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1. Introduction 

Let G be a connected simple Lie group with trivial center, let F be an abstract group, and 

let 51 and ~2 be inclusions of F in G. Assume throughout that  each of the images 5j(F) is 

a lattice subgroup, meaning that  ~j(F) is discrete and that  the G-invariant measure 

on G/s j (F)  has total finite mass. We say that  tl and ~ are equivalent if there is some 

automorphism 0 of G so that  ~2=Qo51. If G is not isomorphic to PSL(2, R) then the 

Mostow rigidity theorem (see [18], [19], [16] and [24]) says that  ~1 and t2 axe necessarily 

equivalent. Alternatively, this says that  any isomorphism between lattice subgroups 

of G extends to an automorphism of the whole group. This remarkable result fails 

for PSL(2, R) (see Section 2). Nonetheless, taking G=PSL(2,  R),  we have 

THEOREM 1. Suppose that ~1 and ~r2 are irreducible unitary representations of 

PSL(2, R),  not in the discrete series. Then rlo51 and r~ot2 are equivalent representa- 

tions of F if and only if  51 and ~2 are equivalent inclusions and r l  and r2 are equivalent 

representations of PSL(2, R).  

As usual, two unitary representations of a group are called equivalent if there is 

a unitary equivalence of the two representation spaces which intertwines the two group 

actions. The situation is entirely different for discrete series representations, as explained 

in Section 8. Theorem 1 for ~1~L2 was proven in [6]: 

The central step in the proof of Theorem 1 is a certain analytic criterion for the 

equivalence of ~1 and e2. Let PSL(2, R) act on the upper half plane H={Im(z )>0}  via 

(z)- cz+d' 

(1)Both authors are partially supported by the NSF 
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let d ( . , .  ) denote hyperbolic distance on H and let 

h(g) = e x p ( - d ( g ( i ) ,  i)) for g e PSL(2, R). 

One can show that  h is in LI+~(PSL(2, R))  (with respect to Ha i r  measure for any ~>0 

but is not in LI(PSL(2,  R)).  Similarly hoLj is in ll+~(F) but not in l l(F).  

THEOREM 2. Fix  s, 0 < s < l .  The lattice inclusions ~1 and ~2 are equivalent i f  and  

only i f  

Z - -  
"TEF 

Indeed, the proof will also show 

THEOREM 3. [ f  L 1 and ~2 are not equivalent, then there is some 6 = 5 ( s ) > 0  so that 

< 

yEF 

We call ~1 and ~2 geometrically conjugate if there is some homeomorphism /3 of H 

such that  ~2('y)--/3o~('y)o/3 -~ for every 7EF.  Such a r will extend uniquely to a homeo- 

morphism of RUcx~, the boundary of H. Moreover, the boundary homeomorphism is 

completely determined by L1 and ~2, even though the interior homeomorphism is not. 

If dx  is ordinary Lebesgue measure on R and if L1 and e2 are not equivalent, then dx  

and/3.(dx)  are mutually singular (see [18] or [1]). Also see [13] and [30]. 

THEOREM 4. Suppose that ~1 and ~2 are geometrically conjugate and 5>0 is as in 

Theorem 3. Then there is a set E c R  such that d i m ( E ) ~ < l - 6  and dim(/3(E~))~<l-6. 

This answers a question from [31]. The equivalence classes of embeddings belonging 

to a fixed geometrical conjugacy class make up the Teichmiiller space of a surface H / F ,  

so our results can be interpreted from the point of view of Teichmiiller theory. 

The paper is organized as follows. In Section 2 we review some well known facts 

on Fuchsian groups which we will need later. In Section 3 we prove Theorem 2 when 

the groups in question are cocompact and in Section 4 we consider the non-cocompact 

case. In Section 5 we prove Theorems 3 and 4. In Section 6 we review some basic 

facts about the unitary, irreducible representations of PSL(2, R) and in Section 7 we 

deduce Theorem 1 from Theorems 2 and 3. This section also contains a brief sketch of 

the argument in [6] which proves Theorem 1 in the case ~1~2.  Finally in Section 8 we 

discuss why Theorem 1 must fail for discrete series representations and how to modify 

the theorem if PSL(2, R)  is replaced by SL(2, R).  

The reader who is primarily interested in Theorem 1 can read Sections 6, 7 and 8 

first. Except for the statement of Theorem 3 they do not depend on the earlier sections at 

all. The first author thanks Mladen Bestvina for several helpful conversations concerning 

Dehn's work and the arguments in Sections 3 and 4. 
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2. P r o p e r t i e s  o f  l a t t i ce s  in P S L ( 2 ,  R)  

PSL(2, R) is the quotient of SL(2, R),  the group of 2 x 2 real matrices with determinant 

one, by its two element center, {:t:I}. This group G acts on H - - ( I m ( z ) > 0 }  by 

( ;  ; )  az+b 
(z) = cz+d " 

The action preserves the hyperbolic metric dsU=(dx2+dy2)/y 2, and in fact G is the fulI 

group of orientation preserving isometries of H. By a lattice subgroup of G we mean a 

discrete subgroup of G which acts by left translation on G so that  a fundamental domain 

has finite Haar measure. The prime example of a lattice subgroup is PSL(2, Z), the 

subgroup of matrices in PSL(2, R)  with integer entries. A lattice subgroup is necessar- 

ily finitely generated and of divergence type, i.e., ~ r  h(~)=cc. A nonidentity MSbius 

transformation of H is one of three types: elliptic if it has a fixed point in H,  parabolic 

if it has one fixed point on RU{oo} and hyperbolic if it has 2 fixed points on RU{co}. 

If a group G of MSbius transformations of I I  acts discontinuously (any compact set hits 

itself only finitely often) the group is called Fuchsian. If G has no elliptic elements then 

R = H / G  is a Riemann surface and G is isomorphic to the fundamental group of R. If 

G is also a lattice then R is either a compact Riemann surface (in which case G has 

no parabolic elements and has a compact fundamental domain) or a compact surface 

with a finite number of points removed (in which case G is a free group, has parabolic 

elements and all fundamental domains are noncompact). For example, if G is the free 

group on  two generators then H/G could either be a torus with one puncture or a sphere 

with three punctures. The corresponding lattice embeddings of the free group cannot be 

equivalent (the MSbius function conjugating them would also define a conformal map- 

ping between the quotient surfaces). Thus Mostow rigidity fails for PSL(2, R). One can 

also produce examples by varying the conformal structure on a single surface (different 

points of moduli space) or taking inequivalent sets of generators for the same Riemann 

surface (i.e., same points in moduli space but different points in Teichmiiller space). 

We can also consider PSL(2, R)  as acting on the unit disk D = { [ z  I<1} using the 

identification of H and D via the MSbius transformation 

z - i  
~-(z) = z+i" 

On the unit disk the function h defined in the introduction has a simple interpretation 

1 -Ig(0)[ ~ 1 -Ig(0)l  = gist (g(0), T).  h(g) = exp(-d(g(0) ,  0)) - 1 + Ig(0)l 

On the upper half plane we have 

h(g) = exp(-d(g( i), i) ) ~ Im(g( i) ) 
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if Ig(i)l~C. 

What  are the automorphisms of PSL(2, R)?  Let Go be the full group of isometries 

of H with the hyperbolic metric. This includes PSL(2, R)  as a normal subgroup of 

index 2 (the orientation preserving isometries). The inner automorphisms of Go all leave 

PSL(2, R)  fixed and they constitute the entire automorphism group of PSL(2, R).  One 

direction of Theorem 2 is now clear. If the two embeddings are equivalent then there is 

a gEGo such that  O(7)=got2(7)og-1 for every 7EF.  Thus, 

and so 

h(tl  (9')) ~ h(e2(~')) 

E hS(tl(~))hl-s(t2("~)) ~'~ E h ( t l ( " y ) ) .  

~CF ~EF 

Since O(F) is a lattice in PSL(2, R)  it is a Fuchsian group of divergence type, so the 

right hand side must be cx~. The difficult part of Theorem 2 is the converse. 

