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1. Introduction

Let n be a natural number. We shall study linear recurrence sequences
Umtn = Vn—1Um+n—1+Vn—2Umin—2+...+VolUm, m=0,1,2,.... (11)

Here we assume that v, _1,...,1g are elements of C with v97#0. We assume moreover
that the initial values ug, ..., u,—1 of our sequence have |un,_1|+...+|ug|>0. Let

G(2)=2"—vp_12" 1= ...~y (1.2)

be the companion polynomial of the recurrence (1.1) and write

G(z)= H(z—ai)"“ (1.3)

with distinct numbers a4, ...,a,.. We call n the order and r the rank of the recurrence
(1.1). Before we state our results, we shall recall a few facts about linear recurrence
sequences. An excellent account on this topic may be found in the introductory Chapter C
of Shorey and Tijdeman [13]. In the sequel we quote some of the theorems collected there.

Let (um)2_q be a sequence satisfying relation (1.1) with vo#0. For i=1,...,r let a;
and p; be determined by (1.2) and (1.3) where the numbers o, ..., o, are distinct. Then
there exist uniquely determined polynomials f; € Q(Uq, ..., Un—1, V05 -y Vn—1, A1, -y Ar )[2]
of degree <p;—1 (i=1,...,7) such that

Um =) film)o®, m=0,1,2,.... (1.4)

=1
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Conversely, let o, ..., a, be distinct complex numbers and g1, ..., 0r be natural numbers
with 3._, oi=n. Define vy, ...,vn_y by (1.3) and (1.2). For i=1,...,r let f; be a poly-
nomial of degree less than p;. Then the sequence (Un)3o_, defined by (1.4) satisfies
recurrence relation (1.1).

The a-multiplicity U(a) of a sequence (um)3o_, is defined as the number of indices
m such that
Um =GQ. (1.5)

We define the multiplicity U as
U =supUf(a). (1.6)
a

The well known theorem of Skolem—Mahler—Lech says the following.

If (um)%_g is a recurrence sequence with infinite 0-multiplicity, then those m for
which u, =0 form a finite union of arithmetic progressions after a certain stage.

As an immediate consequence we obtain:

If a recurrence with companion polynomial (1.3) generates a sequence with infinite
0-multiplicity, then a;/c; is a root of unity for some indices i,j with i#j.

Therefore, we call the recurrence sequence (u,,)%_, nondegenerate if for each pair
i,7 (1<%,j<r), i#j4, the ratio o;/a; of the roots of the companion polynomial (1.3) is
not a root of unity. An easy consequence of the above quoted facts is as follows.

If (um)%_¢ is a nondegenerate periodic linear recurrence sequence, then there exists
a number d and a root of unity o such that

Uy, =da™. (1.7)

There is a large amount of articles in which multiplicities of sequences (um)5o_,
as in (1.1) are studied. They mostly deal with nondegenerate binary recurrences, i.e.
recurrences of order 2. Kubota [6] proved that in case n=2 and if all terms u,, belong
to a number field K, then U is bounded from above by a number depending only on the
degree d of K. Beukers and Tijdeman [1] in this case established the bound

U <100 max{d, 300}. (1.8)

For general order n there are some partial results on bounds for the multiplicity in the
literature. E.g. there exist certain bounds for the case where one of the roots a; of the
companion polynomial is dominant. We cannot give all details here. We refer the reader
to Chapters 1-4 of Shorey and Tijdeman [13] and the extensive amount of references
given there.

Evertse [3] in the algebraic case and Evertse, Gyory, Stewart and Tijdeman [5] in
general proved:
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Let (um)_o be a nonperiodic nondegenerate linear recurrence sequence in C. Then
there are only finitely many pairs of integers |, m with i#m and

U= Uy, (1.9)

This implies in particular that a nonperiodic nondegenerate recurrence sequence has
finite multiplicity.

I could not find in the literature any upper bound for the multiplicity of a non-
degenerate nonperiodic sequence (un,)%_, of arbitrary order n that holds without any
restriction on the sequence.(!) It is the purpose of this paper to establish such a bound
in the case when the terms w, of the sequence are algebraic. Let K be a number field
with

[K:Q]=d. (1.10)

We assume throughout the paper that
V0 oey Une1, UQy +vey U1 Q1 ooy Oy € K. (1.11)

Moreover we define w=w(a;, ..., a,) to be the number of prime ideals in K ocurring in the
decomposition of the ideals {¢1), ..., (&) If the polynomials f; in (1.4) are all constant,
then a recent result of Schlickewei [10] on the number of solutions of S-unit equations
implies that

U < (4w+d)d)?* " wrd) (1.12)

‘We can now give a similar bound for the general case.

THEOREM 1.1. Let (un)o_, be as in (1.1). Let a, ..., be defined by (1.2), (1.3).
Suppose that we have (1.10), (1.11). Suppose that (um)>_, is nondegenerate. Then we
have

U(0) < (4(w+d)d!)?"" 1 wtd®, (1.13)
As for the multiplicity we obtain

THEOREM 1.2. Let the hypotheses be the same as in Theorem 1.1. Assume moreover
that (um)%_o is nonperiodic. Then we have

U < (4(w+d)d)? "™ wrd)® (1.14)

(*} Several months after this paper was written, A. J. van der Poorten and H. P. Schlickewei proved
results of a similar type as those given in the current paper, applying p-adic analysis. In the meantime
these results have appeared (Zeros of recurrence sequences. Bull. Austral. Math. Soc., 44 (1991), 215—
223). However, the method of proof of the current paper has the advantage of allowing generalizations
to higher dimensions.
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In view of (1.4), it is clear that in proving these reults, we have to study equations

i film)al* =0, (1.15)
i=1
where
fi(z)€K[z], i=1,..,r, (1.16)

and where aj, ..., a, are nonzero elements in K such that for each pair 4,5 (1<¢,j<r)
with i#j

o;/a; is not a root of unity. (1.17)
We write
deg fi=0i—1 (1.18)
and .
S (ei-1)=k. (1.19)
=1

We shall derive Theorems 1.1 and 1.2 from

THEOREM 1.3. Suppose that we have (1.10), (1.16), (1.17), (1.18), (1.19). Then
equation (1.15) has not more than

(4(w+d)d!)240(k+r)!d!(w+d)6 (1‘20)

solutions meZ.

