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0. Introduction 

The Brownian sheet (Wt, t ER{) has long been known to satisfy Paul L6vy's sharp 

Markov property with respect to all finite unions F of rectangles (see [WI,Ru]), 

meaning that 

(0. I) ~ (F)  and ~(Fr are conditionally independent given ~(0F) ,  

where ~(F)=o(Wt, t E F) represents the information one can obtain about the sheet by 

observing it only in the set F. However, (0. l) fails when F is the triangle {(tl, t2)E R2+: 

t~ +t2< 1 } [W 1], leaving the impression that the sharp Markov property is valid only for 

a very restricted class of sets. In contrast, the weaker germ-field Markov property, in 

which one replaces ~ (aF )  by the germ-field ~*(aF)=  N~(O) (where the intersection 

is over all open sets containing aF), is valid for all open sets in the plane [Ro, Nu]). 

One natural explanation for this is the following: in the one-parameter setting, the 

Markov property of the solution of a stochastic differential equation is closely connect- 

ed with uniqueness for the initial value problem. Something similar should be true in 

the plane. Now the Brownian sheet is the solution of a certain hyperbolic partial 

differential equation [W3], and its Markov property is closely connected to the unique- 

ness problem for the hyperbolic partial differential equation a2u/Oxay=O. It is well- 

known that the boundary data needed to pose the Cauchy problem for this equation are 

the values of the function on the boundary together with the normal derivative at non- 
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characteristic points. For a smooth curve F, the normal derivative of the Brownian 

sheet has been defined by Piterbarg [Pi; Theorem 2], and he has shown that Y((3F) and 

the normal derivative together generate the germ-field. Hence, one can expect the 

germ-field Markov property. 

Of course, for curves which are not smooth, the concept of normal derivative no 

longer makes sense, but one can still think of the generalized partial derivatives 3W/3x 

and OW/Oy. It can be shown that these generalized partial derivatives correspond to the 

white noise measures of certain sets, which can be given explicitly. This more down-to- 

earth description of the minimal o-field 5e (termed minimal splitting field) such that 

N(F) and yg(~c) are conditionally independent given Sf was given in [Wl; W4, Theo- 

rem 3.12] for domains with smooth boundaries and in [WZ; Proposition 2] for domains 

whose boundary consists of piecewise monotone curves. 

In this paper, we extend this description of the minimal splitting field to all open 

sets in the plane, not only for the Brownian sheet but for a wide class of (not 

necessarily Gaussian) processes with independent planar increments (see Assumption 

1.1). The connection with the Cauchy problem and generalized normal derivative is not 

explored here, though our results suggest a natural definition of characteristic points 

for non-smooth curves which will be examined in a future paper. Our main objective is 

to determine which sets F have the sharp Markov property (0.1). For the class of 

processes satisfying Assumption 1.1 below, sufficient conditions are given for a general 

open set. For Jordan domains, the sufficient condition turns out to be necessary for the 

Brownian sheet, yielding a complete answer in this case. 

Our approach is as follows: once the minimal splitting field is determined, it is 

clear that the sharp Markov property will hold if and only if this o-field is contained in 

N(OF). One can then determine conditions on the boundary of F for this to be the case. 

It turns out that there are essentially two ways in which this can happen: 

(a) OF is essentially horizontal or vertical at most points. This is the case for 

instance if OF is a singular separation line ([DR; Theorem 3.12]; the result of Dalang 

and Russo was the first instance where the sharp Markov property was shown to hold 

for a curve containing no vertical or horizontal segment). Here, this result is extended 

to all singular curves of bounded variation (see Corollary 6.3). 

(b) OF is rather " thick",  e.g. it could have positive two-dimensional Lebesgue 

measure, or it could be a fractal such as the Sierpinski gasket, or the sample path of a 

linear Brownian motion. 

The necessary and sufficient conditions for a domain bounded by a Jordan curve to 

satisfy (0.1) are of geometric character, making use of an apparently new condition on 
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planar curves: the Maltese cross condition (see Definition 1.2). In various special 

cases, this condition reduces to known conditions. For  example,  if the boundary curve 

is rectifiable, the Maltese cross condition can be expressed in terms of  a parameteriza- 

tion of the curve. This is the natural generalization of  the result of  Dalang and Russo. If  

the curve is the graph of  a continuous function y=f(x), the Maltese cross condition can 

be expressed in terms of  the Dini-derivatives o f f .  

From our main result, we can obtain a variety of  statements to the effect that the 

Brownian sheet has the sharp Markov proper ty  with respect  to almost all Jordan 

curves, altering the impression mentioned above. The "a lmost  all" can be interpreted 

both in the sense of  Baire category and with respect  to various reference measures.  

The paper is structured as follows. In Section 1, we present  the main assumptions 

and results. In Section 2, we prove several results concerning sharp field measurability 

of various random variables. Section 3 gives an explicit description of  the minimal 

splitting field of  an arbitrary open set (Theorem 3.3). Section 4 contains sufficient 

conditions for an open set to have the sharp Markov proper ty  (Theorem 4.1), with 

application to some fractal sets. The proof  that the Maltese cross condition implies (0. l) 

for Jordan domains is given in Section 5 (Theorem 5.6). This condition is proved to be 

necessary for the Brownian sheet in Section 6 (Theorem 6.1), and the case of rectifiable 

curves and some extensions are also examined there. Finally, Section 7 contains 

several theorems to the effect that " the  Brownian sheet has the sharp Markov proper ty  

with respect  to almost all Jordan curves" .  

1. The main results 

For the convenience of  the reader,  the main definitions and results are presented in this 

section. Throughout  this paper,  T=R2+ will denote the nonnegative quadrant in the 

plane. The horizontal  and vertical axes will be respectively called the x- and y-axes. 

Two natural orders on T are <_ and _A, defined by 

S = ( S l , S E ) ~ t = ( t l , t 2 )  ~ S l ~ t  1 and $2<t2, 

s -- (s 1, s2) _A t = ( t l ,  t2) ~ S 1 <_ t 1 and s 2 >_ t 2. 

A continuous curve which is totally ordered for <_ (resp. _A) is termed increasing (resp. 

decreasing). If  t=(t l ,  t2) E T, we let pri(t)--ti, i-- 1,2, denote the 1- and 2-projections of  t 

and we put Rt={sC T: s<_t}. 
Lebesgue measure on T will be denoted by m or dt, whereas Lebesgue measure on 
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R will be denoted by 2. "Measurable sets" will refer to Lebesgue measure, unless 

indicated otherwise. ~(T) denotes the Borel e-algebra on T, and ~d~,(T) the bounded 

elements of ~(T). 

Let (f~, .~, P) be a complete probability space. If @co% is a e-field, we will write 

YE ~ to indicate that the random variable Y is @-measurable. A two-parameter process 
is a family X=(Xt, tE T) of random variables indexed by T. Given FcT, the sharp field 
~(F)  o f F  is the e-field fff(F)=e{Xt, tEF}V)r where Nis  the e-field generated by the 

P-null sets, and the germ-field ~(*(F) is defined by 

~g'*(F) = n ~t~(o), 

where the intersection is over all open sets O containing F. If R=]Sl, tl]X]s2, t2] is a 

rectangle (by "rectangle" we will always mean "rectangle with sides parallel to the 

axes"), the planar increment ARX of X over R is 

AR X = X,,, '2 -Xs,, ,2-X,,,, +X,,, , :  

The process X has independent planar increments provided the variables 

ARIX, .... ARX are independent, for all n and for all choices of disjoint rectangles 

R~ ..... R,. The process X is right-continuous if for almost all co E f2 and for all tE T, 

lim Xs(w) = Xt(w). 
$-~ t, t<$ 

If in addition, the process X is square-integrable (i.e. E(XtZ)<+ oo, VtET), then 

t~E(X2t) is a right-continuous planar distribution function, corresponding to a measure 

Vx on ~(T). 

If F=R1U ... URn, where the Rk are disjoint rectangles, set 

X(F) = AR, X+... + AR, X. 

This defines an additive measure on the set of all finite unions of rectangles, taking 

values in L2(ff~, ~:,P). Suppose E(Xt)=O, for all tE T. Then E(X(F)2)=vx(F), so X(.) is 

vx-continuous [DU; Definition 1.2.3], and thus has a unique e-additive extension to 

~b(T) [DU; Theorem 1.5.2], which we again denote X(.), so X becomes an LZ-valued 

measure. In the more modern language of martingale theory, X is a two-parameter 

martingale and (Vx([O, tl]X[O, t2]), (tl,t2)6 T) is its expected quadratic variation (see 
[CW, I]). 

In what follows, we will assume X satisfies the following assumption. 
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ASSUMPTION 1.1. The process X=(Xt, tE T) is right-continuous and square-inte- 

grable with mean zero. It has independent planar increments, and Vx is absolutely 

continuous with respect to Lebesgue measure. 

The Brownian sheet and the Poisson sheet are typical processes which satisfy this 

assumption. Recall that a Brownian sheet is a mean-zero, continuous Gaussian process 

(Wt, t E R2+), with covariance function 

E(Ws Wt) = min(sl, tl) min(s2, t2) 

(see [W4; Chapter 3] for many results about this process). The definition and several 

properties of the Poisson sheet are given in [C; w Y]. Assumption 1.1 is also satisfied 

by many stable sheets, that is two-parameter processes with independent planar 

increments whose increments are stable random variables (see [L; Section 24.4]). 

Assumption 1.1 implies in particular that X(R) =X(/~) if R is an open rectangle (as 

usual,/~ denotes the closure of R). It also allows us to work with Lebesgue measure, 

rather than with Vx. Indeed, under this assumption, X(. ) can be extended to all bounded 

Lebesgue measurable sets by setting X(FU N)=X(F),  when FE ~b(T) and re(N)=0. 

We now turn to the subject of this paper, namely the Markov property of 

processes satisfying Assumption 1.1. We begin by recalling some classical terminology. 

A o-field 5e such that ~ ( F )  and ~((z# ~) are conditionally independent given 5e is 

termed a splitting field for F. When X is a Brownian sheet W= (Wr, t E T), the following 

properties are well-known. 

(I. 1) Any splitting field for F contains Yg(F)N ~((/~c) ([Mc; Section 6], [Wl]). 

(1.2) If F is open, ~*(aF)  is a splitting field for F (see [Ro; Chapter 3, w 5] for 

bounded open sets, [Nu; Theorem 3.1] in the general case). 

(1,3) 
Theorem 

~ (aF )  is a splitting field for F when F is a finite union of rectangles [Ru; 

7.5]. 

(1.4) ~(OF) is not a splitting field when F is the triangular region {s E T: Sl+S2<l} 

([Wl; W4; p. 399]). 

Property (1.2) is known as the germ-field Markov property of the Brownian sheet. We 

say that the process X has the sharp Markov property (also known as LOvy's Markov 

property) with respect to F c  T, or that F has the sharp Markoo property relative to X, 

provided ~(OF) is a splitting field for F (see [W2]). As mentioned in the introduction, 
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because of (1.4), it has widely been assumed in the literature that the Brownian sheet 

has the sharp Markov property only with respect to a very restricted class of sets (e.g. 

those in (1.3)). Note that (1.4) is also valid for many other continuous two-parameter 

processes. The situation of the Poisson sheet is different: the sharp Markov property 

was shown in [C] to hold for all  bounded relatively convex open sets, and it was 

conjectured there that this was also the case for all bounded open sets. 

This conjecture is not addressed here (see however [DW]). Rather, we are interest- 

ed in showing that the Brownian sheet (and processes which satisfy Assumption 1.1) 

actually do satisfy the sharp Markov property for a wide class of sets. This is achieved 

by giving an explicit description of the minimal splitting field for an arbitrary open set 

(see Theorem 3.3). This provides a powerful tool for determining sufficient conditions 

on an open set for it to have the sharp Markov property (Theorem 4.1). These 

conditions are easily seen to be satisfied by many sets with a "thick" fractal boundary, 

and we have in particular 

COROLLARY 4.3. Let D be an open set whose boundary is either the Sierpinski 

gasket or the Sierpinski carpet. Then D has the sharp Markov property. 

There are also many sets with a "thin" boundary which satisfy the sharp Markov 

property. We investigate this question in detail for Jordan domains D~, that is domains 

D~ for which aD~=F is a Jordan curve. Recall that a Jordan curve is a subset of TU {oo} 

which is homeomorphic to the unit circle C. This is equivalent to the existence of a 

continuous one-to-one parameterization q~: C---,F. Indeed, the fact that q0 -~ is continu- 

ous follows from compactness of C and continuity of q0 (the image of a closed set under 

q0 is compact). 

Let J be the set of all bounded Jordan curves equipped with the uniform metric d 

defined by 

(1.5) d ( r ,  ~) = inf  [[~-r  = inf  sup IIq)(x)-(p(x)ll, 
xEC 

where the infimum is over all parameterizations q0 and q3 of F and I', respectively. This 

is indeed a metric. To get the triangle inequality, suppose F 1, F 2, F3E J ,  e>0 and q9 ~, q0 a, 

~p2 and ~p3 are respectively parameterizations of F ~, F 2, F 2 and F 3 such that 

[]gol-cp21lo~ ~ d(F', F2)+e and I]~2-~03[1 ~ d(r  2, F3)+e. 

Then q~3 = ~p3 o (I/)2) - 10 ~9 2 is another parameterization of F 3 such that 
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Fig. 1.1. A Maltese cross (a small indentation at the end of each branch of the cross is indicated for historical 
accuracy !). 

[1~02-- ~0311oo = [[~02 0 (~02) -1 0 ~02--~/) 3 0 (~2)-1  0 ~02[Io~ = 1[~/)2--~/)3[Ioo, 

and thus 

d ( r  I , r 3) <_ [[q~l- ~t~311o0 <~ d ( r ' ,  r2) + d ( r  2 , r3 )+  2~. 

Recall that a Jordan curve F splits R 2 into two open connected domains D1(F) and 

DE(F), and it is the boundary of both [N; Theorem 10.2]. 

THEOREM 7.3. "Almost every" Jordan domain has the sharp Markov property, 

where "almost every" can be interpreted in the following sense. Let ~ be the set o f  all 

F E J such that ~(DI(F)) and ~(D2(F)) are not conditionally independent given ~(F). 

Then ~ has first Baire category. 

It is also possible to obtain a similar statement where the "almost every" refers to 

a probability measure on the set of Jordan curves. A natural choice of this measure is 

defined by Burdzy and Lawler [BL] as follows. Let (Bu, u E [0, 1]) be a planar Brownian 

motion, starting at the origin, defined on an auxiliary probability space (Q', ~ ' ,  P'), 

and let Zu=Bu-uB1 be the associated Brownian bridge with endpoints at the origin. Let 

D(o/) be the unbounded connected component of the complement of the curve 

u--~Zu(~o'), 0 < u < l .  According to [BL; Theorem 1.5 (ii)], the boundary F(w') of D(~o') is 



I60 R. C. DALANG AND J. B. WALSH 

a Jordan curve P '-a .s .  This induces a probability measure Q' on ~,  for which we have 

the following result. 

TIaEOREI~ 7.6. For Q'-almost all F E ~,  ~r and ~(D2(F)) are conditionally 

independent given ~(F) .  

It turns out that we can give sufficient conditions on a Jordan curve for its two 

complementary domains to have the sharp Markov property;  these are necessary when 

X is the Brownian sheet. To state them we need a few definitions and properties of  

Maltese crosses.  

DEFINITION 1.2. (a) Let t E R 2. The Maltese cross of  slope a>O, radius h >0  and 

centered at t is the set Ma(t, h) defined by 

M~(t, h) = {s E R2: Is2-t2] < alsl-tll  < ah or Isl-tll < als2-t2l < ah}, 

and for a = 0 ,  we set 

Mo(t, h) = Iq M~(t, h). 
tz>0 

(b) The Maltese cross condition is satisfied at t E F if  

FNM~(t,h):#f3, V h > 0 ,  V a > 0 .  

The cross condition is satisfied i f  

FNMo(t,h)aF(3, V h > 0 .  

Fig. 1.2. A c r o s s .  
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(c) M(F) is the set o f  t E F for which the Maltese cross condition is not satisfied, 

and M0(F) is the set o f  t E F for  which the cross condition is not satisfied. For a>_O and 

h>0, put 

Ma(F, h) = {t ~ F: F n M~(t, h) = ~} .  

