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1. I n t r o d u c t i o n  

Let n be  a na tu ra l  number .  We shall s tudy  linear recurrence sequences 

Um+n=l /n_ lUm+n_l -~- l ln_2UrnTn_2-~ . . . - -~ l ]OUm,  m = 0 , 1 , 2 , . . . .  (1.1) 

Here we assume tha t  un-1,  ..., u0 are e lements  of  C with  Uor We assume moreover  

t h a t  the  initial values u0, ..., u s -  1 of our  sequence have l un_  11 + . . .  + l Uol > 0. Let  

G(z) z" ~ z "-1 (1.2) - -  n - - I  - -  - "  - - / / 0  

be the  compan ion  po lynomia l  of the  recurrence (1.1) and  write 

T 

a(z)= [I(z-~,)o, (1.3) 
i = 1  

with dist inct  numbers  a l ,  ...,c~r. We call n the  order  and  r the  r ank  of the  recurrence 

(1.1). Before we s ta te  our results,  we shall recall a few facts abou t  l inear recurrence 

sequences. An excellent account  on this topic  m a y  be found in the in t roduc to ry  Chap t e r  C 

of Shorey and  T i j deman  [13]. In the  sequel we quote  some of the  theorems  collected there.  

Let (Um)~=o be a sequence satisfying relation (1.1) with vor  O. For i = 1 ,  . . . ,r let (~ 

and Q~ be determined by (1.2) and (1.3) where the numbers ~1, ..., ~r are distinct. Then 

there exist uniquely determined polynomials f i  E Q(uo,  ..., u , _ l ,  uo, ..., U ,_ l ,  ~1, ..., ar)[z]  

of degree ~ Q ~ - I  ( i = l , . . . , r )  such that 

um = ~ f ~ ( m ) ~ ,  m = o, 1, 2, . . . .  (1.4) 
i : l  
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Conversely, let ~1, ...,c~r be distinct complex numbers and ~1, ..., ~r be natural numbers 

with ~'~i~x Qi =n.  Define Vo,. . . ,v ,-1 by (1.3) and (1.2). For i = l , . . . , r  let fi be a poly- 

nomial of degree less than ~ .  Then the sequence (um)~=o defined by (1.4) satisfies 

recurrence relation (1.1). 

The a-multiplicity U(a) of a sequence (um)~=o is defined as the number of indices 

m such that  

We define the multiplicity U as 

u .  = a .  (1 .5)  

U=supU(a). (1.6) 
11 

The well known theorem of Skolem-Mahler-Lech says the following. 

I f  (Um)~=o is a recurrence sequence with infinite O-multiplicity, then those m for 

which um =0 form a finite union of arithmetic progressions after a certain stage. 

As an immediate consequence we obtain: 

I f  a recurrence with companion polynomial (1.3) generates a sequence with infinite 

O-multiplicity, then ai/(~j is a root of unity for some indices i , j  with i ~ j .  

Therefore, we call the recurrence sequence (um)r nondegenerate if for each pair 

i , j  ( l<~ i , j~ r ) ,  i r  the ratio c~i/c~j of the roots of the companion polynomial (1.3) is 

not a root of unity. An easy consequence of the above quoted facts is as follows. 

U I f  ( m)m=O is a nondegenerate periodic linear recurrence sequence, then there exists 

a number d and a root of unity a such that 

u,~ = da  m. (1.7) 

There is a large amount of articles in which multiplicities of sequences (Um)m~=0 

as in (1.1) are studied. They mostly deal with nondegenerate binary recurrences, i.e. 

recurrences of order 2. Kubota  [6] proved that  in case n = 2  and if all terms um belong 

to a number field K,  then U is bounded from above by a number depending only on the 

degree d of K.  Beukers and Tijdeman [1] in this case established the bound 

U ~ 100 max{d, 300}. (1.8) 

For general order n there are some partial results on bounds for the multiplicity in the 

literature. E.g. there exist certain bounds for the case where one of the roots ai  of the 

companion polynomial is dominant. We cannot give all details here. We refer the reader 

to Chapters 1-4 of Shorey and Tijdeman [13] and the extensive amount of references 

given there. 

Evertse [3] in the algebraic case and Evertse, GySry, Stewart and Tijdeman [5] in 

general proved: 
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Let (Um)~=o be a nonperiodic nondegenerate linear recurrence sequence in C. Then 

there are only finitely many pairs o/integers l, m with l r  and 

=urn. (1.9) 

This implies in par t icular  t ha t  a nonperiodic nondegenerate recurrence sequence has 

finite multiplicity. 

I could not  find in the  l i terature any upper  bound  for the  multiplicity of a non- 
u oo degenerate  nonperiodic  sequence ( m)m=o of a rb i t ra ry  order  n t ha t  holds wi thout  any 

restr ict ion on the  sequence.(1) It  is the purpose  of  this paper  to  establish such a bound  

in the  case when the terms um of the sequence are algebraic. Let  K be a number  field 

with 

[ g : q ]  = d .  (1.10) 

We assume th roughou t  the paper  tha t  

~0, . . . , / /n--l ,  U0, -.-, Un--l, O~I, -.., OLr ~ K. (1.11) 

Moreover we define 0~=~J(OL1, ..., (~r) to be the  number  of  prime ideals in K ocurr ing in the  

decomposi t ion of  the  ideals ( a l ) ,  ..., ( a t ) .  I f  the  polynomials fi  in (1.4) are all constant, 

then a recent result  of Schlickewei [10] on the  number  of  solutions of  S-uni t  equat ions 

implies tha t  
U ~ (4(w+d)d!) 2~s(n+l)~'(~+d)e . (1.12) 

We can now give a similar bound  for the general case. 

u oo THEOREM 1.1. Let (  m)m=o be as in (1.1). Let a l , . . . , a r  be defined by (1.2), (1.3). 

Suppose that we have (1.10), (1.11). Suppose that (Um)~-o is nondegenerate. Then we 

have 
U(0) ~< (4(0J+d)d!) ~'~ ~'(~+d)s. (1.13) 

As for the  multiplicity we obta in  

THEOREM 1.2. Let the hypotheses be the same as in Theorem 1.1. Assume moreover 

that (Um)~=o is nonperiodic. Then we have 

U < (4(w+d)d!) 2"~ ~'(~+d)6. (1.14) 

(1) Several months after this paper was written, A. J. van der Poorten and H. P. Schlickewei proved 
results of a similar type as those given in the current paper, applying p-adic analysis. In the meantime 
these results have appeared (Zeros of recurrence sequences. Bull. Austral. Math. Soc., 44 (1991), 215- 
223). However, the method of proof of the current paper has the advantage of allowing generalizations 
to higher dimensions. 
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In view of (1.4), it is clear that  in proving these reults, we have to study equations 

~-~fi(rn)a'~ : O, (1.15) 
i=1 

where 

f i ( z )  �9 K[z], i = 1, ..., r, (1.16) 

and where ~ l , . . - , a r  are nonzero elements in K such that  for each pair i , j  (l<~i,j<~r) 

with i ~ j  

c~i/aj is not a root of unity. (1.17) 

We write 

and 

deg fi = Qi-  1 (1.18) 

r 

1) = k. (1.19) 
i----1 

We shall derive Theorems 1.1 and 1.2 from 

THEOREM 1.3. Suppose that we have (1.10), (1.16), (1.17), (1.18), (1.19). Then 

equation (1.15) has not more than 

( 4(w +d)d!) 2"~ d'(~+d)~ (1.20) 

solutions m E Z. 

It should be pointed out that  the numerical constants in (1.13), (1.14), (1.20) are 

somewhat arbitrary. No particular care was taken to optimize them. Apart from the fact 

that  this is the first general result of this type,(2) the significant feature of our theorems 

is that  the bounds are rather uniform, as they depend only upon w, but  not upon the 

particular primes involved. Moreover the bounds do not depend upon the coefficients of 

the polynomials f i (m) .  With such a dependence we would be "far out of bounds", as 

in the proof we use an induction argument, and here we have no control at all over the 

coefficients that  appear in an equation (1.15) in the induction hypothesis. In fact, these 

coefficients are the main troublemakers in our proof. 

