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w Introduction 

The purpose of this paper is to give a proof of Connes' announcement on approximate- 

ly inner automorphisms and centrally trivial automorphisms of an injective factor of 

type III for the first time, and to provide a classification, up to cocycle conjugacy, of 

actions of a discrete abelian or finite group on the unique injective factor of type III1, 

which completes the final step of classification of actions of such groups on injective 

factors. 

The study of automorphism groups has been a powerful method for understanding 

the structure of von Neumann algebras. Connes magnificently developed this approach 

in [4, 6, 7, 8]. Jones [15] and Ocneanu [18] followed the line of Connes [4, 6] and 

completed the classification of discrete amenable group actions on the unique approxi- 

mately finite dimensional (AFD) factor of type II1. Their work also provides useful 

tools for the case of type III. Sutherland-Takesaki [20] gave a classification of discrete 

amenable group actions on AFD factors of type III~, 0~<2<I. Through their and 

Ocneanu's work, importance of two special classes of automorphisms became clear. 

The classes are the approximately inner automorphisms Int(d~) and the centrally trivial 

automorphisms Cnt(~t) of a factor v~. Connes [5] announced a characterization of these 

classes for AFD factors of type III, but the proof has been unavailable for more than 

ten years since then, though this result was used in Lemma 2(a) of Connes [8], which 

together with Haagerup [ 13] established the uniqueness of AFD factors of type 1111, and 

also in the above-mentioned paper [20]. The characterization, announced in Connes [5, 

section 3.8] without proof, is as follows. (See [11] and [4] for notations.) 
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THEOREM 1. For AFD factors  tilt o f  type III, we have: 

(i) Ker(mod)=Int(d~); 

(ii) An automorphism a o f  ~ is centrally trivial i f  and only i f  a is o f  the f o rm  

a=Ad(u).O~, where 0~, is an extended modular automorphism for  a dominant  weight cp 

on d~, c is a O-cocycle on ~ and u E ~ 

We give a complete proof of this characterization in w 3. The centrally trivial 

automorphisms are also related to pointwise inner automorphism of Haagerup-StCrmer 

[14]. 

In the classification of discrete amenable group actions on AFD factors of type III 

in [20], the case of type 1111 was left open. Here we now classify actions of discrete 

abelian groups and finite groups on the AFD factor of type 1111. Thus the classification 

of actions of discrete abelian or finite groups is complete, and this will be enough to 

accomplish classification of compact abelian group actions on AFD factors in Kawahi- 

gashi-Takesaki [17] along the lines of Jones-Takesaki [16] and Suthedand-Takesaki 

[20]. 
For the proof of Connes' announcement, we make use of the discrete decomposi- 

tion and stability of the automorphism O in it for the III0 and III~ (0<2< 1) cases. For the 

type III1 case, we will show that the algebra of strongly central sequences at a free 

ultrafilter is a factor, and will use Araki's property L~ [1]. For the cases of type III0 and 

IIIl, we need several preparatory lemmas, so we spend the first two sections w 1 and w 2 

for these, respectively. The main idea for the type IIIx (0~2<1) case is reducing the 

problem to the type II| case by using a discrete decomposition after an appropriate 

inner perturbation of a given automorphism. For the type III1 case, we split out an 

automorphism of an AFD factor of type IIIi (0<2< 1) after inner perturbation. In w 3, 

we complete the proof of Theorem 1. The proof is divided into three cases: type III0, 

III~ (0<2< 1), and IIIl. In w 4, we give a classification result for discrete abelian groups. 

The invariants in the case of type III~ are exactly the same as in Sutherland-Takesaki 

[20], and, are complete. After applying Theorem 1, we can reduce the problem to a 

theorem of Ocneanu, [18]. 

The basic references are Connes [5], Connes-Takesaki [11], and Sutherland-Take- 

saki [20]. We use notations and results from these freely. 

This work was started when the first and third named authors stayed at the Mittag- 

Leffler Institute, continued while they stayed at Institut des Hautes t~tudes Scienti- 

fiques and all the three stayed at the Mittag-Leffler Institute, and completed when the 

third named author visited Japan. We are grateful to these institutes for their hospital- 
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and an A. R. C. Grant, and the third by the Mittag-Leffier Institute, I.H.E.S.,  N.S.F. 
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w 1. Preliminaries on automorphisms of AFD factors of type III0 

Here we prepare technical lemmas for AFD factors of type III0. In the Lemmas 2, 3, 4, 

5, and 6, we will show some inner perturbation of a given automorphism of an AFD 

factor of type III0 has a special property, which makes our later task easier. 

LEMMA 2. I f  an automorphism a o f  an AFD factor ill o f  type III0 belongs to 

Ker(mod) then there exists a fai thful  lacunary weight ~p with infinite multiplicity on d/t 

and a unitary u E all(~t) with the fol lowing properties: 

(1) In the discrete decomposit ion ~ t = ~ M 0 Z ,  we have Ad(u) . al% =id; 

(2)/Pl~," Ad(u).a---~plm; 

(3) A d ( u ) . a ( U ) = U ,  where U is the unitary implementing 0 in the decomposi- 

tion (1). 

Proof. By [11, p. 555], we can achieve (1) and (2). We replace a by Ad(u).a. Now 

for any x E cr we get 

a(U) U*x = a(U)O-l(x) U* = a(UO-l(x)) U* = a(xU) U* = xa(U)  U*, 

thus by the relative commutant theorem [11, Corollary 1.2.10], a ( U ) U * E ~  v. By 

stability of 0, [ 11, p. 544], there exists a unitary o E ~t~ with a(U)  U* = v* 0(o) = v* Uv U*. 

Now Ad(v).a satisfies the desired properties. Q.E.D. 

LEMMA 3. Le t  JR, 0 be as in L e m m a  2, and set N= J/t r and choose a free ultrafilter 

to on N. Then for  any n ~N,  and any countable subset (xj)je N o f  N~, there exists a 

partition o f  unity (Fk)k= 1 . . . . .  n in ~r such that each Fk commutes  with all xj and such that 

Oo~(Fk)=Fk+ 1, k= 1 . . . . .  n, where Fn+l=Fl . 

Proof. Because 0 on qg~0 is ergodic, we can apply the proof of Lemma 2.1.4 in 

Connes [4] by using the usual Rohlin Lemma instead of Theorem 1.2.5 in [4]. Because 

(~)~=~(2(~), we are done. Q.E.D. 



108 Y. KAWAHIGASHI, C. E. SUTHERLAND AND M. TAKESAKI 

LEMMA 4. Let dr, A c, O, to be as in Lemma 3. Then for any unitary u ENos, there is a 

unitary v E Ar~ such that O~(v)=uo. 

Proof. The proof of Theorem 2.1.3 in [4] works with our Lemma 3 instead of 

Lemma 2.1.4 in [4]. Q.E.D. 

For the proof of Theorem l(ii) for the AFD factors of type III0, we would like to 

perturb a given automorphism a by a unitary so that the centralizer is globally fixed 

by a. 

LEMMA 5. / f  ~ is a lacunary weight with infinite multiplicity on ~t and a is an 

automorphism o f  ~ ,  then there exists a projection e E ~ and a partial isometry u such 

that 

(1) u*u=a(e) and uu*=e; 

(2) ua(.~,e)u*= ~l~,e. 

