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1. Introduct ion 

In a study of internal travelling solitary waves in a stable, two-layer perfect fluid of 

infinite depth contained above a rigid horizontal bottom, T. B. Benjamin [3] introduced 

a pseudo-differential equation of the form 

U(X)2--U(X)-~- ~(//)(X), x E R ,  

where 

= | ~(Z) e ikz dz  dk.  ~(~)(x) 2:r J_~ Ikl e - ` ~  _ 

(1.I) 

(1.2) 

He then sought solutions u with [u(x)]--->0 as Ixl~oo. (In the present account dimension- 

less parameters have been normalised to equal unity.) The equation (1.1) was later 

discussed by Ono [5] in the context of soliton theory. In fact he derived a time- 

dependent equation 

u,+ u x + 2 u u x -  (~(U))x~ = 0. (1.3) 

Here .~denotes the Hilbert transform (Ono uses the sign convention of Stein [7] for the 

Hilbert transform), and certain constants have been normalised to equal unity. If 

steady super-critical solitary wave solutions of (1.3) are sought in the form u(x,  t)= 

u ( c o x - c t )  then equation (1.3) reduces to 

(~) Professor C. J. Amick was supported in part by the National Science Foundation, U.S.A. 
(t) R.I.P. June 3, 1991. 
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co2(Co-C)U+Co I u 2 = (Le(u)) x, 0 <  c o < c, (1.4) 

(where a constant of integration has been taken to be zero), This coincides formally 

with (1.I) since for smooth functions u, 

(Le(u))x = ~(u), 

and since a change of  variables normalises the constants in (1.4) to be - 1  and 1 

respectively. (In 1967, equation (1.3) was written down by Benjamin as the time- 

dependent version of the travelling wave equation (1.1) upon which his attention was 

then focused. At the same time Davis and Acrivos derived equation (1.4) in an 

experimental and numerical study of similar travelling wave phenomena [4]. Equation 

(1.3), which was re-derived using formal nonlinear perturbation methods by Ono I5] in 

1975, is generally known nowadays as the Benjamin-Ono equation.) 

The present paper is concerned with the theory of equation (1.1) (or, equivalently, 

of equation (1.4)). In particular we present a proof that all its solutions are known in 

closed form, and we derive a rather surprising connection between the solubility of 

(I.1) and an initial-value problem for a cofnplex analytic function in the upper half- 

plane ((1) and (2) below). 

Our results arose from a separate investigation [2] in which the Benjamin-Ono 

equation is studied from the viewpoint of its role in the exact theory of the Euler 

equation governing such steady two fluid systems. There (1.1) is seen as giving, to 

leading order, the form of solitary waves where u tends to zero as Ixl--, o. Such solitary 

waves were first found by Benjamin who wrote them down in closed form and who 

remarked upon their decay to zero at infinity being algebraic rather than exponential. 

For the study of periodic waves the operator ~ in (1.1) must be replaced by an 

appropriate analogue involving Fourier series rather than transforms of u. For that case 

too Benjamin wrote down solutions in closed form. 

In the present paper we show, among other things, that (apart from translations) 

the solution found by Benjamin 

2 
u(x) - 1 +x 2' x ~ R, (1.5) 

is the only solution of (I.I) which converges to zero as Ix[---~oo. We will also show that 

Benjamin found the complete set of functions which satisfy the analogue of (1.1) which 

governs periodic travelling waves in those two fluid systems. 

Our results are a consequence of a larger picture of the analytic structure of 
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solitary and periodic waves in the present context. The key is an observation in 

Benjamin [1] that f f  u is  a bounded solution of (1. l) and u is extended as a bounded 

harmonic function on the closure of the upper half-plane, then this harmonic function 

satisfies 

Au(x,y)=O, xER,  y>O,  ) 
uy(x, O) = u(x, 0) -  u2(x, 0), x E R, 

u(x, 0)---> 0 as Ixl~ ~,  [ (5/') 

{u(x, y): x E R, y > O} is b o u n d e d )  

The analogous problem for internal periodic waves is governed by the boundary-value 

problem 

Au(x,y)=O, xER,  y>O,  ) 

uy(x, O) = u(x, 0) -  u2(x, 0), x E R, 

�9 u(x, o) = u(x+p,O), x ~ R, | ( ~ )  

{u(x,y): xER,  y > 0 }  is bounded)  

where p * 0  is a constant. In both cases u - 0  is a solution and u---I is a solution of (~).  