The method we apply is as follows. Let S consist of the set M ~ ( K )  of archimedean 

primes of K together with the finite primes corresponding to the prime ideals in the 

decomposition of the (c~). Thus we have 

ISI -< d+w. (1.21) 

(2) Cf. t he  foo tno t e  on  the  p rev ious  page.  
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Equation (1.15) is almost an S-unit equation, as it will turn out that  hypothesis (1.17) 

guarantees that  the powers c ~  strongly dominate the polynomials fi(m). This follows 

from a theorem of Dobrowolski [2]. However to get in this context uniform estimates, we 

can only compare the powers a m with monomials m l with coefficient 1. So if we write 

equation (1.15) as 

al xl +...-[-aqXq - - ~  0 (1.22) 

where the xi are understood as being terms of the type mlc~ m and where the ai corre- 
Z ' 

spond to the coefficients of the polynomials in (1.15), we may t ry  to apply the method 

that  was successful in counting solutions of S-unit equations of the shape (1.22). These 

were recently treated by Schlickewei [9], [10]. To count the solutions, in [9] as well as in 

[10] large solutions x~ of (1.22) are covered by the quantitative p-adic Subspace Theorem 

(Schlickewei [7], [8]) which in turn generalizes W. Schmidt's pioneering result [11]. 

There remain solutions that  are small as compared with the height of the coefficients 

a~. In [9] and [10], these are treated with a gap principle and so finally one gets a result 

that  is uniform in the hi. I was not able to establish a gap principle for (1.22) in the case 

where the xi are no more S-units but are of the shape rnla m with monomial factors rn 1 

of positive degree. 

For such equations I can give a counting argument only in the special case al . . . . .  

aq--1. (In fact, this is done in Theorem 1.4 below.) However, there is a device to deal with 

this situation. We just have to take q solutions x : ,  ...,Xq of (1.22). Their  determinant 

will be zero and this is an equation we can handle. With this respect the author owes 

credit to Evertse, GySry, Stewart and Tijdeman [4]. The determinant argument was 

picked up from this paper. 

The equation de t (x : , . . . ,Xq)=0 then will be treated with the quantitative p-adic 

Subspace Theorem. The main problem consists in finding a way back from this equation 

in x : ,  ...,xq to a relation in a single vector x. This is done in Lemma 4.1 (Sections 4 

and 5). 

It should be pointed out that  the method developed here certainly can also be applied 

to S-unit equations. So, we have now an argument to count the number of solutions of 

S-unit equations that  does not need a gap principle for the small solutions. The price 

we have to pay, however, is that  we get bounds for (1.22) that  involve the parameter q! 

instead of the q we obtain with the gap principle (cf. the bounds in (1.12) and in (1.14)). 

Nevertheless, the main burden of the proof has to be carried by the quantitative 

p-adic version of W. Schmidt's Subspace Theorem. In that  context we give a result that  

is crucial in our proof and that  might be of independent interest. 

We denote by M(K)  the set of places of K.  For v E M ( K )  let I Iv be the associated 

absolute value, normalized such that  on Q we have I I v=l I (standard absolute value) 
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if v is archimedean, whereas for v nonarchimedean ]p[,=p-1 if v lies above the rational 

prime p. Writing d~ for the local degree [K. :Q, ]  we put ][ ]]v=-] ]~*/a. 

Let S be a finite subset of M(K)  containing the set of infinite places M~(K) .  We 

call an element x E K an S-integer if 

]]x]]v ~< 1 for each v ~ S. (1.23) 

Given x=(x l ,  ..., xl+l)E K ~+1 we define for v e M ( K )  

f (]x~]2+...+]X,+l]~) 1/2 if v is arehimedean 
Ixl  / maxl~<i<~l+l [xi]~ if v is nonarchimedean 

and put Ilxllv= Ixl d /d. We define the height as 

and the S-height as 

H(x)= H ]]x]]. (1.24) 
vEM(K) 

Hs(x)  = i-[  llxllv. (1.25) 
yES 

We are interested in solutions in S-integers of the equation 

Xl +. . .+xl+1 --- 0. (1.26) 

THEOREM 1.4. Suppose I~2. Assume that S has cardinality s. Let ~>0. Then the 

set of solutions of equation (1.26) in S-integers xa, ..., xl+l satisfying 

H Ilxlll- "'" Ilx'+lll~ < Hs(x)l-~f (1.27) 
yES 

is contained in the union of not more than 

to = 2(l+ 1) s [(4sd!) 23,'d's'~-2] (1,28) 

proper subspaces V1,..., Vto of the l-dimensional linear space V defined by equation (1.26). 

I wrote this paper in fall 1989, when I was visiting the department of mathematics of 

the University of Colorado. I would like to thank the department, and in particular Pat  

and Wolfgang Schmidt for their hospitality. It made my stay in Boulder most enjoyable. 
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2. The quantitative Subspace Theorem 

As indicated in the introduction, the basic tool in proving our results is the quantitative 

Subspace Theorem in diophantine approximations. If L(x)=L(xx, . . . ,  xt) is a linear form 

with coefficient vector ~ E K l we define 

IILII~=II~II,, and H ( L ) = H ( c ~ ) .  

The following lemma is the main theorem of [8], except that  in [8] we require K to be a 

normal extension of Q. In [10] (Corollary 2.2) we derived a slightly more general version, 

where K is allowed to be an arbitrary number field. For the convenience of the reader 

this will be quoted now. 

LEMMA 2.1 (Quantitative Subspace Theorem [10]). Let K be a number field of 

degree d. Let S be a finite subset of M ( K )  of cardinality s. Suppose that for each 

y E S  we are given l>~2 linearly independent linear forms L~ ~), ..., L~ ~) in 1 variables with 

coe.~cients in K .  Let 0<5<1 .  Consider the inequality 

< U(f ) H H IIL  )IIolI II ~ 
yES i=1  

There exist proper subspaces 7"1, ..., Tt~ of K t with 

tl ~- [ ( 4sd!) 2aStd' sS $-2] 

(2.1) 

(2.2) 

tl satisfies such that every solution f~EK l of (2.1) either lies in the union (Ji=l Ti or 

H(f~) < max{(/!) 9/~, (v) 9ts(U:)2/~ H ( L  i ) (v e S; i  = 1, ..., l)}. (2.3) 

Let U be the l dimensional subspace of K t+l defined by the equation 

xl  +x2 +... +xl+l = O. (2.4) 

To study equation (2.4), we apply Lemma 2.1 and obtain 

LEMMA 2.2. Let S c M ( K )  be as in Theorem 1.4. Let 0 < 5 ~ 1 .  There exist proper 

subspaces U1, ..., Ut2 of U with 

t2 = (l+ 1) s [(4sd!) (2.5) 

with the following property. Every solution x = ( x l ,  ..., xz+l ) E K  l+1 of (2.4) satisfying 

H llxlll" "'" llzt+lllv <~ Hs(x ) l -~ '  (2.6) 
vCS 
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xi is an S-integer for each i, 1~<i~</+1, 

t2 either is contained in the union Ui=l Ti or has 

H(x)  ~< l lsz'(d!)2 /~. 

(2.7) 

(2.8) 

Proof. We consider the linear forms L1 (x ' )=Xl ,  ... , L t (x ' )=x t ,  Lt+l(X')---x 1 -~... + X  l 

in x ' = ( x l ,  ..., xz). Notice that  any solution of (2.4) satisfies 

L l + l ( X t ) = - - X l + l  �9 

In view of (2.6) we obtain 

I I  ItLl(x') l l  . . . .  IIL,+l(X')llv <~ Hs(x) '-'~. (2.9) 
v~_S 

We now divide the solutions x of (2.4) into classes. Given vCS  and x with (2.4) define 

iv by 

IIx,,,l lv= max {l lx, llv}. (2.10) 

Let g=~((iv)~es)  be the set of solutions x giving rise to the tuple (i~)ves. There are not 

more than 
( /+1)  s (2.11) 

classes ~. 

