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1. I n t r o d u c t i o n  a n d  m a i n  r e s u l t s  

It is well known that  if Pn(x)=xn+...  is a monic polynomial of degree n, then its supre- 

mum norm on [-1,  1] is at least as large as 21-n: 

1 
IIPnll[-~,~]/> 2n-----r' 

and here the equality sign holds only for the Chebyshev polynomials 

Tn(x) = 21-n cos(n arccos x). 

It is also known that  if {Pn} is a sequence of monic polynomials with the property 

p ,  1/n __  1 
l i m  n i i l _ l  l ]  - ~,  

n - , - }  CCI 

then the zeros of the P,~'s are distributed according to the arcsine distribution. 

More precisely, we associate with Pn the normalized zero counting measure 

number of zeros of Pn on A 
up, (A) = 

n 

where A is any point set in C. Let w be the arcsine distribution, i.e. 

1 L b dx ~([a, b])= ~ 

for any subinterval [a,b] of [-1,  1]. Then the above statement about the zeros means 

that  

lim Up, = w 
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in the weak* topology on measures on C. In particular, if all the zeros of the Pn's are 

real, then 

nlimor I(up. -w)([a ,  b]) I = 0 (1.1) 

uniformly for [a, b] C_ [-1,  1]. The supremum of the left hand side for all interval [a, b] C_ 

[-1,  1] is called the discrepancy of the zeros of pn. 

From now on we shall assume that all the zeros xi,,~ of the Pn's are real and lie in 

[-1,  1]. 

In [6] Erd6s and Turs gave a quantitative version of the convergence in (1.1) in the 

form 
8 I ~ A .  

I(up. -w)([a ,  b]) I ~< ~ V n 

for any interval [a, b] _c [ -  1, 1], where 

A 1 (1.2) lIP.Ill-I,1] < - 2  n. 

This result is sharp up to the constant 8 / log  3. 

In the literature this basic estimate has been widely used in various discrepancy 

theorems. Erd6s [4] proved a sharper estimate under the assumption that the maximum 

modulus of the polynomial on each interval determined by consecutive zeros is comparable 

to its maximum on the whole interval [-1,  1]. Later ErdSs and Turgn [5] proved the 

analogue of the above result for the case when the norm is considered on the unit circle. 

(In such situations one gets discrepancy for the distribution of the arguments of the 

zeros.) 

Returning to the real case, in a recent breaktrough H.-P. Blatt [3] noticed that if we 

know that all zeros of Pn are simple, then the Erd6s-TurAn estimate may be strengthened. 

He assumed a lower bound for the derivative IP~(x~,n)] at the zeros of Pn, namely 

1 1 
IP'(xi '")l  ~ B--~ 2 ---~' 1 <<. i <<. n. (1.3) 

He proved 

THEOREM A. Let P ,  be monic polynomials with zeros in [-1,  1] satisfying the con- 

ditions (1.2) and (1.3). Then there exists a constant C (independent of n) such that 

I(up. -w)([a ,  bl)l < C l~ Cn log n (1.4) 
n 

for any interval [a,b]c[-1, 1], where 

Cn -- max(An, B , ,  n). 
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For two remarkable applications of this theorem concerning zeros of orthogonal poly- 

nomials and Kadec-type distribution of extremal points of best polynomial approximation 

see [3]. The point is that  in these applications (and probably in many other ones) the 

additional assumption (1.3) is automatically satisfied, thus with no additional work we 

can get a remarkable improvement on the ErdSs-Tur~n estimate. 

H.-P. Blatt has also given an example which shows that  in some cases his estimate is 

not very far from the best possible one, although in that  example the additional log term 

on the right is missing. Let us also note that  in certain cases this log factor places Blatt 's  

result into a different category than the Erd6s-Turs one, namely we do not get (1.1) 

from it. For example, if we know that  C~ ~<exp(e,~n), then (1.4) gives for the discrepancy 

only the estimate O(e,, logn), although we know from (1.1) that  this discrepancy tends 

to zero together with en. However, we shall also see that  in other ranges of C,~ (namely 

if C~=O(exp(O(n~)) )  with a < l )  Blatt 's estimate is sharp. 

In this paper our aim is to determine the best possible estimate for the discrepancy 

under the conditions of Theorem A. Since our estimate will be best possible, it will be 

continuous in the sense that  it gives back (1.1) (as well as (1.4)). The methods reach 

beyond the theorems presented here, but we shall not pursue the most general form of 

our results. 

THEOREM 1.1. With the assumptions and notations of Theorem A we have 

](pp~-w)([a,b]) I < C  l~ log n (1.5) 
n log Cn" 

for a, y inte al [a, b] C [-  1, 1]. 

Here C is an absolute constant. Note that  in the case Cn~<exp(e,~n) discussed above 

this gives the rate en log 1/e~ for the discrepancy, which tends to zero together with en. 

Of course, in Theorem 1.1 one has to restrict Cn to, say, C , ~ e  n/2, for otherwise 

nothing can be said about the distribution of the zeros. Actually, only the case C~ =e  ~ 

is interesting. Note also, that  Cn ~>n is always satisfied. 

Theorem 1.1 is best possible. 

THEOREM 1.2. Let {Cn} be an arbitrary sequence with the property that n <~ C~ <~ 

e ~/2. Then there are monic polynomials P,, of corresponding degree n = l ,  2, ... such that 

1 
]tPnH[_I,1] < C n ~ ,  (1.6) 

for every zero xi,~ of P,~ 

1 1 
IP'~(xi'~)l >1 n(~"-- 2 "-g' 1 • i <~ n, (1.7) 
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and such that for some intervals [a,, bn] of [-1, 1] the estimate 

I(vp -w)([a,~,bn])l ) c  l~ log n (1.8) 
n log Cn 

holds with some positive c independent of n. 

Exactly as in [3] we shall get Theorem 1.1 by reformulating it in terms of logarithmic 

potentials, and then prove a discrepancy theorem for potentials. Since this reformulation 

is an integral part of the proof and it is not long, for the sake of completeness we copy 

the argument here from [3]. 

Let G(z) denote Green's function of C \ [ - 1 , 1 ]  with pole at infinity, i.e. G(z)= 
l o g [ z + x / ~ - l [ ,  where we take that branch of x/~ which is positive for positive z. 

Bernstein's inequality together with (1.2) yields 

1 loglPn(z)]_G(z)_logl <~ logAn for all z e C .  (1.9) 
n n 

We also need a matching lower estimate on the left hand side. Lagrange's interpolation 

formula shows that 
Pn(z) 

1 = P~(xi n)(z-xi  n)" 
i = l  ' ' 

For z~t [-1, 1] let d(z) denote the distance from the point z to the interval [-1, 1]. Then, 

the preceding inequality yields 

i.e. 

