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1. Introduction 

The problem of density of smooth maps between two compact manifolds M n and N k 

was first considered by Eells and Lemaire ([EL]). If p>dimM", then WI'P~C ~ (by the 

Sobolev embedding theorem) and it is easy to see (using standard approximation 

methods) that C| ~, N k) is dense in WI"P(M ~, Nk). Schoen and Uhlenbeck [SU2], 

[SU3] have proved that smooth maps are dense in the limiting case p=dimM n. They 

also gave an example of non density of smooth maps: they showed that C~176 3, S 2) is not 

dense in H I ( B 3 , S 2 ) ;  for instance the radial projection :r from B 3 to S 2 defined by 

:r(x)=x/lxl cannot be approximated by smooth maps. 

We consider in this paper two compact Riemannian manifolds M" and N k of 

dimension n and k respectively. N k is isometrically embedded in RI(/EN*). M n may 

have a boundary, but not N k. For l<~p<n, we consider the Sobolev space WI"P(M ~, N k) 
defined by: 

WI'p(M ~, N k) = { u E WI'P(M ~, Rt); u(x) E N k a.e.}. 

Since WI'p(M ~, N*) is included in WI'P(M ~, Rt), it inherits both strong and weak topology 

from WI'P(M ~, Rt). It is moreover clear that WI'P(M ", N k) is stable under strong and 

weak convergence. Note that in our definition we embed N k in an Euclidean space R t, 

in order to define these spaces. This is actually the most convenient way for doing so, 

and the results do not depend on the way we embed N k. 

The following theorem is the main result of this paper, and gives a necessary and 

sufficient condition for smooth maps to be dense in WI'p(M ~, Nk). 

THEOREM. Let l<.p<n. Smooth maps between M n and N k are dense in 
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WI'p(M n, N k) if and only i f  :rtp](Nk)=0 ([p] represents the largest integer less or equal 

to p). 

The fact that this condition is necessary is proved in [BZ] (Theorem 2) (actually in 

[BZ], we only gave a proof in the case M"=B", the unit ball in R"; for a proof in the case 

M" is any manifold see Theorem A0 of the Appendix). A large part of this paper is 

devoted to the proof of sufficiency. Theorem 1 settles the problem of density of smooth 

maps in WI'p(M n, N k) for every p, since for p>~n we have density. 

Assume that 8M" is not empty. It may also be useful to be able to approximate a 

map u in WI"P(M n, N ~) such that the restriction of u to aM" is continuous (resp. smooth), 

by continuous (resp. smooth) maps from M" to N k, which agree with u on the boundary. 

With some slight modifications in the proof of Theorem 1 we also have: 

THEOREM 1 bis. Let  l<~p<.n and assume :rtpl(Nk)=O, and aM"=~.  Let  u be in 

WI'P(M n, Nk), such that u restricted to aM" is in WI'p(OM ", N k) n Co(aM", N k) (resp. 

C| ", Nk)). I f  there is a map v in CO(M", N k) (resp. C=(M ", Nk)) such that u=v on 

aM n then u can be approximated in WI'p(M n, N k) by maps in WI'P(M n, N k) ['1 C O (resp. 

C=(M n, Nk)) which coincide with u on aM n. 

When :rtp](Nk)+0, by Theorem 1, smooth maps are not dense in WI'p(M ", Nk). 

In this case, we are nevertheless able to approximate maps in WI"P(M ", N k) by maps 

which are regular except on a simple set of low dimension. More precisely we 

consider the class R ~ (resp. R~) of maps in WI'p(M ", N k) defined in the following way: 

u E WI'p(M n, N k) is in R ~ (resp. R~) if and only if u is continuous (resp. smooth) except 

on a singular set Z(u), where Z(u) = U}=1Z,., r s N*, where for i= 1 . . . . .  r, Z i is a subset of 

a submanifold of M" of dimension n - [ p ] - l ,  and the boundary of Zi is smooth; if 

p>~n- 1, Zi is a point. Actually, in the case M" is some domain of R", we may assume 

that Zi is a subset of a linear subspace of R", of dimension n - [ p ] -  1, and the boundary 

aZi a subset of a linear subspace of dimension n - [ p ] - 2 .  We have the following: 

THEOREM 2. For every l ~ p < n , R  ~ (resp. R~) is dense in WI'P(M ", Nk). 

We have also the following, which is the analogue of Theorem 1 bis: 

THEOREM 2 bis. Assume l <,p<n, and aM"~=;3. Let  u be in WI'p(M n, N k) such that u 

restricted to OM" is in WI'v(aM ", Nk)NC ~ (resp. C=(M ", Nk)). I f  there is a map v in 

C~ ", N k) (resp. C=(M ", Nk)) such that u=v on aM", then u can be approximated in 

WI'p(M ", N k) by maps in R~ (resp. R~) which coincide with u on OM". 
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When 7r[p](Nk)=l=0, we also consider the problem of density of smooth maps for the 

weak topology, induced by the weak topology in WLP(M ", R/). We have the following 

theorem: 

THEOREM 3. / f  ~rtpj(Nk)=~0, and p is not an integer, then smooth maps are not 

sequentially dense for  the weak topology in WI'P(M n, Nk). Moreover every map in 

WI'P(M ~, N k) which is a weak limit o f  smooth maps is also a strong limit o f  smooth 

maps (in WI'P(M n, Nk)). 

This theorem is useful when trying to minimize a functional in a certain class of 

maps in WI'e(M ~, N k) (for instance C~(M ~, Nk), see [W21). For instance let Mn=B n, let 

be in C~(aB ~, N k) and consider the energy functional 

Ep(u) = fs~ IVul p dx 

defined o n  WI'p(B n, Nk), If u is a C ~ critical point of Ep, u is called a p-harmonic maps 

and satisfied the Euler-Lagrange equation related to Eo. Weakly p-harmonic maps are 

weak solutions of that equation. In the case p is not an integer and ~rtpl(N~)+O a refined 

version of Theorem 3 then shows that there are infinitely many p-harmonic maps in 

W~'P(B n, Ark) = {u E WI'P(B ~, Nk), u=~ on ~B n} (for a precise statement of the results see 

Section VI). 

When ertpj(Nk)+o, and p is an integer, we have the following theorem: 

THEOREM 5. I f  p is an integer and er[vl(Nk)=l=O, then smooth maps between M ~ and 

N k are dense in WI'p(M n, N k) for  the weak topology. 

This suggests that every map in W l'p is the weak limit of a sequence of smooth 

maps. But unfortunately, we are not able to prove this except in the special case Nk=s  p 

(the unit sphere in Rp+I). Adapting the method of [Bel] we are able to prove: 

THEOREM 6. I f  p is an integer, l < p < n  smooth maps between M ~ and S p are 

sequentially dense in WI'P(M ~, SP). 

Some of the results in this paper have been obtained earlier by Zheng and the 

author in special cases. For example, Theorem 1 has been proved in [BZ] for the case 

Nk=S k and p<k,  Theorem 2 for Nk=S 2, n=3 ,  and p=2. Some of the arguments in this 

paper rely on constructions of White ([W1], [W2]). Escobedo ([E]) has studied the 

density of smooth maps in the Sobolev spaces W~'P(M n, S k) with r> 1 and rp<k (here r 
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need not to be an integer). In another direction, in [Bel], we characterize the strong 

closure of C=(B 3, S 2) in HI(B 3, $2). 

Approximation theorems are a useful tool in the study of harmonic maps (see 

[CG], [H], [BBC]). 

This paper is divided as follows. We first consider the case M"=[0, 1]"=C". In part 

I we prove the Main Theorem and Theorem Ibis ,  for M"=C ~, and n -  l<p<n .  For this 

purpose we prove that we may approximate each map in WLP(C ~, Nk), by maps in Rp, 

that is maps in WLP(C ", N k) smooth except at most at a finite number of point 

singularities. This, in fact, is a general result (see Theorem 2; for n - l < p )  and holds 

even if zttp~(Nk):4=0 (here [p]=n-1) .  Then we conclude using the fact that :t~_l(Nk)=0 

and the following lemma, which is proved in the Appendix (see also Theorem 5 of 

[BZ]): 

LEMMA 1. Assume rCn_l(Nk)=O and p<n.  Let  u be a map in WI'P(M ~, N k) such that 

u is continuous except at a finite number o f  point singularities. Then u can be 

approximated in W1"P(M ~, N k) by smooth maps between M ~ and N k. 

In part II, we prove Theorem 1 and Corollary 1 for M~=C ~ and n-2<p<~n. We 

adapt the construction of part I, and, when p < n - 1 ,  we need the following lemma 

(which holds even if :rtpj(Ne):4=0): 

LEMMA 2. (i) Let  p < n - 1 .  Let  v be some map in WI'P(C n, N k) such that v is 

continuous except at most at a finite number o f  point singularities (here we do not 

make any topological assumption concerning NO. Then, v can be approximated for  the 

W l'p norm by maps in C~(C ~, Nk). 

(ii) I f  v restricted to aC ~ is in WI'P(aC ~, 1V~ fq C o (resp. C ~) and i f  there is some map 

v' in C~ n, N k) (resp. C | such that v '=v on aC n then v can be approximated for  the 

W I'p norm by maps in W1'P(C ", Iqk)f~co (resp. C ~) which coincide with v on the 

boundary. 

In part III we prove Theorem 1 and Theorem 1 bis for Mn=C n and p<.n-2.  In part 

IV, we prove Theorem 2 and Theorem 2 bis for Mn=CL In part V we extend the results 

obtained for M~---C ~ to any compact manifold M n of dimension n. Part VI deals with the 

weak density results, and with the problem of finding infinitely many p-harmonic maps 

satisfying a given boundary condition. In part VII, we extend some results to the 

Sobolev space W"P(M ~, Nk), with r in N*. In the Appendix we prove technical lemmas. 
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We recall next some usual notations. 

For n>~l, B ~ is the unit open ball in R ~ and Bn(y; 6) is the ball of radius 6 centered at 

y E R L  We set S~=aB ~+~. We consider also the cubes 

C~=[0 ' l ]n '  C'n--[ -12 '21]  ~' C'~(a)= [ a2,2a] ~' for a>0.  

For 6>0, small enough, and for y0EN ~', we set BQ(y, 6)=NknBt(yo,6). For 

x=(x I ..... x i . . . . .  x~) E R ~ we set 

I1,,11 = m a x  {Ix, I}. 
i~(l ..... n) 

For u in W1'P(M~,N k) we set E(u)=SM, IVuiPdx. If W is an open subset of M ~ we set 

E(u;W)=fwlVulPdx. Likewise if C s is a submanifold of dimension s of M ~ we set 

_E(u; CS)= J" c {Vu{Pdcr where d~r is the volume measure on C" induced by the measure on 

M n, and when the integral is finite. 

For  qEN*,:rq(N e) is the qth homotopy group of  N k. K1,K2 .... represent absolute 

constants depending possibly on M ~, N* and p. ~Tis some open neighborhood o f N  k in R I 

such that the nearest point projection :r from ~7 to N k is a smooth fibration. 

L Proof  of  Theorem 1 when M n = C  n and n - l < p < n  

We assume throughout this section that M"=C n, n -  l < p < n ,  and :rn_l(Nk)=0. Let  u be 

in WI'P(C ~, N*). We are going to approximate u by maps Um which are continuous 

except at most at a finite number of point singularities (the conclusion then follows 

from Lemma 1 applied to Um and the assumption :r~_~(Nk)=0). In order to construct our 

approximation sequence urn, we divide, in a convenient way, the cube C ~ in (m+l )  ~ 

little cubes Cr having an edge of length l/m, and we classify these cubes in two 

categories. The "good cubes"  are the cubes such that the energy of  u restricted to 

these cubes, and the energy of u restricted to the boundary of these cubes are small. 

For these cubes, "mos t  o f"  the image of u lies in some small geodesic ball of N k, and 

we can approximate u using a standard mollifying technique. The bad cubes are the 

other ones, on which we approximate u by maps having point singularities. Next we 

present a basic method for dividing C n in small cubes Cr, in a convenient way. 

1.1. A method for dividing C ~ in small cubes Cr. Without loss of generality we may 

assume that u restricted to aC n is in WI'P(~C ~, N ~) and thus continuous by the Sobolev 
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embedding theorem. Indeed,  in Lemma A0 of the Appendix we prove that u can always 

be approximated in WI'p(C ", N k) by maps in W1"P(C ", N k) such that their restriction to 

the boundary is also in W I'p. For  k = l  . . . . .  n, we set ek=(0 . . . . .  1,0 . . . . .  0 ) E R  ". For  

l<~k<.n, and a in [0, 1] we note P(a, k) the restriction to C" of the hyperplane passing 

through the point Ak(a)=aek and orthogonal to ek. For  rn E N*, and for a E [1/4m, 3/4m] 

we consider the hyperplanes P(a+j/m, k) for O<-j<~m - 1 and the union of  these hyper-  

planes W(m, a, k ) = U ~  1P(a+j /m,  k). For  almost every a in [1/4m, 3/4m], u restricted 

to W(m, a,k) is in W I'p and thus continuous by the Sobolev embedding theorem. 

Moreover, we have clearly 

fl /4m E(u'~ W(m, a, k))da <~ E(u). 
/4m 

Thus, there is some ak in [114m, 3/4m] such that u restricted to W(m, a, k) is in W~'P~C ~ 

and such that 

m - 1  

j = 0  

Considering now the "s l ic ings"  of  C" by the set W(m, ak, k) obtained by the method 

described above when we change the slicing direction k, we see that we have divided 

C ~ in (m+ 1) ~ small cubes that we note C~, C 2 ..... C ...... C(m+~),. The cubes which are 

not in contact  with the boundary have edges of  length 1/m (and are translates of  

[0, 1/m]n). The cubes which are in contact  with the boundary are diffeomorphic to 

[0, I/ml ~ by linear maps fr such that IVf~l~4, IVfr-~l<<-4 (these inequalities are due to the 

technical condition ak in [1/4m, 3/4m]). Inequality (1) then gives us: 

(re+l) a 

(2) ~ E_(u;OC)<~K~mE(u)+E_(u;OC")<~KlmE(u), for m large enough. 
r=l 

For  every little cube Cr we define the scaled energy Em(u;Cr) by: Em(U;Cr) = 

E(~m,,; C'"), where am, r is the map from C '~ to N ~ defined by ~m,,(X)=U(X/m+Xr) (where 

Xr is the barycenter  of  Cr), for the cubes which are not in contact  with the boundary,  

and in a similar way for the cubes which are in contact  with the boundary (~m,r is a 

"b low-up"  map of  u restricted to Cr). We also set E_m(u;OCr)=E_(~m,r; OC'"). We have 

the following scaling equalities: 

~ E_m(l~'~ C r) ~. mn-pE(u; Cr); 
(3) [~_m(U; aCr) = m,_p_l _E(u; aCr). 
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Next we are going to classify the cubes Cr in two categories, the "good" and the "bad"  

cubes. 

1.2. Definition o f  the "good"  and o f  the "bad"  cubes. Let e>0 be small, to be 

determined later. We consider first the cubes Cr (for r= l  to (m+l)n), such that 

E_m(U; OC~)>-e. We note Pl,m the union of the cubes C~ which verify this condition, and 

I1. m the set of indexes r of these cubes (that means CrCPLm if and only if 

rE Il,m; Pl,m=UrEll,mCr). W e  consider also the cubes C~ such that Em(u;Cr)>>-em -v 

where v is some positive constant, which is fixed and small. We note Pz,m the union of 

these cubes and I2,,, the set of indexes for these cubes; we have P2,,~=Llret2,mCr We set 

Pm=Pl,m UP2, m, Im=I1, m UI2, rn. P,, is the union of the "bad cubes". We also consider 

Qm=Cn\pm, and Jm = ((1 .... ,(m+ 1)"}\L,  (the set of indexes for the cubes in Qm). Q,~ 

is the union of the "good"  cubes. We are going to show that the volume of Pm is 

"small".  Indeed, using relation (2) and the scaling equalities (3), it is easy to verify that 

~I1, m ~ g 2 m"-PE(u) e -1. 

