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Introduction 

In this paper we complete the reduction of the singularities for non-dicritical holomor- 

phic foliations of [5] and [7], in order to get only the so-called simple singularities. As a 

consequence, we prove Thom's conjecture about the existence of convergent separa- 

trices, in dimension three. These results where announced in [8]. 

Let X be a non-singular analytic variety over C. A holomorphic singular foliation 

of codimension one over X is an integrable and inversible tTx, e-module of the cotangent 

sheaf f2x such that the quotient g2x/~ has no torsion. This means that each stalk ~e is 

generated by a differential 1-form 

= ~ b i d x i ;  bi6 ~?x,e 
i=1 

such that if2 ̂  dg2 =0 and g.c.d.(bi; i= 1 . . . . .  n) = 1. The singular locus Sing c~ is locally 

given by 

Sing ~ =  (bi = 0;i = 1 .. . . .  n). 

It is a closed analytic subset of X of codimension 32. An irreducible element f 6  ~?x,e is 

a separatrix or an analytic solution i f f f  divides Q ^ d f .  This means that (f=0) is 

contained in a leaf, outside the singular locus. Analogously, a formal separatrix or a 

formal solution is an irreducible element fE  ~x,e (=formal completion of tTx, e along its 

maximal ideal) such that f divides f~ A df. 

The result in this paper concerning Thom's conjecture may be stated as follows: 
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EXISTENCE OF SEPARATRIX THEOREM (dimension three). I f  ~g is a germ of  

holomorphic singular foliation of  codimension one over (C 3, 0) given by (if2=0) then one 

of the following two properties is satisfied: 

(i) ~ has an analytic solution at the origin. 

(ii) There is an analytic mapping a*: (C 2, 0)---)(C 3, 0) such that u*• is not identical- 

ly zero and the foliation given by (tr*Q=0) has infinitely many analytic solutions. 

When (ii) holds we call the singularity a "dicritical singularity". In the two 

dimensional case, the existence of an analytic solution has been proved by Camacho 

and Sad [4]. In the three dimensional case, Jouanolou [15] gives a counterexample to 

the existence of a separatrix in the case (ii) above. 

Like in the case of varieties (cf. [1], [13]), the reduction of the singularities intends 

to improve the singularities by blowing-up the ambient space X. More precisely, let 

Jr:X'-->X be the blowing-up of X with a non-singular center YcSing ~3. Then there is a 

unique singular foliation ~ '  over X' such that 

~']x,_~-l(y) :  lx-Y. 

We call ~d' the strict transform of ~ by zr. Note that, even if we blow-up repeatedly, we 

do not necessarily get that ~3' has no singular points. This can be easily seen by 

blowing-up ydx+xdy. Thus we can only hope to get "simple singularities", in order to 

have the following result: 

DESINGULARIZATION THEOREM. Let ~ be a non dicritical holomorphic singular 

foliation over X=(C3,0). Then there is a sequence of  "permissible blowing-ups" 

(1) ~r(1) ~r(2) ~<.N_mX(N) X(1) <--X(2) <--.. .  

such that the strict transform ~(N)  of  ~ under this sequence has only simple singulari- 

ties. 

Let us explain somehow the above statements. First, let us recall the situation in 

the case dimX=2. Write 

and put 

if2 = adx+bdy, a(P) -- b(P) = O, 

a a 
D= - b  + a - -  

ax ay " 
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The point P is a simple singularity iff the linear part of D has two distinct eigenvalues 

a~:fl4=O and a/fl ~ Q+ (=strictly positive rational numbers). The simple singularities are 

persistent under blowing-up. In fact, the blowing-up of a simple singularity produces 

exactly two other ones, corresponding to the eigendirections. Moreover, there are 

exactly two formal separatrices Fa and F~ at P, which are both non-singular and tangent 

to the corresponding eigendirection. By Briot-Bouquet's Theorem, we know that Fa is 

always convergent. (See Figure 1.) 

Now, we can choose a regular system of parameters (x,y) of ~x,e and ff~ which is 

written down in one of the following formal normal forms: 

(i) f2=xy(dx/x+2dy/y); 26C,  ~,~Q_; 

(ii) f2 =xyy s(dx/x + (e + 1/yS) dy/y); s >I 1, e 6 C; 

(iii) Q=xy(xPyq) s (dx/x + (e + 1/(xPyq) s) (p dx/x +q dy/y); g.c.d.(p, q)= 1, s~  > I ; 

(cf. Part II). There, we have that FatJF~=(xy=0). 

Assume now that P is the only singular point of ~. Then, the two-dimensional 

desingularization due to Seidenberg [20] says that there is a finite sequence of blowing- 

ups at singular points 

(,) x(1) ,---x(2) , - - . . .  

such that all the singularities in the last step are simple singularities. Let E(N) be the 

exceptional divisor produced by the sequence (*). The irreducible components of E(N) 

which are generically transversal to the strict transform ~(N) of ~ are called "dicriti- 

cal components". Thus, the non-dicritical components are leaves of ~(N). Note that a 

dicritical component produces by blowing-down infinitely many separatrices at P. (See 

Figure 2.) 
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E(N) 

We say that ~q is non-dicritical iff E(N) has no dicritical components. This is 

equivalent to say that ~d has only finitely many separatrices at P. 

Let us restrict our attention to the non-dicritical case. Given a point Q fiE(N), 
denote by e--e(E(N), Q) the number of irreducible components of E(N) through Q. If 

e=2, then Fa U F~=E(N), locally at Q, and hence no other separatrix of C~(N) passes 

through Q. If e-- 1 and Q E Sing ~d, then either E(N)=Fa or E(N)=F~, locally at Q, hence 

there is exactly one separatrix FQ of ~(N) at Q with FQ~E(N). (See Figure 3.) 

By blowing-down these FQ, we obtain a bijection 

(formal separatrices of ~ at P)  ~ (points Q E E(N) N Sing @(N) with e = 1 }. 

By [4], we know that there is always a point Q with e= 1 such that Ft2 corresponds to a 

nonzero eigenvalue, hence FQ is convergent and projects over a convergent separatrix 

F of ~ at P. (See Figure 4.) 

) 

N) 

Fig. 3 

E(N) 
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Fig. 4 

Thus, as mentioned above, Thom's question about the existence of a convergent 

separatrix has an affirmative answer in the case dimX--2. 

Now, let us consider the case that dimX--n~>3. Let us fix a normal crossings 

divisor E of X. Here E plays the role of the exceptional divisor in an intermediary step 

of the desingularization process, hence in the initial step we shall put E=•. A dicritical 

component o f  E is an irreducible component of E which is generically transversal to ~. 

Consider a blowing-up :r: X'--~X with center Y. Note that if the center Y has normal 

crossings with E, then E'=:r-I(EU Y) is also a normal crossings divisor of X' .  We say 

that Y is a permissible center for ~ adapted to E iff, in addition Y satisfies a certain 

condition of equimultiplicity locally at each point (cf. [5], [7] and Part I). We say that c~ 

is non-dicritical iff E has no dicritical components and this remains true after any finite 

sequence of permissible blowing-ups (this definition is made relatively to E, actually, it 

deals with the initial singular foliation, before starting the desingularization process). 

Roughly speaking, to say that c~ is dicritical means that for a certain non-degenerate 

two-dimensional section we can find infinitely many integral curves (cf. [6]). This 

corresponds to the condition (ii) of the Existence of Separatrix Theorem. 

In opposition to the same phenomena in the two dimensional case, the dicritical- 

ness is an obstruction to the existence of a convergent (even a formal) separatrix. In 

fact, the dicritical foliation given by the differential form 

if2 = (xmy--z m+l) dx + ( y m z - x  m+l) dy+(zmx-y  re+l) dz, m >t 2, 

has no separatrices at the origin [15]. Thus, we may reformulate Thorn's question about 

the existence of separatrices as follows: 

If ~ is non-dicritical, does (g have a convergent separatrix? 
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Assume that @ is non-dicritical and that E is given locally at P by 

U xi=O. 
iEA 

Then we can write, in a logarithmic way, 

Q= x i w; where w = ~ a i - - + 2 ,  aidxi; a iEf fxe  
iEA Xi i~A 

and g.c.d.(ai; i= 1 . . . . .  n)= 1. The adapted multiplicity I~(~, E; {P}) of ~3at P is defined by 

/~(~d, E; {P}) = min{v e (ai); i E A} O {ve(ai)+ 1; i ~ A} 

where ve (ai) denotes the order of ai at the point P. It generalizes the order of the strict 

transform of a hypersurface, in the case that we begin with ~=df .  The main result in [5] 

and [7] is stated as follows: 

REDUCTION THEOREM ([5], [7]). Let ~ be a non-dicritical holomorphic foliation 

over X=(C 3, 0). Then there is a finite sequence o f  permissible blowing ups 

(2) X = X(1) ~-~)X(2) ~<z) <_-... ~(N~-) X(N) 

such that Iz(~(N),E(N); {Q})<.I for  each point QEX(N);  where ~(N)  is the strict 

transform o f  ~ and E ( N ) c X ( N )  is the exceptional divisor o f  (2). 

Assume now that d imX=3 and fix a point PEE.  We want to define the statement: 

P is a simple singularity o f  ~. Put e=e(E,P); we have three possibilities e = l , 2  or 3. 

(See Figure 5.) 

In the case e=  1, we say that P is a simple singularity iff ~ is an analytic cylinder 

over a two dimensional simple singularity with e=  1. In particular, in this case Sing ~ is 
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locally a nonsingular curve contained in E and the formal separatrix of the two 

dimensinal case produces a formal separatrix Se at P. (See Figure 6.) 

In the case e=2, we have two kinds of singularities. The first kind is locally an 

analytic cylinder over a two dimensional simple singularity with e=2. In this case 

Sing ~ is locally the intersection of the two components of E and the only separatrices 

of ~ at P are the irreducible components of E. (See Figure 7.) 

Before defining the simple singularities of the second type with e=2, let us 

consider the case e=3. Then P is a simple singularity iffkt(~, E; {P})=0 and the singular 

points near P are simple singularities of the first kind with e=2. The singular locus is 

the union of the intersections of two components of E and the only separatrices of ~ at 

P are the irreducible components of E. In order to verify i fP  is a simple singularity it is 

enough to look at any generator of @=~e~x,~,. Hence, it is a formal definition. (See 

Figure 8.) 

Now, assume that e=2. Then P is a simple singularity of the second kind with e=2 

E 

Sing 
Fig. 7 
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Sing 

iff there is a nonsingular formal separatrix Se at P such that E O Se is a (formal) normal 

crossings divisor at P and P is a simple singularity for ~, relatively to EU St, (i.e. with 

e=3). (See Figure 9.) 

In particular, Sing ~ is the union of the intersections of two components of E USe 

and St, is the only formal separatrix of ~ at P which is not a component of E. Moreover, 

in this case, the singular points near P are either simple singularities with e = 1 or simple 

singularities of the first kind with e=2. 

The simple singularities and their normal forms are studied in Part II. First of all 

we define the pre-simple singularities by the following conditions: 

(a) Adapted multiplicity less or equal than one. 

(b) The directrix (if it exists), has dimension two and has normal crossings with the 

divisor E. 

The directrix is a geometrical invariant which plays a role similar to the strict 

tangent space of Hironaka [13] (it is defined in [5], [7] and also in the Part I). Hence, 

p / Sing 

f 
Sing ~3 E 

Fig. 9 
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being a pre-simple singularity is a very geometrical property. Actually, this property is 

semicontinuous in an evident sense (see Proposition 1.2.6). Let us note however that 

the semicontinuity depends on the non-dicriticalness property. 

Now, let P be a pre-simple singularity. Put 

~(~g)p = {DEOx, p;~(D) = 0} = Ox, p 

where Ox, e is the (~x,e-module of the formal vector fields. Then we can find two 

commuting formal vector fields DI,DE in ~((g)r which produces also @p by duality. 

Moreover, one of the following situations occurs: 

(A) D~=O/Oz, D2=xO/Ox+a(x,y)O/ay; with a(O,O)=O. (In this case DI gives the 

local analytic triviality.) 

(B) Dl=x O/ax+a(x, y, z) a/Oz, D2=y a/Oy+b(x, y, z) O/ay; with a(0, 0, 0)=b(0, 0, 0) =0. 

Then, P is a simple singularity iff the eigenvalues of D~ (in case (A)) or of D1, D2 (in 

case (B)) are non-resonant in a similar sense to the two-dimensional case (quotients not 

in Q+). These are diophantic conditions, easily reached after finitely many permissible 

blowing-ups, if we begin with only pre-simple singularities (see Part I I I ,w 1). 

The fact that D1 and D2 commute allows us to make a simultaneous jordanization 

of D1 and D2. In particular, we can find a regular system of parameters (x, y,z) of ~x.e in 

which the semisimple parts of D1 and D2 are diagonal. After a little additional work we 

can write down formal normal forms for the pre-simple singularities (see Proposition 

II.4.4). More particularly, in the case of simple singularities we see that a generator f2 

of ~e may be written down either in one of the normal forms (i), (ii), (iii) (in the case 

(A)) or in one of the following normal forms (in the case (B)): 

(iv) f~=xyz(a dx/x +fl dy/y+ dz/z); with a .fl*0 and - a ,  -fl, -a/ f l  ~ Q+. 

(v) Q =xyz.z~(dx/x+fl dy/y +(e+ 1/z s) dz/z); with s>~ 1, O* -/3 ~ Q+. 

(vi) g2=xyz(yPzq) s (dx/x +fl dy/y+(e + 1/(y p zq) ~) (p dy/y+q dz/z) ); s~  > 1, g.c.d.(p, q)= 1. 

(vii) Q=xyz "(xPyqzr)S (dx/x + fl dy/y + (e + 1/xPyqzr )~) (p dx/x + q dy/y + r dz/z) ) ; with s~  > 1, 

g.c.d. (p, q, r)= 1. 

Many of the properties we need from simple singularities can be obtained either 

directly from the formal normal forms, either from the way we obtain the formal normal 

forms. For instance, the uniqueness property of the formal separatrix Sp, the shape of 

the singular locus or even the fact that Sp is "convergent" along the exceptional divisor E. 

In Part III, we give a proof of the Desingularization Theorem. By the Reduction 

Theorem, we may assume that we start with adapted multiplicity less or equal than 

one. The first thing we do is to prove that we can get only pre-simple singularities after 

finitely many permissible blowing-ups. This is quite difficult, but most of the technics in 
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[7] remain valid. Hence we only give in detail those parts which are either different or 

may be simplified with respect to the general technics in [7]. Once we have only pre- 

simple singularities, we finish with a computation of "killing resonancies" along the 

irreducible components of Sing ~. 

In Part IV we prove the existence of a convergent separatrix for a non-dicritical 

holomorphic singular foliation ~ over X=(C3,0). We begin by taking a de- 

singularization sequence like (1). Now, consider the set 

0//= U(Y; Y is an irreducible component of Sing ~(N) which is 

generically contained in only one irreducible component of E(N)}. 

Let us fix a connected component q/j of 0~. (See Figure I0.) 

Then we have a formal separatrix SQ at each point Q E ~j. Assume for a moment 

that SQ is convergent. By analytic triviality we may continue in an analytic way SQ to 

the points Q' of ~//j with e(E(N), Q')<~e(E(N), Q). Hence, the only difficult case is to 

continue SQ to the points Q' with e(E(N), Q')=2, but this can be done (see Proposition 

II.5.5). Thus, we can "glue" the SQ in order to obtain a closed hypersurface 

Sj(N)cX(N)~which gives locally a separatrix at each point. (See Figure 11.) 

Now because of the properness of the sequence (1) then S:(N) projects over a 

convergent separatrix SjcX of the foliation ~. It remains to show that there is at least 

one q/j supporting a convergent separatrix as above. This is done by taking a non- 
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E(N) 

degenerate plane section of 5~; by [4], the two-dimensional section has at least one 

convergent separatrix F. Without loss of generality we may assume that the strict 

transform F(N) of F under (1) is nonsingular and passes through a point Q ~ E(N) with 

e(E(N), Q)=I.  (See Figure 12.) 

Now, by analytic triviality, we see that S O is convergent. Thus, the desired 9/j is 

the connected component of 9/passing through Q. 

More precisely. Let us denote by ,Y(N) the formal completion of X(N) along the 

inverse image of the origin zt-l(0), where :t=:r(1)o ... o:r(N). The nature of the formal 

separatrices S O is of such kind that we can construct a coherent hypersurface 

Sj (N) r X(N) 

F(N) 
SQ 

Sing (g(N) 

(N) 

Fig. 12 
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supported by each connected component q/j of q/, such that Si(N) gives the separatrix 

SQ at each point QE r Once again, the properness of ~ assures that Sj(N) projects 

over a formal separatrix Sj of q3 at the origin. In this way we obtain a bijection 

{formal separatrices of @ at the origin ~ {connected components q/j of q/}. 

Open questions and related problems. We give here a list of unsolved problems 

which seem us to be important ones: 

(1) Desingularize holomorphic foliations in higher dimensions and in the dicritical 

case. 

(2) Desingularize a vector field which is tangent either to one or two different 

foliations of codimension one. 

(3) Call "singular holonomy" along q/i the representation 

zq (~F  Sing 0//j, O)___~ Trdiff(~3(N), Q) 

where Trdiff(~(N), Q) means the diffeomorphisms of the restriction of ~3(N) to a 

transversal two-dimensional section at Q into itself. The problem is to understand the 

non-dicritical singular foliations with the data of the singular holonomy and the holon- 

omy of the components of the exceptional divisor. Some results in this direction may 

be found in [3] and [19]. 

(4) Say that q3 has the property 3~ iff it is possible to desingularize q3 by only 

blowing-up points (and an "a  posteriori" eventual addition of irreducible components 

for E(N)). In [11] there is a description of such ~ which are desingularized after one 

blowing-up. These foliations have first integrals of Liouville type E;ti Log f-. The prob- 

lem is to describe the foliations having the property ~. 

(5) Classify the non-dicritical singular foliations in (C 3, 0) generated by one 1-form 

with initial part of the type x dx. 
(6) Moduli for simple singularities. As in dimension two, kit is a natural and 

fascinating problem (see [17]). For example, it is possible to establish some theorems 

"Poincarr--Siegel" [21] in the "non-resonant" cases (the eigenvalues ratio are not in Q 

or even in R) (see [10], [I I]). In the resonant case, there is a rigidity result which is a 

consequence of Ecalle's Theory (see [12]): assume that ~2 is formally conjugated to 

t~=xyz.(xPyqzr)s(dx +fldY (xP;qzr) )(p.._x_dX + q dyy + r dZ))z 

then, for generic values of the parameters, ~ is holomorphically conjugated to ~ ([9]). 
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(7) Give the topological classification of simple singularities with a given formal 

normal form. 

Acknowledgements. We wish to express our gratitude to J. Martinet and R. 

Moussu for very valuable discussions about the subject. One of us (Cano) is very 

grateful to the Universities of La Bourgogne, Louis Pasteur and Rennes I for his 

staying there during the preparation of this work. We also thank the referee for his 

suggestions. 

First author partially supported by the DGIGYT. 

Second author partially supported by the CNPQ (IMPA). 

Part 1. Preliminaries 

w 1. Adapted singular foliations 

Most of the concepts and results in this paragraph may be found in [5], [7]. 

Let X be a nonsingular connected analytic space over C of dimension n. Fix a 

normal crossings divisor E of X (always with reduced structure). Let us denote by 

f~x[-E] the sheaf of germs of meromorphic differential l-forms over X having at most 

simple poles along E. 

DEFINITION 1.1. An adapted to E singular foliation of  codimension one over X is a 

pair (~, E) where ~ is an (Tx-submodule of  f2x[-E] such that: 

(a) o ~ is locally free of  rank one. 

(b) o~^d~=0, where d is the exterior differential. 

(c) The quotient f~x[-E]/o ~ is torsion-free. 

Let Je be the sheaf of ideals defining E c X .  Fix a point P of X. We can choose a 

regular system of parameters (Xl .. . . .  x,,) of the local ring ~?x,e such that 

for a certain set Ac{1 ... . .  n). Then, a basis of the stalk f2x, e[-E] is given by 

(1.2) ~ dxi~ 
U {dxi}i~ a. 

I. Xi ) iEA 

Hence, ~e is generated by a meromorphic differential 1-form 
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dx i 
(1 .3 )  to-- Z a i - - +  2~aidxi; a i r , x ,  P. 

lEA Xi i~A 

such that to A dto =0 and g.c.d.(ai; i= I . . . . .  n) = 1. 

In the case E=~3, we find the usual notion of singular foliation of codimension one 

(cf. [I1]). Let us denote by ~(X,E)  the set of adapted to E singular foliations of 

codimension one over X. Then, we have a bijection 

(1.4) hol: ~(X, E)---~ ~(X, ~) 

which is defined by the following property: 

(1.5) If ((~, ~3) = hol((~, E)), then ~lx-e -- ~lx-e.  

Moreover, if ~e is generated by 09 as in (1.3), then ~e is generated by 

o r 

where the set A* is given by 

(1.7) A* = (iEA;xi  does not divide ai}. 

Now, fix (c~,~3)E~(X,~) and a point PEX.  Assume that ~e is generated by 

f2 E f2x, v. We recall that a "separatrix",  respectively a "formal separatrix", of (~, ~)  

at P is a principal prime ideal f(~x,v, respectively f&x,e, such that 

(1.8) fd iv ides  f2^df. 

(cf. [I1]). Here ~x,e denotes the completion of ~x,e along the maximal ideal. An 

"invariant analytic space" of (~, ~3) is an irreducible closed analytic space K of X such 

that 

(1.9) f2lr = 0 

at the nonsingular points P of K. Any invariant analytic hypersurface H c X  of (@, ~) 

defines a separatrix at each point P E H. Conversely, an irreducible hypersurface H c X  

defines an invariant analytic space of (~, ~) iff it defines a separatrix at a point P E H. 

Let (~ ,E)E  ~(X, E) and fix an irreducible component F of E. We say that F is a 

"non-dicritical component" of E for (~ ,E)  iff F is an invariant analytic space of 

hol((~, E)). Otherwise, we say that F is a "dicritical component" of E for (~:, E). Then, 
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taking the notation of (1.7), we have that 

(1.10) A* = {iEA; (xi=0) is a non-dicritical component for (if, E)}. 

DEFINITION 1.2. Given ( ~ , E ) E ~ ( X , E )  and a point P 6 X ,  the adapted order 

v(~,E;P) is the M-adic order o f  the submodule ~p o f  •x,e[-E], where Jig is the 

maximal ideal o f  (Tx,~,. The singular locus Sing(if, E) is the set o f  the points P 6 X  such 

that v( ~, E;P)~>I. 

With the notations of (1.3), we have that 

(1.11) v(~, E, P) = min{ve(ai); i = 1 .. . . .  n). 

Where ve(ai) is the M-adic order of ale ~Tx, e. The singular locus is a closed analytic 

subset of X and since Q x [ - E ] / ~  has no torsion, we have 

(1.12) 

If hol((~, E))=(c~, 6), note that 

(1.13) 

Codimx Sing(o ~, E)/> 2. 

Sing(~, E) c Sing(Y, 0) 

and we also have that CodimxSing(~, O)/>2. 
Let Y c X  be a nonsingular analytic subspace of X having normal crossings with E. 

Let 

(1.14) sr: X'---~ X 

be the blowing-up with center Y. Put E'=er-t(EU Y), with reduced structure. Then 

E ' c X '  is also a normal crossings divisor of X'. Now, fix (~,E)f iq~(X,E) and put 

(~, O)=hol((~, E)). Then there is a unique (~ ' ,  E') in ~(X', E'), respectively ((g', 6)  in 

~(X', O), such that 

(1.15) ~'lx,-=-,r = "~lx-r, respectively qd'tx,_,~-,(r ) = ~glx-r, 

under the isomorphism x: X ' - z - * (  Y)--->X - Y. Moreover 

(1.16) (~ ' ,  6)  = hol((o~', E')). 