1 <~ n ~ B n 2  n, 

1 d(z) 1 
Ie.(z)l/> n Bn 2 n" 

Let F~=  {z e C1G(z ) =log x}, sr 1 be a level curve of the Green's function G(z). Then 

F,, is an ellipse with foci at +1 and major axis m + l / x .  Hence, 

Choosing 

1 ( 1 )  
inf d ( z )=-  x& -1. 

zEF~ 

X =  Xn : =  1 + n  - 1 2  

in the last inequality leads to 

t 
log IP.(z)l.G(z)-log > ~ d lOg c n  

n n 

(1.1o) 
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for zEF~,n, where d>0  is an absolute constant independent of n. The minimum principle 

for harmonic functions shows that  (1.10) is actually satisfied for all z with G(z)) log g,~. 

(1.9) and (1.10) together show that  

1 log]Pn(z)]-G(z)-log 1 <<. Dl~ C'~n (1.11) 

for all z where G(z)) log xn. 

Now we are going to rewrite this inequality in potential theoretical form. If # is a 

Borel measure of compact support on C, then its logarithmic potential is defined as 

U"(z)= / lOg lz-~l d#(t). 
Since -(1/n)loglPn(z)l  is the logarithmic potential U ~Pn of the measure vp~, and 

- G ( z ) - l o g  �89 is the logarithmic potential U~'(z) of the arcsine distribution w, (1.11) 

can be written as 
I U~o (z)-U~(z) l  ~< D l~ Cn 

n 
for all z with G ( z ) ) l o g x ~ .  Now Theorem 1.1 follows from the last estimate and from 

1 in it. the next theorem if we set a = u p , - w ,  e=(log Cn)/n, and A= 5 

THEOREM 1.3. Let a = a §  be a signed measure such that a+ are probability 

measures on [-1, 1] with the property that for some 0<A~<i the estimate 

a_(E) <. Com(E) a (1.12) 

holds for every interval E, where m denotes the linear Lebesgue measure. Then if with 

L=5 /A+2  we have 

IV~(z)l ~< Vie 

for every z with 

then 

dist(z, [-1, 1]) ) e L, 

1 
la([a, b])l ~< C2e log - 

e 
holds for every interval [a, b], where the constant C2 depends exclusively on Co, C1 and A. 

The outline of the paper is as follows. In the next section we prove Theorem 1.3 with 

the help of a theorem on condenser potentials, which in turn will be proven in Section 4. 

The proof of Theorem 1.2 will be given in Section 3. The proof is distinctly different in 

the cases when C n ) n  4 and Cn<n 4. In the former case we can use weighted potentials 

with a discretization technique. This will be done in subsection 3.1. In the second case 

the theorem is proved by moving certain zeros of the Chebyshev polynomials, the details 

of which will be given in subsection 3.2. 
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2. P r o o f  o f  T h e o r e m  1.3 

The main idea of the proof can be explained as follows. Let [a, b] C_ [-1,  1] be arbitrary. 

Suppose we had a signed measure/~ of compact support lying at a distance >/E L from 

[-1,  1] such that  t1#11~<2, and if 

1 i f xE[a ,b ]  
~[a,b] : :  

0 otherwise 

is the characteristic function of the interval [a, b], then with 

1 
T~ -- log 1/e 

and some constant c we have 

U ' ( x )  = c+r~Ia,bl  

for all xE [-1,  1]. Then, using Fubini's theorem, we could write 

2Cle>>. f = [ /  U" do = =T~,~([a,b]),, 

from which 
1 

]a([a, b]) I ~ 2Cle log - 

follows immediately, and this is what we need to prove. 

Unfortunately, the signed measure # with the above properties does not exist. We 

can, however, get a measure, the properties of which will be close to the above ones; 

hence this measure can serve as a substitute. The rest of this section is devoted to the 

construction of that  measure and to showing that  the weaker properties it will possess 

are still sufficient for our purposes. 

More precisely, we will construct a # with the following properties. 

LEMMA 2.1. Let L and A be the numbers from Theorem 1.3, and let [a,b]C_[-1, 1], 

and 0<e< �89  be arbitrary with b -  a >~ 2~ a / A . Then there is a signed measure # = #~,a,b and 

two numbers c----Ce,a,b and ~'=Tc,a,b with the following properties: 

(1) supp(#) is compact and is at distance ~gL from [--1, 1], 
(2) IJuJl<~2, 
(3) c<<.UU(x)<~c+~ " for every x E [ - 1 ,  1], 

(4) ]UU(x)--TX[a,b](X)--C I <~C3e for x e  [a, b] and x e  [ -1 ,  1] \ ( a - ~  2/A, b+e2/A), 

(5) 1/c3<~log 1/e<<.c3. 
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Furthermore, here C3 is an absolute constant. 

The proof of Lemma 2.1 is quite long and involves explicit construction of some 

extremal measures, but before we set out to prove it we show how Theorem 1.3 can be 

obtained from it. 

Proof of Theorem 1.3. First of all we simplify the problem, namely it is enough to 

prove the inequality 

a([a, bl) ~< C2e log _1 (2.1) 
c 

with some constant C2 for all [a, b] C_ [-1, 1]. In fact, then by applying (2.1) to the intervals 

[-1, a] and [b, 1] instead of [a, b] and using that  a( [ -1 ,  1])=0, we obtain the counterpart 

1 
(r([a, b]) >/-2C2E log - 

E 

of (2.1), and with (2.1) this proves the claim. 

Next we we observe that  we may assume without loss of generality that  b-a>~2e ~/A. 
In fact, suppose (2.1) has been verified in this case. Then if a and b are closer than 2e 1/A , 

then we can enlarge [a,b] to have length 2E 1/a. If the enlarged interval is [a',b'], then 

we can apply (2.1) to [a', b'] instead of [a, b] to get 

or+ ([a, b]) ~< a+ ([a', b']) ~< a_ ([a', b'])+C2c log 1 < 260r log 1 
c 

where, in the last step we applied (1.12). This proves (2.1) for all [a,b] (with a possibly 

bigger constant). 

Now we can apply Lemma 2.1. With the signed measure/~ obtained there and with 

~:=e 2/A we get exactly as in the sketch above 

2Cl~ >~ j U'~ dl~= j U~ da = f (U~-c)da 

where the domain of the last integral has to be appropriately adjusted if a - 5 < - 1  or 

b+~> 1. Using properties of U ~ we can continue this inequality as 

2Cl e >1 J[af,b] T da-  J (,f(a--6,a)LJ(b,b-FtS) ~- da_ - 2Cae ~> T ~ [ a ,  b] - 276or A - 2 6 3 c ,  

where we have used (1.12) again. Since 5a =E2 and by property (5) of the measure/~ 

1 
log 1/~' 

we immediately arrive at (2.1) from this estimate. [] 
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2.1. P r o o f  o f  L e m m a  2.1 

In the proof of Lemma 2.1 we shall use the so-called condenser potentials. 