It should be pointed out that the numerical constants in (1.13), (1.14), (1.20) are
somewhat arbitrary. No particular care was taken to optimize them. Apart from the fact
that this is the first general result of this type,(?) the significant feature of our theorems
is that the bounds are rather uniform, as they depend only upon w, but not upon the
particular primes involved. Moreover the bounds do not depend upon the coefficients of
the polynomials f;(m). With such a dependence we would be “far out of bounds”, as
in the proof we use an induction argument, and here we have no control at all over the
coefficients that appear in an equation (1.15) in the induction hypothesis. In fact, these
coeflicients are the main troublemakers in our proof.

The method we apply is as follows. Let S consist of the set My, (K) of archimedean
primes of K together with the finite primes corresponding to the prime ideals in the
decomposition of the (¢;). Thus we have

S| < d+w. (1.21)

(?) Cf. the footnote on the previous page.
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Equation (1.15) is almost an S-unit equation, as it will turn out that hypothesis (1.17)
guarantees that the powers af* strongly dominate the polynomials f;(m). This follows
from a theorem of Dobrowolski [2]. However to get in this context uniform estimates, we
can only compare the powers a® with monomials m! with coefficient 1. So if we write
equation (1.15) as

a1 Z1+...+0,2,=0 (1.22)

where the z; are understood as being terms of the type mlagn, and where the a; corre-
spond to the coefficients of the polynomials in (1.15), we may try to apply the method
that was successful in counting solutions of S-unit equations of the shape (1.22). These
were recently treated by Schlickewei [9], [10]. To count the solutions, in [9] as well as in
[10] large solutions z; of (1.22) are covered by the quantitative p-adic Subspace Theorem
(Schlickewei [7], [8]) which in turn generalizes W. Schmidt’s pioneering result [11].

There remain solutions that are small as compared with the height of the coeflicients
a;. In [9] and [10], these are treated with a gap principle and so finally one gets a result
that is uniform in the a;. I was not able to establish a gap principle for (1.22) in the case
where the z; are no more S-units but are of the shape m!o™ with monomial factors m'
of positive degree.

For such equations I can give a counting argument only in the special case a;=...=
ag=1. (In fact, this is done in Theorem 1.4 below.) However, there is a device to deal with
this situation. We just have to take g solutions xy, ..., x4 of (1.22). Their determinant
will be zero and this is an equation we can handle. With this respect the author owes
credit to Evertse, Gyory, Stewart and Tijdeman [4]. The determinant argument was
picked up from this paper.

The equation det(x,...,x4)=0 then will be treated with the quantitative p-adic
Subspace Theorem. The main problem consists in finding a way back from this equation
in x1,...,Xq to a relation in a single vector x. This is done in Lemma 4.1 (Sections 4
and 5).

It should be pointed out that the method developed here certainly can also be applied
to S-unit equations. So, we have now an argument to count the number of solutions of
S-unit equations that does not need a gap principle for the small solutions. The price
we have to pay, however, is that we get bounds for (1.22) that involve the parameter g!
instead of the ¢ we obtain with the gap principle (cf. the bounds in (1.12) and in (1.14)).

Nevertheless, the main burden of the proof has to be carried by the quantitative
p-adic version of W. Schmidt’s Subspace Theorem. In that context we give a result that
is crucial in our proof and that might be of independent interest.

We denote by M(K) the set of places of K. For ve M(K) let | |, be the associated
absolute value, normalized such that on Q we have | |,=| | (standard absolute value)
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if v is archimedean, whereas for v nonarchimedean |p|,=p~! if v lies above the rational

prime p. Writing d, for the local degree [K,:Q,] we put || ||,=| |f”/ ¢

Let S be a finite subset of M(K) containing the set of infinite places Moo (K). We
call an element z€ K an S-integer if

lzllo <1 foreachv¢sS. (1.23)

Given x=(zy, ..., 2141 )€ K'*! we define for ve M(K)

w { (Jz1 |2+ +]2141)2)Y/?  if v is archimedean
X[y =

max;gigi+1 |Tily  if v is nonarchimedean

and put ||x[|,,=:|x|ﬁ”/d. We define the height as

Hx)= [ Il (1.24)
vEM(K)
and the S-height as
Hs(x)=[] lIxll.- (1.25)
vES

We are interested in solutions in S-integers of the equation
r1+...4+x41 =0. (126)

THEOREM 1.4. Suppose [>2. Assume that S has cardinality s. Let §>0. Then the
set of solutions of equation (1.26) in S-integers zy, ..., x4 Satisfying

I l=1llo - llzesalle < Hs(%)*~° (1.27)
vES

is contained in the union of not more than
to =2(1+1)° [(4sd!)?*"“**67"] (1.28)

proper subspaces V1, ..., Vi, of the -dimensional linear space V defined by equation (1.26).

I wrote this paper in fall 1989, when I was visiting the department of mathematics of
the University of Colorado. I would like to thank the department, and in particular Pat
and Wolfgang Schmidt for their hospitality. It made my stay in Boulder most enjoyable.
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2. The quantitative Subspace Theorem

As indicated in the introduction, the basic tool in proving our results is the quantitative
Subspace Theorem in diophantine approximations. If L(x)=L(z, ..., ;) is a linear form
with coefficient vector a€ K' we define

Ll =llel}y and H(L)=H(a).

The following lemma is the main theorem of [8], except that in [8] we require K to be a
normal extension of Q. In [10] (Corollary 2.2) we derived a slightly more general version,
where K is allowed to be an arbitrary number field. For the convenience of the reader
this will be quoted now.

LEMMA 2.1 (Quantitative Subspace Theorem {10}). Let K be a number field of
degree d. Let S be a finite subset of M(K) of cardinality s. Suppose that for each
vES we are given 122 linearly independent linear forms Lg”),
coefficients in K. Let 0<é<1. Consider the inequality

...,Ll(v) in | variables with

! (v)
IIL (ﬁ)“v —_1-8
e — <H(B)"°. (2.1)
L 1L,y <

There exist proper subspaces T, ...,Tt, of K Y with
t = [(4sd!)?>" o777 (2.2)
such that every solution B€K' of (2.1) either lies in the union U:1=1 T; or satisfies
H(B) < max{(1)®/®, H(L{")%@/8 (y e §ii=1,..,1)}. (2.3)
Let U be the ! dimensional subspace of K!*! defined by the equation
Ty +zo+...+x41 =0. (2.4)

To study equation (2.4), we apply Lemma 2.1 and obtain

LEMMA 2.2. Let SCM(K) be as in Theorem 1.4. Let 0<6<1. There exist proper
subspaces Uy, ...,U, of U with

to = (141)° [(4sd!)?*"°467% (2.5)
with the following property. Every solution x=(, ..., z141) €K"Y of (2.4) satisfying

I Nesllo -z lle < Hs(x)*, (2.6)
veS
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x; is an S-integer for each i, 1< i <I+1, (2.7)

. . . . . t
either is contained in the union | J;2, T; or has

H(X) < llSls(d!)z/J. (28)

Proof. We consider the linear forms L, (x’)=z;, ..., Li(x’)=z1, Lij1(X")=z1+...+3;
in x’=(z1, ..., ;). Notice that any solution of (2.4) satisfies
(@1, m1) y

Liy1(X')=~Z141.