Proof. Let 6>0 be such that 

[ -6 ,  6] n Sp(o ~) = {0}. 

Let V3=~. a - l @ ~  on ~| Choose a non-zero element 

.~ = x |  n E d,tr c+6/3], 

the Arveson spectral subspace for ~ for some c E R. For every a E ~ ,  we have 

xax*| = .~(a| E ~ .  _~[-26/3, 26/3]| 

By the choise of 6, we have 

so that 

a_~[-26/3,26/3] = ~ a- 

x~t~x* c ~ a_~; 

x*JRW. _I x ~ ~ .  

Let x=uh be the polar decomposition. Then we have hEdtv,  u*u=fEelt v and uu*= 

gE ~0. _~, and that 

uau*E~v,.c_~, aE~,p. 
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Since we may replace x by x|  1 and ~p by ~0| o n  ur we may assume that f 

(resp. g) is properly infinite in ~ (resp. ~/// . _,). Letf(resp.  ~) be the central support of 

f i n  d/v (resp. g in J//o.a_l). T h e n f ~ f i n  ~ and g ~  in ~v, a_l. Therefore, there exists a 

partial isometry v E ~ (resp. w E ~ . _ ~ )  such that 

vv* = f and v*v = f ; 

w*w = g and ww* = ~. 

Let U=wuv. Then we have U*U=f, UU*=$ and U(d~r, / )U*=~.  a_ ,~. Since ~ _1= 

a(~r) ,  $ is of the form ~=a(e),  e E Proj(qgr). We now want to compare e and f in ~ 

under the Hopf equivalence given by the ergodic automorphism 0 on qgw, where 0 is the 

automorphism of ~ such that 

~t = d~>~o z .  

Let p=q denote the Hopf equivalence of p, q E Proj(~u,). Decompose e=e~ +e2+... + 

en+en+ ~ in such a way that 

e , = f  and en+ I = f '  ~<f, f '  EProj(~v,). 

Since at/v is properly infinite, there exists a partition: 

?=f,+A+...+L+fn., 

such that f~ f i ,  l<.i<~n, and f~+l~f'  in ~0.  The Hopf equivalence ei=f  implies the 

existence of partial isometries vi such that v*vi=e i and viv*= f and v i ~ w v * c ~ t  ~. 

Putting these things together, we get a partial isometry V such that 

V*V = e, VV* = f ,  V ~  w V* = ~l~.]. 

Thus, we come to the situation that 

UV~w. ~ V 'U* = a(~/~0,~) = ~o. _,,~. Q.E.D. 

LEMMA 6. In the context o f  Lemma 5, there exists a lacunary weight ~ with 

infinite multiplicity and a unitary U E ~ such that A d ( U ) . a ( ~ ) = ~ f .  

Proof. By Lemma 5, there exists a partial isometry u such that 

uu* = e E Proj(~0), u*u = a(e), 

ua( . /~ ,  e) U* = 4 ,  e. 
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Let v be an isometry of ~ with e=vv*. Set 

r = V.,(vxv*), xE 

U = v*ua(v) E ~(.1,~). 

Then we have Ad(U).a(Alr162 Q.E.D. 

We must deal with strongly central sequences for the study of centrally trivial 

automorphisms. The next lemma reduces the study for factors of type IIIa, ~,+ 1, to 

semifinite algebras. 

LEMMA 7. Let  d/=2r Z be the discrete decomposit ion o f  a factor  ~t o f  type 1114, 

0<~A<I. Every strongly central sequence {x,} in ~ is equivalent to a strongly central 

sequence {y,} in Jr with O(y,)-y,--*O *-strongly. 

Proof. Let ~0 be a faithful normal state on M and {x,} a strongly central sequence 

of M. Define a one-parameter automorphism group fit by flt(x)=x for x E?r and 

flt(U)=eZ~itu for the implementing unitary U in the discrete decomposition. Then each 

fit is centrally trivial, and the conditional expectation g0 of M onto N is given by 

fO 
~o(X) = fl, (x) dt, x E .gL 

The Lebesgue dominated convergence theorem ensures that II~0(x,)-x, ll~--+0, so that 

{x,}-{~0(x,)}. Since [x,, U]---~0, *-strongly, we get {O(~o(X,,))}-{~o(x,,) ). 

Conversely, suppose that {y,} is a strongly central sequence in X such that 

I]O(y,,)-y,,l[~-.-.~O. We want to prove that II[y,, ~0]ll--+0 for every q~ E M,. Since the maps: 

q0~[y,, q0] are uniformly bounded, it suffices to prove that ]l[y,, q~]H---~0 for a dense 

subset of q0 in M,. Let ~k(X)= ~o(xU -k) U k, k E Z. Then {q0. ~kl k E Z, q0 E M,} is total in 

M,. Thus, we will show that II[y.,q0-~k]ll---~0 as n---~. Fix x E M  and kEZ. Set 

Zk = ~o(xU -k) E .N. We then have 

I( x, [Yn, qo-~k]>l = I<xy.--Y. x, q~" ~k>l 

= I(ZkUky--y. zk U k, qo> I 

<~ I( (ZkOk(y.)--Zk Y.)U k, q~ )l+l(ZkY.--y.Zk. t}q0> I 

<~ II(Ok(Y.)--Y.)t/~llx" Ilzkll+ll[Y., t /~]llx" Ilzkll, 
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which converges to 0 uniformly in x with [Ixll~l. Therefore, {Yn} is strongly central 

in M. Q.E.D. 

We would like to further reduce the problem to semifinite factors by representing 

the automorphism by a field of automorphisms of fibres in the central decomposition of 

the centralizer. To this end, we need a[%=id. 

LEMMA 8. I f  an automorphism a o f  an AFD factor ~ of  type IIio is in Cnt(~t), then 

there exists a lacunary weight ~p with infinite multiplicity on ~l and a unitary u E Jig such 

that Ad(u).a is trivial on ~ ,  Ad(u) .a (J / t~)=~,  and Ad(u) .a(U)=U,  where U is the 

implementing unitary in the discrete decomposition o f  ill. 

Proof. By Lemma 6, there is ~0 such that a (~ )= .A~ .  If {x,} is a bounded sequence 

in cr such that O(xn)-x,---~O, *-strongly as n--~to for some fixed free ultrafilter to on N, 

then this {x,} is strongly to-central by Lemma 7, so we get a(x,)-Xn---~O, *-strongly, as 

n--*to. This means (al%)`o=id on (%),o. Because a is an automorphism of ~ ,  we know 

al% E N[01%], the normalizer of 01%. These imply al% E [01%] by Lemma 2.4 in [9]. (See 

section 2 of [9] for notations.) Thus there exists a unitary u in ~ such that 

Ad(u).aI%=id and we still have Ad(u).aGC/v)=~/~. Now we can fix U by the same 

method as in the proof of Lemma 2. Q.E.D. 

The next lemma shows that the field of automorphisms in the central decomposi- 

tion of the centralizer may be chosen to be constant. 

LEMMA 9. In the context o f  Lemma 8, we can take a of  the form ao| on 

J/~----~o,I~L=(X), where ~to, 1 is the AFD factor o f  type II=, after inner perturbation. 