Let E1 and E2 be disjoint compact sets on C of positive capacity (the conductors) 

such that  with E=E1UE2 the complement C \ E  is connected. Such a pair (El ,E2) is 

called a condenser. To each j = l ,  2 we assign a sign E j = •  (the sign of the charge), and 

let us agree that  E1 is the positive 'plate', i.e. S l = + l  and ~2=-1 .  We want to minimize 

the energy 

/ l o g  1 d#(z) d#(t) 

for all signed measures of the form # - -#1 -#2 ,  where #i is a positive measure on Ej of 

total mass 1. 

There is a unique extremal signed measure #=#* for which the infimum is attained. 

We call #* the equilibrium measure for the condenser (El, E2). The logarithmic potential 

of this extremal measure has the properties that  there exist two constants F1 and F2 

such that  

-F2  ~< U ~* (z) ~< F1 

for every zEC,  

U t'* (z) = F1 for every z E E1 (2.3) 

with the exception of a set of zero capacity (see Section 4; in what follows we shall 

abbreviate this fact as 'for quasi-every zEEI ' ) ,  and 

U"* (z) = -F2  for quasi-every z E E2. (2.4) 

Furthermore, if C \ E  is regular with respect to the Dirichlet problem, then the last two 

equalities hold true for every zEE1 respectively zEE2. For all these results see [1] and 

[7]. 

Now we shall need to explicitly determine the extremal measure and the constant 

FI+F2 when E1 and E2 consist of finitely many intervals on the real line. Thus, let 

Z = E I U E 2  be the union of some intervals [aj,bj], bj<~aj+l, j = l ,  ...,m. 

The following theorem is of independent interest, and will be proved in Section 4. 

THEOREM 2.2. Let E1 and E2 consist of intervals on the real line, E = E 1 U E 2 =  

U :l[at, bj]. Then 

faio+l Pm-2(t) dt FiTF2  -- , (2.5) 
J bio V / - R ~  

and 
Pm_ (t) 

( t ) - _ v/h__(6 d t ,  



D I S T R I B U T I O N  O F  S I M P L E  Z E R O S  O F  P O L Y N O M I A L S  

where 
m 

R(z) = 1-I ( z - a k l ( z - b k ) ,  
k = l  

Jo is an index such that bjo and ajo+l belong to different sets E1 and E~, and where the 

coefficients of the polynomial 

Pm-2(t) -= Cm--2tm--2 +...+Co 

are the solutions of the linear system of equations 

( fa~+l+ fa'<'+'~ Pm-2(t) dt=O, jTLjl , j2,  
dbj Jbt(j)  / 

/~1 Pm-2(t) 
_~ri v/-R-- ~ dt = 1. 

In this system for 1 <.j <. m the number l(j) >~ j denotes the smallest index for which [aj, bj] 

and [al(j)+l,bl(j)+l] belong to the same set E1 or E2, and j l  and j2 denote those two j 's 

for which such an l(j) does not exist. This system of equations has a unique solution. 

Above we used that branch of the square root that is positive for positive z. We 

also note that the system of equations in the theorem is a real system for the coefficients 

of Pm-2 hence, Pm--2 is a real polynomial. 

We shall need the following corollary of Theorem 2.2. 

COROLLARY 2.3. In Theorem 2.2 let 

E l = [ - a , a ]  and E 2 = [ - 2 - a , - a - ~ l u [ a + q ,  2+a] 

with some 0<~<a2~< �88 Then 
1 

F1 +F2 ~ log 1/----~' (2.6) 

where ,,, means that the ratio of the two sides is bounded away from 0 and c~ by two 

absolute constants. Furthermore, the signed measure #* is absolutely continuous with 

respect to Lebesgue measure, and if we set 

d#*(t) = v(t) dt, 

then for j - - l ,  2, 3 and tE [aj, bj] 

11 1 
Iv(t)l ~< vj(t)--: ~ v/( t -aj ) (bJ  - t )  (2.7) 
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Recall that  here [aj, bj] denote the intervals of E = E I U E 2 .  

Proof of Corollary 2.3. According to Theorem 2.2 we have to solve the system of 

equations 

(f-'~ s c~t+~o 
a-,7 + v / ( t 2 - ( 2 + a ) 2 ) ( t 2 - ( a + r / ) 2 ) ( t 2 - a  2) 

dt = 0 (2.8) 

f = 1 czt+co 
_~ ~ri v/( t  2 -  (2+a)2) ( t  2 -  ( a+r / )2 ) ( t2 -  a2) dt= 1 (2.9) 

(we have incorporated the - sign from - i r r  in (2.9) into cl and co in order to get a 

positive Co below). Since the denominator in (2.8) takes opposite sign on [ - a - r / , - a ]  

and [a, a+r/],  we get that  Cl must be zero. Then Co is obtained from the second equation: 

/f_ ~ 1 1 
Co = 1 - dt. 

c~ 7r V / ( ( 2 + a ) 2 - - t 2 ) ( ( a + r / ) 2 - - t 2 ) ( a 2 - - t  2) 

This easily yields 

But 

a a 

Co "-~ log a/r~ log l/r/" 

[ cz t + co dt gz+F2 = j ~ + "  
v / ( t 2 - ( 2 + a ) 2 ) ( t 2 - ( a + r / ) 2 ) ( t 2 - a  2) 

[,~+,7 1 
r  

log l/r//~ x/((2+a) ~-t~)((a+r/)~-t~)(t~-a~) 
dt, 

and if we use that  

we get (2.6). 

Since 

f ~ + v  dt = 1, 
1 1 

~ 7r x / ( t - a ) ( a + r / - t )  

1 c o 

v(t)  = ~ v / (  t2 _ (2+a)2)( t2 _ (a+v) 2) (t2 -a2) 

if t c E = [ - 2 - c ~ , - a - r / ]  U [a+r/, a + 2 ] U [ - a ,  a], while 

v,(t)= 1 1 

~r v / ( t - a j ) ( b j - t ) '  

(2.7) also easily follows. [] 
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LEMMA 2.4. With the assumptions and notations of Corollary 2.3 we have for the 
potential of It* the estimate 

Iu," (x) -u~* (x• <~ ~ (2.10) 

for every xER and 0<~<~a/2. 