In view of (2.6) we obtain

TT 122Gl - 1 Zaa ()l < Hs ()2 (2.9)
veES

We now divide the solutions x of (2.4) into classes. Given v€S and x with (2.4) define
iy by
les,llo=, max {lzll) (210)
Let €=€((4,)ves) be the set of solutions x giving rise to the tuple (i,),cs. There are not
more than
(1+1)° (2.11)

classes €.
We restrict ourselves to solutions x in a fixed class €. Write I, ={1,...,[+1}\{%.}
(veS). Then the definition of our forms L; and (2.9) imply

H H I1Ls (x")lw < Hs(x)™°. (2.12)

vES i€l Il
Notice that in view of (2.4) we have
Ix|ls =|[x']ls for v nonarchimedean (2.13)

and
1%'[lo < lIx]l» < (20)%/?4|x/||, for v archimedean. (2.14)

For our forms L; we obtain
”Li”v=1, i=1,..,1, vES (215)

whereas
ILi41]ls =1 for v€ S, v nonarchimedean (2.16)
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|Li41]lo =1%/%¢ for v archimedean. (2.17)

Combining (2.12)—(2.17) we see that any solution x in our class € satisfies

H H “Ll(x/)”v S(zl)l/sz(Xl)_l_a- (218)

ves iel, Ll 1"l

On the other hand (2.15), (2.16), (2.17) imply that

N l/2 .
| Jnax | H(L;)=1"°. (2.19)
If we assume that
H(x')*? > (21)1/2 (2.20)
we get from (2.18)
[1Li () || N—1-6/2
AZax Nl pro(x . (2.21)
I Tz, <256)

v€ES iel,
Since our points x’ have S-integers as components, we have Hg(x') > H(x'). Thus

we may apply Lemma 2.1. In conjunction with (2.19), (2.20) we may conclude that there
are

t3 - [(4sd!)23514!3646_,2]
proper subspaces T3, ..., T;, of K! containing the solutions x’ of (2.21) with
H(x)> max{(?l)’/z, (l!)18/6’ llsls(d!)2/6} — [18is(d)?/6 (2.22)
The subspaces T1, ..., T;, yield proper subspaces Uy, ..., Uy, of the solution space U. Al-
lowing the factor (I+1)* from (2.11) for the number of classes. €, the assertion follows.
LEMMA 2.3. Let K be a number field of degree d. Let D>1. Then the number of
one-dimensional subspaces of K having a basis vector x which satisfies

H(x)<D (2.23)

s bounded by
9(2d+7)(1-1) p2d(1-1) (2.24)

This is essentially Lemma 5.1 of [10]. It is proved there using Lemma 8B of Chapter 1
of W. Schmidt [12].

Proof of Theorem 1.4. We combine Lemma 2.2 with Lemma 2.3. By Lemma 2.3 the
solutions of (2.4), (2.6), (2.7) with H(x)éllszs(”")z/& are contained in the union of not

more than
2(2d+7)(l—l)l3612ds(d!)2/6
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proper subspaces of U. Using the bound (2.5) for the number of subspaces covering the
large solutions, we see that every solution of (2.4), (2.6), (2.7) is contained in the union
of not more than

(1+1)° [(4sd!)235“!s°46_2] +2(2d+7)(z—1)laez’ds(d!)2/a

proper subspaces of U. But this is smaller than

2(1+1)°[(4sd)?”" "] =t,.

3. On heights
LEMMA 3.1. Let K be a number field of degree D>1. Suppose that a€ K* is not a root

of unity. Then
1 [loglogD 3\ /P
H —_— = . 3.1
(1"')><1+1200( log D ) (3.1)

This is the main result of Dobrowolski [2].

LEMMA 3.2. Let a be an algebraic number of degree d. Assume that o is not a root
of unity. Then
H(1,a)> (1427 14471)1/10d, (3.2)

Proof. This follows at once from Lemma 3.1, upon noting that for «€Q we have
H(1,a)>2 and upon taking D=10d otherwise.

LEMMA 3.3. Let o be an algebraic number of degree <d that is not a root of unity.
Let my, mo, m3, k be integers with my-ma-m3#0. Then

k
(1 (2] ame ) > (et 0 Wl (33)
2

Proof. Let T be the subset of M(K) such that ||a||,>1 for v€T. Then we have

k k k
mi mi mi
Hil1,{—) a™)|> — ) o™ = —) H(1,a™
(n () o) = TG o] - TR ) ] e
k
e
veT m2 v

3

-1l

(H(1, )™,

3|
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However, for any subset R of M(K) we get

I (%)’

< I max{t,fimil}: [T max{1,mklls}=lma| ™ jma| .

vER v yeM(K) vEM(K)

Thus

H (ml)k -t H <m1)k | ||k]

—_— = —_— < |mimy

v N2/ o em@anrll \™2/ llo

and we infer from (3.4) that
mi\*
H(l, (-m—l) am3> > [myma|~*I(H(1, @))Imsl, (3.5)
2

Using Lemma 3.2, we obtain the assertion.

Let r>1 be a natural number. Suppose we are given nonzero numbers ay, ...,
a number field K of degree d, such that for ot least one pair i,j with i#j (1<i,j<r)
o;/a; is not a root of unity. Let g1, ..., or be natural numbers with

o1t..tor=k+tr. (3.6)

Suppose that for each ¢ (1<i<r) we have a sequence of o; nonnegative integers k;1, ..., Kio,
with
0< ki <ki2<---<kio.- =p0;—1. (37)

Given an integer m, define the vector x(™) by

k

x(m = (m*2al, .., mFreral, . mPam, ...,mk'”'aT). (3.8)

Thus x(™) lies in (07 +...4+0,)-dimensional space. Write
g=o01+... 40, (3.9)

Then (3.6) and (3.7) imply
g<k+r. (3.10)

Consider a sequence of integers my, ..., mg_1, m having
m; #0, i=1,...,4—1, m; <0, m>0, m<..<mg_; <M. (3.11)

Put
q' =1 (3.12)

Let z be the vector in [-dimensional space whose components are the summands in the
Laplace expansion of the g x g-determinant with rows x(™1), ... x(me-1) x(m),
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LEMMA 3.4. Suppose r>1. Assume that (3.11) is satisfied. Write
M = max{jm, [m]}. (3.13)
Then we have