We restrict ourselves to solutions x in a fixed class ~. Write Iv = {1, ..., l +  1} \ {iv} 

(v E S). Then the definition of our forms Li and (2.9) imply 

H H llLi(x')llv ~< Hs (x ) - t -~"  (2.12) 

Notice that  in view of (2.4) we have 

Ilxllv = IIx'llv for v nona~chimedean 

and 

tlx'llv ~< Ilxllv ~< (20dv/~dllx'llv 
For our forms Li we obtain 

(2.13) 

for v archimedean. (2.14) 

whereas 

[[L~lIv=l, i=l , . . . , l ,  y e s  (2.15) 

[[Ll+l[[v ---- 1 for v E S, v nonarchimedean (2.16) 
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we get from (2.18) 

If we assume that 
H(x ' )  ~/2 > (2l) z/2 (2.20) 

is bounded by 

YI I I  IILi(x')ll, 
~cs i~r~ IlLillvNx'll- < Hs(x ' ) - l -~/2"  (2.21) 

Since our points x'  have S-integers as components, we have Hs(x ' )~>H(x ' ) .  Thus 

we may apply Lemma 2.1. In conjunction with (2.19), (2.20) we may conclude that there 

a r e  

t3 = [(4sd!) 235'~'~B4~:2] 

proper subspaces T1, ..., Tt3 of K t containing the solutions x t of (2.21) with 

H(x ' )  > max{(2/) 1/2, (l!) ls/~, l 1sIs(d!)2~6 } = l lszs(d!)2/~. (2.22) 

The subspaces T1, . . . ,T t3 yield proper subspaces U1, ..., Ut3 of the solution space U. Al- 

lowing the factor ( l+1)  ~ from (2.11) for the number of classes E, the assertion follows. 

LEMMA 2.3. Let K be a number field of degree d. Let D ~  I. Then the number of 

one-dimensional subspaces of K having a basis vector x which satisfies 

H(x)  ~< D (2.23) 

2(2d+ 7)(l-1) D2d(t-1). (2.24) 

This is essentially Lemma 5.1 of [10]. It is proved there using Lemma 8B of Chapter 1 

of W. Schmidt [12]. 

Proof of Theorem 1.4. We combine Lemma 2.2 with Lemma 2.3. By Lemma 2.3 the 

solutions of (2.4), (2.6), (2.7) with H(x)<~l lsls(d~)2/~ are contained in the union of not 

more than 
2(2d+7) ( l -  1) 136/2 ds (d!)2/~ 

[ILz+lllv = l a€ for v archimedean. (2.17) 

Combining (2.12)-(2.17) we see that any solution x in our class E satisfies 

1-I 1-I Ilni(x')[Iv ~< (21)U2Hs(x,)_t_~. (2.18) 

On the other hand (2.15), (2.16), (2.17) imply that 

max g ( L i ) = l  1/2. (2.19) 
l<~i<<.l+l 
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proper subspaces of U. Using the bound (2.5) for the number of subspaces covering the 
large solutions, we see that every solution of (2.4), (2.6), (2.7) is contained in the union 
of not more than 

(l+ 1) 8 [(4sd!) 235'd'Se4~-~] +2(2d+7)(l-1)13612ds(d!)2/a 

proper subspaces of U. But this is smaller than 

2(l+ 1)8 [(4sd!) 237'd~s6~-2] =to. 

LEMMA 3.1. 
of unity. Then 

[ loglogD~3~ lID 

j 

This is the main result of Dobrowolski [2]. 

LEMMA 3.2. 
of unity. Then 

3. On heights 

Let K be a number field of degree D > 1. Suppose that (~ E K* is not a root 

(3.1) 

Let ~ be an algebraic number of degree d. Assume that ~ is not a root 

H(1, (~) > (1+2-14d-1)1/1~ (3.2) 

Proof. This follows at once from Lemma 3.1, upon noting that for (~EQ we have 
H(1, c~)~2 and upon taking D=lOd otherwise. 

LEMMA 3.3. Let ~ be an algebraic number of degree ~ d  that is not a root of unity. 

Let ml ,  ra2, m3, k be integers with ml  .m2.m3~O. Then 

U(1,(ml~kolma~(l.-~-2-14d-1)'rna'/lOdl?T~l[-'k'[m2[-'k'. (3.3) 
kmu / / 

Proof. Let T be the subset of M ( K )  such that Ha[[v>l for vET.  Then we have 

H(l ' ( - -~2)kam3)>~,~eT  (m~l)kamal  = eleXT (~-~2)kl~H(1'area) 

= v~e T ( -~2 ) k v H (1, ~ - m a ) (3.4) 
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However, for any subset R of M ( K )  we get 

ml  -~2 < H ma~{1, IIm~lM" I-[ m~{1, IIm~ll.} = Imlllk"lm211kl. 
vEM(K) vEM(K) 

Thus 

and we infer from (3.4) that  

k (-m22) v <~lmlm21lkl ~l=vem~(K)\T ml k 

Using Lemma 3.2, we obtain the assertion. 

Let r > l  be a natural  number. Suppose we are given nonzero numbers a l ,  ..., ar in 

a number field K of degree d, such that ]or at least one pair i , j  with i ~ j  (l<~.i,j<<.r) 

a i / a j  is not a root of unity. Let 01,--., 0r be natural numbers with 

01 + . . . +  or = k + r .  (3.6) 

Suppose that  for each i (1,.<i,.<r) we have a sequence o fa i  nonnegative integers kil, ..., ki~ 

with 

0 <~ kil < ki2 < ... < ki~ = Oi-1.  (3.7) 

Given an integer m, define the vector x (m) by 

x (m) = (m~l' ~ 7 ,  ..., m ~'~' ~ 7 ,  ..., m~r~ ~ ,  ..-, m~~  ~ ) .  (3.8) 

Thus x (m) lies in (a l+ . . .+ar ) -d imens ional  space. Write 

q = al  +.. .  + a t .  (3.9) 

Then (3.6) and (3.7) imply 

q ~< k+r.  (3.10) 

Consider a sequence of integers ml ,  ..., mq-1, m having 

m i ~ 0 ,  i = l , . . . , q - 1 ,  m l < 0 ,  m > 0 ,  ml<<....<<.mq-1<~m. (3.11) 

Put  

q! = l .  (3.12) 

Let z be the vector in/-dimensional space whose components are the summands in the 

Laplace expansion of the q x q-determinant with rows x(ml), ..., x(m~ -1), x (m). 
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LEMMA 3.4. 

Then we have 

Suppose r > l .  Assume that (3.11) is satisfied. Write 

M = max{lmll ,  Iml}. (3.13) 

H(z) > /M-4k( l+2-14d-1)  M/l~ (3.14) 

Proof. We assume without loss of generality that  a l / c ~  is not a root of unity. 

Writing z=(z l ,  ..., zl) we get upon choosing any two components zi, zj of z with iy~j 

H(z) ~> H(zi ,  zj) -~ H(1, z j / z i ) .  

Let zi be the product of the elements in the main diagonal of the matrix with rows 

x (ml), ..., x (mq- 1), x (m). For zj we choose the product of the elements in the main diagonal 

from row 2 down to row q - 1  multiplied with the element rn k~l ~ in the lower left corner 

and the element ml  k ~  c ~  ~ in the top right corner. Then we get 

Z"~J ~- ( o Q ~ m l - - m ' ( - - ~ )  \OLr ] 

We infer from (3.6) and (3.7) that  ]k l~-k~]<~2k.  Moreover (3.11) and (3.13) imply 

tm~ - m ]  ~>M. The assertion now follows from Lemma 3.3 applied to the vector (1, zj/z~). 