For a>0,  M~(t, h) is open and does not contain t. The set has, roughly, the shape of 

a Maltese cross (see Figure 1.1). 

For a=0,  Mo(t, h) is shaped like a conventional cross: two crossed lines centered at 

t with t itself removed (see Figure 1.2). Clearly M(F)~M0(F) and 

M0(r)= u M0(r,h). 
h>0 

The interest of this definition lies in Theorems 5.6 and 6.1 below. Some explana- 

tion concerning this condition is in order. Notice that the Maltese cross condition holds 

at t0=tp(u0) if and only if 

(1.6) liminfmin(lqh(u)-qh(u~ [q92(u)-q~2(u~ =0.  
.-+.0 \ [~02(u)-~2(Uo)l ' I~ (u ) -~Ol (uo) l  

Now when q~ is differentiable at t, this means that the tangent to F at t is either 

horizontal or vertical. The Maltese cross condition is thus analogous to a condition on 

the tangent to F, but it does not require that the tangent exist. 

If F is the graph of a continuous function (P2 and if (p(t)=(q, (p2(q)), then the 

Maltese cross condition is essentially a condition on the Dini derivatives of q02 (see [S; 

Chapter IV, w 2]): 

liminf Iq~2(tl+h)-q~2(tl)[ = 0 or limsup IcP2(q+h)-cPz(ti)[ = +oo. 
h~0 h h~0 h 

THEOREM 5.6. Let (Xt, t E T) satisfy Assumption 1.1, and let D be a Jordan domain 

with boundary F. Assume 

(1.7) 2{pr~(M(F))} = 0, i =  1 or 2. 

Then D has the sharp Markov property. 

The fact that one can choose either i= 1 or i=2 in (1.7) is due to the property that 

~.{Prl(M(F))} > 0  ~ ~.{Pr2(M(F)) } >0 ,  

which is a straightforward consequence of Lemma 5.5(b). 
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In many cases, condition (1.7) is easy to check. For instance, if F is rectifiable, 

with a one-to-one parameterization q~=(~01, c&): [0, 1]~T,  then q~ and q~2 have bounded 

variation [S; Chapter 4, (8.2)], and so q~i is canonically associated with a signed measure 

dq~i on [0, 1], i= 1, 2. We will show in Corollary 6.3 that 

2{pri(M(F))} = 0 r d~l and dq~ 2 are mutually singular. 

The above theorem shows for instance that there are many unbounded domains for 

which the Poisson sheet has the sharp Markov property: it suffices that (1.7) hold and 

that F pass through the point at infinity. 

We know by [C; Theorem 4.1] that the Poisson sheet has the sharp Markov property 

with respect to many Jordan domains which do not satisfy (1.7). For the Brownian 

sheet, the situation is very different. 

THEOREM 6.1. Let DcTt){o~} be a Jordan domain with boundary F, and let 

(Xt, t E T) be a Brownian sheet. Then D has the sharp Markov property if and only i f  

2{pri(M(F)))=0, i=1 or 2. 

Even for the Brownian sheet, the condition 2(pri(M(aD))}=0 is not necessary for 

general domains D, though we conjecture that a slight modification of it is (see Remark 

6.2). 

2. Sharp field measurability and Vitali covering 

In this section, we prove several statements concerning the sharp field of certain sets. 

Most of these are proved using the Vitali Covering Theorem (see 2.2). They will be 

useful in the following sections, but their proofs can be skipped until the reader is 

convinced they are really useful. 

LEMMA 2.1. (a) Let F and Fn, n E N, be measurable subsets o f  T, all contained in 

some fixed compact set. I f  the F, are disjoint and m(FZ~ t3neNF~)----0 (where A denotes 

the symmetric difference), then EneNX(F n) converges in L:(~,  ~,P),  and is equal to 

X(F) a.s. 

(b) For any set F, )~(F)=)~(f').  

Proof. Set Gm=l..ll<_n<mF n. Then m(F/~G,~)---~O as m---~. By Assumption 1.1 and 

the dominated convergence theorem, v(FAGm)-->O as m----~ m, so 
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(( ,7) lim E X ( F ) -  X(F n = O, 
n-*~ \ \  ~=1  / / 

proving (a). 

As for (b), since F c F ,  we only need to show that X, is ~(F)-measurable for each 

t E F \ F .  Now for each such t, there is a sequence (t",nEN) of elements of F 

converging to t. But then m(RtARt~)---~O as n---~oo, so by (a) 

S t = X ( R t )  : lim X(R e) = lim Xt, 
n -..~ r n -.-~ ~ 

in L2(f2, ~, P). This completes the proof. [] 

Note that the conclusions of this lemma are not valid in general without Assump- 

tion 1.1. Indeed, i fX is a Poisson point process on the line sz = 1 (i.e. Xt is the number of 

random points in the set RtO {sET:s2=l} )  and if F=[0,  1[ 2, then ~ ( F )  is trivial but 

~ (P )  is not. 

The following theorem is drawn from [S; Chapter IV, w 3]. The special case that we 

will be using is stated here for the convenience of the reader. Let B(t, r) denote the open 

ball centered at t of radius r. A family ~ of sets covers a set F in the sense o f  Vitali 

provided for each t E F and r>0, there is E E ~f with t E EcB( t ,  r). 

VITALI COVERING THEOREM 2.2. Let  F be a Lebesgue measurable set in R 

(resp. R2), and let ~ be a family o f  closed non-degenerate intervals o f  R (resp. 

squares o f  R E) that covers F in the sense o f  Vitali. Fix e>0. Then there is a finite or 

countable sequence (En) o f  disjoint elements o f  ~ such that ;t(F\LJneNE~)=0 (resp. 

m(F\IJn~NE~)=O) and 2(FA tJn~NE,,)<e (resp. m ( F A  I J~  N E,,)<e). 

Most texts only give the first statement in 2.2. However the second statement 

follows from the first: it suffices to consider only sets in ~ which are contained in a 

fixed open set O=F with 2 ( O \ F ) < e  (resp. m ( O \ F ) < e ) .  

For F c T ,  and i=1, 2 set 

S i ( F )  = {(tl, t 2) E T: 3(s1, $2) E F with s i = t i, S3_ i ~ t3_i}. 

For i=1, this set is the "vertical shadow" of F, and for i=2 it is the "horizontal 

shadow". An example is shown in Figure 2.1. Observe that if F is open (resp. 

compact), then Si(F) is open (resp. compact). 
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Fig. 2.1. The  vertical shadow of  F .  

PROPOSITION 2.3. Let F be a bounded Borel subset of  T which is totally ordered 

for <_ (resp. A). Then X(SI(F))+X(S2(F)) (respectively X(SI(F))-x(SE(F))) is ~((F)- 

measurable. 

Proof. We assume that F is totally ordered for < (modifications for the other case 

will be indicated below). Then the intersection o f F  with any line of the form tl+t2=c is 

either empty or contains exactly one point. Let L(F) be the union of the x-axis and the 

set 

{sET: 3 tEF such that tA_s}. 

According to [W3; Theorem 2.7], the boundary of L(F) is a continuous curve C with a 

parameterization Z=(Z  1, Z2): R+---~R2+ such that Z(0)=(0, 0), u~Z(u) is increasing for 

<,  and Zl(u)+ZZ(u)=u. It is easily seen that any open interval I cR+ has the property 

(2.1) ;t{prl(Z(I)) } +2{Pr2(Z(I)) } = ;t(I). 

By a standard monotone class argument, we see that (2. I) holds for all Borel subsets 

of C. 

Fix e>0, and using Assumption 1.1, let 6>0 be such that m(G)<6 implies 

vx(G)<e. Now set B= {(u,0): u=s  1"~'$2, (Sl, S2) E F} (this is the 45 degree projection of F 

onto the x-axis: see Figure 2.2). By (2.1), 2(B)=2(prl(F))+2(pr2(F)). Define 

hi(x) = inf{Z3-i(u):Zi(u)>_x}, xER+, i =  1,2. 
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Fig. 2.2. Note  that  Proposi t ion 2.3 is obvious  for smoo th  sets  F.  

Since F is bounded, there is M such that hi(x)<_M when x<_sup pr~ (Z(B)), i= 1,2. 

Observe that the set # of all intervals [a, b], a<b,  such that a and b are both in B is 

a Vitali covering of the set of points of density of B (see [S; Chapter IV, (10.2)]). Since 

6/M>O, let (In, n E N) be a sequence of disjoint intervals of # with the properties 

guaranteed by Theorem 2.2. Then 

_ n n bn=~+t~, where ( s '~ , s~)EF, (~ ,~)EF.  We have Assume In=[an, bn] and an - s l  +s 2, 

m{nEl'JN((Rt"'gs~)'(sl(g)uSa(F)))}=fpr,(Z(~rjn)\F)hl(X)dX-l-f.]pr2(z(~rln)\F) h2(x)dx 

It follows that 

<_& 

< e .  

Since e is arbitrary, we can conclude that X(SI(F))+X(S2(F)) E ~(F). 
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I f F  had been totally ordered for A, we would have worked with lines t l - t2=c, and 

replaced s~ + sz by s~-s2 in the definition of B. The remainder of the argument is similar. 

The proof is complete. [] 

PROPOSITION 2.4. Let F be a bounded Borel subset o f  T. Then X(F) is Yg(F)- 

measurable. 

In principle, the X-measure o f F  is obtained by covering F with small squares, so it 

is clear that X(F) is ~*(F)-measurable. The trick to showing X(F) E Y((F) is to arrange 

the cover so that the corners of the squares belong to F. For this we need two lemmas. 

The first is a straightforward extension of Lusin's Theorem to functions with values in a 

separable Hilbert-space. 

LEMraA 2.5. Let g(x), O<x<N, be a measurable function with values in a separa- 

ble Hilbert space ~, and fix e>0. Then there is a compact subset K=[0,N] such that 

2 ( K ) > N - e  and gilt is continuous. 

Proof. Let (Sgn, n C N) be an increasing sequence of finite-dimensional subspaces 

which span LP, and let gn(x) be the projection of g(x) on 5r With the obvious 

identification, we may consider gn as a function with values in some R k (with k= 

dim E,). By Lusin's Theorem [S; Chapter III, (7. I)], there is a compact set K,c[0,  N] 

such that 2(Kn)>N-e2 -~-1 and gn]/~, is continuous. Let K'=t ' I~NK ~ and note that 

2(K')>N-e/2.  Next let f,(x)=[[g(x)-g,(x)l]. The sequence (f~, n E N) is real-valued and 

converges pointwise to zero. By Egoroff's Theorem [S; I, (9.6)], there is a compact set 

K"=[0,N] such that 2(K")>N-e/2 and (f,[/c,, n E N) converges uniformly to zero. Put 

K=K' O K". Then ;~(K)>N-e and glr is the uniform limit of continuous functions. The 

lemma is proved. [] 

LEMMA 2.6. Let Fc[O,N] 2 be Borel. Then there & a measurable subset F'=F, 

with m(F\F ' )=O,  for which there is a Vitali covering that consists o f  squares with 

sides parallel to the axes and having all four corners in F. 

Proof. It is sufficient to show that for each e>0, there is a measurable subset K of 

[0, N] with Kcpr~(F), 2(pr l (F ) \K)<e ,  such that the statement of the lemma is valid 

with F replaced by F,=Fn(Kx[O,N]) .  So fix e>0 and apply Lemma 2.5 to g(x) given 

by g(x, y)=IF(X, y) considered as a function of x with values in L2([0, N], dJ.). Let K be 

the resulting compact set consisting of points of continuity of g, with 2 ( K ) > N - e .  Let 

F(sO denote the vertical section of F at Sl, i.e. F(s0= {s2: (sl, s2)E F}, and for B c  [0, N], 
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set B+h---{x~[h, N]: x - h ~ B } .  Define 

F(s 1, h) = F(s 0 N F(s) +h) N (F(sj)+h) N (F(s 1 +h)+h). 

The lemma will be proved if we show that 

(2.2) lira 2(F(sj) \F(s  1,h)) = O, Vs~ EK. 
h' ,~O, h E K - s  1 

Indeed, we can then set F~= t'lh> o G h, where 

G h= {sEF~: 3h' <h  such that (s~+h', s2)EF, (s l ,s2-h')EF, (s~+h', s2 -h ' )EF } 

(observe that Gh~ is the projection of a Borel subset of R 3, and thus is analytic 

[DM;II.13], hence measurable [DM;III.33J), and by (2.2)and Fubini's Theorem, 

rn(F,\F'~)=O. 

So we now prove (2.2). Note that for any sl, 

(2.3) 2(F(s~)A(F(s,)+h)) = IIe(sj, y ) - Ie(s  ~, y - h )  I dy ~ 0 

as h ~0, since Ie(Sl, ")EL~([0,N]); this is a standard property of translates of L 1- 

functions. In addition, 

2(F(sOAF(s I +h)) = (IF(s p y)--Ie(s ) +h, y)) dy 

2 
(2.4) = IIIF(S,,')-IAs  +h, ')llL2 t0,Nat 

~ 0  

for s~ E K when h $ 0 in such a way that s~ +h E K (by choice of K). Finally, for s~ E K, 

we have 

2 2(F(sOA(F(sx+h) +h)) -- [IF(sl, y)-Ie(sl+h,  y - h )  I dy 

< ~Ntl~si,  y)--I/S,,  y -h )  I dy+ (NIIr(s 1, y - h ) - l e ( s  , +h, y-h) ldy  
,g u d o  

(2.5) ~ N - h  

<~.(f(sl)A(F(s 0 +h))+ l IF (S l  , Y)--IF(Sl +h, Y)I dy 

< 2(F(sl) A (F(s 0 +h))+2(F(s~)AF(s I +h)) 

--~0 
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as h ~, 0 in such a way that s~+hEK (by (2.3) and (2.4)). But (2.3), (2.4) and (2.5) clearly 

imply (2.2), completing the proof. [] 

Proof of  Proposition 2.4. Let F' be the subset of F given by Lemma 2.6, and ~ the 

Vitali covering of F' by squares with comers in F. Fix r/>0, and let e>0 be such that 

vx(A)<r/whenever m(A)<e (e exists by Assumption 1.1). Applying Theorem 2.2, we 

get a sequence (Fn, n E N) of disjoint elements of ~ such that 

Thus 

(( E X ( F ) - X  F n = v x F A  Fn < rl. 
n n 

Now since X(-) is o-additive, we get 

n hEN nEN 

since all four comers of Fn belong to F. 

proposition is proved. 

Since r/ is arbitrary, X(F)E ~(F) .  The 
[] 

APPROXIMATION LEMMA 2.7. Let f: [a, b]--->R+ be measurable and bounded by 

M>0, and let A be a measurable subset of  [a, b]. Set 

t{ = {tET: t lEA,  O<_t2<_f(h)}. 

Fix e>0. Suppose that # is a Vitali covering of  A by non-degenerate closed intervals I 

with at least one extremity arEA, and that for each x E A  and r/>0, there is IE~r with 

length <r 1 and at=x. Then there is a sequence of  disjoint intervals 11, I 2 . . . .  in # such 

that 

(2.6) E ) -  X(I ~ x [0, f(ar)])  < e. 

Proof. By Assumption 1.1, there is 6>0 such that m(G)<6 implies vx(G)<e/2. 

Now by Lusin's Theorem [S; Chapter III, (7.1)], there is a compact set Kc[a,  b] such 

that 2 ( K ) > b - a - 6 / M  and f [  K is continuous. Set B=A N K. Then by Fubini's Theorem, 

m(~AA)<6, s o  Vx(BAA)<e/2. It is thus sufficient to show that there is a sequence 11, 

12 . . . .  of disjoint intervals in ~ such that 
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m(/~A LI (Px[O,f(ar)])} < 6, 
hEN 

where a r is the extremity of I n which lies in A. 

Since f i s  uniformly continuous on K, let r/>0 be such that 

[sl-tll < rl, s~, t I EK =~ If(Sl)-f(tl)[ < 6~(2(b-a)). 

Set 
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#~ = {I = [a, t ]  E #: a I E B, I t -  al < r/}. 