(cf. [5], [7]). 

DEFINITION 1.3. In the above situation we say that (~ ' ,E ' )  is the adapted strict 

transform o f  (o~,E) by x and that ((g', 6 )  is the strict transform o f  (~,O) by x. 
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Let Jrc~? x be the sheaf of ideals defining YcX.  Denote by Ox[E* Y] the sheaf of 

germs of vector fields being both tangent to E and Y. Let 0//(~:, E; Y) be the image of the 

bilinear mapping 

(1.17) ~ •  Ox[E* r]  ~ ~?x 

given by (to, D)~to(D). 

DEFINITION 1.4. The adapted multiplicity/~(~,E; Y) o f  (~ ,E)  at Y is the Jy-adic 

order o f  ~ E; Y). 

Remarks 1.5. (a) Take P E Y and P'  E er- t(y). Let to be a generator of ,~e and l e t f b e  

a reduced equation of the exceptional divisor :r-l(y) at P'. Put a =/~(~, E; Y). Then J;'p, 

is generated by f-azt*to (cf. [5], [7]). 

(b) Since Y has normal crossings with E, we can find a regular system of parame- 

ters (Xl .....  x~) of ~?x, P and two sets A, B c  (1 ..... n} such that 

If co generates ~? as in (1.3), we have explicitly that 

(1.19) p(~,  E; Y) = min({vy(ai); i ~. B - A }  U {vy(ai)+ 1; i E B - A } )  

where vr(ai) denotes the J~,,e-adic order of aiE ~x,e. In particular, we can compute 

~(~, E; Y) at any point P E Y. 

(c) The adapted multiplicitity generalizes in a natural way the usual multiplicity of 

a hypersurface and its behaviour under blowing-up (cf. [7], Introduction). 

Consider a point P E Y. Denote by Q(o~,E; Y, P) the 2d-adic order of the ideal 

~(g*,E; g)ecOx, e, where ~ is the maximal ideal of ~x,e. More explicitly 

0(~,E;  Y;P)=min({ve(ai);i~i B - A }  U {ve(ai)+ l ; i E B - A } ) .  (1.20) 

Note that 

(1.21) Q(~:, E; Y;P) ~>~t(~,E; Y) 

and the equality holds outside an analytic subset W of Y, with W~= Y. 

DEHNIXION 1.6. Let Y be an irreducible closed analytic subspace o f  X and let 

(~, E) E ~(X, E). Fix a point P E Y. Then Y is a permissible center for (~, E) at P iff  the 

following properties hold: 
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(a) Y=Sing(~3, ~), where (~, ~)=hol((~,  E)). 

(b) Y is nonsingular at P and has normal crossings with E at P. 

(c) The equality Q(~, E; Y, P)=/~(~, E; Y) holds. 

A permissible center Y for (~, E) is a permissible center at each point P ~ Y. 

Remarks 1.7. (a) A point {P}cSing(~, ~) is a permissible center. 

(b) An analytic subspace YcSing(~, ~3) is a permissible center outside an analytic 

subset W of Y, with W=~ Y. 

Now, we are able to define the "non-dicritical singular foliations". Here we shall 

give a technical definition which is convenient for our purposes. Another characteriza- 

tions of this condition are given in [6]. 

DEFINITION 1.8. We say that ( ~, E) E ~(X, E) is non-dicritical iff  there is no fin#e 

sequence 

(1.22) {X(/), E(O, ~(i), ql (i), Y(i), at(i+ I)}i=0,1 ..... U 

such that: 

(a) X(0)=X, (~(0),  E(0))=(ff, E). 
(b) For each i=0, 1 ... . .  N we haoe that: 

(bl) ~ is a nonempty open set. 

(b2) Y(i)c~ is a permissible center for (~(i)l~r ql(i)), 

(b3) zc(i+ 1):X(i+ l)--*ql(t) is the blowing-up with center Y(O. 

(b4) (~(i+ l),E(i+ l)) is the adapted strict transform of  (~(i)l~ o, E(t~ N ~(i)) by 

at(i+ 1). 

(c) There is a dicritical component o f  E(N) for (~(N),E(N)) .  

In particular, making N=0,  we see that if (,~, E) is non-dicritical, then E has no 

dicritical components for (~,E) .  That is, each irreducible component of E is an 

invariant hypersurface for hol((~, E)). 

TrIEOREM 1.9 (Stability Theorem). Let (~, E) E ~(X,  E) and let Y c X  be a permis- 

sible center for (~, E). Let at: X'---~X be the blowing-up with center Y and let (~ ' ,  E') be 

the adapted strict transform of  (if;, E) by at. Fix a point P E Y and a point P' E at- I(P). 

Then: 

(a) v(J;', E'; P')<~v(~, E; e). 
(b) I f  (~, E) is non-dicritical, then I~(~', E'; {P'})~</t(~, E; {P}). 

Proof. [7], Theorem 1.2.7; Theorem 1.3.3. [] 

2-928285 Acta Mathematica 169. Irnprim~ le 20 aoflt 1992 
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Hence, in the non-dicritical case, we can use the invariant 

(1.23) (r, m) = (v(~, E;P),I~(~T, E; {P})) 

in order to control the behaviour of the singularities under permissible blowing-ups. 

Let Y c X  be a permissible center for (~, E) E ~(X, E). Fix a point P E Y. Then 

(1.24) v(~, E; P) ~< ~(~, E; Y, P) =/~(~, E; (P}) <~ v(~, E; P)+ 1. 

We say that Y is "appropriate" at P iff 

(1.25) /~(~, E; Y) =/~(,~, E; {e}). 

PROPOSITION I. 10 (Stationary sequences). Let ( ~, E) E ~ (X, E) be non-dicritical. 

Put (~,~)=hol((~,E)) .  Fix an irreducible curve FcSing((g,Q) and a point PEF.  

Consider an infinite sequence 

(1.26) {X(i), E(i), ~(i), F(t~, P(i), :t(i+ 1), r(t3, m(i)}i>~o 

defined as follows: 

(a) X(0) =X, (~(0), E(0)) = (~, E), F(0)=F, P(0)=P. 
(b) ~r(i+ 1): X(i+ 1)--->X(i) is the blowing-up with center P(i). 

(c) F(i+ 1) is the strict transform of  F(t) by ~r(i+ 1). 

(d) P(i+ 1) E F(i+ 1) N ~t(i+ 1)-~(P(i)). 

(e) (~( i+  1), E(i+ 1)) is the adapted strict transform of  (~(i), E(13) by Jr(i+ 1). 

(f) r(/)=v(~(0, E(i);P(i)), m(t3 =/t(~(t3, E(i); {P(i)}). 

Then, the following two conditions are equivalent for any index N: 

(A) F(N) is nonsingular and has normal crossings with E(N) at P(N) and for each 

i>~N we have that (r(i), m(i))=(r(N), m(N)). 

(B) F(N) is permissible and appropriate for (~(N) ,  E(N)) at P(N). 

Proof. [7], Theorem II. 1.1. [] 

Remark 1.11. There is always an index N~>0 such that the above condition A is 

satisfied. Hence, if F is not permissible at P, we can achieve this condition by blowing- 

up the point P finitely many times. 

Now, we can state the main result in [5] and [7] as follows: 

THEOREM 1.12 (Reduction Theorem). Assume that dimX=3. Fix a non-dicritical 

(~, ~3) E ~(X, 0) and a point P E Sing(~, ~). Then there is an open set X(O) o f  X, 
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P EX(O), and a sequence o f  permissible blowing-ups 

~r(1) ~(2) 
(1.27) X(0) ~ X(1) *-- ... ~lV)x(N),--- 

such that 

(1.28) Iz(,~(N),E(N);(Q))<~ 1, for all QEX(N), 

where ( J;(N), E(N)) is the adapted strict transform of  ( ~lx~o ), 6) under the composition 

~r(1)o... oar(N). Moreover, the sequence (1.27) may be taken in such a way that 

(1.29) {P} = center ofar(1), 

(1.30) Singhol((~(N), E(N))) = E(N). 

Remarks 1.13, (a) Put ar=~r(1)o...oar(N). Then (1.29) means that Z(N)=ar-1(P) is 

also a normal crossings divisor Z(N)cE(N).  

(b) In [5] and [7], the above theorem is stated in terms of the germs of X at P. In 

particular, the condition (1.28) is stated only for the points Q E ar-1(P)=Z(N). Neverthe- 

less, the semicontinuity of the adapted multiplicity in the non-dicritical case ([7], 

Remark 1.1.6) allows us to state the result in terms o f an  open set X(O)cX, PEX(O). 

w 2. Pre-simple singularities 

Before defining pre-simple singularities, let us recall the notion of "directrix" intro- 

duced in [5], [7]. Actually, we shall only consider here the case of adapted order equal 

to one, which is simpler than the general case. 

Given an element f E  t~x,e and an integer s~>0 such that ve( f )~s ,  let us denote by 

InS(f) the image of f in ~s/~s+l,  where ~ is the maximal ideal of ~Tx, e. Actually 

InSfE Gr(~Tx, e), where Gr(t~x,e) is the graded ring for the ~t-adic filtration of tTx, e. Note 

that Gr(e~x,e) is a polynomial ring in the indeterminates Xi=In~(xi), i= 1 .. . . .  n. 

Now, consider a non-dicritical (4,  E) E ~(X, E) a point P E X such that 

(2.1) m =/z(~, E; {P}) ~< 1. 

Note that if r--v(~,E;P), then r<<-m<-r+l and hence either r=0 or r= l .  Assume that 

r= 1 and let us write a generator to of ~e as in (1.3): 

dxi Z ai dxi; a i E ~x P. (2.2) to = Z a i - -  + 
iEA X'i i~A 
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Then, the directrix Dir(~, E; P) of  (g~, E) at P is defined by 

(2.3) Dir(~, E;P) = t'l (Inl(ai) = 0) ~- TeX, 
iEA 

where TeX is the tangent space of  X at P. (In the case r=0,  the directrix is not defined.) 

Denote by JDir(~, E; P) the ideal defining the directrix. Then 

(2.4) JDir(ff, E; P) = E Inl(ai ) Gr(Ox, e), 
iEA 

P R O P O S I T I O N  2.1. In the above situation, assume that r=m=l.  Let Y c X  be a 

permissible center for (~, E) with P E Y. Let zl: X'--->X be the blowing-up with center Y 

and let (3, E) be the adapted strict transform of  (~, E) by :t. Then: 

(a) TeYcDir(,~, E; e). 

(b) Let P' E:t-1(P) be such that v(~' ,E';P')=Iz(J; ' ,E';  {P'})=I .  Then: 

(2.5) P ' E  Proj(Dir(~, E; P)/T e Y)c-Proj(TeX/T p Y) = ~-l(p). 

Proof. [7], Theorem 1.4.8 (see also [5], Theorem 4). [] 

Let  us denote by e=e(E, P) the number of irreducible components of E through P. 

(Actually e(E, P) is the multiplicity of E at P, moreover, with the notation of (1.1) we 

have e=#A.) Take a codimension one vector subspace H of TeX. We say that H has 

normal crossings with E iff there are e+ 1 independent linear forms tp0, tpl . . . . .  ~0 e on 

TeX such that 

(2.6) H = (q00 = 0). 

(2.7) TpEi=(q~i=O), i=l ..... e, 

where E l . . . . .  Ee are the irreducible components of E at P. 

DEFINITION 2.2. Consider a non-dicritical (3, E) E ~(X, E). Put ( ~, ~)=hol((3;, E)) 

and consider a point P E Sing(~, 9).  We say that P is a pre-simple singularity for (3, E) 

iff one of  the following conditions holds: 

(a) v(o ~, E;P)=O. 
(b)/z(~, E; (P})=v(~;, E; P)= 1 and Dir(~, E; P) has normal crossings with E. (In 

particular, the dimension o f  Dir( ~, E;P) is n - 1 . )  
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Remarks 2.3. (a) If P is a pre-simple singularity, then necessarily e(E, P)~>I. In 

fact, if e(E, P) =0 and v(o~, E; P) =0, then P ~ Sing(Y, 9);  if e(E, P)=0 and v(~, E; P) = I, 

then/~(~, E, {P})=2. 

(b) I fP  is a pre-simple singularity with e(E, P)=n, then necessarily v(~, E;P)=0. In 

fact, if the directrix exits, it cannot have normal crossings with E. 

LEMMA 2.4. Consider a non-dicritical (~, E) E ~(X, E). Let P E X  be a point such 

that 

(2.8) v(o ~, E; P) =/t(~,  E; {P}) = I. 

Let F be the intersection o f  all the irreducible components o f  E through P. Then P is a 

pre-simple singularity for  (~%, E) iff 

(2.9) Dir(o%, E;P) :~ TeE. 

Proof. The "only i f"  part is trivial. Conversely, assume that (2.9) holds. Choose a 

regular system of parameters (xl ..... x,) of 6x.v such that 

Then a generator co of ~e is written down as follows: 

(2.11) co= E a, dx' + E a , d x ,  �9 
i= 1 . . . . .  e X i  i>e  

Denote by Ai=Inl(ai), i =  1 . . . . .  n;  X i = I n l ( x i ) ,  i =  1 . . . . .  n.  We can assume without loss of 

generality that A 1 =Xe+ v Now, the integrability condition co ̂ dco=O implies that 

0.4 ~ 0.41 
(2.12) A1 axe+ 1 - As OXe+------1 - As' s = 2 .. . . .  e. 

Hence A~=2sX~+I, 2~E C, for all s=2 ... . .  e and thus 

(2.13) Dir(~;, E; P ) =  (X~+~ = 0). 

This ends the proof. [] 

PROPOSITION 2.5. Consider a non-dicritical (J ; ,E)E~(X,E) .  Let P E X  be 

a pre-simple singularity for  (~, E). Consider a permissible center Y c X  for  (~, E). 

Let n:X'--~X be the blowing-up with center Y and let ( ~ ' , E ' )  be the adapted 
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strict transform o f  ( ~ , E )  by yr. Put (~ ' ,O)=hol ( (~ ' ,E ' ) .  Then each point in 

~r-l(P) N Sing(~d', ~)  is a pre-simple singularity for (~ ' ,E ' ) .  

Proof. By Theorem 1.9, the only bad case is P' Ezr-~(P) with 

(2.14) /x(~', E'; (P ' ) )  = v ( ~ ' , E ' ; P ' )  = 1. 

Let F be the intersection of all the irreducible components of E through P as in Lemma 

2.4. Define 

(2.15) d(~, E; P) = dimc((JDir(~, E; P)+JTvF)/JTvF) ~ 

where JTvF is the ideal of TvF and the subindex 1 means "linear part" (of. [7],I,(4.2.4) 

or [5],w 4). Since P is a pre-simple singularity then 

(2.16) d(~, E;P) = 1. 

Now by [7], Theorem 1.4.8 (c), or [5], Theorem 4(iv), we have that 

(2.17) d(J; ' ,E ' ;P' )  >! d(,~', E;P) -- 1. 

This implies that the condition (2.9) of Lemma 2.4 holds. Hence P '  is a pre-simple 
singularity. [] 

PROPOSITION 2.6. Consider a non-dicritical ( ~,E)E~(X,E).  Put (~,~)=hol((~,E)). 
Then the set 

(2.18) Sing*(o ~, E) = (P E Sing(Y, ~); P is not a pre-simple singularity) 

is a closed analytic subset o f  X. 

Proof. It is a local statement. Fix P E X  and let (X 1 . . . . .  Xn) be a regular system of 

parameters of Ox, e such that 

(2.19) E = ( i - ~ x i = O ) ,  locally at P. 
\ iEA / 

Let us consider a generator w of ~e given as in (1.3) by 

dxi E a i d x i .  ~ a i ~ x p .  (2.20) w = E a i - -  + 
iEA Xi il$A 
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Now, let us put 

(2.21) 

Given A' c A ,  let us define the closed analytic sets 

(2.22) 

(2.23) 

(2.24) 

F ( s ) =  {Q;e(E ,Q)~s} ,  O<.s<.e(E,P). 

E A, = A ( x  i = O) 
iEA' 

C A, = Sing(~,  E)fl  {Q;(Oai/Oxj)(Q ) = 0, i E A ' , j q . A ' }  

D A, -- adherence of  C A, fl (E a , -  F(1 + #A')). 

In view of  Lemma  2.4, we have that 

(2.25) Sing* (~,  E)  fl (E A,-F(1 + ~*A')) = C A, O (E A,-F(1 + #A')). 

Now, it is enough to prove that 

(2.26) I f A '  c A " ,  #A"= # A ' + I ,  then DA, N(EA,-F(I+#A")) cDa,,. 

Since in this case 

(2.27) 

23 

Sing*(~, E)  = t9 DA,. 
A ' c A  

In order to prove (2.26), let us reason by contradiction, assuming that (2.26) is not true. 

We can assume without loss of  generality that 

(2.28) A" = a  = (1,2 . . . . .  e}. 

(2.29) A' = {2 . . . . .  e}. 

(2.30) There  is a point P E D A,-D A. 

Then, we can find an analytic branch F at P such that F c D  A, and FCEA. By Proposit ion 

I. 10 and Proposit ion 2.5, blowing-up the point P repeatedly,  we may assume without 

loss of  generality that F is a permissible center  for (~:, E). Hence  we can take 

coordinates such that 

(2.31) F = (x2 = . . . =  x,  = 0). 

The fact F c S i n g ( ~ , E )  implies that vr(ai)~l, i= I  . . . . .  n. Moreover,  since P is a pre- 
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simple singularity, then 

(2.32) 1 ~<#(~, E; F) ~<#(,,~, E; {P}) = I. 

H e n c e / , ( ~ ,  E; F)-- 1. Assume first that 

(2.33) Vr(ai) I> 2, for i = 2 . . . . .  e. 

Then, in view of  Remark 1.5 (a), we find a dicritical component  by blowing-up the 

center F. Contradiction. Thus,  we may assume that 

(2.34) Vr(ai; i = 2 . . . . .  e) = 1. 

Since FCDA,  , we can write 

(2.35) a i = ~ cpo.(xl)xi+u)i, i = 2 . . . .  , e,  
j=2,...,e 

where Wi E (x2 . . . . .  x,) 2. Moreover,  since P is a pre-simple singularity we can assume 

without loss of  generality that 

(2.36) Inl(al) = Xe+ I = Inl(Xe+l). 

NOW, looking at the coefficient of  d x  1 ̂ d x s ^ d x e +  l, s=2  . . . . .  e in the integrability condi- 

tion co^de0=0, we have that 

[ 8a, 8ae+ , \  / 8ae+ , 8a, "~ ( 8al a aa, "~ 
(2.37) X l / -  - - a e + l + a s - - I  + x s t a  l \ OX 1 aX 1 ] \ aX s ~ x s a e + l ) + \ a X e +  l a s -  1 aXe+l: = 0 .  

Looking at the terms of  order  one with respect  to (x2, . . . , x , )  in (2.37), we find that 

(2.38) ~ q~sj(xOx:=O, s = 2  . . . . .  e. 
j=2, ...,e 

Then (2.33) holds and we find a contradiction as above. [] 

Part II. Simple singularities and their normal forms 

w 1. Formal normal forms for abelian Lie algebras of vector fields 

Here we shall recall some elementary facts about  the theory of  formal normal forms for 

vector fields and abelian Lie algebras of  vector  fields. Since these results are well 
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known, we shall only sketch the proofs. A good reference about this subject is 

Martinet's Bourbaki [16]. 

Let X be a nonsingular analytic space over C of dimension n. Denote by Ox the 

tangent sheaf of X. Given a point P EX, we shall denote by Ox, e the ~-adic completion 

of Ox, e, where ~ is the maximal ideal of 6x, e. The elements of Ox, e are called formal 

vector fields at P. They induce derivations of ~x,e in an obvious way. Moreover, we 

have a canonical inclusion 

(1.1) Ox, eC (gx, p. 

Put ~ = ~ x , e .  Given a formal vector field D E ~Ox, e and an integer k~> 1, we have 

an induced derivation 

(1.2) 

Dk: j///j//k+l ___~ ~// /~/ /k+ 1 

f + ~l k+l ~ D( f )+  jtt k+l. 

(Note that A/(A)k+l=~/~/k+l.)  We can put the C-linear operator D k in its Jordan 

normal form. That is, there is a unique pair of linear operators Dks and DkN, being 

respectively semisimple and nilpotent, such that 

(1.3) D k = Dks+DkN; DksDkN--DkNDk s = 0 

Actually both Dks and D ~  are derivations of ~ /~k+ l  as ~x,e-module (to see this, it is 

enough to compute Dks and DkN directly in terms of coordinates). By uniqueness of the 

Jordan decomposition we can take limits 

(1.4) D s = limkDks; D N = limkDkN 

which are formal vector fields at P such that 

(1.5) D = Ds+DN; [D s, DN] = 0 

where [. , .]  denotes the Lie bracket. 

The decomposition of (I .5) is called the Jordan decomposition of D. We say that D 

is semisimple, respectively nilpotent, if D=Ds, respectively D=DN. 

PROI'OSIXION 1.1. Consider a semisimple formal vector field DE~lOx, p. Let  

(x'i, ...,x's) be a ~l-regular sequence in ~x,e such that 

(1.6) D(x'i)=2'ix'i; 2'iEC, i=  1 ..... s 
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for  a certain s, with O<-s<,n. Then there is a regular system o f  parameters  (xl . . . . .  x~) o f  

(Yx, e such that 

D(xi)=~,ixi; /],i E C, i = 1  . . . . .  n 
(1.7) 

t '" ~,i=J.i, i = l ,  s. X i  ~ X i~ " " '  

Proof. The x'i, i-- 1 . . . . .  s, gives a part of  a basis of eigenvectors for  D k. Now, it is 

enough to complete it and to take limits when k~oo .  [] 

In the situation of  the above Proposit ion 1. I, any regular system of  parameters  

(Xl . . . . .  x,) of  ~x, e satisfying (1.7) is said to be a linearizing formal  system for  D. 

Remark  1.2. Given DEd~gx ,  e, then D is nilpotent iff D l is nilpotent. This is 

evident, since the hi, i= 1 . . . . .  n, of  (1.7) are the eigenvalues of  Dis. 

Consider D E ~ ( g x ,  e. Let  (xl . . . . .  x,) be a linearizing formal system for Ds and let 

3,=(21 . . . . .  2,) be the corresponding eigenvalues. Take the following notations 

(1.9) 
i I i n If I = (i I . . . . .  i.) E N", then x I = x I ... x . .  

(1.10) ( L I ) =  ~ ~jij, [II= ~ ij. 
j = l , . , . n  j = l  . . . . .  n 

Now, in view of  (1.7), we have that 

(1.11) [Os, x l a-'-~-] = ((,3.,I)--,~i)xlo--~l [ OxiJ ; i = 1  . . . . .  n. 

That is, the monomial formal vector  fields x1(O/axi), i= 1 . . . . .  n, are eigenvectors for the 

operator  [Ds," ] with eigenvalues ( 2 , 1 ) - 2 i .  Now, write 

(1.12) ON= E Z at j x  I O . 
j=1 ...... ~l>~l ' Oxj 

By (1.11), the condition [Ds, DN]=0 is equivalent to say that 

(1.13) If (2, I) -2j ~: 0, then al, j = O. 

Hence D=Ds+DN can be writ ten down as follows: 

(1.14) D =  E 2jxj a-~-+ ~ >_ E at, j x '  0 . 
j = l  . . . . .  n ~ X j  n = l  [/1~1; (,t,/)=,!j OXj 
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Remark 1.3. The formula (1.14) has the additional property that the linear operator 

(1.15) DN= ~ X al,j Xl o 
j=l ~/I~>I;Q.,I)=2j ~Xj 

is actually a nilpotent operator. 

The above formula (1.14) may be generalized to finite dimensional abelian Lie 

algebras of formal vector fields as follows: 

PROPOSITION 1.4. Let (~cft(~x,e be a finite dimensional abelian Lie algebra o f  

formal vector fields vanishing at P. Then: 

(a) There exist two finite dimensional abelian Lie algebras (~s and ~N in ft(gx, e 

such that: 

(al) ~ C ~ S ~ N .  