Proof. By Lemma 8, we may assume a and 0 define a Z2-action on ~t~0. Then by 

Theorems 1.2 and 3.1 in [19], we can take a of the desired form. Q.E.D. 

The following is a slight modification of the standard Rohlin lemma. This will be 

used for construction of some central sequence. 

LEMMA 10. Let T be a non-singular ergodic transformation on a probability space 

(X,I~). For any nEN,  there exists a subset E o f  X such that 

(1) E, T-IE ... . .  T-nE are mutually disjoint; 

(2) ~(U~'-o l T - J E ) ~ I -  I/n; 

(3) /~(E)<~ l/n, I~(T-"E)<~2/n. 
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Proof. Choose  a measurable subset A0 of  X such that tt(T-JAo)<l/(2n 2) for  all 

j=0 ,  1 . . . . .  2 ( n -  I). Then set 

A m = ( x E X  I Tm(x)EAo, TJx~Ao, O<~j<~m-1}. 

We have X =  Um~oAm, and set F =  t.lk~ ~ Ak~. As in the usual proof  of  the Rohlin lemma, 

we can see F, T-~F . . . . .  T-(n-~)F are mutually orthogonal and 

u; -o T-iF = X-U :-d T-2Ao. 

Then there exists J0, O~jo <<-n- 1, such that I~(T-J~ <- I/n. We set E =  T %F.  By the same 

proof  as usual, we can see E, T - I E  . . . .  , T-(~-~)E are mutually orthogonal.  Note  that 

(a) T-~FcFOAo O... UA~_~; 

(b) T ~ F c F  U Ao. 

By (b), we get 

EU T- tEU ... U T -~-t) O T-nAo u ... U T-(n+J~ 

= EO T- lEO ... O T-(~-~-J~ T-~(FUAo) U ... O T-(~+J~ 

D T-J~ ... U T-(n-1)FUFU ... U T-J~ 

Thus we get 

n-I ) n-I ) I 
1 ~(jU= 0 Z_jF ~(jU= 0 Z-jE +n" 1 -  2n .= 2n 2' 

which implies proper ty  (2). By (a), we get 

I~( T -~E ) = Iz( T -J~ -"F ) 

<~ I~(T%F) +g(T%Ao) +...  +1 t( T-j~ ~) 

< l + n "  1 2 
n 2n 2 n " 

Q.E.D.  

The following is an easy corollary of  Connes '  splitting of  a model action. 

LEMMA 11. Let  ~t be a separable strongly stable factor. I f  a is an automorphism 

of  e~t and a ~ Cnt(d~), then for  any free ultrafilter to, there exist y E C,[yI = 1, 7~ = 1, and 

u E all(~o~) such that cto~(u)=yu. 
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Proof. Because p0(a)~=l, a is cocycle conjugate to a| for some p > l ,  in 

~- - -M|  where ~ denotes the AFD factor of type 111, by [4, Theorem 1]. (Here sp 
denotes the free action of  Z/pZ on ~.  See Theorem 5.1 in [6].) Thus we may assume 

that a is of the form a| Then, we can construct a central sequence {u,} of unitaries 

in ~ such that sp(u,)=yu,, y=exp(2~ri/p). The sequence { 1 |  in M|  ~ = ~ t  is strongly 

central, and we can set this sequence to be u. Q.E.D. 

With Lemmas 11 and 12, we show that each automorphism of a fibre of the central 

decomposition of the centralizer is centrally trivial if the original one is also. 

LEMMA 12. In the context of Lemma 9, aoeCnt(~o,0 .  

Proof. Since 0 on cr is ergodic, we can apply Lemma 10 to get a projection e, E qr 

such that 

(1) e~, 0(en) . . . . .  0"-l(e,) are mutually orthogonal; 

(2) ,u(Z~'__-o l OJ(e,,))>~ 1-1/n; 
(3) #(On(e~))<~2/n,/~(e~)<~l/n. 

Suppose a0 r Cnt(~o, 1), and choose a strongly central sequence {urn} of unitaries in ~o, 

such that ao(Um)--yUm--~O, *-strongly as m-~oo, for some y E C, lyl = 1, y~=l, by Lemma 

11. Choose a normal state 9 on ~0,1 and a dense sequence {q~n} in (~0,1~L~(X)). .  For  

each n, the sequence (um| 1 is strongly central in M v. Thus there exists an integer 

m=m(n) such that 

(a) II(ao(Um)-yUm)|174 <. I/n 2, for all j = 0  . . . . .  n -  1; 

(b) II[Um| cpk.O-qll<.I/n 2, for allj=O . . . . .  n - l ,  k = l  . . . . .  n. 

Set x,=E~-0 l OJ(Um(n)| We show {Xn) is strongly central in d~. First note IIx.ll=l. 
Next we have, for 9g and n>k, 

n-1 

II[x., q k]ll I[[OJ(Um<n)|  0k]ll 1 0, 
j=o n 

as n~oo ,  by (b). We also have 

IIO(x )-x ll | # = IIO 

~</z(0n(en)) v2 +/t(en ) 1/2 

8-928285 Acta Mathematica 169. Imprim~ le 20 ao0t 1992 
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Thus by Lemma 7, {x,} is strongly central in ~ .  But we have 

[[(ao|174 = oJ(( (20(Um(n))- -Um(n))(~en)  
j=O 

I I . - I> II-yl" OJ(um( ,o |  oY((ao(Umoo)-'Yu,,,t,,))| 
'= j=0 

I> I1-~1 1 - - -  - II(ao(U,,~,,))-~,u,,,~,,))|174 
j=0 

~ I1 -~ ,  1 . . . .  - - ,  I1-~,1 > o ,  
n 

as n ~  by (a). This contradicts a E Cnt(.~). Q.E.D. 

w 2. Preliminaries on automorphisms of  the AFD factors of type HI1 

For the AFD factor of type IIIl, we do not have the discrete decomposition, and the 

continuous decomposition is rather difficult to handle. Thus we will make a different 

approach based on the infinite tensor product expression. First, we show that the 

ultraproduct algebra is a factor. 

PROPOSITION 13. In an AFD factor ~ o f  type IIIl, all strongly hypercentral 

sequences are equivalent to trivial ones. Therefore, for any free ultrafilter co on N, ~ is 

a factor o f  type IIl. 

