-B2)) 2 

_ 1 [tr(r(A)4)+tr(r(B)4)+2 tr(r(A) r(B) r(A) r(B))+4 tr(r(A) 2 r(B)2)] 
12 

_ 1 [tr(A4)+tr(B4)+ 2 tr(ABAB)+4 tr(A2B2)] 

+ 1 [(tr(A2))2+(tr(B2))2+2tr(A2)tr(B2)+4(tr(AB))2] 
16 

- tr(ABAB) + tr(A2B 2)- 4 tr(r(A +B) 2 r(a-B) 2) + -~6 (tr(a2-B2))2 

_ 1 [tr(r(A)4)+tr(r(B)4)_tr(r(A ) r(B) r(A) r(B))+tr(r(A) 2 r(B)2)] 
3 

_ 1 [tr(A4) +tr(B4)+2 tr(ABAB)]+ 1 tr(A2B2) 

+ 8 [(tr(A2))2 + (tr(B2))2] + 1 (tr(aB))2,tr(ABaB) 

_ 1 [2tr(r(A)4)+tr(A4)+2tr(r(B)4)+tr(B4) ] 
6 

+ 1 (tr(A2))2+ __18 (tr(B2))2+ 14 (tr(AB))2-tr(ABAB) 

-16124Pf(A)+3(tr(A2))2+24Pf(B)+3(tr(B2))2 ] 

+ 18 (tr(A2))2+ 18 (tr(B2))2+ 1 (tr(AB))2_tr(ABAB) 

= Pf(X) + Pf( Y)+ T6 (tr(Xy))2-1 tr(XYXY) 

= J(X, Y). 

Hence TA E E7. 
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We have now showed that all outer automorphisms of b extend to inner automor- 

phisms of e7. Each one has four extensions since we showed in (5.4)(b) that 

CGo(Ho)]Z(Go)=ZxXZ 2. Hence IgI/Ho=(ZaxZ2)t~S3 . To determine the group structure, 

choose the generators 

a = +  _ and / 5 = + - i I  

of Cao(HO). If r E $3 represents the triality automorphism and o E $3 represents the order 

2 automorphism, then one easily verifies, by a computation with the corresponding 

matrices in Sp(28), that 

~'(2T -1 = (2~, "L'~T -1 = (2, O'(20 "-1 = ~ ,  O'~O - I  = (2. 

( /~/H0)mi n is  o f  c o u r s e  Z 3 c S 3 .  

This finishes this example and hence the proof of (5. l). [] 

Remark. To determine the group structure of G, we observe that the discussion of 

each example contains an explicit map Igl/Ho---,Aut(Go) and hence G is the semidirect 

product of Go with I:l/Ho. 

w 6. Isotropy irreducible subcoverings and applications 

In this section we describe how the general isotropy irreducible homogeneous space 

M*=G*/H* can be constructed from Table I and II. As explained in w 1, the transitive 

action of G* lifts to an effective transitive action of G on the universal cover M of M* 

such that G is a covering of G*, and M becomes isotropy irreducible under G. If M is 

compact and de Rham irreducible but not strongly isotropy irreducible, then (Go, H0) 

must appear in Table I or II. 

If M is non-compact, it follows from (2.1) that M has no isotropy irreducible 

subcoverings. 

If M* is compact and flat, then M*=Rn/F for some lattice F and G~=Rn,H~=I. 

The full isometry group of Rn/F is (R~/F)[KNo<~)(F) and hence M* is isotropy irreducible 

iff No<~)(F ) acts irreducibly on R". We do not try to enumerate such examples. 

(6.1) THEOREM. Let M*=G*/H* be a compact, non-flat, isotropy irreducible 

homogeneous space. 

(a) I f  the universal cover o f  M* is isometric to a compact simply connected Lie 

group K with Go=K and 11o = 1, then there exists a central subgroup N and a finite 
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subgroup F of K containing N and such that M*=K/F=(K/N)/(F/N). Furthermore 
G*=K. d~, H* =~ for some finite subgroup ~ of Aut(K) such that �9 acts irreducibly on 
~, Ad(F)_~,  and d# leaves F invariant. 