LEMMA 3.5. Suppose r > l .  Let z be defined as above with integers ml ,  . . . , m q - l , m  

satisfying (3.11). Let S be the union of the set of infinite primes of K with the set of 

finite primes dividing at least one of al ,  ..., c~r. Suppose that 

m > 225d3k312. (3.15) 

Then we have 

1-I Ilzlllv ... IIz ll  < H(z) 
yES 

Proof. Using (3.6)-(3.11) and the definition of z we obtain 

1-[ ]]Zl]]v-.. HZlIIv ~ M k21, 
yES 

where M is defined in (3.13). On the other hand, Lemma 3.4 implies that  

H(z) 1/2/> M-2k(142-14d-1)M/2~ 

Therefore (3.16) is satisfied if 

M log(1 +2-14d -1) > 2k21 log M. 
20d 

This in turn holds certainly true if 

m > 22~ log m 

and so in particular if we have (3.15), and the lemma follows. 
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4. Subspaces again 

We will now apply the facts proved in Sections 2 and 3 to the equation 

r 

= o. 
i----1 

We assume here that  

(4.1) 

r > 1. (4.2) 

Throughout this section, in contrast with (1.17), we will only suppose that  there exists a 

pair i , j  with i ~ j  such that cq/(~j is not a root of unity. We assume moreover throughout 

this section that the number N(O) of solutions mEZ  o] (4.1) is finite. 

To derive our upper bound (1.20) for N(0), we may assume that  N(0)~>5. Then, 

there exists an integer m0 with the following property. 

The set of solutions m < mo of (4.1) has cardinality ~> 1N(0), and 
(4.3) 

the set of solutions m > m0 of (4.1) also has eardinality /> �89 

We may rewrite (4.1) as 

A(m+mo) 7 = 0. 
i = 1  

Therefore, putting gi(m)=c~~ we get an equation 

E g'(m)am = 0 (4.4) 
i----1 

that is of the same shape as (4.1). However, writing N'(0) for the number of solutions 

m E Z  of (4.4) we clearly have N'(O)=N(O), but (4.3) is now replaced by 

the set of solutions m < 0 of (4.4) has cardinality ~> 1N'(0), and 

the set of solutions m > 0 of (4.4) also has cardinality ~> �89 

So it will suffice to study equation (4.4), where we have mo=O. In detail (4.4) reads as 

bzlmklla~+...+bl~,lmkl~'la'~+...+b,.amk'~lo~m+...+br~, mk"",'a m =0 ,  (4.5) 

where bll, ..., b1~1,..., brl, ..., br~ are certain nonzero numbers in K and where the cri and 

the kij are as in (3.7). We treat the equation (4.5) as an equation in quasi S-units, where 

S is defined in Lemma 3.5. In view of our reduction (4.3), it will suffice to estimate either 
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the cardinality of the set of solutions with m < 0  or the cardinality of the set of solutions 

with m > 0. 

Let x (m) = (m k~ c~'~ , ..., m k ~  ~'~ , ..., mk~ arm, . " ,  m k ~  c ~  ) be the solution vector of 

(4.5) corresponding to m. Recall the definition of q in (3.9). The solutions x (m) of 

(4.5) are contained in a subspace V of K q of dimension q - 1 .  Therefore any q solutions 

x (toO, ..., x (m~-O, x (m) of (4.5) are linearly dependent. Given x ('~1), ..., x (m~-D, x (m) de- 

fine z=(Zl ,  ..., zz) as in Section 3. Then we get 

zl +.. .  +zz = 0. (4.6) 

Let 

Pu t  

M0 = M0(al ,  ..., a ~ ) =  set of prime ideals in K occurring in the 

decomposition of any of the ideals (c~), i -- 1, ..., r. 
(4.7) 

S--Moo(K)UMo.  (4.8) 

If K has r l  real embeddings and r2 pairs of complex embeddings, then I M ~ ( K ) I = r l  +r2. 

Consequently we get 

IS{ = r l  +r2 +w, (4.9) 

where w=w(t~l , . . . ,a r )  is the cardinality of the set Mo defined in (4.7). If we study 

equation (4.6) with S as in (4.8) and ask for solutions Zl .... , zl satisfying the analogue 

of condition (1.27) in Theorem 1.4 with 5=  1, with l + l  replaced by l and I having the 

value l=q!, we see that  the number of such solutions is bounded by 

t4 = 2(q!) '~+r'+r2 (4(rl +r2  +w)d!) 23~q' d!4(l~l +r2-}-tM)6 (4.10) 

LEMMA 4.1. Suppose r ~ 2  and q>~3. There exist 

t5 = qt4 T 225 d3k312 (4.11) 

nonzero vectors (d~),.. . ,  z(j) "~(J) •(J) ~rKq ( l ~ j ~ t 5 ) ,  each not proportional to 

the coe]ficient vector (bll,...,blal,...,br1,...,bra~) in (4.5) with the following property. 

Either each solution x (m) of (4.5) with m < 0  or each solution x (m) of (4.5) with m > 0  

satisfies at least one o-f the equations 

d(i) ~ k l l  r _L ~_ ,,,1(i) ~,~kla 1 ~ m  A_ ..l_rl(i)aq~krl #.~w't .j_ -.I- r ~'rtkrar Olm ~ O~ 
1 1 " "  ~i V'"T~Ial H6 U l  T'"~rl ''~ ur ~'"--~rar ''~ r 

Proof. To simplify the notation we write (4.5) as 

i = 1 ,  . . . ,  t5 .  

(4.12) 

alXl+. . .+aqxq:O,  (4.13) 
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where al.....aq~tO. Given q solutions x (m'), ..., x(mq - ' ) ,  x (m) of (4.13) it is clear that  we 

have x~ m,) x (m') ,.. 

=0.  
Xl mq-1) ... X(q m' - ' )  

We expand this determinant with respect to the last row and get 

x{ '~) i : - + ' " + ( - 1 ) q - l x ( q m )  ~ ~ I =0 .  (4.14) 

. . . . . .  X q _  1 

The idea of proof is now as follows. Suppose we have fixed solutions x (ml), ..., x (mq-~) 

of (4.5). Expanding the determinant factors in (4.14) we obtain an equation 

q 

m) =0, (4.15) 2.., x~(1) ... x~(q_l) 
i = 1  ~'i 

where, for each i (l~<i<q), Ti runs through the bijections between { 1 , . . . , q - i }  and 

{1,..., q}\{i}.  Assume that our superscripts rnl, ..., rnq_l, m satisfy conditions (3.11), 

(3.15) of Lemma 3.5. We will see later on that  then all such x (m'), . . . ,x(m~-l),x (m) are 

also solutions of at least one equation out of a fixed set of not more than t4 equations of 

type 
q 

Z x l m )  Z _(m,_,) x (ml) =0, l<~j<~t4. (4.16) di,ri (1) ..... "rl (q--1)Xri  (1) "'" rl  (q- - l )  
i=1  rl  

Our goal is to prove, that we may pick x (m~), ...,x(mq -~) such that for each j ( l~<j~t4)  

the coefficient vector (al, ..., aq) in (4.13) and the coefficient vector 

~ 1  , 1(Jr) ..... Tl(q--1)  Vl(1) " " X r l ( q - - 1 ) ' ' " ' ~ _ .  r q,'rq(1),...,'rq(q--1) "rq(1) " " a ;Vq (q - -1 ) )  
Tq 

in 4.16 are linearly independent. Actually there may occur situations, where we cannot 

find such x(m~), ..., x(mq -~). This is the reason, why the assertion of the lemma is slightly 

more complicated. 

We start by considering the equation 

zl + . . .+z t  = 0 (4.17) 

with l=q! and study solutions of (4.17) that satisfy the hypotheses of Theorem 1.4 with 

5= �89 Theorem 1.4 says that there exist t4 vectors (d~ j ) , ' ' ' ,  d0)~t j (1 ~ j  <t4) each of which 
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is linearly independent of the coefficient vector (1, ..., 1) in (4.17) such that  any solution 

of (4.17) under consideration has for at least one j (1 <~j<~t4) 

d(J) - - ' ( J )  =0 .  (4.18) 1 Z l ~ ' " + a t  zl 

It is clear that  we may suppose here moreover that  for each j (l~.<j,.<t4) there exists a A 

with 

l~<A~<l having d ( j )=0 .  