Proof. By the uniqueness of AFD factors of type III~, [8] and [13], ~ can be 

identified with an infinite tensor product of matrix algebras. Thus, 2t admits an 

increasing sequence {Mn} of finite factors of type I and a faithful normal state q~ such 

that ~t=(tJMn)" and each Mn is globally invariant under {~}. Each M~ is generated by 

two unitaries u(n) and v(n) such that u(n)U(")=v(n) N(')= 1 and u(n)v(n)=e2~i/N(")v(n)u(n), 

where Mn is isomorphic to the N(n)x N(n)-matrix algebra. So with ak, t=Ad(u(n) k v(n)t), 

we get an action of ZN(,)• ZN(,) on ~t such that 

N(n)- 1 

g',,(x) = 1 Z at,,t (x), x E ~ ,  
N(n) 2 k.l=0 

is a projection of norm one from ~ onto M~ such that 

IIx- ~n(x)ll~ ~< sup [[X--ak, ' (x)ll~. 
k,l 
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Therefore, if {Xk} is strongly central, then there exists a subsequence {Xk. } such that 

I Ix~=- ~n(x~)ll~ - ,  0. 
Suppose that {xk} is strongly central and not equivalent to a trivial sequence. With 

{kn} as above, set y .=  ~.(xk ), n ~ N. If we have chosen {xk} so that 

liminf[IXk--q~(xk)ll~ = a>0,  

which is possible by passing to a subsequence because (x~) is not equivalent to a trivial 

one, we get liminfllyn-qJ(y,,)ll~a>O. Replacing Yn by Yn-q~(Y,,), we have a strongly 

sequence {y,} such that tp(y,)=0, lim,__,= yn::[=O, and yn E M~. Since M~ is an AFD factor 

of type III1, there exists a unitary u, E M~ such that 

u u . # >  1 # 
lira- nYn nll~ ~llYnll~; 

1 
II[u~, ~l~]ll  < - - 4  ~ , 

because 0 is in the a-week convex closure of {uynu* I uE all(M~), II[u, ~1<]11<I/4 n} by 

Haagerup [13, 1.4(c)]. Since q0=~0Mn| by assumption, we have II[un,~0]ll<l/4 n. 
If ~ is the implementing vector in the natural cone of a standard form, we have 

Ilu~-~u~ll<~ll[u~,~]lll/2<l/2 ~. We claim that {un} is strongly central. Since {u~} 

commutes with tp asymptotically, we have only to show that {Un} is central. Given e>0, 

and a E M, choose a0 E M, such that Ila-a011~<E and Ila011~<llall . Then we have 

II[a, Un] ~11 ~< II[a--a0, u~] ~dl+ll[a0, u~] ~11 

~< II(a--a 0) ~ u~ll+ll(a-a o) [un, ~]11 

+llu,,(a-ao) ~dl+ll[a0, u.] ~11 

~< 211a-a011~+211alt II[u~, ~]ll+ll[a0, u~] ~ll 

~<2e+llall/2 n-1 

for n~k. Hence lim Ilia, u~] ~11=0. Similarly we have lim Ilia, u~]* ~11=0. Thus {Un} is 

central. On the other hand, {u~} does not commute with (Yn} asymptotically. Hence 

{yn} is not hypercentral. Q.E.D. 

We will study how an automorphism of the AFD factor of type 1111 acts on its 

tensor product factor of type 1114 (0<).< 1). To this end, we need the following Lemma 

14 and Corollary 15. 
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LEMMA 14. Fix 0<A<I.  I f  {ei, j(k)l l~<i,j~<2} and (j~,j(k)l l~<i,j~<2} are respectively 

mutually commuting sequences of  2x 2-matrix units in a separable factor d~ such that 

lira II~oe,.j (k)-,~i-Jei, j (k) vii = o; 
k---~oo 

lim II~Pf~,j (k)-Ai-Jfi,j (k) ~oll = o,  
k---.oo 

m 
then there exists ere Int(.~) and an increasing sequence {knl n E N} in N such that 

cr(ei, j(kn) ) =f/,j(kn), nEN, i , j= 1,2. 

Proof. Let {~0j) be a dense sequence in the space of normal states on M. Passing to 

subsequences, we assume that 

• l l • v  ei,j (k)-).i-Jei,j (k) ~vll < + ~ ;  
k=l  

• II~f~,j  (k)-'~'i-Jfi, j (k) ~'~11 < + oo 
k=l 

for i , j=l ,2  and yEN, so that the subfactor ~ (resp. ~) generated by (ei,j(k) I kEN, 

i , j= l ,2}  (resp. {f,.,j(k)}) decomposes ~ into a tensor product: ~ = ~ |  (resp. 

~ = ~ |  by [1, Theorem 1.3]. Let co be a fixed free ultrafilter on N. Since every 

strongly central sequence of ~ (resp. ~)  is strongly central in ~t, ~o, and ~o, are both 

von Neumann subalgebras of ~o,. Since ~ ,  (resp. ~,)  is a factor, all tracial states on ~,o 

take the same values on ~,o (resp. ~,o). This means that to prove the equivalence of the 

projection E and F represented respectively by {ell(k)} and {fll(k)} we need only to 

show that E and F take the same trace value. Let 9 be a faithful normal states on d~. 

Then we have 

L,(E) = lim of(ell(k)) = lim qo(e12(k) e21(k)) 
k--*co k---,co 

= lim 2-1qo(e21(k) el2(k)) 
k-~r 

1 
= ~-  r~(1-E),  

so that ro~(E)= 1/(1 +2). Similarly, ro,(F)= I/(1 +2). Hence E and F are equivalent in ~ .  
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By induction, we construct  sequences {k,} ~-N and {u~} c ~ ( ~ t )  such that 

(a) [u~,fi, j(k~)]=0, v = l , 2  . . . . .  n - l ;  

(b) with vn=u~u~_l.., ui, vveij (kv)v~ =f / j  (k~), v=  1,2 . . . . .  n; 

(c) Ad(v,)-~,~. Ad(v~_l)ll<2 -~, IlW,. A d ( v * ) - ~ .  Ad(v* 1)l]<2 -n, v=  I, 2 . . . . .  n. 

Suppose that {k~} and {u~) have been constructed for v=  l, 2 . . . . .  n - 1 .  Let  

2 (=  (f/,j (k~)] v--  1,2, ..., n - l ,  i , j - -  1,2} c. 

Since v~_ 1 el, j (k~) V~_l=f/J (k~), l <.v<-n - 1, we have v~_ I el, j (k) v *  1 ~ 2(for  k>kn_ 1. Let  E 

and F be the projections of  2(0, considered above, corresponding to 

{vn_ leH(k) v*_llk>k~_l} and {fll(k)lk>k~_l}. 

Then E ~ F  in 2(0. Hence  there exists a strongly central sequence {wk}, passing to a 

subsequence if necessary,  such that 

w k w k = v~_ 1 ell(k) v*_ 1, k >  k,; 

wkw~; = f l l (k) .  

Put 

2 
X k = E f j ,  l(k) w k v._ 1 ei, j (k) v *  r 

j=l 

Then {xk} c ~(2() is strongly central. If  k is sufficiently large, then un=xk satisfies the 

above (a), (b) and (c). 

By (c), {Ad(vn)} is a Cauchy sequence in Au t (~ ) .  With o=limn__,| Ad(v.)E In t (~ ) ,  

we have 

tT(ei, j (kn))  = fi, j (kn) .  Q.E.D. 

COROLLARY 15. Let  ~ be a separable factor. Let  ~ and ~ and ~ be AFD 

subfactors o f  type III~, 0 < 2 < 1 .  / f  ~ / = ~ V ~  c and . /I/=~V~ c are both tensor product 

factorizations such that ~c~-~c=Jg, then there exists ere Int(~[) such that o ( ~ ) = ~ .  

Proof. The proof  is similar to the first part of  the proof  of  [4, Proposition 2.2.3]. 

Q.E.D.  

Next ,  we consider a centrally trivial automorphism of the AFD factor of  type III1. 