Then .r is a Vitali covering of B, so by Theorem 2.2, there is a sequence (P, nEN) of 

disjoint intervals in ~ such that ; t (B\OneNP)=0  and Z(BAtJneNP)<f/(2M). Thus 

< 6/2+6/2 

This completes the proof. [] 

The following is an easy consequence of Lemma 2.7. 

PROPOSITION 2.8. Using the notation o f  Lemma 2.7, let F be a set containing the 

graph of flA, i.e. {(h, t2)E T: tl EA, t2=f(tl)}CF. Assume that 

(2.7) for k-almost all x E A, (x,f(x)) is an accumulation point o f  (R§ x {f(x)}) t3 F. 

Then x( f t )  is ~(F)-measurable. 

Proof. Set 

- {[s l, tl]: (s I EA and (tl,f(sl)) E F) or (t I EA and (sl,f(tl)) E F)}, 

and for I=[Sl , t l ]E# , set ~(I)=f(s  0 if s lEA,  V/(I)=f(tl) otherwise. Note that 

Ix  [0, ~0(I)] is a rectangle whose two upper comers belong to F. Thus X ( l x  [0,~0(I)]) is 

~(F)-measurable. Now by (2.7), ~9 is a Vitali covering of a subset A' of A with 

2 ( A \ A ' ) = 0 ,  which also satisfies the assumption of Lemma 2.7. So by this lemma, 

X(A)=X(A') is arbitrarily close in L2-norm to random variables which are ~(F)- 

measurable. This completes the proof. [] 
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3. Characterization of the minimal splitting field for an open set 

In this section, we shall describe the generators of the minimal splitting field for an 

arbitrary open set. 

In the study of sets with complicated boundaries, we will need the following 

"hitting times". For G= T, define maps Tc and La by 

J'inf {v >_ t2: (t 1, v) E G) if { ) ~ ,  
T6(t) ! 

( + ~ otherwise, 

{;up{v<t2 (t,,v)EG } if{ }*E~, 
La(t) = - : 

otherwise. 

Note that Ta corresponds to the first entrance time of G along the haft-line 

{q}x[t2,+oo[, whereas La corresponds to the last exit of G along the segment 

{fi}x[0, t2]. We have the following lemma. 

LEMMA 3.1. (a) Assume G is open. Then T6 is upper-semicontinuous (u.s.c.) and 
La is lower-semicontinuous (l.s.c.). 

(b) Assume G is closed. Then Ta is I.s.c. and La is u.s.c. 

Proof. Observe that 

{t E T: Ta(t) < y} = SI(G N (R+ x [0, y[)) 

which is an open subset of T. This proves the first statement in (a). The other three 

statements of the lemma can be proved similarly. Details are left to the reader. [] 

Throughout this section, we work with a fixed non-empty open set D~ (not 

necessarily bounded). We are going to determine the generators of the minimal splitting 

field for Dr. Set D2=(/90 c, F=aDl  N aD2. In order to avoid trivialities, we assume that 

the open set D2 is not empty. Note that F=abl=aD2=0/92,  and that by Lemma 2.1, 

g((Di)= Y((/gi), i= 1,2. We let/)i  denote the interior of/9i (in general,/)~ may be distinct 

from D~ but it always turns out that/)2=D2). Then a/)i=~/)~--F. 

Define two open sets S~ and S z by 

s~=b, ns'(bg, s2=b2ns'(b,), 

and define maps p and r with domain $1 U $2 by 

~ Tb2(t) if t E S  1, 

p(t)= I Tb,(t) if tES~, 
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and r(t)=(tl,p(t)).  Note t ha tp  never takes the value + ~  and that r projects S~ [-JS2 onto 

F. Taking b I instead of D 1 in the definition of p makes a significant difference 

(consider, for instance, the case Dl =([0, 1[ x [0, 2 D \ ( A  x [1,2[), where A is a Cantor set 

such that A(A)>0). The following technical properties of the map r will be important. 

LEMMA 3.2. (a) r is Borel. 

(b) For any open set F c S 1  U $2, r(F) is Borel. 

(c) 1"(S1) N " t ' ( S 2 ) = ~ .  

Proof. (a) This is clear since r( t)=(h,p(t))  and p is u.s.c, by Lemma 3.1. 

(b) Since any open set is a countable union of closed rectangles, it is sufficient to 

prove (b) in the case F=[a, b]• d ] c S l .  Then 

r(F) = (t E T: a <_ t I <_ b, t 2 = p(t l, d)}, 

which is the graph of the u.s.c,  map p( . ,  d), and (b) is proved. 

(c) Assume s E SI, t E $2, and r(s)=r(t). Then s l=t l ,  so we can assume for instance 

that SE<t 2. But then the definition of r implies p(s)<tE<p(t), contradicting equality of 

p(s) and p(t). [] 

For any subset B of R+ and d>_0, we set B<d)=B• (d) .  If B ~d) ~ S i, i= 1,2, we set 

V(B (d)) = {(t l, t2) E T: t 1 E B, 0 < t 2 < p(t  1, d)} 

(see Figure 3.1). With these notations, we can describe the minimal splitting field for D~ 

V(A (c)) 

] ~ ~ ~ r  I . "  

j l  , f  

A 

Fig. 3.1. 

B 
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and D 2. Set 

~ (D  1) = ~(F)  V a{X(V(B~d~)): B ~d~ c Si, B = [a, b], a < b, d > 0, i = 1,2}. 

Tn~.OREM 3.3. Let (Xt, tE T) satisfy Assumption 1.1, and let D1 be any open subset 

of  T, D2=(/)1) e. Then 

~t(D 1) = ~(D~) n ~(D2), 

and this is the minimal splitting field for ~ (D  l) and ~(D2). 

Remark 3.4. (a) In the case of the Brownian sheet and for domains with smooth 

boundary, this result is contained in [W4; Theorem 3.12], and for domains whose 

boundary is a piecewise monotone curve, in [WZ; Proposition 2]. It may be advanta- 

geous to the reader to compare our statement with these references, in which the 

variables X(V(B(d))) a r e  replaced by the X-measure of vertical and horizontal shadows 

of portions of F. This description is not valid in general: Example 3.5 below illustrates 

exactly what difference there is between the shadow description and ours. 

(b) The proofs in [W3; WZ] are rather short. Here, we use similar ideas, but much 

technical effort is needed to handle, for instance, the case where re(F)>0. The results 

of the previous section will be handy here. 

(c) We now have a powerful tool for proving that ~(F)  is a splitting field: it suffices 

to show that X(V(B~)))E ~((F), when BCd)~si, i= 1,2. Since V(B Cd)) is the region below 

the graph of an u.s.c, function, it is possible to do this in many cases, as the following 

sections illustrate. 

(d) One must take care when comparing Theorem 3,3 to other results in the 

literature. For the Brownian sheet, Rozanov [Ro; Chapter 3, w 5.3] gives a chacteriza- 

tion of the minimal splitting field of a bounded open set. However, his definition of a 

splitting field 5r is 

(3.1) ~*(/)1) is conditionally independent of ~*(D~) given 5e, 

and the minimal splitting fields is then ~*(F) (note that if H*(F) is a splitting field in this 

sense, it is necessarily minimal by (1.1), since ~~ ~(*(/5~)n Yg*(D~)). Now H*(F)= 

Y(*(/)~) n Yg*(/)2) is in general distinct from ~(F)=  ~((/)0 N ~(/52) = ~(D~) n Yg(D2). This 

is the case for instance in Example 3.5. 

Example 3.5. Let A be a Cantor set in [0, 1] such that 2(A)>0, and let I1, I2 . . . .  be 

the disjoint open intervals whose union is A c. Set 
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D~ = U (InXln)U([0, 1]X[0, 1]) c, 
nEN 

_ " C  D 2 - D r 

Note that D2c[0, l]x[0, 1], and in particular, that this set is bounded. The common 

boundary F of D1 and D2 is the union of the boundary of [0, 1] 2, the boundaries of the 

InxI,, and a subset of the diagonal whose projection on the x-axis is A. 

Let E be the portion of D2 below the diagonal. Then E is exactly the vertical 

shadow of a portion of F, but it will be a consequence of Proposition 6.7 below that 

X(E) ~ ~(DI), and thus is not an element of ~g.(D~)=~(D2). On the other hand, X(E) is 

easily seen to belong to ~*(F). It will be clear from Theorem 4.1 that ~(F)  is the 

minimal splitting field in this case, since i f B c R +  and B(d)cE, then V(B (d)) is the domain 

below the graph of an u.s.c, function which takes the value 1 on B N A and is constant on 

each B n In, for each n E N. [] 

The proof of the Theorem 3.3 relies on several preliminary statements. 

PROPOSITION 3.6. (a) For i= 1,2, for all measurable subsets B of  [a, hi, and for all 
d>0 such that [a, b]x {d}cSi,  V(B td)) is bounded and X(V(B~d))) is ag(Dl)-measurable. 

(b) .g/(Dl)= ~ ( D  0 r l  ~((D2). 

Proof. The map x~p(x ,  d) is u.s.c., so it is bounded on the closed interval [a, b], 

hence V(B ~d)) is bounded. Note that B~-->V(B ~d)) preserves unions and intersections. 

Since X(') is countably additive, a standard monotone class argument [DM; I. 19] yields 

(a) for Borel sets B. But then Assumption 1.1 yields (a) for any measurable B. 

To show (b), it is sufficient by Proposition 2.4 and Lemma 2.1 (b) to show that 

X(V(A(d))) E ~t~ fl ~ ( D 2 )  , for each d>0 and each closed interval A for which A (d) is in 

either S~ or $2. 

I fA  (d) is in Si, let us show that X(V(A(d))) E a~(O3_i). Let (D ", n E N) be an increasing 

sequence of finite unions of open rectangles such that tJneND"=l)3_ i. Set fn(x) = 

To.(x, d), and 

A n = {xE R+: fn(X) < +oo}. 

Since f .  is u.s.c., A.  is open. Now AcLI.eNA n and A is compact, so there is noEN such 

that An0~A. Since f.+ l<-f. and sup { fno(X): x E A } is finite, the f .  are uniformly bounded 

on A for n>_no. Define 

V~ = { t  E T: t I E An, 0 <_ t 2 <_f~(tO}. 
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It is easy to see that f .  S p ( ' , d ) ,  so that by the above m(VnAV(A(d)))-->O. Thus 

E([X(V.)-X(V(A<d)))]2)--*O, and it suffices to check that X(V.) E Y~(D3_i). Since D" is a 

finite union of rectangles, f .  is a step function, so V. is a finite union of rectangles R. of 

the form R . = I . x  [0, b.], where the I. are disjoint intervals and b. is the constantvalue of 

fn on I.. Since both upper corners of R. belong to D3_ i, x(gn) E ~(D3_i), and so we have 

shown that X(V(A~d))) E Yg(D3_i). 

The proof that X(V(A(d))) ~. ag~(Di) uses similar ideas but is simpler because we do 

not need the compactness argument. Set 

q(t) = Tr(t) = inf{v > t2: (q, v) E r}, 

By Lemma 3.1, q(. ,d)  is l.s.c, on A, so we can find an increasing sequence of step 

functions f ,  which increase to q(., d); we can even require that the graph of each f ,  is in 

/)i- Set F=tgneNF n, where 

F n = {t E T: t I E A, 0 <_ t 2 <_fn(tl)}. 

Sincef, is a step function, Fn is a finite union of rectangles with upper corners in/),-, so 

X(F,) E Y((/gi)= Yg(D;). Since X(F,)---~X(F) in L 2, X(F) E Yg(Di). Now 

X(V(A(d))) = X(V(A(d))~F)+X(F) and V(A(d))~F ~ D i U F = 19i, 

so by Proposition 2.4 and Lemma 2.1 (b), X(V(A(d))) E ~(Oi). This completes the proof. 
[] 

Let us define a map U by U(t)=r-~(r(t)). U maps a point in Si onto a countable 

union of open segments, all contained in the vertical line through t (when Di has smooth 

boundary, U(t) is usually a single segment). Note that U(s) and U(t) are either identical 

or disjoint, and in particular, if s~ =~h, then U(s) and U(t) are disjoint. One consequence 

of this is that if L is any horizontal line segment contained in D; and if we restrict 

ourselves to subsets F c L ,  then F~-~U(F) preserves set operations. 

LEMMA 3.7. Fix iE{I,2} and let L be a horizontal line segment o f  the form 

L=[a,b]x(d}.  Suppose LcSi .  I f  F is a measurable subset o f  L, then U(F (d~) is 

measurable and bounded and X(U(F(d))) is ~t(DO-measurable. 

Proof. Since F ~ U ( F )  preserves set operations, it is sufficient to prove the lemma 

when F is a subinterval of L. So in fact, we only need to show that X(U(L))~AI(DO 
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(note that U(L) is Borel by Lemma 3.2). Define 

fi(u) -- Lb3_, (u, d). 

Then U ( L ) = ( F I \ F z ) \ F 3 ,  where 

F l = V(L), 

F 2 = {t E T: a < t 1 < b, 0 < t 2 < fl(t0}, 

F 3 = ( F I \ F  2) N F. 

Note that F~ is bounded, and all of these sets are Borel. Now X(F1)E~t(D1) by 

definition, and X(F3) E Y((F)c~(D1), by Proposition 2.4, so it only remains to show that 

X(F2) E ~(O). 

The proof of this is somewhat similar to part (b) of Proposition 3.6. Let (D n, n E N) 

be an increasing sequence of finite unions of rectangles such that tJnEND -- 3-;" Set 

fin(U)=LD,(u, d) and 

F" = {t E T: a <_t 1 < b, 0 <_ t 2 ~ fn(U)}. 

n X n , Then F" I' F 2 ,  and each F" is a finite union of rectangles of the form I k [0, bk] where 
n n 

I 1 , I 2 , . . .  are disjoint intervals. Set 

n n G n-- U V(Ik•  ), 
k E N  

(~"= LI {tET: tlEI~,fl(u)<_t2<_P(U, b~)). 
kEN 

Then G n and G" are increasing sequences which increase to G and G, respectively, and 

we have G=Fz O G, G n Fz = ~.  Thus X(F2) =X(G)-X(G).  Since G c F ,  X(G) E ~f(F) by 

Proposition 2.4, so the proof will be complete provided we show that X(G) E ~(D1). 

But X(G) is the L2-1imit of 

X n X(G") = Z X(V(~ {bk})), 
k E N  

which is ~(D1)-measurable by definition. The lemma is proved. [] 

PROPOSITION 3.8. Let 91 be the family o f  Borel subsets F o f  T with the property 

F= U(F). f f  F E 91 is bounded, then X(F) E ~(D1). 

Note that for domains D~ with smooth boundaries, the statement that F =  U(F) is 
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Fig. 3.2. Three  sets  Fi with F~=U(FI), i = 1 , 2 , 3 .  

essentially " F  is a domain bounded on each side by vertical lines and above and below 

by portions of the boundary":  see Figure 3.2. 

Proof o f  Proposition 3.8. Let M>0 be such that Fc[0 ,  M] 2. Fix e>0, and le t / )  be a 

finite union of rectangles contained in Sin [0, M] 2 such that m((Si n [0, M]2) \ / ) )<e .  Set 

F'=Fn19. Then U ( F ' ) c F  and m(F",,U(F'))<e. Since e is arbitrary, it is sufficient to 

prove that X(U(F ' ) )E~(DI ) .  It is clear that we may assume that 

n 

19 = [u, v] x U I t , 
/=1  

where u<v and Il=[a t, bt] , with al<bl<az<.. .<an<b n. Let Gt be the intersection of  F 

with [u, v] x {bl}. Then Gt is measurable. Now define 

At= (xEGt:p(x, bt)<at+t}, l <_l<n. 

By Lemma 3.7, X(U(AI• {b/}))E ~ ( D 0 .  Now since F =  U(F), we have 

( G I \ A I ) x I  t c U(GI+ 1 xlt+l) , 

from which it follows that 

n 

U(F') = 0 U(Atx {bt}). 
I=1  

Since the union is disjoint, the conclusion follows. [] 
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PROPOSITION 3.9. Fix t E F. Then X(R, n Di) ~ ,ff~(Dl), i= 1,2. 