Proof of Lemma 2.4. Using the second part of Corollary 2.3 we can write 

[U~* (x)-U"*(x• f log[ x ' - t i i ~  aIt . . . . .  ,~) 

f l o g  ~ dlIt*l(t) 
J I x - ~  

1 flog]X-t• (vl(t)+vz(t)+v3(t))dt <~ ~ - t  

3 
1 

_ - _ ~ IUVJ(x)-UV~(x• 
? ~ j = l  

where we have used the self explanatory notation for the potential of a measure given by 

its density function. But with 
1 1 

v ( t ) -  ~ 1,4-z~-t~' 

we have 
2 

uvJ (z) = u~(~)+log b j - a j '  

where z and y are connected by the formula 

y = z b j - a j '  

hence the last sum is at most as large as 

- max u ~ ( y ) - u  ~ y•  (2.11) 
y~R 

Here 
2~ 1 (2.12) 2~ ~ < ~ < 2  

and 

U ' ( z ) : - l o g l z +  V / ~ -  11 +log 2. 

x the function One can easily prove that  for fixed real ~, M ~< 

Iuv(v) -u~(v•  
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attains its maximum at y - - + l  and this maximum is at most 2X/~ .  

Substituting this into (2.11) we arrive at (2.10) (cf. also (2.12)). [] 

Finally we can turn to the 

Proof of Lemma 2.1. Suppose first that  [a, b] is symmetric on the origin, say [a, b] = 

I - a ,  a]. Then we set ~?=e2/A and choose # to be equal to the translation of the measure 

/z* from the previous two lemmas by i~ L. With c=-F2 and 7-=F1+F2=Fl-(-F2) the 

first two properties in Lemma 2.1 follow from the construction, the third one follows 

from the fact that  for every z the potential U "* lies in between F1 and - F 2  (see the 

discussion before Theorem 2.2). Property (4) is a consequence of the properties of U u* 
(see the discussion before Theorem 2.2) and Lemma 2.4 if we also use that  by the choice 

of the parameters we have a~>e ~/A, and so 

1(~) 1/2 
- ~ c .  

Note that this property (property (4)) actually holds in a wider range, namely for all 

x e = . + 2 ] u  [ - . , . ] .  (2.13) 

Finally, the last property was proved in (2.6). These prove Lemma 2.1 in the symmetric 

case. 

If [a, b]C[-1,  1] is arbitrary, then let [al,bq=[-(b-a)/2, (b-a)~2], and let the just 

constructed signed measure for [a', b'] be #1. Now we choose # as the translation of the 

measure #1 by (a+b)/2. Since we have verified property (4) in the larger range (2.13), the 

translation of which (by (a+b) /2)  certainly covers the set appearing in (4), the signed 

measure # satisfies all the requirements. [] 

3. P r o o f  o f  T h e o r e m  1.2 

The proof is distinctively different in the ranges Ca ~>n 4 and Cn < n  4. We shall separate 

these two cases below. Of course, the sequence {C,~} need not satisfy either Cn>~n 4 or 

Cn < n  4 for all n, in which case one has to separate the terms with these two properties, 

respectively, and apply the two methods below to the appropriate terms. 

3.1. P r o o f  o f  T h e o r e m  1.2 in t h e  case  w h e n  C n ~ n  4 

First we need a lemma. 
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LEMMA 3 .1 .  For any x E R  and 0 < 7 < 0  

o x + t  l d t  <<.10. flog y (3.1) 

Proof. By the homogeneity of the integral we can assume without loss of generality 

that  7---1 and x~>0. Furthermore, the ratio 

x + t  (3.2) 
x - - t  

is increasing as x increases on (0, 1) for every fixed t~> 1, hence we may even assume x~> 1. 

Now we divide the domain of integration in (3.1) into three parts: (1, x/2) ,  (x/2,  2x) and 

(2x, 0) with the obvious modifications if x~<2 or x ) 0 / 2 .  On the first part we use that  

(3.2) is at most 
2t 4t 

1+ ~L-t-t ~< 1 + - - '  - x 

and so the integrand is at most 4/x,  from which the contribution of this part to the left 

side of (3.1) is at most 2. In a similar manner, on (2x, 0) we have for (3.2) the upper 

estimate 
2x 4x 

1+ t _ x  ~< I + - T ,  

so the contribution of the third integral is also at most 2. 

Finally, 

/? - log x - t  d t = -  (2 .51og2+31og3)<6.  [] /2 log ~ dt ~ x J~/2 x 

With this technical lemma at our hand we can now prove Theorem 1.2 in the case 

when Cn/> n 4. 

Consider for a n  0 < E ~ e  -13  the function 

/ ( t - ( l ' ~ ) ) - I  if e3/2 • [ t - ( 1 - ~ ) [  ~<e 
r e ( t )  

0 otherwise, 

and the signed measure u~ that  it defines: 

dp~(t) = c~v~(t) dt, 

where the normalizing constant c~ is chosen so that  the total variation of u~ be 2, i.e. 

2 
c~ = log I/"E" (3.3) 
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For ~3/2 ~< I t -  (1 -  e)l ~< e we have 

2c 1 13 1 1 
I~c~v~(t)l ~< log 1/~ E3/~ ~< log 1/~ r ~  <~ 7 r ~ '  

hence the signed measure 

]1, :---- co-I-Ev e 

is a positive measure of total mass 1 which has density 

2 
~< ~ r ~ 2  (3.4) 

on [-1, 1] (recall that  co denotes the arcsine measure). Furthermore, we can immediately 

get from Lemma 3.1 and the equality U"(x)=log2 for xE[ -1 ,  1] that  for such x 

I U . ( x ) - U ~ ( x ) l  = IU~(x)il~U~(x)l = (log2)ec~ f ~  log 
x-F t 1 20e 

3/2 ~ ~ dt ~< log 1/---~" (3.5) 

Now we shall utilize an idea of E. A. Rahmanov on how to distribute the zeros of a 

polynomial if we want to get a discretized version of a potential. We need the following 

quantitative version (see [10, Lemma 6.1]). 

For an integer n let 

- - l  = y o , n  < Yl ,n  < . . .  < Yn,n--: l 

be that  partition of [-1, 1] for which tz([Yj,n,Yj+l,n])=l/n for all O<~j<<.n-1. Consider 

the polynomials 

n--1 

p~(~) _- 1-I (~-y j , . ) .  
j = l  

Using the monotonicity of the logarithmic fimction it is not too hard to see (see [10, pp. 

40-43]) that  if for some constants a and fl the inequality 

fix Iloglx_tlldp(t)<</31og n (3.6) 
_tl<<n-. n 

holds, then 

and 

IP~(x)l ~ n ~+~ exp(-nUg(x)),  x E R, 

1 e x p ( _ n U U ( x ) ) l x _ y n ~ , n ] ,  IP~(z)l >/ 

where y . . . .  denotes the zero of Pn closest to x. 
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If the potential U u is continuous on [-1, 1], then the latter inequality immediately 

implies 
pi  [ n(Yj,n)l ~ 1 exp(_nUU(yj,~)) 

for every zero Yj,n of Pn (actually this is true without the continuity assumption). 