We show that the automorphism splits on a tensor product  factorization. 
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LEMMA 16. Fix 0<2<1.  Let  ~ be an AFD factor o f  type III1. For each a E Cnt(~t), 

there exists a unitary a E JR and a tensor product factorization ~t= ~l ~ ~2 such that 

(a) A d ( a ) . a = a l |  relative to ~ 1 ~ 2 ;  

(b) ~1 is an AFD factor o f  type III~; al is o f  the form Ad(u).o~i with u E ~ 

T3 E R and cpl a faithful normal state on ~1; 

(c) ~ 2 ~ t .  

Proof. By assumption, there exists a mutually commuting sequences {ei,j(k)} of 

2 • 2-matrix units such that 

lim {{~pei, s (k)-}ti-Jei, j (k) VII = 0, 
k....~ eo 

for a normal state ~0 on ~ .  Passing to a subsequence, we may assume that {ei,/(k)} 

generates an AFD subfactor ~1 of type Ilia such that ~ = ~ ]  and ~ .  Since 

a E Cn t (~ ) ,  and {ell(k)} and {e22(k)} are both strongly central, we have 

lim [ la (e , i (k ) ) - e i i (k ) l l~  = O, i = 1 , 2 .  
k---~ 

We want to show that there exists y E C, lyl = 1, such that limk_~=lla(e12(k))--Ye12(k)11~=O. 

First, observe that {a(el2(k))e21(k)} is strongly central. Fix a free ultrafilter ~0 on N, and 

set 

E = ~,({e11(k)}), U = zt,o({a(el2(k))e21(k)}), 

where zt~, is the canonical map from the C*-algebra of strongly w-central sequences 

onto ~to,. By Proposition 13, we know that d~,o is a factor. To prove that U = y E  for some 

,,, E C, I~'1 = 1, we show that U is in the center of ~o,, E. Let  X be an element of ~,o, E, and 

represent X by a sequence {x(k)} such that x(k)=e11(k)x(k)ell(k). Set y(k)=e21x(k)e12(k). 

Then {y(k)} is strongly oJ-central. Now, we see that u and X commute as follows: 

X U  = zG({x(k)a(el2(k))e21(k)}) 

= ~({a(x(k)elz(k))e21(k)}), since a E Cn t ( ~ ) ,  

= zt~o({a(e12(k)y(k))ezl(k)}) 

= ~o,({a(et2(k))y(k))e21(k)}) 

= ~o({a(ex2(k))e21(k)x(k)}) = UX. 
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Therefore U=~,E for some yEC,  19,1=1. This means that we have a subsequence 

{ei, j (k~)} such that 

lim Ila(e~2(kn))-~'e~2(k~)ll~ = O. 

Passing to a subsequence, we obtain a sequence {ei, j(k)} of mutually commuting 2x2- 

matrix units such that 

l im II~ei, j (k)-,~i-Jei,j (k) ~oll = o; 
k....-> oo 

lim I la(e ,2(k) ) -~ 'e ,2(k) l l~  = O; 
k-..~ e~ 

lim Ila(e2~(k))-~Pe~(k)ll~ = O; 
k--->~ 

lim Ila(ei, i(k))-ei, i(k)ll~=O, i=  1,2. 
k--.~oo 

We now adopt the arguments of Lemma 14. In the construction of the sequences 

{k,} and {u,) ,  we require 

(a) [un, ei,j(kv)]=0, l~<v<~n-l; 

(b) with v = u , u , _  1 ... ul, vva(ei, j(k~) ) v*=yJ-iei, j(kv), l<<.v~n; 
(c) Ilu.- 1t1~<1/2 n. 

Condition (c) guarantees the convergence v=lim,_~=v,E~ and we have 

Ad(v) �9 a( ei,j ( k,) ) =~'J-i ei, i ( k,). 

Now, Ad(v).a leaves the von Neumann algebra ~1 generated by {ei, j(kn)l n E N} 

globally invariant. If we choose further a subsequence from {e~,s-(k,)} denoted by 

{ei, j(kn)} again, then ~l factorizes d~ and ~---d/t, and also ~1 is an AFD factor of 

type 1114. We know that Ad(v).a is of the form al |  relative to the factorization 

d~= ~ l ~  ~ .  Furthermore, if ~l is the periodic state on ~1, then al is given by o~ ~ where T 1 

y=2 -ir~. Q.E.D. 

We will make the above splitting twice. The next lemma shows a relation between 

the two centrally trivial automorphisms obtained by tensor product factorizations. 

LEMMA 17. Suppose ~ and ~ are AFD factors  o f  type IIIz and III~, respectively, 

0<3.,/~< 1, and that log2/log/~ r Q. Let  cp and v? be respectively fai thful  normal states on 

and .~. Then (a) o~r| ~ Cnt(~@~) unless logp=(2xn log2)/(Tlog2 + 2~rm) for  some 
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m, n E Z; (b) if o~r| E C n t ( ~ ) ~ ) ,  then c~r|174 where T'= T+2~m/log A (m 
as in (a)). 

Proof. We assume TlogA~2~Z, otherwise c~rEInt(~). If 

then we set 

logp=(2~n logg)/(TlogA+2~rm) for some m, n E Z, 

T ' -  2~n _ TlogA+2:rm 
log/z log A 

It then follows that o~r,--O~r mod(Int(~)) and tr~r, EInt(~). We now assume that 

log/~*(2zrn log A)/(Tlog 2 +2~tm) for any m, n E Z. We will derive a contradiction. 

Setting T=R/(2etZ), we define a subgroup: 

A = {(2z~k log/~l~ kTlogA)lkEZ } 

of the Cartesian product T 2. Let B=,4. First we show that there exists xET,  x4=0, such 

that (0, x)E B. Suppose that (0, x)E B implies x=0. Since the projection of A to the first 

coordinate is a dense subgroup of T by the irrationality of logg/log/~, the projection of 

B to the first coordinate covers the entire T. Hence the assumption that (0,x)CB for 

any x4=0 means that B is the graph of a continuous homomorphism of T into T, so that 

there exists n E Z such that B= {(a, na)l a E T}. In particular, we have 

Tioga = 2~rn logA -2~tm 
logp 

for some m E Z, which means precisely that logp=(2JrnlogA)/(TlogA+2ztm), the case 

we have excluded. Thus, there exists a non-zero x E T such that (0, x)E B. We choose 

and fix such an x E T. Since B=A, there exist two sequences k(n), l(n) of integers such 
that 

2ztk(n) logA _ 2~t/(n)--*0 in R; 
log# 

k(n) TlogA-~ x in T. 

We may take both k(n) and l(n) in N. Note that the above two convergences mean that 

A~n)/t-t(n)---~l and Air~n)-,e~*l. Let ~0 and ~0 be AFD factors of type IIIx and III~, 

respectively. Choose faithful normal states q% on ~0 and ~P0 on ~0 such that their 

modular automorphism groups o ~~ and o w~ have respectively the period -2~t/log2 and 
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-2~/log#. It then follows that the centralizers ~o, ~o and ~o, ~o have both trivial relative 

commutants. Suppose k, l fi N are given. Then there exist isometries u~ ~ ~o and v~ fi ~o 

such that 

~00 U 1 "~ ,~kL/1 (]90 , U~/dl  = 1 , u~u~{=el~o,~%; 

V~oV~=/~/v~0o, V?Vl= 1, VlV'~=f~6~o,~o; 

In the above procedure, the projections e 1 E ~0, % and fl E ~ o, V,o can be arbitrary subject 

to the condition: qoo(e0=2 k and ~po(f0=/t t. Considering the reduced algebras, ~o 1 e 1 and 

~O,l-e, and repeating the same process inductively, we obtain sequences of partial 

isometries {u.}c~o and (v .}c~o such that with en=Un u* andf,,=v.v*, 
(1) {e.} and {f.} are both orthogonal sequences in ~O,r and ~O,~o respectively; 

(2) qo o u.=2ku. 90, u*u.= 1 - ~jn=ll ej, V)o Vn=,UlVn ~l)O, O*nVn= 1 --  ~ ;= l l f j .  

