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1. Introduction 

Let Rm denote the set of points of the ~, r/-plane defined by -l~<~r/~<m. An inhomoge- 

neous lattice ~ is a set of points 

= ax+f l y ,  ~1 = yx+t )y  (1.1) 

where (x, y) run through all numbers congruent (modulo 1) to any given numbers (xo,Yo) 

respectively. A= A(.~)= la6-flTI is the determinant of ~.  ~g is called admissible for Rm if 

it has no point in the interior of Rm. The critical determinant Dm of Rm is defined to be 

lower bound of  A(~f) over all admissible lattices ~.  Barnes and Swinnerton-Dyer [1] 

have obtained the exact value of Din for 21/11~<m~<2.1251 . . . .  For m>~3, Blaney [2] has 

proved that 

D m >~ X/(m+ 1)(m+9) (I .2) 

and equality holds for infinitely many values of m. 

In this paper we shall obtain exact values of Din for 3~<m~<3.9437 ,.. (Theorem I). 

These results are better than those obtained by Blaney [2] and Dumir and Grover [3]. In 

Theorem 2, we shall obtain some lower bounds of Dm for m>~4 which are better than 

(1.2) above. For mE[3, 22/7L we find the first isolation i.e. if ~gis not equivalent to a 

special lattice ~g0, then Dm~>4(9+7X/~)m/33 (Theorem 3) and also observe that the 

second isolation is not possible for 3~<rn~<22/'/. These results will be used by one of the 

authors in finding the successive minima of non homogeneous quadratic forms. 

To obtain these results, we use the general theory of two dimensional inhomoge- 

neous lattices developed in Barnes and Swinnerton-Dyer [1] (henceforth this paper will 
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be referred to as BSD). Theorem 6 of BSD is the main weapon in their method which 

says that all critical lattices of Rm are of the form 

1 + 1 

Unfortunately, there is an arithmetical mistake in their paper namely in the 

inequality (3.11); as a consequence of this, (3.3) and (3.4) are no longer true and this, 

for m~>3, leads to a gap in the proof of that theorem. In section 3, we fill up this gap. 

w 2. The general method 

Let ~ be an inhomogeneous lattice of determinant A(.~) with no points on the co- 

ordinate axes. By Delauney's lemma, it has a divided cell. (A parallelogram with 

vertices as points of ~ ,  area A(L~) and one vertex in each of the four quadrants is a 

divided cell.) For such lattices an algorithm is developed in BSD for finding a new 

divided cell from a given one and thus obtaining, in general, a chain of divided cells 

AnB A CAD A and integral pairs (hn, kA) for - ~ < n < ~ .  (The condition that the chain does 

not break off is simply that ~ has no lattice vector parallel to a co-ordinate axis.) Let 

the points AA, B,, CA, D A be either in first, fourth, third and second quadrants respective- 

ly or in third, second, first and fourth quadrants. The non-zero integers (hA, ks) are 

defined in the following way (see Figure 1). 

If lines AnD, and B,,CA are parallel to ~-axis then h,,=k,~=-o~ and then 

A,+ 1BA+ 1 C,+ 1DA+ 1 is not defined. 

Otherwise hA is the unique non-zero integer for which AA+ ~ BA+ ~ is the unique lattice 

~n J 
f 

An+l(Cn+l) 

tl A.(CA) 

~  1 

C.(A .) 

F i g .  1 



ON INHOMOGENEOUS MINIMA OF INDEFINITE BINARY QUADRATIC FORMS 289 

step of the segment AnD, which intersects ~-axis, where 

A.+ l = An+(h.+ l)(Dn-An) , B.+I = An+h.(Dn-A.).  

Similarly Cn+ 1 and Dn+ 1 are defined on the line segment B.C. giving rise to a unique 

integer k.. (In Figure 1, we have hn=kn=2.) Integers h._ 1, kn_ ~ are defined in the same 

way by considering lines AnBn, C.Dn and their intersection with )?-axis. Moreover hn and 

kn have the same sign. 

Set a.+ 1 =hn+k n for all n, so that an+ l is integral and ]a.+l]~>2. If  hn=k.>O for each 

n, the lattice 5f is called a symmetrical lattice. For  a symmetrical lattice, it follows from 

Lemma 1 of BSD that an~>4 for arbitrarily large value of In[, for n of  each sign. 