In what follows we restrict attention to non-constant solutions. Note that the last 

condition in (~)  excludes the family of solutions 

u(x,y)= a+(a-aZ)y ,  a E R \ { O ,  1). 

More general than either (5r or (~)  is the problem 

Au(x,y)=O, xER,  y>O,  

Uy(X,0)= u(x,O)-u2(x,O), xER,  ~ ( ~ )  

{u(x,y): x E R, y > 0} is bounded)  

and our main results are the following: 

(1) every non-constant solution o f  (~)  is a solution o f (5  ~ or (~); 

(2) i f  u is a non-zero solution o f ( 5  ~) or (~), then u(x, y)>O, x E R ,  y>~O, and u can 

be normalised with respect to translation so that 

Ux(O, O) = O. (1.6) 

Note that this normalisation is not necessarily unique. Let  

c = u2(0, 0)-2u(0, 0) E R. (1.7) 
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Then there exists a unique complex function f, analytic in the closure of  the upper half- 
plane, which satisfies the ordinary differential equation 

df(z)=t~(f(z)2+c),  z=x+iy,  xER,  y>~O, (1.8) 
dz 2 

and such that 

Moreover 

f (0 )  = u(0). (1.9) 

u(x,y)=Realf(x+iy), xER,  y>-O. (1.10) 

Remark. We will write u(x) instead of u(x, O) whenever it is convenient. The fact 

that (1.6) does not uniquely determine u does not affect the validity of our conclusion. 

In particular Ux(Xl, O)=ux(X2, 0) implies that either u(xl)=u(x 2) or u(xl)+u(x2)=2. That 

is, for all solutions, �89 = 1 in problem (~) ,  since the maxima and minima are, 

by the maximum principle, attained on the boundary. 
The solutions of (1.7) and (1.8) are as follows: when u(0,0)=2, c=0, and the 

general solution of (1.8) is 

2i 
f (z )=  z+w (1.11) 

where w=a+ifl is an arbitrary complex constant of integration. Then (1.9) implies that 

w=i and (apart from translations) 

2 
u(x, O) = 

1 + x  2" 

This gives the solitary wave solution found by Benjamin�9 
If u(0, 0) E (0, 2), then c E [ -  1,0) and the general solution of (1.8) is 

(1.12) 

Hence (1.9) implies that w is determined by the requirement that 

I u ( O ) = - i X  / 2u(O)--u(O) 2 tan(-~-- wx/2u(O)--u(O) 2 ). 

If u(O) E(O, 1) then w=i~+2nzt/X/2u(O)-u(O) 2 , n EZ, gives 

(1.13) 
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u(0) = t a n h ( 2  ~/2u(0)_u(0)2 ) 
~r 2u(0)- u(0) 2 

to determine y, while if u(0)E (1,2) then 

u(0) = coth(_~ X/2u(O)_u(O)2 ) ,  
V 2u(O)-u(O) 2 

where w=iy+(2n+l)~r/~/2u(0)-u(0) 2 , n E Z. Then the periodic waves discovered by 

Benjamin can be recovered by taking the real part of (1.12). With c given by (1.7) and 
d=�89 I they are 

u x," ~ - 2d sec 2 dx ~ (1 +(u(O)/2d)tanh dy)((u(O)/2d) +tanh dy) ) 
( Y' - ~ (1 +(u(O)/2d)tanh dy)2+tan 2 dx(tanh dy+(u(O)/2d))2~" (I. 14) 

If u(0)=l,  then (1.13) cannot be solved for w (except in the extended complex 
plane) and the only solution is u(x, y)---1. 