Proof. Set B=prl(F O ([0, h] x (t2})). Then B is closed, so [0, t t ] \ B =  O.eNI ., where 

the l.=]a.,b.[ are disjoint open intervals. Fix nEN. We begin by showing that 

X(F. hi)3 E M(DO, where F.= l . x  [0, t2]. There are two cases to distinguish. 

Case I. I . x  {t2}=i)i. In this case, 

Now 

FnNi)a_ic S3_ i and F,f)l)3_i~.~ 

X(F. fl i)i) = Xb. ' t2-Xa., '2-X(F. N D3_ i) -X (F .  I1 F) 

~. ~t(D3 

by Propositions 2.4 and 3.8 (since (b., t2) and (a., tz) belong to F; this is where we use 

the fact that t fi F). 

Case 2. InX {t2}=O3_i. Then 

F . n b i c S i  and F . n b ,  E ~,  

so X(F. N/)i)E ~(DI)  I~y Proposition 3.8. 

Now set F=Bx[0 ,  t2]. The proposition will be proved provided we show that 

X(Fni )3E~(DO.  Set 

fli(u) = Lb,(U, t2) , i = 1,2, 

B l = {v E B: fl2(v) < i l l(v)},  

B2 = {v E B:/~l(v) <_/~2(v)}, 

R i = B i x  [0,  t2], i = 1 , 2 .  

We are going to write F n D~, as a disjoint union and difference of sets, each of which 

will have the property that its X-measure belongs to ~t(D~). Observe that 

FND i = (R 1 nb~) U (R 2 N Oi) 
(3.2) 

--- (R3_ i i"lDi) U [Ri \ ( (R i 91 i)3_i) U (R i N F))]. 

Now by definition, R3-;N/9~E ~,  i=1,2, and this is a bounded Borel set, so by Proposi- 

tion 3.8, X(R3_ini)i) ~. ~(DO, and, equivalently, X(RiNi)3_i) E ~(D1), i=1,2. Further- 

more, by Proposition 2.4, X(Ri N F)6 ~ ( D 3 .  Finally, to see that X(R3 6 ~(F), we apply 
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Proposition 2.8 to the functionf(u)= t2 IB,(U). If U is a point of density ofBi, (u,f(u)) is an 

accumulation point of {(sl, s2)EF: s2=f(u)), so this proposition implies in particular 

that X(Ri) E ~(F). Now since 

X(F N h i) = x(g3_ i U h i) + (X(Ri)-X(R i 17 D3_ i) - X ( R  i N F)) 

by (3.2), the proof is complete. [] 

LEMMA 3.10. Set 

~3 i = a{X(O), o c i )  i, 0 open} 

c~ = o( { X(R t n Di), t E F} U {X(F), F E ~ FcSi}  U {X(R t fl F), t E T}). 

Then ~i and ~d~_ i are independent and ~(Oi)=c4diV ~_i, i=1,2. 

Proof. We only carry out the proof for i=1, since the case i=2 is similar. It follows 

from Propositions 2.4, 3.9, 3.8 and 3.6(b) that ~ql V ~ c )~(D0, and from Assumption 1.1 

that ~g~ and ~ '  are independent. 

To see that ~ ( D I ) = ~ V ~ ,  we show that XtE ~ V ~ '  for each fixed tED1. Set 

S 1 = inf(u>O: [a, tl] x (t2} =hi} .  

Then (s~, t2) E F, and 

where 

X t = Zl+Z2+ YI+ I12+ Y, 

Zi = X(Rsvt2flhi), Yi= X((Rt\Rs..t2)Nhi, Y= X(RtNF). 

By Assumption 1.1, we can replace the rectangles above by their interiors without 

modifying the values of Zi and Yi, i= 1,2, so it follows from the definition that Z~, Y~ E ~ 

and Z2, YE ~*. Since tED1, we have 

(Rt~Rs,,t2) Ni) 2 E ~ (RtNRs~,t2) n b  2 c7.52, 

so Y2E ~ .  Thus XtE ~lVCg~ ', and the proof is complete. [] 

Before proving Theorem 3.3, we recall an elementary fact about conditional 

expectations. 

Fact 3.11. Let Z be an integrable random variable with values in R n, defined on 



THE SHARP MARKOV PROPERTY OF THE BROWNIAN SHEET 179 

some probability space (g2, ~ ,P) ,  and let ~1 and ~2 be two cr-algebras such that 

o(Z)V~2 is independent of ~1. Then E(ZI~V~2)=E(ZI~2). 

Proo f  o f  Theorem 3.3. Fix t I . . . . .  t n E D2, and let h: Rn---~R be bounded and Borel. 

Since ~ ( D O c  ~(D1) by Proposition 3.6(b), .//,/(DO will be a splitting field for ~(D1) and 

~(D2) provided we show that 

E(h(X t, . . . . .  Xt,)l ;~t~ = E(h(Xt, . . . . .  Xt,)l./ff(D~)) 

(see [DM; 11.45]). It is even enough to show that 

E(h(X1 .... , Xt,) ])~(DI)) E all(D1). 

We are only going to write out the proof for n = 1, but it will be obvious that the same 

proof is valid for all nEN. Set tl=t, and let s=(sl,  s2) be defined by 

s~= in f{u<q : [u ,q ]x{ t2}E/ )2} ,  s 2 = t  2. 

Then s E F, and we have 

where 

Z = X ( R ) ,  

x, = z +  Yl+ 

Y ~ = X ( ( R , \ R ) N D i ) ,  i=  1,2, Y3 = X ( ( R t \ R )  N F). 

So 

(3.3) E(h(X)I ~(D1)) = E(g(Z, YI, Y2, II3)1 ~(D,)), 

where g: R4---~R is defined by 

g(z, Yl, Y2, Y3) = h(Z + Yl + Y2 + Y3) �9 

Thus we only need to show that the right-hand side of (3.3) is ~(D0-measurable 

whenever g is a bounded Borel function on  R 4. By a standard monotone class argument 

(see [DM; 1.21]) it is sufficient to do this when g has the special form 

go(Z) gl(Yl) g2(Y2) g3(Y3), 

where gi:R--,R is bounded Borel, i=0 ..... 3. By Lemma 2.1(b), ZE Y((D1), while by 

Proposition 2.4, t"1E ~(D1) and I13 E Y((F)c Y((/50= Yg(D0, so using Lemma 3.10 we 
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have 

E(g(Z, Y,, Y2, Y3)I ~((D,)) = go(Z) g,(Yi) g3(Y3) E(g2(Y2)1% V ~ ' ) .  

Applying 3.11, we see this is 

= go(Z)gl(rt) g3(Y3) E(g2(Y=)l~). 

Now Z E J/,~(DI) by definition, u E M(DI) since (Rt\Rs) n D, E ql, and by Proposition 2.4, 

Y3 E ~(F)cM(D1) by definition. Since @~.,f~(DI) by Propositions 3.9, 3.8 and 2.4, we 

have shown that ./~(Dt) is a splitting field for Xa(Dt) and ~(D2). By (1.1) and Proposition 

3.6(b), M(D0 is the minimal splitting field and .,r ~(D1)n ~((D2). This completes 
the proof. [] 

4. The sharp Markov property for domains with thick boundary 

In this section, we show that there are many interesting examples of open sets which 

satisfy the sharp Markov property. 

THEOREM 4.1. Let D be an open set and suppose that for i=1,2 and 
[a, b] x {d) cSi, 

(4.1) 2({uE[a,b]:p(u,d) is an isolated point of (R+x {p(u,d)})nOD})=O. 

Then D has the sharp Markov property. 

Proof. We need to show that ~(0D) is a splitting field for ~(D) and X~(/)c). Since 

~(aD)~ ~(D) by Lemma 2. l(b), ~(0D) will be a splitting field provided ~g(OD)~d~(D). 
Indeed, in this case, for GE ~(/5c), we have P(GI~(D))=P(GId~(D)), so P(GId~(D))= 
P(G[~(aD)), since P(G Ida(D))E ~(aD) and this random variable satisfies the appropri- 

ate integral conditions. 

Since F=0L)c0D, it is sufficient, according to Theorem 3.3, to show that 
X(V(B(d))) E ~(aD), for each B=[a, b] and dER+ such that B(d)csi, i=I  or 2. Define 

f : B ~ R  by f(u)=p(u, d). By (4.1) and Proposition 2.8, X(V(B(a)))=X(B)~ ~(OD), and 

the theorem is proved. [] 

A very simple application of Theorem 4.1 yields the sharp Markov property for 

finite unions of rectangles. Of course, since the boundary of a finite union of rectangles 

consists of finitely many vertical and horizontal segments, most of the results of 
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Section 2 are not needed, and only part of Assumption 1.1 comes into play. This gives 

us a new proof of the following corollary, due to Russo [Ru; Theorem 7.5] in the 

bounded case. 

COROLLARY 4.2. Assume (Xt, t E T) is a process with independent planar incre- 

ments, and D is a finite union o f  (not necessarily bounded) rectangles with sides 

parallel to the coordinate axes. Then D has the sharp Markov property. 

Proof. If [a, b] x {d} c S  i, i= 1 or 2, then p(u, d) will always lie on one of the horizon- 

tal segments of aD, and thus will not be an isolated point of (R+x {p(u, d)})n 0/9. 

So the statement follows from Theorem 4.1. [] 

There are many other interesting cases where condition (4.1) is satisfied. In 

particular, many open sets whose boundary is a fractal satisfy (4.1). We only consider 

two: 

the Sierpinski gasket F1 (see [M; p. 142]). The only horizontal section of FI which 

contains isolated points is the section through the apex, which is a singleton; 

the Sierpinsid carpet F2 (see [M; p. 144]). In this case, no horizontal section of F2 

contains isolated points. 

Condition (4.1) is thus clearly satisfied by both F~ and F2, so that by Theorem 4.1, 

we have 

COROLLARY 4.3. Let D be an open set whose boundary is either the Sierpinski 

carpet or the Sierpinski gasket. Then D has the sharp Markov property. 

Note that there are many open sets D such that a/)=Fi, i=1 or 2, and so Fi is the 

common boundary of D and/)% Indeed, let S 1, S 2 ... be the open triangles (respectively 

squares) which one removes to get the Sierpinski gasket (resp. carpet). Let Yt, Y2 ....  be 

i.i.d. Bernouilli random variables with P{ Yk=0} =P{ Yk= 1} = 1/2. Set D=tJS k, where 

the union is over those k for which Yk= 1. Clearly, F1 =a/ )  (resp. F2=a/)), for almost all 

realizations of Y1, Y2 . . . . .  

Corollary 4.3 also illustrates the importance of distinguishing /)  and D. For 

instance, to get the Sierpinski gasket, one starts with an initial (closed) triangle T ~ and 

removes a sequence of open triangles S ~, S 2 . . . . .  Let D=  U,eN S". Then 0D is the whole 

Sierpinski gasket, but 01)=aT ~ Observe that D has the sharp Markov property by 

Corollary 4.2, but /9  does not (by Theorem 6.1 below). 

It is tempting to conjecture that if the boundary of  D has Hausdorff dimension 

strictly greater than 1, then D satisfies the sharp Markov property. However, this is 
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false since some portion of the boundary might be, say, a diagonal line segment. We 

might suppose that D satisfies the following stronger condition. 

(4.2) Every open set that contains one point in 0/9 also contains a subset of 3/) with 

Hausdorff dimension > 1. 

Does (4.2) imply that D has the sharp Markov property? The answer is no, as the 

example below shows. 

Example 4.4. Let A be an unbounded Cantor set in R+ with positive measure, and 

let 11,12 .... be the disjoint open intervals whose union is A c (since A is unbounded, each 

In is bounded). In each square In• build a Sierpinski carpet whose "outer rim" is 

I, xI ,  (its Hausdorff dimension is -1.89 [M; Plate 145, p. 144]). Now let D1 be an open 

set which consists of the union of 

{s E T: s I > s2} \ U ( I . x I . )  
nEN 

and "half"  the squares which one removes to build each of the Sierpinski carpets 

(choose them at random, as above). Set D2=/)~. Then F=aDl =OD1 =OD2 is the union of 

the carpets and the subset of the diagonal whose projection on the x-axis is A. This set 

clearly satisfies (4.2), and yet the sharp Markov property can be shown to fail (use 

Proposition 6.7). 

If DI is an open set whose boundary is a separation line (see [DR; w 2]), the 

horizontal sections of 0/)1 may each contain exactly one point, and yet the sharp 

Markov property may hold [DR; Theorem 3.12]. This corresponds to the case of " th in"  

boundaries. In the next section, we investigate the case where F is a Jordan curve. 

5. Sufficient conditions for Jordan domains: the Maltese cross condition 

Throughout the rest of this paper, we will assume that D~ is a Jordan domain, that is 

aD~=F is a Jordan curve in R2U{~}. It will be convenient to assume that F is 

parameterized by a function q~ defined on [0, 1] instead of on the unit circle, that is 

r = {~(u) :  u e [0, 1]}, 

where ~p=(W~, ~02): [0, l i a R 2  U {~} is continuous, one-to-one on [0, 1[ and ~o(0)=qo(1). In 

the terminology of [N], which we shall use below, F is a directed loop. 
The two complementary open domains D~ and D2 of F may both be unbounded if 



THE SHARP MARKOV PROPERTY OF THE BROWNIAN SHEET 183 

F passes through ~,  and F may have positive measure (see [D; XIII.21, Problem 2, 

p. 221] or [Ha; w 36, p. 233]). 

A standard property of Jordan domains is that Di=Di and aDi=F [N, Theorem 

10.2]. If D 1 is bounded, then SI=D1. In Section 3, the maps defined on Sl U $2 by 

p( t )= Tbi(t) if tES3_i,i= 1,2, z(t)=(tl,p(t)) 

were of primary importance. For Jordan domains, it turns out that it is more convenient 

to work with the closely related maps 

q(t)=Tr(t) and Q(t)=(tl,q(t)) on SIUS ~. 

The relationship between p and q is made precise below. In fact, it will turn out that for 

Jordan domains, p(t) and q(t) are equal for most t (see Lemma 5.3; however, this is not 

necessarily true for general domains. See Example 3.4, for instance.) 

LEMMA 5.1. The lower semicontinuous regularization of p is q and 

q(t) = liminfq(s). 
s--~t, $=~t 

Proof. Lower semicontinuity of q follows from Lemma 3.1 and q<_p by definition. 

Fix t=(h, t2) E S1 U $2. Then (tl, q(t)) E aO2, so there is a sequence (s n, n E N) of points in 

DE which converge to t. We have 

q(t) <_ lim infq(s) 
s---~t, s ~ t  

< lim infq(s~, t 2) 

< lim infp(s~, t2) 

< lim infs~ 

= q(t). 

This completes the proof. [] 

The above lemma implies in particular that p and q coincide at points of continuity 

of p, which are also points of continuity of q. In fact, much more is true. To prove this, 

we need a property of Jordan curves. 
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W(s) 

Fig. 5.1. Two possible  relative posi t ions o f  F l and F 2. 

MONOTONICtTV LEMMA 5.2. Let  F 1 and F 2 be two disjoint Jordan curves in R 2, 

with continuous parameterizations qJ: [0, 1]---~r, which are one-to-one on [0, 1[ and 

such that qJ(O)=qJ(1),i=l,2. Fix F c F  l, and assume that for  each tEF,  there is 

~0(t) E F 2 and a simple arc g(t) with extremities t and ~p(t) such that 

rlnx(0=(t} and r2n.(0={W(0}, 

and 

s, tEF ,  s ~ t  =~ x(s) n x ( t ) = O .  

/ f  tp~(0) E F and g,(q~l(0))=q02(0), then g=(q02) -t o ~0 o q91 is monotone on (q~1)-1 (F). 

Proof. F 113 F 2 has three complementary domains D ~ , D 2 and D 3, two of them, say D ~ 

and D 2, are Jordan domains with boundary F 1 and F 2 respectively, and aD3=F 113 F 2 (see 

[N; Theorem V.11.3] and Figure 5.1). 

Observe that for t E F, g(t) lies entirely in/)3. For  otherwise, x(t) would connect  a 

point in D i to a point in D j, i*j ,  without meeting F l 0 F 2, and this is impossible. 