~(m+l)n ~v' 'Cr)=E(u), and the scaling equality (3) give Likewise the equality ~r=l ~ " ,  

~I2, m ~ K z mn-P+VE(u) e -1" 

Thus we see that (#Ira)m-"=vol(Pm)--*O when m---~+oo. Hence E(u;P,,)---~O when 

m---~ + ~, by Lebesgue's theorem. 

We are going to approximate u in different ways on P,, and Qm. Since E(u;Pm) 

tends to zero, we do not need to approximate u very closely o n  Pro, we only have to 

construct u,, on Pm in such a way that u,,=u on OPm, E(um;Pm)<-CE(u;Pm), and um is 

continuous, except at most at a finite number of point singularities. This is the purpose 

of the next construction. 

1.3. Construction of  the approximation map u,, on Pro. For the construction of the 

map Um on each cube Cr included in Pm w e  use the following lemma: 

LEMMA 3. Let n - l < p < n ,  p>0 and v be a map in WI'P(C"(It),N k) such that v 

restricted to OCn(l~) is in Wl'P(aC"(It), N k ) ~ c  ~ There is an absolute constant K3 

depending only on p and n, and some map w in WI'P(C"(#), N k) continuous except at 

most at a finite number of  point singularities, such that w=v on OC ~ and E(w)<.K3 E(v). 

Before we give the proof of Lemma 3, we complete the construction of u m on Pro. 

Defining u,, on each cube C r in P,, as the map w obtained by Lemma 3 for/~= I/m, 
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cn(/.g)=Cr, and v=u, we see that Um is continuous on P,, except at most at a finite 

number of point singularities, Um and u coincide on aCr and thus on aP,., and we have: 

(4) E(um;Pm)~K3E(u;P,~)---~O when n---> + ~ .  

Next we give the proof of Lemma 3. 

Proof of  Lemma 3. Using a simple scaling argument, we may assume without loss 

of generality that Cn(/z)=Cn=[0, 1]t We are going to use the method of Section I. 1 for 

dividing C n in little cubes. Thus, for every s E N*, we may divide C ~ in (s+l)  ~ little 

cubes Ct of length 1Is (except those in contact with the boundary, which are linearly 

diffeomorphic to [-1/2s, 1/2s]~), such that: 

(s+ 1) n 

(5) 2 _E(v; aCt) <~ K 1 sE(v), for s large enough. 
l= l  

On each cube Ct (for l= l  to (s+l)~), we define a map ws by: 

I- 2sH-F-x, llX-X' ] w,r = ~ +x' , 

where xl is the barycenter of Ct, and if Ct is not in contact with the boundary, and in a 

similar way if Ct is in contact with the boundary (using the fact that, in this case Ct is 

diffeomorphic to [-1/2s, 1/2s]" by a linear mapJ~ such that IVftl~<4, IVf~l-'~<4). It is then 

easy to show that ws is in W~"(C ~, N*), is continuous, except at the points xt, w,=u on 

aC ~, and for each cube Cl we have: 

E(Ws; Ct) <~ K 4 s-lE_ (v; aCl). 

Adding these inequalities for i= I to (s+ 1) ", and combining with (5) we obtain: 

K (s+l) 
E(w,) <~ ~ ~ _E(v; aC t) <~ K 4 K l E(v) for s large enough. 

Thus for s large enough, we set w=ws, and w satisfies the conditions of Lemma 3. 

This completes the proof of Lemma 3. In the next section, we construct the approxima- 

tion map Ur, on Qz. 

Remark. An alternate to the proof of Lemma 3, could be derived by choosing w as 

a minimizing map for the boundary value v on ac", and by application of the regularity 

results of [F], [HL], [L] (it is known that such a map has only point singularities). 
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1.4. Construction o f  the approximation map Um on Qm. On Qm, w e  are going to 

approximate u by maps u,, which are continuous. First we construct a map Wm such 

that Wm is in WI'P(C ", Ark), and such that for each cube Cr in Qm the image of w,, on Cr 

lies in a small geodesic ball of Nk (then it will be easy to construct on Q,, the map Urn, 

which is continuous, using a simple mollifying argument). For this purpose we need 

two technical lemmas: 

LEMMA 4. Let 6>0 be small. Let  q E N* and p>q. We consider the cube C q and a 

map v in WI'P(C q, Ne). There is some constant Co(6, q, p, N~,  depending only on 6, p, q 

and N k, such that i f  E(v)<<.eo(6, q, p, Nk), then the image o f  C q by v (which is continuous 

by the Sobolev embedding theorem) lies in some domain Bo(Y, 6) for some y E N ~. 

Note that Lemma 4 is a simple consequence of the Sobolev embedding theorem, 

since WI'p(C q, Nk)~C~ q, Ne). For technical reasons (which will become clear in the 

sequel), we choose 60 such that, for every y in N k, i f(y,  4n60) lies in (7. We choose also 

e=eo(6o/2n,p, n - I ,  N k) (recall that e is the constant needed for the definition of P,, and 

Qm). We need also the following result: 

LEMMA 5. For 6>0 small enough, there is some constant/~(6), depending only on 

N k and 6, such that there is some smooth map 9(y, 6), for  every y .in N k, from N k to 

Be(Y, 6) such that IVg(Y, 6)1=---</~(6) and qg(y, 6)=Id on Be(Y, 6). 

The proof of Lemma 5 is given the Appendix. We come back now to the construc- 

tion of Wm o n  Qm. For each cube C~ in Qm, we have (by the definition of Q,,) 

E.(u;aCr)<-e. If we apply Lemma 4 to C,, q = n - l , p ,  and each face of aCr we see that, 

(after a "blow-up" of the cube) the image of aCt by u (which is continuous on aCr by 

the Sobolev embedding theorem) lies in some domain Bo(yr, 60), for some Yr E N k. 

Then we define Wm in the following way: 

w,. = tp(y r, 260) o u on Cr 

Since ~p is Lipschitz, by the composition chain rule of maps in W I'p, Wra is clearly in 

WI"P(C, ., Bo(Y,., 260)). Moreover, since 9(Y,., 260)=Id on l~o(y r, 260), and since the image 

of u restricted to aC r is in Bo(Yr, 60), we have w,,,=u on aCr. Thus defining Wm in such a 

way on each cube C, in Qm, we see that w,,,EWI'p(Q,,,,N k) and w,,,=u on aQm. It 

remains to show that Wm approximates u on Qm. For C~cQ,,,, consider the set: 

O~m, r = {U ~ Crl u(x) :# Win(X)}. 
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We have: 

(6) 

~C IV(U--I'Om)IPdx= ~q l IV(bl--Wm)lPdx~K5 fall (IVbl}P+IVLOrn[P) dx 
r m,r m,r 

~< Ks(1 +K(26~ fu IvuI  dx. 
m,r 

Thus, in order to prove that/.1.1 m approximates u on Q,,, we only have to show that 

(meas %,, ~) m" is small. Since it is easier to argue on "blow-up" maps, we consider the 

maps am and tOm defined on C 'n by: 

a,,(x) = u(x/m+x);  tOm(x) = w(x /m+x)  where x~ is the barycenter of C~ 

(a,, and tO,, are the "blow-up" maps of u,, and w respectively). We also consider the 

set: 

It is easy to verify that: 

(7) 

M,,,,,. = {x E C'" I Et,,,(x) ~; B(y,., 2dio) ). 

m" meas o//,,,, r ~< meas Mm, r' 

since i fx  is in O~rn, r , Ig (X)dFbUm(X)  and thus u(x)dgB(yr, 26o) (the factor m n in (7) being the 

scaling factor). We are going to estimate meas Mm,, We claim that: 

(8) meas Mm, ~ -~ m e/e0(60, Ark). 

Proof  o f  the claim. For a in [ -1 /2 ,  1/2] we consider the hyperplanes P(a, 1), 

defined in Section 1.1. We have, by Fubini 's theorem, and since CrcQm implies that 

E(am, C'n)<~em-'~ : 

l/2 E(/~,,,; P( a, 1)) da <~ E(am; C'") <~ em -v. 
I/2 

It follows that 

(9) I meas a E 2 ' 2 

where eo(6o, N k) is the constant  arising in Lemma 4. For  every a such that 

E(am;P(a, 1))<~e0(60,Nk), we may apply Lemma 4, to P(a, 1) which is a translate of 

C 'n-l,p and q = n - 1 ;  since u(OCr)cBe(yr, 6O), Lemma 4 then shows that 
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~(P(a,  1))=/~e(y ,, 2d0), and hence M,,.,.,,.nP(a, 1)=~3. Inequality (8) follows from this 

relation and (9), and this completes the proof of the claim. Next we complete the 

estimate of fQ,,IV(u- Wm)l p dx. 

Adding relation (7), for all cubes C~ in Qm we obtain 

(10) 

fQm I v(l t  -- wra) tp dx ~ Ks( 1 +/~(2do) p) Ju,~ Iv Ip dx 
( 

Jm cU , ,  . , 

~< Ks(1 +/~(2d0Y) E(u; U~ ~ Jm O~rn, r)" 

Relations (7) and (8) shows that: 

moaS(Or., 
since ~Jm<~(m+l) n, we see that meas(UreSm ~ when m--->+~ and thus by (10), 

and by the dominated convergence theorem, we have: 

(11) fo IV(U-Wm)lPdx~O when m---~ +oo. 
m 

Hence w,, approximates u in W ~'p on Q,~. In order to approximate u by continuous 

maps, we have to "smoothen" Win. For this purpose we are going to use the following 

lemma, the proof of which is given in the Appendix: 

LEMMA 6. Let fl>0, let p > l ,  and let BQ(y,c)) be some ball in N k such that 

Be(y, 6)=~?. Let v be in W1"P(C"(p),Bo(y;6)), such that v restricted to aC" is in 
WI'P(OC"' Be(Y, c))) N C ~ Then v can be approximated in W~'P(C"(/z), N k) by maps On in 

WI"p(c"(I~), N k) f3 CO, which coincide with v on aCn(p). 

We apply Lemma 6 to each cube C, in Qm, Wm a n d  n o ( y r ,  26). Lemma 6 provides us 

a map um such that u,~=w~=u on aQ,,, and such that: 

(12) fo IV(wm-u")l" dx<'!" 
m 

Combining (12) and (11) we see that 

(12) JQlm IV(u-um)l p dx---> 0 when m--~ oo. 

This completes the construction of u m on Qm. 
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1.5. Proof of Theorem 1 completed in the case Mn=C" and n -  l <p<n. In Section 

1.3 we have constructed Um o n  Pm, such that Um is continuous except a finite number of 

point singularities, and such that Um=U on aPm. In Section 1.4 we have constructed um 

on Qm, such that Um is in WI'p(Qm;Nk)nC~ and Um=U on aQ,,. Thus, since Um=U on 

aPmf) aQm, and since PmUQm=C n, the map Um is in WI"P(C~,Nk), and moreover is 

continuous except at finite number of points. We have: 

fjv(u- o)r dx Iv(u-.~ dx+  o)1 

Thus combining (5) and (13) we see that ~c~[V(U-Um)lPdx--~O. This proves that we may 

approximate u by maps in WLP(C ", Ark) continuous except at a finite number of point 

singularities. Theorem 1 then follows, in the case considered here, from the hypothesis 

:r~_l(Nk)=0 and Lemma 1. 

1.6. Proof of Theorem 1 bis for M"=C", and for n-l<p--.<n. For n - l < p < n  the 

proof of Theorem 1 shows that the approximation sequence Um agrees with u on 0C ~. 

This completes the proof of Theorem 1 bis. 

For n=p, we apply the result of Schoen and Uhlenbeck [SU1] and adapt the proof 

of Lemma 6. This result is stated as Lemma 6 bis of the Appendix. 

In the next section, we prove Theorem 1 in the case M~=C" and n - 2 < p ~ n - 1 .  

II. Proof  of  Theorem 1 in the case M"=C" and n-2<p<~n-1 

Throughout Section II we assume that the hypothesis of Theorem 1 concerning N k is 

satisfied, that is, we assume zc,_l(N*)=0 f f p = n - 1  and ~,_t(N~)=0 if n-2<p<n-1 .  A 

new difficulty is that, in this section, we cannot apply Lemma 4 with q=n-1 (the 

Sobolev embedding theorem does not hold in this situation). Note that in Section I. 1, 

we have considered a (n-l)-skeleton of C", namely ~ ,tm+l)"z,-- In order to treat the 

case n-2<p<--n- 1, and to apply Lemma 4, we need to consider a (n-2)-skeleton of C* 

(this idea will be generalized in Section III). Another difficulty, when n-2<p<n-1  is 

that we have to "eliminate" point singularities, even if we do not assume zt,_~(Nk)=o. 

This difficulty can be overcome using Lemma 2. In this section, the proof of Theorem 1 

follows the same steps as in Section I. First, we show how to modify the method for 

dividing C" in little cubes Cr, in order to find a convenient (n-2)-skeleton of C". 

II.1. Division of C" in little cubes and the definition of a (n-2)-skeleton of C". 

Let u be in WLP(C ", Ark). As in Section I. I we may assume without loss of generality 
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that u restricted to the boundary is in wl'p(~Cn, Nk). As in Section 1.1 we slice 

C" by hyperplanes P(a, k) such that u restricted to P(a, k) is in W l'p. This leads to a 

division of C" in (m+ 1)" cubes C .  Each of these cubes has 2n faces that we denote by 

Sr, j . . . . .  Sr, i . . . . .  Sr, 2.. We set for i=1 . . . . .  2n, Ar, i--cOSr, i, the boundary of Sr, i, which is a 
. .2 .  A Z union of 2 (n- l )  cubes of dimension n -2 .  We note zr=ta;=j .,i, r is a (n-2)-skeleton 

of C~, and we consider the (n-2)-skeleton of C" t ~('.+~)"7 Adapting the slicing method 

of Section 1.1, we may divide C" in (re+l)" cubes Cr in such a way that: 

(14) The cubes Cr are translates of [ -  1/2m, I/2m]" except those in contact with the 

boundary which are diffeomorphic to [-1/2m, 1/2m]" by a linear map fr such that 

[Vf~[~<4, [vf;l]~<4. 

(15) u restricted to OCr is in WI'P(OC,, N k) for every r in [1,(m+ 1)"]. 

(16) u restricted to Zr is in W ~'p and thus continuous on Z,, by the Sobolev embedding 

theorem. 

The following inequalities hold: 

(m+ l)n 

(17) E _E(u; aC r) <<. Kr mE(u)+ E_ (u; aC") <- K 7 mE(u) for m large enough. 
r= l  

(re+l) n 

(18) E E(u;Z)<'K6(m2E(u)+mE-(u;aC")+E-(u;Z))<~K7 m2E(u) for rn large 
r= 1 

enough. 

We have set Z=t. l~ 1 aS i, where for i= l  . . . . .  2n, Si are the faces of C". We have 

assumed, and that is not a restriction, that u restricted to Z is in W ~'p (see Lemma A0 of 

the Appendix). In the next section, we are going to adapt the definition of the sets Pm 

and Qm, introduced in Section 1.2. 

II.2. Definition o f  Pro and Qm. Let e>0 be small, to be fixed later. As in part 1.2 we 

consider the following cubes: 

�9 The cubes C r such that E_m(U; Zr)>~e. We note PI,m the union of these cubes, and 

I~, m the set of indexes for these cubes, that is el,m=t.lret~,. C~. 
�9 The cubes C~ such that E_m(u;aC~)~em-L We note P~.,~ the union of these cubes, 

and 12, m the set of indexes for these cubes, that is P2, m=Orelz, mCr (V>0 is some fixed 

constant sufficiently small). 

�9 The cubes Cr such that Er,(u, Cr)>>-em-L We note  e3,m the union of these cubes 

and 13, m the set of indexes for these cubes, that is P3, rn=lJrel~,~ C r. 
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Finally we set 

Pm =" PI, mUP2, mUP3. m, Qm = Cn~Pm' 

I,, =Ii,mUI2,mUl3, m and Jm = {1 . . . . .  ( m + l ) " } \ I  m. 