Now if u(0) ~ [0, 2], then the general solution of (1.8) is 

f(z)= iX/-c-tanh(l x/-c-(z+w)), wEC, (1.15) 

whose real part has infinitely many poles in the upper half plane, so there is no solution 

when u(0)~[0,2]. When u(0,0)=0 the solution is u(x,y)=-O by the boundary point 

lemma since uy(0, 0)=u(0, 0)=0, and u(x, y)>~0, x ~R, y>0. 

Before proceeding to elaborate the proof of this result it is interesting to examine 
the implications of (1.8) for solutions of (~) .  

Let H denote the upper half-plane {(x, y): x = R, y>0}. Suppose that 

f(x +iy) = u(x, y)+iv(x, y), (x, y) E fl, (1.16) 

is any non-constant solution of (1.8) with 

Then 

u(x,y)>O. (1.17) 

ux+uo=O, (x,y)EH. (1.18) 

A differentiation with respect to x followed by substitution from (1.18) and a use of the 

Cauchy-Riemann equations gives 

Ox = Uy. (1.19) 
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Similarly, a differentiation of (1.18) with respect to y yields 

a ( - ~ + u ) = O .  (1.20) 
ax 

Hence there exists a function a, of y only, such that 

uy = a ( y ) u - u  2 on/~.  (1.211) 

This means that on each line y=constant  the boundary-condition is similar to that with 

y=0. If u satisfies (~ )  we would conclude that 

a(0) = I. (1.22) 

A substitution from (1.19) into (1.21) then gives 

c3(~)=ot(y)u--u2, (x,y)EISI. (1.23) 
ax 

Now multiplying by (ux/u) and an integration yields the existence of a function fl, of y 

only, such that 

u 2 -- 2a(y) u 3-u4+fl(y) u 2, (x, y) E I7t. (1.24) 

Now differentiation with respect to x gives 

ux{Ux~-3a(y) u2+2u 3-fl(y) u} = 0, x E R, y I> 0. (1.25) 

If u is not a constant function, the fact that ux is real-analytic and so has isolated zeros 

then gives that for each fixed y~>0, u satisfies a second-order, autonomous ordinary 

differential equation 

ux~-3a(y)u2+2ua-fl(y)u= 0, xER,  y ~>0. (1.26) 

A differentiation of (1.21) with respect to y followed by a substitution from (1.21) 

gives 

Uyy= a ' (y)u+(a(y)-2u)(a(y)-u)u,  xER,  y~>0. (1.27) 

Since u is harmonic (1.26) and (1.27) together give 

a'(y)+aE(y)+fl(y) = 0. (1.28) 
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The easiest case is when u corresponds to a solitary wave. Then it is one of the 

estimates proved in [1] that lu(x, y)[+lu~,(x,y)/u(x, y) [~0  as x2+y2--->~, and so, letting 

x--->~ in (1.24) for fixed y yields that fl(y)=0 for all y~>0. Then (1.28) gives that 

a(y)=l/(y+l) in this case, since a(0)--1. This then determines the solitary wave 

uniquely up to translation in the x-direction. 

To study the periodic problem we proceed as follows. If (1.21) is differentiated 

with respect to x, then multiplied by ux and a substitution from (1.24) is made we obtain 

u~ Uxy = ( a (y ) -  2u)(2a(y) U3--U4 + fl(y) U2). 

On the other hand, differentiation of (1.24) with respect to y gives 

(1.29) 

2u~ uxy = 2a'(y)u3+/~'(y) u2+2{3a(y) U2--2U3+fl(y) u}(a(y) u-u2). (1.30) 

Together (1.28), (1.29) and (1.30) imply that 

fl'(y) u 2 = 0. (1.31) 

Hence fl is constant in the case of periodic waves. Now it is clear from Section 2 that if 

u corresponds to a solution of (~)  then u is a periodic solution of (2.5) which is 

bounded below by a positive constant on the line y=0.  Hence from (2.2) and (2.5) it 

follows that u is bounded below by a positive constant on the upper half plane and, in 

particular, u(x, y).-~O as y---~ (for fixed x). An inspection of (I .24) on a line where x is 

constant and u~ is zero together with (1.28) then yields that f l*0 in the case of periodic 

waves. Hence, since (1.28) is to have a solution a(y), for all y>0, we conclude that 