(b) I f  Go is the id-component of the full isometry group, then there exists a cen- 

tral subgroup N~_Z(Go), compact subgroups P and L satisfying Ho• 

Ho~_P[NcLcI~I (with 171 the full isotropy group), such that AdL acts irreducibly on m 
and leaves N and P invariant, i.e. PIN is normal in L. Furthermore, 

G*=(Go/N)~((L/{P/N}), H*=(P/N)~((L/{P/N})=L, M*=G*/H*=Go/P=(Go/N)/(P/N) 
and Jrl (M*) =P/Ho. 

Proof. Let M be the universal cover of M* as above with deck group D and 

transitive group action G. Since by construction all isometries in G project to isome- 

tries in G*, D must be normal in G and hence D n Go=N is a central subgroup of Go with 

G~=Go/N. Let P* be such that M*=G~/P* and let er: Go---~G~;=Go/N be the canonical 

projection. Then M*=Go/P=(Go/N)/(P/N) with p=~- l (p . )  and hence the id-compo- 

nent of P is H0. Furthermore H 0 n N = l  and therefore Ho• and 

D=etl(M*)=P/Ho. If PIN does not yet act irreducibly on m, then G* and hence H* must 

contain further isometries. 

First, assume that we are in case (a). Then H0 = 1 and hence P = F  is a finite group. 

The further isometries in H* become, via the adjoint representation, automorphisms of 

and hence there exists a finite group ~ with Ad(F)cqb=Aut(K) such that �9 acts 

irreducibly on t and �9 leaves F invariant. 

If we are in case (b), notice that Noo(Ho)/HoZ(Go)=I?l via right multiplication on 

Go/Ho and hence PIN,f1.  To make Go/P isotropy irreducible we need a compact group 

L with Ho=P/NcLcI~I such that AdL acts irreducibly on m and keeps N and P 

invariant. Then L induces further isometries on Go/P and we obtain an isotropy 

irreducible form of M*. [] 

Notice that by (2.4) the two cases in (6.1) cover all possible isotropy irreducible 

homogeneous spaces which are not strongly isotropy irreducible. 

We now discuss some examples of(6.1) (b). Notice that the possible manifolds that 

can arise as subcoverings are always of the form Go/P with Ho~P~Noo(Ho). 
If rank G0=rankH0, then Z(G0)=I and hence G~=G o. By examining Table I, we 

can see that a minimal subgroup needed to make Go/Ho isotropy irreducible can always 

be chosen to be in N~o(Ho) and hence we can choose P=L=N6o(H o) with P normal in L, 

and such that AdL acts irreducibly on m. One possible choice that always works is 

P=L=N6o(H o) and hence all equal rank examples have isotropy irreducible subcover- 
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ings. In several cases NGo(Ho)/HoZ(Go)=S 3 with (I~l/no)min=Z3c--S3 . Here the only 

possible choices are  P / H o = Z  3 with L / H o = Z  3 or  S 3 and P/Ho=L/Ho=S3 . But in many 

other examples the possible isotropy irreducible subcoverings become almost impossi- 

ble to list, since there are so many of them. E.g. in Example 3 in Table I there are many 

subgroups of (Z2)"-~ invariant under S, giving rise to spaces of partially oriented flags in 

R "k (see the discussion in w 1, Example 4). There are also many subgroups of S, which 

act transitively on the set of unordered pairs and hence give rise to further isotropy 

irreducible subcoverings. 

If rankH0<rank Go, (/J/n0)rnin sometimes consists of outer automorphisms of Go. 

For case (1) in Table II there exists many isotropy irreducible subcoverings as in the 

equal rank case. For case 2(a) there clearly exists only one subcovering which becomes 

isotropy irreducible, whereas for case 3(a) there exists none. Case 2(c) is interesting 

since the autmorphism in  (/-t/n0)mi n is outer. There are two isotropy irreducible sub- 

covers corresponding to the whole group Nco(Ho)/HoZ(Go)=ZzxZ z or to the subgroup 

AZ2cZ2xZ 2. Case 2(b) has many isotropy irreducible subcoverings including e.g. the 

ones corresponding to P=NGo(Ho)/H o Z(Go)=Ds, two subgroups in D8 isomorphic to Zz, 

the product of the previous 3 groups with Z(Go)=Z2, and two groups Z2 embedded 

diagonally in DsxZ2. An interesting example is case (6). Here NGo(Ho)/HoZ(Go)= 1 and 

Z(Go)=Z2xZ2, but the only subgroup of Z(Go) which is invariant under the triality 

automorphism, which generates Z3=(/~/n0)min,  is the whole center. Hence the only 

isotropy irreducible subcovering is (SO(8) /Z2) /G2=RpT•  7. Finally we discuss case 

(4). Here we have again Nco(Ho)/H o Z(G0)= 1 and hence we can only divide out by a 

central subgroup of Go. An obvious choice is N=(A• for any subgroup 

A~Z(K), in fact this may be the only possibility. 