Let  [hi, b2, b3 . . . .  ] denote the continued fraction 

1 1 
bl 

b 2 - b 3 - " "  

where the bi's are integral and Ibil>~2. 

LEMMA 1. I f  bi>O for all i and bi~4 for some arbitrary large i, then 

[b,, b 2 . . . . .  b., bn+ , . . . .  ] < [b 1, b 2 . . . . .  b., b'.+, . . . .  ] (2.1) 

provided that b n+ l <b',+ v In particular 

[bl, b2 . . . .  , bn-  II < [bl, b2 . . . . .  bn . . . .  1 < [b,, b E . . . . .  bn]. (2.2) 

This follows from Lemma 5 and its corollary of BSD. 

LEMMA 2. Let  {an}~| be a sequence associated to a symmetrical lattice .~. Let  

O n = [a n, an_l,  an-2 . . . .  ], ~0n = Jan+ , ,  a . + 2  . . . .  ] 

so that 0.>1;  ~n> l  by Lemma 1 above. Then the lattice ~ is given by the set o f  points 

~ = a n ( X - - 1 ) + f l n ( y - - 1 ) ,  q = y n ( x - 1 ) + d . ( y  - 1 )  (2.3' 

where 

5. ]7. = q~. and a./fin = 0.. (2.4) 
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The quadratic form associated with ~ is given by 

A i(Onx+y)(x+~ny)l ' ( x , y ) _ ( 1 , 1 )  
on q~n- 1 

(mod 1). (2.5) 

This follows from Theorem 2 of BSD. 

LEMMA 3. A symmetrical lattice .re is admissible for Rm if and only if the inequal- 

ities 

A 4(0n~n - I )  
--~> - A n  + (2.6) 
m (0n+l)(q~n+l) 

and 

4(0n~n--1) 
A>~ = A  n- (2.7) 

(0 , -1) (~ , -1)  

hold for all n. 

This is Theorem 4 of BSD. 

LEMblA 4. Let ~a ,~ ,b  denote the symmetrical lattices corresponding to the 
• • • 

sequences (2a) and (2a, 2b) respectively (where x denotes infinite repitition). I f  these 

lattices are admissible for Rm and are of smallest determinant then 

,4~/  ~ J (2.8) 

f 8m~/ab(ab-l) 8~/ab(ab-1) } 
A(*og?a'b)=max~ ~ ' 2 a b - a - b  " (2.9) 

These are (4.12) and (4.13) of BSD. 

LEMMA 5. I f  O<D<2(k+ l) and for any n 

An + ~< D A n- ~< D, 
k '  

then 

D(0n- 1)-4 4+(D/k)(On+ 1) 
(2.10) < ~ n  ~< D(O n- 1)-40n 40n-(D/k)(On+ 1) 
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0n ' 2(k-l)  I <  ~ v'-D-~-16k 
2(k+l)-D 2(k+l)-D" (2.11) 

These inequalities also hold if  On and ~Pn are interchanged. 

This is Lemma 7 of BSD. 

w 3. Complete proof of Theorem 6 of Barnes and Swinnerton-Dyer 

This theorem states: 

Let ~ be a nonsymmetrical lattice of det A(~) which is admissible for Rm (m> 1). 

Then there exist a symmetrical lattice ~ '  which is Rm-admissible and 

A(~') < A(~). (3.1) 

To prove this, they used inequalities (3.1) to (3.4) of BSD. But (3.3) and (3.4) are no 
longer true because of a mistake in the inequality (3.11). We modify these inequalities 
and give a complete proof. We need the following lemmas: 

LEMMA 6. Let a lattice .~ of  determinant A be admissible for the region R,,. I f  for 

some n, ~ contains a divided cell A n B n C n D n with hn*k n and min(hn, kn)= h>0, then we 

have 

A > i  1_ 2 / m - - l ~ + l  f 4 
m+-----~ --h\--m-~] -~ + 1 + ~  =f(m,h)  (say) (3.2) h(m+ I) 

This is the correct form of the inequality (3.11) of BSD and does not yield (3.3) and 
(3.4). 

LEMMA 7. (a) For f x e d  h>~ 1, the function f(m, h) is a decreasing function o f  m. 

(b) f(3, h) is a decreasing function of  h for h>~2, 

(c) f(3.5, h) is an increasing function o f  h for h>~6, 

(d) f(4, h) is an increasing function of  h for h~4, 

(e) For fixed m>5, f (m,  h) is an increasing function of  h for h>--3. 