Let f l = - a  2, a>0.  Then if a(O)= 1 the solution of (1.28) is 

_ f  cosh try + o sinh 

a(y)----> tr = V'-~ I as y - - -~ .  

and in particular 

If this is substituted into (1.24) on a line where x is constant and ux is zero we find that 

limy_~ tt(x, y)=V~lfl[ along such a line. However, if u is bounded (as it is in the periodic 

case) elliptic estimates mean that ux(x,y)---~0 as y - - ~  uniformly for x E R  and we 

conclude that 

u(x,y)-'->'V~[fl[ as y..->oo, uniformly inx. 

8-918288 Acta Mathematica 167. Imprim6 1r 22 aofit 1991 
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It is interesting to note that the equation 

u=-3u2+2u 3 = 0, (1.32) 

which is equation (1.26) in the case y=0,  fl=0, has periodic solutions as well as the 

solitary wave solution found by Benjamin 

2 
u(x) = - -  (1.33) 

1 + x  2" 

Since fl=0, a(y)=l/( l+y)  and hence (1.24) cannot hold if u is to be bounded below in 

the upper half-plane. Hence the periodic solutions of (1.32) do not correspond to 

periodic solutions of the Benjamin--Ono equation, or equivalently of problem (~).  

Likewise, when fl>0 the equation 

Uxx-3U2+2u3-fl(O) u = 0 (1.34) 

has non-trivial solitary wave solutions in the case fl(0)>0. However, since (1.28) is not 

solvable for a, for all y>0,  these solitary wave solutions are not solitary wave solutions 

of the Benjamin-Ono equation. 

The layout of the paper is as follows. After a few preliminary observations are 

made in Section 2, the main result is proved in Section 3 as a consequence of the 

maximum principle and the Cauchy-Riemann equations. In Section 4 we show that, in 

the unit disc fl in the plane, the problem 

Au = 0 on f2, 

au 
- u+u 2 on aft,  

ar 

has no non-constant solutions. (Here r denotes the radial polar co-ordinate in the 
plane.) 

It seems clear that his method has implications for other quadratic Neumann 

boundary conditions on planar domains other than half-spaces and discs. 

One final remark: if the boundary condition in (~ )  is replaced by 

Uy = au2+bu+c, a 4= O, (1.35) 

then an affine change of the dependent variable and a linear change of the independent 

variable leads to (~ )  provided that b2>4ac. Thus (1.35) is included in our treatment of 

(~).  In particular the case 
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Uy = - - U - - U  2 

is included, and this corresponds to sub-critical travelling wave solutions of the 

Benjamin-Ono equation. We conclude that there do not exist sub-critical solitary wave 

solutions of the Benjamin-Ono equation since these would (after a change of variables) 

correspond to solutions of (~)  which satisfy the boundary condition 

u(x)~ I as Ixl  oo, 

and no such solutions exist. 

2. Preliminaries 

Let H denote the open half-plane {(x, y) E R2: y>0} and/~  its closure. For any (x, y) E/ t  
let 

1 f0 | (y+s)exp(-s)  ds. G(x, y) = -~ x2+(y+s)2 (2.1) 

Then G>0 is harmonic in H, 

RG(x,y)dx= l, y>~O, (2.2) 

Gy(x,y)=G(x,y)- l(x2~y2) , (2.3) 

for all (x, y)EH.  Hence if f is any bounded continuous function on R and w is defined 
by 

Y) = I G(x-t, y)f(t) dt, (2.4) go(x, 
JR 

then 

and 

Aw(x,y)=O, (x,y)EH, 

lira w(x,y)-wr(x,y)=f(:O, ~ER. 
(x,y)~(~,O) 

(x,y)EH 

Here subscripts denote partial derivatives in the usual way. The function w is well- 

defined and bounded in H because f is bounded and (2.2) holds. Moreover, by (2.3), 
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[Wy(X, Y)l ~< [w(x, Y)l + 1 fjR lyf(t) l dt, 
(x-t)2+y z 

and so wy is bounded on H as well. Hence by the Phragmen-Lindel6f principle (see, for 

example, [6], p. 94, Theorem 18) w is the unique solution of the boundary-value 
problem 

Au(x, y) = O, (x, y) E H, 

U(X, O)--Uy(X, O) =f(x),  xER,  

([u(x,y)l+lux(x,y)l)/(x2+y2)l/2-->O as x2+y2---> oo. 