To obtain examples which are not locally de Rham irreducible, we can take for M a 

product o f N  k times with itself, where N is an entry in Table I or II. P is then a product 

of the groups discussed above, but for L we need to choose in addition to the product of 

the above groups a subgroup of the symmetric group Sk acting transitively on the de 

Rham factors of M. 

It is natural to ask the question what the isotropy irreducible homogeneous spaces 

M*=G*/H* are with G* connected. We can now easily answer this more restrictive 

question. Of course, if M* is simply connected, this can only happen if G*/H* is 

strongly isotropy irreducible. In general we have: 

(6.2) THEOREM. Let M*=G*/H* be a non-fiat isotropy irreducible homogeneous 

space with G* connected and with universal cover M=Go/Ho. Then M is de Rham 
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irreducible./fH0 = 1, there exists a central subgroup N o f  Go and a finite group F~G0 

such that N c F  and M*=Go/F=(Go/N)/(F/N) with Adlr acting irreducibly on ~. In all 

other cases there exists a central subgroup N o f  Go and a compact group P with 

Ho• such that Ade acts irreducibly on m and M*=G*/H*= 

(Go/N)/(P/N)=Go/P. For every entry in Table I and II, such a group P exists, with the 

exception o f  Examples 2(c), 3(a), 4, and 6 in Table II. 

Proof. Most of the statements in this theorem follow as in the proof of (6.1). Here 

we only need in addition L=P/N.  That M must be de Rham irreducible follows from the 

fact that in the de Rham reducible case all isometries which interchange the de Rham 

factors of M are outer automorphisms of Go. Similarly, the four cases in Table II have 

no isotropy irreducible subcovers of this form since the isometries needed to make 

Go/Ho isotropy irreducible come from outer automorphisms of Go. [] 

We finally make some comments about the minimal isometric immersions men- 

tioned in the introduction. In general, if q~: M~SN(r)  is an isometric minimal immer- 

sion, then the coordinate functions q~ . . . . .  q~s+l are eigenfunctions of the Laplace 

operator with eigenvalue 2=dimM/r  2. Conversely, as was observed by Takahashi [T], 

if M=G/H is an isotropy irreducible homogeneous space and if q~l . . . . .  ~Os+ 1 is an 

orthonormal basis of the eigenspace Ea of the Laplace operator with eigenvalue ~,>0, 

then q~=(~01 . . . . .  q~N+l) is an isometric minimal immersion into SN(r) with rZ=dimM/~.. 

Indeed, the pull back of the metric o n  SN(r) under q~ is clearly invariant under G and 

hence is either 0 or a G-invariant metric. But it cannot be 0 since 2>0. A different 

choice of orthonormal basis gives rise to a congruent immersion and we call this class 

of isometric immersions the standard eigenspace immersion. There are in general many 

other minimal isometric immersions into SU(r), but they are all given by choosing 

eigenfunctions in Ea, 2=dim M]r 2, as coordinates. If the coordinates form a basis of E~, 

then we call such a minimal isometric immersion a full eigenspace immersion, other- 

wise a partial eigenspace immersion. For example, if there is a subspace of E~ invariant 

under G, then an orthonormal basis of this subspace gives rise to a partial eigenspace 

immersion. It was shown in [L] that the space of all isometric minimal immersions of 

G/H into SN(r),rZ=dimM/2, forms a compact convex body in a finite dimensional 

vector space with interior points corresponding to the full eigenspace immersions and 

boundary points corresponding to partial eigenspace immersions. 

We now discuss some of the other results in [L], since not all of them are correct. 