We fix the vectors (d~ j), ...,dl j)) once and forever and relabel them as (d! j) . ) where 

the subscripts ix , . . . ,  iq run through the different permutations of 1, ..., q. Before we start 

studying whether we can find appropriate vectors x (ml), ..., x (m~-l) such that  (4.16) and 

(4.13) are independent equations, we need some further notation. We denote by (d! ~ 

an arbitrary fixed vector among (d (j) ) (l~<j~<t4). Let x (m!~ , , (o) , �9 , il,...,i q - ... X (mq-1) be solutions 

of (4.5) with rn~ ~ ...,m~~ 1 to be specified later. Given i with l<~i<~q we introduce the 

operator D} ~ by writing 

E~ (O) (~q't~O--) 1 ) X ( g n ~  O, ) 
~i0-, (1) ..... "rl (q-- 1)~Ti (1) "'" vi(q-- 1) 

( xl . . . .  i+l 

= D} ~ i : : 

~k ~q--l) x~q.--I 1 ) _(q--l) 
... ._ a,i+ 1 

( X~ 1) "" x(ql) / 

= D} ~ i ! , 
~kX~ q - l )  X(q q - l )  ] 

1) 

x ( q - 1 )  (4.19) 

~ i + l  "'" 

_(q-2) _(q-2) x(qq-2) 
xi--1  ;~i+1 "'" 

(4.20) 

( xl 1) 41)_1 . . . .  j + l  

= D!  ~ ! : : 

"J . . . .  C71 

= D!  ~ i : , 

,,3 \ x~ q-2) "" x(q q-2) i,j 

where for the sake of simplicity, in the matrices we have used the superscript (j) instead 

of (m~ ~ ( l~ j~<q-1 ) .  The subscript i at the last matrix in (4.19) indicates that  the i th 

column is deleted. Moreover, given i with l<~i<~q and j with j # i ,  l<~j<~q we write Tij 

for a bijection between {1, ..., q -2}  and {1, ..., q} \ {i, j}. We define the operator D! ~ by 

x-".(o) ( . j  o) ) _(m~o)) 
a . .  x 2--. w,n~(1) ..... ~s(q-2) hal)  ""~nj(q-2) 

"rl 5 
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where the summation in (4.20) goes over all bijections between { 1, ..., q - 2 }  and { 1, ..., q} \ 

{i, j}.  The subscript i, j at the matrix in (4.20) indicates that the i th and the j t h  column 

are deleted. In a similar manner we define for pairwise different numbers il, ...,in in 

{1,...,q} x~ 1) . . .  X~  1) \ 
n ! ~  ' : : ] (4 .21)  

~1~.. .~ n X?-n) X(:-n) / 
"'" i l  ~...,in 

We shall first study equation (4.16) for a single coefficient vector ~d (~ i ,q- , (1) , . . . j ' i (q--1)) l  <~ i<~q 

arising from Theorem 1.4. 

Remember that  ed (~ ~ and the coefficient vector (1, 1) in (4.17) I i , ' r l  (1)  . . . . .  r i (q--1)} l~i<~q " '"  

are linearly independent. Therefore we may suppose without loss of generality that  either 

(i) there exists an i (l~<i~q) such that d (~ - 0  for all bijections T~ from i,~(1) ...... ~(q-1)- 
{1, ..., q -  1} onto {1, ..., q}\{i},  but (d~~ (1> . . . . . .  , ( q _ l ) ) l ~ i ~ q ~ ( O ,  . . . ,  0), 
o r  

(ii) for all i (l~<i~<q) there exists "r~ such that "t(~ -~0 but there exists t* i , ' r i (1)  . . . . . .  i ( q - - 1 )  7 -  , 

an io (l~<i0~<q) and ~:io having d/o,r~o(D . . . . .  rio(q_l)=0. 
We first treat alternative (i). This will be also a warm-up for alternative (ii). Assume 

without loss of generality that 

and 

d (~ = 0 for all vq, (4 .22)  q , r q ( 1 )  . . . . . .  q ( q - 1 )  

d(O) -~ n (4.23) 1 , 2 , 3 , . . . , q  7 -  v .  

Let m~ ~ be any nonzero integer such that (4.5) is satisfied and let x (m~~ be the cor- 

responding solution vector. Since m~~162 we have x~m~~162 We next want to find a 

suitable value m (~ We distinguish two alternatives: 

Either any solution x (~) of (4.5) with re#O, m ~ m ~  ~ has 

d(O) x~m~~ ~_d(O) (m~ ~ (m)=0.  (4.24) 1,2,3,. . . ,q--2,q--l ,q - -  1,2,...,q--2,q,q--1 Xq--1 Xq 

Our choice of m~ ~ and (4.23) imply that (4.24) is a nontrivial equation for x (m) that  is 

certainly independent of (4.13), since q ~> 3. 

Or there exists m>~m~ ~ m~O such that (4.24) does not hold. We may then choose 

m~~ m~ ~ m~ ~ # 0 such that (4.24) does not hold for m =  m (~ (4.25) 

Now suppose that for f < q - 1  we could choose nonzero integers m~~ ..., m (~ having 

m~ ~ ~m~  ~ <. . .  <~ m~ ~ (4.26) 

12--935202 Acta Mathematica 170. lmpr im6 le 3 0 j u i n  1993 
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and 

/ r) (~ ~ i r  i =  1,..., f .  ~l,2,... ,q--i 

\ . . .  4 )̀ ) . . . . .  q ,  

As for a possible value ~,(0) "~ we again distinguish two cases. 

Either  we have 

(4.27) 

,~(o) x ('~(j~ x ('~~ x (m) = 0  (4.28) ~ ' * 1 , 2  ..... q - f - l , r  ..... r  r ' " "  r162  
r 

for all m>/m (~ m # 0 ,  where r runs through the bijections from {1, ..., f + l }  onto 
~(m) 

{ q - f , . . . , q } .  (4.28) is an equation in x (m), that  implies only the components * q - I '  

..., x (m). Since f < q - 1 ,  in fact not all components of x (m) do occur. However the coeffi- 

cient of ~(m) in (4.28) is -~q-f 

( X~ 1) ... X(q 1) ) 

D (~ i : 
1,2 ..... q--f k X~ f) "'" X(q f) 1,2 ..... q--f 

By our choice of m~~ m (~ and by (4.27) this coefficient is nonzero. Therfore (4.28) 

is an equation for x (m) that  is independent of (4.13). 
(0) >~ (0) _(0) ~ such that  (4.28) does not hold true for m =  Or there exists mr+ l ~ m f  , in f+ l~U 

m(0) Then we may continue the procedure. It will stop at least if we reach f = q - 1 .  In f+l" 

that  case, given m~~ ..., m~~ (4.27) will hold true for i-- 1, ..., q -  1. But then we are in 

a comfortable position: with this choice of m~ ~ ..., m~~ 1 we look at the corresponding 

equation (4.16). Here x~ m) will have a nonzero coefficient, whereas by our assumption 

in alternative (i) x (m) will have coefficient equal to zero and so equation (4.16) will be 

independent of equation (4.13). 

5. P r o o f  o f  L e m m a  4.1 (continued) 

After the warmup in Section 4 with alternative (i), we will now treat the more fun 

alternative (ii). To illustrate the method, it seems to be appropriate to first do things 

backwards and after that  only to start with the construction of parameters rn~ ~ In 

dealing with alternative (ii) we may suppose without loss of generality that  

d(0) # 0  but d (~ =0 .  (5.1) 1,2,...,q-- l,q 1,2,...,q--2,q,q--I 
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In fact this simply means that  on the one hand we assume in alternative (ii) that  io--1, 

and that  on the other hand we reorder, if necessary, the variables with subscripts 2, 3, ..., q. 

Using the notation introduced in (4.19)-(4.21), equation (4.16) reads as 

~,-(m)n(~ ~ : = 0 .  (5.2) 
,=1 \ xlq-1) x(:-l) 

(Here we assume for the time being that  solutions x(m~~ x(m~ ~ have been chosen.) 

Now (5.2) is a linear equation in x (m), and we distinguish two possibilities: 

Either equations (5.2) and (4.13) are independent. Then we are in good shape. 