Now fix 0 < a < b < l ,  and set g=~o~(a), t-=qo~(b). We may assume without loss of  

generality that g(a)<g(b). We will show that 

(5.I) a < u < b  ~ g(a)<g(u)<g(b) .  

This will complete the proof, for if u<v, we use (5.1) to compare g(u) with g(a) and 

g(b), and then (5.1) with u, v and either a or b to get g(u)<g(v). 

Given the symmetry of  the problem, we only need to prove the " ~ "  part of  (5.1). 

By [N; Chapter V. 1 I, Example 3], D3\ (x (~)Ug( i ) )  consists of  two complementary 

Jordan domains E l and E 2, one of  which, say E 1, satisfies aE 1 =q01([a, b]) 13 ~(~) U g(f)  U F21 

where F~ is a subarc of  F 2 with extremities ~p(g) and ~p(i). 
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Observe that 

tEcpl([a,b]) =~ ~:(t)cF, I =~ ~p(t)Er~. 

For otherwise, ~r would connect points in /~1 to points in E 2 without meeting 

u(g) V~(?), and this is impossible since u(t)d93. The second implication is clear. 
Similarly, we have 

t ~ q~l([a, b]) =~ u(t) c ~2. 

But then, since qol(0) ~ qol([a, b]), ~p(tpl(0))=qo2(0) ~ r~. Thus r~=cpZ([g(a), g(b)]), proving 

a < u < v  =~. g(a)<g(u)<g(b) 

and completing the proof. [] 

Lemma 5.2 is useful in the proof of the following. 

LEMMA 5.3. Fix i=1 or 2 and suppose [a, b]x {d}cSi .  Define g(u)=qg-l(Q(u, d)), 

u E [a, b]. Let F' be the sub-arc o f f  with extremities Q(a, d) and p(b, d) which contains 

Q((a+b)/2, d). I f  qg(O) ~ F ', then 

(a) g is monotone; 

(b) g(. ) ,p ( . ,  d) and q( . ,  d) have the same points of  continuity; 

(c) p and q coincide at these points o f  continuity; 

(d) p( . ,  d) and q( . ,  d) have both left and right limits at each x E ]a, b[. 

F 

I 
i 

I 
i 

I ! 

..... l 

d 

F 

Fig. 5.2. Two possible  relative posit ions of  F and [a, b] x {d}.  

13-928283 Acta Mathematica 168. Imprim6 le 24 avril 1992 

I 
I 

a b 
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Proof. Fix c<d such that R=[a, b]• d]cSi. Then aR is a Jordan curve such that 

a F N F = ~ .  Set F=[a,b]x(d),  and for tEF, let ~(t) be the vertical segment with 

extremities t and Q(t). Since q0(0)r F ', we can apply Lemma 5.2 to the Jordan curves 

F ~=aR, F2--F, to get (a). Let D 3 be as in the proof of Lemma 5.2. 

For the rest of the proof we will assume without loss of generality that g is 

increasing. Since 9~ is one-to-one and continuous, and q~(0)~ F ' ,  it is clear that g and 

q(-,  d) have the same points of continuity. We must show the same is true of g and 

p( - ,d ) .  

Define h(. ) by 

h(x)=cp-1(r(x,d)), a < x < b .  

We claim for x E ]a, b[ that 

(5.2) g(x-  ) < h(x) < g(x + ). 

This will complete the proof. Indeed, (5.2) implies that h is monotone, and that 

p(x, d)=q(x, d) and p( - ,  d) is continuous at x whenever q( . ,  d) is. From Lemma 5.1, we 

get (b) and (c), and (d) follows from monotonicity of g and h. It remains to prove (5.2). 

Let Fn be the subarc of F '  with extremities ~(x-1/n, d) and ~(x+l/n, d). Let us 

write a=x-l /n ,  b=x+ 1In. Fix n E N. Without loss of generality, we can assume Fn=F' .  

Let s be the vertical segment from (x, d) to r(x, d). As in the proof of Lemma 5.2, let E1 

and E2 be the two complementary open domains of D3~(x(a, d)U x(b, d)), and assume 

that E1 is the one that satisfies aE~=FUx(a, d)Un(b, d)OF'. By the definition of r, 

/,c/~l U EZcD i 13 F. The initial part of / , ,  namely the open line from (x, d) to Q(x, d), is in 

E l, as we have seen in the proof of 5.2. Suppose r(x, d ) E F \ F  ,~/~2. Then let 

z = inf{ y > d: (x, y) E/~2}. 

Evidently z>d and (x,z)E/~lN/~ 2. But this is a contradiction since /~lN/~2c 

x(a, d) U n(b, d) and s does not intersect this set. It follows that r(x, d) E F ', and hence 

that g(x-1/n)<h(x)<g(x+l/n). Let n---~oo to get (5.2). The proof is complete. [] 

Recall Definition 1.2, which defines the Maltese cross condition and the related 

sets M(F) and M0(F). 

LEMMA 5.4. M(F) and M0(F) are Borel. 

Proof. M(F) is Borel since 
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M(F)= LI Ma(r,h) 
h, aEQ* 

187 

Now 

Mo(r) = u Mo(r, h). 
h~Q~ 

M0(r,  h) = O { tEF:Fn( t+O)= (3}. 
O open 

O = 3/0((0, 0), h) 

Since R 2 is a separable metric space, the above union can be made countable. Since 

each set appearing in the right-hand side of the union is closed, this completes the 

proof. [] 

We shall say that a curve F 1 dominates a curve F 2 provided r'2cSl(F1). 

FUNDAMENTAL LEMMA 5.5. (a) Suppose ~,{prl(M0(F))}>0. Then there is a simple 

subarc F' o fF  with extremities ~ and L say, and two continuous monotone curves FL 

and Fo, both with extremities g and ~ such that 

(5.3) Fu dominates F' and F' dominates FL; 

(5.4) S1(Fv)\SI(Ft) is a disjoint union of  rectangles whose boundaries are con- 

tained in FvUFL; 

(5.5) 2(prl(F ' n Fvn Ft))>0; 

(see Figure 5.3). 

(b) Suppose that ~,{prI(M(F))}>0. Then in addition to (5.3)-(5.5), there is an a>0  

and a closed set F c F '  fl Fv n Ft such that 2(prl(F))>0 and 

(5.6) if  sEF,  t E F ' ,  then a<ltz-S21/Iq-sll<l/a; 

(5.7) F '  has a tangent at each sEF.  

Proof. We first localize. Since Mo(F)=tJheQ+Mo(F,h), there is h>0 such that 

2{prl(M0(F, h))}>0. Moreover, it is clear that there exists an open square R of side less 

than h whose intersection with M0(F, h) has a 1-projection with positive measure. Fix 

and Ma(F, h) is easily seen to be closed (Q* denotes the set of positive rational 

numbers). To see that M0(F) is Borel, we only need to show that M0(F, h) is Borel, since 
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Fig. 5.3. Two possibilities for F ' .  

such an R and let I t [ 0 ,  1[ be a closed interval such that q~(I)cR and 2(prl(F0))>0, 

where F0=tp(1) n M0(F, h). 

The proof is based on one simple remark. 

(5.8) Let s, tEFo and suppose that s=tp(u), t=cp(v) with u<v in I. Let J be the open 

interval ]u, v[. Then if R m is the open rectangle having two opposite corners at s and t, 

we have q~(J)cRm. 

Indeed, Mo(s, h) consists of four branches, each having length greater than the side 

of R, so that it divides R into four disjoint rectangles. By the same token, 

Mo(s, h)UM0(t, h) divides R into nine disjoint rectangles, and the middle one, Rm, has s 

and t at opposing comers (see Figure 5.4). Now tp(J) is a continuous curve with 

J 
rig. 5.4. 
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extremities s and t. It does not intersect aR since Jc1,  and it does not intersect 

Mo(s, h)0 Mo(t, h) since s and t are in M0(F, h). A moments thought now shows that it 

must be contained in Rm, as we claimed. 

If we now take three points in F0, say r=q~(u),s=qg(v), t=q0(w) with u<v<w in I, 

then (5.8) implies that s is contained in the rectangle having two opposite corners at r 

and t. Thus the three points can be totally ordered by one of the orders <_ or A. It 

follows that the whole set F0 can be totally ordered by the same order. 

We will assume for the rest of this proof that the order is <_ (the argument above 

shows that the restriction of q0 to B=q0-1(F0) is monotone: for we either have r<_t or 

t<_r. In the first case we have qJ(u)<_qg(v)<q~(w), which implies that ~PIB is increasing, 

and in the second, cp(w)<_~(v)<_q~(u), which implies ~01B is decreasing). By reparametriz- 

ing F if necessary, we may then suppose that q0lB is increasing with respect to <.  

Let us shrink things slightly. There is a closed subset FI of F0 whose 1-projection 

still has positive measure. Let B~=~0-~(F~), let _u=inf{u: u EB~}, and let a=sup{u: u EB~}. 

Set K=[_u, ti], and let F '=q~(K). Then F '  has extremities _s=tp(_u) and/=tp(a). 

To construct FL and Fu, first let 

A L = {t E T: 3s E F I such that s A t}, 

At:= {tE T: 3 s E F  1 such that t_A s}, 

and then let FL and Fv be the upper left boundary of AL and the lower right boundary of 

Av respectively. According to [W3; Theorem 2.7] these are monotone non-decreasing 

curves. An alternate description is the following: K \ B I  is open, and hence is a disjoint 

union of open i n t e r v a l s :  kl~Bl-~Un]Un, On[. Let R.  be the closed rectangle whose lower 

left comer is tp(u~) and whose upper fight comer is tp(v~). Then 

F' c F 1 U U R  ~ 
n 

and Ft~ consists of F~ together with the left and top boundaries of each of the Rn, and FL 

consists of F~ together with the bottom and fight boundaries of each of the R,. Now 

(5.3) and (5.4) are clear, and (5.5) follows since FL n F v n F  '=Fl .  

Next, if2{pr~(M(F)))>0, we use the same reduction as before to find a>0  and h>0 

for which 2{prl(M~(F, h))}>0. Since M~(F, h)cM0(F, h), we get (5.3)--(5.5). But now, by 

the definition of the Maltese cross M~(t, h), (5.6) clearly holds for each t ~ F~ n M~(F, h) 

since F n M~(t, h) = f~. 

Finally, note that after removing from FL (resp. Fu) at most countably many 

vertical segments, one is left with the graph of a monotone function ~0L (resp. V/u), with 
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the property that ~pL<_~pv. So at points x where ~0L(x)=~pv(x) and where both these 

functions are differentiable, their derivatives must coincide. Since ~pr(x)=Vdv(x), 

Vx ~ prl(F0, we conclude that F '  has a tangent at ;L-almost all ~0L(x), x E pr~(F0. If we 

take a slightly smaller set FcF1 with the same measure, we can satisfy (5.7). The proof 

is complete. [] 

We now state the main result of this section. 

THEOREM 5.6. Let (Xt, tE T) satisfy Assumption 1.1, and let F be a Jordan curve 

with complementary open domains D1 and Dz. Assume 

(5.9) 2{pri(M(F))} =0,  i=  1 or 2. 

Then ~((D1) and ~(D2) are conditionally independent given ~(F). 

Remark 5.7. (a) We are not assuming that F is bounded, nor that FcR2+. Of course, 

(Xt, t E R~+) can be extended to all of R 2 by setting Xt=O, if t E RZ\R2+, and thus the 

behavior of F in R2 \R~  is irrelevant. 

(b) A straightforward extension of Theorem 5.6 can be made by considering a 

domain DI whose boundary consists of countably many disjoint Jordan curves 

(Fn, n E N). In this case, (5.9) becomes 

~,{Pri(n?NM(Fn)))--O , i = l  or2.  

Proof o f  Theorem 5.6. By Theorem 3.3, it suffices to show that i fB is an interval, 

d>0, and i fB ~d) is in either/)i  n S1(/92) or bz N $1(/)0, then X(V(B(d))) E ~(F). 

By Lemma 5.3 (a), (b) and (c), the maps p ( . ,  d) and q( �9 d) coincide except on a 

countable set, so we may replace p by q in the definition of V(B~d)). Let f (x)=q(x ,  d) 

and, to simplify notation, if A ~ B  let 

= V(A (d)) = {tE T: t 1EA, 0 <_ t 2 _<f(tl) ) . 

We will decompose B into a number of disjoint sets B, and show that X(/~) E ~(F) 

for each n. This will imply the theorem since X(/~)=ZnX(/~,). 

Let B1 be the set of uEB such t h a t f i s  either discontinuous or has a strict local 

extremum at u. Let B2 be the set of u E B \ B 1  such that (u,f(u)) is an accumulation 

point of F N (R• {f(u)}), and let B3 be the set of u in B\(B1UB~) at which f is strictly 

monotone. 

Recall that f is strictly monotone at u if there exists h>0 such that either 
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( 5 . 1 0 )  u - h < v < u < w < u + h  =~ f (v )<f (u )<f (w)  

or 

( 5 . 1 1 )  u - h < v < u < w < u + h  =r f (v )>f (u)>f (w) .  

Note that the Bn are measurable, being the projections of Borel sets. Since f can 

have at most countably many local extrema or discontinuities by Lemma 5.3, B1 is 

countable. Thus X(/~0 vanishes a.s., and is trivially in Y~(F). Furthermore, X(/~2) E ~(F) 

by Proposition 2.8. 

Leaving aside for the moment the question of whether X(/~3) E Y((F), let us show 

B=B~ UB2UB3. Suppose t~ EB~B3,  and show tm EB~ UB 2. Now f is not strictly mono- 

tone at tl, and we must have one of the following: 

(5.12 a) f has a strict local extremum at t~; 

(5.12 b) (h, f(tO) is an accumulation point of the intersection of Rx {f(h)) with the 

graph off .  

(5.12c) There exists a monotone sequence (u n, n E N) converging to t~ such that for 

all n, f(u2n)>f(tl)>f(u2n+l ). 

If (5.12a) holds, then tEB1, and if (5.12b) holds, tEB2. Thus suppose (5.12c) 

holds. 

Now if f is not continuous at h, we have t~ EBb. If f is continuous at tl, then 

(u%f(un)) converges to t=(tl,f(tl)). Let v 0, o 1 . . . .  be such that t=q~(v0), and (u%f(un)) = 

~(on). As q~ is continuous and one-to-one, on must converge to o0. Now (u n) is 

monotone, and we may assume without loss of generality that it is decreasing. 

By Lemma 5.3, (on) is also monotone, and we may suppose it is decreasing as well. 

Let F~ be the arc {q~(v): Vo~V~VEn }. The segment B (d) lies entirely inside D 1 o r  DE, and 

hence does not intersect F. By the definition of q( �9 d), F cannot intersect the open 

vertical segment from (u,d) to (u,f(u)) for any u EB. Thus F~ can intersect the 

polygonal path from t to (tl, d) to (u 2n, d) to (u 2", f(u2n)) only at the two endpoints. (This 

path is the solid curve in Figure 5.5.) 

On the other hand, F~ is a continuous curve starting at t, and passing through 

(u2n+l,f(u2n+l)) and (U2n, f(ll2n)). Thus it must pass at least once through the open 

horizontal segment ]t~, u2n[• (the dotted line in Figure 5.5). This is true for all n, 

hence (5.12b) must hold, and tl EB2. In all cases, we have shown h EBI UB2, and thus 

B=B~ O B 2 U B 3. 
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f(u 2~) 

f(u 2n+l) 

d 

t [ . . . . . .  

Ii L/2n+l L/2n 

Fig. 5.5. 

It only remains to show that X(/~a)E ~(F). By hypothesis, the Maltese cross 

condition is satisfied at (u, f(u)) for almost every uEB3, so by Assumption 1.1, we can 

replace B3 by a smaller set with the same measure, which we again denote B3, so that 

for each uEB3 there is h>0 such that 

(5.13 a) F satisfies the Maltese cross condition at (u, f(u)); 

(5.13b) either (5.10) or (5.11) holds at u; 

(5.13 c) F n (]u-h, u+h[x  { f (u)) )= {(u, f(u))}. 