Set w=E.~l u.| ~o| Then we have 

(%| w = Zk#-tw(q~o| 

(o~~174 = 2ikZw. 

Since q0o(e.)=2k(1-/].b n-1  and ~00(f.)=/Zt(1--#/)n-1, w e  have 

(llwll~o| ~-(~o| (u*u.|174176 
n=l  

1 = = -~- ~ ((1 - 2k)n- l/tl(1 _p/).-1 +2k(l _2k).-1(1 _pt).- 1) 

= 1 z k + # l  > 1 .  
2 2~.k+ul--~.kU t 2 

With ~.=~o,  ~ .=~o,  q~.=q~o, and ~P.=~Po, we regard 

~ |  | 

{~, ~o) -- I-I {~., ~.), {a, ~} = l-[  | {~n, W.)" 
n=l  n=l  

For the sequences k(n) and l(n) obtained in the first part of the proof, we apply the 

above construction to get w(n) in the nth factor ~ n ~ . c ~ .  Because 

(~| w(n) = ~k(")~-l('Ow(n)(~| 
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2k(n)bt-t(")---~ 1, w(n) ~ ~(~ .~ ,  and Ilw(n)ll~| 1/~-, we get a non-zero strongly central 

sequence {w(n)} in ~ .  But (O~r| i~<"~ rw(n)and 2/k~")r---,e~X~=l, contradict- 

ing the assumption o~r| ~ C n t ( ~ ) .  Q.E.D. 

w 3. Proof of Theorem 1 

We know Int (~)~Ker(mod)  by [1 I] and A d ( u ) . ~  ~ Cnt (~)  by [3]. Thus we need only 

prove the other implications. 

We handle three cases of type III0, III~ (0<~< 1), and III~, separately. 

Proof of Theorem 1 for AFD factors of type III0. (i) If a is in Ker(mod), then we 

.may assume the three properties in Lemma 2. Because ~0 on ~c is a semifinite a- 

invariant trace and N is isomorphic to L| ~, where ~o,~ is the AFD factor of 

type II| we know alxE Int(N) by Corollary 6 in [4]. Thus there exists a sequence {u,} 

of unitaries in X such that al~=limn_~ Ad(u~). Since Oa=aO, {u~O(u~)*} is in No, so 

there exists a sequence (v~}cNo, such that zo,({u~O(u~)*})=z,o({vnO(v.)* }) in No, by 

Lemma 4, where zo, is as in the proof of Lemma 16. Replacing {un} by {v*u,} and 

choosing a subsequence, we may assume alN=lim,_.| u~-O(u,) approaches 

zero *-strongly, and u~ E ~ We prove a=lim,__,~ Ad(un) in Aut(~,/). It suffices to 

prove that II~'a--U*n~uoll---'O and II~-a-~-u.~u~*ll--,0 for a dense subset of ~0 in ~ , .  

Let ~0 be the normal conditional expectation of ~ onto N. We also define 

~k(x) = ~o(xU -k) U k, k E Z. Then {q0- ~fkl q0 E ~t,,  k E Z} is total in ~ , .  Fix x E ~ and k E Z. 

Setting zk= ~o(xU -k) E N, we have 

I<x, r ~ k ' a - u : ( ~ .  ~)u.>l  = I( a(X)--UnXU*~, ~" ~k>l 

I< a(Zk) U k -  u .zk Uku*~, ~ >1 

I((a(zk) - u.  zk u*~un Ok(u *)) U k, ~ > I 

I( a(zk) -  u~zk.*~, Vk~o >1 +l(  ~ZW~*, (un 0~(~ * ) -  1) U ~  )1 

II U*~I,~" ta-Ad(u.))ll" Ilzkll + II(u.O~(u*~) - 1) Uk~011 �9 IIz~ll, 

which converges to zero uniformly in x with Ilxll~<l. The other convergence follows 

similarly. This completes the proof. 

(ii) By Lemma 5 in [4] and Lemma 12, we know that al~ is inner. So by inner 

perturbation, we get al~ =id. Thus a must be an extended modular automorphism, up 
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to inner perturbation, by Theorem 3.1 and Theorem 5.5 in Haagerup--StCrmer [14]. 

Q.E.D. 

Next we consider AFD factors of type II14 (0<2<1). We need a lemma. 

LEMMA 18. Let ~0,1 be the AFD factor of type IL.  If~3 is an action of a discrete 

countable abelian group G such that fl-l(Cnt(M))=H, then for any free ultrafilter w on 

N and any character p E (G/H) ̂ =H • there exists x E (~o. 0,o, x~:O such that 

/3g(X)=(g,p)x, gEG. 

Proof. By Theorem 2.9 in [18], an appropriate product type action of G/H on the 

AFD factor of type IIl splits from/3 as a tensor product factor. Q.E.D. 

Proof of Theorem 1 for AFD factors of type 1114 (0<2<1). (i) By [11, p. 554], we 

know that In t (~)cKer(mod) .  Suppose mod(a)=l ,  a E Aut(~t). Then for a lacunary 

weight q0, we have q~.a.Ad(u)=q0 for some uE~ Replacing a by a.Ad(u), we 

assume q~.a=q0, which implies that a and {o~} commute. Hence a ( N ) = N  in the 

discrete decomposition ~ = N  N0 Z, X~-~0. l, and a(U) U* = v E N for the implementing 

unitary U. By the stability of 0 again, there exists wE ~ with v=w*O(w), which 

means that Ad(w).a  leaves U fixed. Replace a again by Ad(w).a,  so that q0.a=q~ and 

a(U)= U. Since cplx=r, mod(alx)= 1 so that ao=alxE Int(~c) by Corollary 6 in [4]. Let 

{u~} be a sequence in ~(g ' )  such that ct0=lim,__,~ Ad(u,) in Aut(N). Since 0 and a0 

commute, we have also a0=lim,_~= Ad(O(u,)). Hence {u*nO(u,)} is strongly central in N. 

By Theorem 2.1.3 in [4], there exists a strongly central sequence {v,} such that 

(u*O(u,)}-{v*O(v,)}. Hence we have the *-strong convergence of {u,o, O(u,v,)} to 

zero, and 

lim A d ( u , , o * )  = l i m  A d ( u , , ) A d ( v * )  = a o. 
n - - . ~  oo n - . . >  oo 

By an argument similar to the type III0 case, we get lim,__.= Ad(u,v*)=a in Aut(~) .  