H(z) > M~% (1427 14g-1)M/10d, (3.14)

Proof. We assume without loss of generality that «;/c, is not a root of umity.
Writing z=(z1, ..., 21) we get upon choosing any two components 2;, z; of z with i#j
H(Z) >H(zi’zj):H(1’zj/zi)'

Let z; be the product of the elements in the main diagonal of the matrix with rows
x(m1) ooy x(Ma-1) x(m) For z; we choose the product of the elements in the main diagonal
from row 2 down to row g— 1 multiplied with the element m*11af" in the lower left corner
and the element m}f”' o™ in the top right corner. Then we get

ﬁ_ ﬂ ml—m. ﬂl_ kir—krop
2z \asr m )
We infer from (3.6) and (3.7) that |k11 —kro,.|<2k. Moreover (3.11) and (3.13) imply

|my—m|>M. The assertion now follows from Lemma 3.3 applied to the vector (1, 2;/2;).

LEMMA 3.5. Suppose r>1. Let z be defined as above with integers my,...,mg_1, M
satisfying (3.11). Let S be the union of the set of infinite primes of K with the set of
finite primes dividing at least one of oy, ..., @r. Suppose that

m>28d3k32. (3.15)

Then we have

T lz1llo - Nzl < H(z)Y2.

vES

Proof. Using (3.6)—(3.11) and the definition of z we obtain

2
IT leallo ozl < M*
vES

where M is defined in (3.13). On the other hand, Lemma 3.4 implies that
H(z)l/Z >M—2k(1+2—14d—1)M/20d.
Therefore (3.16) is satisfied if

M

——log(1+27d"1) > 2k%llog M.
504 og(1+ )> og
This in turn holds certainly true if

m>220d%k% log m

and so in particular if we have (3.15), and the lemma follows.
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4. Subspaces again

We will now apply the facts proved in Sections 2 and 3 to the equation

Z fi(m)a™ =0. (4.1)

We assume here that
r>1. (4.2)

Throughout this section, in contrast with (1.17), we will only suppose that there exists a
pair i, j with i#j such that a; /o is not a root of unity. We assume moreover throughout
this section that the number N(0) of solutions meZ of (4.1) is finite.

To derive our upper bound (1.20) for N(0), we may assume that N(0)>5. Then,
there exists an integer mq with the following property.

The set of solutions m < mg of (4.1) has cardinality > %N (0), and

(4.3
the set of solutions m >my of (4.1) also has cardinality > 1 N(0). )
We may rewrite (4.1) as
Z film4+mg)a* ™ =0.
i=1
Therefore, putting g;(m)=a " fi(m+mo) we get an equation
T
Y gi(m)al =0 (4.4)
i=1

that is of the same shape as (4.1). However, writing N'(0) for the number of solutions
meZ of (4.4) we clearly have N'(0)=N(0), but (4.3) is now replaced by

the set of solutions m < 0 of (4.4) has cardinality > 3N'(0), and
the set of solutions m >0 of (4.4) also has cardinality > $N'(0).

So it will suffice to study equation (4.4), where we have mo=0. In detail (4.4) reads as
bnmk“a{"+...+blal mkl"l a{"+...+b,~1mk“a;"+...+bra,mk”’ra;" =0, (45)

where d11, ..., 010, -, by, .., bro,, are certain nonzero numbers in K and where the o; and
the k;; are as in (3.7). We treat the equation (4.5) as an equation in quasi $-units, where
S is defined in Lemma 3.5. In view of our reduction (4.3), it will suffice to estimate either
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the cardinality of the set of solutions with m <0 or the cardinality of the set of solutions
with m>0.

Let x(™ =(mkual, ..., mberal, ..., mk

rig™, ...,mFroro™) be the solution vector of

(4.5) corresponding to m. Recall the definition of ¢ in (3.9). The solutions x(™) of
(4.5) are contained in a subspace V of K7 of dimension ¢—1. Therefore any g solutions
x(m1) . x(me-1) x(m) of (4.5) are linearly dependent. Given x(m1) . g(ma-1) x(m) de-

fine z=(71, ..., 2;) as in Section 3. Then we get

z1+...+2z=0. (4.6)
Let
My = My(ay, ...,a,) = set of prime ideals in K occurring in the
decomposition of any of the ideals (o), i=1,...,7. (4.7
Put
S =My (K)UM,. (4.8)

If K has r; real embeddings and r; pairs of complex embeddings, then | Mo (K)|=71+72.
Consequently we get

IS =r1+r2+w, (4.9)
where w=w(ay,...,a,) is the cardinality of the set My defined in (4.7). If we study
equation (4.6) with S as in (4.8) and ask for solutions 21, ..., 2; satisfying the analogue
of condition (1.27) in Theorem 1.4 with 6 =%, with {+1 replaced by ! and ! having the
value [=q!, we see that the number of such solutions is bounded by

ts = 2(g)+T 2 (4(ry o w)dl)2 e, (4.10)
LEMMA 4.1. Suppose r=2 and q23. There exist
ts = gta+225d3K31 (4.11)

nonzero vectors (dﬁ{),...,dgi)l, ...,dﬁ),...,dspr)eK" (1<j<ts), each not proportional to
the coefficient vector (b11,..., D10y, br1y ooy bro,) in (4.5) with the following property.
Either each solution x(™ of (4.5) with m<0 or each solution x™ of (4.5) with m>0

satisfies at least one of the equations

dOmkraP . 4+dE mEeraP 4. +dmb ol 4+ dD) mEreral =0, i=1, ..t
(4.12)

Proof. To simplify the notation we write (4.5) as

a1Z1+...+aq2g =0, (4.13)
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where a;-...-a;#0. Given g solutions x(™1) ... x(me-1) x(m) of (4,13) it is clear that we
have

zmy) :c,(,m‘)
(mq 1) (""q 1) =0.
(m) (m)

We expand this determinant with respect to the last row and get

wg"“) xf{"‘) z§"‘” :E,({fi)
™ — (=13 g™ | P =0, (414)
mgm.,_x) -Tz(lmq_l) mg"'““) z.,(;l‘«{—l)

The idea of proof is now as follows. Suppose we have fixed solutions x(™1), ..., x(ma-1)
of (4.5). Expanding the determinant factors in (4.14) we obtain an equation

g
> ai™ Z £zt L) =0, (4.15)
i=1
where, for each ¢ (1<i<q), 7 runs through the bijections between {1,...,¢q—1} and
{1,...,9}\{¢}. Assume that our superscripts m;,...,mq—1,m satisfy conditions (3.11),
(3.15) of Lemma 3.5. We will see later on that then all such x(™1), ... x(™a-1) x(™) are
also solutions of at least one equation out of a fixed set of not more than 4 equations of
type

q
Z“”i )Zdzn(l), Ti(g— l)z-(r,(l)l) . (:(l;) 1)“0’ NG AN 22 (4.16)
=1

Our goal is to prove, that we may pick x(™1), ..., x(™e-1) such that for each j (1<j<ts)
the coefficient vector (ay, ..., aq) in (4.13) and the coefficient vector

) pmemt) () o) gma-t)(ma)
( B ()yeri(a- )T () o Frn(aetyr s D Dga (Vorrala=1)Fra(s) "%(q—l))

T1 Tq

in 4.16 are linearly independent. Actually there may occur situations, where we cannot
find such x(™1), ..., x(me-1), This is the reason, why the assertion of the lemma is slightly
more complicated.