Also of interest will be the automorphism group of F when F is the fundamental 

group of a compact Riemann surface of genus p with q points removed. If q=0  then F 

is called a surface group and is generated by 2io elements al ,  bl,..., ap, bp and the single 

relation 

albla-~lbl I ... apbpa~lb~ 1 = 1. 

The Dehn-Nielsen theorem [7] states that  the only automorphisms of F are those induced 

by homeomorphisms of the Riemann surface to itself. 

If q>0  then F is a free group on m = 2 p + q - 1  generators and there are many more 

automorphisms than those induced by surface homeomorphisms. Characterizing them 

is the same as characterizing all possible sets of generators. Suppose F is generated by 

al,  ..., am with no relations. Elements of the group can be thought of as reduced words in 

the generators, i.e., words in which no cancellation is possible. If we replace a generator 

aj with one of the elements a~ 1, aiaj or ajai (for i ~ j )  we obtain a new set of generators. 

These are called the elementary Nielsen transformations of the generators and any two 

minimal collection of generators can be transformed into one another by a finite series of 

such transformations and permutations (this is Nielsen's theorem [20], [15]). Therefore, 

unlike surface group automorphisms, automorphisms of the free group may have nothing 

to do with the punctured surface of which F is the fundamental group. 

Another useful fact is Selberg's lemma [26]. It states that  any finitely generated 

matrix group has a normal subgroup of finite index with no torsion (i.e., no elements 

of finite order). In particular, this means that  any lattice F in PSL(2, R)  has a normal 

subgroup F' of finite index which has no elliptic elements (an elliptic element in a Fuchsian 

group must have finite order). 
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Now suppose F, L: and L2 a r e a s  above and that  F~cF is a normal subgroup of finite 

index in F. We claim it suffices to prove Theorem 2 for F ~. I t  is clear that  the sum in 

Theorem 2 converges for F if and only if it does for F ~. All we have to check is tha t  if 

the embeddings L1 and e2 are equivalent when restricted to F ~ then they are equivalent 

on all of F. Since they are equivalent on F ~ there is an automorphism Q of PSL(2, R)  

such that  ~:=Qo~2 on F ~. Thus we may assume L:=~2 on F ~, and we must  show they are 

equal on F. 

Now let gEF and hEF  ~. Since F p is normal 

~: (ghg-: ) = ~2(ghg-I ). 

Therefore 

t2 ( g - 1 ) t l  (g)L1 (h) = ~: (h)l,2(g-1)tl (g). 

For a fixed g this holds for every hEF' and this implies tha t  ~2(g-1)~1(g) is the identity 

(the elements of PSL(2, R)  commuting with any non-identity element form a one param- 

eter abelian subgroup, so cannot contain all of tl (F)). Thus ~: (g)=L2(g) for every gEF,  

as required. 

Thus it suffices to prove Theorem 2 for any normal, finite index subgroup of F. We 

may assume that  either F is the fundamental  group of a compact surface (homeomorphic 

to H/~k(F) for k = 1 , 2 )  or is a finitely generated free group (in which case n / t k ( F ) ,  

k=l ,  2 are punctured compact  surfaces, possibly different). 

3. P r o o f  of  Theorem 2 for cocompact  lattices 

In this section we will prove Theorem 2 assuming F is a surface group, so assume R : - -  

H/~I (F)  and R2=H/~2(F) are both compact  Riemann surfaces of genus p. 

The Dehn-Nielsen theorem implies the existence of a homeomorphism, (I), of H to 

itself (H includes the point at infinity) which intertwines the L1- and ~2-actions of F. This 

map either preserves orientation or reverses it, so by composing with a reflection if neces- 

sary we may assume that  r preserves orientation. Since composing ~2, and consequently 

(I), with a MSbius t ransformation doesn't  alter the problem we may also assume (I) fixes 

any three points of our choice on R.  This will be convenient below. This homeomor- 

phism can also be taken to be quasiconformal, but this is not important  here. However, 

it is important  to note that  4) is the lift to H of a homeomorphism ~: R:---*R2. 
We also need some facts about  the surfaces R1 and R2, which we take from [7]. On 

R:  we can find 2p geodesics a l ,  a2, ..., a2p such that  each a j  is a simple closed curve, such 

that  each a j  meets a j + :  in exactly one point, such that  there are no other intersections 
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Fig. 1. Geodesics on R1 

P 

Fig. 2. A fundamental  polygon 

and such that  S 1 - - R l \ ( a l  U...UO~2p) is simply connected. We can do this by first choosing 

any simple closed curves with these properties and then homotoping them to geodesics. 

See Figure 1. Let ~1:H--~R1 denote the covering map induced by ~I(F). A connected 

preimage ko~ -1($1) of Sx is a hyperbolic polygon with 8 p - 4  sides. It 's a polygon since it's 

bounded by geodesics, and is convex because each interior angle is less than ~r (this holds 

on R1 and kD preserves angles). Thus we obtain a tesselation T1 of the disk into identical 

convex polygons, and by PET1 we will mean one of these polygons. See Figure 2. Note 

that  each side of the polygon can be extended to an infinite geodesic in H which consists 

entirely of edges in the tesselation. Also note that  exactly four polygons meet at each 

vertex and adjacent angles at a vertex always sum to ~r. 

On R2 we choose geodesics f~l, .-., f~2p such that  ~j is freely homotopic to ~(cU) for 

each j .  It then follows that the ~'s satisfy the same intersection relations as the a 's  (e.g., 

see [7, pp. 379-389]). Thus we can define $2, ko2 and T2 just as above. Note, however, 
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that  T2 is not necessarily the image of T1 under (I). 

By conjugating with M6bius transformations if necessary we may assume that  

~k(i)ESk for k - - l ,2 ,  i.e., that  i is in the interior of some fundamental polygon for 

each tesselation. To evaluate the infinite sum in Theorem 2, we wish to group the ele- 

ments of F into "generations". We could do this using minimum length representations 

of elements in terms of the generators of the group, but we will take a more geometrical 

approach based on the tesselation described above. After dividing F up into a finite 

number of pieces and composing with some M5bius transformations which fix i we may 

assume that we are only summing over the ~/EF such that  I~k('y)(i)l<~C for k--1, 2. We 

will denote this subset of F by F. It will also be convenient to arrange that ~ (c~)=c~  and 

that  none of the edges of polygons under consideration are vertical. Thus each vertex of 

the tesselation corresponds to the crossing of semi-circles centered on the real axis (i.e., 

geodesics) which meet the axis at the points a, b, c, d labeled left to right. For each vertex 

v in the tesselation we single out the geodesic ray from v to b (the second from left) and 

call it a "red" ray. An edge of a polygon lying on a red ray is called a red edge. 

Let us note that  the choices of red rays are consistent between vertices, i.e., suppose 

a vertex Vl lies on two geodesics in the tesselation, 11 and 12, that  the red ray r l  associated 

to Vl lies along ll and that  v2 is another vertex of the tesselation that  lies on this red edge. 

Then v2's red ray r2 is a subset of r l .  To see why, suppose not. Then there is a geodesic 

13 of the tesselation which intersects ll at v2 and r2C/3. This means /3's left endpoint 

lies to the right of / l 'S  left endpoint and its right endpoint lies to the right of/ l 'S.  Thus 

13 must intersect 12. But this is impossible since it means the 3 distinct geodesics on R1 

represented by these geodesics on H all meet each other, contradicting the way the {aj } 

were chosen. Thus r2 Crl. In particular this means that  two red rays corresponding to 

distinct vertices are either disjoint or one is included in the other. If some geodesic were 

made up entirely of red ray, then that  geodesic would have to intersect other geodesics 

at arbitrarily small angles, impossible since there are only 8 p - 4  possible angles. Thus 

removing all the red rays from H leaves us with a dense, simply connected subdomain 

which contains no vertices of the tesselation. 

Let P0 be the polygon of T1 containing i. We can make the group into a graph by 

saying two elements 7, 7' are adjacent iff t I (~ / ) (P0)  and L1 (7')(Po) share a non-red edge. 