(a2) [(~s, (~N] =0. 

(a3) If D ~ ~s,  resp. D E ~N, then D is semisimple, resp. nilpotent. 

(b) Let (X'l .... .  x's) be a J~-regular sequence in Ox, P such that: 

(1.16) For all D E ~ ,  Ds(x'i)=2'i(D)x'i; ;t 'i(D)EC, i= 1 ..... s. 

for a certain s, O<.s<.n. Then, there is a regular system of  parameters (xl . . . . .  xn) o f  ~Yx, p 

such that: 

(1.17) For a l IDE@, Ds(xi)=,~i(D)xi; 2i(D)EC, i=  I . . . . .  n. 

(1.18) x i-- Xri, 2i(D)=,Ui(D); for all D E ~  and i = 1  .... , s. 

Proof. Take 

(1.19) ~ s  ={Ds;DE@};  @N={DN;DE@ }. 

Thus, we have obviously (al) and (a3). Given Z E ft(gx, e, consider the linear operator 

[Z,. ], acting on ~)x .P-  Working as above, we have a unique decomposition 

(1.20) [Z,-] -- [Z,- ]s+ [Z,. ]N- 

where [Z,. ]s and [Z,-]g are commuting linear operators that produce the semisimple- 

nilpotent decomposition of [Z,-], modulo (~)k+l, for all k~ > 1. Moreover, we have that 

(1.21) [Z,.]s = [Zs,'] and [Z,']N = [ZN,']. 
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Take two elements D, D'  E @. The fact that 

(1.22) [D, D'] -- 0 

means that D' is an eigenvector for  [D,. ] with zero eigenvalue. Hence  it is so for its 

semisimple part [D,-]s=[Ds, .  ]. Thus 

(1.23) [Ds, D'] = 0 = - [ D ' ,  Ds]. 

Now, Ds is an eigenvector for  [D', .], hence for [D's,'], and 

(1.24) [D's, Ds] -- O. 

This proves that (~s is an abelian Lie algebra. From (1.22), (1.23) and (1.24), we deduce 

that 

(1.25) [Ds, D'N] = 0; [DN, D'N] = 0. 

Hence,  ~ v  is an abelian Lie algebra and (a2) holds. 

(b) Choose a regular system of  parameters  (X"l . . . . .  x",) of  (~x,e such that 

(1.26) Inl(x"i) = Inl(x'i), i = I . . . . .  s. 

(1.27) Dls(Inl(x"i)) =J,i(D)Inl(x"i); for all D E(~ ,  i =  1 . . . . .  n. 

Note that (1.27) is always possible by simultaneous reduction to the Jordan form of  a 

set of  commuting endomorphisms of  a finite dimensional vector space. In particular, 

(1.27) allows us to define 

(1.28) ~,(D) = (21(D) . . . . .  2,(D)) 

for all D E @. Actually 2: D~A(D)  is a linear mapping. Le t  us fix an element Z of  ~ ,  

satisfying the following generic property:  

(1.29) (2(Z),I) =2 j (Z )  =~ ( (2(D) , I )  =2j (D);  for all B E G ) ;  for all j =  1 . . . . .  n. 

We can take a regular system of  parameters  (xl . . . . .  x,) of  ~x,e such that 

(1.30) Inl(xi) = Inl(x"i), i = I . . . . .  n. 

n 

(1.31) Zs = E •i(Z)xi 0 
i=l  aXi" 
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Given D E (~, let us write 

(1.32) 

29 

n 
D 1 = Z,~,i(D)xi-~-; D 2 = D - D  1. 

i~l tdAi  

Hence Dl is semisimple, D2 is nilpotent (since D21 is nilpotent) and D=DI+D 2. If we 

show that [D1, D2] =0 we are done, since then D=D1 +D2 is the Jordan decomposition of 

D. Note that 

(1.34) 0 = [Z,  D 1 + D 2 ]  --- [Z,  D1] + [Z, D2] = [Z, D2]. 

But in view of the property (1.29) (see also (1.13)), we have that 

(1.35) [Z, D2]-.O => [ D 1 , D 2 ] = 0 .  

This ends the proof. [] 

In particular, the above (xl . . . . .  x,) is a common linearizing formal system for Ds, 

for each DE@. Given D E ~ ,  denote by 2(D)=(21(D) .. . . .  2n(D)) the corresponding 

eigenvalues, like in (1.28). Take a generic ZE ffl like in the proof above. The condition 

[Zs, DN]=0 means that D=Ds+DN can be written down as 

n ~ 
(1.36) D =  E 2 j ( D ) x j ~ j +  E al j (D)x '  a 

j= l  " j=l  l e  ~j((~) aXj 

where the set ~ ( ~ )  is given by 

(1.37) ~,((~) = {IENn;[I[ ~>2, (2(D), I)  = 2j(D), for all DE g6}. 

Note also that the second term on the right hand-side of (1.36) defines a nilpotent 

operator. 

The formula (1.36) will be a key tool in our study of the normal forms for the pre- 

simple and simple singularities. 

w 2. Dimension two revisited 

Let E c X  be a normal crossings divisor of X. Denote by Ox[E] the sheaf of germs of 

vector fields which are tangent to each irreducible component of E. Thus Ox[E]COx 
and moreover we have a perfect pairing 

(2. I) ~x[ -E]  x Ox[E ] ---, ~x" 
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Given a coherent submodule ~ o f  ~ x [ - E ] ,  denote by ~ (~ ,  E) the submodule of Ox[E] 

which annihilates ~,  i.e., the orthogonal of o% under (2.1). Conversely, given a coherent 

submodule ~ of Ox[E], let ~ ( ~ , E ) c g 2 x [ - E ]  be the orthogonal of ~. Consider 

(o%, E) E ~(X, E), the fact that ~ i s  inversible and that ~ x [ - E ] / ~ h a s  no torsion implies 

that 

(2.2) ~ - -  ~(~(o%, E), E). 

Moreover, if (o%, E) E ~(X, E) is non-dicritical and (~, O)=hol((o~, E)), then 

(2.3) ~ (~, E) = @(~d, ~) ~- Ox[E]. 

Given a point P E X, then (2.1) induces a perfect pairing between 5t-adic completions 

(2.4) ~x,e[ - E  ] • Ox, e[ E ] "-~ (~x.p" 

If ~ ( . ,  E) and ~( . ,  E) denote the corresponding orthogonality operators, then 

(2.5) ~(~z,, E) -- ( ~ ( ~ ,  E)~) ̂  , ~ (~j,, E) = ( ~ ( ~ ,  E)~,) ̂ , 

(with evident notations), for each coherent ff;Cf]x[-E] and ~COx[X]. 

Assume now that n=d imX=2 and take a non-dicritical (~ ,E )E~(X ,E ) .  Put 

(~, ~)=hol((~, E)). Consider a point P ~ Sing(Y, ~) which is a pre-simple singularity for 

(~, E). Then ~ (~, E)e is generated by a single germ of vector field D E Ox, e[E] with 

(2.6) D E ( Ox, e[E ]) N d,t. Ox, e. 

Moreover, the fact that P is a pre-simple singularity implies that 

(2.7) Dis �9 O, 

i .e. ,  O 1 has at least one nonzero eigenvalue. Consider an irreducible component F of E 

at P (it exists since e(E, P)~> 1 by Remark 1.2.3). Let x E ~Tx, l, be a generator of the ideal 

Jf, e. Since D is tangent to F, then In~(x) is an eigenvector of D 1. Hence 

(2.8) Dl(Inl(x)) = Mnl(x), ~. E C. 

Let # fi C be the eigenvalue of D ~ corresponding to an eigenvector of D~s independent of 

In~(x). Note that 0,,~):~(0, 0). Define the invariant A(~, E;F;P) by 

(2.9) A(~, E;F;P) = ~//z E C U {~}. 

It is intrinsically defined. 
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DEFINITION 2.1. In the above situation, we say that P is a simple singularity for 

(o%, E) iff 

(2.10) A(~, E; F;P) ~ Q+ 

where Q+ = (strictly positive rational numbers). 

Remarks 2.2. (a) The above definition does not depend of the chosen irreducible 

component F of E at P. In fact, i fFb  F2 are the two irreducible components o f F  at P (in 

the case e(E, P)--2), then 

(2.11) A(o~,E;FE;P) = 1/A(,~,E;F1;P). 

(b) The simple singularities are stable under blowing-ups. More precisely, let P be 

a simple singularity for (~, E), let ~r:X '~X be the blowing-up with center P and let 

(~ ' ,  E') be the adapted strict transform of (~, E) by ~r. Put (~d', ~ )=hol ( (~ ' ,  E')). Then 

there are exactly two singular points P'1,P'2 in Sing(~d',~) with P'iEJr-l(P), i=1,2. 

Both P'I and P'2 are simple singularities for (~ ' ,E ' ) .  The strict transform of each 

irreducible component of E at P passes through one of these points. Moreover, fix an 

irreducible component F of E at P and assume that P'I is in the strict transform F'  of F 

by ~r. Then 

(2.12) A(~ ' ,E ' ;F ' ;P '~)  .--- A(o~,E;F;P)-I  

(2.13) A(~ ' ,  E'; z r - l ( e ) ;  p ,  i) = 1/[A(~, E; F; P) - I I. 

(2.14) A(~ ' ,  E' ;x-~(e);  P'2) = 1/[[ 1/A(~, E; F; P ) ] -  1]. 

(c) Let P be a simple singularity with e(E, P)=2. Then the only invariant analytic 

spaces of (~, O) through P are the two irreducible components of E at P. 

(d) Let P be a simple singularity with e(E,P)=I. Then (~,O) has exactly two 

formal separatrices at P. One of them is given by the ideal Je, e of the divisor E, it is of 

course a convergent one. The other one, say f .  dx, v, is non singular and transversal to 

E (i.e., f jointly with a local equation of E define a regular system of parameters of 

~x,e). Classical results say that we can t a k e f t o  be convergent in the case that 

(2.15) A(o%, E; E; P) * ~ .  

(e) Finally, let us recall that Seidenberg's result of desingularization [20] means 

that in the two-dimensional case we can get a situation with only simple singularities 

after finitely many blowing-ups. 
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LEMMA 2.4. Let P be a pre-simple singularity for (~, E) as above. Then 

(2.16) A(,~, E; F; P) ~ Q + - N  U (I/N). 

Otherwise (~, E) would be a dicritical singular foliation. 

Proof. Let us reason by contradiction, assuming that 

(2.17) A(~, E; F; P) = p/q E Q + - N  LJ (l/N), 

where p, q E N, p, q~2 and g.c.d.(p, q)= 1. Now, let us make induction on p+q. We can 

take a regular system of parameters (x, y) of 6x, e such that a generator ~ of ~de is given 

by 

(2.18) ff~ = (py + cp(x, y) ) dx+(-qx+qJ(xy))  dy 

with ve(q~, ~0)~>2. Assume that q<p, let us blow-up the point P and look at the point P '  

corresponding to the strict transform of (y=0). Putting x=x', y=x'y' ,  a generator t) '  of 

~3'e is given by 

(2.19) Q' = ((p - q )  y' +x'tp'(x', y')) dx' +( -qx '  +x'2~0'(x ', y')) dy'. 

We distinguish two cases: 

Case 1: q=m(p-q) ,  for some integer m~>2. In this case, blowing-up P'  and looking 

at the point P '  corresponding to the strict transform of x' =0, a generator f~" of ~d"e, is 

given by 

(2.20) Q" = (--y"+ y"Eg"(xJ' , y")) dx"+((m- 1)x"+x"2tp"(x ", y")) dy". 

If m - 1 =  I, we see easily that blowing-up P" the exceptional divisor is a dicritical 

component. If m - 1  I>2, we reason by induction on m-1 :  blowing-up P" and looking at 

the point corresponding to (x"=0), then m - 1  decreases one unit. This is the desired 

contradiction. 

Case 2: otherwise. Then the invariant p+q decreases strictly and we are done by 

induction. [] 

The following proposition gives to us the formal normal forms for the non-dicritical 

pre-simple singularities in dimension two: 

PROPOSITION 2.5. Let P be a pre-simple singularity for (,~, E). Then there are a 

regular system of  parameters (x,y) o f  Ox.t" and a generator g2 o f  @x such that 



SEPARATRICES AND DESINGULARIZATION OF FOLIATIONS 33 

JE, P~xyOx, e and if2 is in one o f  the following formal normal forms: 

(i) ~=xy(dx/x+2dy/y); 2EC,  2~Q_. 

(ii) f2=xyyS(dx/x +(e + 1/y ~) dy/y); s>- l, e E C. 

(iii) ff2=xy(xPyq) s (dx/x +(e+ I/(xPyq) s) (p dx/x +q dy/y); g.c.d.(p, q)= 1, s~> 1. 

(iv)* f~=x((my+ x m) dx/x-dy);  m ~  l. 

The formal normal forms (i), (ii) and (iii) correspond exactly to the simple singularities; 

the formal normal form (iv)* corresponds to a pre-simple singularity which is not a 

simple singularity. 

Conversely. Let  (o ~, E)E ~(X, E), assume that P is the only point in Sing(Y, Q), 

where ((~, ~)=hol((~,  E)). Assume that there is a regular system o f  parameters (x, y) o f  

~x,P satisfying 

(a) 14=Je, e~xy~x.e; 
(b) a generator Q o f  ~p can be written down in either one o f  the formal normal 

forms (i), (ii), (iii), or (iv)*; 

(c) if(iv)*, then Je, e=X~x,e. 
Then (~, E) is non-dicritical and P is a pre-simple singularity for  (~, E). 

Proof. Assume first that e(E, P)= 1. Take a regular system of parameters (x, y) of 

6x, e such that Je, e=X6x.e. Then ~e is generated by 

dx 
(2.21) o)=a +bdy;  a, bEtTx, e, g .c .d . (a ,b )= l ,  

x 

where ve(a)>~l (otherwise PC Sing(Y, ~)) and x does not divide a (otherwise E would 

be a dicritical component for (~, E)). Then ~e is generated by 

(2.22) if2 = a dx + bx dy. 

Since P is a pre-simple singularity, one of the following two possibilities holds: 

(A) ve(b)=O, i.e. b is a unit of ~Tx, v. 

(B) Ve (b)~ > 1 and Inl(a)=a Inl(x)+fl Inl(y) with f14:0. 

Consider the possibility (A). Then b--l ,  up to multiply ~ by b -1. Thus ~(~ ,E)p  is 

generated by the germ of vector field 

a a 
(2.23) D = x -~ -  x - a ay" 

By Proposition I. l, we have a regular system of parameters (x, y^) of ~x,e which is a 

linearizing system of parameters for Ds. Assume that Ds(Y^)=2y ^, for a certain 2 E C. 

3-928285 Acta Mathematica 169. Imprim6 le 20 aorat 1992 
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(Note that 2=-0a/0y(0).)  Actually we have that 

(2.24) I/2 = A(~, E; E; P). 

Hence 2 ~ Q+-N 0 (l/N) by Lemma 2.4. Consider the following cases: 

(AI) 2=0. Then, in view of (1.14), we can write D as follows: 

c3 _ Z e J  "(y^)j+l cO 
(2.25) D = x Ox j>~l aY ̂  

Let s be the first index such that es*0. Note that s<oo, otherwise x divides the 

coefficients of g2. Hence, #e is generated over ~x,e by 

where u(y  ̂ ) ~. t~x, e is a unit. A coordinate change y'  =y ' ( y ^ )  allows us to write 

( y (2.27) u(Y^) .^,~.l - e +  
(y) 

for a certain residue e E C. Hence, multiplying g2 ̂  by a unit in ~x,e, we have the normal 

form (ii). 

(A2) 2 = - p / q E Q _ = - Q + ;  with g.c.d.(p, q)=l .  We can take 

(2.28) D qx a cO Oa = - a ; - -  ( 0 )  = p .  
Ox ay ay 

By (1.14), we have 

0 a 
(2.29) D =  qX-~x - p y ^  Z eJ "(xpy^q)jy^ a . 

OY ̂  j>~l OY ̂  

Let s be the first index such that es*0. If s= co, we have the normal form (i). Assume 

that s < ~ .  Then, ~p is generated by 

x (xPy ̂ q)s P + --y^ ] ' 

where u(t)E C[[t]] is a unit. Take coordinate changes t '=t ' ( t )  and y ' = y ' ( y ^ )  such that 

u(t) d_~t (2.31) �9 = ~" ; xPy 'q= t'(xPy^q). 
t s t \ t's] t' 
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Then, multiplying ff~ ̂  by a unit, we have the normal form (iii). 

(A3) 2=mEN+.  By (1.14), we have 

0 a a (2.32) D = x + my ̂  + #x m -  
ax Oy ̂  Oy ̂  

Hence, we can take 

(2.33) Q = x((my^ +#x'n) d~Xx - dY^ ). 

In the case #=0,  if we blow-up n times following the direction given by y^=0, we see 

that (:T, E) is dicritical. Thus #4=0. Multiplying x and f2 by a scalar, we have the normal 

form (iv)*. 

(A4) 2=l/mE 1]N+, m~>2. By (1.14), we have that 

(2.34) D = x -~ -  x + (I/m).y^ ~ ay ̂  

Hence, we can take 

(2.35) Q = x . y ^ ( y ^  dx m d Y ^ ] .  
x y ^ /  

Blowing-up m times following x=0, we see that (o~, E) is dicritical. Thus, this case does 

not hold. 

(As) ;t E C - N  U I/N O Q_. Then, by (1.14) DN=0 and D is semisimple. Hence, we 

have the normal form (i). 

Consider now the possibility B. Making the linear coordinate change yl=aX+fly, 
we may assume that Inl(a)=Inl(y). Thus ~ ( ~ ,  E)p is generated by the germ of vector 

field 

(2.36) D = b . x  0 _(y+a, )  a , ax -~y v(bx, a') >12. 

Let (x, y^) be a linearizing formal system of parameters for Ds. Note that Ds(x)=O and 

Ds(y^)=l .  By (1.14), we have 

(2.37) D =  Zj>~l eJ'X j+' OxO + y^ c3 + Z ~C'j'xJy  ̂ 0 
aY ̂  j>~l aY ̂  

Multiplying D by (I+E ~j'XJ) -1, we can assume that ~e is generated by 
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(2.38) Q=x.x~ .y^(u(x)  dX. + dy" ~ 
\ x s§ y ^ ]  

where u(x) is a unit and s=min( j ;e j .0)<oo (see (AI)). Now, reasoning as in (A1) and 

interchanging the role of x and y^, we obtain the normal form (ii). 

Assume now that e(E, P)=2.  Take a regular system of parameters (x, y) of ~?x,e 

such that J~,e=xy(Tx, e and a generator to of ~e such that 

(2.39) to = a dx + dy 
x y 

Then, ~ ( ~ ,  E)v is generated by the germ of vector field 

0 a 
(2.40) D = x - ~ -  x - ay ay" 

Now, reasoning as in the case (A) above, we obtain either the normal form (i), (ii), or 

(iii) (the normal form (iv)* does not appear). 

For the second part of the proposition, in the simple cases (i), (ii) or (iii), blowing- 

up we only obtain simple cases, hence (~, E) is non-dicritical. In the case (iv)*, we 

obtain either simple cases or a case (iv)* with strictly smaller invariant m; we are done 

by induction and (~, E) is non-dicritical. [] 

w 3. Locally product simple singularities 

Let us consider now the study of the case n=dimX=3.  Take a non-dicritical 

(~, E) E q~(X, E). Put (@, 9)=hol((~:, E)) and let us fix a point P E Sing(Y, 9)  which is a 

pre-simple singularity for (~:, E). 

LEMMA 3.1. In the above situation we have that either v(@,9;P)=l or 

v(@,9;P)=2. In the case v(@,9;P)=2 then there is an open set ~ c X ,  PE all, such that 

(3.1) ~ Sing*(~, E) = 9 ,  (see I.(2.18)), 

(3.2) a//n {Q; v(~, 9 ;  Q) t> 2} = {P}. 

Proof. The first part is a trivial computation. The property of (3.1) is a conse- 

quence of Proposition 1.2.6. In order to prove (3.2), note that 

(3.3) if e(E,P)= 1, then v(Cg,9;P)= 1, 

(direct computation). Hence, assume that e(E, P)~>2. Actually, it is enough to consider 
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the case e(E,P)=2; in fact, the case e(E,P)=3 follows immediately, (see Remark 

1.2.3(b)) since the order v(~,O;Q)=0,  for Q near P, and the points P with e(E,P)=3 

are isolated points. Take a regular system of parameters (x, y, z) of ~x,P such that 

JE, e=xy~x,e. We can write a generator to of ~:e as follows: 

dx dr 
(3.4) to = a + b + c dz. 

Note that ~e is generated by 

(3.5) 

x y 

= aydx+bxdy+cxydz .  

Since v((g,O;P)=2, then re(a, b)~>l. Let us reason by contradiction, assuming that 

(3.2) does not hold. By (3.3) we must have that 

(3.6) v(x.y)(a, b) >I 1. 

Let us distinguish two cases: 

(A) ve (c)~> 1. Hence/~(~:, E; {P})=v(~, E; P)= 1. Then the condition (3.6) contra- 

dicts the fact that Dir(~, E;P) has normal crossings with E. 

(B) ve(c)=O. Then (x=y=0) is locally permissible at P for (~, E). In fact, we have 

(3.7) O(~;, E;(x = y = 0); P) =/z(~, E; (x = y = 0)) = 0. 

If we make the blowing-up with center (x=y=0), the condition of (3.6) means that the 

exceptional divisor is a dicritial component. This contradicts the fact that (if, E) is non- 

dicritical. [] 

In this paragraph we shall consider only pre-simple singularities with v(~, O; P)-- 1, 

and we shall define the simple singularities in this case. The following proposition 

means that this case is essentially a two dimensional one. In fact, we have an analytic 

triviality along the singular locus, which respects the exceptional divisor. 

PROPOSITION 3.2. In the above situation, assume that v(~,~;P)--1.  Then there 

exists a non-singular germ o f  vectorfield DE ~ ( ~ ,  E)e. More precisely, we have that 

(3.8) D E ~ ( ~ , E ) p N O x ,  e[E] and D ~ t O x ,  e, 

where utt is the maximal ideal o f  ~?x,P. 

Proof. If e(E,P)=3, we have v(~,O;P)=2.  Then, either e(E,P)=l  or e(E,P)=2. 

(A) Case e(E,P)--1. (By (3.3) we always have v ( ~ , ~ ; P ) = l  in this case.) Assume 

first that v(~, E;P)=0.  Then there is a regular system of parameters (x,y, z) of 6x, e and 
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a generator to of o%e such that 

(3.9) JE, P = x. 6x, e. 

dx 
(3.10) t o=a  + b d y + d z ;  ve(a)>~l. 

x 

Then the germ of vector field 

8 8 
(3.11) D =  - b -  

ay 8z 

satisfies (3.8). Note that D(x)=0 and hence D E Ox, e[E]. 

Assume now that v(~, E ;P )=I .  Take (x, y, z) and to such that (3.9) holds and 

dx 
(3.12) t o= (z+a ' )  + b d y + c d z ;  ve(a')>~2, ve(b,c)>~l.  

x 

Then ~e is generated by 

(3.13) Q = (z+a') dx+xb dy+xc dz. 

Note that dg2 is non-singular at P,  actually 

(3.14) dr2 = xa* dy Adz+b* dZA dx +c* dxAdy 

and b* ~ ug. The integrability condition Q AdQ=0 implies that 

8 b* O O (3.15) D = xa* + + c* 
Ox 8y az 

is the desired germ of vector field. This situation is named "Kupka-Reeb phenomena" 

(cf. [I1], p. 31). Note that D(x)=a*x and thus DEOx,  p[E]. 