Proof. (a) is trivial. 

Let now h>~2 and m be a fixed number >13. We have 
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2__~f(m,h)= ( l _ 2 ( m - l  ~+ -I/2(2 m-1  
h \ m + l /  ~ )  ~ , h 2 ( - - m - ~ ) - ~  33) 

4 ( 4 ) -1/2 ...(3.3) 
(m+l)  h 2 14 ( m + l ) h  

Since here h(m-1)~m+l ,  on simplifying (3.3) we see that af(m,h)/~h will be 

positive ff and only if 

(m+ l ) (m-3)  h3-2(m - 1) 2 h2+(m - 1)(m-5) h+4(m+ 1) > 0 . . . .  (3.4) 

For a fixed m, the l.h.s, of (3.4) becomes a polynomial in h. A simple calculation shows 

that (b), (c), (d) and (e) are satisfied. 

LEblMA 8. Let .~ be an Rm-admissible lattice. 
(a) I f  any pair (hn, kn) is negative or infinite then 

A I> 2(m+ 1) . . . .  (3.5) 

(b) I f  for any n, hn>O, k~>0, hn:~kn then 
(i) for h~= 1 or k~= 1 

A/> ~ (2+X/-~-~) . . . .  (3.6) 

(ii) For hn~2, k ~ 2  we haoe 

A >I Cm(m+ 1) ...(3.7) 

where Cmb a constant gioenby 

2 
1.9894 
1.9686 

Cm= 1.9184 
1.8251 
1.6181 
1.5 

for m~<3 
for 3<m~<3.5  
for 3 .5<m~<4 
for 4 < m ~ < 5  
for 5 < m ~ < 7  
for 7 < m <~ 23 
for m>23. 

Proof. (3.5) and (3.6) are inequalities (3. I) and (3.2) respectively of BSD. 

For m~<3, h>~2 by Lemmas 6 and 7(a), (b) we have 

A - - ~ f ( m ' h ) ~ f ( 3 ' h ) = l l - l + l + ~ l + h ~ 2 " m + l  h h 2 

(3.8) 
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For 3<m~<3.5 and h~>2, by Lemmas 6 and 7(a), (c), we have 

A 
>~f(m, h) >~f(3.5, h) 

m + l  

1> min(f(3.5, 6), f(3.5; 5), f(3.5, 4), f(3.5, 3), f(3.5, 2)) 

= 1.9894 ... .  

The proof is similar for 3.5<m~<23. 
When m>23, letting m---~oo we get 

A ~f (m,h)>~l  - 1 3 m+-------1 -~-+1~-~- for h>~2. 

This completes the proof. 

We now proceed to prove the Theorem 6 of BSD. 

From the estimates (3.5), (3.6) and (3.7) it suffices to give a symmetrical lattice LP' 

which is admissible for Rm and for which 

A(~ ' )  < min(C,,(m+ I), ~ (2+V~m--~)). (3.9) 

We observe that 

Cm(m+l)<X/-m+-l(2+X/--m--+-5) for m~<8 (3.10) 

and 

3(m+l)>V•-•-i(2+•/-m-T-5) for m > 2 3 .  (3.11) 

The r.h.s, of (3.9) is 2(m+l)  for l<m~<3, and is V'm-~ 1 (2+ mV'm-+-5) for m>23. For 

these values of m the proof of BSD goes through. 

For 3<~m<~8, take 

I ~2 for 3<m<~4  

for 4 < m ~ < 5  

|*~13 for 5 < m ~ < 7  
/ 

[,LPl,2 for 7<m~<8.  

By Lemma 4, .~' is admissible for Rm if 
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f 4 m / V ~ -  for 3 ~< m ~< 4 

~mV"5- for 4 < m ~< 5 

A(.~.') = / 4mV~- /5  for 5 < m ~ < 7  

~ 8 m V 7 / 7  for 7 < m ~ < 8 .  

One can easily check that A ( ~ ' ) < C m ( m + l )  for 3<m~<8. For  8<m~<23, if the 

minimum on the r.h.s, of  (3.9) is Cm(m+ I), take &r  otherwise proceed as in BSD 

to get the required result. 

w 4. Evaluation of D .  