Next we show that  the graph is actually a tree, i.e., connected and without loops. Note 

that  if the polygons P1 and P2 share a non-red edge eo and rl  and r2 are the red rays 

associated to the endpoints of eo, then rl  U eo U r2 forms a path in H which separates P1 

and P2. Thus if P1, P2, ..., Pn is a path of distinct adjacent polygons (in the sense above) 

then Pn cannot be adjacent to P1 since it is separated from/)1 by rlUeoUr2. Thus there 

are no loops in the graph we have defined. 
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Fig. 3. T h e  red edges 

We label the identity in I" as the 0th generation and say ,~er is in the n th  generation 

if its tree distance to the identity is n. We denote the elements in the n th  generation by 

~n. If 7EGn then D("/) is the collection of elements in Gn+l which are adjacent to I' (the 

"daughters" of 7). 

Next we note that  the-tree structure induced by the other tesselation ~ is exactly 

the same. This is because �9 (thought of as a map from 1~ to itself) is strictly increasing, 

so if we take two intersecting geodesics in H,  map them via ~ and then deform them 

into the corresponding geodesics, the order on the endpoints is not changed (in fact, the 

homotopy does not change the endpoints at all). 

Given a polygon P in the n th  generation it shares exactly one non-red edge e0 with 

a polygon in the ( n - 1 ) s t  generation which we refer to as the "top edge" of P.  We can 

arrange for this name to be geometrically as well as combinatorially justified in that  P 

is in the bounded component of I t \ /0  where l0 is the geodesic containing eo. We say a 

polygon P is "below" one of its edges e if P is in the bounded complementary component 

of I t \ l ,  l the geodesic containing e. First note that  P can be below at most 2 of its edges. 

This is because any two such geodesics intersect (otherwise one separates the other from 

P)  and there cannot be three such by an earlier argument. Thus there are at most two 

such edges and if there are two they must have a vertex in common (same argument). 

Therefore one of the two edges lies in the red ray associated to the common vertex. Now 

consider P0, the polygon containing i. By breaking F into a finite number of pieces we 

need only consider polygons which are reached from Po by first passing through an edge 

of Po which/Do is above (obvious meaning). For each of its daughters Pi, the edge shared 

with P0 must be the unique non-red edge which Pi is below. Proceeding by induction 

gives the claim. 

Now to each 7 E F under consideration we will associate two open intervals h (~') and 

/2(7) on the real line such that  for k = l , 2  

"f,9" E g,.,, "/=/=9" >" Ik( '7)nIk(" I ' )  = .~ ,  (3.1) 
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E [Ik('7')]=llk('~)], (3.2) 

IIk(7) I ,-~ Im(tk('/) (i)). (3.3) 

Thus, these intervals are arranged in generations. Moreover 

E hS(o("/))hl-S(t2(7)) "~ E ]Ii('y)l*lI2('/)[ 1-*. 

Therefore it is enough to show the sum on the right converges if the embeddings 51 and 

~: are not equivalent. 

Now we will define the intervals and verify the three properties listed above. For 

convenience we take k = l ,  but of course k=2  is identical. Fix a "yE~ncF and let PE'I'I, 

be the corresponding polygon. Let e0 denote the edge which P shares with an ( n - 1 ) s t  

generation polygon. Orient eo so that  P is on its left and let v0 be the terminal vertex 

(the endpoint in the counterclockwise direction). Let a be the endpoint on R of the red 

ray passing through Vo. Now let Vl denote the other endpoint of e0 and let b be the 

endpoint on R of the red ray passing through vl. It 's easy to check that  a<b since the 

rays don't intersect and can't have the same endpoint on R (otherwise the corresponding 

geodesics would be arbitrarily close and hence intersect). We define I1(7)=(a,  b). Note 

that  I1(~) is just the interior of the accumulation set on R of the points ~1(7')(i) for 

those "y' descended from "y in the tree. 

Then (3.1) and (3.2) are clear from the definition and the fact that red rays cor- 

responding to distinct vertices either don't  interseet or lie on same geodesic. To cheek 

(3.3), note that  

b - a  >~ CIm(vl) i> CIm(~l('y)(i)), 

since P has compact closure. To prove the other direction, we first note that  

0 < Re(v0)-Re(vl)  ~< Cdiam(P) ~< CIm(o('7)(i)). 

Next, let 0o be the interior angle of P at v0 and note that  the red ray going from vo to a is 

at at least angle 0o from the vertical (measured in the counter-clockwise direction) since 

it makes an angle of 0o with the other geodesic ray passing through vo whose endpoint 

is to the left of a (see Figure 4). This implies 

Re(vo) -a  ~< C(Oo)Im(vo) ~< CIm(o(~)(i)) .  

Thus since b~Re(vl) ,  

b - a  <~ (Re(v1)-Re(vo))+(Re(vo)-a)  <~ CIm(o  ('y)(i)), 

9-935201 Acta Mathematica 170. Imprim~ le 29 avril 1993 
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Fig. 4. The boundary  intervals 

as required. 

We now show the sum converges. If we knew that  the polygon P corresponding 

to ")'EF was uniquely determined up to a Euclidean similarity by the sequence of num- 

bers {lIl(',/')l/lll(7)l:7'eD(-y)} then we would be done by the following argument: If 

[I1("/')1/111(")')[=]I2("/')1/112("/)1 for every ~ 'eD( ') ' )  then by the the above hypothesis the 

corresponding polygons PIET1 and/92 ET2 are just a translate and dilate of each other.  

But this means there is a Mhbius transformation mapping P1 to P2 which sends vertices 

and edges in P1 to the corresponding vertices and edges in P2. But this implies the 

surfaces R1 and R2 are conformal which contradicts our hypothesis that  /,1 and /'2 are 

not conjugate embeddings. Thus the two sequences of numbers are not the same. Hence 

strict inequality must hold in Hhlder's inequality applied to the two (finite) sequences 

(111(~ / / )1 )  s : (112( '~ / )1~  x - s  ' ,,/I 

a + , =  IZa('r)l ' b'r' \ ~ J  ED(3' )  

with the conjugate indices p=s -1 and q=(1-s)  -1. Thus there is an r  so that  

[,~...~ P "~ 1/p 1/q 
E a ~ , b T , < ~ ( i - e ) ~ _ . a ~ , )  ( ~ b q , )  <~l-e. 

So, 

I/,(~f')l*lI2(~')l 1-* ~ (1-E)II~(~)/*II2(~)I *-*. 
D(7) 

Moreover, given tl,/'2 the sequences {a~, } and {b.y, } which can arise in this way form 

a precompact family, so the c can be chosen to depend only on/'1 and t2. Therefore 

oo 

111(711"112("r111-~ <~ C ~--~(1-e) n < oc. 
p n=0 
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Fig. 5. T h e  po in t s  a, b, c 

We will not prove the claim in the previous paragraph. However, we will prove a 

slightly weaker result which is sufficient for our purpose. Let DI(~)=D(~/)  and D j ( 7 ) =  

{7 'ED(7")  for some ~ " e D j - l ( 7 ) } ,  i.e., Dj(~/) are the j t h  generation descendants of 7. 

LEMMA 3.1. For any 7EF, the numbers {111(7')1: 7 ' eD5(7 )}  determine the group 

~1 (F) up to conjugation by a Euclidean similarity. 

The proof of Theorem 2 follows just as above, except that  we break the sum over 

generations into 5 sums, depending on the value of the generation modulo 5. 

To prove the lemma, recall that  the sides of any polygon P of T1 are identified in 

pairs by elements of ~I(F). The set of all such side pairings for P generate the whole 

group, so it is enough to show these M6bius transformations are determined by the data 

in the lemma. Consider the polygon P~ of T1 corresponding to % let e~ be its top 

edge, and let e0 be the edge of P~ diametrically opposite e~. We will apply the above 

considerations to the polygon P which lies below eo. 