(B) Case e(E,P)=2. Since v(~d,O;P)=l, there is a regular system of parameters 

(x, y, z) of ~Tx, e and a generator to of ~e such that 

(3.16) JE.e = xZe?x,e. 

dx dz 
(3.17) to = - - +  bdy + c 

x Z 

Hence 

(3.18) 
a a 

D = b x - -  
ax Oy 

is the desired germ of vector field. [] 
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COROLLARY 3.3. In the above situation, assume that v ( ~ , Q ; P ) = I  and let us fix a 

germ of  vector field D EOx, e satisfying (3.8). Then there are a regular system o f  

parameters (x, y, z) o f  ~x,e and a generator w o f  ~e such that: 

(a) Either Je.e=X~Tx.e or Je, e=xy@x,e. 

(b) D=a/Sz. 

(c) Under the identification ~?x,e=C{x, y, z}, we have that 

dx 
(3.19) to=a + b d y ,  a, bEC{x , y ) ;  i f e ( E , P ) = l  

x 

(3.20) w = a  dx + b dy,  bEC{x ,y} ;  if e (E,P)=2.  
x y 

(d) Sing(Y, O)=(x=y=O), locally at P (in any regular system o f  parameters (x, y, z) 

o f  ~?x. P as above) 

(e) Let A be a germ at P o f  a two-dimensional non-singular subspace o f  X such 

that TpA is transversal to Te(x=y=O). Then there is a germ of  analytic isomorphism 

between (z=0) and A which sends 

(3.21) (~:fz=0, E N (z = 0)) E ~((z = 0), E N (z = 0)) 

in to 

(3.22) (~I,,,EnA)~ ~(A,EnA). 

(f) Making a formal coordinate change in (x, y) (which preserves the property that 

]e.e~xy~x.e), then he is generated by one o f  the normal forms (i), (ii), (iii) or (iv)* of  

Proposition 2.5. 

Proof. Take (x, y, z) satisfying (a) and (b). Then ~e is generated by 

(3.23) if2 = ct(x, y, z) dx + fl(x, y, z) dy. 

The integrability condition f2 A dr2=0 implies that 

(3.24) a(x, y, O) fl(x, y, z) = a(x, y, z) fl(x, y, 0). 

Hence ~e is also generated by 

(3.25) if2 o = ct(x, y, O) dx+fl(x, y, O) dy. 

The rest of  the proof is obvious. [] 
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Remark 3.4. (a) In the above situation, let F be an irreducible component of E 

through P and let A be as in Corollary 3.3(e). Then both (~l~=0,Efl(z=0)) and 

(~IA, EA A) are non-dicritical. Moreover, P is a pre-simple singularity for these adapted 

singular foliations and 

(3.26) A(~iz=0, (z = 0) fl E; (z = 0) A F; P) = A(~IA, E A A; F n A; P). 

Thus, in this case we define the invariant A(~;E;F;P)  by 

(3.27) A(~,  E;F;P) = A(~l,,, E n A;FN A;P). 

(b) Let Y be the irreducible component of Sing(fg, ~) passing through P. The points 

(3.28) H =  {Q E Y; Q is not pre-simple with v(~, ~;  Q)= I} 

are isolated points. Hence, by connectedness, we have 

(3.29) A(~:,E;F;Q) = A(~ ,E;F;P)  for all QE Y - H .  

DEHNITION 3.5. Let P be a pre-simple singularity for (~, E) with v(~, ~; P)= 1. 

We say that P is a simple singularity for (J;,E) iff 

(3.30) A(~, E; F; P) r Q+ 

for each irreducible component F o f  E at P. 

Remarks 3.6. (a) The point P is a simple singularity for (,~, E) iff it is a simple 

singularity for (~[A, EA A), where A is as in Corollary 3.3 (e). 

(b) Also, P is a simple singularity for (~ ,E)  iffwe have one of the normal forms (i), 

(ii) or (iii) for a generator of c~v. 

(c) Conversely, assume that (x, y, z) is a regular system of parameters of Ox, e 

satisfying the following properties: 

( c l )  YE, p~Xy~x,p'~ e(e,P)>~l. 

(c2) ~p is generated by one of the normal forms (i), (ii), (iii) or (iv)* of Proposi- 
tion 2.5. 

(c3) If (iv)*, t h e n  JE, p-~-.X~x,p. 
Then P is a pre-simple singularity for (~, E) with v(~, Q; P)= 1. 
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w 4. Confluencies of simple singularities 

Like in the preceding paragraph, assume that n=3,  take a non-dicritical ( ~ , E ) E  

~(X, E),  put (@, O)=ho l ( (~ ,E) )  and fix a point P E Sing(Y, 0 )  which is a pre-simple 

singularity for (~r,E). In this paragraph we shall study the case v(~q,~;P)=2.  By 

Lemma 3.1, we can think of  P as a " confuence"  of  pre-simple singularities which are 

locally a product.  

LEMMA 4.1. Let  P be a pre-simple singularity for  ( ~ , E )  such that 

(4.1) v ( ~ d , ~ ; P ) = 2  and /a(~,E; { P } ) = v ( ~ , E ; P ) =  1. 

(Hence e(E, P)=2. )  Take a regular system o f  parameters  (x, y, z) o f  ~?x,e with 

(4.2) Je, e = xy~Tx, e. 

Then, there is a formal  coordinate change 

(4.3) z ̂  = z+cp(x, y); v(9(x, y))>~ 1, 

such that Z^~x,e is a formal  separatrix o f  (~, f3). 

Proof. We have a generator o9 of  ~e  given by 

dx dy (4.4) o9 = a - -  + b + c dz 
x y 

such that re(a, b, c)~>l and aa/az(O,O,O)=l. Let us put 

(4.5) a = z+ Z i j , aijxy +za , ve(a')>- 1. 
i,j>~l 

(s, t) = min{(i,j); a U * 0}, (4.6) 

with respect to the ordering 

(4.7) (i , j)  <~ (i ' , j ' )  r (i+j < i' +j') or (i+j = i' +j' and i ~< i'). 

If  (s, t)= oo, then z divides a. Assume the contrary. By the coordinate change 

(4.8) z' = z+q~stxSy t, cpst = ast, 

the corresponding invariant (s', t') is strictly bigger than (s, t). By a formal coordinate 

change 
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(4.9) z ̂  "-'- Z-t- ~ qgstXSy t, 
$, t 

we may assume that z ̂  divides a. Multiplying to by a unit, we have that 

(4.10) t ~  ^ dx +b  dy + c d z ^ ;  v ( b , c ) ~ l .  
x y 

The integrability condition to A dw=0 implies that z ̂  also divides b. Hence 

(4.11) to= z ̂  dx + z^b , dy + cdz  ^ 
x y 

and z ̂  is a formal separatrix for (~, ~).  [] 

LEMMA 4.2. Let  P be a pre-simple singularity for  (~, E) such that v(~, O;P)=2.  

Then there are a regular system o f  parameters (x, y, z) o f  ~x,e and two formal vector 

fields D1 and DE such that: 

(a) xyz~x,e=Je, e. 

(b) Dl=x(a/ax)-a(a/az) ,D2=y(a/ay)-b(a/az);  with v(a, b)~>l. 

(c) DI,D2E ~ ( ~ ,  E)^p. 

(d) [D1,D2]=0. 

Moreover, i f  ~ is the Lie subalgebra of  (gx, e generated by D1 and D2, then 

(4.12) ~e  = {to E (2x, p [ -E] ;  to(D) =0, for all D E ~ } .  

Proof. Let  us consider the following cases: 

(A) e(E,P)=2 and v(~, E ;P)=0 .  Then ~e is generated by 

dx dy 
(4.13) to = a + b + dz; v(a, b) >I 1 

x y 

in a regular system of parameters of ~?x,e such that Je, e=xy~x,p. Take then 

a a ca a 
- ; D 2 = y - - -  b - - .  (4.14) D 1 = x ax a az ay Oz 

The condition (d) is equivalent to toAdto=O and (4.12) is obvious. 

(B) e(E, P)=3.  Then ~e is generated by 

dx dy dz (4.15) to = a + b 4 
x y z 

in a regular system of parameters of (?x,e with Je, e=xyz~?x,e. Take then 
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(4.17) 

and we can take 

(4.18) 

a a y a  _ _  a (4.16) Dl = x - - -  a z - - ;  D2= - bz , 
ax az Oy Oz 

and let us reason as above. 

(C) e(E, P)=2 and v(~, E; P)= 1. By Lemma 4.1, we can write a generator to of ~e 

as in (4.11): 

a a a a 
D 1 = z ̂  - c x  �9 D 2 = y - b'x . 

az ̂  ax ' ay ax 

This ends the proof. [] 

Remark 4.3. The only case in which (x, y, z) is may be not convergent is the case 

(C) above. By Lemma 4.1, even in this case, the parameters in (x, y, z) defining the 

irreducible components of E are convergent ones. 

PROPOSITION 4.4 (Normal forms). Let  P be a pre-simple singularity for  ( ~, E)  with 

v(~d,~,P)=2. Then there are a regular system o f  parameters (x ,y , z )  o f  ~x,e and a 

generator ~ o f  (~e such that xyz" ~x, PCJE, P and ~2 is one o f  the following formal  normal 

forms: 

(iv) g2=xyz(a dx/x + fl dy/y + dz/z) ; with a .fl*O and - a ,  - f l ,  - a / f l  ~ Q+ 

(v) ~=xyz.z~(dx/x+fl  dy/y+(e+ 1/z ~) dz/z); with s ~  l, 0~ =-fl ~ Q+. 

(vi) f2=xyz(yPzq) ~ (dx/x+fldy/y+(e+ 1/(y~ ~) (p dy/y+qdz/z)); s>~ 1, g.c.d.(p, q)= 1. 

(vii) ff]=xyz" (xPyqzr)~ (dx/x + fl dy/y+ (e + 1/(xPyqzq)~) (p(dx/x)+ q(dy/y)+r(dz/z))); 

with s>~l, g.c.d.(p, q, r )=l .  

(viii)* ff2=xy(ay m d x / x - ( m z +  y m) dy/y+dz); m ~  l,  a ~= O. 

(ix)* f 2=xy ( - (p z+xPy  q) dx /x - (qz+f lxPy  q) dy/y+dz); p, q>~ 1, 0*fl ~ Q_. 

Proof. Take a regular system of parameters (x, y, z) of t~x,p and two formal vector 
fields 

a a a a 
(4.19) Dl = x - a ; Dz = y - b 

ax az ay az 

as in Lemma 4.2. Let 2, # be the eigenvalues of D~, DE, given by 

(4.20) 2 = -  a--q-a (0,0,0); k ~ = -  a--~-b (0,0,0). 
az Oz 
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By Proposition 1.4, we can obtain from (x, y, z) a regular system of parameters (x, y, z ̂ ) 
of ~x.e which is both a linearizing system for Dis and D2s. Moreover, if 

(4.21) je, eCZ~x,e 

(in particular, z divides " a "  and " b "  in (4.19)), then 

(4.22) z^e?x,e = ZOx, e. 

Hence the condition xyz^~x, eCje, e holds. In order to simplify the notation, put 

(x, y, z)=(x, y, z^). Let us write 

(4.23) a= Z aijk xiyjzk; b= Z bijk xiyjzk" 
i , j ,k i,j,k 

By the formula (1.21), we have that 

(4.24) (aOk, bij k) ~= (0,0) implies that i+~.(k- 1) = j + # ( k - 1 )  = 0. 

Now, let us consider the following cases, corresponding to the possible values of ~, #: 

(A) ;t#4=0;;t,/~ CQ_ UN+. By (4.24) we have that 

a +~.z  s ; (4.25) Dl = x-~x OZ 

In view of (4.12), then @e is generated by 

0 0 
D2=y--~-y + #z aZ'" 

(4.26) Q = x y z ( - A d x - i ~ d Y +  ~ ) .  
x y 

Note that the axis are permissible centers. Blowing-up the axis in an adequate way and 

making arguments like in the Lemma 2.4, we see that if 

(4.27) ~, #, - 2 /#  t~ Q+ 

does not hold, then (~, E) is a dicritical foliation. (The fact that we work with formal 

coordinates does not worry, in view of the faithfully flatness of ~x,e over t~x,e.) Hence, 

we have the normal form (iv). 

(B) ~#4=0; ZIQ_tJN+,  #=mEN+.  We can reason like in (A), but (4.27) does not 

hold and hence we have a dicritical case. 

(C) 2##=0; ~ r Q_ u N+,/~= -p/q 6 Q_, g.c.d.(p, q)= 1. We obtain the normal form 

(iv) like in (A). 
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(D) 2p#0; 2=p,  p = q  E N+. By (4.24), we have that 

0 +(pz+axPyq) ~ ; ~ (4.28) D 1 = x Ox -~z D2 = Y-~y + (qz+ftxPYq) O---z" 

If a=fl=0,  we obtain a dicritical case as before. If a*fl=O, blowing-up the axis 

(y=z=0) repeatedly we see that is is a dicritical case. Thus afl4=O. After a coordinate 

change x~aVPx we may assume that a = l .  If t3 E Q_, blowing-up repeatedly (x=y=0) 

we obtain a situation like (4.28) but with aft=O, which is a dicritical case. Hence we 

have the normal form (ix)*. 

(E) 2p~0; 2 = - p / q  E Q_,/~=m ~ N+. We have a dicritical case like in (B). 

(F) 2p*0;  2=-p / rEQ_,  p=-q / rEQ_ ,  q.c.d.(p,q,r)=l.  By (4.24) there are two 

formal series a(t), fl(t) E C[[t]], with v(a(t), fl(t))>~ 1, such that 

(4.29) D 1 = x Ox z -- a(xPyqzr) Z ; 

Thus @e is generated by 

D2 = Y Oy Z - f t ( x  Pyqz r) Z ~---~. 

(4.30) f~ = xyz(ra(xPyqzr) dx + rft(xPyqzr) dY + p dX + q dy + r dZ ).  
x y x y 

ff  (a(t), fl(t))= (0, 0), then we obtain the normal form (iv). Assume that (a(t), fl(t))*(O, 0). 
Put U=xPyqzr ,  then the 1-form 

(4.31) f~'=xPyqzr-l~=xyu(ra(u) d~Xx + rft(u) dy + du 

is integrable and (x, y, u) is of maximal rank at the generic points. Hence 

(4.32) da(t) ft(t) = a(t) dft(t) 
dt dt 

Thus, we can write 

(4.33) a(t)= (a/r).y(t); fl(t)=(ft/r).y(t); a, ftEC. 

Put s=v(y(t)). Note that l~<s<oo. Then there is a unit v(t)E C[[t]] such that y ( t )=f ,  v(t). 
Let w(t)~ C[[t]] be such that v(t)w(t)= 1. Then @e is generated by 

(4.34) 

~--2,, = l.o(xPyqzr)~,-2 = xyz(xPyqzr)s (a  dx q_ fl dY .~ w(xPYqZ') ( dX + q -~-+  r-~-)  ) " 
T y (xPyqzr)S P x 
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Consider a change of coordinates u' =u'(u) such that 

_( (4.35) w(u) du e+ 
U s U -'~ 

for some eEC. (See also (2.28).) Take z'=z'(z) such that 

(4.36) u' (x Pyqz r ) = x Pyqz'r. 

Multiplying fig' by a unit, then @e is generated by 

( ( (4.37) xyz'(xPyqz'r)" a dx +t idy+ e+ 1 p__s 
x y (xPyqz'r)s 

dy +rdZ '~  y --~-]]" 

Let us assume that a~:0. Then, multiplying x by (I/a) TM and the above generator by 

(l/a) (l+l/p), we have the normal form (vii). 

(G) 2=0, /~*0, / ~ / Q - N + .  We have (4.25) like in A, but since 2=0, then 

v((g,O;P)=1 and this case does not hold. 

(H) X=0,/z:#0,/z=mEN+. By (4.24) we have that 

(4.38) D 1 = x Ox - O~ym ; D2 = y + (mz+t iYm)  O--~" 

Then @e is generated by 

(4.39) ff~= xy(aym dX -(mz+flym) dY + dz). 
x y 

Note that a*0 ,  since otherwise v(~g, 0 ;  P)= 1. If ti=0, blowing-up repeatedly (y=z=0)  

we obtain a dicritical component. Hence ati*O. We may assume that f l=l  by a 

coordinate change y~flU,~y. We have thus the normal form (viii)*. 

(I) 2=0, iz=-p/qEQ_, g.c .d . (p ,q)=l .  By (4.24), there are two formal series 

a(t),fl(t) E C[[t]], with v(a(t), ti(t))>~ 1, such that 

0 a a 
~ ~ ( ~ Z q )  Z ; D2=Y- -~y  - f l ( y p z q ) z  OZ (4.40) D 1 = x ax 

Reasoning as in (F), we may assume that @e is generated by 

(4.41) ~=xyz(yPzq)s(adX +tidY +(e+ l---1---~(pdy +q-d~-)). 
x y \ (y%q)s / y 

Note that a:l:0, otherwise v(~3, O ;P)=  1. Now, dividing f~ by a and making the coordi- 

nate change y,-->(1/a)UPSy, we obtain the normal form (vi). 
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(J) 2=/ t=0.  Then, there are two formal series a(t), fl(t)E C[[t]], with v(a(t), fl(t))>~ 1, 
such that 

0 _a(z )  z ; D 2=y ~ - f l ( z )  z �9 (4.42) D 1 = x ax ay az 

Then, reasoning as in (F), (I), we obtain the normal form (v). [] 

Remark 4.5. In the cases (viii)* and (ix)*, we have that 

(4.43) Je.e = xYt~x,e. 

In particular e(E, P)=2.  This follows since both DI and D2 are not tangent to (z=0), and 

hence (z=0) is not a component  of E. 

COROLLARY 4.6. Let P be a pre-simple singularity for  (J;,E) such that 

v(g, 9 ,  P)=2.  Then there is a regular system o f  parameters (x, y, z) o f  (Tx, e such that: 

(a) (xy=O)cEc(xyz=O), locally at P. 

(b) The singular locus Sing(g, 9)  is locally given at P by 

(4.44) Sing(g, +)  = (x = y = 0) U (x = z = 0) U (y = z = 0) 

i f  we have one o f  the normal forms (iv), (v), (vii), or (ix)*, and by 

(4.45) Sing(g, 9)  = (x = y = 0) U (y = z = 0) 

if  they have the normal form (viii)*. 

Proof. Let  us fix a regular system of parameters (x', y',z') of ~x,e. Assume that 

(4.46) ~ = adx '+bdy '+cdz '  

is a generator of (~p. Le t  Jc6x,  e be the ideal defining Sing(g, 9)  locally at P. Then we 

have that 

(4.47) J~x,r = rad((a, b, c) ~x.P), 

where rad(. ) means the radical of the ideal. Assume now that (x', y ' ,  z') are given like in 

Proposition 4.4. Then we have (a) and (b) for (x', y ' ,  z') (up to irrelevant reordering). 

Hence Sing(g, 9)  is locally given at P by three (or two) irreducible curves F1, F2,1"3 (or 

Fl, F2). Moreover, if e(E, P)=3,  then the Fi, i= 1,2, 3, are the intersections of  two 

irreducible components of E at P. If  e(E, P)=2,  then F~ is the intersection of  the two 

irreducible components of  E at P; the other ones F2 (and eventually) F3, are contained 
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each one in a different component  of  E and they are transversal to the other one. The 

corollary follows straigthforward. [] 

PROPOSITION 4.7. Let P be a pre-simple singularity for (J;,E) such that 

v((g, O ;P )=2 .  Then the following statements are equivalent: 

(A) There is an open set ~ c X ,  PE all, such that i f  QE q/fl Sing((g,~), with Q~P,  

then Q is a simple singularity for ( ~ , E )  and v(fg,~; Q)=I .  

(B) In the situation o f  the Proposition 4.4 we have one o f  the normal forms (iv), 

(v), (vi), or (vii). 

Proof. (A)=*,(B). Assume that (B) is not true. Then we have either the normal form 

(viii)* or (ix)*. In both cases we have that 

(4.48) e (E ,P)=2  and v(~ ,E;P)=O.  

Moreover, we can take a regular system of parameters (x, y, z) of (?x. e satisfying the 

conditions in Lemma 4.2 and in Corollary 4.6 (see Remark 4.3). In particular, we have 

that 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

( . o = a  

E = (xy = 0), locally at P. 

dx + b dy + dz generates ~e, Vl,(a, b) >1 1. 
x y 

(y = z = 0) c Sing(~d, ~).  

Oa ab 
- - - ( 0 , 0 , 0 ) = p E N ;  - - - ( 0 , 0 , 0 ) = q E N + .  

az az 

Now, put A(e)=(x=e), for e " n e a r "  0 6  C. Then ~la~,) is locally generated at (e, 0, 0) by 

(4.53) ogIA(~ ) = b(e, O, O)(dy/y)+dz. 

In view of Remark 3.4 (b), the value 

(4.54) ab(e, O, O) 

az 

does not depend on e. Hence,  by continuity 

(4.55) ab(e, 0, 0) ab(0, 0, 0) 
az az 

= - q ~ N _  

and we have not a simple singularity. This is the desired contradiction. 
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(B)~(A). Assume firs.t that e(E, P)=3. We can take a regular system of parameters 

(x, y, z) of ~Tx, p such that 

(4.56) E = (xyz = 0), locally at P. 

(4.57) co = a dx + b dy + c dz generates O%p. 
x y z 

The vector fields D1,D2 of Lemma 4.2 are 

~ y  a a _ aZ_~z; D2 = y  - bz (4.58) D 1 = x Ox 
Oz 

and the corresponding eigenvalues 2,/~ of (4.20) are given by 

(4.59) 2 = -a (0 ,0 ,0 ) ;  /~ = -b(0,0,0) .  

Since neither (viii)* nor (ix)* appear, looking at the proof of Proposition 4.4, we have 

that 

(4.60) ~ ~ Q+ and g ~ Q+. 

Note that Sing(C~,O)=(x=y=0)U(x=z=0)U(y=z=0). Take a point P,=(e,O,O) of 

(y=z=0). Put A(e)=(x=e), as above, then ~]A(~) is generated by 

(4.61) cola(~) = b(e, O, O) dy + d___Z_z 
y z 

By the Remark 3.4 (b), the value b(e, 0, 0) does not depend on e and thus 

(4.62) -b ( e ,  O, O) = -b(O, O, O) = p ~ Q+. 

This implies that P~ is a simple singularity. We do analogously for the points in 

(x=z=0). It remains to look at the points in (x=y=0). Note that the integrability 

condition co^dco=0 implies that 

(4.63) b(0, 0, z ) ~ - ( 0 ,  0, z) -- a(0, 0, z)fl~-b (0, 0, z). 
o Z  ' ~ Z  

Let us distinguish the following cases: 

(1) 2/~4=0. Then, by the proof of Proposition 4.4 we have that 

(4.64) -2]/~ r Q+. 

4-928285 Acta Mathematica 169. Imprim~ le 20 aoQt 1992 
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By (4.63) we have that 

(4.65) -a(O, O, e)/b(O, 0, e) = -)./kt ~ Q+ 

for all e near 0EC. Now, cutting by A(e)=(z=e) as above, we obtain a simple 

singularity. 

(2) 2=0,/tat0. By (4.63) we have a(0,0,e)=0 for all e. We obtain a simple singularity 

as above. 

(3) 2=/~=0. Note that 

(4.66) (a(0, 0, z), b(0, 0, z)) 4: (0, 0). 

Otherwise, blowing-up the center (x=y--0) we have a dicritical component. By (4.63), 

there is a series 7(z), with 7(0)~0 such that 

(4.67) a(O,O,z)=7(z).zS; b(O,O,z)=fl.7(z).z s, flEC; s~>l. 

Cutting by A(e)=(z=e), we have that 

(4.68) tola(~ ) = a(x, y, e) dx +b(x, y, e) dy 
x y 

and 

(4.69) b(0, 0, e)/a(O, 0, e) = ft. 