We start by considering the equation
Z21+...+2z=0 (4.17)

with l ~q' and study solutions of (4.17) that satisfy the hypotheses of Theorem 1.4 with
§=1. Theorem 1.4 says that there exist ¢, vectors (d, ..., d" )} (1€j<ts) each of which
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is linearly independent of the coefficient vector (1,...,1) in (4.17) such that any solution
of (4.17) under consideration has for at least one j (1<j<ty)

dPz +..+dP 2z =0. (4.18)

It is clear that we may suppose here moreover that for each j (1<j<t4) there exists a A
with
1<A<! having d()f) =0.

We fix the vectors (dgj ), ...,dgj )) once and forever and relabel them as (dg ) ; ) where

stq
the subscripts 41, ..., iy run through the different permutations of 1, ..., q. Before we start

studying whether we can find appropriate vectors x(™1), ... x(™e-1) such that (4.16) and
(4.13) are independent equations, we need some further notation. We denote by (dg?))m,iq)

. ©
an arbitrary fixed vector among (dfi ?lq) (1€j<ty). Let x(m?)_ x(Mq1) be solutions

of (4.5) with m§°), ...,771,(10_)1 to be specified later. Given i with 1<i<q we introduce the

operator DEO) by writing

(0) mP)  (m®)
i,‘r,-(1),...,Ti(q—l)x7,-(;)1 '--‘”T,-(;—l)
' 1 1 1 1)
N N
=D1(0) : : : :
_ ~1 -1 -1 4.19
P I o NP B Ca) (4.19)
D g
=D : : :
\mgq_l) zgq_l) ;

where for the sake of simplicity, in the matrices we have used the superscript (j) instead
of (mgo)) (1<j<g—1). The subscript ¢ at the last matrix in (4.19) indicates that the ith
column is deleted. Moreover, given i with 1<i<q and j with j#¢, 1<j<q we write 7;;
for a bijection between {1, ...,¢g—2} and {1, ...,q}\{%,j}. We define the operator Dz(,oj) by

(0)

(0) (md, (m{”)
Zdi,j,‘fij (1),---,7'1']'(‘1—2)1""'1"]‘ E‘l) z‘f.‘j(q-2)
Tij

B || N MR
=p%| : : : : . ;
xiq_z) xg_q_—lz) a:;-i_lm :cf‘flz) :cgi—lm xf{’"‘”
RO
0| ] (4.20)
xgq_2) .’I,'gq-z) i
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where the summation in (4.20) goes over all bijections between {1,...,¢—2} and {1, ..., ¢}\
{i,7}. The subscript i, j at the matrix in (4.20) indicates that the ith and the jth column
are deleted. In a similar manner we define for pairwise different numbers 41, ...,7, in

1.
{L g} ) (1)

z; . &g
0 . .
D§1?-..,in : : . (4.21)
xgqﬁ") $<(1q_n) i15erin

We shall first study equation (4.16) for a single coefficient vector (dg?r).-(l),..-,n( q_l))lgigq
arising from Theorem 1.4.

Remember that (dEOT)I(l)’ T,»(q—l))1<i<q and the coefficient vector (1,...,1) in (4.17)
are linearly independent. Therefore we may suppose without loss of generality that either

(i) there exists an i (1<i<q) such that df T) (1),.

{1,...,q—1} onto {1,...,q}\{i}, but (d ”‘(1)’ ri(gnr<i<a#(0,...,0),
or

il q—l):0 for all bijections 1; from

(ii) for all i (1<i<q) there exists 7; such that d®

i (1) (g 1)960, but there exists

an o (1<ip<q) and 7, having diomo(l),..-,no(q—l) =0.
We first treat alternative (i). This will be also a warm-up for alternative (ii). Assume
without loss of generality that

(0)

quq(l)w‘“!Tq(Q‘l) =0 for all Tq» (4.22)
and
dgog 3pnq 70 (4.23)

Let m§°) be any nonzero integer such that (4.5) is satisﬁed and let x(™i”) be the cor-

responding solutlon vector. Since m, );60 we have xq ™ )7&0 We next want to find a
suitable value m, (" We distinguish two alternatives:
Either any solution x(™) of (4.5) with m#0, m)mgo) has

0 ) 0 (m
dgg& g—2,q— 1,qﬂ”t(1ml (m) +d§ ; a=2a.0~1%q—1 ) (m)_o (4.24)

Our choice of m(o) and (4.23) imply that (4.24) is a nontrivial equation for x(™ that is
certainly independent of (4 13) since g>3.
Or there exists m>m”, m#0 such that (4.24) does not hold. We may then choose

> m§°’ , m2 75 0 such that (4.24) does not hold for m= m(o). (4.25)
Now suppose that for f<g—1 we could choose nonzero integers mﬁ‘”, oMy ©) having
m{” <m{ <...<m (4.26)

12-935202 Acta Mathematica 170. Imprimé le 30 juin 1993
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and
:rgl) :1:,(11)
D) . : #0, i=1,..f. (4.27)
$§l) x((;) 1,2,...,q—i

As for a possible value m}oll, we again distinguish two cases.

Either we have

©) (m$) m®)  (m) _
1200 sg— F =L (1)t 41) Tp(@) 2 Tup(F41) (1) = O (4.28)
m

for all m}m&o), m=#0, where ¢ runs through the bijections from {1,..., f+1} onto
{q—Ff,...,q}. (4.28) is an equation in x{™), that implies only the components z'((;f)f,
- xf{”’ . Since f<g—1, in fact not all components of x(™) do occur. However the coeffi-

cient of 2™} in (4.28) is

RO

(0) :
1,2,....g—f : )
(¢)) (f)
Ty e Zg 1,2,...,4~f

By our choice of m{”, ...,mg?) and by (4.27) this coefficient is nonzero. Therfore (4.28)

is an equation for x(™) that is independent of (4.13).