Suppose T is the Mbbius transformation identifying two edges el and e2 of P.  Orient 

el and let Vl be the initial endpoint so that  P is on the right as we move along el away 

from vl. See Figure 5. Let r t  be the half infinite ray starting from vl and which begins 

with the other edge of P with endpoint Vl. Let x, y and z be the first three vertices of 

T1 we come to along rl  after leaving Vl. Let a, b and c denote the endpoints on R of 

the red rays passing through x, y and z respectively. There are several cases depending 

on where el ties with respect to the top edge e0, but in each case note that  a, b, CEil(7) 

and their positions can be computed from the numbers {lll(q,')l: ~ 'eDb(~)} .  

We orient e2 so that  P is on its left and define v2 as above. Let r2 be the transverse 

ray at v0, but now chosen so that  it does not contain an edge of P.  We let X, Y, Z denote 

the first three vertices encountered and A, B, C the projections of these points onto R 

along red rays. Again we have A, B, CEII(~/) and their positions can be computed from 

the given information. But the side pairing map r must map a ~ A ,  b ~ B  and c ~ C ,  

and so is completely determined by these points. This completes the proof of Theorem 2 
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in the cocompact case. 

4. P r o o f  o f  T h e o r e m  2 fo r  n o n - c o c o m p a c t  l a t t i c e s  

We now turn to case when F is a finitely generated free group, i.e., H/~k(F),  k=l, 2, are 

finitely punctured compact Riemann surfaces. Unlike the previous case, the surface is 

not uniquely determined by the group. For example, the free group on two generators 

is the fundamental  group of both a sphere with three punctures and a torus with one 

puncture. Thus different embeddings of F do not arise simply from homeomorphisms of 

a single surface. The isomorphism (I)=~-1o~2 discussed in the previous section need not 

be induced by any homeomorphism of H to itself. In the previous section we associated 

an interval on the boundary to each 7EF.  We will do this again here, but the intervals 

must be replaced by more general sets. This arises because there may be collections of 

generators for F which are side pairings of some polygon for ~I(F) but not of any polygon 

for L2(F). 

Although we lose some geometrical intuition, we gain combinatorial simplicity be- 

cause the free group has no relations to worry about.  For example, there is an obvious 

tree structure on the group given by reduced words in the generators. 

A more serious problem is tha t  F contains parabolic elements. When we get to the 

part  of the proof were we want to say strict inequality must hold in H61der's inequality 

we will not be able to take r  uniformly for all 7 E F  because this fails for high powers 

of parabolic elements. Instead, we will have to argue that  the convergence or divergence 

of the sum over F is unaffected if we simply drop such terms. 

So suppose F is the free group on m generators. Then R I - - H / ~ I ( F )  is a compact  

Riemann surface of genus p~>0 with q>0  points removed and m=2p+q-1. We can find 

m non-intersecting simple curves on R1 with endpoints at the punctures which cut the 

surface into a simply connected domain S. These can be chosen to be geodesics, so S 

lifted to H becomes a 2m sided polygon with all of its vertices on the real line. We can 

choose m elements of ~I(F) which identify the sides in pairs, and these elements give a 

set of generators {gl, ...,gm} of F. See Figure 6. 

We make F into a tree in the obvious way by saying ~/and ~/i are adjacent if there 

is a generator gj such that  7=~1g~ =. Just as before we may assume there are no vertical 

edges in the tesselation and after breaking the group up into a finite number of pieces we 

need only sum over a "branch" F which has been normalized so ~k('~)(i)e [--1, 1] x (0, 1] 

for k = l ,  2 and 7 E F  (for tz this localization is clearly possible and for ~2 it will be justified 

later). For each 7 E F we have an associated polygon P with a distinguished "top" edge eo 

which is shared with a polygon of one lower generation. The edge e0 has two endpoints 
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Q e~ �9 Q 

R1 

Fig. 6. Geodesics on R1 

P 

e (P )  

Fig. 7. A "bad" polygon and a parabolic c~ 

a,b on R and we let Ii(7)=(a,b). Clearly (3.1) and (3.2) hold and 

Ira(L1 (7 ) ( i ) )  ~ CII1 ('7)1, 

but the reverse inequality does not hold with a constant independent of 7. This is because 

if ~1(7) is a parabolic element we can have 1Ii(7n)l~n -1 but Im(el(~n)( i ) )~n -2. See 

Figure 7. However, 

Im(~](7)(i))~ min 111(7')1. (4.1) 
7'eD(7) 

We leave this as a simple exercise for the reader (one way to do this is to note that the 

(hyperbolic) angle subtended by each side of the polygon at the image of i is invariant). 

We now wish to define/2 (V). It will not be an interval, but a finite union of intervals 

(the number of such intervals bounded independent of 7). For 7 6 F  let E~ c F  correspond 

to the reduced words in the {gj} which begin with the word representing 7. Then we 

define I2(7)={x6R: x is in the Euclidean closure of ~2(E7) }. If ~2=L1 then this agrees 

with the more geometrical definition given in the last paragraph (it may be helpful to 
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recall that  our groups act on the left, so if 7'6E~ then I1(7')ci1(7)). The point of this 

more elaborate definition is that  the generators {gl,.-.,gm} may not correspond to side 

pairings of any polygon for c2(F) so that  the geometrical definition doesn't  make sense. 

First we see why each 12(7) is a finite union of intervals. It is enough to do this when 

7 is one of the generators {gj} or their inverses, since every 12(7"/) is a Mhbius image of 

one of these (depending on the last letter in the reduced word for 7; this is because if 

7 ' = 7 . a  then I2(7')=~2(7)(I2(a))) .  Repeating our earlier argument we can choose a new 

set of generators {hl , . . . ,hm} for F which correspond to side pairings of some polygon 

for ~2(F). Let F ~ c F  be the reduced words in the {hi} beginning with the word for 

7. If we let 13(7) be the closure of c2(F~) on R, then our remarks above show it is an 

interval (i.e., a "base" for some polygon of which the {hi} are side pairings). Any 7 6 F  

now has a "g-representation" as a word in the {gj } and a "g-length" as well as a an "h- 
representation" and "h-length". Now choose M E N  so that  each hk can be represented 

as a word of length less than M in the {gj} and conversely. Thus for any element % 

"g-length" <~ M. "h-length" <~ M 2. "g-length". Thus if 7 has "h-length" greater than M 2, 

it has "g-length" greater than M, so lengthening its "h-representation" by adding a 

generator to the right of the word cannot alter the first letter of its "g-representation". 

So if 7 has "h-length" M2+1  and gj is a generator then either F~cEg~ or F.rAEgj =~.  
Thus ei ther/3 (7) C/2 (gj) or /3  (7) A/2 (gj) = 0 (except for endpoints). Thus /2  (gj) consists 

of the union of less than (2m) M2+1 sets of the form/3(7) ,  so is a finite union of intervals. 

The same argument shows that  each interval /3(7)  where 7 has "h-length" greater than 

M 2 is in exactly one of the sets I2(g~). Thus the sets {I2(7)} satisfy (3.1) and (3.2). 

Conformal invariance (as in (4.1)) also implies 

Im(~2(7)( i))~ min [I2(7')t. (4.2) 
7'6D(7) 

This argument also shows that the argument breaking F into a finite number of pieces 

which are "local" is correct. 

Next we note that  the embeddings ~1 and ~2 are determined by the lengths of these 

sets. To avoid problems with the parabolic elements we will define a second tree structure 

on F in which each element has infinitely many "daughters" and high powers of parabolics 

are entirely omitted. Fix 7 and consider the corresponding polygon P for el. Denote the 

"top" edge by eo (the unique edge shared with a polygon of lower generation). Denote its 

left and right endpoints by vl and v2. The vertex Vl corresponds to a puncture on R1 and 

a simple loop on R1 around this puncture (considered as an element of the fundamental 

group) corresponds to a parabolic element tl(O~) of el(F). Then /,1(70~7 -1)  is parabolic 

with Vl as its (unique) fixed point on R and (by taking (~-1 if necessary) we may assume 

that  7a  is a descendent of 7- See Figure 7. There is a corresponding parabolic element 



REPRESENTATION THEORETIC RIGIDITY IN PSL(2, R) 135 

/3 corresponding to v2. By taking powers (if necessary) we may assume a and t3 have the 

same "g-length", say r. Let D ( 7 ) = D T ( 7 ) \ { T a  , 7j3}, or more geometrically, D(7 ) are the 

elements corresponding to all the intervals {I1(7'): 7' EDT(7)} except for the ones on the 

far left and far right. 