Necessarily -flCQ+. Otherwise, blowing-up tola(~) of (4.68) we obtain a dicritical 

component after finitely many steps. Hence we have a simple singularity. (Remark: the 

invariant fl in (4.69) is the same one as in the normal form (v); in particular fl*0.) 

Assume now that e(E, P)=2 and v(~, E; P)=0. Take a regular system of parameters 

(x,y,z) of Ox.e satisfying the conditions in Lemma 4.2 and in Corollary 4.6. In 

particular (4.49) and (4.50) hold and 

(4.70) Sing(~,~3)=(x=y=O)u(x=z=O)O(y=z=O), locally at P. 

(4.71) - 0---q-a(0,0,0)=~.; - 0---~-b(0,0,0)=/~; ~.,#~Q+. 
az ~z 

(For the proof of the property (4.71), we do like in (4.60).) Now, reasoning like in the 

preceding cases we see that all the points in Sing(~d, O ) -  (P}, near P, are simple 

singularities. 

It remains to study the case e(E, P)=2 and v(~, E; P)= 1. Take a regular system of 
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parameters (x,y, z) o f  tTx, v and a generator to o f ~ e s u c h  that the following conditions 

hold: 

(4.72) E = ( x y = 0 ) ,  locally at P. 

(4.73) 

(4.74) 

(4.75) 

Sing(Y, 6)  = (x = y = 0) u (x = z = 0) o (y = z = 0), locally at P. 

dx dy 
t o = a  +b +cdz ,  v(a,b,c)>~ l. 

x y 

Inl(a) = Inl(z). 

(4.76) a = z+cp'(x, y), v(cp'(x, y)) >1 2. 

(Note that (4.76) follows from the Implicit Function Theorem.) By the property (4,73) 

we deduce that 

(4.77) a E ( x , z ) c  tTx, v; b E ( y , z ) c  ~?x.v. 

Consider a point (0, 0, e)E (x=y=0).  Cutting by (z=e) we have that 

(4.78) tolz= ~ = a(x, y, e) dx +b(x, y, 6) dy 
x y 

The quotient 

(4.79) b(0, 0, e) _ b(0, 0, 6) 
a(O, O, e) e 

does not depend on the value e " n e a r "  0 E C. Reasoning like in (4.69), then 

(4.80) b(O, O, e) r Q+. 
6 

Hence we have a simple singularity. By the way, note that 

(4.81) b(O, O, e) = lim b(O, O, e) _ O b (0, O, 0). 
e e--*O ~ ~Z 

Consider now a point (0, e, 0) E (x=z=0).  Then 

(4.82) ogly= ~ = a(x, e, z) dx 
+ c(x, e, z) dz. 

x 

The quotient 

(4.83) c(O, e, O) _ c(O, e, O) 
aa 1 

(0, e, O) 
az 
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does not depend on e near 0EC. Hence 

(4.84) c(O, e, 0) -- limc(O, e, O) = c(O, O, O) = 0 r Q_. 
e---~O 

Thus we have a simple singularity. 

Finally, let us look at the points (e, 0, 0)E (y=z=0).  We have that 

(4.85) tolx~. ~ = dy b(e, y, z) ~ +c(e, 0, O) dz. 
Y 

By Corollary 3.3 (b) and since being a pre-simple singularity is an open condition (see 

Proposition 1.2.6), we have that 

(ab~z ) (4.86) _---- (e, O, O), c(e, O, O) *(0,0) ,  for e*O. 

Now, the only "bad case" in which (e, 0, 0) is not a simple singularity is 

ab (x, 0, 0) 
(4.87) az = - P  E Q_. 

c(x, O, 0) q 

Let us reason by contradiction assuming that (4.87) holds. Then 

ab 
(4.88) - - ( x ,  O, O)= pxSct(x); c(x,O,O)=-qx'a(x); a(0)~=0, s~>l. 

az 

Making y=z=0  in the integrability condition to Adta=0: 

(bOa aOb~+(aOX ~ y )  ( Ob b OC~x 
(4.89) \ --~-z - --~-z/ \ a y - c  y+ c a x -  -~-x/ =0  

and since b E (y, z), we find that 

(4.90) 

Thus, we can write 

(4.91) 

q~'(x, 0) = 0.  

a = z+xyg(x, y). 

Now, by the proof of Lemma 4.1 and by the condition (4.91), we have a formal 

coordinate change 

(4.92) z ̂  = z +xyU~(x, y) 
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and a unit u^E ~x,e such that the following properties hold: 

(4.93) o~^ = u^to = z^ dx +z^b ^ dy +c ̂  dz ̂ . 
x y 

u^(O) = 1. 

( u ^ )  -~ ( z ^ b  ^) = b .  

( u ^ )  -1 c ^ = c .  

We shall end the proof by showing that the following condition holds: 

b^ly=z^=0 - p  
(4.97) 

C^[y=z^=O q 

Actually, if (4.97) is true, then writting down 

(4.98) t a ^ = z ^ ( ~ - + b  ^ d y  ' ^ d z ^ ~  y t c  - - ~ - j  

and blowing-up the center (y=z^=O)=(y=z=O) we find a dicritical component after 

finitely many steps. Contradiction. Now put 

8b 
(4.99) f (x ,  y, z) = -x--(x, y, z) E C{x, y, z} = Ox e. 

OZ 

By (4.95) we have that 

(4.100) f(x, 0, 0) --fir=z=0 -- (u^-llr=z=o)'b^ly=~=o" 

(Note that we have (4.92).) Then 

b ^  ^ ^ (4.101) ly=z^=0_ b It=z=0_ u ly=z=0 f(x,O,O) _ - p  
C^[y=z^= ~ C^ly=z=O u^y=z=0 c(x, O, O) q 

Thus the property (4.97) holds. [] 

DEFINITION 4.8. Let P be a pre-simple singularity for  (,~,E) such that 

v((g,~;P)=2. We say that P is a simple singularity for  (~;,E) i f f  the equivalent 

conditions (A) and (B) o f  Proposition 4.7 hold. 

Remark 4.9. The normal forms (i), (ii) and (iii) of Proposition 2.5 and the normal 

(4.94) 

(4.95) 

(4.96) 
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forms (iv), (v), (vi) and (vii) of Proposition 4.7 describe exactly the simple singularities 

in the case dimX=3. The converse is also true: a singularity which can be written in 

one of the formal normal forms (i)-(vii) is a simple singularity (with evident conditions 

about the divisor E). 

PROPOSITION 4.10. Assume that each point in Sing(~d, 9)  is a simple singularity for  

(~,E).  Let Y c X  be a permissible center for (~,E);  let ~r:X'--~X be the blowing-up 

with center Y and let (~;' ,E') be the adapted strict transform o f  (J;,E) by zr. Put 

(~d,9)=hol((~,E)). Then each point in Sing((g',9) is also a simple singularity for  
(~ ' ,E) .  

Proof. In view of the non-dicriticalness, after blowing-up one of the normal forms 

(i)-(vii) with center either the origin, or one of the axis in the singular locus, we only get 

singular points which admit either (i), (ii), (iii), (iv), (v), (vi), or (vii) as normal forms. [] 

w 5. Separatrices for simple singularities 

Assume that dimX=3. Take a non-dicritical singular foliation (~ ,E )E~(X ,  E). Put 

(~d,9)=hol((~,E)). Let us fix a point PESing(~d,9) which is a simple singularity for 

(~,E).  

This paragraph is devoted to the description of the convergent and formal separa- 

trices of (~g, O) at P. 

PROPOSITION 5.1. There is a regular system of  parameters (x,y, z) o f  ~x,p such 

that the following properties hold: 

(a) I f  v(~g, 9 ; P ) = l ,  then xy EJe, e and the formal separatrices o f  (~, 9) at P are 

exactly X&x,v and Y&x,v. 

(b) I f  v (~ ,9;P)=2,  then xYZEJE, v and the formal separatrices o f  (~g,9) at P are 

exactly X(~x,e, Y&x,e and Z&x,e. 

Proof. Consider (x, y, z) giving the corresponding normal form (i)-(vii). We have 

obviously (a) and (b), except may be for the fact that the "coordinate" separatrices are 

the only ones. Let Q be a generator of @v like in Proposition 2.5 or in Proposition 4.4. 

Let us distinguish two cases: 

(I) v(~, O ; P ) = I  (i.e., we have one of the normal forms (i), (ii) or (iii)). It is a two- 

dimensional result which follows from Remark 2.3 (d). 

(2) v (~ ,O;P)=2  (i.e., we have one of the normal forms (iv), (v), (vi) or (vii)). 
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Looking at the normal forms, the differential forms 

(5.1) ff21x+Xy=0 , A=4=0, 

(5.2) g21y+~,z= 0, /.t4:0, 

define simple singularities (in dimension two). The only separatrices of (5.1), resp. 

(5.2), are the intersections o fx+2y=0 ,  resp. y+/~z=0, with the irreducible components 

(x=0), (y=0) and (z=0) of E. Ifft~x.e is a formal separatrix of ~ at P, other than the 

coordinate ones, then it must define a "non-coordinate" separatrix either for (5.1) or 

(5.2). Contradiction. [] 

Remark  5.2. The irreducible components of E are convergent separatrices. We 

have at most one remaining separatrix S which is may be a formal one. The following 

pictures illustrate the possible cases. 

(a) v (~ ,O;P)= l .  We have two cases: Figure 13 and Figure 14. 

(5.3) 

S 

Sing 
Fig. 13 

E e(E, P) = 1. 

(5.4) 

E 

/ 
/ 

Sing 
Fig. 14 

E e(E, P) = 2. 
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(b) v(@, ~;P)=2.  We have two cases: Figure 15 and Figure 16. 

(5.5) 

~ Sing E ~ E 

Sing 

Sing 
Fig. 15 

e(E, P) = 2. 

(5.6) 

Sing 
E 

/ 
Sing 

//• E 

p / Sing 

Fig. 16 

e(E, P) = 3. 

The rest of this paragraph is devoted to describe some properties about the 
convergency of the separatrix S in the most complicated case (5.5) that v(~, ~3;P)=2 
and e(E, P)=2. 

PROPOSITION 5.3. Assume that v(~, ~; P)=2 and moreover v(,~, E; P)=0. Then the 

three formal separatrices o f  (~, f3) at P are in fact convergent ones. 

Proof. There is a regular system of parameters (x,y,z) of 6x, e such that ~qe is 
generated by 
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(5.7) Q= xy(a d~Xx + b - ~ + d z ) ;  vp(a, b)~>l 

and E=(xy=0) locally at P. By Proposition 5.1, there is a formal separatrix of the form 

(5.8) f = z - 9 ( x , y ) ,  9 eC[[x,y]]. 

It is enough to prove that 9 actually converges. Without loss of generality we can 

assume that v(9)~>2. Thus, the initial part of f~ is given by 

(5.9) xyz 2 dy + dz . where 2 =  Oa and ~ = - - ( 0 , 0 , 0 ) .  
y z ' Oz 

Let x: X'--->X be the blowing-up with center P. Take a point P' Ex-l(P) given by the 

equations 

(5.10) x=x ' ;  y=x ' ( y '+ l ) ;  z = x ' z  '. 

Let (o~', E')  be the adapted strict transform of (~*, E) by :t, Then ~ 'e '  is generated by 

(5.11) w' = ((1+2+r z '+x '  +b'dy'+dz'. 

Because of the non-dicriticalness of (~, E) we have that 

(5.12) 1 +2+/~ 4= 0. 

By Proposition 4.10, then P'  is also a simple singularity for (~ ' ,E ' ) .  Put ( ~ ' , ~ ) =  

hol((~;',E')). Since v ( ~ ' , G ; P ' ) = I  (note that e(E',P')=I),  then (rg,,Q) is locally a 

product along the singular locus 

(5.13) Sing(Qd ', g3) = (x' = z' = 0), locally at P'. 

Moreover, we also have that 

(5.14) 1 +2+,u $ Q_. 

Consider 

(5.15) fp'(x', y') = cp(x', x'(y' + 1))/x'. 

We know that q)(x, y) converges iff q)'(x', y') do so. Moreover 

(5.16) f '  = z'-q)'(x',  y') 
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is a formal separatrix for (~d',~) at P ' .  Since ( ~ ' , ~ )  is analytically trivial along 

(x '=z '=0) ,  then f '  converges (and hence cp') iff 

t - -  t t t t r (5.17) f ly'=O-z +q~ (x ,0)EC[[x  ,z ]] 

converges. But  z ' -qJ(x ' ,  0) is a separatrix for the differential form 

' ' = z ) ] d x + x d z .  (5.18) (x ~o )ly'=0 [(l+2+/u)z'+x'y.,(x',O, ' ' ' ' 

Now, by (5.12) and (5.14) we can apply Br io t -Bouquet ' s  Theorem (cf. [14], p. 295; 

w 12.6) and hence f '  converges. [] 

Now, let us consider the case v(~3,~;P)=2,  e(E,P)=2 and v(,~,E;P)=I. We know 

that there is a regular system of parameters (x, y, z) of  r e such that 

(5.19) E = (xy = 0), locally at P. 

(5.20) Sing(~d, ~)  = (x = y = 0) O (x = z = 0) U (y = z = 0). 

Moreover, there is a formal separatrix at P given by 

(5.21) f=z+cp(x,y); where q)(x,y)~C[[x,y]]. 

(Note that actually q0 Exy.C[[x,  y]] in view of (5.20).) Let  us write 

(5.22) qg(x, y) = E ai (y) xi= E fl J (x) yj 
i~l 3~1 

where a~ (y) E C[[y]] and flj(x) E C[[x]]. 

PROPOSITION 5.4. Assume that we are in the above situation, then ai(y)EC{y},  

for all i~ l, and fl j(x) E C (x} , for all j>- l. Moreover, there is a value e>0  such that ai(y) 

converges for lyl<e and for all i>~1 and such that flj(x) converges for Ixl<  and for all 

j>~l. 

Proof. Up to a reordering of  x, y we can take a generator 

dx dr (5.23) ~o=a +b +cdz, where vp(a,b,c)= l, 
x y 

of ~p such that Inl(a)=Inl(z). By (4.10) and ( 4 . 1 1 )  in  the proof  of  the Lemma 4 . 1 ,  t h e n f  
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is a separatrix of (~d, ~) at P iff 

(5.24) f divides a + x  acp �9 c = a  1. 
a x  

Actually, we can write 

59 

(5.29) 

Hence 

(5.30) a l ( y )  = A l o ( y ) / A o l ( y )  E C~{y}. 

Computing the coefficient of x i in (5.28), we find that 

(5.31) -A01(y) a l (y)+~ i (al(y), ..., a i_ l ( y ) )  = 0 

where ~iEC~{y} [h, ..., t i -O is a polynomial. Hence, from (5.31) we find inductively 
that 

(5.32) a i ( y ) E C ~ { y } ,  for all i~  > 1. 

dX + b dy  + c d f  (5.25) w =  al x l y 

and if f divides a~ then it also divides bl and it is a separatrix; the converse is true by the 
uniqueness property in Proposition 5.1 (b). Now, let us write 

(5.26) a = E Aik(Y) xizk" 
i,k 

(5.27) c = E Cik(Y) xizk" 
i,k 

Note that A0t(0)= I. Then there is a common ray of convergence e>0 for I/A01(y), Aik(Y) 

and Cik(y) for all i, k. Denote by C~{y} the series having a ray of convergence bigger or 
equal than e. The condition (5.24) is equivalent to the following equality 

(5.28) 

( E )k ( E  / E  ( m~>~j-- am(Y) )k A i ,,, m x m ik(y) x - am(y )  x + m a m ( Y )  X Cik(Y) X i O. 
i,k \ m>~l I \ m ~ l  / i,k 

The explicit computation of the coefficient of x in (5.28) gives to the following equation 

-Aot(y) a l ( Y ) +  A to (y )  = O. 
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This ends the part of the proof concerning the a~(y). Now, let us write 

(5.33) a = 2 A'jk(x) YJz~" 
j,k 

(5.34) c = 2 C'jk(X) YJZk" 
j ,k 

Note that A'0~(0)=l. Then, there is a common ray of convergence e '>0  for 

1/A'ol(X),A'jk(x) and C~k(x), for all j ,  k. We can assume without loss of generality that 

e'=e. The condition (5.24) is equivalent to 

(5.35) 

2 A'jk(X) YJ -- ft,(x) ym + Xfl'm(X) ym C'jk (X) yJ -- tim(X) ym = 0 
j,k j,k 

where/3',.(x) is the derivative of ~m(X). Reasoning as above, we find that 

(5.36) -A'o,(X)~fx)+~t'ift3tfx) ..... i~_,(x),x~',fx) ..... x/3'j_,(x)) = 0 

where ~ )EC~{x} [t I . . . . .  tj_p ~ I . . . . .  %_~] is a polynomial. Hence we find inductively 

that 

(5.37) flj(x)fC~{x}, for all j~> 1. 

This ends the proof of the proposition. [] 

Assume that we are in the preceding situation. Call S=( f=0)  the separatrix at the 

point P given by (5.21). Put 

(5.38) Y~=(x=z=O); Y2=(y=z=O).  

Note that a point Q E Y~ tJ Y2, Q~=P, Q near P, is a simple point for (o~,E) with 

e(E, Q)= 1, and hence with v(cg, ~ ;  Q)= 1. Thus there is exactly one formal separatrix SQ 
of ~g at Q which is different from E. We shall say that Y1 (respectively Y2) supports a 
convergent separatrix if SQ converges for all Q E YI (respectively Q E Y2), Q4=P, Q near 

P. By analytic triviality it is enough to test a single point Q 6 Y~ (resp. Q ~ Y2), Q4=P, Q 
near P. (See Figure 17.) 

PROPOSITtON 5.5. In the above situation, if Y~ (resp. Yz) supports a convergent 
separatrix then S is convergent and hence Y2 (resp. YI) supports a convergent separa- 
trix. 
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/ 

Y 

/ 

/ 

E / 

Fig. 17 

E 

Proof. Take notations as in the proof of Proposition 5.4. Let Q=(0,y0, 0)E 111 be a 

fixed point of Yl with ly01<e. Then 

(5.39) fQ(x, y', Z) = Z+ ~ ai(y' +Yo)X i 
i>~l 

is a formal separatrix of ~ at Q. Hence it is a convergent one. In particular 

(5.40) q0(x, Y0) = ~ ai(Yo) xiE C{x). 
i~>l 

Now, fix 0<O<e. Then for ly0l--o there is a common ray of convergence r>0 such that 

tp(x, Y0) converges for Ixl~<r. Hence we obtain uniform estimates 

(5.41) la,(y0)[ ~< g .  (I/r)', for [Y0[ = O. 

By the Maximum Modulus Principle, we have that 

(5.42) [ai (Y0)l ~< K. (I/r)', for [Y0[ ~< 0. 

This implies that tp(x, y) converges in the polycylinder 

(5.43) Ixl <~ r, lYl <- O. 
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Thus S is convergent. Now, given a point Q=(x0, 0, 0) in Y2, with Ixol<<l, then 

(5.44) fa(x',  y, Z) = Z+ep(x' +Xo, y) 

is a convergent separatrix of ~ at Q. This ends the proof. [] 

Part III. Reduction of the singularities 

w 0. Statement of the results 

Let X be a nonsingular connected analytic space over C of dimX=3. Let E c X  be a 

normal crossings divisor of X and let Z c E  be a compact analytic subspace of E such 

that each irreducible component of Z is also an irreducible component of E. Let us 

consider a non-dicritical (~, E)E ~ (X, E). Put (~, ~)=hol((~,E)) .  Let us assume that 

the following two properties hold 

(0.1) Sing(~, ~) c E. 

(0.2) /~(~,E;{P})~ < 1, for all PEX.  

Our goal in this Part III is to give a proof of the following result: 

THEOREM 0.1. In the above situation, there is an open set X(O)cX, with ZcX(O), 

and a finite sequence of  permissible blowing-ups 

(0.3) X(O) ~<-~I)X(1) :r(2) .~(1) *--... *-- X (N) ,  

such that each point in Sing(qd(N) ', ~) is a simple singularity for (~(N) ,  E(N)), where 

(~ (N) ,E(N) )  E ~ (X(N) ,E (N) )  is the adapted strict transform of  (~lx(0), E NX(0)) by 

:~(1) o... o:r(N) and (~(N) ,  ~)=hol((~:(N), E(N))). 

Let us consider the set of singular points 

singularities 

(0.4) Sing*(~, E; Z) = Z N Sing*(~, E). 

(Recall I, (2.18)). Given a sequence like (0.3), let us denote 

(0.5) Z(N)  = [~r(1) o.. .  o:~(N)]-l(Z). 

We shall do the proof of the Theorem 0. I in two steps: 

over Z which are not pre-simple 
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Step A. The Theorem O. 1 is true under the additional assumption 

(0.6) Sing*(o~, E; Z) = O. 

(That is, all the points in Sing((~, r are in fact  pre-simple singularities.) 

Step B. We can get the property (0.6) after finitely many permissible blowing-ups. 

The proof of Step A will be given by a computation of "killing resonancies" along 

the irreducible components of Sing(Y, ~). For the proof of Step B, most of the technics 

in [7] will remain valid, Hence we shall only give in detail those parts which are either 

different or may be simplified with respect to the general technics in [7]. The rest will 

only be sketched. 

By Theorem 1.1.12, we can get the properties (0.1) and (0.2) after finitely many 

permissible blowing-ups. This result, jointly with Theorem 0.1 above, allows us to state 

the following result of desingularization: 

THEOREM 0.2 (Desingularization Theorem). Let X be a nonsingular connected 

analytic space over C o f  dimX= 3, consider a non-dicritical ( ~, | E ~ (X, ~)  and fix a 

point PEX .  Then there is an open set X(O)cX, with P~X(O), and a finite sequence o f  

permissible blowing-ups 

st(l) a'(2) zt(N) 
(0.7) X(O) <--X(1) ~--- ... <-- X(N)  

such that each point in Sing(~(N),~) is a simple singularity for (~ (N) ,E (N) ) ,  

where (~ (N) ,  E(N)) E ~ (X(N), E(N)) is the adapted transform o f  (o~lx(0), ~)  by 

st(1) o... o st(N) and (Cg(N), f3) =hol((o~(N), E(N))). 

w 1. Proof of Step A 

Assume that S ing*(~ ,E;Z)=~.  Up to consider an open set X(0)cX, we can assume 

without loss of generality that Sing*(ff, E ) = O  and that Sing(fg,~) has only a finite 

number of irreducible components. 

LEMMA 1.1. In the above situation, let Y be an irreducible component o f  

Sing(~q, ~). Then Y has dimension one and it is a permissible center for (~ ,E) .  

Proof. Take a point P E Y. If Y is analytically irreducible at P, then the result 

comes from Corollary II.3.3 and Corollary II.4.6 by a case by case computation in 
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terms of the normal forms. Now, given two analytic branches Y1 and Y2 of Sing(Cg, 0)  at 

P, there is an irreducible component F of E such that YIcF and Y2r Since F is a 

global irreducible component of E, we deduce that Y must be analytically irreducible 

a tP .  [] 

Given an irreducible component Y of Sing(% 0),  define an invariant Inv(,,~, E; Y) 

as follows: 

(1.1) 
Inv(~, E; Y) --- 0, 

Inv(~, E; Y) = p+q, 

if A(ff, E;F;  Y)r 

if A(,~,E;F; Y)=p/qrQ+,  

where F is an irreducible component of E, YcF,  and the rational number p/q is written 

in an irreducible way. The above definition is independent of the component F, with 

F=  Y. Now, put 

(1.2) Inv(~, E) = max{Inv(~, E; Y); Y is an irreducible component of Sing(C~, 0)}. 

(1.3) s(~, E) = # { Y; Inv(,~, E; Y) = Inv(,~, E)}. 

Note that Inv(~,E)<oo. We shall prove Step A by induction on the lexicographical 

invariant (Inv(~, E), s(~:, E)). 

If Inv(~,E)=0,  we are done, since all the points in Sing(C~,O) are necessarily 

simple singularities (see 11.(3.31)-(3.32) and Definition 11.4.8). Hence the following 

result completes the proof of Step A. 