Pm is the set o f " b a d "  cubes, Qm the set of good cubes. As in Section II.2 the relations 

(17), (18), the scaling equalities (3) and Em(U;Zr)=m"-P-ZE_(u;Zr) imply that 

meas Pm---~0. We are going to approximate u in different ways o n  Pm and Qm. Since the 

method in this section is a little more involved than the one of Section I, our approxima- 

tion sequence, which we denote by w(m,#, ~?)(x), will depend on three parameters: 

mEN* (which goes to + ~ ) , / ~ > 0  and q>0 (which will go to zero). Roughly speaking, 

we want w(m, #, rl) to be located, locally on Q,,, in small balls of  N k, whereas we allow 

w(m, #, ~) to have "singulari t ies" on Pr~: but these singularities can be eliminated using 

Lemma 2. First we are going to construct the approximation map w(m, #, q) on am. 

11.3. Construction of  the approximation map w(m,l~, ~) of  u on Qm. For p<.n-1 

and Cr in Qm the image by u of aC, may not lie in some domain B.~(Yr, 6) even if 

Em(u;aC~) is small; for this reason, w(m,#, rl) will not agree with u on aC~ (but will 

agree with u on Zr). For  0 < a < l ,  we consider the set Cr(a) defined by: 

Cr((~)= { xECr IIx--xrll (1-ct)l, 

where Xr is the barycenter  of Cr. Using linear interpolations, it is easy to construct a 

bilipschitz map dp(r,/z, ~1) from C~ to C~(r/) such that, for/~>0,  r/>O and 2 r /<#<l ,  we 

have: 

C~(r,/u, rl)(x)= x on C~(/~); 

X - - X  r 

(19) ~(r,/~, ~/)(x) - (1-~/)+x r on aCr; and 
211X-Xrllm 

We shall choose ~ of the form q= 1/q, qEN*. For C~cQm, we are going to construct 

w(m,#, ~) (we simply note w(#, 71) when there is no confusion possible) on Cr. For 

CrcQm recall that we have, by definition. 

(20) /~m(u; C,) ~ em-" ; 

(21) E_m(U; aCt) ~ era-v; 

(22) ~m(u; Z r) <~ e. 
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Let 60 be small. Since Zr is a union of (n-2)-dimensional cubes, we may apply Lemma 4 

with q=n-2 ,p  (recall that here p > n - 2 )  to each of the cubes composing Zr. Thus if we 

choose e<.eo(6o/4n 2, n -2 ,p ,  Nk), Lemma 4 and relation (22) show that the image of u on 

Zr lies in some domain/3Q(y~, 6) of N ~, Yr E N ~. For technical reasons, we shall give two 

different definitions of w(m,/~, rl) on Cr(r 1) first, then on Cr\C~(~I). 

Definition of  w(/~, rl) on Cr(rl). The idea of the construction of w(kt, 7/) on CrO1) is 

essentially the same as in Section 1.4, with some slight technical modifications. We set 

(23) w(kt, r/) = q~(Yr, 8n6o)~176 z, rl) on Cr(~/) 

(6o to be determined later). Hence on C~(/~) we have w(t~,rl)=q~(yr, 8nbo)OU, since 

�9 (r,/~, n,)=Id on Cr(l~). (This corresponds to the definition given in Section 1.4, for wm 

on C~ in Q, ,)  The definition of W(~, r/) on C~\C~O1) is more involved. 

Definition ofw(kt, rl) on Cr\Cr(rl). (In fact, the definition of w(/~, ~/) we are going to 

give holds only in the case 0Crn aPm=Q~. In the case OCrN aPm:~Q~ the definition is 

slightly different, see Section II.4.) For  i= 1 . . . . .  2n, we consider the faces S~, i of OC~ and 

we may consider, for simplicity, that for every i, Sr, i is a tranlate of [0, 1/m] m-~. The 

idea of the construction of w(#, r/) on Cr\Cr(q) is the following: In a first step, we want 

to define w(/t, ~/) on Sr, i. For this purpose, we show by adapting the method of Section 

1.1, that we may divide Sr, i in (q+l )  "-l (n-1)-dimensional cubes, such that the image 

by u of the boundary of these cubes lies in/~e(Yr, 260). We then define w(/~, q) on the 

boundary of these cubes by w(/~, ~/)=u. In a second step, we extend the value of w(/t, r/) 

to aC~ first and then to the interior of C~\C~(rl) in such a way that the definition is 

compatible with the one given on aCr(r/). First we present the division of Sr, i in 

convenient cubes: 

First step of  the construction of w(m, /~, rl) on C r \  Cr(q): division of  the faces Sr, i in 
(n-  l)-dimensional cubes. For k= 1 . . . . .  n -  1, and a E [1/4mq, 3/4mq] (recall that r/= 1/q), 
let P"-Z(a, k) be the restricton to S~, i of the (n-2)-dimensional hyperplane orthogonal to 

ak(a)=aek (here we choose coordinates such that Sr, i=[O, 1/m]"-lx{0}). For  each 

k = l  . . . . .  n - l ,  there is some ak in [l[4mq, 3[4mq] such that u restricted to 

[JT=l 1P"-2(ak+j/m q, k) is in WLP~C ~ and such that: 
q-- |  

j=O - \ \ mq 

Since for every a en-2(a, k) may be considered as an (n-2)-dimensional cube, and is in 
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fact a translate of [0, l/m] "-z, we may apply Lemma 4 to q = n - 2 ,  p and pn-2(a, k). Thus 

if P"-2(a, k) is such that: 

E_m(U; P"-2(a, k) ) <~ Co(6 o, n -2 ,p ,  N k) <- e, 

the image by u of pn-2(a, k) lies in Bo(yi, 260) (since u(cqpn-E(a, k))~JBo(y i, 60) for some 

YiENk, since ~(u; Sr, i)<~e). On the other hand, since C, cQ~ we have: 

8re(U; Sr, i) ~ e m  -~, 

which implies that, by the same argument as in Section 1.4 (proof of the claim); 

(25) meas{a E [ 0 , 1 ]  ~_m(u;p,_2(a, k))~>e}~<m -'l+v). 

We now consider, for any k in [1 ,n - l ] ,  the planes given by (24), such that 

Em(u;p"-2(ak+j/mq, k))~e. If m is large enough, relation (25) implies that there is some 

flk,j in [ak+j/mq-- 1/lOqm, ak+j/mq+ 1/lOqm] such that: IEm(u;p"-2(flk,j, k))<~e. Thus we 

may replace the hyperplane P~-Z(ak+j/m q, k) by the hyperplane P"-2(flk,j, k) in our 

slicing method. Doing this for all the directions, for k= I .....  n - 1 ,  we see that we, 

having divided the face Sr, i of Cr in (q+l)  "-1 (n-1)-dimensional "cubes" ,  which we 

note C~,7 I, for l= l  to (q+l)"-l :  in fact these cubes are not "perfect" cubes, but 

nevertheless they are all diffeomorphic to [-1/2qm, I/2qm] ~-1 by linear maps 3~,i such 

that IVf~,il~<5, IVf?,~l<~5 and such that u restricted to 0C~,71 is in WI'P~-~C ~ and takes 

value on Bo(yi, 260) (note that Yi depends only on the value of u on St, i). Moreover (24), 

clearly remains true if we replace P~-2(ak+j/rn, k) by/~-l(flk, j, k), and gives: 

(q+l) n-I 

(26) Z E-(u;aC~7,1)<~KloqE-(u;Sr, i)+E(u;OSr, i ) for i = 1  ..... 2n. 
1=1 

O n  i i(q+l) n-1 ~/ , ' ,n - I  �9 -'t=l ~,,~i,; we define w(/~,q) in the following way 

(q+l) n-1 

(27) w(p , r / )=u  (on LI aC~,71, f o r i = l  .....  2n). 
/=1 

In particular w(l~, ~/)=u on Zr. 
Next we extend w(/a, rl) to Sr, i, for i= 1 to 2n (that is we are going to define 

w(m, I~, rl) o n  OCr). 

271 m Second step. Definition of w(/a, rl) o n  LJi= 1 Sr, i-OC r. U restricted to each cube C"-lt, i 
is in wz'P(C~71, N t') and, u restricted to OCt",71 is in W1'P~C ~ Since :rtpl(N~)=0 (by 
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C "-1 and u: thus u assumption), we may apply Theorem 1 bis, of Section 1.6, to t,, 

restricted to C "-1 t,i can be approximated, on C~'-lt, i by maps in WLP(C~.TI,Nk)N, CO which 
n - I  coincide with u on aC[i . Let w(#, r}) be on 6'"-11,g such an approximation map of u 

satisfying 

' w ( p , r / ) = u  on 0C~7 ~ and w(ft, q)E WI'P(C~,71,Nk)I3C ~ 
(28) LE(w(#, r/); C~,71) ~< 2E(u; C~,7'). 

Note that this definition is compatible with (27) and that, if we define w(/~, rl) in the 

previous way on all the cubes C, ~-l w(/~, ~) is in WLe(aCr, N k) N C O and for each face Sr i I,i ' 
we have 

(29) E(w(~, ?7), Sr, i) ~ 2E(u; Sr 

Finally, we only have to extend w(#, rl) to the interior of Cr\Cr(rl) (w(~t, rl) has yet 

been defined on 0Cr and Cr0/), thus on a(Cr\Cr(rl))). 

Third step. Definition of(#,  rl) in the interior of  Cr\CrO1). We consider the map Z~r 

from Cr\CrO1) to aCr defined by: 

X--X r 
Xr(X) ---- 211X--xrll m +xr' 

and we consider the set ~u,q defined by 

( ~ (q+l)n-l ocn-l~ ~ .  . = x - /  u I,, ]. 
' \ i = l  q= l  

~ , ~  is a union of portions of (n-1)-dimensional planes. We consider the set 

N,,~=~tu, q O aCrU aCr(rl). We may consider that NF,,~ is the union of the boundaries of 

2n(q+l) "-1 cubes qg~,i (which are n-dimensional), such that: 

2n (q+l) n-I 

u u ~#., = C \ c , ( , #  
i :1 I=1 

and 

2n (q+l) n-1 

(30) u u a ~ ; , , =  ~..~. 
i=1 I=1 

All these n-dimensional cubes are diffeomorphic to [-I/2qm, 1/2qm]" by Lipschitz 

maps fl, i such that [vf~,;I~<K12, [vf~]I~<K12. On Jg~,,. (that is on the faces of these cubes 

12-918289 Acta Mathematica 167. Imprim6 le 5 novembre 1991 
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which are not included in 0Cr(r/) and aC~), we define w(#, r/) by: 

(31) w(/~,rl)=uoar ~ on J4~,,, r 

Note that on OCr(~), we have Z~r= (I)- 1 (r,/~, t/). Since for x in ~ ,  , n a C~(r/), (I) - ~ (x) = z~(x) 

is in U~--"l ~'-,t=l'(q+l)"-j0~,71, u(x) lies in UBe(yi, 26o)cB(Yr, 8nC~o). Thus w(/~,r/)(x)= 

uo:r~(x)=cf(y, 8nSo)ouozcr(x ). This shows that the definitions (31) and (23) are com- 

patible on ~z,,NOCr(rl). We see that by (23), (28), (31) we have defined w(#, r/) on the 

boundaries of  the cubes ~,e, and that, since the different definitions we gave for w(/~, r/) 

on the different parts are compatible on the points where they intersect, it follows that 
w(it, r/) is in wl.prl 12n I I ( q + l )  n-z  " �9 ' ~'--~=~,-'t=~ a~t,~,Nk). Now we are able to extend w(#,q)  to the 

interior of  the cubes ~. ;  using a standard radial extension of  the boundary value, that 

is: 

[If~,,(x)ll 2mq / u" 

(Recall that cs i -~[-  1/2mq, l[2mq]".) It is easy to verify that (32) defines now w(kt, r/) on 

C~\Cr(rl), and that w(/~, r/) is in WJ'P(Cr\Cr(r]), Nk). This definition is also compatible 

with the definition of  w(/~, r/) on C~(q) given by (23), and thus w(/z, r/) is in WL~ N~). 

Since the value of  w(#, r/) on the faces of C,., S,.i for i= l  to 2n, depends only on the 

value of  u on this faces, defining w(#, q) on all the cubes C~ in Qm by the previous 

method, we see that w(#, ~/) is in WL~ Nk). Note  moreover that, for each cube C~ 

(which is not in contact with OP,,,) in Q,n, w(#, ~7) is continuous on Cr/C,.(q/2). We are 

going to estimate now the integral ~Q,[Vu-Vw(m, It, r/)[ p dx. 

Estimation of.fegVu-Vw(m, #, ~l)[Pdx. Let Cr be included in Q,,. We consider the 

set ~ r,#)={xEC~(p)[ u(x)~Bq(yr, 8nO0)}. We claim that we have: 

(33) 

fQ IVu- Vw(m' kt' tl)[P dx <~ Kzy( tlE(u)+ f 
rn \ dUrEJm all(m, r,#) 

]Vule dx + fu,~sm(C,\C,(u)) }VuF dx )" 

Proof of the claim. For Cr included in Q,, we are going to estimate the integral of  

[Vu-Vw(#,  r/)IP on Cr(/~), CrOl)-Cr(#), and on Cr\Cr(tl). 

On Cr(#). We have using relation (23) w(#, r/)=q0(y, 8n60)o u. This implies: 

fc lVU-WW(~,r])lPdx=L IVu-Vw(#,rl)lPdx~Ks(l+g(8nSo)P) f ]Vul~ 
(#) row(#, 11) ,/u=~w(~, rl) 
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Since, by (23), {x E Cr(p)[ U(X)*W(#, rl) (X)} c q/(m, r, p) we have 

(34) fc [Vu-Vw(lt'rl)lPdx<~K'7 l IVulPdx" 
r(F) J ~/(rn, r, U) 

On Cr(t/)\CA#). We have w(/~, ~)=q~(Yr, 8n~0)ouo(I)-](r,/x, r/). Thus 

'7)1' K5(I +/((8n60) p) IW'-' I"= IW'l"= fCr(,,)\c:,,)lVul" dx. 

Since we have assumed t//#~<�89 is uniformly bounded, and thus 

(35) fc '7)l" ax fc IVulO dx 
,(~)\c,(#) r \c,(u) 

On Cr\Cr(r/). Since 
2n (q+l) "-t 

Cr~Cr(~) = U U ~,i 
i=1 1=1 

we have 

2n (q+l) ~-I fq~ 
(36) IVw(#, 77)1P dx ~< ~'~ ~'~ IVwl'dx. 

c,\c,(#) i=1 t=l ~,; 

Since, on e v e r y  (~ln, i w(/A, ~)  is a radial extension of the boundary value, given by (32) 
we have: 

(37) [ ]Vw(#, 17)1 p dx <~ K]91--~E(w(#, r/); ~ (~:ni) = g19 vm-'E(w(l~, r/); a cr ,; mq 

By the construction of w(/~, r/) on 0cr we have 

E(W(~i, ?]); ~(~,i n O f )  = E(w(~l, /]); r I) ~ 2Efu; ~,i-~); 

E(w(#,  ~/); aq~,;fl aCr(~l)) <~ K2oE(u; ~,71); and 

E(w(#,  q); 0 qgt~,i f~ 0~t~,,) <~ K21E(u;aqf~,7,1)qm -~ . 

Adding these relations we obtain 

(38) E(w(p,  ~]); 0(~,;) ~ gz2[E(u; cE~,~-l)+E(u; a c~:i; 1) rim-l]. 

Combining (36), (37), (38) and (26) we obtain 

~" IVw(#, 77)1 p dx ~ Kz3 q E(u; Zr). (39) 
Jc ,\c,(~) m 
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Since fc,\cr~,~)IVu-Vw(/~, rl)lP dx<~K5 f. (IVulP+lVw(  ','7)1 p, dx, (39) gives: 

(40) fc,\c,oT) IVu- Vw(/z' r/)lp dx<~K24[E(u; C'\Cr(rl))+rlm-lE(u; aC)+rl2m-2E(u; Z)]. 

Adding (40) for all the cubes Cr included in Qm, using the relations (17) and (18) and 

noting that Cr\Cr(rl)CCr\Cr(IZ), we obtain: 

(41, fo IVu-Vw(Iz'rl)lPdx<~K2'(f IVulPdx+rlE(u)) 
,eJmCr\C,(r/) \ tJ~e JmCr\Cr(r/) 

for m large enough. This completes the estimate on Cr\CrO1). Adding (41), (35) and 

(36) we obtain equality (33), and this completes the proof of the claim. 