Now define 

oo oo 
T1(7) = U { '7ak7-17" 7flk7-171: 7' �9 L)(7)} U U {70/k~'  7~k0t}" 

k=0 k=l 

The corresponding intervals {I1(7')}, 7 '6T1(7) ,  form a disjoint (except for endpoints) 

cover of I1(7) and elements in T1(7) can be enumerated so that  they satisfy 

1 C 
Cn 2 <~ 111(7, )1 (4.3) 

This is because JI1(TanT-17')I,.~Jll(7')l/n 2 for any 7 ' , - b ( 7 ) ,  as we shall see in some 

computations below. A similar construction appears in Beardon's paper [3]. 

T1 defines a new tree structure on a subset F (elements of the form 7 a  k and 7fl k are 

omitted). Let T j ( 7 ) = { 7 " e T l ( 7 ' )  for some 7 ' � 9  be the j t h  generation descen- 

dants of 7 and let Too(7)=[_Jj Tj(7).  Then 

LEMMA 4.1. For any s, 0 < s < l  there is a C independent o ] 7 � 9  such that 

< c 111(7')1s112(7')11- . 
E~ To~ (~) 

�9 LEMMA 4.2. I f t  1 and 52 are not equivalent and 0 < s < l  then there exists ~>0 in- 

dependent of 7 EF such that 

E 111(7')1~112(7')1I-~ ~< (1-r 
T1 (')') 

These easily prove the sum in Theorem 2 converges; 4.1 reduces to showing the 

sum over the subtree converges and 4.2 proves this via the geometric formula. To prove 

Lemma 4.1, note that  if ~'e9(7) then Im(t l(7)( i))<.C[Ii(7 ') l .  Similarly, (4.2) implies 

Im(~2(7)(i))<.C]I2(7')]. Thus for each 7 e E ~  we pick some element of 7 ' e D ( 7 ) .  Since 

each 7' is chosen only once, the inequality in Lemma 4.1 follows immediately. 

To prove Lemma 4.2 we will first show that  if the infinite sequences {111(7')1}, 

{112(7')1}, 7 'ET1(7) are equal then ~1 and 52 are equivalent. Fix some 7 " E / ) ( 7 )  and let 
/. , N 11 (7") = [X, y] and 2 ( 7 )  = [_Jj = 1 [x j, y j]. Our first step is to prove g = 1 and y -  x = Yl - x 1- 

We will assume that  the left endpoint o f /1 (7 )  is {0} so that  t l (a )  has the form 

Z 
 l(z) = 

a z + l  
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for some a>0.  An easy computation shows that  O(a  =) has the form 

Z 

naz + 1 

Therefore 

Thus by our hypothesis 

1 

n 2 , 
J 

and therefore each term is about this size�9 This is only possible if ~2(a) is also parabolic 

(otherwise they all decrease geometrically)�9 By conjugating with a translation and re- 

flection if necessary we may assume it fixes {0} and has its pole on the negative axis, 

i.e., 
Z 

e2(a) = T2(Z)-  A z + I  

for some A > 0. Thus 

J 

y - x  = ~ yj - x j  

Fixing everything except n, both sides are rational functions which agree at infinitely 

many points (the positive integers). Therefore, they are the same function�9 Since the 

intervals [xj, yj] have disjoint interiors and both sides must have the same poles we see 

N = I ,  ay=Ayl  and ax=Axl .  Since y-x=lI1(7")l=lI2(7")I=y1 - x l  we must have X : X l  

and Y=Yl. 

Thus for any 7 " E b ( 7  ) we have I1(7")=I2(7"). Now let P be the polygon associated 

to 7 and suppose two edges el and e2 are identified by an element of the group g. As in the 

last section this MSbius transformation is completely determined by its action on three 

points. For example, if we take three vertices of the polygon with el as its top edge, their 

positions and their images' positions are completely determined by {111(7')1: 7'  �9 T1 (7) }. 

Details are left to the reader�9 

Thus if tl and ~2 are not equivalent, we can apply the strict inequality in HSlder's 

inequality and deduce that  there is an e > 0  (depending on 7) such that  

111 (7')1~112(,'/)l 1-s ~< (1-~)lI1(7)ls]I2(7)11-~. (4.4) 
T~ (7) 
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To remove the dependence of e on 7 we will use the following argument. Let P0 be a 

fixed polygon for ~l, with "top edge" e corresponding to the generator or inverse generator 

gl, meaning that  if P00 E T1 is the base polygon, the polygon containing i, and if f is the 

edge of Po0 corresponding to e, then gl is that  generator, or that  inverse of a generator, 

which maps f to some other edge of P00- We translate and dilate so that  P0's "base" on R 

is [-1,  1]. Let P be any other polygon in the tesselation whose top edge also corresponds 

to gl and also rescale it so its base is [ -1 ,  1]. Then there is a MSbius transformation T 

from P0 to P which belongs to the one parameter family which fixes - 1  and 1. Let P '  

be a "daughter" of P0 and let P" be the corresponding daughter of P.  Then unless P~ is 

the far left or far right daughter, 1/C <~ [~-'(Zl)[/[T'(Z2)[ ~< C for zl,  z2 E P '  with a constant 

depending only on the size of the leftmost and rightmost intervals of P0 (Harnack's 

inequality). Thus up to Euclidean similarities, P" is only a bounded distortion of P', 
i.e., the P" ' s  which arise in this way belong to a compact family of polygons. Therefore 

the vectors {I1 ('y')} considered in (4.4) come from a compact family. In fact, we can think 

of generating them by taking a fixed collection of intervals, say {Ii('Y')} for some fixed 

7, rotating around ~1(~)(i) by a MSbius transformation, and dilating so the resulting 

set has total length 1. The "bad" case is when the endpoint of an interval is rotated 

to a point near cc and so one component of the vector is much larger than the others. 

The argument above says this case never arises for the elements in Too. The vectors 

{I2(~/)} occurring in (4.4) also arise from the same rotate and normalize construction 

although now we have finite unions of intervals rather than just intervals. However, if 

(4.4) holds only for small enough e then the vector {I2('Y')} cannot degenerate unless 

{I1(~/)} does, so these vectors also belong to a compact family. The sum on the left of 

(4.4) varies continuously over this family, so an e can be chosen which holds uniformly 

on the compact subset. Repeating this argument for each generator and its inverse, 

we see that  any polygon which is not a leftmost or rightmost daughter of its "mother" 

belongs (up to Euclidean similarities) to a compact family. In particular, this holds for 

everything in Tl(~/) (a special argument is needed for the elements of the form ~//3ka and 

?ak/3 but this is very similar, and uses the fact that  the estimate on the derivative used 

above actually holds uniformly except near one of I1 (7)'s endpoints). 

This proves Lemma 4.2, so we have now completed the proof of Theorem 2 in all 

cases. 

5. P r o o f  o f  T h e o r e m s  3 and  4 

First we prove Theorem 3. As in Theorem 2, it is enough to only consider surface groups 

10-935201 Acta Mathematica 170. Imprim6 le 29 avril 1993 
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and free groups. In the surface group case there is nothing to do because the inequality 

111(,~')1~112ffr')11-~ ~ (1-e)lI~('~)l~lI2(~r)l  1-~ 
-~'~D4(,~) 

(with a finite number  of terms) implies 

([I~ (~/)l~lI2(~')[l-~) 1-~ 4 (1-~  /2)111('~ )1(1-~)~112('~)1 (1-~)(1-~) 
"yt 6D4('~) 

if 5 is small enough (depending only on the number of terms in the sum). By 'dividing 

the group into generations and using the geometric formula as before we see the sum in 

Theorem 3 converges. 