PROPOSITION 1.1. Let Y be an irreducible component o f  Sing(qd, O) such that  

Inv(ff, E; Y)=Inv(~,E)>0.  Let x:X'---~X be the blowing-up with center Y and let 

(J;', E') be the adapted strict transform of  (4, E) by x. Then 

(1.4) (Inv(~' ,  E'), s (~ ' ,  E')) < (Inv(~F, E), s(~, E)) 

(strictly), for the lexicographical ordering. 

Proof. It is enough to show that if Y' is an irreducible component of Sing(~', O) 
with Y'cx-l(Y),  then 

(1.5) I n v ( ~ ' , E ' ;  Y ' )< Inv(~,E; Y). 

Assume that Inv(~:', E ' ;  Y')=p+q>O. This implies that e(E; Y)=I (more precisely, by 
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Proposition 11.2.5, the only possible normal form is (iv)* at a generic point of Y). We 

can distinguish two cases: 

(1) vr(Y')=Y. Taking a generic point PE Y, and working eventually with formal 

coordinates, we have the normal form (iv)* of Proposition 11.2.5. Hence Y= 

(x=y=0), E=(x=0) and S~v is generated by 

(1.6) to=(my+x m) dx -dy; m ~  > 1 and m =  Inv(~,E;  Y). 
x 

After the blowing-up, at the only point P ' E  Sing(Cg ', ~), with ~r(P')=P, then o~'e, is 

generated by 

(1.7) ~o = ((m-1)y'+x 'm-l) x- -dy' .  

Hence Inv(~ ' ,  E ' ;  Y')<~m- l < m = I n v ( ~ ,  E; Y). 

(2) :~(Y')= {P} c Y. Then N(:~, E)e does not contain a non-singular germ of vector 

field. Otherwise, computing as above, we contradict the fact ~(Y')= {P}. In particular, 

necessarily e(E,P)=2 (e(E,P)=3 cannot occur since e(E, Y)=I). If El,E2 are the 

irreducible components of E through P and YcE1, then necessarily 

(1.8) Y' = :r-l(P) :r-l(Y) N (strict transform of E2). 

Hence e(E', Y')=2 and thus Inv(~ ' ,  E ' ;  Y')=0. [] 

w 2. Global strategy in the proof of Step B 

In this paragraph we shall particularize the ideas and results in [5] and [7] for determin- 

ing a global algorithm of reduction. In our case, the role of the Samuel stratum 

Sam(~, E; Z) in [5] and [7] is played by the set Sing*(~, E; Z) defined in (0.4). 

General remark 2.1. In the sequel we shall not consider the kind of properties that 

can be avoided by taking a small enough open set X(O)cX, with Z~-X(O). Also note that 

this remains valid even in an intermediary step X(m) of the sequence (0.3), since if 

~ is an open set with Z(m)c~ by compactness we find an open set 

WcX(O), Zc  W such that 

(2.1) (vr(1) O . . .  o ~ ( m ) )  -1 ( W )  c ~/ .  

Hence, we shall in fact work in terms of germs around Z, but without saying it 
explicitly. 

5-928285 Acta Mathematica 169. Imprim6 le 20 aotat 1992 
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DEFINITION 2.2. Let Y be an irreducible component of  Sing(q3, Q). We say that Y 

is appropriate for (~, E) relatively to Z iff  the following two properties hold: 

(a) YN Sing*(~,E;Z)*Q.  

(b) kt(,~, E; Y)= 1. 

Moreover, i f  dim Y= 1 we shall say that Y is an appropriate curve. We shall denote by 

S*(~ ,E;Z)  the union o f  all the appropriate curves. (Hence an appropriate curve is 

exactly an irreducible component o f  S*(~, E;Z).)  

Remark 2.3. If Y c X  is a permissible center for (~ ,E)  such that YNSing* 

(~,E;Z)~=~, then Y is appropriate for (if, E) relatively to Z. To see this, pick a point 

PE YN Sing*(~, E; Z). Then, we have 

(2.2) 1 = v(~, E; P) ~ Q(~, E: Y, P) =/~(~, E; Y) <./~(~, E; { P } )  = 1 

and we are done. 

LEMMA 2.4. Let Y be a permissible center for ( ~, E). Let ~t: X'--~X be the blowing- 

up with center Y. Let ( ~ ' , E ' )  be the adapted strict transform o f  (~ ,E )  by ~ and put 

Z'=~- l (Z) .  Then 

(2.3) S * ( ~ ' , E ' ; Z ' )  ~- S*(~ ,E;Z) '  O Y' 

where S*(~, E; Z)  is the strict transform o f  the adherence of  S*(~, E; Z ) -  Y by zt and 

Y' is a non singular curve which is contained in the exceptional divisor ~ - l ( y ) .  

Proof. [7], Theorem II. 1.9. [] 

DEFINITION 2.5. We say that S*(~, E;Z)  has weak normal crossings with E iff  the 

following properties hold: 

(a) Each irreducible component o f  S*(~, E; Z)  is nonsingular. 

(b) S * ( ~ , E ; Z ) c E  (this always holds). 

(c) Given a point P EZ, there are at most two irreducible components o f  

S*(~, E; Z)  through P. 

(d) Assume that Y1 and II2 are two irreducible components o f  S* (~ ,E;Z)  and 

P E YI N Y2 N Z. Then Te YI*Te Y2 and there are two irreducible components El and E 2 o f  

E such that YicEi, i= 1,2, but Y2r 

The pictures in Figure 18 illustrate some situations of weak normal crossings. 

THEOREM 2.6. (a) The property that S* (~ ,E;Z)  has weak normal crossings is 

stable under permissible blowing-up. 
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(b) After finitely many permissible blowing-ups centered af points we can assume 

that S*(~;,E;Z) has weak normal crossings with E. 

Proof. (a) Follows from Lemma 2.4. 

(b) It is a consequence of  the standard results on desingularization of  curves and of  

Lemma 2.4. (For more details, see [7], Theorem 11.2.5.) [] 

Hence,  in the sequel we shall assume that the property 

(2.4) "S*(o~, E; Z)  has weak normal crossings with E "  

is satisfied, jointly with the properties (0.1) and (0.2). 
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DEFINITION 2.7. Let k~2 be an integer. A cycle a o f  order k for (~ ,E)  is an 

application 

a: Z/(k)---~ (appropriate curves} x Sing*(~, E; Z) 
(2.5) 

i ~ o(i) = ( Yi,Pi) 

satisfying the following properties: 

(a) Yi* Yj, i f  i=~j. 

(b) PiE Yi I1 Yi+l,for all iEZ/(k). 

Denote by Cyclk(~,E;Z) the set o f  cycles o f  order k. The set of  cycles Cycl(~;,E;Z) is 

defined by 

(2.6) Cycl(~, E; Z) = tJ Cyclk(~, E; Z). 
k>~2 

Remark 2.8. The set of  cycles CycI(~:, E; Z)  is a finite set. 

PROPOSITION 2.9. Let Y be a permissible center for (~,E).  Let :t:X'--~X be the 

blowing-up with center Y. Let ( ~ ' , E ' )  be the adapted strict transform of  (~ ,E)  by :t 

and put Z'=yt-l(Z). Then there is an injective application 

(2.7) ~b: Cycl(~:', E ' ;  Z')--> Cycl(~:, E; Z). 

Hence #Cyc l (~ ' ,  E ' ;  Z')~<#Cycl(~=, E; Z). 

Proof. Any cycle in Cycl(o~' ,E' ;Z')  comes from a cycle in Cycl (~ ,E;Z)  by 

adding eventually the curve Y' of (2.3) instead of the center of :t. (For more details, see 

[7], Proposition 11.3.3.) [] 

As in [7], we shall state an additional assumption, called Hypothesis of Local 

Control, which will allow us to end the proof of Step B. The Hypothesis of Local 

Control is the key of the proof of Step B and we shall devote w 3 to show in a detailed 

way that it always holds. 

HYPOTHESIS OF LOCAL CONTROL. It does not exist an infinite sequence 

(2.8) {X(i), Z(i), E(i), ~;(0, all(O, Y(O, P(i), :t(i+ 1))i~>0 

such that (X(0), Z(0), E(0), ~(0))=(X, Z, E, ~ )  and the following properties hold for all 

i>~0: 

(a) ~ (i) is an open set o f  X(t~, Y(O is a permissible center for (~(i)l~ O, EO~ n ~(i)) 

and P(i) E Y(i) A ~(i) A Sing*(~(i), EO~, Z(i)). 
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(b) at(i+ l):X(i+ l)--->all(i) is centered at Y(i) and (~(i+ l),E(i+ l ) ) is  the adapted 

strict transform o f  (~:(i)l~t0), E(O n 91(i)) by at(i+ 1). 

(c) at(i+ I) (P(i+ 1))=P(i); Z(i+ 1)=at-l(Z(i) n 0//(i)). 

(d) I f  Y(i)= {P(i)}, then there is no appropriate curve o f  (~;(i), E(tg) being permissi- 

ble at P(i). 

(e) I f  Y(O+-(P(i)}, then Y(i) is an appropriate and permissible curve for 

(~:(0l~(0, E(i) n ~ 

Remarks 2.10. (a) Recall that the above statement is made under the assumptions 

(0. I), (0.2) and (2.4). 

(b) The properties (d) and (e) determine what kind of strategy has been followed in 

order to do the local blowing-up at(i+ I). 

(c) The property (e) is redundant in our context, since if Y(O4:{P(i)}, then Y(i) must 

to be a curve, Y(i)9P(i), which is permissible and hence appropriate by Remark 2.2. 

We do not eliminate this property (e) in order to keep the parallelism with the 

corresponding statement in [7], I1.(2). 

TI-IEOREM 2.11. Assume that the Hypothesis o f  Local Control holds. Then, after 

finitely many permissible blowing-ups we may assume that 

(2.9) Cycl(~, E; Z) = 6.  

Proof. By Proposition 2.9, it is enough to destroy a single cycle o. Put 

o(1)=(Y, P), o(2)=(T, Q). Now, blow-up repeatedly with the priorities: 

(I) If Y is permissible, blow-up Y. 

(II) If T is permissible, blow-up T. 

(III) If Y is permissible at P, but not at another point, blow-up this point. 

(IV) If T is permissible at P, but not at another point, blow-up this point. 

(V) Blow-up P. 

Then, looking over P, in the direction pointed by Y, we see that i fo  is not destroyed, we 

can produce a sequence like (2.8). This contradicts the Hypothesis of Local Control. 

(For more details, see [7], Theorem 11.3.5.) [] 

Hence, let us assume in the sequel that (2.9) holds. 

DEFINITION 2.12 (Global criteria of blowing-up). Let Y be a permissible center for 

(~,E).  Let at:X'--->X be the blowing-up with center Y. We say that at follows the global 

criteria o f  blowing-up for ( 3;, E) relatively to Z iff  the choice o f  the center Y satisfies the 

following priorities: 
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(I) I f  there is a point Q E Z-Sing*(o~, E; Z)  and an appropriate curve F which is not 

permissible at Q, then Y= {Q} for one o f  such points Q. 

(II) The case (I) does not occur and there is an appropriate curve F which is 

globally permissible. Then Y=F for one o f  such F. 

(III) The cases (I), (II) do not occur. There is a point PE Sing*(J;,E;Z) such that 

there is exactly one appropriate curve F passing through P. Moreover, F is not 

permissible at P. Then Y= {P} for one o f  such P. 

(IV) The cases (I), (II), (III) do not occur. There is a point P E Sing*(~, E; Z) such 

that there are exactly two appropriate curves Fj and F2 passing through P. Moreover, 

neither Fl nor F2 are permissible at P. Then Y={P} for one o f  such points P. 

(V) The cases (I), (II), (III) and (IV) do not occur. There is a point P E 

Sing*(,~,E;Z) such that no appropriate curve passes through P. Then Y={P} for one 

such point P. 

PROPOSITION 2.13. In the above situation (i.e. under the assumptions (0.1), (0.2), 

(2.4) and (2.9)), if  Sing*(~, E; Z):#C3, then one o f  the cases (I), (II), (III), (IV) or (V) of  

the Definition 2.12 occurs. Hence we can always f ind a blowing-up which follows the 

global criteria o f  blowing-up. 

Proof. Assuming that (I), (II), (III), (IV) and (V) do not occur, we are allowed to 

find a cycle. Contradiction. (For more details, see [7], Proposition 11.4.2.) [] 

Remark 2.14. Note that the blowing-up ~r of the Definition 2.12. always respects the 

local strategy described in the conditions (d) and (e) of the Hypothesis of Local 

Control. 

Now, let us end the proof of Step B under the Hypothesis of Local Control. The 

arguments are the same ones that in [7], 11.(4.2)-(4.5). Thus we shall only sketch them. 

We reason by contradiction, assuming that Step B is not true. Hence we can 

construct an infinite sequence of permissible blowing-ups 

(2.10) 
~r(l) ~r(2) ~r(3) 

fie: X(O) *--X(1) ~-X(2) ~- . . .  

such that each zffi) respects the global strategy of blowing-up. Note also that the 

properties (0. I), (0.2), (2.4), (2.9) and the fact Sing*($:,E;Z)4=~ are satisfied in each 

intermediary step of the sequence 5e. 

Now, looking at the centers in fie which are points in Sing*(~,E;Z),  we can 

construct a tree, called "tree of bad points", see [7], Definition 11.4.3, Remark II.4.4. 
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This tree has an ordering induced by the blowing-ups :r(0 and moreover, the horizontal 

levels are finite sets. (See Figure 19.) 

Note that it is not possible to blow-up curves in r for all the indexes i>>0. In fact, 

if this is possible, we contradict the Hypothesis of Local Control by looking at a point 

in a curve which has been modified infinitely many times. Hence we always blow-up a 

point in Sing*(~, E; Z) after finitely many steps (the situation (I) in Definition 2.12 only 

repeats finitely many times). This implies that the tree of "bad points" above is in fact 

an infinite tree. Since the horizontal levels are finite sets, we can find in it an infinite 

"branch". This branch provides an infinite sequence of points which satisfies the 

conditions of the Hypothesis of Local Control (see Remark 2.14). This is the desired 

contradiction. 

w 3. Local control 

This paragraph is devoted to prove the Hypothesis of Local Control stated in the 

preceding w 2. Hence to the end of the proof of Step B. 

Like in the preceding paragraph, we shall follow the ideas in [7]. But in this case we 

shall find sligth differences and big simplications with respect to the cases treated in [7], 

III. The main difference is that we cannot replace the set Sing*(~, E; Z) by the sligthly 

bigger set 

(3.1) Sam(~,E;Z)  = {PEZ;/a(~,  E; {P})= 1, v(~,E;P)= 1) 

as in [7] for the case "adapted multiplicity bigger or equal than two".  Note that there 

are simple singularities with/~(~, E; {P}) = 1, v(~, E; P) = 1, e(E, P) = 1,2, which cannot 
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be destroyed by permissible blowing-ups. In fact the Local Control is achieved in [7] by 

means of a characteristic polygon (inspired in Hironaka's characteristic polyhedra) 

which appears to be empty for the points of Sam(~,E;Z)  which are pre-simple 

singularities. Hence we lose the Local Control. But for the points in Sing*(o~, E; Z) we 

still have a characteristic polygon which permits the Local Control. In this case our 

argument is contained in the general argument of [7], III, but it is a simpler one. That is 

why we do it in a detailed way. 

We shall reason by contradiction, assuming that the Hypothesis of Local Control 

does not hold. Thus, let us f ix a sequence 

(3.2) (X(i), Z(i), E(i), J;(i), ~ Y(i), P(i), re(i+ 1)},~o 

satisfying the properties (a), (b), (c), (d) and (e) of the Hypothesis of Local Control 

stated in the previous paragraph. Also recall that we assume the properties (0.1), (0.2) 

and (2.4) in the step i=0 of (3.2) and hence in all the steps. In order to simplify notation, 

put 

(3.3) e(i) = e(E(i),P(i)), for all i~>0. 

THEOREM 3.1. The Hypothesis o f  Local Control holds except eventually in the 

case: 

(3.4) 
dim Dir(,~, E; P) = 2 and Dir(~,E;P)  = TeF 

for a certain irreducible component F of  E. 

Proof. If e(0)= 1, then dim Dir(~, E; P)=2 and if (3.4) does not hold then P is a pre- 

simple singularity. Hence e(0)~>2. Consider the following cases: 

Case I. e(0)=3 and Dir(:~, E; P) does not contain the tangent space of the intersec- 

tion of two irreducible components of E, for any two irreducible components of E. If we 

draw E and the directrix, this case corresponds to one of the schematic situations of  

Figure 20. 

The fact that Y(0) is permissible and appropriate implies that 

(3.5) Te Y(O) c Dir(~, E; P) 

(see [5], Theorem 4 (i)). Since Y(0) has normal crossings with E and e(0)=3 then Y(0) is 

contained in the intersection of two irreducible components of E. Hence Y(0)= {P}. 
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Also by [5], Theorem 4 (ii), we may assume that 

(3.6) dim Dir(~, E; P) I> 1. 

Take a regular system of parameters (x,y, z) of ~x,e such that E=(xyz=0) locally at P. 

Consider a generator o~ of ~e, 

(3.7) ~o=adX +b dY +c dz, ve(a,b,c)=l.  
x y z 

Put A=In~(a),B=In~(b), C=In~(c). Assume without loss of generality that a regular 

system of parameters (x', y', z') in ~Tx(1),m ) is given by 

(3.8) x=x';  y = ( y ' + ~ ) x ' ;  z=(z'+~)x '. 

Now, consider first the case dim Dir(~, E; P)= 1. Then 

(3.9) Dir(~ ,E;P)=(Y-~(=Z-~X=O)  (X=In~(x), Y=Inl(y),Z=Inl(z)). 

In particular (r ~)~=(0, 0). Assume that ~ 0 .  Note that 

A=ep(Y-~X,Z-~X),  B = ~ ( Y - ~ X , Z - ~ X )  and C=rl(Y-~X,Z-~X).  

By the non-dicriticalness, we have that 

(3.10) A +B+C = ~(Y-~,X, Z-~X)  ~: O. 

If ~:I:0, then o%(1)m) is generated by 

5, (3.11) co' =(~(y',z')+x'(...)) +b'dy'+c'dz'. 

Thus P(1) is a pre-simple point since the directrix (~(Y', Z')+X'( . . . )=0)  is transversal 

to the exceptional divisor x' =0, only component of E(1) at P(1). If ~=0, then o~(1)e(1) is 
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_•_ dr' og' =(d~(y',z')+x'(...)) +(V/(y',z')+x'(...)) y, +c'dz'. 

First of all, let us show that the following condition does not occur 

(3.13) dp(y',z ')=2y',  2 * 0 ;  y2(y',z')=kty'. 

Assume that (3.13) occurs. Then 

(3.14) A = a l Y + f l ( y - ~ x ) ;  B=a2Y;  C = a 3 Y - f l ( Y - ~ X ) ,  where al+aE+a34=O. 

The integrability condition co A dto=0 implies that 

( aC) + B ( _ x O C  + z a A ] + c ( _ y a A  +xaB'~ (3.15) A - Z  aB + Y az ar  \ ax a z /  \ aY - ~ / = o .  

Looking at the coefficient of  X Y  in (3 .15) ,  we find that 

(3.16) (al +aE+a3) ~ = 0. 

Contradiction. Hence (3.13) does not occur. This implies that 

(3 .17)  D i r ( , ~ ( 1 ) ,  E(1) ;  P (1 ) )  ~b T~)(x' = y '  = 0) = (In~(x ') = In~(y  ') = 0).  

Thus, we can write 

_, dx' _ ,_, dy' 
(3.18) oJ= a -~-7--rv _~, +c'dz'; veo)(a',b') = 1, ve(l)(C')>~ 1, 

Y 

where 

(3.19) A' = Inl(a ') = Z'+cp'(X', Y') (X'=Inl(x'), Y' = Inl(y'),  Z '  = Inl(z')). 

Put B'=In~(b'). Then the integrability condition o9' Ado)'=0 implies that B'=2A'. Thus 

P(1) is a pre-simple singularity. Contradiction. 

Assume now that dimDir(~,  E;P)= 2. Then 

(3.20) Dir(~, E; P) = (Z+2X+,u Y = O) 

where 2*0*bt.  Note that A+B+C=e(Z+AX+I~Y)*O. If  e(1)=l ,  we can reason as in 

(3.12) and if e(1)=2 we find directly the condition (3.17) and we reason as above. The 

case e(1)=3 does not occur since by [5], Theorem 4(ii), we have 
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(3.21) ~+2+bt~ = 0, 

which has not the solution (r ~)=(0, 0). This ends the proof of Case I. 

Case II. e(0)=3 and Dir(~, E;P) contains the tangent space of the intersection of 

two irreducible components of E. If we draw E and the directrix, this case corresponds 

to one of the schematic situations of Figure 2 I. 

Consider first the case dim Y(0)= 1. By [5], Theorem 4 (ii), necessarily 

(3.22) 

Thus, put 

(3.23) 

dim Dir(o~, E; P) = 2. 

Dir(~,E;P)=(Z-~X=O), ~=0. 

Then Y(O)=(x=z=O) by [5], Theorem 4(i). By [51, Theorem 4(ii), a regular system of 

parameters (x',y', z') of 6x(1),e(1 ) is given by 

(3.24) x=x' ;  y=y';  z=(z'+~)x '. 

We have that A=X(Z-~X),B=~(Z-~X),  C = Q(Z-~X), with 2+/~+Q=~0. Then ~(l)e0~ 

is generated by 

(3.25) ~0' = ((2+~) z'+rp' +6uz'+~O' +c'dz', 
x" y 

where rp', ~ 'E (y', X')l~x(1),e(1 ). Thus we have (3.17) and P(1) is a pre-simple point. 

Consider the case Y(0)= {P}. Assume first that dim Dir(o~, E; P)= 1. Put 

(3.26) Dir(o ~, E;P) = (g-- Z = 0). 

We have that A=rp(u B=~0(Y,Z), C=rI(Y,Z). A regular system of parameters 
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(x', y', z') of (~X(1),P(1) is given by 

(3.27) x = x'; 

Then o~(1)e(l ) is generated by 

y = y ' x ' ;  z = z ' x  '. 

. . . . .  ) )dx '  ~o - (d~(y ,  z ) + x  (...  x' +(V/(y' ,  Z')+x'(...)) +(r/(y', z')+x'(...)) dz__~' 
Z' 

(3.28) 
= a, dX' + b , dY' + c, dZ' 

x '  y '  Z' 

where ~=q0+V/+~/. Assume first that 

(3.29) (d#( y ' ,  Z '), V/( Y' ,  Z '), rl( Y ' ,  Z ') ) :~ (A ', B ' ,  C ') 

where A'=In~(a ' ) ,  etc. In this case we are in one of the situations of the case I above, 

hence we are done. Otherwise, we repeat the same situation. But this situation cannot 

be repeated indefinitely, since this would imply that the curve (y=z=0) is appropriate 

and permissible at the point P (see the stationary sequences in Proposition I. 1.10) in 

contradiction with the condition (d) of the Hypothesis of Local Control. 

Now, consider the case Y(0)= {P} and dim Dir(o%, E; P)=2. Thus, put 

(3.30) Di r (~ ,E ;P)=  ( Z - ~ Y = O ) ,  ~ #:0. 

If e(1)=2, we find the condition (3.17) and hence P(1) is a pre-simple point. Thus, 

necessarily e(1)--3 and hence we have equations like (3.27). Then o~(1)p(1) is generated 

by 

(3.31) ~o' = Q . ( z ' -~y ' )+x ' ( . . . ) )  x +(~u(z ' -~y ' )+x ' ( . . . ) )  + ( O ( z ' - ~ y ' ) + x ' ( . . . ) )  z'  

with (2,~, 0)~(0, 0, 0). We see thus that either we repeat the situation or we are in one 

of the previous cases. But an argument as above says that the situation cannot be 

repeated indefinitely. This ends the proof of Case II. 