We are going to prove now that (33) implies that fO,)Vu-Vw(m,/z, rl)lPdx tends to 

zero when n goes to +oo,/z--->0, r/--->0 and r///~<I/2. First we remark that 

meas( LI C~\C,(/z))~<2/z--->0 when /~--->0. 
rEJ  m 

Thus, by the dominated convergence theorem 

(42) l IVu~'dx--->O when /z--->0. 
Ju ,~smC,\Cr(~) 

Next, we have to show that meas(U~r ~(m,r,l~))--->O when m--->+~ and/z--->0. 

The proof of this convergence is similar to the proof of relation (8) (see Section 1.4). Let 

~(m,/z) be a "blow-up" map u, from C 'n to N* defined by 

u(-~(1-/~)+x~) on C '~. a(m, l~)(x) = 

We set A(m, r,/~)= {x E C'"I a(m,/z) ~/~Q(yr, 8n80)}. For a in[ -  1/2, 1/2] we consider the 

hyperplanes P(a, 1) and the subsets of [ -  1/2, 1/2] defined by: 

{ [ 1 1] E-(u(m'l~);P(a'l)'>~'=t~176 
B1= aE 2 ' 2  

B2 = {aE [-1,1]  E_(a(m, lz);OP(a, 1))>~el}. 

Since _E(ti(m,/z); C'")<.em -', 
meas(B0~<te~ -l m-L 
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Likewise, since E_(a(m, #); OC'")<~em -v, 

meas(B2)<~ee~ 1 m-L  

Thus meas(B 10BE)<~2ee~ 1 m-L  I f a  is not in B 1 UB2, the same argument as in Section 1.4 

(proof of (18))'shows that u(P(a, 1))c/~Q(yr, 460)c/~o(y ~, 8n60). This proves that 

A(m, r, it) c tJ P(a, 1). 
a E B l U B  2 

And thus measA(m, r, It)~<2ee~ -~ m-L This gives 

(43) meas(LI ~ when m--~0. 
r ~ J  m 

Combining (42), (43) and (33), we see that 

(44) (_ IVu-Vw(m,  it, rl)lPdx--,0 
aid m 

when m---~0,it---~0, ~7---,0 and ~7/#~ < 1/2. This completes the construction and the estimate 

of w(m,~, 17) o n  Qm. We come now to the construction of w,, on the "bad"  cubes, that 

is on pro. 

11.4. Construction o f  the approximation map w(m, It, r l) on P,,. We consider the 

connected components Pm(J) of Pro, f o r j = l  . . . . .  t(m), t(m) EN*; _ t(m) �9 P,,-tJ~=l Pro(J). Pro(j) 
is a union of cubes C, with r E Ira(j), and aPm(j)caQm u ac". We are going to adapt the 

construction of Section 1.3 (in particular Lemma 3) to the case considered here. Instead 

of considering each cube C~ in Pro(J) separately, we apply the slicing method of Lemma 

3 to Pro(J) (as a whole). Thus, slicing Pro(J) by hyperplanes P(a, k) we obtain a division 

of Pro(j) in little cubes that we denote by C~,b. Since w(it, i/) has yet been defined on Qm 

we have to respect a compatibility condition on aQm n aPm. Indeed, if S~, i is a face of a 

cube C, in Pro, which is included in aPm, the map w(#, ~7) has been defined (see Section 

1.3) on S~,,. in such a way that w(/~, rl) approximates u restricted to Sr, i, and moreover 

w(it, r/)=u on t.l)q~ n"-~ aqg~,~ -I. Thus in order to have compatible definitions we need the 

following additional condition: 

(q+l) n-I 

(45) U O~t~,?~ ~ [tJZj, b] NS~, i for each face S~,ic aP,~(j)naQm, 
/=1 

where Zj, b is the (n-2)-dimensional skeleton of the cube Cj.b defined in the same way as 

Zr for the cube Cr (see Section II. 1). 



174 F. BETHUEL 

It is easy, but fastidious to prove, that we may adapt the slicing method of Section 

1.1 to the set Pm(J), and with a number h large enough  of slicing planes (in the 

directions given by an orthogonal basis), we obtain a division of Pm in z(h) cubes 

G, b(h), that is Pm(j)= LlZb(h=] Cj, b(h), such that for h large enough, we have the following 

conditions: 

�9 z(h) (the number of little cubes Cj, b(h)) verifies 

(46) K29(:l*Im(j)) h" ~ z(h) ~ 2K29( ~Im(j) h" 

(where #In(j) is the number of cubes Cr in Pro(J)). 
�9 Cj, o(h) is diffeomorphic to the standard cube [-1/2mh,  1/2mh] n by a diffeomor- 

phism fb such that IVAI~<K~2, IVf~I~<K12. 

�9 u restricted to 8Qb(h) is in WLP(SCflh),N k) and u restricted to Z-i,b(h) is in 

WI'p(Zj, b(h), Nk)~C ~ and for h large enough, we have: 

[ ~ E_ (u ; OC-i, b(h)) <. K3o( ~Im(j)) mhE(u ; Pm(J)); 
(47) b=l 

I ~ E(u;Zj, b(h)) ~ K3o(:tr mEhEE(u ;Pro(J))" 
~.b=l  

�9 Relation (45) holds. 

We consider now a face S,, i which is included in 8Qm fl aPm(j); thus St, i is a face of 

some cube C'r, in Qm. In Section II.3, we have constructed the value of w(g, r/) of &,,., in 

such a way that w(/~, r/) is continuous and 

q+l 

(48) w(/z , r / )=u on O 0(~,71 and E_(w(,u,l]);Sr, i)<~2E(U;Sr, i). 
l=l 

Using the same method as in Section II.3, we may, moreover assume that we have 

constructed w(bt, r/) in such a way that 

z(h) 
(49)  w(/~,~)--u o n  I,.J Zj, b(h) NSr, i. 

b=l 

Since we have relation (45), relation (48) is automatically satisfied, and the remainder of 

the construction of w(/~,r/), and our estimation on fC,rfVU--Vw(,u, rl)lPdx are left un- 

changed by this slight modification. On the set LlZbr Z i ' b(h) we define w(/~, 7?) by 

z(h) 
(50) w(/a, r/) = u on LI Z-i,b(h), 

b=l 
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which is of course compatible with (49). On z(h) Ob=l OQb(h), we set 

(5 l) w(~,, ~) = ~, 

z(h) where ~ is a map in wl,pt,,, ~"b=l'z~h~ OCj, o(h);N ~) n C ~ such that ~=u on Ub=l Zj, b(h) such that 
�9 z(h) UZb!h~ , E(~, Ub= 10Cj, b(h))~<2_E(u; = OCj b(h)), and such that ~ agrees with the value of w(/x, r/) 

o n  Sr, i defined by relation (49). The existence of such a map ~ can be proved using 

Theorem 1 bis of Section 1.6, as was done previously in Section 11.3 for defining a 

continuous value of w(/~, t/) on &, i which satisfies (48). On each cube Cj. b(h) we extend 

w(/~, t/) by a radial extension of the boundary value: 

f on Qb(h). 
s 

(52) w(/~, V)(x) = ~ b-l(h) 2mhr--~b(x)ll/ 

It is then easy to verify that w(p, r/) is in WI'R(p~(j), N~), is continuous except on a 

finite set of points, which are the barycenter of the cubes Cj, b. Since we have relation 

(49) holding, our definitions are compatible on OQmNOPm. Thus w(p,r 1) is in 

WI'P(C ", Nk). We estimate now .fe~ ]Vw(p, ~)[P dx: using relation (47) we have 

Cj, b(h)) <<. K31 --~ E(~, OCj, b(h)) <<. 2K31 E(u; OCj, b(h))(mh) E(w(p, tl), 1. 

Adding the previous inequality for all the cube Cj, b and combining with (47) we obtain 

(53) E ( w ( # ,  r]); Pm) ~ K32 E(u; Pro). 

Since meas(Pm) goes to zero when m--.+oo, E(w(m,/~,q);Pm) goes to zero when 

r n ~  + ~.  Combining (53) and (44) we see that E(u-w(m,/~, r/))-+0 when m---~ + ~ ,  ~ 0 ,  

~1~0 and r//~<l/2. This shows that w(m,l~, rl) is an approximation sequence of u. In 

order to complete the proof of Theorem 1, when M"=C ~ and n - 2 < p < n - 1 ,  we have to 

show that w(m,kt, ~1) can be approximated, in WI'P(C n, N k) by maps continuous except 

at most at a finite number of point singularities. (The proof of Theorem 1 in the case 

considered here then follows from Lemma 2.) 

II.5. Proof of Theorem 1 completed (n-2<p<.n-1): w(m,#, rl) can be approxi- 
mated by maps continuous except on a finite set. Note first that on P,,, w(m, t~, rl) is 

already continuous except on a finite number of points. In order to approximate 

w(m, tt, r]) on Qm by maps having only a finite number of point singularities, we are 

going to adapt the mollifying argument of Section 1.5. Let  q0 be a smooth radial function 

from R n to R § such that supp(q0)cBn(0, 1) and J'l~, q0(x)dx= 1. We consider the map cp ~ 
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from R" to R § defined by cp"(x)=e-"9(x/o). First, we extend w(,u, 77) outside C" by 

w(i,, if x~ c". Note that, by the constructions of Section II.3 and 

Section I1.4, w(p, r/) is continuous on the boundaries of the cubes Cr. Hence w(/~, r/) 

restricted to aC" is in WI'p(aC ", N k) n C ~ and the extension of w(p, r/)(x) to R " \ C "  

defined above is also continuous on R " \ C " .  For  x in R" we consider the map 

w"(x) = fi~, of(x-z)  w(,u, rl) (z) dz. 

It is well known that w a is smooth on R", taking value in a bounded domain of R t, and 

that w ~ tends to w(/~, r/) in WI'p(C ", Rl). We consider now a cube Cr included in Qm. We 

are going to modify w ~ in such a way that the new map takes value in N k, and is 

continuous except at a finite number of point singularities. On CAr/) we have 

w(/z, r/) = qg(y~, 8n60) o u o ~ -1. 

Hence, the image by w(/l, r/) of  C,(r/) is in Bp(yr, 8n60). Moreover if one considers the 

way w(/x, r/) is defined on Cr\C,(rl), it is easy to check that w(p, rl) takes value in 

Bo(Yr, 8n60) on Cr\Cr(2Zt/3). Thus, for o small enough w ~ takes value on Cr\C,(rl) in 

the convex closure (in R t) of/~0(y ,, 8n60) which is in tT, for 6o small enough. We choose 

6o in such a way that this assumption holds (note that 60 has not yet been determined). 

On C,\Cr(rl) we are going to modify w ~ in such a way that the new map takes value in 

t?, and has only point singularities. Recall that (see Section 11.3) Cr \C, (~)=LI  ca?,,.. For  

simplicity, we may consider that ca?,i is the cube C'"(1/mq)=[-1/2mq, 1/2mq]", that 

cOca?, i Iq C~(rl) = { -  1/2mq} x [ -  1/2mq, 1/2mq] "-1 , 

that 

and that: 

(54) 

(the real situation can be 

diffeomorphism ft,, which 

~ ? , i [ ' l S r ,  i = { I/2mq} X[-1/2mq, 1/2mq] "-1, 

w(,u, rl)(X) = W(IX, rl) [ llxl~mq ] 

deduced from the situation considered here, using the 

maps ca?,i onto [-1/2mq, 1/2mq]"). We consider now 

the set D"--C'"(1/mq)"\C'"(1/2mq). Since, by construction w(p, r/) is continuous on 

acC?,i\Cr(rl) and takes value in /~Q(Yr, 8n60) on aca?,iflCr(rl), it is easy to see, using 

relation (54) and the properties of mollified maps, that for o smal l  enough, w ~ takes 
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value, on D" in C Moreover since w ~ converges strongly to w(/*, r/) in WI'P(C ~, N k) 
there is some vE [I/2, 2/3] such that: For o small enough, 

(55) E_ ( wa; c3C'n(-~q) ) ~ K34E(w(It, rl); ~,i). 

(56) 

On (~,i we  define a map tO~ by: 

"x"-vmq on C'~ \ mq " 

On cr i to~ is in WI'p((~,i, ~), continuous except at one point singularity, the bary- 

center of cs i. Moreover, we have: 

(57) E(to~ cr ~ K34E(w( ~, r/); qgT, i) for o small enough. 

We defined to~ in the previous way, on the cubes cr for every Cr in Qm, which is not in 

contact with aPm. If  aCt intersects aPm we adapt the definition of tO ~ in such a way that 

tO~ r]) o n  aCrfl Oem. This can be done using the same methods as in the proof of 

Lemma 6 (cf. Appendix). Then we set on Pro, tO~ rl), and clearly tO~ W1"P(C n, (7), 
for o small enough. Moreover, for o small, we have using (57): 

fc" IVtO~ r/)lp dx <~ K3s E(w(p, r/); Ur~j~ Cr\  C~(rl)). (58) 

Thus when m--*0,/z--,0, r/--*0, a-->0 (chosen in a convenient way), E(tO~ r/)) goes 

to zero. We set: 

(59) f~  = re o tO~ on C n. 

3,.o is in WI"P(C ~, Nk), continuous except at a finite numbers of point (f~ has the same 

singularities as tOo). Moreover 

(60) E(f~ when m ---, 0, /~ --> 0, r/--,0 (r//p<~ 1/2) and o ~ 0 .  

Since w(/~, rl) approximates u in W ~'p, (60) shows that u can be approximated in W I'p by 

maps, continuous except at a finite number of points. In the case p=n-1, since we 

assume :r,_l(Nk)=0, Theorem 1 follows from Lemma 1, applied to fo. In the case 

n-2<p<n- 1, Theorem 1 follows from Lemma 2 (the proof of which has not yet been 

given), applied t o f  ~ The next section is devoted to the proof of Lemma 2, and this will 

complete the proof of Theorem 1 in the case considered in this section. 
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II.6. Proof o f  Lemma 2. We consider a map v in W1"P(C ~, N k) ( p < n -  1) continuous 

except at most at a finite number  of  singularities. Let  A be a singularity of  v and 

Bn(A, O'0) a neighborhood of  A such that v has no other  singularity than A in Bn(A, Oo). 

For every 0<o<a0 ,  the homotopy  class of  v restricted to aBe(A, o) is independent on tr: 

we call it the homotopy  class of  v at the singularity A. In order to prove Lemma 2, we 

present a basic construct ion for " r emov ing"  a singularity (a similar construction is 

given in [Bell).  This construct ion is stated as Lemma 7 (for the proof  of Lem m a  2 we 

shall actually use the more general version Lemma 7 bis). 

I1.6.1. A basic construction for removing a singularity. We consider more 

generally an open domain W in R n, such that aW is smooth, and a map v in 

WI"P(W; N k) (p<n-1)  such that v has only one point singularity A, and such that v is in 

C=(W\{A};N~) .  We assume fur thermore that there is some point B on the boundary 

of W such that [AB] is included in W, and that there is some neighborhood Bn(A; O0) in 

W, of A such that 

( x - a  ) 
(61) v(x)=v Ix-Aloo +-A on B"(A;o). 

Then we have the following lemma: 

LEMMA 7. Let v be as above and p < n - 1 .  There is a sequence o f  smooth maps 

vine C=(W;N k) converging strongly to v in WI'P(W; N k) which coincide with v outside 

some small neighborhood Km o f  [AB], such that meas Km'---~O when m---~ + oo. 

Proof o f  Lemma 7. For  simplicity we may assume that aW is flat in some 

neighborhood of B and that aW is orthogonal there to lAB] (the general case is 

technically more involved but  the method remains essentially the same). We may 

choose orthonormal coordinates such that A=(0,  0, 0) and B=(0,  0, d) ,  where d=  IA-B[, 

and such that OWNB"(B, rl)=B"-I(O, rO• for some rl small enough. For  m EN *  

large enough, we set am=d/(2m-2) and we consider the subset Km of W defined by: 

Km=[-a m, am]n-l• d]. We are going to construct  a map v ' E  WI'P(W;N k) such 

that V'm=V on W",,Km, v',, converges strongly to v in W I'p, and such that Vm is continuous 

on Km except  at a finite number  of  point singularities at which the homotopy class of  v 

is trivial. Then, we apply to v"  Lem m a  1 bis of the Appendix, which shows that v"  can 

be strongly approximated by smooth maps: this will complete the proof  of  Lem m a  7. 