In the context of the Benjamin--Ono equation we wish to consider all solutions of 

problem (~)  of Section 1. From the present discussion we conclude that a solution of 
(~)  exists if and only if 

u(x, y) = fR G(x- t ,  y) u(t) 2 dt. (2.5) 

A simple bootstraping argument ensures that u and all its derivatives are bounded on 
H. We need the following elementary observation. 

LEMMA 2.1. Suppose that u (:# O) satisfies (2.5). Then there exists a positive 
constant such that 

u(x, y) >I const. 

Proof. First note from (2.5) that 

1 +y (x, y) E H. 
l+x2+y 2' 

u > 0 on/~ ,  (2.6) 

since we are considering non-trivial solutions. Let m=inf{u2(x, 0): x E [ -1 ,  1]). Now an 

elementary calculation gives that 

G(x, y) >- (y+w)exp(-w)  dw 
x 2 +y2 + w 2 

1 f |  (y+w)exp(-w)  dw, x2+y2~ > 1, 
~> 2~z(x2+y 2) Jo l+w2 

>_ f l+y  "1  oons . 7;7 
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~ _ l  

u(x, y) >~ m G(x-  t, y) dt 
I y_~l 

I> const, l+y dt, x 2+yz~ 4, 
i (x-t)2+Y 2 

~> const. ( l+y) x2+y2 ~ 4. x2+y2 ' 

Since u is bounded below on the set {(x,y): x2+y2~<4}, the result follows, q.e.d. 

LEMMA 2.2. I f  u satisfies (2.5) then there exists a constant M such that for all x>O 

If~x(U(t)-u2(t))dtl+lfoX(U(t)-u2(t))dt ~< Mlog(2+x). 

Proof. Let x>0. Then 

fo' J_~.',,,fo x fo x (u(t)-ua(t)) dt = G(s- t ,  O) ds dt - u2(t) dt 

foX{; } f o r :  = u 2 ( t )  G(s- t ,O)ds-1  dt+ u2(t) G(s- t ,O)dsdt  

f;f:  + u2(t) G(s-  t, 0) ds dt 

-- I 1 + I 2 + h ,  say. 

We will estimate the integrals on the fight-hand side in turn after observing that 

; r ~ G(s- t ,O)ds= 1 e -W~tan- ' ( x - t ]+ tan- ' (  t--)ldw, 
Jo t \ w / \ w / j  

and that 

r_~-~r--c-~ 1, r~[0,~) r, 1-.~,., -a~ ,~,_,~-r~ " 

Hence 

I/d~<lllull~ (=e_W f (x ( ~ _ _ _ t a n _ ~ ( x _ t ~ + ( 2 _ t a n _ l ( t ) ) d t ) d w  
Jo [Jo \ 2 \ w ] ]  
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Also 

Finally, 

=2]]ul[2 fo| foX (2- tan- l ( -~))dtdw 

2 2 | -w x a2 ~t t -1 
<~-~,,u[l| fo e fo~[~+w] dtdw, 

=2,,ull2~fo| log(2+x). 

1121~<1]1U112 f~ f |  dwdt 
oo dO ~- W W /  

fo fo ( ) = - ~  Ilull  e_Wtan_l xw dw dt 
w2 + t(x + t) 

X W  

<~l llull2 fo| fo| ((~xw/2)+w2+t(x+t)) )dtdw' 

=c~ fo| f |  ((~zxw/2);--~2+t(t+x))dtdw 

x dt dw <~ const, log(2+x). ~cons t .  1 + we-W t(t+x) 

1131 ~< const, e -w tan -I +tan -I 
J 0  ~- 

= const. 