Or equations (5.2) and (4.13) are linearly dependent. In that  case we obtain, com- 

paring the coefficients of z~ '~) and X(q m) in (5.2) and (4.13) 

• ~ \~i.: ) • ~ \~i~1) =0 (5.3) 
1 " '"  q 

Now (5.3) is a linear equation in x(m(~ ~ Again we distinguish two alternatives: 

Either equation (5.3) for x(m(~ ~ and equation (4.13) are independent--it  will turn 

out, that  then we are in good shape. 

Or (5.3) and (4.13) are linearly dependent. In this case we compare the coefficients 

of x I and of x 2 in (5.3) and in (4.13). The coefficient of x I in (5.3) is 

. . .  

i �9 , ( 5 . 4 )  

" '"  q l  

whereas x~ m~jl) has the coefficient 

_ ~ . ( o )  : : _ n ( 0 )  : : ( 5 . 5 )  
=l=al z~ q,2 

~a~-1,2 ~?-~) ~(:-~) ~?-~) x(: -~) �9 "" 12 " ' "  q2 

Combining (5.4) and (5.5) with (4.13), we get 

• 1 7 6  

�9 " ql  x~  q - 2 )  12 

X~ 1) . . .  "T(q 1) ( 5 . 6 )  

_ ~..(o)( ~ : ) = o  
~allJq'2 \ xl q-2) x(q -2) 

"'" q2 
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, ( 0 ) ,  ( m ~0_) 2 ) 
Now, (5.6) may be interpreted as an equation in X~l mq-2J,..., Xq . Again there are two 

possibilities: 

Either equations (5.6) and (4.13) are independent. It will turn out again, that  then 

our problems are settled. 

Or (5.6) and (4.13) are proportional. In this case we compare the coefficients of ,_(o), (m~%) (%%) 
x~ '%-2' and x 3 in (5.6) and (4.13). x 2 has in (5.6) the coefficient 

( X~ 1) ... X(q 1) ) 

_ ~ , - , ( o )  : : 

-I-a2 tL1/J'-q,l,2 X~ q-3) X(q q-3) 
$ 

"'" q12 

(5.7) 

The coefficient of x 3 in (5.6) is 

0 
:t=a2alD(?~ 3 i : =l=alaqD1,2, 3 : x (q-3) 

q" 3) / 3) 
"'* q13 "'" 

( x~l) 

- -  2 , ~ ( 0 )  i 

-t-al Llq'2'3 k x~ q-3) 

"'" x(ql)i / 

�9 ." x(q q-3) /q23 

Since equations (5.6) and (4.13) are proportional, we get using (5.7) and (5.8) 

123 
(5.8) 

(x~,)~ ... ~(1)): +~2~ n(o) (~1)~ ... ~(1)): 
+a3a2alD~?~'2 \ x lq_3  ) x(q -3) 2~1"~'q'1'3 \ x ~  q-3) x(q-3) 

"'" q12 "'" q13 

~-a2alaqD~~ : - ^ 2 n ( ~  ! : = 0. : I a 2 ~ l  J--q,2,3 

�9 .. 123 ." q23 

(5.9) 
Let us review what we have done so far. In a first step we went from (5.2) to (5.3). 

The second step led from (5.3) to (5.6) and in the third step we reached (5.9) starting 

with (5.6). 
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After  i steps with l<~i<~q-2 we obta in  an equat ion 

:kaiai-1 ~ n(O) : : - . .  U l L I q , I , 2 , . . . , i _ I  

" ' "  q , l , 2 , . . . , i - - L  

( xi" ) 
q _ a i _ l a i _ 2  ^ _ r~(O) i i 

�9 '" r  ..... i ~ Z i  q - i )  ... X (q - i )  / 

i - 1  
2 

- b E  q - a i - 1  ... a j +  l a j a j - 1  ... a l  
j = l  

n(o) : : 
X ~ q , l , 2 , . . . , j - l , j + l , . . . , i  

X l  q - i )  "'" Xq ~- i )  q,1,2 ..... j - - l , j + l  . . . . .  i 

1,2,3,...,i 
(5.10) 

= 0 .  

(o) m(O) _ ~ . ( o )  ( m ~ ) _ (  2 ) 
~- - l -aq-3aq - 4  "'" tLl aqal ,2 , . . . ,q-  l,qXq ~ q - 1  

:kaq_3 ... alaqd~~ ) ..... q-2,q,q-lx~m-! ~ x(m(2~ 

(cf. (4.19)-(4.21)).  But  for tunate ly  we have (5.1). Therefore  the coefficient of x~ m(2~ 
in (5.11) vanishes. We conclude tha t  (5.10) for i = q - 2  gives an equat ion  between the  

components  x~ m(2~ -(m(2~ o f x  (m(2~ Therefore  this equat ion eitheris independent  of ""~ ~ q - - 1  

(4.13) or it is trivial. In the la t ter  case we ,nay conclude tha t  in par t icular  the coefficient 

of-(m(2~ in (5.10) equals zero. So we obta in  �9 bq - -  1 

( m r ) _  a14~ ..... q-3, -l,q2 q- aq_ 3 . . .  t~ l aqa l ,2 , . . . ,q ,  2,q_l ,  q Xq 2= aq_  2 .** 

q-3 (5.12) 
2 _ Ao) (m~~ = 0" -b E :haq-3 ... a j+lajaj-1 ... Ul~q, 1 ..... j-l,j+l,.. . ,q-2,q-l,j Xj 

j = l  

But  in view of (5.1) and since al ... aq~O, the  coefficient of x~ m~~ in (5.12) is nonzero. 

~(m~~ x~ mi~ Therefore  Moreover (5.12) is an equat ion tha t  involves only x~ m~~ , 

(5.12) finally is independent  of (4.13). 

For i = q - 2 ,  (5.10) is an equat ion satisfied by x (m(~~ However the component  x~ m(2~ 
can only occur  in the summand  

_ _ n(o) ! 
-]- a q - 3 a q - 4  ... ~ l ~ q J J l , 2 , . . . , q _  2 

\ 2) x(:) 1,2 ..... q-2 (5.11) 
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We axe now in a position to roll back and to make the appropriate choice of the 

parameters m~ ~ 

We begin with equation (5.12). Either all solutions x (m) of (4.13) also satisfy (5.12). 

Since (5.12) and (4.13) are independent, Lemma 4.1 follows at once. Or we may choose 

rn~~ ~0  such that x(m~ ~ is a solution of (4.13) but not of (5.12). With this value ofm~ ~ 

we enter (5.10). Either for all m>~m~ ~ m~O equation (5.10) with i - - q - 2  holds true 

with x(m~ ~ and x (m). The definition of m~ ~ implies that  this equation is independent 
~(0) ~,~(0) m~O)50 such that  x (m(2~ is a solution of equation (4.13). Or there exists an -~ ~'"~ , 

of (4.13) but (5.12) is not satisfied for i = q - 2  with x (m~~ and x (m(~~ 

Now suppose that  for f < q - 1  we could choose nonzero integers m~~ ..., m (~ having 

m~ ~ ~< ... ~< m (~ (5.13) 

such that  

equation (5.12) does not hold for x ('q~ (5.14) 

and such that  for each j (2~j~<f)  

equation (5.10) is not satisfied for i = q - j  

with the solutions x ('~~ ..., x(m~ ~ of (4.13). 
(5.15) 

Then for a possible value m (~ f+l  we distinguish two cases. Either for all m~>m (~ m e 0  

with x (m) satisfying (4.13) the tuple x ( ' q  ~ ..., x(m~ ~ x ('~) gives a solution of (5.10) for 

i = q - f - 1 .  The definition of m~~ m (~ implies that  this is an equation in x (m) that  
, (o) x 

(o) >~ (o) _(o) 50  such that  x~m1+ I; is a is independent of (4.13). Or there exists ml+ I :~m I , ",tl+ I 

solution of (4.13) but the tuple x(m~ ~ , (o) , .... xtms+ I) does not solve (5.10) for i=q-f-1. 
We may continue in this way and possibly this process stops only at f=q-1. Then 

we have m~~176 I and the vectors x(m~~ ~ do not satisfy equation (5.3). 