We divide Km in m n-dimensional cubes Cmj (which are in fact translates of 

[--am, am] n defined by: 

Cm,j=[--am, am]n-l• for j = 0  . . . . .  m--1. 
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Let u be such that 0<or<or0/2. Since v is smooth on W \ B " ( A ,  o) there is some constant 

d(u) such that IVvl=<d(cr) on W\B"(A,  o). For the cubes C,~,j which do not intersect 

B(A;cr) we have IVvl~<d(cr), and thus 

n p n - 1  (62) E_ (v;aCm. ;) ~ 2  nd(cr) a m . 

For the cubes Cmj which intersect Bn(A, o), we have relation (61) holding for these 

cubes, and thus it is easy to verify that sup{IVv(x)l, x ~ aC,.,y}<g/a,., which leads to the 

inequality 

- .  , lC , ,Tn-l-P for C m j f l B n ( A , o ) ~ Q .  (63) E ( v ;  O C  m j)  ~ "~36 ~ m  . 

Since we have at most T,.(ty)=cr/am+ 1 cubes Cm,j which intersect B(A, u) combining (62) 

and (63) we obtain 

m - 1  

n - l  m ) .  (64) Z _E(v; OCmj) <. K3v(oan~-z-P +d(o) p a., 
j = 0  

In order to complete the proof of Lemma 7, we shall use the following lemma, the 

proof of which will be postponed after the completion of the proof of Lemma 7. 

LEMMA 8. Let  p>0, e>0, p < n -  1, and qJ be a smooth map from OC'"(p) to N k. 

There is some 0<a0<p/2, depending only on [Vv[= and e such that for  every 0<a<a0,  

there is some smooth map (o from OC'"(p) to N k having the following properties: 

(65) 

The homotopy class o f  (p is trivial; 

~ =  cp on OC'n(/u)\Bn-l(O,a)• { 2  }; 

Proof  o f  Lemma  7 completed. As a first step, we are going to define a smooth map 

v~, on LI~=~ l aC.,,j such that v ' = v  on OK,. and such that the homotopy class of v~, 

restricted to each aCm,j is trivial (afterwards we will extend v" inside each cube C,.,j). 

Definition o f  v m on U ~  l OGre, j. Let e>0 be small. We first apply Lemma 8 to Cm, o, 

to qg=v restricted to OCm, o, and a=min(eam, ao). Lemma 8 provides us with a map q3 

from OCm, o to N k, satisfying (18). On acre, o we define Vm by 

t v.,= cb on aCre, o. 
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It follows that v~, has the following properties:  The homotopy  class of  v"  on OCm, o is 

trivial, V'm=V on OCm.o\B"-a(o,a)X{am} and , .-1 E(Om;B (0, a)• Hence  Vm is 

equal to v on OCm.oNOK m. We now consider the next  cube Cm, l--[-am, am]n-lx 

[a m, 3am] and the smooth map Om from OCm, l to N* defined by 

0 m = v" on OCm, o n OCm, 1, that is, on the face [ - a  m, am]"-l X {am} 

(66) 0 m = v elsewhere,  that is, OGre, 1 \  [--am, am] n-I X {am}. 

It is easy to see that the homotopy  class of  0m on OCm, ~ is the same as the homotopy  

class of v restricted to OCm, o" We apply once more Lemma 3 to Om and OCm, ~. Lem m a  3 

provides us with a new map from OCm, ~ to N k satisfying (18). We take Vm equal to this 

new map. Note  that this definition of  v"  on OCm, ~ is compatible with the previous 

definition of  v" on OCm, o" Moreover  the homotopy  class of Vm on OCm, ~ is trivial and 

Vm=V on OCm, ~ NOK m. Repeating this argument m times, we define a smooth map v" on 

U?~O 1 OCm, j such that V'm=V on OKra and such that the homotopy class of  v~, restricted to 

each boundary OCm, j is trivial. 

t __ m--I  r Definition o f  v m on K m-  U~= 0 Cm. j. For  each cube Cm,j we extend o,. defined on 

OCm.j on Cm.j in the following way: 

, ( x-x~ ) 
(67) v'(x) = Vm \ ~ a m + X j  where xj is the barycenter  of  Cmj. 

It is easy to see that v ' = v  on OKra, that v~, is in WI'p(Km;N~ continuous except  at the 

points xj, where the homotopy  class of  v"  is trivial, and for every small neighborhood of  

the points xj, Lipschitz outside this neighborhood. Easy calculations, combining (67), 

(66) and (65) show that 

E(v',,,; Cmj) ~ K(E(o; OCmj)+ e) a m, 

and adding all these inequalities f o r j = O  . . . . .  m - 1  we obtain, using (64) 

m - I  t (Z (68) E(Vm; Km) ~ Ka m (E(v; OCm,j)+e ~ K38(aanm -l+d(O)pam+de). 
\ j = 0  / 

If we let m go to +oo, and e go to zero, we see that 

(69) lim E(v'~; K m) = O. 
n---~ + o~ 

Since V'm=V on OKm, we may extend Vm to W by v ' = v  o n  W"NKm. Since we have (69), 
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and since v" has only point singularities, at which v" has a trivial homotopy class, v" 

can be strongly approximated by smooth maps, equal to v~ and hence to v outside Km 

(see Lemma 1 bis of the Appendix). This completes the proof of Lemma 7. Before we 

present the more general version of Lemma 7, namely Lemma 7 bis, we give in the next 

section, the proof of Lemma 8, which has been postponed. 

Proof of Lemma 8. Since it will be easier to work on spheres rather than on 

boundaries of cubes, we consider the sphere S "-~, and a bilipschitz map go from aC'"(/~) 

to S "-l such that: IVgol<~ga9i~-l;lVgoll<<,g391~, such that g0(0, 0, -/~/2)=(0 ..... - 1)=P_, 

g0(0 ..... 0, +/~/2)=(0 .. . . .  0, + I )=P+ ,  and such that go preserves the orientation. Let 

fl>0 be small. We set: 

V(fl) = S "-~NB"(P+,fl) and W(fl) = S"-' \V(fl) .  

Since V(fl) and W(fl) are diffeomorphic, there is a map �9 from S n-I to W(fl) such that 

(70) Oplw~ = Idlwy 

We consider the subsets of aC'"(~) defined by: Wm, a=gol(V(fl)); ~r 

(Note that ~,,,p and ?4/'m, a are diffeomorphic.) For fl>0 small enough, 

~rm, a c B"-'(0, a)x {~}. 

We consider the map Op defined from aC'"(/~) to N k by: 

Op= oO(golOOaOgo). 

Note that, since ~a is homotopic to a constant map, Op is also homotopic to a constant 

map. (70) shows that Op=o on O%,,p. In order to complete the proof of Lemma 8, we 

recall the following result of B. White [Wl]: 

LEMMA 9. Let M and N be Riemannian manifolds, with OM#:f~. I f  M and N are 

two Lipschitz maps from M to N such that f=g on OM, and such that f and g are [p]- 

homotopic relatively to OM (that means, homotopic, relatively to aM, on some [p]- 

skeleton of M). Then for every e>0, there is some Lipschitz map f '  which coincides 

with f and g on aM homotopic to f relatively to aM, and such that [[f'-gll<~e. 

Proof of Lemma 8 completed. We apply Lemma 9 to M= ~,,,a, f=O,, g=v. Since 

~m,p is diffeomorphic to B "-t, and since p<n-1 ,  any [p]-skeleton of a~m,a is also a [p]- 

skeleton of ~,,,a. This shows that 0a and v are clearly [p]-homotopic relatively to a~m,p. 
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Thus the theorem gives us the existence of a Lipschitz v' homotopic to 0e on ~,~,~ 

relatively to ~m,~, such that v'=v on a~m,~ and such that 

E(v"~ ~m,fl) <- E(v; ~m,~)+ e 

we set ~ = v '  on ~m,a and q~=v, on ac'n(to. Then r is homotopic to 08 on 8c'n(tt) and 

thus the homotopy class of q~ is trivial. It is easy to verify that r satisfies the conditions 

(65), and this completes the proof of Lemma 8. 

In the hypothesis of Lemma 7, we have assumed that v E C ~ ( W \ { A }  ;N k) and that 

(61) is satisfied. In fact this technical assumption can be omitted, and we have the more 

general result: 

LEMMA 7 bis. Let v be WI'p(W; N *) ( p < n -  1), such that vE C ~  {A } ; N k) (resp. 

C=(W\{A);Nk) .  There is a sequence o f  maps Vm in WI'p(W;Nk)NC ~ (resp. C =) 

converging strongly to v in WI'p(W;N k) which coincide with v outside some small 

neighborhood Km of  (AB] and such that Km--~O when m--.+oo. 

Proof o f  Lemma 7 bis. It suffices to prove that v can be approximated by maps in 

W ~'p n C~(W)\{A};Nk) ,  which verify (61). This can be done using the idea of the proof 

of Lemma 1 (cf. Appendix, proof  of the general case). Using Lemma 7 his, we are able 

now to complete the proof of Lemma 2. 

II.6.2. Proof o f  Lemma 2 completed. Let (Ai)l<~i<~k be the point singularities of v. 

Let (Bi)l~,.~, be points on 8C ~, chosen in such a way, that there is a tubular neighbor- 

hood Wi of [AiBi] in C ~ such that winvcj=O, if i . j .  We apply Lemma 7 bis to v 

restricted to Wi, for i-- 1 . . . . .  k. This lemma provides us with a sequence of  maps Vm in 

WI'P(C ~, N k) n C o and of some small neighborhood Km, i of [AiBi] in Wi such that 

meas Km, i ~ 0 when m ~ 0, 
i 

lim E(vm, gm, i)--O and 
m.--~ + oo 

Vm~ V 
k 

o n  c n ~  U Km, i �9 
i=1 

Thus Vm-'-~V in WI'p(c ~, Nk). This completes the proof of Lemma 2(i). 

Proof o f  Lemma 2(ii). We may assume without loss of generality that 0 is not a 

singularity of v. Let  a > 0  be small and a ' < o ,  be such that E(v;SBn(cr'))<~2E(v;Bn(o)). 
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Let Bi be points on OB"(o), such that there is a tubular neighborhood Wi of [AiBi] in 

C"\B"(cr), such that Wi4=Wj if i*j. Lemma 7 bis gives us the existence of a sequence of 

maps Vm in WI'P(C"\B"(c/)) n C ~ and of some small neighborhood Kin, i of [AiBi] such 

that K,,,,iN ocn=Q, limm_,+= E(Vm; Km, i)=O, V m=V o n C n \ ( L I k = l  Kin, i U Bn(a')) (and thus 

on OC"), and moreover lim,,_~+= E(vm; aB"(o'))=E(v; aB"(a')) (for this last equality, see 

the construction of Vm given by Lemma 7 near B~). We extend vm on B"(cr') by 

v,,,=Vm(XCr'/lxl). Then it is easy to see that Vm--+v in WI'"(C ", N k) when m--*+~,  and 

cry0,  moreover Vm is continuous except at the point singularity 0. Since there is some 

continuous map v' such that v' =v on aC'" the homotopy class of Vm at 0 is trivial. We 

apply then Lemma 1 bis to vm and this completes the proof of Lemma 2(ii). 

11.7. Proof of  Theorem 1 bis when M=C" and n-2<p<-n-1.  The construction of 

Section II.5 shows that v can be approximated on WI'P(C ", N k) by maps continuous 

except at a finite number of point singularities, and which agree with v on the boundary 

(the conclusion then follows from Lemma 2(ii)). 

III. Proof of Theorem 1 when M"=C" and l ~ p ~ n - 2  

We introduce first some notations. For  q~nEN* and for x=(xl,x2 .. . . .  x,) in R", we set 

llxllk = min{max IxA, S is a k-element subset of (1 ,2  . . . . .  n} }. 
iES 

If/~>0, we define a skeleton [C'"(/~)]k of the cube C'"(/~) by: 

= {x C%')/tlxltk =/z/2} .  

Clearly [C'"(kt)],=C"(/t), [C'"(/u)],,_I=OC'"(/a) and [C'"(p)],_z=Z(/~) as defined in Sec- 

tion II. More generally, for k<~n- I, [C'"(#)]k is a union of k-dimensional cubes, which 

are translates of C'~(/z), and [C'"(/~)]k_ 1 is the union of the boundaries of the k- 

dimensional cubes composing [C'"(#)]k. Since we have to consider sets C which are 

diffeomorphic to standard cubes C'"(/~) (for instance C r, ~l",i, ...) we define the s- 

skeleton [C]k of C by: 

[C] k = f-l([C'"(/z)]k) 

where f is a diffeomorphism from C to C'%u). 

Throughout Section III, we will assume that l<p~<n-2,  that :rtp](Nk)=0. s repre- 

sents the largest integer strictly less than p; that is s=[p]  i fp  is not an integer, s=p-1  if 
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p is an integer, and we shall consider a map u in W1"P(C ", Nk). In order to prove 

Theorem 1 in the case 1 <~p<.n-2, we are going to adapt the proof given in Section II for 

the case n-2<.p<n - 1, and we mainly follow the same steps. 

III. 1. Division of  C" in little cubes Cr. We may assume without loss of generality 

that for s<~k<~n - 1, u restricted to [C"]k is in WI"P([C"]~, Nk). It follows then by the 

Sobolev embedding theorem that u restricted to [C"]s is continuous. Slicing (7" by 

hyperplanes P"(a, k) we may obtain a division of C" in (m+l)" cubes C~, which are 

translates of [-1/2m, 1/2m]" (except those in contact with the boundary, see Section 

1.1), such that: 

�9 u restricted to [C,]k is in W j'p for every s<~k<<.n - 1. Thus u is continuous on [CrL. 
�9 The following relation holds, for m large enough: 

(m + l)n 

(71) Z _E(u;[Cr]k)<~K7mn-kE(u), for every s<.k<.n. 
r=l 

Next, we shall define the "bad"  and the good cubes. 

111.2. Definition of  P~ and Qm. Let e>0 be small, to be determined later. Qm is the 

union of cubes Cr such that: 

(72) 
~,,(u; [Cr]k) ~< em -v 

~,,(u; [CrL) ~< e; 

where v>0 is small, and for s ~< k~< n. 

We set Pm=Cn\Qm. We have: 

(73) Era(u; [Cr]k) = mq-PE(u; [Cr]k) for  s ~< k~< n .  

(72) and (73) imply that measPm--->0 when m--->+oo. We first define w(m,l~, rl) o n  am. 

111.3. Definition of  w(Iz, rl) on Qm. We consider a cube Cr in Qm such that 

aCr flaPm=f~ (the case aCrnaPm4:f~ is an adaption of the previous and will be 

considered in Section 111.4). Since E(u; [C,],)~<e, and since [CrL is a union of 2n! 

s-dimensional cubes, we may apply Lemma 2 to u restricted to these cubes. Choosing 

e<eo(6o/2nn !, s, p, Nk), we conclude that the image of [Cr], lies in some domain B(y~, 6o) 

of N k, for some Yr in N*. Next we shall define w(m, lz, ~1) on Cr(~) and then on C~\Cr(~). 

(We choose r/such that 77---I/q, q E N*, as in Section II.) 

Definition o f  w(m,lz, rl) on Cr07). We set: 
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(74) w(m,  I z, rl ) = qg(yr ,  2"+ ln ! ~o) O U O dp-l(r, lz, rl ), 

thus on Cr(IZ), w(m,/z ,  71) = q) (Yr ,  2" +In ! 60) o u. 

Defini t ion o f w ( m , / z ,  rl) o n  C r \ C r ( 7 ] ) .  We use the same method as in Section 11.3. 