= const. 

fO e -w f| tan-I(. 
�9 I x  k 

( |  f |  t an- I (  e - w  

�9 10 .10 \ 

\ 

xw - ~ dt dw 
w2-t(x-t) / 

dw dt 

xw ~ dt dw <<. const, log(2+x), 
W 2 + t(x + t) / 

by the argument which led to the bound for 12. The proof for x<0 is identical, q.e.d. 

3. The main result 

Now we are in a position to prove the main result described in (I) and (2) of the 

Introduction. Let u be a solution of (~)  and let v denote any harmonic conjugate of u in 

H. Since Vx(X,O)=-uy(x,O)=u(x)E-u(x), it follows from Lemma 2.2 that Iv(x,0)l ~< 
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const, log(2 + Ixl), x E R. The Phragemen-Lindel6f principle then gives 

Io( x, Y)I ~< const, log(2+x2+y 2) on /~. 

Let 

w(x, y) = ux(x, y)+u(x, y)v(x, y), (x, y) =I21. 

Then w is a harmonic function on H which has the property that 

[w(x, y)[ ~ const, log(2+x2+y2), (x, y) E/~, (3.1) 

since u and ux are bounded on/1 .  A calculation using the Cauchy-Riemann equations 

yields that 

Wy(X, 0 )  ~--- (1-u(x,  0)) w(x, 0). (3.2) 

Since 

it follows that 

where 

uy(x, 0) = (1-u(x,  0)) u(x, O) 

Wr(x, 0) = 0, xER,  (3.3) 

W(x, y) = w(x, y) (x, y) ~ /L  (3.4) 
u(x, y) ' 

Clearly Wis well-defined because of (2.6), and a calculation based on the fact that u and 

w are both harmonic functions, yields that W satisfies the elliptic equation 

2Vu 
AW+ -VW=0 on H (3.5) 

u 

with the homogeneous Neumann boundary condition 

Wy(X,O)=O, xER. (3.6) 

The following result is central to the argument which follows. 

LEMMA 3.1. Suppose that there exists an interual (a-e,  a+e) such that 

W(x,0)< W(a,O), xE(a,a+e), (3.7 a) 
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W(x,O)> W(a,O), xE(a-e ,a) ,  (3.7 b) 

then 

W(x,O)<.W(a,O), xE(a ,  oo). (3.8) 

Similarly if 

W(x,0)> W(a,O), xE(a,a+e) 

W(x,O)< W(a,O), xE(a-e ,a)  

then 

W(x,O)~W(a,O), xE (a, oo). 

Proof. It will suffice to establish the first part, for the proof of the second part is 

identical. Let (3.7) hold. 

Let X c H  denote the maximal open connected subset of the set {(x, y)EH: 

W(x,y)<W(a,O)} which contains the interval [a,a+e]x{O} in its closure. Then 

[a, a+e] x {0} cOX, the boundary of X in/-it, and X=H. So, in particular, 

Y= OXNOH D [a, a+e]x{O}. (3.9) 

To prove (3.8) we will show that [a, oo)x {0} c Y. Suppose for contradiction that this is 

not the case so that there exists c E (a, oo) such that [a, c]x {0} denotes the maximal 

component of Y which contains [a, a+e] x {0}. (The left-hand end of this component is 

a because of (3.7 b).) We claim that if (z, 0)E Y\( (a ,  c)x {0}), then 

W(z, O) = W(a, 0). (3.10) 

To see why this is so, suppose not. Then, since W(a+e/2, O)<W(a, 0), W(z, 0)<W(a, 0), 

(z, 0) E u and X is an open connected set, there exists a continuous Jordan curve F in ,Y 

such that F={tp(t): tE[0, 1]), and 

tp((0, I ) )=X,  cp(O)=(a+e[2,0) and tp(1)=(z,0). (3.11) 

Let ~ denote the open bounded connected set enclosed by F and the x-axis between 

tp(0) and ~p(1). (Without loss of generality we suppose that z>c; the case z<a is similar.) 