In the free group case, HSlder's inequality is applied to an infinite sum so we need 

to be a little more careful. Let {an} be an enumeration of the lengths [11(7')1, 7'6T1(~/). 

As noted in the previous section these can be selected so 

1 C 
C n  2 <. an <. n-- ~ .  

Let {bn} denote 112(7')[ with the same ordering. We may also normalize so 

and we assume tha t  

an = 1, bn -- 1, 
n = l  n = l  

z . . , .  ) ano n ~ ( 1 - e  an bn = l - e  (5.1) 
n 

for some e>0 .  Now fix a large integer N and O<6<<.s/(s+3) small (both to be chosen 

below) and use HSlder's inequality with the conjugate indices p =  ( ( 1 - s ) ( 1 - 6 ) )  -1 and 

q = ( s + 6 - s ~ )  - I  to show 

/ \ 1/q / \ lip 
Z i s -1--s\1--6 [anOn ) ~ ( Z  a~ (1-6)q) I E  b(n 1-s)(1-6)p) 
n~N \n~N / n~N 

l/q / \ 1/p 

"n)N "n)N -- 

\ n ) N  

<~ C N - S / 2 .  
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Now choose N so CN-~/2<.r Thus 

~-'~: s ~ l - - s ~ l - - 5  (anb n ) +6/4. ~_.4(anO n ) ~ ~ s 1--s 1--6 

n n < N  

By choosing 5 small enough (depending only on N) and using (5.1) the first term can be 

made less than l - s / 2 .  Thus 

(ano n ) <~ 1 an 
n 

Using the geometric formula now shows the sum in the theorem converges and this proves 

Theorem 3. 

To prove Theorem 4 we group, as above, the intervals {Ii('~)} into nested generations 

and let Cn denote the collection of nth generation intervals such that 111(7)1~II2(7)1. 

Then by our estimate 

lll(7)l 1-~ ~< ~ IIi('v)Ir <I-~)/2 <~ (l-s) n. 
Cn nth generation 

E ~ F ~ = T \ E ~  and F : ~ , ~ = I  Uk>n Fk. Then Let En=[.)c~ I1(7), : ~ n = l  [.Jk>n Ek, 
E U F = T  since every point is in either infinitely many En's or Fn's. Also E can be 

covered by intervals satisfying 

~ [I1(~')11-~ ~< ~ (1-~) k < 0 ( 1 - r  n. 
k > n  k > n  

Thus d i m ( E ) ~ l - ~ .  The same calculation shows dim(/~(F))~l -5 .  Since E e C F  this 

proves Theorem 4. 

6. Representation of PSL(2, R) and SL(2, R) 

In this section we will review the definitions and basic properties of the irreducible, 

unitary representations of G=SL(2,R).  This is primarily for the benefit of the reader 

not previously acquainted with the unitary representation theory of SL(2, R). Two uni- 

tary representations (~r, ~/) and (~d, ~ )  are called equivalent if there is a unitary map 

J:7-/--.7-/r which intertwines the G-actions, i.e. Jo~r=~doJ. The representation (~r,7-/) is 

irreducible if there are no non-trivial closed invariant subspaces. The unitary dual of G, 

denoted G, is the set of equivalence classes of irreducible unitary representations of G. 

The unitary dual of SL(2, R) is known and consists of three parts: the discrete series, 

the principal series and the complementary series. 
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To describe this dual we will work with a conjugate version of G, namely 

SU(1,1) = { ( ~ - ~ & )  E GL(2, C) : ,(~,2-,/~,2 = 1} .  

Then G acts on the unit disk, D, and unit circle, T, by the MSbius transformations 

az+~ 
g ( z )  = 

Define 

( 7 ) }  { 0 
K=(geG:g(O)=O}= k(t?)= e_,0 : P e R  , 

and note that  any unitary representation (~r, 7/) of G is a representation of K by restric- 

tion. Say that  vET-/is K-covariant or n-K-covariant if 7r(k(O))v=einev for some integer 

n. We say v is K-finite if it is the sum of finitely many K-covariant vectors. The K-finite 

vectors are dense in 7-/as follows from the very well known representation theory of K.  

If (7r,7-/) is a unitary representation and if vl,v2E7-I then the function m(g)---- 

m,l,v2 (g)= (Vl, r(g)v2) is called a matrix coefficient of r .  One way of understanding 7r is 

to understand something about its matrix coefficients. Matrix coefficients between pairs 

of K-covariant vectors are particularly simple and useful. Suppose vj is nj-K-covariant, 

j = l ,  2. Then 
m( k( S1 )gk(t~2)) = e -in1 ol e-in2O2 re(g). (6.1) 

We have G=KA+K where 

~. sinh R/2 cosh R/2 

and we set A+={a(R):R>~O}. In terms of the function h introduced in Section 1, R-- 

- log  h(g). Because of (6.1) above, a matrix coefficient, m, between two K-covariant 

vectors is determined by the values m(a(R)) for R~>0. The matrix - I  is in the center of 

G, so ~r(-I) commutes with r(g) for all gEG. If n is irreducible then by Schur's lemma 

r ( - I )  must be a scalar and that  scalar must be either -4-1. This gives a division of 

into two pieces. The first piece, where - I  acts as +1, is the unitary dual of PSL(2, R). 

The discrete series, e d i s c ,  c o n s i s t s  of (equivalence classes of) irreducible representa- 

tions whose matrix coefficients are in L2(G). The results of this paper do not apply to 

discrete series representations, but we include some information on them for complete- 

ness. For each discrete series representation there is an integer k~>2 such that the matrix 

coefficient between any two K-covariant vectors satisfies m(a(R)),~Ce -kn/2 as R--*cr 
For given k there are precisely two such discrete series representations 7r~, one of which 



REPRESENTATION THEORETIC RIGIDITY IN PSL(2, R) 141 

has n-K-covariant vectors for n=k,k+2, k+4,.., and the other for n = - k , - k - 2 ,  
- k - 4 , . . . .  The action of r ( - I )  is by +1 or -1  according to whether k is even or 

odd. A more precise description of the discrete series is omitted (see [11], [14]). 

The spherical principal series is indexed by {sEC: Re(s)=�89 The representation 

~ acts on L2(T) by 

(T's (g)F)(e icp) : tdg -1 (eir ir ~F(g-  1 (e i~) ) ,  

or more concretely by 

_~ei~ +a } �9 

The representations 7r~ and 7h-8=Tr~ are equivalent. The matrix coefficient m(g) 
between any two K-covariant vectors satisfies 

m(a(R)) -= C §  

if s#  �89 and 

m(a( R) ) = CRe -R/2 +O( e-R/2), 

if s-~.- 1 The action of K on L2(T) is by (rs(k(9)F)(eiV)=F(e-2i~ Thus ~rs(-I)= 
rs(k(~)) is the identity and there are n-K-covariant vectors for all even integers n. In 

particular there is a K-invariant vector for each of these representations and this is why 

they are called spherical representations. 

If we use the G-invariant measure 4(1-x2-y2)  -~ dxdy on D, then L2(D) is a uni- 

tary representation of G under the action by translation. The Laplace-Beltrami oper- 

ator, A=(1-x2-y2)2(d2/dx2+d2/dy2), commutes with the action of G and hence its 

eigenspaces are preserved by the action of G. More precisely, the generalized eigenspaces 

which occur in the spectral decomposition of L2(D) with respect to A are themselves 

representation spaces for representations of G. The representations obtained in this 

way constitute the principal spherical series with rs being the representation on the 

generalized eigenspace of A=s 2 -  s. The A-eigenfunction of A corresponding to a func- 

tion F in L2(T) is given by (P~F)(z)=(F,r~(g)l), where g(0)=z. Since 1EL2(T) is 

fixed by K and since K is the stabilizer of the origin, the choice of g is immaterial. 