In our case the potential Uu is obviously continuous, furthermore (3.6) holds with 

a =  ~5 and [3= ~1 for large n (cf. the estimate (3.4) for the density of #). On applying (3.5) 

we can thus write 
/" 20e \ 1 

[Pn(x)l <~ exp~ ~ n +  31og n) 2n , 

and for each j = 1,..., n 

/)1 ( 20r ) 1  
[ n(Yj,n)] ~>exp l o g l / e n - 2  2- ff �9 

Now if Cn>~n 4 is given, then we define r  by the equality 

20e 
log C ,  - log 1 / ~  n + 3  log n. (3.7) 

Since log C,  - 3 log n/> �88 log C, ,  we can deduce that 

log Ca n 
en ~ - -  log . (3.8) 

n log C,~ 

Now if we assume that  this e satisfies e~<e -13, then we can apply all of our estimates 

so far to deduce 

and 

Cn 
IIPntl[-I,1] ~ 2---~ 

1 1 
R' - - - -  j =  1,.. . ,n. I n(Yj,n)l~ Cn 2n' 

But the polynomial P~ has [np([1-2e, i -e ] ) ]  plus minus one zeros on the interval 

1 
[(URn --o~)([1--2C, 1--r >~ ]r162 i-e])[- - 

r H 1 1 logCn n n (3.9) 
- = r  - / >  c ....... log , 

2 n n n log Cn 

with some absolute constant c>0, where at the last step we used (3.8). 

These inequalities prove Theorem 1.2 in the case when C,~>~n 4 and the r162 from 

(3.7) satisfies e~<e -13. If the latter condition is not satisfied, then all we have to do to 

copy the above argument is to choose r  -13, for which the last inequality in (3.9) is 

still valid with some positive c. [] 

[1-2c, l - c ] ,  hence for the discrepancy of its zeros we have 
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3.2. P r o o f  o f  T h e o r e m  1.2 in t h e  ca se  C n < n  4 

Let 
1 

T,~ (x) = ~ cos(n arccos x) 

be the monic Chebyshev polynomials. Tn has the zeros cos((2k-1)~/2n), k=l,. . . ,n 
which are the projections onto [ -1 ,  1] of the equidistant points exp((2k-1)Tri/2n), k= 
1, 2, ..., 2n lying on the unit circumference. This easily implies that  the discrepancy of 

Tn is at most 1/n. We shall construct our Pn by moving some zeros of Tn. 

For an n define 
log 2 n 

n 

and a = l - 2 r  The point a will be the center of the zero movements, we shall, roughly 

speaking, reflect some zeros of T~, distributed according to a logarithmic scale, onto a. 

To this end we choose a large constant C that  will be specified later (we shall see 

that  actually any C > 8 0  will do the job), and with it we define some numbers ~0, " ' ,~J 

as follows: we set ~o =g.4/3 ,  and for other j ' s  we define ~j+l in terms of ~j via the formula 

~ + ~  dt = (3.10) 
1 C 

j t log n '  

and let J be the largest number for which ~J+l ~<c. Then 

j ~ log 2 n 

C 

Now let xj be the nearest zero of Tn to a-~j and yj the nearest zero of T" (note 

the prime!) to a+~ j ,  and form the rational function 

J 

rj(t) = jl-Io t - y j .  = t - - x j  

We transform the zeros of Tn with the help of r j, namely we set 

Pn(t) := Tn(t)rj(t). 

We claim that  for large enough C (to be chosen below) and large n the following estimates 

hold: for every t E [ - 1 ,  1] 
na/4 

]Pn(t)][_l,ll ~< 2---Z- , (3.11) 

and for every zero 0 of Pn 
1 1 

IP (O)l/> n3/4 2n. (3.12) 
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From these Theorem 1.2 immediately follows in the case n<~Cn<~n 4. In fact, by our 

construction we have removed J + l  zeros of Tn from the interval [1-3e ,  1-2e] ,  hence 

the discrepancy of P~ is at least as large as 

J ~> c l~ n,  

n n 

which is 

in the present case. 

~> cl~ Cn log n 
n log Cn 

Thus, it remains to prove (3.11) and (3.12). We start  with (3.11). In the proof below 

D will denote absolute constants that  may vary from line to line, but C is one and the 

same throughout the proof. 

Proof of (3.11). First of all, the definition of the ~j's gives 

~j_Fl--~j~-.~j(eC/l~ c--c----~O(~.  (3 .13 )  
log n \ log n / 

This is much larger than the largest distance between consecutive zeros of T~ and T~ on 

[1-4e,  l - e / 2 ]  which is 
V~ _ log n 
n ~< D n--5~/2" 

Thus, we immediately get the estimates 

and 

Since every ratio 

log n 
[xj - ( a - ~ j ) I  ~< On-- ~ . 

t - y j ,  j = 0 , 1 , . . . , J ,  (3.14) 
t - -x j  

is increasing on the interval [ -1 ,xg] ,  and the polynomial T~ attains its maximum on 

[XJTI,XJ], w e  can restrict our attention to tE[xj+l, 1]. It is also immediate that  for 

tE [a+e4/3/2, 1] the rational function rg(t) is at most 1 in absolute value, so this leaves 

us to consider the case tE[xg+l,a+ea/3/2]. We shall prove (3.11) for tE[xj,xo] be- 

cause the consideration is the same (actually somewhat simpler) for tE[XJ+l,XJ] o r  tC 

Ix0, a+e4/3/2]. 

2-935201 Acta Mathematica 170. Imprim~ le 29 avril 1993 
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Thus, let Xjo+l<.t<.XSo for some j=0, . . . ,  J - 1 .  We separate the joth and ( jo+l)st  

terms in r j, and first estimate the products of the terms with index smaller than jo and 

then with index greater than jo, respectively. 

We write 

5o-1 5o-1 l_(yj_(a+r t - (a+~j ) - :n ine .  
I I  t_xst-Y5 - YI l_(xj_(a_~5)) /( t_(a_~5)) ' t_(a_~j  ) 
j=o 5=o 

Here we have for the denominators 

C 
It-(a+~5)I/> 51 5o-~5o-11 ~> ~5o-131-i;~g ~/> 

and so 

C log 5/3 n 
3 n 4/3 ' 

D -1/6 yj-(a+~j) ~ Dn-3/210gn ~ ~ n  " 
t-(a+~j) (C/3)n-4/a log 5/a n 

(3.15) 

and 

These yield 

D --1/6 x j - - ( a - - ~ j )  ~ Dn-3/2logn <~ -~n " . 
t - (a -~ j )  (C/3)n-4/3 log 5/3 n 

--(D/C)n_I/6 ] ~<exp ~ nl/6 7. 