Now there exists ~ E (c, z) with 

W(~, O) > W(a, 0). 
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If this is false, then 

W(x, y) <~ W(a, 0) for all (x, y) E Off~, 

W(c, O) = W(a, 0) and (c, 0) E aft.  

Indeed (c, 0) belongs to a flat portion of at)  and so, by the boundary-point lemma, 

Wr(c,O)*O. This contradicts (3.6). Thus W(LO)>W(a, 0) for some s z). 

Now let Z denote the maximal component of {(x, y) E H: W(x, y)> W(a, 0)} which 

contains (s 0) in its closure. It follows that Z is a subset of t), and so it is bounded. Now 

W(x, y)= W(a, O) if (x, y) E H N aZ, which means that W -  W(a, 0) takes its maximum on 

at a point of aH n aZ where the boundary of OZ is a flat subset of all .  At that point 

Wy:~O by (3.5) and the boundary-point lemma. This contradicts (3.6). Thus (3.10) has 
been established. 

Now define 6<0 by 

6 = min{ W(x, 0) -  W(a, 0): x E [a, c]} < 0 

and let 

W(d, O) = 6+W(a,O), 

for some d E (a, c). Now define the harmonic function h on X by 

h = ux+uv-W(d , O) u. 

Since W(x, y) = W(a, 0) for all (x, y) E aX N H it follows that 

h(x , y )=-6u(x , y )>O,  (x ,y)EaXNH. 

Moreover 

h(d, O) = O, 

(d, 0) belongs to a fiat portion of aX, and by (3.10) and the construction, h(x, 0)>10 on 

aXn all.  Since 

[h(x, Y)I <~ const, log(2+x2+y2), (x, y) E X = H, 

it follows by the Phragman-LindelOf principle [6; p. 96, Remark (ii)] that h~>0 on X. 

Hence 

W(x,y)>~W(a,O)+6 on X 
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and 

W(d, O) = W(a, 0)+6. 

Hence, once again the boundary-point lemma contradicts (3.6). q.e.d. 

The significance of the result is in the following consequence. 

COROLLARY 3.2. The function W defined by (3.4) has the property that W(x, O) is 
monotonic on R. 

Proof. Suppose the result is false. Since W(., 0) is real-analytic, the zeros of 

Wx(', 0) are isolated, and W(., 0) must have a local maximum or minimum since it is not 

monotone. If x0 is a local maximum then WAx, 0)*0 in a deleted neighbourhood of x0. 

Then, by the lemma, W(x, O)<~W(xo, O)<.W(x, 0) for all x>~xo which contradicts the fact 

that Wx(x, 0)*0 in a deleted neighbourhood of x0. Similarly for a local minimum, q.e.d. 

The main result now follows. 

THEOREM 3.3. The function W defined by (3.4) is constant on H. 

Proof. Let Ce denote the contour in /~  given by a semi-circle with centre at the 

origin and radius R clockwise, the line segment joining (R, 0) to (1,0), the anticlockwise 

semi-circle of radius 1 and the line segment from ( -1 ,0 )  to ( -R ,0 ) ,  R > I .  

Let f(z)=u(x, y)+iv(x, y), z=x+iy, (x, y) E1:1. Then by Cauchy's theorem 

0 = Imag ~ f(z____)_) dz 3c Z 

=fo"U(e'e)dO-fo"u(Rei~ 
Hence, since u is bounded, there is a constant independent of R such that 

[fR v(x)-v(-X)x dx[ ~<const., R >  1. (3.12) 

Also 

~R log u(x) f R Ux(X ) log u(R) log u(1) + dx. 
Jl xu(x) dx R x 2 

By Lemma 2.1 and the boundedness of u we find that 



and so 

THE BENJAMIN--ONO EQUATION 

Ilog u(x)] ~< const.(1 +log(1 +x2)), x E R, 

f I R ux(x) dx 
~<const., R ~> 1 

Jl xu(x) 

Similarly 

f, R ux(_x) 
xu(-x) 

Combining (3.12)-(3,14) we find that 

f R W(x, 0)-  W(-x,  O) dx 
x 

- - d x  <.const., RI>I .  