(ii) We know the inclusion: o~(R) �9 I n t ( ~ ) c C n t ( ~ )  by [3, Proposition 2.3]. Suppose 

aECnt(~t).  Let  qJ=f for a trace r on •, We first prove that mod(a)=l .  Suppose 

that mod(a)*l .  Then we have q~-a--#cp for some 2</~<1, i.e., F_logu=mod(a). Thus 

q~.a.Ad(u)=/tq0 for some uE~ Replacing a by a-Ad(u), we may assume 

q0. a=/~go, 2</~< 1. It then follows that a and ( ~ }  commute, so that v=a(U)U* E N. As 

seen in the proof of (1), v=w*O(w) for some wE ~ and Ad(w).a leaves U fixed. 

Replacing a by Ad(w).a,  we can assume that a is the canonical extension of a0=alx, 
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i.e., a(U)= U. Since cp.a=lzqg, r.a0=/~r. Furthermore, a0 and 0=0_log ~ commute. Since 

mod(a0) (~ (log2) Z, a0,o~ is not trivial on the fixed point subalgebra (Aco,) ~ of Aco~ for a free 

ultrafilter co on N by Lemma 18. But this means by Lemma 7 that a does not belong to 

Cnt(~). Therefore we have proved mod(a)= 1. 

After all, we come to the situation that q0.a=cp and a(U)=U. We claim that 

a0 is inner. Suppose that a0 r Int(N). Let flm,,=ag 0 m, (n, m)E Z 2. By the assumption, 

Z x {0} r By Lemma 18, a0,~o cannot be trivial on (No,) ~ which means 

a ~ Cnt(~).  Thus a0=Ad(u) for some u 6 q/(N). Since 0 and a0 commute, O(u)=Xi~u for 

some s ~ R, so that Ad(u)U=2-i~u. Hence Ad(u*)-a is trivial on A c and Ad(u*). a(U)= 

2i~u. Therefore we conclude that Ad(u*) . a=~ .  Hence a = A d ( u ) . ~ .  Q.E.D. 

We finally turn to the III~ case. We use splitting factors of type IIIa, 0<2< 1. 

Proof of  Theorem 1 for the AFD factors of  type III i. (i) Let a E Aut(~)  and ~ be 

an AFD factor of type III~. Fix 2, 0<2<I .  Since ~ is strongly ;t-stable, it contains a 

sequence {ei, j (k)l 1 <.i,j<.2, k 6 N} of mutually commuting 2 x 2-matrix units such that 

lim IlWei, j (k)-,~i-Jei, j (k) = O, 

for every normal state ~p on ~ by [1, Theorem 1.3]. Apply Lemma 14 to {ei, j(k)} and 

{f/j(k)} with fij(k)=a(eij(k)) to find ere Int(~)  and a sequence {kn}cN such that 

a(eij(kn))=a(eij(k~)). To prove a E In---t(~), we may replace a by cr-la since I-m(~) is a 

subgroup. Then we come to the situation a(ei, j(k~))=eij(k~). Considering further a 

subsequence, we may assume that {eij(kn)} generates a subfactor ~ of type IIIa which 

factorizes ~ tensorially in such a way that ./~____ g~c. With the decomposition .,r 

a is of the form: a=id~| Repeating the same arguments for {~c, al~c} with 

0</z<l such that log2/log/t r Q, and obtain a decomposition of an Int(e//)-perturbation 

of a: 

a = i d ~ |  

We know, however, that ~ - ~ .  Therefore, a is, modulo In----t(~), of the form: 

~ ~ ,  a~al |  Let ~n be the replica of ~ and write 

oo 

1-I 
n = l  
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where r is a fixed faithful normal state on At. for ech n, and choose an approxi- 

mately inner automorphism an, which exchanges ~ l  and At. and leaves the other 

components fixed (see [12, Lemma 2.1]). We assume that a is of the form a~| where 
|174 

a~ 6Aut(Jgl) and id acts on 1-I n=2~.. Since ]-nt(~) is a normal subgroup of Aut(At), 

aa.a-ltTn ~ belongs to ]-~(~).  But aOna-ltTn I is of the form: 

aa, a-Icr~1= a1|174174 

where a~ -l appears on the nth component. Therefore, it remains only to prove that for 

any al E Aut(~l) and a decomposition 

o0 

~t = {~t., 9.)  
n = l  

such that At.=Atl~-A/ and (]gn=~0 , there exists a sequence {u.}c~ such that 

lim._.~ ~r..((Ad(u.). al) |  ) .tr~l=id in Aut(At), because this will show 

a a | = lim (a t | a," (a~-l | o~ -l. o," (Ad(u*) | o~ 1 6 ]-m(~). 
n -..> o| 

By the density of the orbit of 9 under Int(Jtt0 by [10, Theorem 4], there exists a 

sequence {u.} ~ q/(Jgl) such that I1~0. Ad(u.). al-911<1/2". In the space of normal states 
@oo 

on ~t, the set of states of the form: ~| .=N+I 9.  with ~/' a normal state on II| ~ is 

dense. Then we have for n>N, 

I--[| q~k -- *=N+l = I q~k "~174 

= Hq0-~p" Ad(u,).all < - -  ---> 0 . 1  
2" 

This shows that lim,_~| ~,. ((Ad(u,). al) | o~ ~ =id. 

(ii) Let J~ be an AFD factor of type III1 and a6Cnt(J~).  By Lemma 16, there 

exists an AFD subfactor ~l of type IIIx such that J ~ = ~ l ~ ,  ~----J~ and a~a1| 
where " - "  means congruence modulo Int(J~). Since a1| is in Cnt(~) ,  we have 

al ECnt(~l) and a '  6 C n t ( ~ ) .  Applying the same arguments to a', we obtain a factor- 

ization of { ~ ~, a '  }: 

~ = ~ 2 |  ~--~, a'-a2| 
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where ~2 is an AFD subfactor of type III~ with log2/ logpr  Thus we obtain a 

factorization: 

dig = ~i@~2r a ~ a l | 1 7 4  ft. 

S i n c e  a 1 ~ Cnt(~0 and a2 E Cnt(~2), we have 

fPl and a2 cP2 
a 1 - -  O'rl ~ O'T2 , 

where ~1 and ~02 are respectively normal states o n  ~1 and ~2. Sinceal| E Cnt(~l@~2), 
~z cP2 Orl| must belong to Cnt(~l~)~2). Since _~o, ,~a~, _a~i| is an element of U_ r2~' - r 2-  - r  2 

Cnt(~l@~2), o~ i_r |  must belong to Cnt(~|  which means that we may assume 
~x g~2 T~=T 2 by Lemma 17. Hence we get the decomposition: a - a  r |  r |  Since ~ - ~ 1 |  

with q~=qOl| we come to the situation that ~ = ~ ( ~ , a - # |  and ~----~--~. Now, let 

0 be the flip of ~ |  after identifying ~ and ~ i.e., o ( x | 1 7 4  Since oEIn---t(~), and 

Cnt(~) and Int(~) commute modulo Int(d/), we have 

4 "  J~- 1 |  O~ - T ---- ( 4 |  O" ( 4 |  - 1 . 0  ~ I n t ( ~ ) ,  

which means that o~r~ ft. Thus, we finally conclude 

a ~ o ~ |  ~ ~ |  = o~ | 

This completes the proof. Q.E.D. 