Note that there are no more possibilities with e(0)=3. 

Case III. e(0)=2. If we draw E and the directrix, this case corresponds to one of 

the schematic situations of Figure 22. 

Choose a regular system of parameters (x, y, z) of ~x, e such that E= (xy=0) locally 

at P. If dim Dir(:~, E; P)=2, then 

(3.32) Dir(~, E; P) = (Y-~X = 0), ~*  0. 
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With computations as above, we see that if e(1)=3, then the condition (3.4) does not 

hold. Hence we are done. If e(1)=l (only possibility), we find a pre-simple point. If 

dim Dir(ff, E; P)= 1 and (3.17) holds, then we are done. Hence the only possibility is 

(3.33) Dir(~, E;P) = Of = Y= 0). 

Now, necessarily Y(0)= (P} and e(1)=3. Moreover dim Dir(~(1), E(1); p(1))~< 1 and thus 

the condition (3.4) does not hold, hence we are done. This ends the proof of the 

theorem. [] 

Thus, in view of the theorem above, we shall assume in the sequel that the 

condition (3.4) holds at each step of the sequence (3.2). 

LEMMA 3.2. e(i)>~2 for each i~ l .  

Proof. It is enough to prove that e(1)>~2. By the condition (3.4) and by [5], 

Theorem 4 (ii), we see that P(1) is both in the exceptional divisor of ~r(1) and in the strict 

transform of the irreducible component F of E. Hence e(1)~>2. [] 

Hence, in the sequel we shall assume that e(i)>~2, for all i~>0, without loss of 

generality. 

DEFINITION 3.3. A regular system o f  parameters (x,y,z)  o f  (7x, e is said to be 

"prepared" iff the following properties hold: 

(3.34) (xz = O) ~ E c (xyz = 0), locally at P. 

(3.35) Dir(~, E;P) = (Inl(z) = 0). 

(A prepared regular system o f  parameters always exists.) 
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Given an element f E  ~x,e such that ve(f)>~l and a regular system of parameters 

(x,y,z) of ~x,t,, let us define the characteristic polygon Al( f ;x ,y;z)  (see [5] and [7]). 

Let  us write 

(3.36) f =  ~ fhuXhyiz j= ~ fhioXhyi-k Z(...). 
h,i,j h,i 

We define the characteristic polygon Al(f ;x ,  y; z) by 

(3.37) Al(f ;x ,  y; z) = [[{(h, i);J~,.0 :~ 0}]] c R 2, 

where [[...]] means the positive convex hull. That is, if TcR02 (where 1%= {t E R; t>~0}) 

then 

(3.38) 

Fix a prepared 

generator w of ~ ,  

[IT]] = convex hull of T+R02 c 1% 2. 

regular system of parameters (x, y, z) of ~Tx, p and consider a 

dx dz 
(3.39) w = a +b dy+c , if e(0) = 2. 

x Z 

dx dy dz 
(3.40) 09 = a +b +c  , if e(0) = 3. 

x y z 

DEFImTION 3.4. In the abooe situation, the characteristic polygon 

A(~*,E;P;x,y;z) = A 

is defined to be 

(3.41) A=[[A~(a;x,y;z)UAl(yb;x,y;z)UAl(c;x,y;z)]],  if e(O)=2, 

(3.42) A = [[A~(a;x,y;z) tJAl(b;x,y;z)]], if e(O) = 3. 

Remarks 3.5. (a) A = A ( ~ , E ; P ; x , y : z )  does not depend on the particular choice 

of w. 

(b) A * ~ .  Since otherwise z divides a, b, c. 

(c) The vertices of A have entire coordinates. 

(d) If (u~, 02)E A, then o1+o2>1. Otherwise we contradict either (3.35) or the fact 

ve(b)>-l. 

(e) Ac{(u,  v); u~>l) iff (y=z=0)  is appropriate and permissible at P. 

(f) Ac{(u,  o); o/>1} iff (y=z=0)  is appropriate and permissible at P. 
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Let (a, fl) be the vertex of A which has lowest abcisse a. We shall call it the main 

vertex o f  A. Our argument will be based upon the controll of (a, fl). 

THEOREM 3.6. Fix a prepared regular system of  parameters (x, y, z) o f  (Tx, e. Let 

(a, fl) be the main vertex o f  the characteristic polygon 

(3.43) A = A(~, E; P; x, y; z). 

Assume also that the following situation does not occur 

(3.44) e(0)--3 and e(1)--2. 

Then, there is a prepared regular system of  parameters (x', y', z') o f  Gxo),e(1)such that if  

(a', fl') is the main vertex o f  the characteristic polygon 

A ' =  A(~(1),E(1);P(1);x', y';z') (3.45) 

then we have that 

(3.46) fl' ~ fl. 

Moreover, we have strict inequality in (3.46) unless eventually in the following cases: 

(A) Y(O)=(x=z=O). 

(B) Y(0)={P(0)}, P(1)$ strict transform of  (x=O) and (x'=0) is a local equation o f  
21~(1) -1  (P(0)). 

Proof. Assume first that II(0)= {P(0)). Then, by (3.35), a regular system of parame- 

ters (x', y', z') of 6x,),e(~) is given by one of the following equations: 

(3.47) T - I , ~ :  x = x ' ;  y = ( y ' + ~ ) x ' ;  z = z ' x  '. 

(3.48) T-2:  x = x ' y ' ;  y = y ' ;  z=z ' y  '. 

Note that if r then e(0)=2, since (3.44) does not occur. In this case, a coordinate 

change 

(3.49) y~ = y -  ~x 

does not modify the main vertex (a,fl) of A and hence we can assume that ~=0 without 

loss of generality. 

Note that the condition (3.34) of Definition 3.3 holds trivially for (x',y',z').  

Moreover, if (3.35) does not hold for (x', y', z'), then we are in the cases studied in 

Theorem 3.1, i.e. the condition (3.4) does not hold. Hence (x', y', z') is prepared. 
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Now, we see that 

(3.50) 

(3.51) 
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A' = [[al(A)]], if T - l , 0 .  

A ' =  [[a2(A)]], if T -2  

where oi, i= 1,2, are the affine mappings given by 

(3.52) ol(u, v) = ( u + v -  I, v) 

(3.53) o2(u, v) = (u, u+v-1 ) .  

Note that ct<l (actually a=0)  since otherwise (x=z=0) would be an appropriate and 

permissible curve at P, in contradiction with condition (d) of the Hypothesis of Local 

Control. Thus, in the case T-2 ,  we have that 

(3.54) fl' = a + f l - 1  <ft.  

If T-1 ,0 ,  since the polygon moves horizontally, we have that 

(3.55) fl' ~<fl. 

Note that this case corresponds to the case (B) in the statement. 

Assume now that Y(0) has dimension one. By [5], Theorem 4 (i), we have that 

(3.56) Te Y(O) c Dir(~, E; P) = (Inl(z) = 0). 

Since Y(0) has normal crossings with E and (z=0) is an irreducible component of E, 

then 

(3.57) 

We have two possibilities: 

(3.58) 

(3.59) 

Assume first that 

Y(O) c (z  = 0) .  

Y(O) = (x  = z = o) .  

Y(0) is transversal to (x = 0). 

Y(O)=(x=z=O). Then, by (3.35)and [5], Theorem 4(ii), a regular 

system of parameters (x', y', z') of ~X(l),P(1) is given by the equation 

(3.60) T-3:  x - - x ' ;  y = y ' ;  z = x ' z  '. 

The condition (3.34) of Definition 3.3 holds trivially for (x', y', z'). Also (3.35) holds as 
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above. Hence (x', y', z') is prepared. Also, we have that 

(3.61) A' = [[cr3(A)] ] 

where 

(3.62) o3(u, v) = ( u -  1, v). 

In particular, we have that 

(3.63) (a',/5') = ( a -  1,/5). 

Note that we are in the case (A) of the statement. Note also that this situation does not 

occur indefinitely, since a cannot drop indefinitely. Assume now that Y(0) is transversal 

to (x=0). If  e(0)=3, then Y(O)=(y=z=O), since Y(0) has normal crossings with E. In the 

case e(0)=2, then 

(3.64) 

But the coordinate change 

(3.65) Yl = Y+ Z ~ixi  
i>.l 

does not modify neither the fact that (x, y~, z) is prepared nor the main vertex of  the 

characteristic polygon. Hence,  we may assume that 

(3.66) Y(0) = (y = z = 0). 

Then, a regular system of parameters (x', y', z') of 6x~l),P.) is given by 

(3.67) T-4 :  x=x ' ;  y=y ' ;  z = y ' z  '. 

We see as above that (x ' ,y ' ,z ' )  is prepared and 

(3.68) A ' =  [[cr4(A)]], 

where 

(3.69) ~r4(u, v) = (u, v -  1). 

Hence 

(3.70) fl' = f l -  l<fl .  

This ends the proof. [] 

6-928285 Acta Mathematica 169. Irnprim6 le 20 ao0t 1992 
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COROLLARY 3.7. I f  the situation 

(3.71) e(0 -- 3, e(i+ 1) = 2 

occurs only for finitely many indexes i~O, then the Hypothesis of  Local Control holds. 

Proof. We can assume without loss of generality that (3.71) does not occur at all. 

In this case, the preceding proof shows us how to choose a prepared regular system of 

parameters (x(i), y(i), z(i)) at each step i>~0, and hence an invariant fl(i), for each i~>0. 

Also we can assume without loss of  generality that 

(3.72) fl(i)=fl(O) fora l l  i~>0. 

(3.73) e(i) = e(0) for all i~>0. 

Now, up to an eventual coordinate change 

(3.74) y(0) ~ y(0)+ ~ ~i (x(0)); 
i~>l 

which does not modify our argument, and in view of the conditions (A) and (B) of the 

preceding theorem we can assume without loss of generality that 

(3.75) P(i) E strict transform of (y(0) = z(0) = 0). 

This implies, in particular, that we never do the coordinate change of (3.49). Hence,  for 

the characteristic polygons A(i), i~>0, we have that 

(3.76) A(i) = [[o~( 0 o. . .  o a~(0(A(0))]] 

where e(1)= 1 or 3 (notations as in the previous proof). Assume that A(0) has a vertex 

(7(0), 6(0)) with 

(3.77) 6(0) < 1 (hence 6(0) = 0). 

Then, the corresponding vertex (7(i), 6(0) in A(i) is given by 

(3.78) (7( i ) ,6(0)=(7(0)- i ,0) ,  i~>0 

in view of (3.76). This is a contradiction, since 7(0) cannot drop indefinitely. Thus, we 

have 

(3.79) A(0) c {(u, v);v>~ 1) 
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and this implies that (y(0)=z(0)=0) is appropriate and permissible at P(0). Now, since 

the transformation T-3  does not repeat indefinitely, we may assume without loss of 

generality that Y(0)= {P(0)}. But this contradicts the property (d) of the Hypothesis of 

Local Control. [] 

Now, in order to end the proof of the Hypothesis of Local Control, we shall prove 

that the situation (3.7.1) occurs in fact only finitely many times. 

Take a prepared regular system of parameters (x, y, z) of t?x,e. Let (a, fl) be the 

main vertex of A = A ( ~ , E ; P ; x , y ; z )  and let to be a generator of ~e 

(3.80) t o = a  dx + b d y + c  dz ,  if e(0)=2.  
X Z 

(3.81) t o=a  dX +b dY +c dz ,  if e(0)=3.  
x y z 

Let us write 

(3.82) 

(3.83) 

(3.84) 

Thus, we have that 

(3.85) q9 = 2 l x ~ y # + ~ ' ;  

where: 

(3.86) 

(3.87) 

a = q~(x, y ) + z ( . . . ) .  

yb = W(x, y)+z(. . .) ,  if e(0) = 2; b = W(x, y)+z(.. .) ,  if e(0) = 3. 

c = ~(x, y)+z(.. .).  

= 2 2xay~+W'; Q = 23xay~+Q ' 

q~', ~ ' ,  Q' E (xay ~+ l , x a+l) C[[x, y]]. 

(21,22, 23) :~= (0, 0, 0). 

DEFINITION 3.8. In the above situation, we say that the main vertex (ct,fl) of  A is 

non-resonant i f f  one o f  the following conditions is satisfied: 

(a) 23*0. 

(b) 23 = 0, p21 + q22 �9 0 for  all p, q E N +. 

LEMMA 3.9. Assume that the condition (3.44) does not hold and that we are in the 

situation o f  Theorem 3.6. Let  (x', y ' ,  z') be obtained from (x, y, z) as in the proof  o f  

Theorem 3.6. Assume also that we have 
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(3.88) (a' , f l ' )=oi(a, fl), i= 1,2,3 o r 4  

/f:r(1) is given respectively by (T -  1, O, T-2 ,  T-3  or T-4 .  Then the main vertex ( a', fl') 

o f  A l is non resonant if  the main vertex (a,fl) of  A is non-resonant. 

Proof. The coordinate changes Y'-->Yl in the proof of Theorem 3.6 do not modify the 

values (2bAE,;t3). Hence we can assume without loss of generality that :r(1) is given 

either by (T- l ,0 ) ,  or by T-2 ,  or by T-3 ,  or by T-4.  In particular monomials are 

transformed into monomials. The condition in (3.88) implies that the monomials who 

contribute to (a', fl') are exactly the transformed monomials of the ones who contribut- 

ed to (a, fl). Hence, the corresponding values (A'I, 2'2, )~'3) a r e  given exactly by: 

(2'~, 2' 2, A' 3) = (2~ +22+23, '~2, A3), 

(~'  I' )~'2' ~'3) = (~1' AI "['/~2-['A3 ' A3)' 
(3.89) 

(~ ' l ' )~ '2 '  ~'3) = (~'1 "Jt'~3' ~2' ~3), 

(2'p 2'2, ;t'3) = (~l, 22+23,23), 

Now the proof is straigthforward. 

THEOREM 3.10. The situation 

(3.90) e(0 --- 3, 

if T - l , 0 .  

if T-2.  

if T-3.  

if T-4.  

[] 

e(i+ l) = 2 

occurs only for finitely many indexes i~O. Hence the Hypothesis o f  Local Control 

always holds. 

Proof. Assume that e(0)=3, e(1)=2. Fix a prepared regular system of parameters 

(x,y,z) of ~x.e. Since e(1)=2, necessarily Y(0)={P} (actually if (3.4) holds and 

dim Y(0)=l, then e(1)=3 by [5], Theorem 400; now, looking at the proof of Theorem 

3. I, we see that u A regular system of parameters (x', y', z') of (~x(1),m) is 

given by 

(3.91) T - l , ~ :  x = x ' ,  y = ( y ' + O x " ,  z=z 'x ' ;  ~ 0 .  

Moreover, the non-dicriticalness of (~ ,E)  shows easily that (x' ,y ' ,z ')  is prepared 

(recall that (3.4) always holds). Hence, we have (in view of Theorem 3.6 and the 

above argument) a procedure to choose a prepared regular system of parameters 

(x(0,y(i), z(i)) at each step i~0, even if (3.90) holds. Hence, we have an invariant fl(iO for 

each i>~0, where (a(i),fl(i)) is the main vertex of the corresponding characteristic 

polygon A(i). 
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Now, let us reason by contradiction, assuming that (3.90) holds infinitely many 

times. Also, in order to simplify notations, assume now that e(0)=2 and e(1)--3. 

Given an index i~>0, put 

(3.92) i_ = max{ j  ~> 0;j<~ i, e ( j )  = 2}. 

(3.93) i+ = min{j  t> 0; j > i, e ( j )  = 2}. 

Both i_ and i+ are well-defined and they are finite numbers.  Also note that 

(3.94) i_ < i+ and (i+)_ = i+. 

Assume that the following statements are true: 

(3.95) f l ( i + - l ) + l  ~>fl(i+), for all i~>0. 

(3.96) If  f l ( i+-  1)+ 1 = fl(i+), then the vertex (a(i+), fl(i+)) is non-resonant. 

(3.97) If  ( a ( i + -  1), f l( i+- I)) is non-resonant,  then fl(i+- 1) t> fl(i+). 

Let  us show that we find then a contradiction. If  i+=i_+ 1, then 

(3.98) fl(i_) >I fl(i+) 

by Theorem 3.6. If  i+>i_+1,  t h e n  

(3.99) fl(i_) = fl(i_ + 1) + I >t fl(i+ - 1) + 1 >t fl(i+) 

by Theorem 3.6, Remark 3.5 (c) and (3.95). In any case, we have that 

(3. I00) fl(i_) >t fl(i+). 

Now, by (3.94) it is enough to show that given M~>0 there is i>~M such that in (3.100) we 

have strict inequality. Fix an index i~>0, and assume without loss of  generality that 

e(/)=3, e ( i+ l )=2 .  Assume also that 

(3. I01) fl(i_) = fl(i+). 

This implies that 

(3.102) fl(i_) = fl(i_ + I) + 1 >t fl(i+ - 1 ) + 1 >I fl(i+) = fl(i_). 

Hence,  by (3.96) the vertex (a(i+),fl(i§ is non-resonant. Now, let j = m a x { h > ~ i §  
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e(h) = 2). We have that 

(3.103) fl(i+) >I fl(i+ + 1)/>... >~ f l(j) .  

If one of the inequalities in (3. I03) is strict, we are done. Hence, we can assume that 

(3. I04) fl(i+) = fl(i+ + 1) = . . .  = fl(j~. 

In particular, the condition (3.88) of Lemma 3.9 holds. This implies that (a ( j ) , f l ( j ) )  is 

non-resonant. Note that j - - j_ .  We have that 

(3.105) f l ( j_)  -- f l ( j_ + 1)+ 1 ~> f l ( j_ +2)+ 1 I>... >~fl(j+- 1)+ 1. 

If one of the inequalities in (3.105) is strict, we are done by (3.95). Otherwise, the 

condition (3.88) of Lemma 3.9 holds and thus ( a ( j + - l ) , f l ( j + - l ) )  is non-resonant. 

Hence, by (3.97) we have that 

(3.106) f l ( j_)  >I f l( j+)+ 1 

and we are done. 

Now it suffices to prove the statements (3.95), (3.96) and (3.97). Let us simplify 

notations as in the beginning of this proof. Assume now that 

(3.107) e(0) = 3, e(1) = 2 

and put (x,y,z)=(x(O),y(O),z(O)), (x ' ,y ' , z ' )=(x(1) ,y (1) , z (1) ) ,  A=(0), A'=A(1), (a,fl)= 

(a(0),fl(0)), (a ' , f l ' )=(a(1) , f l (1 ) ) .  Note that ( x ' , y ' , z ' )  is given by ( T - I ,  ~), ~4:0, like in 

(3.91). Consider a generator to of ,~e 

(3.108) to = a dx +b  dy +c  dz 
x y z 

Put 

(3.109) a = c p ( x , y ) + z ( . . . ) ;  b = w ( x , y ) + z ( . . . ) ;  c = Q ( x , y ) + z ( . . . ) . "  

Note that (a, fl)=(0, fl) (otherwise (x=z=0) is appropriate and permissible at P). Hence 

(3.110) q0=Rly/~+tp'; ~p=22y/~+~'; Q=R3y:+Q; where cp ' , v / ' ,Q 'E(y:+~,x)  

and (~1, A2,~3)4=(0, 0, 0). Now put 
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y* = y--~X; (9(X, y) = q~(X, y)+~p(X, y)+p(X, y) = E ~)hiXhyi; 

, h , i  @*(x,Y*)=dd(x,y*+~x)= E ~b hi x (Y ); 

V/*(x, y*) = ~O(x, y* +~x) = E ~l)*hixh(y*)i' 

~(x, y) = E ~PhiXhyi; 

p(x, y) = E Phixhyi; 

Q*(x, y*) = Q(x, y* +~x) = E Q*hiXh(y*)i" 

A n  easy computation shows that 

(3.112) A = [[{(h, 0; (~)hi, ~)hi, Phi) dt= (0, 0, 0)}]] 

(3.113) A'=[[{(h+l--l,i);(dP*hi, P*hi)*(O,O)}tJ((h+i--l,i+l);~P*hi~:O}]]. 

Now, put 

(3.114) 8 = min{h+i; (dPhi, ~Phi, Phi) * O, 0, 0)}. 

We obviously have that 

(3.115) 8 = min{h+i; (~)*hi, ~-)*hi, P'hi) :# (0, O, 0)) .  

From (3.111) and (3.113), we deduce that 

(3.116) a' = 6-1 .  

Note that b~<fl. Assume first that 6<ft. Hence, for a certain t~>l we have that 

(3.117) (q~*t. (~-o, ~*t, (~-,), P't, (6-o) 4: (0, 0, 0) 

(note that if t=0, we contradict (3.110)). But (3.113), jointly with (3.117) implies that 

(3.118) (6-1,  8 - t +  l) E A'. 

Hence fl'<.6-t+l<.6<fl and (3.97) (and afortiori (3.95), (3.96)) holds. 

Hence, let us assume that 0=ft. If 23=1=0 or 21+22+23:~0, we find that 

(~*o~, q'o8) * (o, o) (3.119) 

and hence 

(3.120) 

87 

( ~ - l , ~ ) ~ A ' .  

This implies, jointly with (3.91), that fl'~<fl. But the above holds if (a, fl) is non- 
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resonant, hence (3.97) (and afortiori  (3.95) and (3.96)) holds. Assume that 23=0 and 

that 2t+22=0 (this is a resonant case, hence (3.97) always holds). Then, in particular 

).2~=0 and by (3.113) we see that 

(3.121) ( f l -  I,/3+ I) E A'. 

This implies that/3'<-../3+ 1. Hence (3.95) holds. Assume now that/3' =/3+ 1 (only case for 

(3.96)). By (3.113), this implies that 

(3.122) (~*h;, 0*hi) 4= (0, 0), h+i =/3 implies that i>~/3+ 1. 

(3.123) ~O*hi:#O,h+i=/3 implies that i>~/3. 

Hence, the only possibility is that 

~*  = 0 "X/~-Iy/~+1 +(~b*)' 

(3.124) y~0* = ,,].2xa-ly ~+1 +(~0")' 

0* = 0"x~-lY~+l+(Q*) ', 

where 

(3.125) (~O*)', 0P*)', (0*)' E (x~-~y t~+2, x'). 

Note that ~:(1)~ o is generated by 

(3.I26) 

to=(Cp*(x',y')+z'(...)) +(~+y')-l(vd*(x',y')+z'(...))dy'+(O*(x',y')+z'(...)) dz---~' 
Z' 

Now, (3.126)jointly with (3.124) show that the corresponding values 0-'l, 2'2, 2'3) in this 

case are 

(3.127) (2'1,/~'2,/~'3) = (0, 1,0). 

Hence the main vertex (/3-1,/3+ l) is non-resonant. This proves (3.96) and the proof is 

ended. [] 

Part IV. Existence of separatrices 

w 1. Existence of a convergent separatrix 

Let X be a nonsingular connected analytic space over C of dim X= 3. Fix a point P E X 

and a non-dicritical (~, 9 )E ~(X, 9). This paragraph is devoted to the proof of the 

following result: 
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THEOREM 1.I. The singular foliation (~,f~) has a convergent separatrix S at the 

point P. 

First of all, let us fix a sequence of desingularization 

(1.1) 
~(1) . .  ~t(2) :t(N) 

x(o)  ~ x ( ~ )  <- . . .  <- X ( N )  

as given in the Desingularization Theorem of Part III. In particular, let us recall that: 

(a) X(O)cX is an open set with P fiX(0). 

(13) For each i, O<~i<~N: 

(b l) Let (~(i),E(i))fi  ~(X(i),E(i)) be the adapted strict transform of (~[x(0), 0)  

under the composition ar(1)o.., o ar(i). 

(b2) Put (~3(i), 0 )  = hol((,~(i), E(i))). 

(b3) Z(/)=(ar(1) o... oar(i)) -1 (p). 

(Note that Z(i)cE(i) and each irreducible component of Z(/) is also an irreducible 

component of E(i).) 