The map P~ intertwines the rs action of G on L2(T) to the translation action on the 

A-eigenspace of A. The map j~=p~-I p~ is unitary and intertwines the r~ and ~rl_s 

actions on L2(T). The map J~ is called the intertwining map and is given by J~(1)=1 

and Js(e:t:in~)=e :l:in~ 1-I~.~_-~ ( j+(1-s)) / ( j+s)  for n > 0 .  
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With two exceptions, the representations of the nonspherical principal series are 

indexed by { s E C: Re(s) = �89 s ~ �89 }. The representation zr' s acts on L 2 (T) by 

, a E(eiV) = (_~eiV+a)]_~ei~O+a[2S_lE -13eiV+ a /  7rs ~ 

Again, rl8 and ~r~_ s are equivalent. The matrix coefficient between any two K-covariant 

vectors satisfies 

m(a( R) ) = C+e-SR +C_e-(1-s)R +o(e-R/2), 

as R--~oc. The action of K is given by 7r'8(k(O))=e~~176 so that  there are n-K- 
covariant vectors for all odd n and 7 r ~ ( - I ) = - l .  

There are two representations of the nonspherical series corresponding to the index 

1 One of these acts by s--~.  

_~e,~, +a ] , 

on the Hardy space H2(T)  of boundary values of holomorphic functions. There are n-K- 
covariant vectors for n =  1, 3, 5 ... and the matrix coefficient between any two K-covariant 

II 
vectors satisfies m(a(R)),,~Ce -R/2 as R---*e~. The other representation, 7rl/2, can be 

given by the same formula as ~r'1/2 but acting on L 2 ( T ) O H 2 ( T )  or can be given, in an 

alternative realization, by 

rq/2 ~ aZ F (e i~~176 k-~ei~'+a 

acting on the conjugate of H2(T) .  This representation has n-K-covariant vectors for 

n = - l , - 3 , - 5 ,  . . . .  Otherwise it is similar to rr~/2. These two representations are called 

the boundary of discrete series representations. 

The spherical and nonspherical principal series and make u p  eprinc, the principal 

series part of the unitary dual. Principal series representations are characterized as 

having matrix coefficients which are not in L2(G) but which are in L2+~(G) for every 

e>0.  The principal and discrete series are necessary and sufficient to decompose L2(G) 
(itself a unitary representation of G) as a direct integral of irreducible representations. 

The spherical complementary series is indexed by { s e (0, 1): s r 1 }. The represen- 

tation % acts on the Sobolev space of functions on T with � 8 9  derivatives in L 2. 
7~ oo Specifically, rr, acts on 8 = {Y]~n=-or anein~ with the norm 

a e i~~ 2 ~ n-t j + ( 1 - s )  IE o ,=lool +E(lo l + o-ol  )II 
n = l  j ~ 0  
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The action is given by exactly the same formula as for the spherical principal series 

namely 

(~r~(g)F)(e ~) = Idg-l(ei§ 

The action is unitary with respect to the norm defined above. As usual ~r~ and ~1-~ are 

equivalent. The  action of K is just as for the spherical principal series, there are n-K- 
covariant vectors for all even n, and the matrix coefficient between any two K-covariant  

vectors satisfies m(a(R))~.,Ce -(1-~)n as R-- ,ec  if we take s e  (�89 1). The complementary 

~ 1 < s ~ 1. All the equivalence classes in G have series part  of G, Gcomp consists of r~ for 

now been described; i.e., G = e d i s c I I G p r i n c a e c o m p .  

7. P r o o f  o f  T h e o r e m  1 

In this and the next section we will use the notation ~1 ~ 2  to indicate that  the embeddings 

are equivalent and similarly for representations ~rl~r2.  If t l ~ t 2  then Theorem 1 follows 

from [6, Proposition 2.5], so we will assume ~1 ~t2  and prove tha t  ~rl o~1 ~7r2o~2. We first 

prove Theorem 1 in the case when lh =7r2. We denote our representation by 7r~ where s 
1 is as in the previous section (in particular, ~ < s < 1 if ~s is in the complementary series). 

We shall consider the representation on the Hilbert space 7-/.~. 

Let 1 represent the constant function in 7-/~ and let P be the orthogonal projection 

of 7-is onto the constants (more abstractly, this is the projection onto the 1 dimensional 

subspace fixed by the circle group K c P S L ( 2 , R ) ) .  Let F be a group and let ~:F--- 

PSL(2, R)  be a lattice embedding. The first step is to write the projection P in terms 

of 7r~ and ~. If we were working with all of PSL(2, R)  this would be easy since the 

projection is just given by averaging over all rotations of the circle. We want to write P 

as an average over elements of ~(F) and this requires more work. As before we consider 

h(g) = exp ( -d (0 ,  g(0))) 

for gEPSL(2,  R).  Now define 

P;  = C~ X :  M+~(t(~Y))rs(t(7)) 
"~EF 

where 
vol(PSL(2, R ) / t (F ) )  C S  ~ 

/psL(2,R) dg 
The definition of P~ makes sense even though M + ~ / I ( F )  because the sum does exist 

in a principle value sense. More important ly  to us, the sum converges absolutely when 

computing any matr ix  coefficient (P~v, w) and this is all we need. The construction of 

P~ is reminiscent of Pat terson 's  construction in [22]. We now state the following facts 

which we will use. 
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LEMMA 7.1. The projection P is the weak limit of the {P~} as s--*O. (In other 

words, (P~f,g)--~(Pf, g) for every f ,  gET-l,.) 

LEMMA 7.2. lim~__.o C~=O. 

LEMMA 7.3. There exists a dense set Vc?-l, such that for v l ,v2EV and gE 

PSL(2, R) we have 
1(Trs(g)(vl),V2)] • Chl-Re(s)(g), 8 5 1  (7.1) 5, 

1 (7.2) I(lrs(g)(vl), v2>] < Chl/2(g)d(O, g(0)) -- ChU2(g)log(h-l(g)), s = 5" 

The constant C depends on Vl, v2 and s but not on g. 

The most difficult of these is Lemma 7.1, the proof of which is not yet published. An 

analogous statement, adapted to the case where F acts on a homogeneous tree instead 

of on the upper half-plane, may be found in [8], Chapter II, Sections 7-9. The proof 

given there is a modification of the second author's original proof of Lemma 7.1. A 

much improved proof, due to the second author and Michael Cowling, is based on the 

following inequality, which is a dual form of Proposition 1.1 of [6]. Let F C_G be any 

lattice subgroup of any unimodular locally compact group. Let r and r be continuous 

compactly supported functions on G and let r  Ir Let r be any unitary 

representation of G and let A be the left translation representation of G on L2(G/F). 

Then 

[[r]r((r162162 ~< []r174162 

If 7-/is the space on which r acts, then A|  acts on L2(G/F)| ~/), and one 

proves the inequality by calculating ~*o(A|162 where ~:7-/-~L2(G/F,~/)  is given 

by 
= 

"yEF 

One obtains more precise information by considering (cf. [6]) the orthogonal decompo- 

sition of L2(G/F) into the constants and the functions of integral zero. In the present 

context F should be the free group, G should be PSL(2, R), r should be taken in a 

sequence of compactly supported approximations to h ~+~, and r should be a more or 

less arbitrary but fixed positive bi-K-invariant function of small support. One key point 

is that (r162 is asymptotically equal to a constant multiple of h~+~(x) as 

x tends to infinity, the constant depending on s, but approaching a limit as c decreases 

to 0. 

Lemma 7.2 is just a computation involving the well known asymptotics of matrix 

coefficients for K-finite vectors which is fairly straightforward when s is real (the functions 

in the integral are positive) but requires a little more care otherwise (the oscillation in 
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the two functions in the denominator cancels near infinity). Lemma 7.3 is also a standard 

result. We might point out that  if Lemma 7.3 held for all vectors in 718 instead of just 

on a dense subspace then Theorem 1 would be immediate. This is because this and 

the assumption that  7ro/,1~-,Tro/,2 would imply that  the matrix coefficients of ~r are square 

integrable, contradicting the assumption that  r is not in the discrete series. 