R e m a r k  19. Haagerup--StCrmer proved in Theorem 5.5 of [14] that an automor- 

phism a of a general separable factor M of type III~, 0~<2< 1, is pointwise inner if and 

only if there is a unitary u E M and an extended modular automorphism O~ such that 

a=Ad(u ) .O~ .  Together with Theorem l(ii) here, thus we know that an automorphism 

an AFD factor of type IliA, 0~<;t< 1, is centrally trivial if and only if it is pointwise inner. 

w 4. Actions of  discrete abelian or f'mite groups 

As an application of Theorem 1, we will classify actions of discrete (countable) abelian 

or finite groups on the AFD factor of type IIIn, up to cocycle conjugacy. This completes 

the final step of the classification program of actions of such groups on injective factors 

initiated by Ocneanu [18] and Sutherland-Takesaki [20], though the classification of 

discrete amenable (non-abelian) group actions on the AFD factor of type III~ is still 
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open. This result will be used for the conjugacy classification of compact abelian group 

actions on AFD factors in Kawahigashi-Takesaki [17]. 

Let  G be a discrete countable group, and a be an action of G on the AFD factor 

of type IIIl. Let  N = N ( a ) = a - l ( C n t ( ~ ) ) ,  then N is a normal subgroup of G and we can 

define Za E A(G, N, T) and a homomorphism va: N-->R as on page 437 in [20]. (Here v is 

actually a homomorphism into R because the flow of  weights is now trivial.) Then we 

get the following theorem, corresponding to Theorem 5.9 in [20]. (For terminology and 

notations, see [16] and [20].) 

THEOREM 20. Let  eg be the AFD factor o f  type III1, and let a, fl be actions o f  a 

discrete countable group G on ill. Then i f  G is either abelian or finite, a and fl are 

cocycle conjugate i f  and only i f  

(1) N(a)=N(fl);  

(2) (Z~, v,)=(Z/~, v#). 

We need the following lemma first. 

LEMMA 21. Let a be an action o f  a group G on a factor ~l o f  type III, and cp, V2 be 

a-invariant dominant weights on J/l. Then for  a homomorphism v: G->R, ae'o~r ) is 

cocycle conjugate t o  ~tg'O~v(e,). 

Proof. Note that %-o~r a n d  tlg'tT~g) are actually G-actions because the modular 

automorphism groups commute with a. Since tp and 7: are both dominant, there is a 

unitary v E ~ / such  that ~p=9-Ad(v). We have 

q~" Ad(v) = 7., = lp" t:tg I = ~ .  Ad(v)" ag 1 

= q~. a-~l.Ad(ag(v)) = cp .Ad(ag(V)), 

thus vae(v*) ~ ~ .  Then 

a~. a ~ )  = ag. Ad(v*) o'~g) �9 Ad(v) 

= Ad(ae(v*)) �9 ag.O~(g). Ad(v) 

= Ad(v*) .Ad(vag(v*)). ag.O~r Ad(v). 

Here Vag(V*) is an a-cocycle, but this is also an a .  oV-cocycle because vag(v*)E ~t,. 

This shows the desired cocycle conjugacy. Q.E.D. 
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Proof o f  Theorem 20. The necessity of the two conditions follow from Proposition 

5.7 in [20]. Thus we prove the other implication. We write v for v~=va and extend this to 

a homomorphism of G into R. This is possible when G is finite as v is then trivial, and 

also when G is discrete abelian by divisibility of R, and we denote the extension by v 

again. Choose an a-invariant dominant weight q~ and a ~-invariant dominant weight ~ by 

Lemma 5.10 in [20]. Define two new actions by 6tg=ag'O4~ a n d  fig=flg'O~_~g). These 

are actually actions by the invariance of qg, ~. Now we have 

d-l(Int(M)) = d-l(Cnt(~t)) = fi-l(Int(M)) = fl-l(Cnt(M)) = N(a) = N(fl), 

and Za=X~=Z#=Zr thus by Theorem 2.7 in [18], d and fl are cocycle conjugate. Then 

the second dual actions d| and fl| are conjugate on ~tt~f(12(G)), where 

O denotes the right regular representation of G. Thus there exists an automorphism 

zt of M ~ ( I E ( G ) )  such that zc.(dg|174 For the Tr on ~(I2(G)), 

q0| is (d| and ~0| is (fl| hence (~p| is 
_ - @Tr (d|  o)-invariant. By Lemma 21, ag| 0g- (ag| 0g)" o~g) is cocycle conjugate 

to (dg| Og)" o ( ~  T0" ~. Now 

- . ~ 0 |  n _ _  7 t ' -  I (ag| Og) o(~(g) - �9 (flg| Og)" 2t. ~t-1. rr~| ~v(g) "It 

= ~t-l" (flg| Og)'Jr, 

which shows the cocycle conjugacy of the second dual actions a |  and f l |  

Then a and fl are stably conjugate, hence, cocycle conjugate because the factor d~ is 

now infinite. Q.E.D. 

PROPOSITION 22. For any countable discrete group G, any normal subgroup N o f  

G, and any choice o f  invariants (g, v)E A(G, N, T)x Horn(N, R), there exists an action 

a o f  G on the AFDfac tor  rill o f  type IIIi with N(a)=N,(z~,  v~)=(g, v). 

Proof. Choose 3., # E (0, 1) with log3./logp ~ Q and let ~, ~ be AFD factors of type 

III~, IIIF,, respectively. Viewing T and R imbedded in the obvious way in r 

HI(~(~))  (and similarly for ~--see  [20, p. 442 for notations]), we note that 6~(X) = 

62(v)=0, where 61,62 are as in [20, p. 421]. Thus by [20, Theorem 5.14], there are 

actions fl, ~ of G on ~, ~ with invariants (N,x, v) and (N, 0, v) respectively. Thus 

a=fl| 7 is an action of G on ~)~-----M, with invariants (N, Z, v). Q.E.D. 

Remark 23. If the group G is abelian in Proposition 23, then unlike the other cases, 

the existence of an action a of G on an AFD factor ~t of type IIIl with a prescribed 
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invariant (N,x ,  v) is very simple, thanks to the simple structure of  Aut(3/) ,  as follows. 

Let  Z be an element  of  A(G, N, T) and v E Hom(N, R). Extend first v to an element  of  

Hom(G, R), denoted by v again. Le t  m be an action of  G on the AFD factor  ~ of  type 

111 with Zm=X. The action a defined by 

ag = mg| g E G, 

on ~ |  has precisely the invariant: 

(N(a), Z~, va) = (N, Z, v). 

Remark 24. I f  we directly compare  ae=dg.o~)  and fig=fie'ovte) ~ using the Rad o n -  

Nikodym cocycle  (D(~.e t ) :D,)  in the above proof, we get ag and fig are conjugate in 

Out (Z) ,  which is enough for G=Z. But for general groups, this method does not 

produce a cocycle,  and we have to use the second duals as above. 

As an application, we have the following: 

COROLLARY 25. For an action a o f  a discrete abelian or finite group on the AFD 

factor o f  type III, there exists a cocycle perturbation fl o f  a such that there is a Cartan 

subalgebra which is globally invariant under fi. 

Proof. By Theorem 5.1 in [19] and by Theorem 5.9 in [20], we consider only the 

case of  type 1111. Because the modular automorphism of  an ITPFI  factor  fixes a Cartan 

subalgebra, we get the conclusion by Remark 23. Q.E.D.  
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