(c) Each point Q fi Sing(~(N), | is a simple singularity for (~(N) ,  E(N)). 

Note that if we replace X(0) by any open set X'(0) with PfiX'(O)cX(O), we obtain 

also a sequence of desingularization like (1.1). 

LEMMA 1.2 (Up to make X(0) smaller). There is a closed analytic curve FcX(0) 

with P fi F which is irreducible at P such that: 

(a) Fr  0). 

(b) F is an invariant analytic space for (~, 0).  

Proof. By the Transversality Theorem in [18], VI.2, there is a germ AcX(0) of a 

non-singular analytic surface at P, such that the restriction ~la has an isolated 

singularity at P. Hence (~la, O)fi ~(A, 0). In particular no curve in A is contained in 

Sing(~;, 0). The main theorem in [4] implies that there is an invariant curve F of ~la 

passing through P. Obviously F is also an invariant curve for (~-, 0). [] 

Now, fix a curve F as in the preceding Lemma 1.2. Denote by F(/) the strict 

transform of F by ar(1)o ... oar(t), for O<~i<.N. Let P(i) be the only point in E(i)N F(i). 

(Note that P(i)fiZ(i).) Moreover P(i)E Sing(C~(i),O), since otherwise the only leaf of 

(q3(0, O) locally at P(t3 is the divisor E(i) and this contradicts the fact that F(i)r is 

contained in a leaf. 

LEMMA 1.3. We can assume without loss o f  generality that the two following 
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Fig. 23 

E(N) 

properties are satisfied: 

(a) F(N) is non-singular and has normal crossing with E(N). 

(b) e(E(N), P(N))= 1. 

Proof. By standard results on desingularization of curves we may blow-up the 

point P(N) finitely many times in order to have the property (a). Note that 

P(N) E Sing(~(N), ~)  permissible center for (~(N) ,  E(N)). Now, (b) is a consequence 

of (a) and the fact that e(F(N), E(N))=0. [] 

Let us consider the analytic subset of X(N) defined by 

(1.2) T =  O{irreducible components Y of Sing(Cg(N), ~)  with e(E(N), Y) = 1}. 

Recall that each irreducible component Y of Sing(Cg(N), O) is a non-singular curve and 

e(E(N), Y)~>I and moreover it has normal crossings with E(N) (Part II). 

Let us show that T = ~ .  Looking at the point P(N) we have that 

(1.3) e(E(N), P(N)) = 1. 

This implies that there is a unique irreducible component Y0 of Sing(Cg(N), O) such that 

P(N) E Yo and necessarily e(E(N), Y0) = 1. (See Figure 23.) 

Now, let us consider the decomposition of T into connected components 

(1.6) T=  ToU T, U... U %, 

and let us assume that T0 is the connected component of T which contains Yo. 

LEMMA 1.4. For each point QE To there is an open set ~IcX(N), QE ql, and an 

element fE  F(~ 6x(N)) such that the following properties hold: 

(a) (f=O)=is an irreductible hypersurface of ell. 

(b) (f=O)nE(N)n ~ =Won ~. 
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Fig. 24 

(c) For each Q'E ~0N 0//, then the germ o f f  at Q' gives the only separatrix of 

(~(N), f~) at Q' which is not an irreducible component of E(N). 

(d) For each point R ~Z(N)-~ then there is an open set W~X(N), W9R, such 

that Wn ( f=0 )=~ .  

Proof. Let us consider the set 

(1.7) Y(= {Q E ~0; we can find f and q/satisfying (a)-(d)}. 

Obviously ~ c ~ 0  is an open set of ~0. Let us show now that ~ i s  a closed set of 7/'0. Let 

~ c ~ 0  be the closure of ~.  Pick a point Q E ( 9 - ~ .  We have two possibilities: 

(a) e(E(N), Q)= 1. 

(b) e(E(N), Q)=2. 

In the first case, there is exactly one irreducible component Y of Sing(~(N), | such 

that QE Y. In fact Yc~0. (See Figure 24.) 

If there is no convergent separatrix at Q, it is the same for the points Q' ~ Y, Q' 

near Q, in view of the local analytic triviality along Y proved in Part II. This contradicts 

the fact Q E (9. Hence, there is a convergent separatrix at Q. The local triviality allows 

us to find easily 0//, f with the properties (a)-(d). Hence Q E Y(. Contradiction. 

Assume now that e(E(N), Q)=2. Then there are exactly two irreducible compo- 

nents Yi and II2 of ~ such that QE Y~ N Y2. In fact }11, Y2c~r0. (See Figure 25.) 

Yz 

I I 

E(N) 

Fig. 25 
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Up to change the order, for Q' E Y~ arbitrarily near of Q, we have Q' E ~. Hence, 

by Proposition II.5.5, we know that the only formal separatrix at Q is in fact a 

convergent one. This allows us to find without difficulty q/, f with the properties 

(a)-(d). Contradiction. 

Hence ~ = ~ .  Moreover, consider the analytic local triviality at P(N)  along Y0. 

Since F(N) is contained in a separatrix, we deduce that this separatrix is in fact a 

convergent one. This implies that P(N)  E ~.  By connectedness we find that ~ =  To. [] 

COROLLARY 1.5. There is an irreductible hypersurface S ( N ) c X ( N ) ,  S ( N ) r  

which is an invariant variety for  ((g(N), ~). 

Proof. Given QE W0, let (~ be the data of Lemma 1.4. Up to make X(0) 

smaller, there is a finite number of points Q~ ..... Qk such that 

( 1 . 8 )  ~ 0 C: llJi= I ..... k allQi �9 

Given R E Z(N)-~ denote by WR, i the corresponding data in Lemma 1.4 to the point 

Qj, i= l . . . . .  k. Put 

(1.9) W R= Ni= l ..... kWR, i. 

By compactness of Z(N), we can cover Z(N)  by a finite number of open sets WR and 

~R. In particular, up to make X(0) smaller, we may assume that 

(1.1o) X ( N )  ~ (URW R) U (Ui= 1 ..... K ~ �9 

Now, let us define S(N)  by 

(1.11) 

(1.12) 

S ( N )  n ~oi  = (foi = O) 

S ( N )  n wR = ~3. 

Note that (1.12) does not contradict (1.11). Also, by the uniqueness of the separatrices 

we see that 

(1.13) (fQ/= 0)  ['1 ~l  ai [7 all Qj = ( f Qi = O) [q all Qi [3 ~ 

and hence S(N)  is a well defined closed hypersurface of X(N) .  Obviously S(N)  is non- 

singular. Since ~ 0 is connected and 

(1.14) S(N)  BE(N) = ~0 
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then S(N) is connected. Hence S(N) is irreducible. Moreover since S(N) is an invariant 

variety at P(N), then S(N) is invariant at each point. [] 

Now, in the above situation, let us put 

(1.15) S = (:t(1) o...  o :r(N)) (S(N)) = X(O). 

By the Proper Mapping Theorem and the fact S(N)r we see that S is an 

irreducible hypersurface of X(0), with P E S. Looking at a point Q in S-Sing(~,  | we 

see that S is an invariant variety. This ends the proof of the Theorem I. 1. 

w 2. Formal separatrices 

Let us fix a sequence of desingularization (1.1) like in the previous paragraph. Now, 

consider a point Q E ~, where ~ is defined as in (1.2). We know that there is exactly 

one (formal or convergent) separatrix S o of (~q(N), ~) at Q, such that SQ is not an 

irreducible component of E(N). We have two possibilities: 

(I) (E(N), Q)=I,  and hence ~ is given locally at Q by a non singular curve 

contained in E(N). 

(II) (E(N), Q)=2, and hence 0//is given locally at Q by two non singular curves 

having normal crossings with E(N). 

Moreover 

(2.1) SQNE(N) = ~/, formally at Q. 

(See Figure 26.) 

The arguments in the preceding paragraph show that if S O is convergent, then the 
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connected component o-//j of q/which contains Q determines a convergent separatrix Sj 

of (~, ~) at the point PEX(0). 

Conversely, let S be a convergent separatrix of (~, ~) at the point P EX(O) and 

consider the strict transform S(N)cX(N).  Note that 

(2.2) S(N) N E(N) 

is connected. Pick a point Q E S(N) N E(N). Then Q E ~//and 

(2.3) S(N) = S o, locally at Q. 

Thus S(N) is the invariant variety of (~(N),  ~) which has been constructed from the 

component 9/j=S(N)N E(N) of q/. Hence we have a bijection: 

r connected components 1 
[convergent separatrices ] / ~J of ~ such that S Q is [ .  

(2.4) 1_ of(ff ,  O) a t P  J ~ i_convergentforaQEa//j_ ] 

In this paragraph we shall extend the above bijection to the formal separatrices. More 

precisely, we shall prove the following result: 

THEOREM 2.1. There is a bijection 

~formalorconvergent] ~connectedcomponents] 
(2.5) [separatrices of  (~ ,~)  ~ I_ of ~ J 

k at P 

such that each separatrix S of (~, ~) at P corresponds to S(N)N E(N), where S(N) is 
the strict transform of S under zr(1)o ... o~r(N). 

Note that, with our definition of simple singularities, the formal separatrices are 

"disjoint" after desingularization, in the sense that two of them never have a common 

formal curve. Note also that if S is a formal separatrix of (~, 0), then we can do the 

correspondence 

(2.6) S ~ S(N) N E(N) 

exactly as in the convergent case. Hence, the only remaining problem is to show that 

the map of (2.5) is a surjective map. In other words, we have to show that the formal 

separatrices SQ "glue" along a connected component of o-//in such a way that they 

project to a formal separatrix at P EX(0). The nature of the formal coordinates defining 

S o, which was investigated in Part II, will make us able to do that. 
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Let us,express our results in terms of  the theory of  formal analytic spaces (cf. [2]). 

At each step i~>0 of the sequence (1.1), put 

(2.7) ,('(i) = formal completion of X(i) along Z(i). 

This means that A'(i) is a locally ringed space (Z(i), G~(,~), whose structural sheaf is 

ex(,  
(2.8) ~?.~(o = lim - -  

- - -  (~z(~),~ 

where ~z(o is the sheaf of ideals defining Z(i)cX(i). The sequence of morphisms in (1.1) 

gives rise to a sequence of  morphisms of  formal analytic spaces 

.,r ~(2) 
(2.9) ,~'(0) +- )((1) ~ ... ~+--m,('(N). 

DEFINITION 2.2. Given an index i>>-O, an irreducible hypersurface ~ of  X(i) is a 

coherent sheaf o f  ideals ~ c  ~Tx.(i ) such that: 

(a) ~ is locally free of  rank one. 

(b) For each point P E Z(i) then Xap=f~Tx(i),e and f is an irreducible element o f  the 

formal completion ~27(0,e of ~7X(i),e along its maximal ideal. 

(c) The support Supp(~7~(i)/~) is connected. 

Remarks 2.3. (a) The above definition is not a standard one. Actually, for this 

special sequence (1.1), the conditions (b) and (c) of  the above definition are equivalent 

to say that there is no decomposition ~g= ~ ~2. 

(b) In the case i=0, we have Z(0)= {P). Hence 

( 2 . 1 0 ) ) ( ( 0 )  = ({P}, (TX(0)) 

and r is the formal completion of r along its maximal ideal. In particular, if 

(x, y, z) is a regular system of parameters of 6x(o),e, then 

(2.11) r e = C[[x, y, z]]. 

Hence, any irreducible hypersurface of ,Y(0) is given by an irreducible formal power 

series f E  C[[x, y, z]]. 

(c) For  each point Q E Z(i), we have that 

(2.12) ex(o, Q c C:t(,~, Q c ~r = ~x(o,Q" 

(d) Each irreducible hypersurface S(i) of X(O produces in an evident way an 
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irreducible hypersurface S(i) of  ~'(0. To see this, note that 

(2.13) S(0) = :r(1) o. . .  o :r(i) (S(i)) 

is an irreducible hypersurface of  X(0) (except if S(i) is an irreducible component  of  

E(i)), hence it is given by an irreducible convergent series fE  ~Tx~o),e, and t h e n f E  Ox~0),e 

is also an irreducible formal power series. Now, S(i) is the strict transform of S(0); this 

allows us to verify the properties (b) and (c) of  Definition 2.2. In the case that S(i) is an 

irreducible component  of  E(i), we see directly that S(i) is an irreducible hypersurface of  

LEMMA 2.4. Fix an index i, O<~i<-N - 1, and let us consider an irreducible hypersur- 

face Y( o f  f((i) which is not an irreducible component o f  E(i). Let FcE(i+ 1) be the 

exceptional divisor o f  :r(i+ 1) and let ~ be the corresponding irreducible hypersurface 

in f((i+ 1). Then, there is a unique irreducible hypersurface ~ '  o f  f((i+ 1) and an integer 

v>~O such that 

(2.14) ffLa~(i+ 1 )=  ((~F)v ~') 6~,(i+1 ). 

Moreover ~ '  is not an irreducible component of  E(i+ l). 

Proof. The hypersurface ~ '  is locally given by the strict transform of the formal 

power series generating locally ~ .  The details are straightforward. [] 

DEFImTION 2.5. In the above situation ~ '  will be called the strict transform of  ~( 

by Yr(i+ 1). 

PROPOSITION 2.6. Fix an index i, O<~i<<-N-1, and let us consider an irreducible 

hypersurface ~ o f  ~((i) which is not an irreducible component of  E(i). Let ~ '  be the 

strict transform of  ~ by ~(i+ 1). Then, the following conditions are equivalent: 

(i) There is a point QE S u p p ( ~ 0 J ~ )  such that ~Q=f~O),Q, where f gives a formal 

separatrix of  (~(/), Q)=hol (~( / ) ,  E(i)) at the point Q. 

(ii) For each point Q E S u p p ( ~ < j ~ )  then ~Q=f~O),Q, where f gives a formal 

separatrix of  (~3(/), Q ) = h o l ( ~ ( 0 ,  E(i)) at the point Q. 

(iii) There is a point Q'E Supp(t~<i+l)/~') such that ~f'Q'=f'(~c<i+l),Q', where f '  

gives a formal separatrix o f  (~(i+ 1), ~)  at the point Q'. 

Proof. (i)<~(ii). One sees that (i) gives an open and closed property.  

(i)<:~(iii). Take Q 'E  :r-I(Q). Now, we can compute in terms of  formal equations and 

formal strict transforms. [] 
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LEMMA 2.7. Let #l~Cn be a Stein open set and consider 

( 2 . 1 5 )  Z = ( I - I  xi= O) O O~ 
\ iEC 

where xl . . . . .  x,  are the coordinates in C". Let q) be the formal completion o f  all along Z 

and let ~ be an irreducible hypersurface in ~. Then all is generated by a single global 
section. 

Proof. Let 5~z be the ideal defining Z. Consider 

(2.16) ~(,~) _ Yg+(5~z)" ~ 0~ _ ~?~z 
(~Z) m (,~Z)m (~Z)m 

Now, standard arguments over Stein spaces show that ~(") is generated by a single 

global section o tin). If m'>m,  then o ~"') induces in Y((") a generating global section 

(o~")) ' . Now, up to multiply o ;"') by a unit in the global sections of 0~, we can assume 

that 

(2.17) (otto)) ' = dm). 

Thus, o~m)~o, where o is a generating global section of ~.  [] 

The following result is analogous to Chow's Theorem in Analytic Geometry. In the 

Appendix we shall give a direct proof of it. 

THEOREM 2.8�9 Let us fix an index i,O<.i<.N-1, and an irreducible hypersurface 

~(i+1) of  X(i+l) which is not an irreducible component o f  E(i+l). Then there is a 

unique irreducible hypersurface ~(i) o f  f((i) such that ~( i+ 1) is the strict transform o f  

~(i) by fr(i+ 1). 

Now, we can end the proof of Theorem 2.1 as follows. In Part II we have seen that 

the formal separatrices are given at the simple singularities by elements in the local 

rings of X'(N) (see Proposition 11.5.4 and the description in the proof above of the local 

sections). Chose a connected component ~- of ~. Thus, repeating the arguments of 

Lernma 1.4 and Corollary 1.5 in this context we have an irreducible hypersurface 

S(N)cf ( (N)  whose support is ZN q/j, such that ~q(N) is a formal separatrix at each 

point�9 By Theorem 2.8, then ~{(N) is the strict transform of an irreducible hypersurface 

~q(0)c~(0) which, by the Proposition 2.6, gives the desired formal separatdx at the 

point P. [] 

7-928285 Acta Mathematica 169, Imprim~ le 20 aoflt 1992 
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Appendix: Proof of Theorem IV.(2.8) 

In order to simplify notation, let us put 

X = X(i), f (  = f((i), Z = Z(i), Y = Y(i), E = E(i), z~ = z~(i), :~ = re(i). 

X '  = X(i+ 1), X = X(i+ 1), Z '  = Z(i+ 1), E '  = E(i+ 1), ~ '  = ~((i+ 1). 

A standard argument allows us to glue together the local solutions in X and hence we 

can restrict ourselves to the following case: 

x =  {% ..... x.) ~c";  IXiL < l} = c". 

E = ( ~ l ~ a X ' = 0 ) ;  Z=(Hx'=O)'\iec / f o r s o m e  C ~ A  

Y = ( x i = O ; i E B ) ,  f o r s o m e  B e { 1  . . . . .  n}. 

We can give a description of  the blowing-up z~: X ' - - . X  as follows 

X ' =  t.J ~;. 
iEB 

a//i= {(y,("J . . . . .  y,(0)E C"; ly)')l < 1 if j =  i o r j ~ B } .  

yS~ i f j ~ B - { i } ;  y ) ~  i, i f j E B - { i } .  

In particular, the ~i  are Stein spaces.  Note  that 

where 

C ' i = C U { i } , i f e i t h e r B N C 4 ~ o r C = O ;  C '~=C,  i f B N C = ~ a n d C ~ .  

(The case C = O  corresponds to the first step in the sequence (1.1); note that in this case 

B={1 . . . . .  n}.) 

On the other hand, we know that for a fixed a, b EB, a:#b, the following morphisms 

are bijective 

and also 

(h . l )  

r(x, e~)-~ r(x ' ,  e~,)-~ r (% u % ~,) 

r(z, o~)--, r(z ' ,  a~,)~ r (% u %, 6~,). 
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Now, since the r are Stein spaces, by the preceding lemma, there is a section 

r ( % n z ' ,  

which generates ~ '  in ~  In view of (A.1), it is enough to show that we can choose 

a unit uaEF(ClanZ '  , t?~,)* and an integer t~>0 such that 

(Xo)' Uafa 

extends to a section in F((~ O ~ b ) N Z ' ,  ~Tk,)*. But note that 

fb=fau~b; u o ~ e r ( % n  % n z ' ,  c~,)*. 

Assume that the following property is true: 

There is an integer t >I 0 and two elements u~ E F(~ N Z ' ,  ~7~,)* and 
(A.2) 

L/b ~ F ( %  N Z ' ,  t3,,)* such that Uab = (yb(a)) - t  t/a(//b )-1.  

Then, we are done, since (A.2) implies that 

(A.3) (Xb) t Ubf b ----- (X~) t u~f~ 

and thus (x~y uaf~ extends to a section in I'((a//~ U ~b)NZ',  ~Tk,). 

It remains to prove (A.2). First of all, let us give a description of the rings of 

sections that we need. Given i E B  and jE  C',, put 

wj(i) = {(yl(i) . . . . .  yn(i) ~ o~i; yj(O = O} c C n 

and consider it as a set in C ~-1 with coordinates ys (i), s=t:=j. Let us denote by (7(WJ '~) the 

ring of holomorphic functions defined in Wj (~ Then, we have that 

(A.4) r ( % n z ' ,  ex,) = n e(wj% 
j~C' i 

where the intersection is taken inside the formal power series ring 

C[[ y,('), ..., yJ0]]. 

Let us consider the two indices a, b. Then 

a//~ n % n Z '  = u Wjb(~), 
jEC'a-{b } 
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where Wjb (~)= Wj (a)- { yb ~") =0} C Wj (~). Let us denote by ~(Wjb c")) the ring of holomorphic 

functions defined in Wjb (a). Note that each element in r is defined by a Laurent 

series and thus 

(~(Wjb (a)) = C [ [ Y l  (a) . . . . .  Yj_l (a), yj+l (a) . . . . .  yn(a); (yb(a))-l]]. 

Then, we have that 

(A.5) r ( % n  % n z ' ,  e~,) = n e(wjr a)) [[ yj(aq], 
j~c'.-{b) 

where the intersection is taken inside the ring 

C [ [ y l  (a) . . . . .  yn(a); (yb(a))-']]. 

Moreover, the units in (A.4) and (A.5) are given by 

r(%nz' ,  e~,)*= n [(G(WjtO)[[yj(O]]) *] 
jEC'~ 

r ( %  n % n z ' ,  %)*  = n [(e(wj~ ~~ [[yj~~ 
je c',- (b} 

Now, given an index j E C 'a -{b) ,  let us write 

s~>O 

Moreover, since U,b is a unit, necessarily 

~0 ("~J~ E ~7(Wjb(~)) *. 

In particular, it defines a function 

(A.6) /~0(abJ~: Wjb(")--* C* = C -  {0}. 

Note that the fundamental group of Wjb (") is Z. Hence (1.6) defines a map Z - , Z .  Let - t  

be the image of 1 under this map. Then 

,tlo(abJ)( y b(a))t 

defines the zero map between fundamental groups. Thus, we have a lifting 
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/ 

Wjb(a) i 

C 
vo(abj) 1 "~ 1 I 

/ / : e x p  

> C* 
uo(abj)(y b(a))t 

i .e.,  there is an element Vo (abJ9 E ~(Wjb (a)) such that 

fido(abj) ( y b(a))t -~ e x p( v o(abj)). (A.7) 

Now, let us write 

V abj E (abj) (a) s = v s ( Y j )  
s~>0 

and let us consider the equation 

(A.8) ll ab(Yb(a)) t ~- e x p (  Yab j ).  

In view of (A.7), by identifying indeterminate coefficients in (yj:~)Y we see that (A.8) 

has a unique solution Vabj and 

(A.9) 

Now, put 

i/ab j ~ e ( Wjb(a)) [[y)a)]]. 

R b  (a) = N W (a) jb 
jEC'a-{b ) 

and denote by go (abJ~ the restriction of p0 (~bJ~ to Rb (a). Note that 

~.0 (abJ~ = ~lO (abj'), for all j , j '  E C ' a - { b  } . 

Put ~(ab)=~(~bj9 for some j E C'~- {b} .  Then, we have that 

~.~(ab)( y b(a))t = e xp (  vo(abj)), 

where v0 Cabj) means the restriction of vo (~bJ~ to Rb (~). Thus, up to modify in a trivial way 

Vo (~bJg, we may assume that 

VO (ab) ~- VO (abj) = VO (abj'), f o r  a l l  j , j '  E C ' a - { b  } .  
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Hence 

(A. 10) 

F. C A N O  A N D  D.  CERVEAU 

~io(ab)(yb(a))t = exp(v0(ab)). 

But (A.8) is also obtained in a unique way from (A. 10) by identifying coefficients. This 

shows that 

(A.11) 1.'abj= l/abj,, for all j , j '  E C ' a - { b  }. 

Put Vab=Vabj, then by (A.9) and (A.I1) we have that 

Vab EF(  ~ ~ , )  

and hence 

exp(vab) E F( O~ a D O~ b ~ Z ' ,  ~f~,)*. 

Now, writing Yah as a Laurent series in yb ~) and since yb~)=(yb~)) -1, we can decompose 

]lab ~ ('D a--O')b~ 

where 

(Da ~ r (  ~ ~f(,) ", O.)b ~ r (  O~b[')Z ', '~fs 

Put 

u a = exp(~%) E F( ~ N Z ' ,  t78,)*; u b = exp(tOb) E F( 6~ b N Z ' ,  (~,)*. 

Thus, we have that 

Uab(Yb(a)) t-~ Ua(Ub )-l . 

The fact that t~>0 follows easily from the identification (A.3). This ends the proof. 
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