Or there exists m(f°+)1 >mffo) , mffo+)1760 such that (4.28) does not hold true for m=

mﬂl. Then we may continue the procedure. It will stop at least if we reach f=¢—1. In
that case, given mgo), ey mflo_)l, (4.27) will hold true for i=1,...,g—1. But then we are in

(0) 0)
1

a comfortable position: with this choice of m; ", ..,m; , We look at the corresponding

equation (4.16). Here :cg"" will have a nonzero coefficient, whereas by our assumption
in alternative (i) zflm) will have coefficient equal to zero and so equation (4.16) will be

independent of equation (4.13).

5. Proof of Lemma 4.1 (continued)

After the warmup in Section 4 with alternative (i), we will now treat the more fun

alternative (ii). To illustrate the method, it seems to be appropriate to first do things
© 1n

backwards and after that only to start with the construction of parameters m;

dealing with alternative (ii) we may suppose without loss of generality that

d(O)

_1.#0 but d =0. (5.1)
1,2,...,q—1,q 1

1,2,...,g—2,q,9—
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In fact this simply means that on the one hand we assume in alternative (ii) that i9=1,
and that on the other hand we reorder, if necessary, the variables with subscripts 2, 3, ..., q.
Using the notation introduced in (4.19)—(4.21), equation (4.16) reads as

. &0 L )
S a™p® | i | =o. (5.2)
=1 .’qu_l) wes .'l:((lq—l) i

. . Q)
(Here we assume for the time being that solutions x(m(lo)), ...;x™s-1) have been chosen.)

Now (5.2) is a linear equation in x(™), and we distinguish two possibilities:

FEither equations (5.2) and (4.13) are independent. Then we are in good shape.

Or equations (5.2) and (4.13) are linearly dependent. In that case we obtain, com-
paring the coefficients of z{™ and z\™ in (5.2) and (4.13)

xgl) $¢(11) :cgl) :1:,(11)
+a, D | i : +a, DO | : =0. (5.3)
~1 -1 -1 -1
A Ol A Ca
(m(o)

Now (5.3) is a linear equation in x a-1), Again we distinguish two alternatives:
(© o
Either equation (5.3) for x(™a-1) and equation (4.13) are independent—it will turn
out, that then we are in good shape.

Or (5.3) and (4.13) are linearly dependent. In this case we compare the coefficients
©)

m m© m®
of xi -1 and of mg =1 i (5.3) and in (4.13). The coefficient of xi 1) i (5.3) is

) e
+a, D) , (5.4)
BRI ) q
(m2,) :
whereas z, °~'" has the coefficient
D W AL g
+a, D% | : +a;D | ¢ : . (5.5)
00 L) LY
Combining (5.4) and (5.5) with (4.13), we get
S R S R
:i:azalDfl?l) : : :l:alang)z) :
xgq—2) $<(1q_2) a zgq—2) PO 2
D g 59
+a2D | ¢ ; =0.
zgq—z) :c,(lq_z) o
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©) ©
Now, (5.6) may be interpreted as an equation in zﬁ"“"“, - xflm“‘z). Again there are two

possibilities:

Either equations (5.6) and (4.13) are independent. It will turn out again, that then
our problems are settled.

Or (5.6) and (4.13) are proportional. In this case we compare the coefficients of

(m(o)

) (m&2,) (m&?,) .
zy % and z; °°* in (5.6) and (4.13). z, °* has in (5.6) the coefficient

xgl) :cf,l)
+aa: D7} , : : . (5.7)
-3 -3
{1 R ) 412
(m2y)
The coefficient of z3 *~* in (5.6) is
A g RN
+aga, D0, | : +a1a,D{) 5
-3 -3 -3 -3
x&q ) z ) q13 zg" )L @Y 123
(5.8)
o R
d:afD,(I?g’a. :
-3 -3
0 L o)
Since equations (5.6) and (4.13) are proportional, we get using (5.7) and (5.8)
ORI ) OB
:f:a30,2a1D((1?1),2 : : iagalpg?l)ﬁ
-3 -3 -3 -3
A ) A e )
OB ORI
:I:azalang(B’B : : :I:agafD,(;,)z)‘3 : : =0.
-3 — -3 -3
a:gq ) a:,(Jq 9 123 :ng U xgq ) 423
(5.9)

Let us review what we have done so far. In a first step we went from (5.2) to (5.3).

The second step led from (5.3) to (5.6) and in the third step we reached (5.9) starting
with (5.6).
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After ¢ steps with 1<i<g—2 we obtain an equation

1 1
HD W
+a;a; D(O)
i@i—1 - Q1g 30 i1 :
(g—1) (g—%)
) e Ig 01,2,nnrie 1
1 1
xg ) ey
(0) :
iai_laiﬂg alanl,z’__’é :
(g—1) (g—1) 5.10
Ty - Iq 1,2,3,....0 ( )
i—-1
2
+ E +a;_1 054105851 ... A1
j=1
(1) (1)
x] . Ig
(0) : : —
XD‘Llyz)“'vj_lyj“‘ly--wi ’ ) _0'
(g—1) (g—9)
51 - Tq @ 1,2, i— 1,5+ 1,nyi

©
For i=¢—2, (5.10) is an equation satisfied by x(™”) . However the component z,(lmz )

can only occur in the summand

MO
tag_3a4_4 ... alang?%,__.,q_z :
x«(z2) x.(lz) 1,2,...,g—2 (5.11)
=z, 304.4..01 ang{,)%,...,q—l,qxgm(‘m) érf%m)
iaq_3 alang(’);’_“,q_Q,q’q_l:C((;f%O))zgm;m)

©
(cf. (4.19)-(4.21)). But fortunately we have (5.1). Therefore the coefficient of zgm2 )

in (5.11) vanishes. We conclude that (5.10) for i=¢—2 gives an equation between the

(mg”)  (m$”) (© . o
components z; ° ’,..,2, 7 ’ of x(™327), Therefore this equation either is independent of
(4.13) orit is trivial. In the latter case we may conclude that in particular the coeflicient
©
of x,(;fi ) in (5.10) equals zero. So we obtain
(0) (m{”) 0 (m{®)
iaq—3 alaqd1,2,..4,q—2,q—1,q Zq ! :I:aq_2 aldl(l,z,an—&q_l’q—z z‘l_5
9-3 (5.12)
2 (0) (m{”)
+Y ks 050050 aady) gy g agr 7 =0,

j=1

©
But in view of (5.1) and since a; ... a;#0, the coefficient of a:,(lml ) in (5.12) is nonzero.