We divide each face Sr, i in (q+l )  "-1 cubes qr t,i , as in Section II.3. We may adapt the 

method in such a way that we have: 

r ~ . - q  is in W ~'p for every s<~k<~n. Thus u is continuous on �9 u restricted to t i,i .Ik 
[Cn-1] l, i .Is" 

(re+l) n-l n-1 ) 

(75) EI=I E(U'~ [~,71]k)~K40(t~k= E_(u i (~,T][Sr, i]t) q t-k . 

rqg.-11 lies in Be(yi, 60) for some Yi in N k depending �9 The image of u restricted to t t,~ js 

only on the restriction of u on Sr,~. 

r~ . - ] l  On t i,i js we set: 

(76) w(/z, r/) = u, which is in Wl'Pnc~ 

Let N~,,~(s) be the (s+ 1)-dimensional set defined by: 

2n (q+l) n-I 
r~--11 N,,~(s)= U U t l,i j,+~, 

i=1 I=l 

and ~ , ,  ~(s) be defined by 

z, <q+lr-' r~r N~"(s)= J~(s ) \aCrUaC' ( r l )=~r r '  ' ,= i=1 ~'J t i,i i s / .  

On ~u,~(s) we set: 

(77) w(l~,~7)=u(~t,(x)) on ~t~.,(s). 

Note that (76) and (77) are compatible. Combining (74), (76) and (77) we see that w(g ,  ~7) 

is defined on [~7.i]s. In order to extend w(g, ~7) to ~l,~i we proceed inductively. Suppose 
n A k +  I that w(/u, rl) has yet been defined on [~,i]k" Let  "-t,i,j be the (k+ D-dimensional cubes 

n Ak+l Since composing [~i, i]k+l and suppose w(/z, r/) has not yet been defined on some ,,j, ij. 
k+l n k+l . aAi, i,j~[c~,i]k we may extend w(m,/~, rl) to At, i, j by a radial extension of the boundary 

value: 

13-918289 Acta Mathematica 167. Imprim~ le 5 novembre 1991 
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(78) w(m, lt, q)=w(m,/u, rl) ~,i.j 211ft, ij(x)llmq 

zlk+ 1 where JS, i.j is a diffeomorphism from ,~l.~.jtoC'k+l(rnq) such that 

K12 IVf;, jl< glz. Applying this method to each a~,+.,) where w(m, I~, rl) has not yet been 

defined we see that we have defined w(m,l~,rl) on [qg~.i]k+l, and finally on qr if we 

proceed inductively. Moreover,  it is easy to check that: 

w(/~, r/) is in WI"P(C~\C~(rl)) and coincides with (74) on OCr(rl), 

) (79) E(w(It, q); ~",;) ~< K4, E(u; OCr)+ _E(u; [~t, ~]s , 

the image of  w(kt, q) on c, lies in/~e(y,, 2"+1n60). 

Ill.4. Definition of  w(/~, rl) on  Pro. As in part 11.4 we consider the connected 

components em(j) of Pro, and a division of  Pm in z(h) n-dimensional cubes Cj, b(h), for 

l<~b<.z(h), such that the compatibility condition (45) holds on every face 

S,,iCOPm(j) n aQm and such that: 

�9 For  l<.b<.z(h), u restricted to [Cj.b(h)]k is in W I'p for every k in {s . . . . .  n} and 

thus u restricted to [Cj. b(h)]s is continuous. 

�9 The following inequality holds, for h large enough and s<k<~n-1: 
z(h) 

(80) E _E(u; [Cj. b(h)]k) ~< Ka2(mh) n-k E(u; Pro(J))" 
b = l  

z(h) 

(80') E _E(u; [Cj, b(h)]k) n St, i) <<. K42(mh) n-k-1E(u; S,,i). 
b = l  

We consider, for s<~k<<.n the set G(h, k) defined by: 

z(h) 

G(h, k) = 13 [Cj b(h)]k, 
b = l  ' 

(clearly G(h, k)cG(h, k+ 1), and G(h, k) is a union of  k-dimensional cubes). On G(h, s), u 

is continuous. For  h large enough, we set: 

(81) w(/u, rl) = u o n  G(h,  s). 

We are going to extend the value of  w(/~, r/) defined by (81) to the sets G(h, s + l ) ,  

G(h, s+2) . . . . .  G(h, n -  1). Let  A s+~ be one of  the (s+ 1)-dimensional cubes composing 
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G(h, s+ l ) .  aAS+l~G(h, s), and thus u (and W(l a, r/)) is continuous on 0,4 s+l. Applying 

Corollary I of  Section I to A s+t and u in the case p is not an integer (then ~rlsj(Nk)=0), 

and the result of  Schoen and Uhlenbeck in the case p is an integer, we deduce that u 

restricted to A s+l can be approximated in W~'P(A ̀ +t, N e) by maps in Wt'P(A "+l, N k) 13 C ~ 

which agree with u on aA s+~. Hence,  let w's(a, r/) be a map defined on A s+~ such that: 

( w~(p,q) is in WI'p(As+I,Nk)NC O, and w'(l~,q)=u on OAS+l; 

E(w'(/~, r/); A s+l) ~< 2E(u; AS+l). 

Constructing w~(~,~/) in the previous way on every A ~+~, we define w(/t ,q) on 

G(h, s + 1), and w'(# ,  ~) E WI'P(G(h, s + 1), N k) f~ C o. Next  we consider a cube A s+2 in 

G(h, s+2).  Since OA'+2cG(h, s + l )  we may extend w'(/~, r/) on A s+z by a radial exten- 

sion of  the boundary value: 

( , s (x) a,+2 
(82) w'(/~,r/) = w(p, 7?) fa 12mhll3iA(X)[lj l on 

where fa is a diffeomorphism between A s+z and [ -1 /2mh,  1/2mh] s+l. Note that w~(/~, r/) 

is in WI'p(G(h, s+2),  Nk), continuous except at a finite number of  point singularities. In 

order to approximate w'(#,  r/) by a continuous map, we shall use the following lemma, 

which is provided in the Appendix (and which is a version of  Lemma 2): 

LEMMA 10. Let/~>0. Let p > l ,  let s be the largest integer strictly less than p. Let 

dEN*,  d>~s+3. Let v be in W~,P(aCa(I~), N k) continuous except at a finite number of  

point singularities, which are not on [~cd(#)]~. Then v can be approximated in 
W~'P(acd(#), A rk) by continuous maps, which coincide with v on [0cd(/~)]~. 

Applying Lemma 10 to each cube A ~+2 in G(h, s+2) ,  it is easy to see that there is a 

continuous map w'+~(/~, r/) defined on G(h, s+2)  such that: 

w~+l(/~,r/) is in W1'P(G(h,s+2))NC~ 

(83) w~+l(#, r/) = zb(/~, r/) = u on G(h, s); 

E(W~+l(/t, r/), G(h, s+2))) ~ 2E(w's(/~, r/), G(h, s+2)).  

Using the same construction as for w's(p, r/), we may extend w's+l( #, rl) to G(h, s+3)  by 

(82), and w's(p, tl) is continuous on that set except at a finite number of  point singulari- 

ties. We then define w'+2( ~, r/) using Lemma A9. Repeating this argument (n-s)  times 

we finally define a map W'_l( ~, r/) such that: 
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�9 w'~_l(~t, rl)6. WI'P(P,.(j),N k) and is continuous 

points, 

(84) n_~(/~, rl) restricted to G(h, s) coincides with u, 

, . _ <  _ 
(85) E(wn-l(lu, ~1), Pro(J)) "r K43 \ mh ] 

except at a finite number of  

Kfl n-s-' (85') E(w'n-l(Iz, rl),S,,i) <- 43~--~] E_(u;G(h,s))nS,,i) ) f o r e v e r y f a c e  Sr.ion OP m. 

--1J)' On Pro(J) we set w(/z, r / ) -  ~_~(~, rl). 

Combining (80) and (85) we see that (for h large enough) 

(86) E(w(~, r]), Pro(J)) <~ K44 E(u; pro(j)). 

Likewise, combining (80') and (85'), we have, for every face Sr, i in OP,, n aOm, 

(87) _E(w(/z, r/); St, i) <~ K44 _E(u ; Sr, ;). 

The relations (85') and (87) show that our construction of  w(/~, r/) on Pm is compatible 

with the construction on Qm. Thus w(/z, r/) is in WI'p(C ~, Nk). 

111.5. Proof of  Theorem 1 completed in the case l <~p<.n- 2. First we shall estimate 

Sc, IVu-Vw(lt, q)lPdx. Let  Cr be a cube in Q,,. Using the same argument as in part 11.3, 

(relations (39) and (40)), and combining (79), (78), (75) we obtain: 

IVw(/~, r/)l p dx <. K4, tiE(u; OC)+ 2 E(u; [Cr]t). 
r\C,(~) m t=s 

Then following the calculations of  part II.3 ((33) to (44)) we prove that 

( 8 8 )  IVu-Vw( ,,7)l'dx--,O when m___>+oo, u_._>0,~/___>0and__~L< 1 - - .  

JQ m /Z 2 

On the other hand (86) shows that 

(89) E(w(i z, r]), Pro)----> 0, 

since measPm--~0. Combining (88) and (90) we see that w(m, I~, rl)is an approximation 

sequence of  u. Then using the same method as in Section 11.5, it can be showed that 

w(m,/~, rl) can be approximated by maps in W1'P(C ", Nk), continuous except at a finite 
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number of point singularities (note that on Pro, w(#, r/) is continuous except at a finite 

number of points). We conclude using Lemma 2 as in Section 11.5. 

111.6. Proof of Theorem 1 bis, in the case l<p~<n-2.  The proof is the same as the 

proof of Corollary 1 in the case n-2<p<n- I. 

IV. The case ~pl(Nt)*0 

When :rtpl(N~)*0 smooth maps are not dense in W~'P(M ~, N k) as the results of [SU2] and 

[BZ] show (see also Theorem A0 for an extension of the result to the case M n is any 

manifold of  dimension n). Nevertheless, we are able to aproximate maps in 

W~'P(M ~, A rk) by maps which are smooth except on a singular set, of dimension 

n-[p]- I, which has an analytic shape (see the introduction). These results are stated 

as Theorem 2 and Theorem 2 bis. For  simplicity, we assume in Section IV that M~=CL 
The general case will be considered in Section V. 

IV.1. Proof of Theorem 2. Le t  u be in W~'P(C ~, N~). We use the same construction 

as in part III. On Qm let w(m, I~, rl) be the map given by the construction of Section 

111.3. We consider each set Pro(j), and we define first w(/~, r/) on G(h, s) by: 

w(/~, r/) = u on G(h, s). 

Thus w(/z, 7) is continuous on G(h, s). Let  A s+t be a cube composing G(h, s+ 1). I f p  is 

an integer, s + l = p ,  we may apply the result of Schoen and Uhlenbeck [SU3] to u 

restricted to A t+l, and define w(/z, r/), as a continuous map, which agrees with u on 
OA s+l and such that: 

E. (w(/t, rl),A s+l) <~ 2E_ (u;AS+l). 

If  p is not an integer, we set 

, ~ f A ( x )  
w(l~,rl)= u( f~  (2mhllfz(X)]]) ) o n A  '+2. 

Hence w(/~, r/) is in Wl'~(G(h, s+ 1), N*), continuous except at a finite number of  points. 

For s+l<~k<.n, we are going to define w(/~,r/) inductively. Suppose that w(/~,r/) is 

defined on G(h, k -  1). For  each cube A k composing G(h, k) we set 

W(l~,rl)=w(#,rl)(ff~l(-2m~x)[[.)) on a k 
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(note that aAkcG(h, k -  1)). For  each k, s+ l<k<-n, w(kt, rl) is hence in WI'P(G(h, k), N k) 

continuous except  on a singular set Zk of  dimension k - [ p ] - 1 ,  which has an analytic 

shape, as described in the introduction. Finally, w(/~, ~/) is in WLP(P m, N k) continuous 

on Pm except  on a singular set Y of  dimension n -  [ p ] -  1, which has an analytic shape. 

Moreover w(m, I~, r l) is an approximation sequence of  u in W~'P(C ~, N k) (the calculations 

are the same as in Section III). Thus in order  to prove Theorem 2, we only have to 

prove that w(m, It, 7?) can be approximated by maps in R ~ The method for doing that, is 

essentially the same as the method of  Section II.5, and this completes the proof  of  

Theorem 2. 

IV.2. Proof of  Theorem 2 bis. The proof  of Corollary 2 follows essentially the same 

ideas as the proof  of  Theorem 2, combined with the ideas of  the proof  of  Corollary 1. 

V. Extens ion of  the results  to the case M n is any compact  

R iemannian  manifo ld  of  d imens ion  n 

Let  M n be any connected compact  Riemannian manifold. Le t  u be in WI'p(M n, Nk). 
Following the ideas of  B. White [W1] (section 1, remarks p. 129), we may realize a 

"cubeula t ion"  of  M ~ that is, we may regard M ~ as a union of  n-dimensional cubes, 

which are diffeomorphic to C n, and such that any two of them are either disjoint or 

intersect along a lower dimensional face. Using the ideas of  [W1] (section 3, lemma p. 

135) we may also assume, that,  for s<.k<n the restriction of  u to the k-skeleton (as 

defined in Section III) of  the "cubeu la t ion"  is in W I'p. Assume now that :rtp~(Nk)=0. In 

order to prove Theorem l in the general, we distinguish two different cases: 

�9 a M n * ~ .  Adapting the construct ion of  Section III to each cube of the "cubeula-  

t ion" we are able to show that u can be approximated in W I"p by maps in WI'p(M ", Ark), 

which are continuous except  at a finite number  of  points. If  n-l<.p<n we conclude 

using Lemma 1. If  l < p < n - 1 ,  we use Lem m a  2 (i), and we "evacua t e "  the singularities 

toward the boundary.  This gives our  approximation of  u in WI'P(M ~, N k) by smooth 

maps. 

�9 aM~=~.  We set ~/=[0,  1 ]x M ~, and we define a map t~ from ~t to N k by 

ft(t, x)=u(x), for t E [0, 1], x E M ~. Thus t~ is in W1"P(I(I, Nk), and a~ t=  {0, 1 } x M  ~. Apply- 

ing the previous case to 2kit, we see that ~ can be approximated by smooth maps in 

C| ~, Nk). It is then easy to conclude that u can also be approximated by smooth 

maps, and this completes the proof  of  Theorem 1 in the general case. 

Theorem I bis, Theorem 2 and 2 bis are proved following the same ideas. 
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VI. Weak density results 

VI. 1. Proof o f  Theorem 3. We first have to show that, if p is not an integer, and 

:~[p1(N~)~=0, then smooth maps are not sequentially dense for the weak topology. For 

this purpose, we have to produce a map in W1'P(M n, N k) which is not the weak limit of a 

sequence of smooth maps. 

VI. 1.1 A map which is not the weak limit o f  a sequence o f  smooth maps. We 

restrict our attention to the case Mn=C n (the general case can be treated in the same 

way, see Theorem A0 of the Appendix). We consider the map f E  WI'P(C ~, N k) intro- 

duced in [BZ], Theorem 2. For proving that this map cannot be approximated, for the 

weak topology by a bounded sequence of smooth maps, our argument is essentially the 

same as in [BZ], Theorem 2 (where it is proved that f cannot be approximated by 

smooth maps for the strong topology), except that we use Theorem 2.1 of [W2] instead 

of the result of [WI] used in [BZ]. Note that this result holds only ifp is not an integer. 

In fact, for instance for Mn=B 3 and Nk=$2,:~2($2)~:0, smooth maps are sequentially 

weakly dense in WI'p(B 3, S 2) (see [Bell). Next we are going to prove the second part of 

Theorem 3, namely: 

VI.1.2. Weak limits o f  smooth maps are also strong limits o f  smooth maps. We 

consider only the case Mn=C n (the general case in technically more involved but the 

idea remains essentially the same). We consider first the case n - l < p < n .  

The case n - l < p < n .  Let u be in WI'p(C~,N k) such that u is the weak limit of a 

sequence of maps in C~(M n, Nk), and let Um be such a sequence in C~(M ~, N e) converg- 

ing weakly to u in WLP(M ~, Nk), and such that E(Um)<.C. We shall prove that u can be 

approximated, for the strong topology by smooth maps, and for this purpose we are 

going to adapt the method of Section I. 1. Since u~---~u in W 1'p, um--->u strongly in L 1, 

using the Sobolev embedding theorem. For a in [0, 1], let P(a, k) be a slicing plane as 

considered in Section I.I. Let e~ be small to be determined later, and let y>0 be small. 