In the estimate of II2 we shall make use of Lemma 3.1. Using the monotonicity of the 

ratios (3.14) we can write with r : - - t - a < O  

jo-1 jo-1 r--~j ~J+~ 
log 1-[ r - ~ j  _ l ~  , j_o T--~j C E l ~  f ldu  

- j = o  ~ - + ~ j  a~j  u 

log ~ 10 log n logn f~o  r - u  l d u < . _ _  
<CJ~o ~ c 

(3.17) 

where, at the last step we used Lemma 3.1. From (3.16) and (3.17) we finally arrive at 

Since 

J~ ( D  log2n 1 0 c g n  ) 
-YJ =liilllii2[~<ex p C 2 nl/6 ~- (3.18) 

J 

log I-I 
j=jo- l-2 

J 
~--~j logn r - ~ j  f ~  1 
T--~-~j = - - ~  E log j~ - du 

j= jo+2  Tnt-~j 5_ 1 U 

logn f ' "  ~--~-~u log 1 du <<. 10 log n 
~<C-- Jo+~ u C ' 
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we get similarly 

J t - y j  ( D  log2n 10~_~ogn) 
l-I  t - x j  <~exp ~-~ hi~6 ~- - -  . (3.19) 

j = j o + 2  

As for the remaining two factors 

t - y3  
t - x j  

in r j  with j= jo  and j = j 0 + l ,  we note that  only one of them can be really large. In 

fact, t lies either closer to Xjo or closer to xjo+l. Consider the first case, the other one is 

similar. Then for the second term we get from (3.13) 

t - y j  ~ 3~jo 9 
t - x j  ~joC/(31ogn) <" -C logn. (3.20) 

Finally, for the other term with j=Jo we get by the mean value theorem 

Tn(t) t - y ~  = ]Tn(t)-Tn(z~o) 
t - x j  t -Xjo  It-yj~ = IT:(O)IIt-yJ~ 

with some 0E [1-3e, 1-e] .  We can explicitly calculate the derivative of T. ,  and with the 

inequality It-yjo 1~<2e we finally arrive at 

T.(t)  t - y j  ~< n _ 1 4v/~logn (3.21) 
t - -x j  2 n-x V/1--(1--e)2 2e ~< 2 n 

From (3.18)-(3.21) it follows that  

4v~tog  n 91ogn ( D  log2n 201ogn)  n 3/4 
IP~(t)l = ]Tn(t)rn(t)l <" 2 n C exp ~-~ hi~6 F- ~ < 2--- ~ 

if we choose C larger than, say 80, and n is sufficiently large. This proves (3.11). [] 

Proof of (3.12). Let 0 be a zero of P,~. Then 0 is either a yj, or a zero of T~ different 

from every xj.  Let us consider first the case when O--Yjo for some j0C{0, ..., J}. Then 

1 i 
I P~n (0)1 = ITtn (O)rj (0) +Tn (O)r~j(O)l = ~ Irj (YJo)l 

because 0 is a zero of T~ by the choice of the numbers yj, and at every zero of Tn ~ the 

value of Tn equals 2 -n+l .  The derivative of r j  at YJo equals 

'I  yjo--y j 1 . 
J•Jo YJo--Xj Yjo--Xjo 
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In the proof of (3.11) we have verified that  

j~cjo yj~ ~ --Xj l ~ n3/4' 
Y3,~ -Y~ 

more precisely we have proved in (3.18)-(3.21) a similar inequality in which the role of 

the xj's and yj 's  have been switched. Thus, taking reciprocal, we finally get 

1 1 
[P'(O)]/> n3/4 2-~, 

which is exactly (3.12). 

If 0 is one of the zeros of Tn, then 

P~(O)=T:(O)rj(O)+T~(O)r~(O)=T~(O)rj(O). 

Here 

while exactly as above 

by which (3.12) has been verified. 

n 
IT'(0)[/> T, 

1 
]rj(O)] ~ n3/4 , 

D 

4. P r o o f  o f  T h e o r e m  2 . 2  

* * * * 1 Let # = ~ 1 - # 2 ,  [[#i][= , supp(#*)CEi ,  i=1,2 be the equilibrium measure from the 

energy problem discussed in the beginning of Section 2.1. We know that  U u~ equals some 

constant F1 on E1 and another one - F 2  on ~2- Using these facts, first we determine the 

signed measure #*. 

In the proof we need the concept of equilibrium measure associated with a compact 

set on the plane, and the concept of balayage measure. 

The logarithmic energy of a measure u of compact support is defined as 

I(u):= f U"(z)du(z)= J/ log jzl~_t~ du(t)du(z) - 

If K is a compact set, then its logarithmic capacity cap(K) is defined by the formula 

1 
log - -  

cap(K) 
:= inf {I(u) [ supp(u) C K, u ~ 0, [[u[[ -- 1), 

where ]]p]] denotes the total variation (total mass) of u. 
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If K is of positive capacity, then there exists a unique probability measure u=ug on 

K for which the infimum on the right is attained, that  is, ug is the unique measure that  

minimizes the energy integral I(u) among all probability measures defined on K (see [12, 

Chapter II]). 

This so-cailed equilibrium measure uK possesses the following properties: 

(i) U~K(z)<~log 1/cap(K) for z e C ,  

(ii) V ~K (z)=log 1/cap(K) for quasi-every z e g .  

These properties can also be used to define ug. Furthermore, the equilibrium measure 

uK is supported on the outer boundary of K,  which is defined as the boundary of the 

unbounded component of C \ K .  For example, the equilibrium measure of the interval 

[-1, 1] is the arcsine measure w, while that  of a disk or circle is the normalized Lebesgue 

measure on the circumference. 

Consider in C an open set G with compact boundary OG, and let # be a measure 

with supp(#)C_G. The problem of balayage (or 'sweeping out') consists of finding a new 

measure #', ]]#']] =]]~][ supported on OG such that  

UU(z) = U~'(z) for quasi-every z ~G.  (4.1) 

For bounded G such a measure always exists ([9, Chapter IV, w Section 2]), but for 

unbounded G we must replace (4.1) by 

I 

U~(z) = U u (z)+c for quasi-every z r (4.2) 

Here the constant c turns out to be equal to 

- f~ a~(z) d~(y), 

where f~ is the component of G that  contains the point infinity and G ~  (z) is the Green 

function of that  component with pole at infinity ([9, (4.2.6)]). Besides (4.1)-(4.2) we also 

know ([9, (4.210)]) that  

v.' (z) V.(z), (4.3) 

respectively 

U u' (z) <. U u (z) + ~ Go~ (y) d#(y) (4.4) 

hold for all z E C. 