Therefore in this case equation (5.2) (as equation in x (m)) is nonproportional to equation 

(4.13). 

So far we have dealt with a construction that  treats only a single coefficient vector 

d ~ . ) arising from Theorem 1.4. However we need parameters ml ,  ..., mq-1 that  may 
- - i  1 ~ . . .  ~Zq / 

be of use simultaneously for all t4 coefficient vectors we get from Theorem 1.4. For 
( (J )  " (l~<j~<t4)in this purpose we proceed as follows. To choose ml ,  coefficients di~ ..... iq) 

alternative (i) allow any choice m ~ 0  where x (m) satisfies (4.13). As for the coefficients 

appearing in alternative (ii) there are two possibilities. 
(d(JO) Either there exists J0 (1 ~<J0 ~ t4) such that  no choice of m~ j~ is possible for ,  ~ ..... iq). 

Then the lemma follows at once, since this even implies that  all solutions x (m) of (4.13) 

with m e 0  satisfy moreover one single equation which is independent of (4.13). 
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Or we can find for all j (1 ~ j  ~t4) a parameter  m~ j) that  fits together with (d (j) 

in the same way as described above for m~ ~ and (d! ~ . ) Then we choose for each j 

the parameter rn~ j) minimal (which is possible as our hypothesis implies that  (4.13) or 

(4.5) respectively have only finitely many solutions) and we put 

ml  = max rn~ j). (5.16) 
) 

Since the m~ j) are chosen minimal, we may conclude that  any solution x (m) of (4.13) 

with re<m1, rn~O satisfies one at least of the relations (5.12). Notice that  we get not 

more than t4 such relations. Consequently, if in (5.16) we have m l > 0  , then the first 

alternative of the lemma follows by using the definition of t4 in (4.10). Therefore we may 

suppose in the sequel that  

ml  < 0. (5.17) 

Given ml ,  we check whether for each j (l~<j~<t4) we can find m~ j). If this is not possible, 

then there exists J0 ( l ~ j o ~ t 4 )  such that  for each solution x (m) with m>~ml, m~O the 

pair x(m),x  ( 'u)  satisfies the corresponding equation of type (5.10) or (4.28). Together 

with the t4 equations coming from solutions re<m1 we see that  then in fac t  

t4+1 (5.18) 

equations will suffice. Otherwise we pick for each j,  m (j) ~>ml and minimal with respect 

to our above construction and put 

m2 = max m~ j). (5.19) 
3 

Then solutions m with rnl <~m<m2 satisfy one of the t4 relations of type (5.10) or (4.28). 

We may continue this procedure and we assume now, that  ml ,  . . . ,  ra I with f < q - 1  have 

been found. Our construction implies that  if we cannot find m l+ l ,  then the solutions m 

satisfy one of 

f ' t 4 + l  (5.20) 

relations, each of type (5.10) or (4.28). 

Finally, suppose we can find ml, . . . ,mq-1 .  Then we are in a position to apply 

Theorem 1.4. In fact suppose 

m >~ max{mq-1,225d3kS12}, (5.21) 

so that  in particular (3.15) holds true for m. Moreover by (5.17) we also have (3.11) for 

ml ,m2 ,  ...,mq-1, m. By Lemma 3.5 the vector z whose components are the summands 
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in the Laplace expansion of the determinant  with rows x (ml), ..., x (mq-1), x (m) satisfies 
1 (3.16). Thus we may apply Theorem 1.4 with S as defined in Lemma 3.5 and with ~ - ~ .  

Consequently with our choice of x (ml), . . . ,x (ma-~) we see tha t  x (m) satisfies one of the 

t4 equations of the shape (4.16). But  we had fixed in advance the possible coefficients 
1 di,~,(1) ..... ~-~(q-1) in (4.16), as we star ted with (4.17) and the parameter  6=  5. So, with 

our choice of x (m'), . . . ,x (mq-1) actually the relations (4.16) for x (m) are independent of 

(4.13). We may conclude that  the solutions x (m) with m as in (5.21) satisfy apar t  from 

(4.13) one at least of t4 relations each of which is independent of (4.13). 

There still remain solutions with 

0 < m < max{mq_l ,  225d3k312}. 

To cover these solutions as well, our construction implies that  

( q -  1)t4 +225d3k312 (5.22) 

relations will suffice. 

If  we check the different alternatives we had, we may infer from (5.18), (5.20) and 

(5.22) tha t  either for the range of solutions m < 0  or for the range m > 0  

qt4 + 225 d 3 k 312 

relations will suffice and Lemma 4.1 follows. 

6. P r o o f  o f  T h e o r e m  1.3 

We proceed by induction on r and k, where k is the sum of the degrees of the polynomials 

fi as defined in (1.19). 

If r=l ,  then equation (1.15) reads as 

f (m)~  m = 0 ,  (6.1) 

where c~ ~t 0 and f is a polynomial of degree k. So we get not more than  k solutions m E Z 

and the assertion follows. 

Next suppose tha t  r=2 and k=O. Then equation (1.15) becomes 

a~  m +b~  "~ = 0, (6.2) 

where a and b are nonzero constants. 

If (6.2) had more than  one solution, then c~/~ would be a root of unity. 
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Before we deal with the induction step, we still have to s tudy one particular situation 

that  might occur for r - -2 .  Denote by a l ,  a2 the number of nonzero coefficients occurring 

in the polynomials f l ,  f2 respectively. We assume now tha t  k > 0  and a 1 + a 2 = 2 .  Then 

necessarily we have al=a2=l  and equation (1.15) reads as 

am kl oLm +bmk2/3 rn = 0, (6.3) 

where a and b are nonzero constants and kl,  k2 are nonnegative integers with 

kl "~- k2 : k. 

If kl =k2, then for m e 0  (6.3) is equaivalent to (6.2). Therefore in this case (6.3) has at 

most 2 solutions. 

We now assume kl >k2. Then for m e 0  (6.3) implies 

a 2 2 (k l -k2)_  ~ 2m 
m = 0 .  (6.4) 

Since the function la/b[2x 2(kl-k2)-I~/a] 2~ of the real variable x has at most 2 ( k l - k 2 )  

s tat ionary points, we may conclude that  (6.4) has not more than 2 ( k l - k 2 ) + 1  solutions 

rnEZ. Thus for kl >k2, equation (6.3) has not more than  2k+1 solutions. 

To t reat  the general case, we want to apply Lemma 4.1. In proving Lemma 4.1 we 

need the normalization (4.4) of equation (1.15), to guarantee that  at least one third of 

the zeros have m < 0  and one third have m > 0 .  This normalization has no impact  on the 

degree of the polynomials, in fact we see tha t  

deg fi  = deg gi = t~ - 1. (6.5) 

However the number of nonzero coefficients in gi and in fi may be quite different. So the 

parameters  a l ,  ..., a r  and q in Lemma 4.1 refer to the gi but not to the initial polynomials 

fi. Instead of the initial equation (1.15) we consider now the normalized equation with 

parameters  r, a l ,  .-., c~r. To apply Lemma 4.1, we need moreover that  equation (4.1) has 

only finitely many solutions. But this follows from the Skolem-Mahler-Lech Theorem, 

as our hypothesis in Theorem 1.1 says that  for each pair, i , j  ( l<. i , j~r) ,  i~tj, a i /aj  is 

not a root of unity. 

We may assume tha t  either r = 2 ,  k > 0  and al+a2>2 or r > 2  and k~>0 since in the 

other cases the assertion is proved already. 

The induction hypothesis is, that  the assertion holds true for all equations (1.15) 

(never mind whether normalized or not) with parameters  r r, k ~ such that  either 

r '  < r (6.6) 
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o r  

r ' = r  and k ' < k .  (6.7) 

By Lemma 4.1 at least one third of the solutions m of the normalized equation 

Eg, (m)a  ~ =0 (6.8) 
i=l 

satisfy one at least of t5 relations 

ZhlJ)(m)a'~=O, l <~j<t5 (6.9) 
i=1 

where the h~J)(x) are polynomials with 

degh~J)~deggi, l<.i<.r, l~j<~tg. (6.10) 

Moreover, if for some u with O~u~degh~ j) the coefficient of x v in h~ j) is nonzero, then 

x ~ has a nonzero coefficient in gi as weft. 