Fix h>0  and let B~- (resp. B h) be the set of uEB3 for which (5.10), (5.13a) and 

(5.13 c) (resp. (5.11), (5.13 a) and (5.13 c)) hold. It is then enough to show that X(/~-) and 

X(/~h) are in ~(F). Let us omit the subscript h and consider 

A +- = INB~, 

where I is a fixed interval of length less than h. (Indeed, Bh is a finite union of such sets 

and B~- OB~ 1' B3.) 

The two sets A -+ are handled the same way, so we will only deal with A + here. The 

restriction to an interval of length less than h means that (5.10) applies to any pair of 

points in A +. Thus 

(5.14) flA+ is strictly increasing. 

Let + + A 0 =A n {u: (u, f(u))~ M0(F) }, i.e., the subset of A + such that F satisfies the 

cross condition at (u, f(u)). Since u~B2, (u,f(u)) must be an accumulation point of 
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FN{t: q=u, t2>f(u)}. The graph t~ o f f l a j  is totally ordered for <_, and it is also the 

graph off-~lf~aff), so we can apply Proposition 2.8 to the horizontal shadow S2(G) of 

to see that x(SZ(G)) E ~(F). Now Sl((~)=,~g -, so by Proposition 2.3, X(Ag)E Yd(F). 

Now let + -  + + A~ - A  \ A  0 . We have reduced the proof to the problem of showing that 

X(fi,~) E ~(F). ff u fiA T, then (5.13) and (5.14) hold and in addition, for some 6>0, 

(5.15) r n ({u} x ] f (u ) -6 ,  f(u)+6D = {(u,f(u))}. 

Let A~, ~ be the set of u E A T which satisfy (5.15) for some fixed 6. By taking h and/or 6 

smaller if necessary, we may assume that h=6.  Let 

C=A~hn{u: f (u)~J  } 

where J is a given interval of length less than h. It is enough to show that X(t~) E ~((F). 

Let G be the graph of f[c. By construction, GcM0(F, h), which puts us in the 

situation of Lemma 5.5. Let F0={q0(u): u E L}, where Lc]0 ,  l[is the smallest interval 

such that GcF0. Then F0 must look like the first picture in Figure 5.3. In particular, 

from (5.8), if r, t E G, s E F0 are such that r~<s~<tx, then r<s<t. 
The salient points we have established can be expressed succintly in terms of G. 

(5.16a) G is the graph of a function and GcM(F);  

(5.16b) if r, tEG and sEF0 are such that rl<s~<q, then r2<s2<t2. 

These are the only facts we will use about F in what follows. 

If t E G, then for any a and h>0, Me(t, h) intersects F. That means at least one of its 

four branches does. We will handle them separately, starting with the two horizontal 

branches. Let 

l tEr, tl~,U tl--U 

Fix e>O and let J ,  be the class of intervals [a, b] with a E C1, O<b-a<h, for which there 
exists v such that 

(5.17) (b, v) E F and Io-f(a)l < elb-al. 

Then 5~ is a Vitali cover of C1 and Lemma 2.7 applies: there is a sequence of intervals 

[a,, bn] in 5~, such that E((X(CO- Y)2)<e, where Y= E, e NX([a~, b,] x [0, f(a~)]). For each 
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i / / / / / / / _ 1 /  
f 

r ~ ' _ . , t F . , d V ' J . ~ l  , /  R, 

J 

an bn 

Fig. 5.6. 

n, choose v=vn to satisfy (5.17) with b=bn. Set 

z= 
mEN 

Z is clearly ~(F)-measurable. By (5.16b), if am<an, then f(am)<Vm<f(an)<v n, so that 

the intervals [f(an), Vn] are disjoint. Let Rn=[0, bn] • [f(an), Vn] and notice that 

Z -  Y = ~ X(Rn), 
mEN 

and that the rectangles Rn are disjoint. (See Figure 5.6. This is the key observation; 

most of the work in this proof was to set it up.) Thus 

(5.18) E((Z- y)2) = ~ E(X(Rn)2). 
mEN 

Now the area of U~eNRn is bounded by 

bn(vn-f(an)) <_ ~ ~ bn(bn-an) 
n{~N mEN 

by (5.17). The diameter of CI is less than h, so if b=supCl ,  this is 

< ebh. 
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Now let e--->0. This goes to zero, hence by Assumption 1.1, E((Z-Y)2)--->0, so 

Z -  Y--->0 in L 2, hence Z---)X(CO E Y((F). 

Next let 

C2 = { u E C \ C l :  liminf f(u)-t2 = 0 } .  
tEF, tl ~U u - - t  I 

We proceed exactly as above except that we derive ~ using intervals whose right, 

rather than left, endpoint is in C2. Once again the rectangles Rn are disjoint and we 

conclude that X(C2) E ~(F). (The reason for handling C1 and C2 separately is simply that 

the rectangles defined in case 2 may not be disjoint from those in case 1.) 

This takes care of the horizontal branches of the Maltese cross. The other two 

cases correspond to the vertical branches, and they follow by symmetry. If we 

interchange the horizontal and vertical coodinates, this interchanges horizontal and 

vertical branches of the crosses, while (5.16) remains true. If C3 and C4 are the 

corresponding sets for the vertical branches, and if G3 and G4 are the subsets of G over 

C3 and C4 respectively, the arguments above establish that x(SE(G3)) and x(SE(G4)) are 

in Yg(F). Then Proposition 2.3 implies that X((~) and X(C4) are also ~(F)-measurable, 

since Ci=SI(Gi). This finishes the proof. [] 

6. Necessary conditions for the Brownian sheet 

In the previous section, we showed that, for any process satisfying Assumption 1.1, the 

Maltese cross condition is sufficient to ensure that a Jordan domain has the sharp 

Markov property. However, this condition is not always necessary. For instance, if X 

is the Poisson sheet, then the sharp Markov property is known to hold for a large class 

of domains whose boundaries do not satisfy the Maltese cross condition (see [C; 

Theorem 4.1]). The same is true of many jump processes, since in this case the Markov 

property is related to global properties concerning the way discontinuities of the 

process propagate: see [DW]. However, if we restrict ourself to the Brownian sheet, it 

turns out that for Jordan domains, the Maltese cross condition is indeed necessary as 

well as sufficient. The main result of this section is the following theorem. 

THEOREM 6.1. Let FcTU {oo} be a Jordan curve with complementary open do- 

mains Dl and D2, and let (Xt, t E T) be a Brownian sheet. Then Yg(DO and Yg(D2) are 

conditionally independent given Y((F) if and only if R{prl(M(F))} =0. 

Remark 6.2. (a) I f D l c T  is an open set, and F=a/)~, then D1 can satisfy the sharp 
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Markov property even though ;t(prl(M(F))}>0. This is the case in Example 3.5, where 

M(F) is the subset of the diagonal whose projection on the x-axis is the Cantor set A. 

(b) We conjecture that in general, the necessary and sufficient condition for the 

sharp Markov property to hold in the case of the Brownian sheet is 

;t(pr~(M(r(S0 U r(Sg))} = 0. 

Before beginning the proof of Theorem 6.1, we give a few corollaries which 

provide easily verifiable criteria in various special cases. For instance, in the case 

where F is rectifiable IS; Chapter IV, w 8], the Maltese cross condition can be expressed 

in terms of the (one-to-one) parameterization q0=(91,9z) of F. Recall that F is rectifiable 

if and only if both 91 and 92 have bounded variation [S; Chapter 4, (8.2)]. So in this 

case, 9i is canonically associated with a signed measure on [0, 1], denoted dgi, i= 1,2. 

We let Idgil denote the total variation measure associated with dgi. Recall that two 

signed measures/*l and/~2 are mutually singular if and only if [kt d and 1 21 are mutually 

singular [H; Chapter 6, w 30]: we denote this/*~-l-/~2. 

COROLLARY 6.3. Let (Xt, tET)  be a Brownian sheet, and let F be a rectifiable 

Jordan curve with continuous one-to-one parameterization 9=(91,92): [0, 1]-->TU {oo}. 

Let Dl and D2 be the two complementary open domains bounded by F. Then ~(DO and 

~(D2) are conditionally independent given ~(F) i f  and only if the signed meas- 

ures d91 and d92 are mutually singular. 

Proof. By Theorem 6.1, all we have to show is that 

(6.1) X{prl(M(F)))=O r d g l •  

For this, we recall that if 9~ and 92 have bounded variation, then 

hm 93 i (x+h)-93-i(x)  
(6.2) Wi(x) = " - 

h-~O 9 i (x+h) -g i (x )  

exists and is finite for Id9il-almost all x, i= 1,2, and 

(6.3) d91-l-d92 r ~Pl(X)=O [dgll-a.e. ~" ~O2(x)=O Id921-a.e. 

Both (a) and (b) are well-known if d9i is Lebesgue-measure [S; Chapter IV, (7.1)]. 

Since we have found no reference to the general case, we give a sketch of the proof. 

Let Ail (resp. A~) be the set of points of increase (resp. decrease) of 9i, and set 
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A~=[0, 1]\(Ai~ UA~). Since A~ consists of local extrema of qoi and points x such that the 

set {y: 9~(y)=q;i(x)) is infinite, A~ is a [dgil-null set [S; Chapter IX, (6.4)]. Now on Ai~ 
and A~ one can first prove a result similar to that of [S; Chapter IV, (5,1)], and then 

repeat the proof of [S; Chapter IV, (5.4)], in each case using the Vitali Covering 

Theorem 2.4 for the non-negative measure Id<pll+ld921, instead of for Lebesgue meas- 

ure (this more general form of the Vitali Covering Theorem can be found in [DS; III, 

12.3]). This proves (6.2); details are left to the reader. 
i �9 The proof of (6.3) involves the same decomposition of [0, 1]. Each Aj, j -  1,2, 3, is 

handled as in [S; Chapter IV, (7.1)]. Again details are left to the reader. 

In order to prove (6.1), first assume that 2{prl(M(F))}=0. Define A={xE[0,  1]: 

0<lW (x)l<+oo). Looking back to (1.6), we see that AcM(F),  and so ;t({q01(x): 

xEA})=0. By [S; Chapter IX, (6.4)], this implies that A has Id~0d-measure zero. Thus 

I~pl(x)l E {0, +oo}, for Idq0d-almost all x. By (6.2), we get ~)I(X)=0 Id~011-a.e. s o  dqpt.kdq92 
by (6.3). 

Now assume that 2{prl(M(F))}>0, and let us show that dq0~ and d92 are not 

mutually singular. Indeed, let I" '=q0([x0, x~]), F and a>0  be given by Lemma 5.5. By 

(5.6) and (5.7), we have 0<~01(x)<+oo, for xEq~-l(F). So by (6.3), we only need to 

show that q0-1(F) has positive }dq0d-measure. Define 

L(x) = m a x  q~ l (u) .  
Xo~ll<X 

By Lemma 5.5, L(x)=9I(X ) when xEq0-~(F), so 

;t({L(x): x E qg-l(F)}) > 0. 

By [S; Chapter IX, (6.4)], this is equivalent to saying that 9-~(F) has positive dL- 
measure. But since L is absolutely continuous with respect to Idq0~l, q0-~(F) also has 

positive ]dqgd-measure. This proves the corollary. [] 

If q~l or (P2 does not have bounded variation, the measures dcpi may not be defined. 

However, for curves which are not too irregular, there are two measures naturally 

associated with F which allow one to extend Corollary 6.3. Indeed, consider the 

following regularity assumption on F. 

Assumption 6.4. For 2-almost all r ~R+, the intersections of F with the horizontal 

line R+ x {r} and with the vertical line {r} • are finite. 

Since F is a Jordan curve, this is equivalent to requiring that q0~ and ~o 2 satisfy 
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Banach's condition (TI) [S; Chapter IX, w It is satisfied by functions of bounded 

variation [S; Chapter IX, (6.2)], but the converse is false. 

Let ql, 91 be the maps denoted q and Q at the beginning of Section 5, and let q2, (72 

be the horizontal counterparts, that is 

q2(t) = inf{u > tm: (u, t 2) E r } ,  02(0 = (q2(t), t2). 

Now let ls be the image on F of two-dimensional Lebesgue measure m under the map 

Oi, i.e. 

I~i(F) = m(o~l(F)), FE ~(F). 

Null sets of/~; are identified by the following lemma (whose conclusion is false without 

Assumption 6.4). 

LEMMA 6.5. Suppose F satisfies Assumption 6.4. Then for i= 1,2 and FE ~(F), 

# i ( F ) > 0  r 2(Pri(F))>0. 

Proof. For s=(sl, s2) • T, define 

( inf{s3_i-t3_i: (t 1 , t 2) E F, s i = t i, t3_ i < S3_l} 
li(s ) = l S3_ i 

Now the set Ai={xER+:FN({x}• is infinite} has 

Assumption 6.4, and so 

if { } . ~ ,  

otherwise. 

Lebesgue measure zero by 

/z i (F) = re(O? l(F)) 

=fp d t i [  dt3-iI?~(F) 
r,(F) dR+ 

= Jo~,~F)\A, dti k(ti)' 

where k(ti)=E li(s) and the summation is over all s EF  with si=ti. Since k(ti)>O for 

t i E Pri (F) \A i ,  the conclusion of the lemma follows. [] 

COROLLARY 6.6. Let (Xt, tE T) be a Brownian sheet, and let F be a Jordan curve 

satisfying Assumption 6.4 with complementary open domains D1 and D2. Then ~(D1) 

and Jt~(D2) are conditionally independent given ~t'(F) if  and only if ~l and ~2 are 
mutually singular. 
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Fig. 6.1. 
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Proof. Set to=qO(0). For s, t E F \ { t o } ,  let F[s, t] denote the simple arc in F with 

extremities s and t which does not contain to. Define ai: [0, 1]--->R by ai (x)=l~i (~([0, x])), 

i.e., ai is the inverse image of ~i under q0. By (6.2), applied to cq and a2, 

lim ct2(x +h)-a2(x) 
h-,O al(x +h)--al(X) 

exists dal-a.s., and thus 

~p(0) = lim/,z(F[s, t])//xl(F[s, t]) 
t---~ S 

exists and is finite for #ralmost  all s E F. 

Now suppose that at s=(sl,  S2)E F,  F admits a tangent vector (d~, dE) which is not 

vertical, that is dm*0. It is easily seen (see Figure 6.1) that ip(s)=Sld2/(sxdl). The proof 

of this fact, which uses only elementary calculus, is omitted. 

The corollary is now easily proved. Indeed, if 2{prl(M(F))}>0, then by Lemma 

5.5 (b), F has a tangent, which is not vertical or horizontal, on a subset F for which 

/zl(F)>0 (by Lemma 6.5). By the above,/zl and/z2 are not mutually singular (note that 

this implication does not use Assumption 6.4). 

Now assume that/zl and/z2 are not mutually singular. Observe that 

lui{ F ~ i  ( S i (F)  ) ) = 0, 
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and according to Assumption 6.4 and Lemma 6.5, 

/ai{t E F: {(sl, s2)EF: s i = ti} is infinite} = 0. 

But since/,~ and/~2 are not mutually singular, we have ~0(s)>0 on a set G c F  with 

/~(G)>0, or, equivalently by Lemma 6.5, with ~.(pr~(G))>0. By the above, we may 

assume that 

G= Q~(SI(F)) ne2(s2(r)) n {t6r:  {(Sl ,  S2); $ i = ti} is finite, i =  1,2). 

Thus GcM0(F), so by Lemma 5.5 (a), there is a subarc F t of F and monotone curves FL 

and Fv satisfying (5.3)-(5.5). Since ~o>0 on G, the slope of F at each point of F ~ N G 

is finite and non-zero. So GcM(F),  and thus ~{pr~(M(F))}>0. This completes the 

proof. [] 

Note that it is not difficult to provide counterexamples which show that Corollary 

6.6 is false without Assumption 6.4. 

We now turn to the proof of Theorem 6.1. To begin with, by Theorem 5.6, we only 

need to prove necessity of the condition 2{pr~(M(F)))=0. We will show that this 

reduces to the following statement concerning monotone curves. 