. . . (m{®) M) ()
Moreover (5.12) is an equation that involves only z;"* ’,...,z, 3 ,zq ' °. Therefore

(5.12) finally is independent of (4.13).
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We are now in a position to roll back and to make the appropriate choice of the
parameters mEO).

We begin with equation (5.12). Either all solutions x(™) of (4.13) also satisfy (5.12).
Since (5.12) and (4.13) are independent, Lemma 4.1 follows at once. Or we may choose
m{® £0 such that x(™") s a solution of (4.13) but not of (5.12). With this value of m{”
we enter (5.10). FEither for all m}m&o), m#0 equation (5.10) with i=¢—2 holds true
with x(™") and x(™). The definition of mi"’ implies that this equation is independent
of equation (4.13). Or there exists an mgo) ngo), mgo) #0 such that x(m”) is a solution
of (4.13) but (5.12) is not satisfied for i=¢—2 with x(™”) and x(m),

Now suppose that for f<g—1 we could choose nonzero integers m§°), vee m;o) having
m®” <...xm{) (5.13)
such that
o
equation (5.12) does not hold for x(mi”) (5.14)

and such that for each j (2<j<f)

equation (5.10) is not satisfied for i =q—j

© (© (5.15)
with the solutions x(™1 ), ..., x{™i ) of (4.13).
(0)
f+1 ©
with x(™) satisfying (4.13) the tuple x('"(lo)), ey ™1 ) x(™) gives a solution of (5.10) for
i=¢—f—1. The definition of mgo)’ ey m;o) implies that this is an equation in x(™) that

©
is independent of (4.13). Or there exists m;(:)_lszfo), m(folﬁéO such that x(™7+1) is a

(©
solution of (4.13) but the tuple x(mﬁ‘”), ...,x("‘fo+1) does not solve (5.10) for i=¢—f—1.
We may continue in this way and possibly this process stops only at f=qg—1. Then

Then for a possible value m we distinguish two cases. FEither for all m}mg,o), m#Q

we have mgo), ...,m,(lo_)1 and the vectors x("‘(lo)), ...,x(mgo—)l) do not satisfy equation (5.3).
Therefore in this case equation (5.2) (as equation in x(™)) is nonproportional to equation
(4.13).

So far we have dealt with a construction that treats only a single coefficient vector
(dg?)zq) arising from Theorem 1.4. However we need parameters mi, ..., mq_1 that may
be of use simultaneously for all t4 coefficient vectors we get from Theorem 1.4. For
this purpose we proceed as follows. To choose m;, coefficients (dfi),q) (1€j<ty) in
alternative (i) allow any choice m#0 where x(™) satisfies (4.13). As for the coefficients
appearing in alternative (ii) there are two possibilities.

(Jo)

FEither there exists jo (1<jo<t4) such that no choice of m;"°’ is possible for (dg") )

yererig/*
Then the lemma follows at once, since this even implies that all solutions x(™) of (4.13)

with m#£0 satisfy moreover one single equation which is independent of (4.13).
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Or we can find for all j (1< j<t4) a parameter m&j ) that fits together with (dsf ?___,iq)

in the same way as described above for mﬁ‘” and (dg?,)...,i,,)~ Then we choose for each j

the parameter mgj ) minimal (which is possible as our hypothesis implies that (4.13) or

(4.5) respectively have only finitely many solutions) and we put

my =ma,xm£j). (5.16)
j

Since the mgj )

are chosen minimal, we may conclude that any solution x(™ of (4.13)
with m<m;, m#£0 satisfies one at least of the relations (5.12). Notice that we get not
more than ¢4 such relations. Consequently, if in (5.16) we have m;>0, then the first
alternative of the lemma follows by using the definition of ¢4 in (4.10). Therefore we may
suppose in the sequel that

m; <O. (5.17)
Given mj, we check whether for each j (1<j<t4) we can find mgj )
then there exists jo (1<jo<t4) such that for each solution x(M) with m>my, m#0 the

pair x(™), x(™1) satisfies the corresponding equation of type (5.10) or (4.28). Together

. If this is not possible,

with the t4 equations coming from solutions m <m; we see that then in fact

ta+1 (5.18)

equations will suffice. Otherwise we pick for each 7, mgj ) >m, and minimal with respect

to our above construction and put
ma =maxmgj). (5.19)
J

Then solutions m with m; <m<msg satisfy one of the ¢4 relations of type (5.10) or (4.28).
We may continue this procedure and we assume now, that m;,...,my with f<g—1 have
been found. Our construction implies that if we cannot find mys;, then the solutions m
satisfy one of

fta+1 (5.20)

relations, each of type (5.10) or (4.28).
Finally, suppose we can find my,...,mq_1. Then we are in a position to apply
Theorem 1.4. In fact suppose

m > max{m,_1,22°d3k%1*}, (5.21)

so that in particular (3.15) holds true for m. Moreover by (5.17) we also have (3.11) for
mq, Mg, ...,Mg—1, M. By Lemma 3.5 the vector z whose components are the summands
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in the Laplace expansion of the determinant with rows x(™1), ... x(Mme-1) x(™) gatisfies
(3.16). Thus we may apply Theorem 1.4 with S as defined in Lemma 3.5 and with § =%.
Consequently with our choice of x(™1), ... x(ma-1) we see that x(™) satisfies one of the
t4 equations of the shape (4.16). But we had fixed in advance the possible coefficients
di r,(1),...,7(¢—1) in (4.16), as we started with (4.17) and the parameter 6=§. So, with
our choice of x(™1) ... x(™a-1) actually the relations (4.16) for x(™) are independent of
(4.13). We may conclude that the solutions x(™ with m as in (5.21) satisfy apart from
(4.13) one at least of ¢4 relations each of which is independent of (4.13).
There still remain solutions with

0 <m < max{m,_1,2%d*k31%}.
To cover these solutions as well, our construction implies that
(g—1)tg+2B K31 (5.22)

relations will suffice.
If we check the different alternatives we had, we may infer from (5.18), (5.20) and
(5.22) that either for the range of solutions m <0 or for the range m>0

gta+ 228 d3E312

relations will suffice and Lemma 4.1 follows.