)1 t \ xu(x) 

~<const., R>I 1. 

123 

(3.13) 

(3.14) 

ux x, 11 

then f satisfies (1.8). The observations in (1) and (2) of the Introduction, and the 

remarks which follow, are then immediate. This completes the discussion of the 

travelling wave solutions of the Benjamin-Ono equation. 

f(z)=u(x,y)+iv(x,y), (x,y)EH, z=x+iy, 

Thus if 

However, since W(., 0) is monotonic, this implies that W(., 0) is constant on R. Hence 

ux+uv-au=O on y=0  for some aER.  This is a harmonic function on the upper half 

plane whose growth is at worst logarithmic. Hence for some a E R, 

Ux+UV-au=O on H. 

This completes the proof, q.e.d. 

This shows that if u is a solution of (~ )  then, for some harmonic conjugate o of u 

(the harmonic conjugates differ by an additive constant) 

Ux+UO=O on H. 

The conjugate to Ux+UV is then constant o n / t :  

1 z z 1 - % - T ( u  -v  ) = T c  on/L 
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3. Related results 

Let fl denote the open unit disc in the plane, and suppose that 

Au(x,y)=O, (x,y)EQ, (4.1 a) 

O--~U (x,y)=--u(x,y)+u2(x,y), (x,y)EO~. (4.1 b) 
Or 

Then, by the maximum principle and the boundary-point lemma, u>0 in t) if u is not 

identically zero. Let v be any harmonic conjugate of u, and let W=Uo+UV. Then w is 

harmonic in ft. Moreover by the Cauchy-Riemann equations u,=v o and uo=-v , 
when r2=x2+y2= 1. (Here (r, 0) are polar co-ordinates in the plane.) Hence 

aWor r=l =(u-1)w '  

and 

OUor ~=1 - - ( u - 1 ) u '  

together give 

aW =0, 
ar r= l 

where W= w/u. It is immediate, since 

2Vu 
AW+ 

u 
�9 V W = 0  on Q, 

that W is constant on t). Hence uo+uv=O on t) for some harmonic conjugate o of u in 

s As in preceding sections, therefore, u=Real(f) ,  where 

~z(Z) =2(f(z)2q'C), for some cER.  

Since Uo+uv=O on t), a differentiation with respect to r yields that 

a ~ U ' - u } = 0  in f~, 
aO[ u 

(4.2) 

and a differentiation with respect to 0 yields that 

~ ( u~ ) 
ao u +rur=O in Q. (4.3) 
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Hence, by (4.2), there exists a function g, of r alone such that 

fur = g(r) u+u  2 

which, when substituted in (4.3) yields 

This can be re-written 

for some function h of r alone. 

(4.4) 

�9 . + g ( r )  u-l-u 2 ~- 0 in ft. (4.5) 
80 

(uo)2 + 2g(r) U3 + U 4 = h(r) 

If u is not radially symmetric, differentiation with respect to 0 then yields 

uoo+3g(r) u2+2u 3 = 0  on ~2. 

Now, from (4.1 b) we find that in (4.4) g ( 1 ) = - l .  But u is harmonic in f2 and so 

(4.6) 

(4.7) 

1 8 ( r a U ~  1 82//.r___0 in ~ .  (4.8) 
r ~ r \  - -~r] ' t - -~80 -'--'~ 

Combining (4.4), (4.7) and (4.8) we find that 

ra-~ - (g(r) u+u 2) = 3g(r) u2+2u 3, 
dr  

rg' +g2 _ O. (4.9) 

whence, using (4.4) again, 

Now, by (4.1) and (4.4), g ( 1 ) = - I  and so g ( r ) = l / { ( l o g r ) - l } ,  from which it follows that 

g(0)=0. However by the maximum principle u>0 in f2 and it then follows from (4.4) that 

u , ~  as r---~0. This is a contradiction. Hence u is radially symmetric. However, if u is 

radially symmetric, then (4.3) yields that u is constant. Clearly the only constant 

solution of (4.1) is u= 1. 
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