In [L, Lemma 3] it was shown that for a full eigenspace immersion q~: M=G/H--~SN(r), 
M*=qffM) is an embedded submanifold and ~: M---~M* is a covering map. This is then 
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applied in [L, Theorem 4] to show that every eigenspace immersion is a covering onto 

its image, that the homogeneous structure on M* is the one induced from M, and that 

the deck group of the covering is contained in the center of G. This is actually false, but 

partially true for the full eigenspace immersions. A good counterexample is given by 

K/F where K is a connected, compact, simple Lie group and F a finite subgroup such 

that Adlr acts irreducibly on f. Using a full eigenspace immersion for K/F, we obtain an 

isometric minimal immersion K--~K/F--~SN(r) whose image does not carry the homoge- 

neous structure induced from K. Indeed the id-component of the isometry group is 

equal to [ K x K ] / A K  for K and equal to K for K/F. Also, even for a full eigenspace 

immersion, the deck group need not be contained in Z(G). The correct statement is: 

(6.3) THEOREM (P. Li). Let M=G/H be a compact isotropy irreducible homogene- 

ous space and ~p: M--~SN(r) a full eigenspace immersion. Then ~(M)=M* is an embed- 

ded submanifold, (9: M - . M *  a covering map, and the deck group D of  the covering is 

normal in the full isometry group G of  M. Hence D commutes with Go and 

D f)GocZ(Go). The isometry group o f  M* is G/D, and hence M* must be an isotropy 

irreducible homogeneous space. 

Proof. We can regard $=(q~l, " - ,  (#N+I) as an immersion ~: M--)R N+I. The isomet- 

ric action of (~ on M induces an orthogonal representation of t~ on Ea. By using the 

basis q51 .. . . .  $N+I of E~ to identify Ea with R N+l, this induces a linear action of t~ on 

R N+~ and the immersion q~: M---->R N+I becomes equivariant with respect to this action. 

Notice though that ~: M---~SN(r) is equivariant only for the standard eigenspace immer- 

sion. In any case, the equivariance implies that the immersion has no double points and 

since M is compact ~: M--~M* is a covering map. The equivariance also implies that the 

isometries in G induce isometries on M* and hence D is normal in G, which implies that 

D N Go must centralize Go. [] 

The fact that D is normal in t~ is actually a strong property, which is not satisfied 

by many of our isotropy irreducible subcoverings. E.g. for the space of real flags in R nk 

as in Example 4 in w 1, if we divide out by the symmetric group Sn, we obtain an 

isotropy irreducible subcovering which cannot be the image of any full eigenspace 

immersion of the space of oriented flags. This also implies that if we choose an 

eigenspace immersion for this quotient and lift it to the space of oriented flags, it must 

become a partial eigenspace immersion of the space of oriented flags. For the Example 

3(a) in Table II, (6.3) implies that every full eigenspace immersion must be an 

embedding since there are no isotropy irreducible subcoverings. 
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Notice that [L, Theorem 5] is false, as the example S3/F shows, where F is e.g. the 

binary dodecahedral group (see Example 1 in w 1). But it is true that a full eigenspace 

immersion of  Sn(1) is either an embedding of sn(1) or an embedding of Ren(l). :It is an 

interesting question whether the image of some partial eigenspace immersion of  Sn(1) 

Can be a lens space or more generally if every manifold of constant positive curvature 

admits a minimal isometric immersion into S N. 

[L, Theorem 7 ] i s  again false, since among our examples there are coverings 

M~L---~N with M and N isotropy irreducible, but L not. 

In [L, Theorem 8] it is shown that if Z(G) is cyclic, then there are infinitely many 

eigenfunctions which are not invariant under any subgroup of Z(G).  Unfortunately, by 

the above remarks this does not imply [L, Corollary 9] which claims that infinitely 

many of the full eigenspace immersions are embeddings. It would be interesting to 

obtain a criterion which guarantees that some of the full eigenspace immersions are 

embeddings. We suspect that for each isotropy irreducible homogeneous space there 

exists at least one of these. 

Note  added in proof. After the preparation of this manuscript it was pointed out to 

us, that the mistake in Li 's  paper ILl was already observed by K. Mashimo in 

"Minimal immersions of 3-dimensional sphere into spheres",  Osaka J. Math.,  21 

(1984), 721-732. 
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