By Egoroff's theorem, there is a subsequence of um (which for sake of simplicity we 

will also denote by urn) such that 

Let m0 E N*, be large (and fixed for the moment). Using relation (90), and adapting 

the slicing method of Section I. 1, we may divide C ~ in (m0+ 1)" cubes Cr in such a way 

that relation (2) holds, and that moreover there is some m~ such that 
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(91) E(Um,;aC)<~K45moC for r =  l,  ..., (m0+l)"; 

f lU-Um,ldx<~el for r =  1 . . . . .  (m0+l)". (92) 
Ja c, 

Note that relation (91) is a simple consequence of  relation (2). Relation (92) can be 

derived from (90) if we choose, for instance, ~<1/5(m0+ I). We claim thai (91) and (92) 

imply that the restriction of  u to every aC~ is homotopic to a constant map. Since urn1 is 

smooth on Cr, the restriction of Um to aC, is homotopic to a constant map. On the other 

hand, we have, for every r/l>0 

max{lu(x)-Ur,,,(x) I, x E aCr} ~< rh(_E((u-Uml); aCr)+g(rh)l lu-u,.I dx 
d~ ~9C. 

<~ r/!(E(u; aC)+E_(u,,,; aC) )+C( r  h) e I 

<<-rll K~ mo+C(rl 0 el; 

where K(rh) and C(r h) are a constant depending on rh (here we follow the outlines of  the 

proof of Theorem 2.1 of  [W2] and use a Morrey-type inequality (see [W2], Theorem 

1.1)). Let  al=d((7,Nk). We choose ~?l so small that rhK,,6mo<6l/2. Then we choose e l 

such that C(rlOel<6l/2. Then we have 

(93) max (lu(x)-u,,, (x)l, x E aC~} ~ a,. 

Relation (93) shows that u and urn, are homotopic on aCr, and thus u restricted to aC, is 

homotopic to a constant map. 

We consider now a cube Cr, which is in Pmo" Using the construction of Lemma 3, 

Section 1.3, we divide C, in little cubes C,.,t. Applying the previous method to u 

restricted to C~, and since u restricted to aC, is homotopic to some u,,, we see that u 

restricted to each aCr, ~ is also homotopic to u,,,, and thus to a constant map. This shows 

that, on Pmo' the map w,, ~ restricted to P",0 has only point singularities which have a 

trivial homotopy class, and thus can be approximated by continuous maps in 

WI'p(C,, Ark) (see Lemma 1 bis). The proof of Theorem 3 can then be completed, in the 

case n - l < p < n  adapting the methods of Section I. 

The case l < p < n - 1 .  The proof of  Theorem 3 in that case follows essentially the 

same ideas, though technically more involved (we have to use the construction of 

w(mo,,U, rl) of Section III instead of the construction of Wmo of Section I). 
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Remark. When p is not an integer, Theorem 3 (in the case :ttpj(Nk)=r and 

Theorem 1 (in the case ztpl(N#)=0) show that the strong closure and the sequentially 

weak closure are always equal. 

Adapting the method of the proof of Theorem 3, we may prove the following: 

THEOREM 3 bis. Let M n be such that OM"4=f3. Let p<n be such that p is not an 

integer, and a~tpj(Nk)*O. Let u be in WI'P(M ", N*) such that u restricted to OM" is in 

WI'P(OM",Nk)flC ~ and is homotopic to a constant map. Let u,, be a sequence in 

WI'P(M",Nk)NC~ such that Um=U on aM" and Um'--'U in W 1'p. Then u can be approxi- 

mated for the strong topology in W I'p by maps in WI'p(M ", Nk)NC ~ which coincide 

with u on the boundary. 

In the following section we give an application of Theorem 3 bis, when we wish to 

minimize, the energy among smooth maps, with a given boundary value. 

VI.2. An application o f  Theorem 3 bis. We restrict our attention to the case 

M"=B". Let l<p<n ,  such that p is not an integer, and we assume moreover that 

~tpj(Ne)*0. We consider a smooth map ~ from OB" to N k, such that ~ is homotopic to a 

constant map. Let W~ 'p be the set defined by 

W~ 'p = {u ~ W"P(B ", Nk); ulotr = ~ } 

and let Vr be the strong closure of C| ", N k) in WI't'(B ~, N*). Clearly W~ 'p and Vr are 

not empty. Theorem 3 bis shows that the infimum of the energy in Vr is achieved. 

Indeed let u,, be some minimizing sequence for E(u) in Vr we may extract some 

subsequence converging weakly to some map D0, which is thus the weak limit of a 

sequence of maps in C=(B ", N~. By Theorem 3 bis, a0 is in Vr and clearly is a minimizer 

for E in Vr It is not difficult to see that D0 is a weakly p-harmonic map. Indeed consider 

for every tp in C~(B", R t) the map Ut=~loWtq), for small It[. Clearly if It[ is small enough, 

ut(x) is in ~ for a . e . x .  Thus a,=z(u(t)) is in WI'p(B ", N*). Moreover since D0 is in 

Cg(B ~, Ark), at is also in C~(B", N k) Hence Ep(~t)>.Ep(ao), and thus dep(a,)/at=o. The 

latest equality then yields the conclusion. Adapting the regularity theory for minimizers 

for E in W~ 'p, developed by Schoen and Uhlenbeck in the case p=2  ([SU1], [SU2]) and 

by Hardt and Lin [HL], Fuchs [F], and Luckhaus [L] in the general case, we may prove 

the following: 

THEOREM 4. Assume :ttpl(Ne)er p is not an integer and ~ is as above then 

- 0 o  ?l inf{E(u), u E W~ 'p N Cr (B,  Nk)} 
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is achieved by s o m e  map  ao (in C~(B ~, N~)) which  is weakly  p-harmonic .  Moreover  ao is 

smooth  outside a c losed s ingular  set  Z on zero ( n - [ p ] - l )  dimens ional  H a u s d o r f  

measure .  I f  n - l < p < n ,  t~0 has only a f in i te  n u m b e r  o f  isolated po in t  singularities,  at 

which fro has a trivial h o m o t o p y  class, and  which  are not  on the boundary .  

The proof of the partial regularity of ti0 is rather technical and will be given in a 

forthcoming paper. 

VI.2.1. R e m a r k .  We consider the special case Mn=B 3, N k = S  2 and p=2a,  where 

1<a<3/2. Let g be a smooth map from aB 3 to S 2 having degree zero. We set 

wlg'2~(B3, SZ)={uE WI'2~(B 3, $2), u = g  on aBa}, and we consider the strong closure of 

Cg(B 3, $2)= {u E C=(B 3, $2), u = g  on aB3}, in W 1'2a. Then Theorem 3 bis and Theorem 4 

tell us that the infimum of the energy E2~(u)= Ss3[Vul2~dx is achieved in Cg(B 3, S 2) and 

that the minimizers are weakly 2a-harmonic maps, smooth except at most at a finite 

number of points, where the degree of these maps is zero. More generally, let q be in 

N*, let A~ . . . . .  A i . . . . .  Aq be points in B 3, and let d t . . . . .  d i . . . . .  dq be in Z* such that 

Eq=~ di=deg(g) (here and in the sequel, we shall not assume that deg(g) is zero). We 

consider the subsets Tg(A 1 . . . . .  Aq, d 1 . . . . .  dq) of WJg'2~(B 3, S 2) defined by: 

Tg(A 1 . . . . .  Aq; dl . . . . .  dq) = { U E Wlg'2a(n3, $ 2 ) ;  u E C~(B3~ (A1 . . . . .  Aq); $ 2 ) ;  

deg(u;A i) = di, for i = 1 . . . . .  q}. 

It is easy to verify that Tg(A~ . . . . .  Aq; d I . . . . .  dq) is not empty. Using the ideas of the 

proofs of Theorem 3 and Theorem 3 bis it is then possible to show that the strong 

closure of Tg(A I . . . .  , Aq; d~ . . . . .  dq) is stable under weak convergence. This implies that 

the infimum of the energy E2~ is achieved in ]'g(A~ . . . . .  Aq; d I . . . . .  d o) by a map which is 

weakly 2a-harmonic. On the other hand, if q and q' are in N* then: 

Tg(AI, ..., Aq; d 1 . . . . .  dq) f] 7~g(A'l ...... A'q,; d' l . . . . . .  d'q,) = Q 

if and only if 

((AI, dl), (A2, d2) ..... (Aq, dq) }:~( (Atl ,, d~l ,) .... , (Arq,, dtq,) }. 

In other words, if we look for minimizers of E2a on each set Tg(A l . . . . .  Aq, d I . . . . .  dq) we 

find infinitely many (and in fact uncountably infinitely many) different weakly 2a- 

harmonic maps in 12a 3 W'g" ( B ,  $2). Adapting the previous ideas to the case N k is any 

compact Riemannian manifold of dimension k, and considering singular sets of dimen- 
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sion n - [ p ] - 1 ,  we may prove the following: 

THEOREM 4 bis. Let  l < p < n ,  such that p is not an integer, and such that 

zqp}(N#)=~0. Let ~ be a smooth map f rom ~B ~ to N k such that W~'P(B n, N k) is not empty. 

There are uncountably infinitely many p-harmonic maps in W~'P(B ", Nk). 

VI.2.2. Remark.  Let p and N k be as above and let ~ be any constant map. Then 

Theorem 4 bis provides an infinity of weakly p-harmonic maps which are constant on 

the boundary. On the other hand there are no smooth harmonic maps which are 

constant on the boundary (see [Wo] and [KW]). 

As pointed out, the proof of Theorem 3 and Theorem 3 bis, cannot be extended to 

the case p is an integer. In this case we have nevertheless a weaker result (Theorem 5). 

VI.3. Proof  o f  Theorem 5. We consider first the case p = n - 1 .  

The case p = n - 1 .  In this case, we know that maps, smooth, except at a finite 

number of point singularities (this is, maps in Rn~_0 are dense in W~'P(M ~, N k) for the 

strong topology. In order to prove Theorem 5, it thus suffices to prove that any map in 

R | ,_~ can be approximated, for the weak topology, by smooth maps. For this purpose, 

we shall use the following lemma: 

LEMMA 8 bis. Let  p>O, e>0 and p = n - 1 .  Let  go be a smooth map f rom ac 'n(p)  to 

N k. There is some 0<ao</Z/2, depending only on IVY[= and e, and some constant F 

depending only on the homotopy class o f  go, such that for  every 0<a<ao,  there is a 

smooth map c~ f rom aC'"(l~) to N k having the following properties: 

c~ is homotopic to a constant map, 

on } 

E(go,B n ' "  - ' (0,  a)x  {ZJfl-~l <~ E(go;Bn-X(0, a)• {-~-}) + e + f .  

We postpone the proof of Lemma 8 bis, and we complete the proof of Theorem 5, 

in the case p = n -  1. Let v be in R ~ Let ai be the singularities of v, for i= 1 .. . . .  k, and n- l "  

Fi the constant arising in Lemma 8 bis, corresponding to the homotopy class of v at the 

singularity ag. We claim, that there is a sequence of smooth map Vm in C~(M n, N k) and 

some smooth open subset Km of M n such that: 
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(94) meas K m ~  0 when m---> + ~,  

k 

(95) lim E(v m, K m) <<. ~ F i, 
n - - , +  ~ iffil 

(96) Vm=V on M 3 \ K m  . 

The construction of this sequence is exactly the same as the constructions given in 

Lemma 2 and Lemma 7, except that we replace Lemma 8 by Lemma 8 bis, and q3 by ~. 

We may easily deduce that Vm---'V in W l'p. Indeed, since E(vm; M n) is bounded (by (95) 

and (96)), passing to a subsequence if necessary, Vm converges weakly to some map v' 

in WI'P(AP, N*). Since Vm converges to v almost everywhere (by (94) and (96)), v'=v. 

This completes the proof of Theorem 5, in the case p = n -  1. 

The case p < n - 1 .  In this case the proof of Theorem 5 is technically more involved. 

The main idea is essentially the same, but we have to combine it with the constructions 

given in Section III. 

Warning. We are only able to prove that smooth maps are dense for the weak 

topology, when p is an integer, but we are not able to prove that smooth maps are 

sequentially dense for the weak topology, which is a more difficult question. 

We come now to the proof of Lemma 8 bis. 

Proof o f  Lemma 8 bis. The notations are the same as in the proof of Lemma 8. We 

consider the map O=Vogol from S n-I to N k. Set 

F 0 = inf{E(~; S~-l) I ~E C~(S~-I,N *) is homotopic to v}. 

(Note that it is not known, in general, whether this infimum is achieved or not.) We 

consider a map 00 from S ~-~ to N*, homotopic to 0 such that: 

E(Oo, S "-1 ) < Fo+ 2 .  

We set eo=Oo(O, 0 .. . . .  - 1) (e0 E N~. It is easy to construct a map 0~, homotopic to 0 such 

that O~=eo in some small neighborhood of (0, 0 . . . . .  -1) ,  and such that 

E( 01, S n-l) ~ E( O o, S~-l) + 4 .  

Let :rs be the stereographic projection from S ~-~ to R ~-~. We consider the map Om 
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from R n-I to N k defined by: 

(I)l = UI O'7/~S 1" 

Since p = n -  I, and :rs is a conformal map, we have E(~ 1, Rn-l)=E(01, S ~-1) and for 

some large ball B~-I(C) (C>0), ~l(x)=e0 on Rn-I~Bn-I(C). Since the energy is invari- 

ant by scaling ( p = n -  1), we may always assume that C= 1, and thus ~l(x)=e0 on $B n-l. 

We consider now the cube C'n(t~). Set el=v(0,0, ..., -p/2) (el ENk). We consider a 

geodesic between e0 and e l ,  and a parameterization of that geodesic ~e I f r o m  [1/2, 1] to 

N ~, such that ~e~(1/2)=e0, ~e,(1)=el. We may choose ~e, in such a way, that there is a 

constant F1 depending only on N ~ such that maXxe tl/2.11 (JV~e,(x)J} <F~, for every e~ E N k. 

For a<lZ/2 small enough, we consider the map ~ from aC'~(/z) to N k defined by: 

r v(x) o n  

1 \  Ct ] o n  B n-I O; x , where x' =(xl ,x  2 ..... xn_l)6R ~-1, 

/ 
q3 is Lipschitz on $C'~(b,) and it is easy to see that $ is homotopic to a constant map, 

and that 

This shows that q5 satisfies the conditions of Lemma 8 bis, and completes the proof. 

In the special case, where p is an integer and N~=S p, we are able to prove that 

smooth maps are sequentially dense in W~'P(B ~, SP) for the weak topology (Theorem 6). 

VIA. Proof of  Theorem 6. The case p = n - 1  has been treated in [Bel]. For the 

general case p<n-1 ,  the proof will be given in a forthcoming paper. 

Remark. In [Bell we were able to characterize the maps u E W~'P(B p§ SP), p E N*, 

which can be approximated by smooth maps: let D be the standard volume form on S v 
and D* the pull-back of this volume form by u (when u is in WI'P(B p+1, SV), the 

coefficients of D* are in L~); u can be approximated by smooth maps if and only if 

dD*=0 (in a distributional sense). Does this result hold for the space W~'P(B ~, Sv), for 

n>p+ 1? More generally what would be the equivalent result, for the space WI'v(B ~, S v) 
with k~p? 

In the next section, we extend some of our result to the Sobolev spaces W 'p. 
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VII. Extension of the results to the Sobolev spaces Wr'P(M n, N k) 

We have the following 

THEOREM 7. Let r E N*, n E N* and p> 1 be such that rp<n. Smooth maps from M ~ 

to N k are dense in WI'P(Mn, N~) if and only if:rt,pl(N*)=0. 

The fact that this condition is necessary, was proved by Escobedo in [E]. The 

reverse, namely that the condition :rtrpl(N*)=0 is sufficient for smooth maps to be dense 

in wr'p(M n, Nk), can be proved by adapting the proof of Theorem 1 with some slight 

changes. (Note that when rp>~n smooth maps are always dense in wr'p(M ~, Nk).) 