Here we prove: 

THEOREM 1. We have 

D m = 4m/V '3-  for  3 <. m <~ 6vT0/5 (4.1) 

D m = 8 V ~ / 5  for  6vT0/5 < m ~< 19/5 (4.2) 

D m - -  8mV'~ /19  f o r  19/5 ~< m ~< m 0 = 19(24+5V'~)  (4.3) 
30(3+X/~)  

Dm_  8(24+5V~-0) for  m o <<. m <- 90+ 17V~'0 = 3.9437 .. . .  (4.4) 
3 0 + 3 V ~  3 0 + 3 V ~  

All critical lattices are given by the symmetrical lattices corresponding to the 

sequences 

• 

(4) for  3 ~ m <- 6V'~ /5  (4.5) 

x X 

(2, 12) for  6V'i-0/5 ~< m ~<m 0 (4.6) 

(00(2, 12), 2, 10, (2, 12)| for  m 0 ~< m ~< 3.9437 . . . .  (4.7) 

Proof. By Theorem 6 of  BSD and Lemma 3, we need to show only that the 

sequences in (4.5)-(4.7) are the only sequences of  positive even integers which satisfy 

max(An-, man § ~< D m for all n, (4.8) 

where Dm is given by (4.1)-(4.4) and that, for some n, equality holds in (4.8) for each of  
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the given sequences in the stated range of values of m. Consider the sequence (an} 

satisfying 

A n- ~< 8X/~]5 and man + ~< 4m/X /~  for each n. (4.9) 

The hypotheses of Lemma 5 are satisfied for each n with D=8X/3-O/5=8.7635 .... 

k=6X/'~/5=3.7947 ... and D/k=4/X/-3=2.3094 ..... Working with sufficient accuracy 

to four places of decimals we have from (2.11) 

Hence 

10n -6.7676 ...1< 4.8559 for any n. 

1.9 < 0 n < 11.6235. 

By Lemma 1, an-l<On<an; and since an is even it follows that an can take only the 

values 2, 4, 6, ..., 12. 

Case (i). Suppose an~>4 for all n. 

If a,>~4 and a,+t~>6, then 0,>3 and r Also An + is an increasing function of 

0n, r therefore 

A + >  4(15-1) = 7 >  D 
6x4 3 "-k; a contradiction. 

By symmetry ar_~>~6 , ar>~4 is also not possible; so that the only possibility is (,~). 

Case (ii). Let at=2 for some r. 

Then 0~<[2, 12]=23/12; and from (2. I0) we get 

D ( 0 r - 1 ) - 4  
~>~ > 11. 

D( O r - 1 ) - 4 0  ,. 

Therefore at+l= 12 as a~+l>~epr. By symmetry a,_1= 12. Further if ar = 12 for some r then 

by case (i) we must have ar_l=ar+l=2. 

X X X X 

Thus the only sequences satisfying (4.9) are (4) and (2, 12). For the sequence (4), 
• • 

An+=4/X/-3 - and An-=4X/-~<SX/~/5; and for the sequence (2, 12), An-=8X,~-0/5, 

An § =8V~/19<4/X/-3-. 

This proves (4.1) and (4.2) and establishes the assertion on critical lattices for the 

range 3~<m~<1915. The proof of (4.3) and (4.4) is similar and is left to the reader. 
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THEOREM 2, We have 
(a) Dm>-8V~-O/5 for m>-6v'-i-o/5 (4.10) 

(b) Dm>~4V'-3- for m~>4 (4.11) 

(c) Dm>~3VT6 for m>~5. (4.12) 
• x 

Equality occurs in (4.11) at m=4 and the critical sequence is (2, I0). 

Proof. (a) follows from (4.2), noting that Dm is an increasing function of m. 

(b) If ~ i s  a non-symmetrical lattice then by Lemma 8, (3.5)-(3.8), 

A(~LP) t> min(Cm(m+ 1), ~ (2 + ~/-m--+-5)) > 4V"5-. 

Let ~ b e  a symmetrical lattice. By Lemma 3, it suffices to prove that 

max(mAn +, An-)/> 4V~-. (4.13) 

Let {an) be a sequence satisfying 

An-~<4V/-~ and An+~<4V'-5-/m~<Vr5 - foreach  n. (4.14) 

Working as in Theorem I, we find that there are almost two sequences namely (4) and 
• • x 

(2, 10) which may satisfy (4.14). But for the sequence (4), An+=4/V'T>V'-5-, the only 

possibility left is (2, 1~0). For this sequence An+=V'5 - and An-=4V'5-. This proves (b). 