PROPOSITION 6.7. Let (Xt, tET)  be a Brownian sheet. Fix a,b>O and set 

R=[0, a] x [0, b]. Let FL and Fv be two continuous increasing (resp. decreasing) curves 

in R such that 

(6.4) Ft, dominates FL and (FL 13 Fv) fl OR= {(0, 0), (a, b)) (resp. = {(0, b), (a, 0)}); 

(6.5) SI(Fo)\SI(FL) is a (countable) disjoint union of  rectangles whose boundaries 

are contained in FLU Fv; 

(6.6) 2(prl(FL N Fo))>0 and at 2-almost all x E prl(FL N Fv), the (common) tangent o f  

FL and Fu has slope e/(x)4=O. 

Set AL=SI(FL). Then X(AD ~ ~(FL 13 Fv 13 aR). 

Proof o f  Theorem 6.1. As indicated above, we need only prove the "only i f "  part. 

Assume 2{prl(M(F))}>0. By Lemma 5.5, we obtain the existence of a subarc F '  of F 

and two monotone curves FL and Fo satisfying (5.3)-(5.5), a set F and a>0  such that 

(5.6) and (5.7) hold, and a sequence (R,, n E N) of rectangles with boundary contained in 

Fv U It, whose union is SI(Fv) \SI(FD.  
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Let A=prl(F).  Since F is totally ordered (for <_ or _A), we can write 

F= {fl(x):x E A}, for some monotone function ft. Let A' be the set of  points of density of 

A, and fix xoEA'. Since F is non-self-intersecting, there is 6>0 such that the distance 

between fl(Xo) and F \ F '  is at least 26. Choose Xl E A' such that Ifl(Xl)-fl(xo)l<6, and let 

R0 be the rectangle with sides parallel to the axes and with two opposing corners at 

fl(Xo) and fl(xl). By our choice of R0, A(prl(F0))>0, where Fo=FNRo . Moreover, 

FNRo=F'NR o, and FLNORo=FvNORo={fl(Xo),fl(xl)}. In particular, ORoNORn=~, 
Vn E N (this follows from the fact that a point of density of A is necessarily a limit from 

both sides of points of A). There are two possible cases, as in Figure 6.2. 

Let F0=FL nR0. By Lemma 3.7 and Theorem 3.3, X(SI(F0))E Y((DI)N Y((D2), which 

is the minimal splitting field for D1 and D2. But we are going to deduce from Proposition 

6.7 that X(SI(F0)) t~ ~(F),  which will complete the proof. 

Let us play the Devil's advocate and suppose that X(S~(F0)) E ~(F). Then 

E(X(S~(Fo) )I ~(r)  v ~ (  OR o) ) = X( S ~(ro)) 

= X(Sl(ro) fl Ro)+X(S 1 (F o) N R~) 

=- r l+ r2. 

Now Y2 ~ Yg(ORo), so 

r2 = E(Y21Ye(r)v 

which implies that Y1 =E(YII~(F) V ~(aRo)) as well. 

Define a new Brownian sheet W=(Wt, tERo) by 

14-928283 Acta Mathematica 168. Imprim6 le 24 avril 1992 
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and set 

Le~ 

W t = I  dX,, tER o, 
JR tf~Ro 

wt= fR dX s, tE T. 
t \ f .  c 

= o{ Wt, t E (F N R0) U aR0)~ 

= or( Wt, t E (F \ Ro) U aRol. 

It follows from the properties of white noise that W and W are independent. Then 

and @ are independent as well, and in fact, o(Y1)V c~ is independent of @, so by 3.11, 

Y, = E(Y, lYe(F) V ~'(aRo)) 

(6.7) = E(Y, IC~V ~) 

=E(Vd~). 

Set ~(E)=o{Wt, tEE). Since W is a Brownian sheet, it satisfies the sharp Markov 

property with respect to finite unions of rectangles (see Corollary 4.2). Note that 
n _ n 0(U,=1Rk)--U,=I aR,, so by the Markov property, 

where we write M_l_ ~t qg as shorthand for "M and ~ are conditionally independent given 

cr Passing to the limit, we see that 

Since q3(aRo)Vqg(Fo)=q$((U~=lRk)C), we can enlarge the conditioning field (see [C; 

Lemma 2.2]) to see that 

(6.8) ~(kU= Rk)• ~q((k~ Rk)C) ic~(k~ ORk)V~(Fo)V~(aRo). 

Observe that Y1E ~((tgk~=lRk)C), and that by (6.7), YI=E(Y~I~), for any (x-field ~=~d. 
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Thus 

Y1 = E( Y1 c~(k__UlRk)VC~(U__~ 1 aRk)VUd(Fo)V~(ORo)) 

= E( Y1 ~(~1 aRk) V~(F~176 

by (6.8). It follows that 

(6,9) I11 = E(rll W(rL) V W(r u) V W(aR0)). 

Notice that I11 is ~(R0)-measurable, so (6.9) only involves W, which is a Brownian 

sheet, hence we can reduce to the case R0= [0, a] • [0, b]. But now Proposition 6.7 

implies that (6.9) is not true. This is the desired contradiction. [] 

We will now head toward a proof of Proposition 6.7. The proof relies specifically 

on the fact that the Brownian sheet is a Gaussian process, and uses ideas similar to 

those developed by Dalang and Russo [DR] in a simpler setting. Though we could refer 

to [DR] from time to time, we prefer for the convenience of the reader to give full 

details here. 

In order to stress that we are working with a Brownian sheet, we write (Wt, t E T) 
instead of (Xt, t E T), throughout the remainder of this section. 

Fix a>0, b>0 and let R= [0, a] x [0, b] be a rectangle. FL and Fv are the monotone 

curves of Proposition 6.7, Rn denotes the rectangles bounded by the two curves, and 

A=FL tJ Fu. These are all subsets of R. Let AL=SI(FL) be the part of R below FL and let 

Av be the part of R above Fu. We let Q1 and Q2 denote the vertical and horizontal 

projections, respectively, on A (rather than on F, as before). There are two different 

cases, that in which the curves are increasing, and that in which they are decreasing 

(see Figure 6.2). We will treat them together as much as possible, but we will have to 

consider them separately from time to time. 

Our first step is to derive representations of the sharp fields of certain sets. For 

each h E LZ(R, ~) let us denote 
e* 

W(h) J h(t) dW t. 

Let ~(F)  be the closed linear subspace of Lz(~, ~,P) which is generated by 

{Wt, t E F) .  Since we are dealing with the Brownian sheet, which is a Gaussian process, 

we can deal with the linear spaces 5r instead of the Yg(F). Now it is well known that 
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~(R) is isomorphic to L2(R, dt) under the isometry 

h ~ W(h). 

Let us look at some different linear spaces. Consider ~(OR). This is isomorphic to 

a closed subspace ofL2(R, dt). To see which one, let O+R =([0, a] x {b)) 0 ({a} x [0, b]) be 

the upper-right boundary of R and let ;t + be Lebesgue measure on O+R normalized on 

each of the two segments so that A+([0, a] x {b})=ab=A+({a} x [0, b]). Let g be defined 

on a+R. Then we define ~ by 

(6.1o) ~(u, v) = g(u, b)-g(a, v). 

PROPOSITION 6 .8 .  

satisfy 

(6.11) 

Let Lg(OR) be the class of  functions gEL2(8+R, 2 +) which 

f f  g(u, b) du = O. 

Then the map g~-->W(~) is an isometry between L~(aR) and ~(aR). 

Proof. If t E a+R, set gt(u, v)= 1 if (u, v) E a+R, u<_tt and v>_t2, and set it equal to 

zero otherwise. Then ~t=Ie,, so W(gt)= W, Note that the class of functions {gt, t E a§ 

generates the Borel functions on a+R. 

Let g EL2(a+R, 2+). Note that we can add or subtract a constant from g without 

changing ~, so that by replacing g by g-(I/a)  Sg g(u, b)du if necessary, we may assume 

that g satisfies (6.11). In that case, 

f fRg(u ,b)g(a ,v )dudv=( foag(u ,b)du) ( fobg(a ,v )dv)  =0, 

which implies that 

=f (g(u.b)-g(a,o))2d.av 
=f (g2(u,b)+g (a,v)) dudo 
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The map g~W(R) is linear and preserves norms, so it extends to an isometry of the 

Hilbert spaces generated by the Wt on one side and the gt on the other, completing the 

proof. [] 

Consider the representation of ~(A). There are two cases: Case I, in which Ft- is 

increasing, and Case 2, in which I-'L is decreasing. In each case we can represent an 

element of ~(A) by a function defined on A, but the form is different in the two cases. 

Given h on A, let us define a function h on R. In Case 1, we define 

f h(Ol(t)) if tE At., 
(6.12) /~(t) = Jh(o2(t)) if t E A  v, 

Lh(ol(t))+h(o2(t)) if tER n,n = 1,2 . . . . .  

In Case 2, we define 

~(t)= {~(Ol(t))-h(o2 (t)) if t E SI(A), 

otherwise. 

Let I~i, i=1,2, be the image of Lebesgue measure under 0,', i.e. iti(F)=m(o~.l(F)), 
FE ~(A). 

PROPOSITION 6.9. (a) Assume that Case I obtains. Let L~(A) be the class of  
h EL2(A,/,tI+/Z2) such that 

(6.13) fR h(o~(t))dt=O, VnEN. 
n 

Then ~(A) is isomorphic to L~(A) and the map h~-~W(h) is an isometry. 
(b) Assume Case 2 obtains. Let Q=Rto for some t o E F L. Let L2(A) be the class of  

h EL2(A,fll+fl2) which satisfy (6.13) and which also satisfy 

(6.14) ( h(e~(t)) dt = O. 
re 

Then .LP(A) is isomorphic to L22(A) and there exists a constant K>0 such that the map 
h~--~ W(f~) satisfies 

(6.15) gllhll 2 <_ IIw(A)II 2 <_ 21lhLI 2. 

Before proving this, we need the following real variable lemma (which could be 

deduced from [DR; Theorem 3.3]). 
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0 a 

Fig. 6.3. PI,P2 and Q. 

LEMMA 6.10. Let a>0,  b>0, and let A be a domain in [0, a] x [0, b] which is 

bounded by the coordinate axes and by a continuous decreasing curve Fo. Let 0<c<a .  

Then there exists a constant K, depending only on a, b, c and Fo, such that for any pair 

h and g ofsquare-integrablefunctions defined on [0, ~) satisfying 

~C 

] h(u)du=O 
~o 

(no such condition is required o f  g), we have 

(6.16) I,;ffA(h(u)Z+g(v)2)dudv<ffA(h(u)+g(v))2dudv<_2ff(h(u,2+g(v)2)dudv. 

In the special case Fo=O+R, this statement remains valid with c=a. 

Proof. Fix d such that (c, d) E Fo and let Q=[0, c]x[0, d]. Because Fo is decreasing, 

Q=A. Let PI =A N ([0, c] x [d, b]), and P2=A O (]c, a] x [0, d]), so A= Q u P1 u P2 (see Fig- 

ure 6.3). 

Note that 

~ o  that 

(6.17) 
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By (6.17), 

. . . .  fL fL [ i (h(u)2+g(v) 2) du do = (h+g) 2 du do + (h(u)2+g(v) 2) du do. 
~" ~A _ ~uP 2 

The last integral on the right is dominated by the sum of the right-hand sides of 

(6.18)-(6.21), so this is 

<-2ffA(h+g)2dudv+3ffe((b/d-1)h(u)2+(a/c-1)g(v)2)dudv. 

It is clear from (6.17) that Sfh2<ffA(h+g) 2, SO this is 

i L <_ (3b/d+3a/c-4) (h+g) 2 du dr. 
J 

ffph(u)2dudv<_(b-d)foCh(u) 2du, 

and a similar equation holds for the integral of g2 over P2, so 

(6.18) ffeh(u)Zdudo<_(b/d-1)ffeh(u)Zdudo, 
(6.19) f f,,2g(v)2 dudv<_ (a/c-e) f fQg(v)2 dudv. 

To handle the integral of gZ over P1, write g=(h+g)-h: 

f f, j g(v) 2 du do < 2 (h +g)2 du dv + 2 h(u) z du dv. 
1 I 1 

Apply (6.18) to the last term, and treat the integral of h 2 over P2 analogously to see that 

(6.20) f fpg(v)Zdudv<_2 f f,,(h+g)2dudv+2(b/d-1) f fQh(u)Zdudv; 
(6.21) !~'j~2h(u)2dudv<2 f fe(h+g)2dudv+2(a/c-1) f 
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This proves (6.16). In the special case F0=a+R and c=a, (6.16) follows directly from 

(6.17). [] 

Proof of Proposition 6.9. In both Case 1 and Case 2, if t E A, there exists a function 

ht on A such that/~=IR,. In Case 2, for example, ht is given by hi (s)=-  1 if s E A  and tAs 
and ht(s)=O otherwise. We leave Case 1 to the reader. It is not difficult to see that the 

smallest class of functions which is closed under addition, scalar multiplication, and 

a.e. convergence and which contains the ht is the class of Borel functions on A. 

In Case 1, if g, equals I on the upper boundary segment of R,, - 1  on the fight 

boundary segment and is 0 elsewhere, then ~,---0, so that, as the map h~/~ is linear, 

one can subtract a multiple of gn from h in order to satisfy (6.13). Suppose then that 

h E L~(A). Notice that 

m(R.) fR h(Ql(t))h(o2(t))dt= (s h(o,(t))dt) (s h(~2(t))dt) =O" 
Thus 

11W(/~)II 2 = ~ ]~(t) 2 dt 

=fALf~(t)2dt+fA~h(t)2dt+~_,s ~(t)2dt 

=fAh(Ol(t))2dt+f^,h(o2(t))2dt+~s dt 

= fa h2d(~t +~2)" 

The map h~-*W(fO is linear and preserves norms, so it extends to an isometry of the 

Hilbert spaces generated by the IV, on one side and the ht o n  the other. This proves (a). 
Y 

Now suppose Case 2 obtains. Let go equal one on FL, zero elsewhere, and let gn 

equal 1 on the upper-fight boundary of R,  and 0 elsewhere. Then ~0-~,-=0, so that we 

can subtract multiples of go and g, from h without changing/~. Thus we may assume 

without loss of generality that h satisfies (6.13) and (6.14). 

Suppose h E L~(A). Then 

(6.22) 
e(w( )b = iI ifl 

 dt. 
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Apply Lemma 6.10 to the first term to see that this is 

>-KfAL(h(~l(t))2+h(~2(t))2)dt+~fR(h(Ol(t))2+h(o2(t))2)dt. 

We can rewrite this in terms of the measures ~1 and/~2: 

min(1, K) ~ hEd(/z~ +/~2) -- min(1, K)Ilhll 2. >_ 
Ja 

It also follows from (6.22) that l[/~ll2<2[Ihl[ 2, which proves (6.15). 

But now, we have seen that h~W(h) is a linear map between {Wt, tEA} and a 

subset of L2(A). By (6.15), this map is bi-continuous, so it extends to the closed Hilbert 

spaces generated by the two sets. Since the subset {hi, t E A} generates the Borel 

functions on A, we conclude that the closure of their span is L2(A) itself. The 

proposition is proved. [] 

COROLLARY 6.11. / f X E ~ ( A  UaR), there exist Borel functions ho on A and go on 
O+R such that 

X = W(/~o+~o). 

Proof. We know X= W(~) for some ~ E L2(R, dt). Random variables of the form 

Y+Z, where YE.~(A) and ZE L~(aR), are dense in Le(A O aR) so there exist sequences 

(Ym)cLP(A) and (Zm)~-~(aR) such that x=limm__,| Thus there are hmEL~(A) 
(respectively L2(A)) and gm E L2(aR) such that Ym+Zm = W(hm+~,m). Consequently, 

= lim (hm+~m), 
r l l - . ~  eo 

where the limit is in L2(R, dt). 
We claim that ~ is of the form ~=/q0+~0 for some h0 on A and go on a+R. Note 

that 

(6.23) lim I (f'll--f'lm'~'gl--gra)2 dt = O. 
m,/--,~o J 

To simplify notation, let h=hl-hm and g=gt-gm. In Case l, refer to (6.10) and 

(6.12) to see that we can rewrite the integral in (6.23) as 
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(6.24) + f fA (h(Ol(U'V))+g(u'b)-g(a'v))2 dudv 
L 

+~a f fRn(h(ol(u,v))+h(Q2(u,v))+g(u,b)-g(a,v))2dudv. 