When r is not an integer, one may conjecture that the result of Theorem 7 still 

holds. This is a more difficult question, and we are only able to extend the result of 

Theorem 7 in the case r= 1-  l/p, that is in the case of trace spaces. The idea of the proof 

is to use a lifting (in R 1) of the map, and to adapt the proof of Theorem I (details will be 

given in a forthcoming paper). 

Acknowledgements. The author wishes to thank H. Brezis and J. M. Coron for 

their constant support. Parts of this work were carried out at the University of Bonn, 

with support provided by the European Community Commission in the framework of 

the ERASMUS program, and at Rutgers University. He gratefully acknowledges their 

hospitality. 

Appendix 

In this appendix Ki, K~ ... will represent absolute constants, depending only on N k, n 

and p. We have the following result, which is used in the proof of Theorem 1. 

THEOREM A0. Assume :rtpl(Nk)*O. There is some map in WI'P(Mn, N k) which 

cannot be approximated by smooth maps in W1'P(M ~, Nk). 

A. 1. Proof o f  Theorem A0. In the special case M " =B ", the proof of Theorem A0 

has yet been given in [BZ]. We are going to show how this proof can be extended to the 

case M n is any manifold. In order to do this, we need the following result. 

Claim. There is a map f i n  W~'P(B ", N*), such that frestricted to a neighborhood of 

aB" is a constant map, and f cannot be approximated by smooth maps. 

Before we give a proof of this claim, we first show how Theorem A0 follows from 

the claim. Let x0 be some point in M ~, and for 60 small enough, consider the geodesic 
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ball B~(xo, 60) centered at x0 of radius 60. Let  �9 be a diffeomorphism from B~(x o, 60) to 

Bn. On B~(x o, 6 o) we consider the map g defined by 

g(x)=foO(x)  for xoEB~(xo,6o). 

Since f i s  a constant map on 0B n, g is a constant map on OB~(x o, 6o). Let  a be the value 

of g on aBe. We extend g to M n by 

g(x) = a for x ~ Mn\B~(xo, 60). 

Clearly g is in WI'p(M ~, N~). Since f cannot be approximated by smooth maps in 

C=(B n, Nk), g cannot be approximated by smooth maps in C=(M n, Nk), and this com- 

pletes the proof of Theorem AO. 

Proof of  the claim. The case n - l < p < n .  Here [ p ] = n - 1 ,  and we assume 

~n_l(Nk)=l=0. Let  q0 be a smooth map from S n-I t o  N k, such that q~ is not homotopic to a 

constant map, and cp is constant on W-1=S~-I N {(x 1, ..., x~)ERnl x0<~l/2 }. We set 

E ~ - = {(x 1 . . . . .  Xn) ERnlxn<~O}, E~.={(x I ..... xn) ER"lxn>~O}, 

, (00 

We define a map f from 11 n to N k by 

[ \ x - P _  
f ( x ) = q ~ )  f o r / i n  E"_; 

/ x-P+ \ 
f(x)=qJ~x--Z-~+ Q f o r /  in E+; 

It is easy to verify that f is constant  outside ~=(Bn(P_; 1) N EL) U (Bn(P+; 1) N E~_), and 

t h a t f i s  in W1'P(R ~, Nk). Thus for r~>3, f i s  constant on aBn(r), and one can show t h a t f  

cannot be approximated by smooth maps, using the same argument as in [BZ], 

Theorem 2 (note that f has two point singularities P+ and P_). The map f is then 

obtained by 

f(x)=f(3x) for x ~ g  n. 

The general case: n - 1  <p.  We set q=n-[p],  and we are going to argue inductively 

on q (the case q= 1 has already been settled in the previous paragraph). Assume that we 

have found a mapfq  in WI'P(B n, N k) such that fq=a (a constant) on OB n (a EN k) andfq 



200 F. BETHUEL 

cannot be approximated by smooth maps. We extend fq to R" by fq=a on R"\B". In 

R "+x we consider the domain f~=f~ U ~'~2 U ~')3 where 

1 1 
g21= C'"(2)x [--~-,-~-] ; 

~"~2 = C'"(2) x [ -  - -  - -  

Q3 = C'"(2)x [ -  - -  

1 5 ] = C,.+I(A+;2), 
2 ' 2  

I _ 5 ]  C,.+,(A_ 2) ' =  
2 '  

~=c'"(2)x[ 5 5] 

(we have set A+=(0, 0 . . . . .  3/2), A-=(0,  0 ... . .  -3/2)). We define a map fq+l on R "+1 with 

value in N ~ in the following way. On ~2~ we set 

fq+ l(Xl, X2 . . . . .  X n, Xn+l) = fq(Xl . . . . .  Xn). 

On 8~"~2~8~'~ l w e  set 

f q + , ( x )  = a for 

and likewise on a t23\a t ) l ,  we set 

fq+l(x) = a for 

Finally, o n  ~'~2 we define fq+l by: 

fq+l(X) = f q + , ( 2  x - A +  
\ IIx-A+ll 

X ~ a~'~2, X ~ a~'~ 1 

x6ag23, x6ag2 r 

(note that 2(x-A+)/IIx-A+II+A+E aft2), and likewise on ~~3, we define fq+ l by 

fq+l(X) =fq+l(2 x-A-  +A-). 
IIx-a-II 

It is easy to verify that fq+~ is in WLq~2, N k) and that the value Offq+ 1 on the boundary 

a~2 is constant, namely a. Moreover using the same method as in [BZ], it is easy to see 

thatfq+ 1 cannot be approximated by maps in C| N*). We extend fq+l to R" by setting: 

fq+l(x)=a if  x ~  

for r~>4, we see thatfq+l=a on aB"+~(r). Thus if we set 
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fq+l=f(4x) for xEB n+1 

we clearly see that fq+l is a map in WI'P(B n+l, Ark) such thatf=a on aB", and that cannot 

be approximated by smooth maps. This completes the inductive argument, and the 

proof of the claim. 

Remark. The singular set of f is actually homomorphic to S "-tpJ-~. 

A.2. LEMMA A0. (i) Let u be in WI"p(C '", N ~) (p<n). Then u can be approximated 

in WI'p(C '~, N ~) by maps such that their restriction to ~C '~ is in WI'P(aC '", Ark). 

(ii) u can be approximated in WI'P(C '~, N k) by maps in WI'"(C '~, N k) such that their 
l p  t n  restriction to [C'"]k is in W'  ([C ]k, Nk)for  every s<k<<.n-1, where s is the largest 

integer strictly less than p. 

Proof of Lemma A0. (i) For/z>0 we consider the cube C'"(1-/z) and its boundary 

aC'"(1-/z). For almost every/~, u restricted to aC'"(l-/~) is in W t'" and we have 

0 ~ _E(u; ac'"(1-/~)) dt~ <~ K; E(u; C ' " \  C'"(1 -p)). 

Thus there is some a in [0,/~] such that u restricted to C '" (1-a)  is in W t'p and 

_E(u; oc'n(1-a)) <<. 1 K  I E(u; C'"(1-/z) 

then we consider the map v'(/~) defined on C'" by 

v'(/~)=u on C ' " \ C ' " ( 1 - a )  

v'(/~) = u ( l - a )  on C'"\C'"( l -a) .  

Clearly v'(/z) is in WI'p(c '", Nk), the restriction of v'(/z) to OC'" is also in W L" and it 

is easy to see that v'(lO-->u in W ~'p. This completes the proof of Lernma A0(i). The 

proof of Lemma A0(ii) is technically slightly more involved but follows essentially the 

same idea. 

Next we give the proof of Lemma 1. 

A3. Proof of  Lemma 1. Since the problem is mainly local (as later considerations 

will show), we may assume that u has only one point singularity centered at zero. So 

we assume that u~WLPnC~ We shall first treat the simpler case 

u E C=(B"\{O), Are). Afterwards, we will consider the general case. 

14-918289 Acta Mathematica 167. Imprim6 le 5 novembre 1991 
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First case: u E C| Nk). Let  r < l  be  small. We consider the set: 

d~(r) = {tp E Lip(B", Nk), tp = u on Bn\B"(0 ,  r)}. 

Since :r,_l(Nk)=0, d~(r) is not empty. We set: 

i~(r) = inf E(r 
q~ E d~ 

We claim that: 

(1 ') 

r = (x) if 

Clearly ~ E ~ .  Easy calculations show that 

Y'+I 
<<. E(u; B"(0; r)). 

1 - 3  p-" 

Proof  o f  the claim. Let  q~ E.~(r). We consider the map ~ defined by: 

r = q~(3x) if Ix l -<3 ,  

r 
if ~-  , 

Ixl I> 2r 
3 

E(~; Bn(0; r)) ~< 3P-"E(q% B"(0; r))+(3P+ 1)E(u;B~(O; r)). 

Taking a sequence q~, E d~ such that E(q0~; B"(0; r))-->lz(r) we obtain 

/z ~< 30-~/z+(3 p + 1) E(u;B"(O; r)) 

which leads to (1'), and completes the proof of the claim. 

For r<  1 small, we consider a map Ur E d~r such that 

3"+1 
E(Ur' ,  Bn(0; r)) ~< 2 E(u; B~(0; r)). 

I - 3  p-~ 

It is then easy to show, using (I ')  that Ur converges to u in W Lp when r goes to zero. 

This completes the proof of Lemma 1 in the first case. 

The general case: u ~. C~ N k) fi W l'p. It suffices to construct a sequence of 

maps u~ E C| N*)N W I'p which converges to u in W I'p (then, we may apply the 

first case). In order to construct u,, we extend u to Bn(0; 2) by u(x)=u(x/lxl), and we 

consider a mollifier ~ from R~--->R + such that J'n, ~(x)dx= 1 and supp(~)cB"(0, 1). For  
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o>O small we set ~~ For x in B", and o small, we consider the map u ~ 

defined by: 

u~'(x)=fR~~ for x e B  ". 

u~ C| R/) and u ~ converges to u in W l'p, and uniformly on every compact subset of 

B"\{O}. Let O<r<l  be small. Choose a small such that: 

E(u~ and 

Choose ro E [r/2, r] such that: 

E_(u~176 E(u;B(O;r)). 

We consider the map Ur defined.by: 

Ur=ff lSOu ~ o n  B~\B~(O;ro) 

o[ Xro \ 
u , =  ,'~ou ~-~]-/ on Bn(0;r0). 

Ur is in C| W j'p, and it is easy to see that u,---~u in W l'p, then r goes to 

zero. This completes the proof of Lemma 1 in the general case. 

Remark. Using exactly the same method, we may prove the following (which is 

used in the proof of Lemma 7): 

A4. LEMMA 1 bis. Let u E WI'P(M ~, N k) (p<n) be continuous except at most at a 

finite number o f  points. Assume that the homotopy class o f  u at each singularity is 

trivial (we do not assume that Zrn_l(N*) is trivial). Then u can be approximated in W l'p 

by smooth maps between M ~ and N k. 

A.5. Proof o f  Lemma 5. We consider first the ball Bt(y, d) in R I (recall that N~=R t 

and the smooth map ~y,~) from R t to i f (y ,  6) defined by: 

~(y,~)(z)=z i fz  is in Bt(y,6); 

Z-y  d ~(y,al(Z)---';-'-----r, if Z is not in ff(y,d).  Iz-y[ 
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Note that ~(y,~)(z)E aBt(y, 6) if z~Bt(y, 6). Next we claim that there is a smooth map 

P(y,~) from Bl(y, 6) to Bo(y, 6)=Bl(y, 6) f iN k such that: 

e(y,~)(z)= z i f  zEBe(y, 6)=Bt(y, 6)NNk; 

IVe(y, 6)1~ ~< 2 if 6 is small enough. 

Indeed, in the case Bo(Y, 6) is linear, P(y, 6) can be easily constructed using an orthogo- 

nal projection onto Bo(Y, 6). The general case follows by linearization. We set: 

cp(y, 6)(x)= P(y,~) o~tr,~)(x) for x E N  k. 

It is then easy to show that tp(y, 6) satisfies the conditions of Lemma 5. 

A.6. Proof of  Lemma 6. For simplicity we replace C~(/z) by B ~. For r>0 small we 

consider the map a~ defined from B~(2) to Bo(Y, 6) by: 

(2') 

Ur(X) = U(X) if 0 <<- IX[ <~ 1-2r;  

ur (x )=u(~ )  if 1-r~<lxl<~2; 

/i~(x,= u(2x+(2r--1)x)  if 1-2r~<lxl~< 1-r .  
\ lXl l 

It is easy to verify that are WJ'P(B~,Bo(y, 6)) and that ar">u in W 1'p when r--~0. We 

consider a mollifier ~ from R ~ to R + such that J'R~ ~(X) dx= l and supp(~)~-BL For tr>0 

we set ~~ and we consider on B ~ the map ar, o defined by 

ltr, ~ = SR n ~ ~ Jr(Z) dz. 

i~lr, o is in C| 6)) and I~lr, o"'>Ur in Wt'P(B n, W) when o goes to zero. Moreover 

since tL is continuous on the set 1-r~<lxl~<2 (as (2') shows) and equal to u(x/lxl), the 

restriction of ~, o to aB n tends uniformly to the restriction of u to aB ~, when tr--->0. We 

consider now the map Ur, o defined by: 

Ur, o(X)=Z~oa,,o(x) if 0~<lxl~<l-2r; 

( Ur, o(X)=:~OUr, o 2x+(2r--l) if 1 -2r~lx l<~l-r ;  

u x Ur, o(x)= : t [ l ( 1 - l x l )  t~r,a(~x[) + l ( I x l - ( 1 - r ) )  ( ] ~ ) ]  if Ixl~>l-r. 
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Ur, o is in C~ ", Be(y, 6))O W ~'p. Moreover easy calculations show that ar, o---~u in W I'p 

when r ~ 0 ,  tI--->0. This completes the proof of Lemma 6. 

Combining the method of the proof of Lemma 6, with the proof of the approxima- 

tion result of Schoen and Uhlenbeck ([SU2], [SU3]), we may also prove the following, 

which is the equivalent of Theorem 1 bis for the case p=n: 

LE~MA 6 bis. Assume p=n, and let v be in W1't'(C ", N k) such that v retricted to OC" 

is in WI'p~C ~ Then v can be approximated by maps in WI'PnC~ g) which 

coincide with v on the boundary OC". 

A.7. Proof of Lemma I0. For simplicity, we may assume that/~= 1 and work on 

C 'd. In order to prove Lemma 10, we need the following: 

LEMMA Al l .  Let p > l ,  and let d>p. Let v be in WI'P(OC 'd, N*) continuous except 

at one point singularity A then the homotopy class of  v at A is trivial. 

The proof of Lemma A11 is straightforward. 

Proof of  Lemma 10 completed. We are going to use a construction similar to 

the construction of the proof of Lemma 2(ii). Without loss of generality, we may 

assume that P+=(0, 0 . . . . .  1]2) is not a singularity of v. Let a>0 be small, and 0 < o ' < a  

be such that E(v;aBa-t(o')x{l/2))<<,2E(v;Bd-t(o)x{l]2}). We set V(o')=Bd-l(o')• 

{1/2),W(o')=c'd~v(tr'). Let (Ai)l~i~ k be the point singularities of v. For two points A 

and B in W(o') we note [A, B]g a geodesic line joining A and B. Let (Bi)l<~i~k be points on 

aW(o'), such that [Ai, Bi]g does not intersect [oc'd],, and does not intersect [A i, Bj]g if 

j * i  (it is always possible to find such points (Bi)t~i~k, since the codimension of [aC'd], in 

aC 'a is at least 2). As in Lemma 2(ii), we apply Lemma 7 bis, which gives us the 

existence of maps Vm in wl'p(cd~od(o'))rlC O, and of small neighborhoods Km, i of 

[Ai, Bi]g such that K,,,inKmj=O, if i:;:j, K,,,iN[OC'd]s=O, limm_~=E(Vm;Km, i)=O, 
Vm=V on W(e')\Oki=lKm, i (and thus on [ac'd]). We extend Vm on B,(o') by 

vm=Vm(Xa'/Ixl). Then v , ~  WI'p(C 'd, N~'), v,,=v on [ac'd], and Vm has only one point 

singularity at P+. Moreover it is easy to see that Vm-'*v in W~'P(C 'd, N k) when m--*+ ~,  

and o-->0. The conclusion then readily follows from Lemma A11 and Lemma 1. 
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