Furthermore, if G is connected and regular with respect to the Dirichlet problem (i.e. 

every Dirichlet problem with continuous boundary function has a continuous solution up 

to the boundary), then in (4.1)-(4.2) we have equality for all z~G ([9, Theorem 4.5]). 

The equality for zCG occurs automatically. 
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The balayage measure # '  has the additional property (see [9, Chapter  IV, w that  

if h is a continuous function on G which is harmonic in G, then 

/ hd#= / hdtt'. (4.5) 

After these preparations we return to the equilibrium measure # * =  #~ - # ~  associated 

with the condenser (El ,  E2). 

Let us compare the measures #~ and (#~)', where the latter one is the measure tha t  

we get when we sweep #~ out of C \ Z 1  onto El.  Both of these measures are probabili ty 

measures on E1 and their difference is constant on E1 by the properties of tL* and the 

balayage measures. Thus, it follows from the principle of domination ([9, Theorem 1.27]) 

that  the potential  U~- ( t '~ )  ' of * * ' i t 1 -  (#2) is identically constant,  and since this constant 

must  be zero (consider the potential  around infinity), we get that  the two potentials 

U i'~ and U (~) '  coincide, which implies that  the measures #~ and (#~)' are the same ([9, 

Theorem 1.12']). 

Since the same can be said when we sweep out the measure #~ from C \ E 2  onto E2, 

we get that  the measures #~ and #~ are each other 's  balayage measures. 

We need one more thing before we can proceed with the proof of Theorem 2.2. Let 

us consider e.g. El ,  and let G be a disk containing El .  Since the equilibrium measure of 

G is the normalized Lebesgue measure moG on the boundary of G, and the equilibrium 

potential  of G is constant on El ,  it follows exactly as in the preceding paragraph that  if 

we take the balayage of mo6 out of C \ E 1  onto El ,  then we obtain v~ 1. Let us now apply 

(4.5) and let the radius of the disk G tend to infinity. Then we arrive at the formula 

/ h dv~ 1 (4.6) h(oc) 

for every h that  is continuous on C and harmonic on C \ E x .  

After these preparations we set out to prove Theorem 2.2. 

First we show tha t  there are constants c, C such tha t  

cv2~ <~ #3 <~ Cv2j, j - -  1, 2. (4.7) 

Let h be an arbi trary nonnegative continuous function on El.  Since E1 is regular with 

respect to the solution of the Dirichlet problem in C \ E 1 ,  h can be extended to a non- 

negative harmonic function to C \ E 1 ,  which we continue to denote by h, so tha t  h is 

continuous on the whole Riemann sphere. Using that  #~ is the balayage of #~ onto E2 

we have 
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As we have seen in (4.6), we also have 

= / h dye1 h(oo) 

Now Harnack's inequality for nonnegative harmonic functions implies that  there are 

constants c, C independent of h such that  

ch(cc) ~ h(t) <. Ch(oo) 

for tEsupp(#~)C_E2. On integrating this inequality with respect to/*~ and taking into 

account the preceding relations, we arrive at 

The signed measures with respect to which the integrals are taken are supported on El,  

and since these inequalities hold for all nonnegative continuous function h on El,  we can 

conclude that  the signed measures #~"-c~e 1 and Cu=~ -p,~ are actually positive measures 

and this is the inequality (4.7) for j = l .  When j = 2 ,  the proof is similar. 

Next we need an estimate on the equilibrium measures vet. Namely we need that 

they are absolutely continuous with respect to Lebesgue measure on E j,  and if 

rnj  

P'J = U [a~ ' ) '  b(J)] ' b~J) < U'k+ - ( j )  1, k .-~ l ,  ..., m j -  1, 
k = l  

then there are numbers y(k j) �9 (b(k j) , 0 )  ,~k+l], k = l ,  ...,mj--1 such that  

where 

and 

. s , ( t )  
% ( 0  = 

mj 

Rj(t)= 1-I (t-a(kJ))(t-b~ j)) 
k = l  

m k --1 

Sj(t)-- l-I It-Y(kJ)l 
k = l  

([11, Lemma 4.4.1]). 

From this representation of the equilibrium measures vEj 

follows that  the function 

(f z - t l  

and from (4.7), it easily 
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has a simple pole at each a j, bj. We claim that  elsewhere H is analytic. This is obvious 

in C \ E ,  and the analyticity on each of (aj,bj) can be proved as follows. If we cut C 

along E, then 
d#*(t) (4.8) 
z - t  

is purely imaginary on the cut, because the real part  of 

f log(z-t) d#*(t) (4.9) 

is the potential U ~* (z) and so it is constant on each interval of E; hence the real part  

of the derivative of (4.9) vanishes on E. Purthermore, (4.8) takes conjugate values for 

conjugate arguments; therefore, (4.8) takes opposite values on the upper and lower parts 

of the cut. Squaring these opposite values as in H we get that  H is real on the cut 

and takes conjugate values for conjugate arguments on the upper and lower parts of 

the cut; hence the analyticity of H on [.J(aj,bj) follows from the continuation principle 

for analytic functions. Of course, to do all these deductions, we need that  H,  which 
m on Uj=l(aj,bj) must be understood in principal value sense, is continuous on the cut. 

Seeing however that  e.g. on E1 the measure #~ is given as the balayage of #~ onto Ea, the 

density function of #* is analytic on [.J(aj,bj) (cf. [9, (4.1.6)]), from which the claimed 

continuity easily follows. 

In summary, the function H is a rational function. Obviously, H has a zero at 

infinity with multiplicity 4 (recall that  #* is orthogonal to constants) and each of its 

zeros is of even multiplicity; hence H is of the form 

(Pm-2(z))  2 
H ( z ) -  R(z) ' 

where 

and 

m 

R(z) = y I  (z--ak)(Z--bk) 
k = l  

Pm_2( Z) = Cr,_2Zm--2 +... +Co 

is a polynomial of degree at most m - 2 .  Thus, by multiplying Pro-2 by - 1  if necessary 

we can conclude that  
d#*(t) Pm-2(z) C \ E .  

- 

Here, and in what follows, we take that  branch of the square root that  is positive on the 

positive part of the real line. From Cauchy's formula applied to C k E  we can see that  

Pm-2(z) l /~ Pm-2(~) 1 d ~ = / ~  Pm-2(t) ~ dt, 
2~i ~ ~ - z  ~i~/-R-(6 t - z  
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where the first integral is taken on the cut in the clockwise direction and the second 

integral is an ordinary Lebesgue integral and the values of ~ in it are taken on the 

upper part of the cut. Since Cauchy transforms determine their generating signed (or 

even complex) measures if these measures have support of zero two dimensional Lebesgue 

measure (see [2]), it follows from the preceding two formulae that  

Pm-2(t) dt. (4.10) 
d#*(t) - _ w i v / ~  

Since ix/-R- ~ is real on the upper part of the cut, we can also conclude that  Pro-2 has 

real coefficients. 