Now suppose we have two inequivalent embeddings /,1 and /,2 of F as a lattice in 

PSL(2, R)  and suppose that  there is an intertwining operator J between the representa- 

tions ~r8o/,1 and ~r~o/,2, i.e., J:  7/s--+7/8 is unitary and 

J-Zo(~r~o~l)oJ = ~r~ o/,2. 

We will derive a contradiction. Observe (with p~=p~l), 

<P~(J(vl)), J(Vl)> = C~ Z h~+~(/,l('7))<~rs~ J(vl)> 
~EF 

-- C~ ~ h~+e(/,, (~/) )( g-Zo(rso/,l ('~) )J (vl), vl) 
"yEF 

= C~ ~ hS+~(/,l(~/))<r~o/,2(7)vl, Vl>. 
"~EF 

Now take v=vl in Lemma 7.3 and note 

I(P~( g(vl)), J(Vl)>{ <~ IC~IC ~ hae(')+~(/,l("/))hl-Rr 
y~F 

<~ IC~ {C ~ hRr (7) )hl-Rr )log(h-l(/,2("/) ) ) --* 0 
,'f~F 

since C~-*0 by Lemma 7.2 and the sum is bounded by Theorem 3. (This is for the case 

s=�89 For Re(s) r189 Theorem 2 suffices.) Therefore 

<P(J(v)), g(v)> = 0 

for a dense set of vectors in L2(T).  But this means (w, 1>=0 for a dense set of wE 

L2(T),  an obvious contradiction. Thus if/'1 and/,2 are inequivalent embeddings of F, no 

intertwining operator can exist. 

Given two different representations ~rl and ~r2 we associate to them s~ and s~. as 

in the descriptions of principle and complementary series representations. Relabeling 

if necessary we may assume Re(sz)~>Re(s2). Then the proof given above goes through 

exactly as before (in fact if Re(s2)<Re(s l )  we don' t  even need Theorem 2). 

For the sake of completeness, we will sketch the proof given in [6] for the case/,1 ~/,2 

but IrlOOTr2. In this paragraph we let G--PSL(2,  R)  and FcG a lattice subgroup. We 
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let ,~:G---~L2(G/F) be the quasi-regular representation given by A(y ) f ( x )= f (y - l x )  and 

note that  we can write 

% = lej  nvTd#(T) 

where 1 denotes the action on constants and G is the unitary dual of G. Given unitary 

representations (~r, H~), (0, Ho) of G let Int(~-, 0) denote the space of all intertwining 

operators between r and 0, i.e., V: H,~---*H o and Vor=ooV. Since a unitary, nonscalar 

operator always has nontrivial invariant subspaces, we see that  a representation ~ is 

irreducible iff In t ( r ,  ~) has dimension 1. Cowling and Steger show that  there is always 

an injection J---~Qj from Int(~]r,  0It) to Int(77, A| given by the formula 

[Qjv](x)  = o ( x ) J ~ ( z )  -1,  v c It,~, x ~ G / r .  

If ~r is an irreducible, unitary representation of G which is not in the discrete series they 

prove that  r ~ ~-| for any nontrivial T E G. This involves comparing the L p properties of 

the matrix coefficients of ~ and ~ |  and using the Kunze-Stein phenomenon. This result 

implies that  the injection Int(~[r,  ~lr)--*Int(~r, A| must actually map into Int(~, 1| 

Since 77 is irreducible on G this space has dimension 1, thus d im(In t ( r l r ,~z l r ) )= l ,  and 

so ~rlr is also irreducible. Now suppose r l  and v2 are two representations not in the 

discrete series and that  7711r ~r21r.  Since ~rllr and ~21r are irreducible, the arguments 

mentioned also show (after relabeling if necessary) that r l  ~ ' |  for any nontrivial 

T. Since In t (~l l r , r21r)  is nontrivial, and it injects into Int(~l,A| we must have 

~1 c 1@~r2. Since ~r2 is irreducible, this implies 771 ~ r2 ,  as required. 

8. T h e o r e m  1 for  d i s c r e t e  se r ies  a n d  SL(2 ,  R)  

Theorem 1 fails for discrete series representations. If ~1 and ~2 are in the discrete se- 

ries, then r l  ~ and r2 ~ are square integrable representations of F, hence continuously 

reducible. Any square integrable representation of F is characterized up to unitary equiv- 

alence by a single real number, its continuous dimension, and the continuous dimension 

of ~joLj is the product of the formal dimension of r j  and the volume of G/Lj(F) (see 

[9, Theorem 3.3.2] or [12, Lemma 1]). Since the volumes of G/~t(F) and G/~2(F) are 

determined by their Euler characteristics, which in turn are determined by the abstract 

group F (and hence equal), the two representations r l  ~ and ~2 ~ are equivalent if and 

only if 7rl and ~2 have the same formal dimension. The two discrete series representa- 

tions rn  + and ~ have the same formal dimension and otherwise the formal dimensions 

of distinct discrete series representations are distinct. 
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Theorem 1 remains true for SL(2, R)  with a few obvious exceptions. Suppose 51, ~2 

are embeddings F-+SL(2, R). If 51 ~ 2  then 7rl o51~772o52 iff 7rl ~-,7r2 by the results in [6] 

sketched above. There is a 2 to 1 projection P: SL(2, R)  --*PSL(2, R)  and composing with 

this projection gives two embeddings ~1 and ~2 of F as lattices in PSL(2, R).  If ~1 r then 

the conclusion of Theorem 2 holds and the argument of Section 7 shows r 

(the estimates and lemmas are same for SL(2, R) as they are for PSL(2, R)).  Finally 

we must consider the case when ~1~2 but ~1~52. That  this is possible is easy to see. 

For example, if a free group, F, on m generators is embedded as a lattice in PSL(2, R),  

then it can be lifted to a lattice in SL(2, R) in 2 m ways, since each generator can be 

lifted in 2 ways and there are no relations to worry about (the resulting group is a lattice 

since it is a subgroup of finite index in the lattice P - I ( t ( F ) ) ) .  A surface group can be 

lifted in 2 2g ways, where g is the genus of the surface. Here one needs to worry about 

whether the relation is lifted to the identity or its negative. However, since these surfaces 

are orientable they have even Euler characteristic, and this implies the latter case never 

O c c u r s .  

So suppose ~1~2 but ~ i ~ 2 .  Note that  r'-={-~er: 51(~)--52(~)} is a subgroup of 

index 2 in F (it contains all words in the generators with an even number of each genera- 

tor). If 7h and 7r2 are distinct representations (unitary, irreducible, not in discrete series) 

then by [6] 7ho~l]r,~-Tr2o~2[r,, and hence they are not equivalent on F. Now suppose 

7rl =Tr2--~r. If 7r is one of the representations of SL(2, R)  that  factors through PSL(2, R) 

then of course it restricts to equivalent representations on tl and e2. So assume 7r does 

not factor through PSL(2, R).  Thus it must be in the principal series and of the form 

~r:(g)F(e iv) = ( - ~ e i ~ + a ) l - ~ e i ~ + a l 2 ~ - l F  \_~e i~  +a ] 

as described in Section 6. Obviously r on F' and by the results of Cowling 

and Steger this restriction is irreducible, so dim(Int(Tr]~(r,) ,r] ,2(r,)))=l.  If there were 

an intertwining map between 7ro51 and 7rot2, it could not be scalar since the operators 

7r0t1(7) and ~ro52(7) differ for some 7 (here we are using the fact that  51(~/)=-~2(7) for 

some 7EF  and the explicit formula for ~rs). But this operator would also intertwine the 

representations restricted to F ~, so dim(Int(Tr]~dr,), 7rl~.~(r,)) ) > 1! This is a contradiction 

so 7rot~ ~7ro52. These remarks can be summarized as 

THEOREM 5. Suppose tl, 52 are lattice embeddings o f f  in SL(2, R)  and that 7h, 

7r2 are unitary, irreducible representations of SL(2, R) not in the discrete series. Then 

7rl or1 ~7r2 or2 iff rl  ~7r2 and one of the following hold: 

(1) ~1~52. 
(2) ~1 factors through PSL(2, R)  and ~1 ~Z2. 
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