Observe that h(Q2(u , u)) is a function of v alone on Av (equal to h(o2(0 ,  o))) ,  and 

h(ol(u, v)) is a function of u alone on AL. We are going to apply Lemma 6.10 to the first 

two integrals in (6.24). This is possible since rotating Av and AL by +90 degrees 

transforms them into regions to which the lemma applies. In order to satisfy the 

hypothesis of Lemma 6.10, fix 0<c<min(a, b) and set a=al-a,,,, fl=flt--flm, where 

f0 f0 a m = gin(u, b) du, tim = gin(a, v) dr, m E N. 

Then by Lemma 6.10, there are constants Kv>O and KL>0 such that (6.24) is 

>-Ku ! I [(g(u'b)-a)2+(h(o2(O'v))-g(a'v)+a)2]dudv 

+KL f fA. [(g(a, u)--fl)2+(h(el(u, O))+g(u, b)-fl) 2] dudv 

+ E ( ( [h(o,(u, v))+h(o2(u, v))+a-fl+(g(u, b)-a)-(g(a, v)-fl)] 2 dudv. 
J JR.  

In particular, 

J" fx,j(gm(u, b)-am)2 dudu and f j~L(g,.(a, v)-flm)2 du dv 

converge to zero. This implies that the one-variable functions gm(" ,b)-am and 

gin(a," )-tim converge to zero in measure and in L 2 for the measures vl and v2 

respectively, where 

dVl(U) = (b-rl(u)) du, dv2(v) = (a-r2(v)) dr, 
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and 

rl(u) = sup{t2: (u, t 2) fi Fv}, rz(u) = sup{t1: (t 1, v) E FL}. 

Making use of the second part of (6.4), we see that rl(U)<b and r2(u)<a, so V 1 (resp. 

v2) is equivalent to Lebesgue measure on [0, a] (resp. [0, b]). Thus (gin(", b)) (resp. 

(gin(a, " ))) is a Cauchy sequence in the topology of convergence in Lebesgue measure 

on [0,a] (resp. [0, b]), and it is also a Cauchy sequence in L2([O,a-e], d2) (resp. 

L2([0, b - e L  d2)), for each e>0. 

It follows that there is a Borel function go on a+R such that gm(" , b)-am-'>go( �9 b) 
in measure on [0, a ]x  {b), and gin(a, ")--tim---~go(a, " ) in measure on {a} x[0, b]. 

Now look at the other terms. We see from these that hm(•2(0, v))+am-tim con- 

verges in measure on Au, and hm(Ql(U, O))+am--tim converges in measure on AL, which 

implies the existence of  a Borel function h0 on Q2(Au)U Q~(AL) such that hm( �9 )+am-t i  m 
converges to h0 in (/~l+~2)-measure on QE(AO U Q~(AL). 

Finally, looking at the integrals over R,,  we see that hm(Q~(u, v))+hm(Q2(u, v))+ 
am--tim converges in L2(R,, dt). By (6.13) and Lemma 6.10, it follows that hm(ol(u, v)) 
and hm(o2(u, V))+am--flm converge in L2(Rn, dt), so there is a Borel function h~ on 9i (R,), 

i=1,2,  such that hm(" )~h~(" ) in /~rmeasnre  on oI(R,), and hm(. )+ am-flm--~h2( �9 ) 
in/~2-measure on Qz(R,). Now define h0 on A by 

ho(t ) = ho(t ) 1 2 I01(AL)ue2(Au)(t)+holo,~R,)(t)+h o I02(R,)(t), t E A. 

It now only remains to check that ~=/~o+go. Note that on Av,/~0+go is the limit in 

measure of 

hm(Q2(u, O))+am--flm+g,~(U, b ) -am-(g(a ,  V)--flm) = f~m(U, V)+~m(U, V) 

~(u, v), 
so/~0+~0 and ~ coincide on Au. In the same way, these two functions also coincide on 

AL and on Rn, n E N. 
The proof in Case 2 is similar, except that (6.24) becomes 

fR(h+Ddt=ffA(g(u,b)-g(a,v))2dudv 

+ t (h(Ql(u, v))+ g(u, b)-h(OE(U, v))-g(a,  v)) 2 du dv 
,I L UUnRn 
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since the support of/~ is in AL. Apply Lemma 6. l0 as before to construct the functions 

h0 and go. Details are left to the reader. [] 

This brings us to the proof of Proposition 6.7. 

Proof  o f  Proposition 6.7. Suppose W(AL)ELf(AOOR). By Corollary 6.11 there 

exist functions h on A and g on ~+R such that IA,=/~+~ a.e. on R. Consider Case 1. 

/AL=O in At:, so 

h(02(u, o))+g(u, b ) -g (a ,  v) = 0 

o r  

g(u, b) = g(a, v)-h(Q2(u, v)) 

for a.e. (u,v)EAv. The left-hand side depends on u, the right-hand side on v (for 

u ~ 2 ( u ,  v) is constant). Therefore both sides are equal to a constant, say a: 

(6.25) g(.  ,b) = a a.e., 

(6.26) h(o2(u, v)) = g(a, v ) - a  a.e. 

On the other hand, IAL=I on Al., sO for a.e. (u, v) EAL, 

h(Ql(u, v))+g(u, b) -g(a ,  v) = 1, 

or, using (6.25), 

g(a, v) = h(~l(u, v ) ) + a -  1. 

As before, both sides are equal to a constant, say fl, hence 

(6.27) h(~l(u, v)) = 1 + f l - a  

for a .e .u .  From (6.26), then, if (u, v) EAv, we have h(QE(U, v ) ) = f l - t 2  for a .e .v .  Note 

that if (u, v) E AL, then Ol(U, v) E F~., and if (u, v) EAv, then 02(u, v) E Fv. Thus, in terms 

of the measures/Zl and/z2, we have 

h = l + f l - a  /~ra.e. on FL; 
(6.28) 

h = f l - a  ~2-a.e. on Fu. 

But by (6.6) and (6.3),/~t and/z2 are not orthogonal on Fu N FL, sO this is a contradiction. 

This finishes the proof in Case 1. 
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In Case 2, note that/~ and IAL vanish in Au, so 

g(u, b)-g(a, o) = O, 

hence g(u, b) and g(a, v) are equal to the same constant, say a. In A L, IAL= 1, SO 

h(Ql(U, v))-h(Q2(u, v ) )+a-a  = 1. 

As before, both functions must be constant a.e., which means that there are distinct 

constants Cl and c2 such that h=Cl/~ra.e, and h=c2/~2-a.e. Since ~ and/~2 are not 

orthogonal, we must have c~=c2, which is a contradiction. This completes the proof. [] 

7. The sharp Markov property of most Jordan curves 

We are now in a position to show that curves which satisfy the sharp Markov property 

are the rule rather than the exception. We will prove several precise statements to the 

effect that "almost every" curve has the sharp Markov property. The "almost every" 

can be interpreted both in the sense of Baire category and with respect to certain 

reference measures. We shall consider two cases: the case of curves of the form y=f(x), 

where J2 R+-->R+ is continuous, and bounded Jordan curves. 

Equip C(R+, R§ with the metric of uniform convergence on compact sets. For 

fE  C(R+, R§ set 

Dl( f )  = {t E R2: t I < 0 or (t I >_ 0 and t 2 <f(tl)) }, 

D2(f) = {tE R2: t 1 > 0 and t 2 >f( t l )  }, 

I ' ( f )  = a O l ( f )  = a O 2 ( f ) .  

THEOREM 7.1. Let F be the set o f  all fEC(R+,R+) such that ffC(Dl(f)) and 

~(D2(f)) are not conditionally independent given ~(F(f)) .  Then F is a meager set (or 

set o f  first Baire category), i.e. "almost all" f E  C(R+, R+) determine domains with the 

sharp Markov property. 

Proof. To begin with, C(R+, R+) with the above metric is a complete space, and is 

thus of second Baire category by the Baire Category Theorem [R; Chapter 7, Section 

7.16]. Now the domain Ol(f)  is a Jordan domain in the sense of Section 5, the Jordan 

curve being the union of the graph o f f  and {(0, y): y>_f(O)), and passing through the 

point at infinity (see Figure 7.1). It is thus sufficient by Theorem 5.6 to show that the set 

of a l l fs  C(R+, R+) for which (5.9) fails is meager. Now eachf fo r  which (5.9) fails has a 
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Fig. 7.1. 

finite upper-right Dini derivative at at least one point x E R+ (in fact, on a set of positive 

measure). But the set of all such f is meager (see e.g. [Royden, Chapter 7, Section 7, 

Problem 30.c]). [] 

Natural measures on C(R+, R+) can be obtained from reflecting linear Brownian 

motion, or from the measure induced on C(R+, R+) by the positive part (B~, t>_0) of a 

linear Brownian motion. Let Q denote either of these two measures. 

THEOREM 7.2. Let  F be as in Theorem 7.1. Then F is a Q-null set. 

Proof. By [DEK; Theorem 1], no points of a Brownian sample path are points of 

increase or decrease. Since f has only countably many local extrema, F( f )  satisfies 

(4.1) for Q-almost all f.  By Theorem 4.1, this gives the conclusion. [] 

Similar theorems can be given for Jordan curves. Recall that we equip the set J of 

bounded Jordan curves with the uniform metric d defined in (1.5). For F E J ,  let D~(F) 

and D2(F) be the two complementary open domains of F. 

THEOREM 7.3. Let  ~ be the set o f  all F E ~  such that ~(DI(F)) and ~(D2(F)) are 

not conditionally independent given ~(F). Then ~ is a meager set. 

Let ~ be the set of all F E J which define a Jordan curve consisting of finitely many 

vertical and horizontal segments. The proof of Theorem 7.3 uses the following property 

of ~, 

LEMMA 7.4. ~ is dense in J .  

Proof. We thank the referee for suggesting the following proof, which is simpler 
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than the authors' original one. Let D1(F) be the bounded component of R 2 \ F  (recall 

that F is bounded). Since D1(F) is simply connected, the Riemann Mapping Theorem 

(see e.g. [A; Chapter 6, Theorem 1]) implies the existence of an analytic one-to-one 

mapping of the unit open disc Do onto D~(F). This mapping extends to a homeomor- 

phism O of/)0 onto DI(F) U F [Po; Theorem 9.10]. Let C=aDo. Since O is a homeomor- 

phism, Olc is continuous and one-to-one from C onto F. Let Cn--(1 - 1/n) C and define a 

Jordan curve Fn by Fn=O(Cn). Parameterize F and F, by 

~: c--~ r ,  ~(x) = O(x), 

q0.: C---~ F.. cp.(x)=O((1-1/n)x). 

Then d(F., F)--->0 since O is uniformly continuous on/)0. Thus F is the uniform limit of a 

sequence of analytic Jordan curves. It remains to show that every analytic Jordan curve 

belongs to the closure of ~. Since an analytic Jordan curve is a finite union of monotone 

curves, the straightforward proof of this fact can be obtained using the argument 

following Corollary 4.4 of [CW]. The lemma is proved. [] 

Proof of Theorem 7.3. It is sufficient to show that ~q is contained in a countable 

union of closed sets whose complements are dense in ~. Set 

~a,h = {F E o~-" 3 t E F  such that FN Ma(t, h) = ~}.  

By Theorem 5.6, ~ i s  contained in the union of the ~,h, a, h EQ*. To see that the ~ga,~ 

are closed, let (Fk, k E N) be a sequence of elements of ~ ,  h converging to F E J ,  and let 

us show that F E  c~a,h . Indeed, if tkEFk satisfies FkNM~(tk, h )=~ ,  then the sequence 

(t k, k E N) is bounded, so there is a subsequence converging to t E F. We again denote 

this subsequence (t k, kEN), and show that FNM~(t, h )=~ .  

Suppose not. Then there is s E F such that 

(7.1) [s2-t2l < a l s l -q l  < ah o r  I S l - t l [  < a [ s 2 - t 2 [  < ah. 

Let s k E Fk satisfy sk--->s as k ~  oo. Then for large enough k, (7.1) is satisfied with s k and t k 

instead of s and t, respectively, implying skE Fk N M~(f', h), a contradiction. 

Finally, cg~, h is dense in ~ by Lemma 7.4, since ~ c  ~ ,  h, for each a, h E Q*. This 

completes the p roof  [] 

Theorem 7.3 would not be very meaningful if the set ~ itself were meager! Since or 

is not complete (for instance, a sequence of ellipses could converge to a segment) the 

Baire Category Theorem cannot be applied. However, we have the following theorem. 
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THEOREM 7.5. The set ~ with the uniform metric (see (1.5)) is not meager. 

Proof. By the definition of "meager"  [R; Chapter VII, Section 7], it is sufficient to 

show that if (On, n E N) is a sequence of dense open subsets Of ~, then f'lne N O~=~. 

Observe that if cp is the parameterization of some Jordan curve, then 99 -1 is 

uniformly continuous, so we have 

(7.2) Ve > 0, 36(q0, e) > 0: Iq0(x)-q0(y) I < 6(q~, e) ~ Ix -y l  < e. 

Now fix F~ E O1. Since O 1 is open, there is &>0 such that B(F1, rl)cO~. Let ~Pl be a 

parameterization of F1, and set 61=6(q91, 1). Since 02 is dense in ,,~, there is 

F2EO2nB(FI,sl), where sl=min(rl,60/8, and since this set is open, there is 

r2>0, r2<s l, such that B(F2, r2)c02 fiB(F1, sO. We now proceed by induction. 

Let Cpn be a parameterization of Fn, and set 6n=6(~p~, I/n). At step n+ l ,  there is 

Fn+ 1E O~+ l NB(F~, s~), where 

s. = min(r n, min 6m)/8, 
m ~ t l  

and since this set is open, there is rn+l>0, r.+~<s~, such that 

(7.3) B(Fn+n, r~+l) c On+ l fiB(F., s.). 

Now observe that if m, n>_N, then 

[[q0.- q0,.[[~ <_ min(rN/8; 6N/4)--> 0 

as N---> oo, so (r n E N) is a Cauchy sequence for the uniform norm. Thus, there is a 

continuous function q0: C--->R2+ such that lim~_~| We are going to show that cp 

is one-to-one and thus F=cp(C)E~. 

Indeed, assume that there are x, y E C, x4=y, such that q0(x)=q0(y). Fix n E N such 

that ]x-y]>l/n, and fix m EN, m>_n, such that ]cpm(x)-Cpz(y)[<6./4. Then 

Iq~.(x)-q~.(y)l _< Iq~n(x)-cpm(x)l+lcPm(X)-Cpmfy)[+lCpm(y)-q~(y)[ 

<_ 6,J4+6J4+6,J4 

< 6  n 

so Ix-yl<l/n by (7.2), a contradiction. Thus F E ~r 
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It now only remains to be shown that F is in the intersection of all the On. For each 

nEN, note that [q0-r , so FEB(Fn, rd4), and this ball is contained in On by (7.3). 

This completes the proof. [] 

Remark 7.6. At first glance, it might seem more natural to equip ~ with the 

Hausdorff metric rather than the uniform metric. However, if we used the Hausdorff 

metric, the space r itself would be a meager set. 

Recall from Section 1 the definition of the probability measure Q' on ~. We have 

the following Jordan curve analogue of Theorem 7.2. (We would like to thank T. 

Mountford, who brought reference [M] to our attention, and K. Burdzy, who showed 

us a different proof [B1]. 

THEOREU 7.7. For Q'-almost all FE~ ,  ~(DI(F)) and ~(D2(F)) are conditionally 

independent given ~(F). 

Proof. Suppose the contrary. By Theorem 5.6, there would be a set with positive 

Q'-probability on which 2{prI(M(F)))>0. By Lemma 5.5, for each such F, there is a 

subset F of F, totally ordered by <_ or A, such that 2(prl(F))>0 and F has a tangent at 

each point of F. By [M; Theorem 2(iii)], it follows that F does not have null harmonic 

measure in D,.(F), i=1 and 2. But this contradicts Theorem 2.6(i) of [B], where it is 

shown that Q'-a.s., the set of points o f f  which are not "twist points" [B; Section 2] 

has null harmonic measure. This proves the theorem. [] 
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