Let now x and y belong to the same interval [aj, hi]. Then the function 

Pm-2(z) x - z  
- ~ i  ~ log --y-z 

is analytic on C \ E  and has at least double zero at infinity; hence 

fE Pm-2(~) , X--~ 
- -  l o g  - -  d ~  = 0 .  ( 4 . 1 1 )  

Taking real parts, we can see that  whatever the real polynomial Pro-2 of degree at most 

m - 2  is, the potential of the (signed) measure 

Pm-2(t) . 

is constant on each interval [aj, bj], in particular, 

Ua(aj) = Ua(bj). (4.12) 

Next we compute U~(bj)-U~'(aj+l). If L=EU[bj,aj+I], then (4.11) holds again 

if the integration on E is replaced by integration around L, and for the same reason. 

Taking again real parts we can see from the facts that  ~ is real on (bj, a j+l)  and 

log aj+l-t =log  -J-it 
b j - t  

there, that  
aj+l-t Pm-2(t) ~ Pm-2(t) 

Re log bj-t  -~]- x/-R~ 
on the upper part of the cut along L on (bj, aj+l);  therefore, 

f l o g  aj+l-t Pm-2(t) C a~+' Pm-2(t) 
bj- t  --riv/-R~ dt= ]b~ ~ dt. (4.13) 
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It follows from (4.12) and (4.13) that  for any l>~j 

j~ ]at+x-t Pm-2(t) (fb;j+l ~;~+2 fa'+l' Pm-2(t) dt. (4.14) 
log bj-t  - T r i v ~  dt= + +1 +"'+Jb, ) 

From these formulae we can easily derive necessary and sufficient conditions for the 

fact that  the potential U ~ be constant on E1 and on E2. In fact, let j l  and j2 be the 

indices of the last (more precisely, rightmost) intervals of E1 and Ez, respectively, and 

set 

Z = {j [j ~ j l ,  j2, [aj, bj] C ~1 and [aj+l, bj+l] C E2 or [aj, bj] C ~-~,2 and [aj+l, bj+l] C ~-~1} 

and 

,7 = {j [j C j l , j 2 ,  [aj, bj] C E1 and [aj+l, bj+l] C E 1 or [aj, bj] C ~2 and [aj+l, bj+l] C ~2}' 

Then ZUff  has m - 2  elements because the indices of the last intervals of ~1 and E2 do 

not appear in ZUff.  If j E J  and U ~ is constant on E~ and on E2, then U ~ must take 

the same value on [aj, by] and [aj+l, bj+l]; hence by (4.13) 

~b ajq-1 dt---0, j E , ]  (4.15) 
Pm-2(t) 

(note that  the left hand side in (4.14) is nothing else than U~(bj)-U~(aj+I)). Let now 

j EI, and let l(j)>~j be the smallest index such that [aj, bj] and [at(j)+1, hi(j)+1] belong 

to the same set E1 or E2. jEZ means that  l(j)>j. If U ~ is constant on E1 and on E2, 

then U ~ must take the same value on [aj, bj] and [at(j)+~, bt(j)+~]; hence by (4.14) 

a~+~ f~j+2 f~'(~)§ Pm-2(t) (~bj JI-Jbj+l ~-'"-~-Jbl(j) )~/fR~ dt =O. 

But the indices j + l , j + 2  .... , l ( j ) - I  belong then to if ;  hence in view of (4.15) we can 

see that the last sum is the same as 

(F" + dt=O. (4.16) 
\Jbj Jbl(j) / 

(4.15) and (4.16) give m - 2  equations on the r n - 1  coefficients of Pm-2. The 

(m- 1)st condition 

Pm-2(t) dt= l (4.17) 
1 - - T r i v ~  
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comes from (4.10) because we only consider signed measures that  have total mass 1 on 

El .  From Cauchy's formula it then follows from (4.17) that  

/~2 Pm-2(t) 
_ 7ci x / -R~ dt = -1  

as is required for our measures. 

From our considerations it is clear that  if the coefficients of Pro-2 are chosen to 

satisfy (4.15)-(4.17), then 

do-(t)= Pm-2(t) dt 
_~iv/-R-~ 

is a signed measure on E such that  0-(E1)=1, 0- (E2)=-1 ,  and U ~ is constant on each 

of E1 and E2. We claim that  then 0- must be it*, i.e. the equilibrium measure for the 

signed energy problem (cf. [8]). In fact, since i t*=i t~- i t~  also has these properties, it 

follows that  there are constants a and ~ such that the potential of the signed measure 

0--c~it* is identically equal to/~ on E. Thus, if 0-=0-1-0-2 where (-1)J-10-j  denotes the 

restriction of 0- to E j,  and if u+ denotes the positive and negative parts of a measure u, 

then we have for all zEE  

U~I+ +~2- + ~  (z) = U ~ +~1- +~M (z) +8-  (4.18) 

Here for the positive measures 0-1+ +0-2-+ap~ and 0-2+ +0-1-+OL/I~ w e  have 

ll~l+ + ~ 2 -  +~ i t ;  II = 110-2+ +0-1- +~it~11 

because ] la l+]]-I la l_l]=(~(E1)=l ,  110-2+ll-110-2_ll=cr(E1)=l and II#~ll=llit;ll. Further- 

more they have finite logarithmic energy; hence it follows from the principle of domination 

(see [9, Theorem 1.27]) that  (4.18) is true for all z. Then for z---~ec we ge t /~=0  and so 

U ~ + + ~ -  +~ '~  (z) - U ~ +  + ~ -  +~" ;  (z) 

everywhere. Hence 0-1+ +0-2- +a#~  =~r2+ + a l -  +ait~,  i.e. ~- -a#* ,  and since a(E1) = 1 = 

it*(E1), we get a=i t*  as we claimed above. 

Finally we compute F1 +F2. Since this is the difference of the potential values taken 

on E1 and on E2, the above formulae (see e.g. (4.13)) yield 

IFI+F21 = fb aJ+~ Pm-2(t) dt , 

where j is an index such that  bj and aj+l  belong to different sets E1 and E2. But F1 +F2 

is nonnegative. In fact, U t'* coincides with F1 on E1 and with - F 2  on E2, hence 

F1 A-F2 f U #* = d/t* = I(#*)/> 0, 
J 
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because the logarithmic energy of any compactly supported signed measure #* with the 

proper ty /z*(C)- -0  is nonegative (see [9, Theorem 1.16]). This gives (2.5). [] 

The author thanks J. Szabados for valuable discussion and for providing the refer- 

ences [4] and [5]. 
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