(c) Let m~>5. If ~ is a nonsymmetrial lattice then by Lemma 8, (3.5)-(3.8), 

A(~Lf)/> min(Cm(m+ 1), V'-m--+-l(2 + V'-m'+-'5)) > 3VT0. 

If ~ i s  a symmetrical lattice, one can see easily that there is no sequence {an} satisfying 

A n - < 3 v T 0  and An+<3vT0/5.  

This proves (c). 

w 5. Isolation of Dm 

TR~OREM 3. Let 3~<m~<3.4. If ~ is a n  R m admissible lattice then either 

f 4(9+7V'--3-) m 

A(S~) > ~ / 8 ( 9 + 3 ~ 3  ) 

for 3 ~<m ~<22/7 

for 22/7 ~< m ~< 3.4, 
(5.1) 
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or ~ is a symmetrical lattice corresponding to the sequence (4) Further equality holds 

in (5.1) if  and only if  3~<m<~22/7 and 5~ is a symmetrical lattice corresponding to the 

sequence (~4, 6, 4=). 

Proof. If ~ is a non-symmetrical lattice and is admissible for Rm, then by Lem- 

m a  8, 

A(5r I> min(Cm(m+ 1), ~ (2+ ~/-m--~)) 

= (1.9894...)(m+ 1) > 4(9+ 7V'3-) m/33. 

Therefore any lattice which is admissible for R,, and for which (5.1) is false, must be a 

symmetrical lattice. 

Case (i). 3~<m~<22/7. 

By Lemma 3, it is enough to prove that the only sequences {an} satisfying 

max(mAn +, An-) ~< 4(9+7vr3 -) m/33 for all n (5.2) 

• 

are (4) and (o~ 4, 6, 4=); and that equality holds in (5.2) for the second one. 

Let 

An + ~ 4(9+7Vr3")/33 = D/k = 2.5605... (5.3) 

A n- ~< 4(9+7V~-) m/33 <~ 8(9+7V'3-)/21 = O = 8.0473 .... (5.4) 

The hypotheses of Lemma 5 are satisfied with k=22/7 and we get as before that only 

choices of an's can be 4,6,8 .. . . .  34. If a,>~8 for some n, then, by Lemma 1, 
• X 

0,~>[8, 4 ] = 6 + V ~ ;  q~n~>[4]=2+X/3-; so that An+>D/k; a contradiction to (5.3). Hence 

an~<6 for all n. 

If an=6 and also an+l=6, then 0,>an_l=5, q~n>5 which gives An+>D/k; again a 

contradiction. Hence an+~=4. By symmetry a,_~=4. 

If none of the an's is 6, we have the sequence (~;) and it is easy to verify that strict 

inequality holds in (5.2) for this sequence. If an=6 for some n, then by Lemma 1, 

On-- Jan, an_ 1 . . . .  ] I > [ 6 , 4 , 4  . . . .  ] = 4 + V ' - 3 -  

q~n = [an+l . . . .  ] >~ [4,4 .... ] = 2+V"3- 

so that An+>-D/k. Further equality holds if and only if {a,} =(= 4, 6, 4=). It is easy to 

verify that for this sequence max(mAn +, An-)=mAn + for all n. This proves case 6). 
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Case (ii). 22/7<m~<3.4. 
• 

It is enough to prove that (4) is the only sequence satisfying 

Let 

max(mAn +, An-) ~< 8(9+7V~-)/21 for all n. 

An + ~< 8(9+7V'3-)/21m ~< 4(9+7V'T)/33 = D/k 

A n- ~< 8(9+7Vr-3-)/21 = D 

x 

Then working as in case (i) we get {an}=(4). 

and k = 22/7. 

(5.5) 

Remark. For 3~<m~<22/7, the second isolation of Dm is not possible. We can 

approximate the sequence (| 4, 6, 4| by the sequences of the type 

(6,4,4 .. . . .  4) 

I 

where 1 tends to oo. For such sequences the values of maxn An- and maxn An + are 

arbitrary close to those for the sequence (| 6,4| Hence these sequences yield 

admissible symmetrical lattices of determinant arbitrary close to Dm (2), where 

Dm<2)=4(9+7V~ -) m/33 is the second minimum. 
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