Thus writing a~ j) for the number of nonzero coefficients in h~ j) we obtain 

a(J) (6.11) i ~<ai for al l i ,  j w i t h l ~ i ~ < r ,  l~<j~<t5. 

In fact Lemma 4.1 implies that  the hl j) may be chosen such that for each j (l~<j~<t5) 

there exists an i ( l~<i~r)  having 

deg hl j) < deggi (6.12) 

(we put deg 0----co), which implies in particular that 

a(J) (6.13) i ~ O'i, 

and that in fact for a~ j) = 0  the summation in (6.9) is over 

r '  < r (6.14) 

terms. 

In view of (6.10)-(6.14), we may apply the induction hypothesis to (6.9). We infer 

from (6.10), (6.12), (6.14), denoting by r U) the number of nonzero polynomials hl j) 
(l~<i~<r) that  

rU)+  ~ degh~ j ) ~ k + r - 1 .  
i=1 

h ~ ) ~ 0  
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Therefore each equation (6.9) has not more than 

(4(w+d)d!) 24~ d'(~+d)e (6.15) 

solutions. Multiplying (6.15) with the number t5 of equations (6.9) and allowing the 

factor 3, since in Lemma 4.1 we take care only of one third of the zeros of (6.8) we get 

not more than 
3th(4(w+d)d!) 24~ d!(wTd)6 (6.16) 

solutions. 

Remember the definition of ta and t5 in (4.10) and (4.11) respectively. Using the 

estimates q<~k+r (cf. (3.10)) and rl+r2<~d and since l=q! we infer from (6.16) that  

N(O) <~ 3. ( (k +r).2( (k +r)!) (w+d) (4(w+d)d!) 2sT(~+r)' d'4(w+d)6 + 225d3k312) 

x (4(w+d)d!) 24~ ~(~+d)8 

< (4(w +d)d!) 2~g(~+~)~ d~ (~+d)~. (4(w +d)d!) 24~ 1), d: (w+d)' 

< (4(w+d)d!) 24~ d'(o,+d)~, 

and Theorem 1.3 follows. 

7. P r o o f  o f  T h e o r e m s  1.1 a n d  1.2 

Theorem 1.1 is a direct consequence of Theorem 1.3. In fact the polynomials in relation 

(1.15) in that  case have sum of degree k with k+r<.n (cf. (1.4)). 

We now turn to the proof of Theorem 1.2. If none of the characteristic roots c~i 

(1 ~< i ~< r) of our recurrence is a root of unity, then equation (1.5) for a S  0 may be read as 

r 

- a . l m + Z f i ( m ) c ~ m = o .  (7.1) 
i = 1  

But in that  case the left hand side of (7.1) is a nondegenerate recurrence sequence of 

order ~<n+l. Thus, we may apply Theorem 1.1 and get not more than 

(4(w+d)d!)24~ d'(~+d)6 (7.2) 

solutions. 

So in the sequel we assume that  exactly one of the characteristic roots ai (1 ~ i  ~< r) 

is a root of unity. If r - - l ,  then we get an equation 

f(m)c~ m =a. (7.3) 
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We infer from (7.3) tha t  

If(m)l 2 = la]  2 (7.4) 

since a is a root  of  unity. If  f is a constant ,  then (7.4) may  have infinitely many  solutions. 

But  in tha t  case our  recurrence sequence is periodic. I f  f is nonconstant ,  we consider 

the equat ion 

Jf(x)J 2 = [al 2 

of the real variable x. Our  hypothesis  implies tha t  the polynomial  If(x)12-1al 2 has 

degree <2n .  We infer tha t  equat ion (7.4) has not  more t h a n  2n solutions m E Z ,  and  the 

assertion of Theorem 1.2 follows. 

Now assume tha t  r > l .  Then  we have characterist ic  roots  a l ,  ..., ~ such tha t  a i /a j  

is not  a root  of uni ty  but  one at least of the roots, say a t ,  is a root  of  unity. If  a~- -1  

our  equat ion becomes 
r - - 1  

( f r ( m ) - a ) l  m -t- E fi(m)a'~ ---- 0. (7.5) 
i----1 

Again we may  apply Theorem 1.1 and we conclude tha t  (7.5) has not  more than  

(4(w+d)d!)2 4~ d~(~+d)~ (7.6) 

solutions. 

Therefore in the remainder  of  the proof  we may  suppose tha t  c~ is a root  of uni ty  

tha t  is different from 1 and tha t  we have r > 1. We have to  s tudy  the equat ion 

r -1  
- a .  i m + fr(rn)c~ + E f i(m)am = 0. (7.7) 

i=1 

Let c be the order of the root  of uni ty  a t .  We split equat ion (7.7) into c equat ions 

r--1 
+ m e  = 0 ,  

i=l 
b=0 , . . . , c -1 .  (7.8) 

By hypothesis,  for each b ( 0 ~ b ~ c - 1 )  the  left hand  side of (7.8) represents a nondegen-  

erate recurrence sequence or it is identically zero. If  there exists a b0 with 0 <~ b0 ~ c - 1  

for which we get a zero sequence, then we have in par t icular  

fi(x)----O f o r i = l , . . . , r - 1  

and 
-bo f r (x )  ~-aol r �9 
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Thus our initial sequence is of the shape 

U r n  ~ d o l t  m 

and hence it is periodic. 

Consequently, we may suppose that  (7.7) has only finitely many zeros. But then we 

are in a position to apply Lemma 4.1 to equation (7.7). In fact, since r > 1 our hypothesis 

implies in particular that  there exists a pair i , j  (l~<i,j~<r) with i # j  such that ai/aj 
is not a root of unity, and this was the second general assumption we needed in Lemma 

4.1. 

Since r >  1, the left hand side of (7.7) is an expression with r +  1 characteristic roots, 

so in the notation of Lemma 4.1 we replace r by r + l  and we have q>~3. Now the relations 

we obtain in Lemma 4.1 may be chosen such that  for each j ( l~<j~ts)  the coefficient 

vector (d~ j) , "~(J) �9 ", ~r+1,~+1) has some particular predesigned component equal to zero. We 

choose this component such that  in the relations of Lemma 4.1 we get rid of the term 

corresponding to - a .  lrn in (7.7), and we infer from Lemma 4.1: 

At least one third of the solutions m E Z  of (7.7) sastify one at least of t5 relations 

of the type 
r 

(j) m < j ~< t5 (7.9) (m).i =0, 1 
i = l  

where the g}J) are polynomials having 

deg g~J) ~ deg fi for each pair i, j with 1 <~ i <~ r, 1 <~ j <~ is. (7.10) 

Equations (7.9) however are of the type considered in Theorem 1.3. Since 

r 

r+~--~ deg fi ~<n 
i = l  

we conclude using (7.10) that  for each j (l~<j <~ts) (7.9) has not more than 

( 4( w q_d)d! )24o~ d, (~+d)6 (7.11) 

solutions. Allowing the factor t5 for the number of relations (7.9) and the factor 3, as we 

may have covered only one third of the solutions we finally see that  (1.5) has not more 

than 
240n! d! 6 3t5(4(w+d)d!) (wq-d) 
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solutions. In our  context  the  p a r a m e t e r  q occurr ing in L e m m a  4.1 is bounded  by  n + l .  

Thus  using (4.11) we ob ta in  

3ts(4(w+d)d!)24~ d,(wTd) 6 

< ( 6 ( n +  1 ) ( n +  1)! (~+d) (4(w+d)d!) 237("+')'d'4(~+d)6 +3.225d3 k4) �9 (4(w+d)d!) 24~ (~+d)6 

< (4(w+d)d!) 24~ d'(~+d)6. (4(w+d)d!)23~ d'(~+d)6 

<, (4(w+d)d!)24o(n+~), d, (~+d)6 

and  T h e o r e m  1.2 follows. 
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