6. Proof of Theorem 1.3

We proceed by induction on r and k, where & is the sum of the degrees of the polynomials
fi as defined in (1.19).
If r=1, then equation (1.15) reads as

f(m)a™ =0, (6.1)

where a#0 and f is a polynomial of degree k. So we get not more than k solutions meZ
and the assertion follows.
Next suppose that =2 and k=0. Then equation (1.15) becomes

aa™+b3™ =0, (6.2)

where a and b are nonzero constants.
If (6.2) had more than one solution, then a/8 would be a root of unity.
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Before we deal with the induction step, we still have to study one particular situation
that might occur for r=2. Denote by 01, 62 the number of nonzero coefficients occurring
in the polynomials fi, f2 respectively. We assume now that k>0 and o1 +02=2. Then
necessarily we have 0, =02=1 and equation (1.15) reads as

am® o™ +bmk2gm =, (6.3)
where @ and b are nonzero constants and k;, k2 are nonnegative integers with
ki+k:=k.

If k1 =k, then for m#0 (6.3) is equaivalent to (6.2). Therefore in this case (6.3) has at
most 2 solutions.
We now assume k; >k3. Then for m#0 (6.3) implies

g

o

2m

2
\%l m2(ka—k2) _ =0. (6.4)

Since the function |a/b|?z**1—*2) —|3/a|?* of the real variable x has at most 2(k; —k2)
stationary points, we may conclude that (6.4) has not more than 2(k; —k2)+1 solutions
m€Z. Thus for ky >k, equation (6.3) has not more than 2k+1 solutions.

To treat the general case, we want to apply Lemma 4.1. In proving Lemma 4.1 we
need the normalization (4.4) of equation (1.15), to guarantee that at least one third of
the zeros have m <0 and one third have m>0. This normalization has no impact on the
degree of the polynomials, in fact we see that

deg fi=deggi=p0:—1. (6.5)

However the number of nonzero coefficients in g; and in f; may be quite different. So the
parameters o, ..., 0, and ¢ in Lemma 4.1 refer to the g; but not to the initial polynomials
fi. Instead of the initial equation (1.15) we consider now the normalized equation with
parameters r, 01, ...,0,. To apply Lemma 4.1, we need moreover that equation (4.1) has
only finitely many solutions. But this follows from the Skolem—Mahler-Lech Theorem,
as our hypothesis in Theorem 1.1 says that for each pair, ¢,j (1<¢,5<7), i#7, ai/a; is
not a root of unity.

We may assume that either r=2, k>0 and 0y +02>2 or 7>2 and k>0 since in the
other cases the assertion is proved already.

The induction hypothesis is, that the assertion holds true for all equations (1.15)
(never mind whether normalized or not) with parameters r’, k' such that either

r'<r (6.6)
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or
r'=r and k'<k. (6.7)

By Lemma 4.1 at least one third of the solutions m of the normalized equation

3" gi(m)a =0 (6.8)
=1
satisfy one at least of 5 relations
S rD(m)a =0, 1<j<ts (6.9)
i=1

where the hl(.j ) (z) are polynomials with
degh!’ <deggi, 1<i<r 1<j<ts. (6.10)

Moreover, if for some v with 0 v <deg hz(-j ) the coefficient of z¥ in hgj ) is nonzero, then
z¥ has a nonzero coefficient in g; as well.
Thus writing a,(] ) for the number of nonzero coefficients in hl(’ ) we obtain

0P <oy foralli,j with 1<i<r, 1<5<ts. (6.11)

In fact Lemma 4.1 implies that the hgj ) may be chosen such that for each j (1<j<ts5)
there exists an ¢ (1<i<r) having

deg hgj) < degg; (6.12)
(we put deg 0=—00), which implies in particular that
ogj) <0y, (6.13)
and that in fact for a? )=0 the summation in (6.9) is over
r'<r (6.14)

terms.

In view of (6.10)-(6.14), we may apply the induction hypothesis to (6.9). We infer
from (6.10), (6.12), (6.14), denoting by r¢/) the number of nonzero polynomials h;’ )
(1<igr) that

,
r) 4 E deg B < k+r—1.

i=1
R 20
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Therefore each equation (6.9) has not more than
(Aw+d)d)2 T ) (6.15)

solutions. Multiplying (6.15) with the number t5 of equations (6.9) and allowing the
factor 3, since in Lemma 4.1 we take care only of one third of the zeros of (6.8) we get
not more than

3ts (4(w+d)d2 TV wad)? (6.16)

solutions.
Remember the definition of ¢4 and ¢5 in (4.10) and (4.11) respectively. Using the
estimates g<k+r (cf. (3.10)) and r;+r2<d and since [=¢! we infer from (6.16) that

N(0) < 3-((k+7)-2((k-+r)) @D (4(w+d)dl)2" " “alwtd)® | 925 4313)2)
% (4(w+d)d!)24o(k+r—1)! d!(w+d)6
< (4(w+d)d!)239(k+r)! ! (wtd)® -(4(w+d)d!)240(k+7_1)! Ay 4d)8
< (Aw+d)dnF T ot

and Theorem 1.3 follows.

7. Proof of Theorems 1.1 and 1.2

Theorem 1.1 is a direct consequence of Theorem 1.3. In fact the polynomials in relation
(1.15) in that case have sum of degree k with k+r<n (cf. (1.4)).

We now turn to the proof of Theorem 1.2. If none of the characteristic roots o
(1<i<r) of our recurrence is a root of unity, then equation (1.5) for a#0 may be read as

—a-1m+i film)a* =0. (7.1)
=1

But in that case the left hand side of (7.1) is a nondegenerate recurrence sequence of
order <n+1. Thus, we may apply Theorem 1.1 and get not more than

(4w+d)d)> " (7.2)

solutions.
So in the sequel we assume that exactly one of the characteristic roots a; (1<i<r)
is a root of unity. If r=1, then we get an equation

f(m)a™ =a. (7.3)
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We infer from (7.3) that
|f(m)|? = af? (7.4)

since o is a root of unity. If f is a constant, then (7.4) may have infinitely many solutions.
But in that case our recurrence sequence is periodic. If f is nonconstant, we consider
the equation

|f(z)|” =1af?

of the real variable z. Our hypothesis implies that the polynomial |f(z)|>—|a|?> has
degree <2n. We infer that equation (7.4) has not more than 2n solutions m€Z, and the
assertion of Theorem 1.2 follows.

Now assume that 7>1. Then we have characteristic roots oy, ..., @, such that a;/a;
is not a root of unity but one at least of the roots, say o, is a root of unity. If o,=1
our equation becomes

r—1
(fr(m)—a)i™+) _ fi(m)a]* =0. (7.5)
i=1

Again we may apply Theorem 1.1 and we conclude that (7.5) has not more than
(4(w+d)dn)2™ (@) (7.6)

solutions.
Therefore in the remainder of the proof we may suppose that o, is a root of unity
that is different from 1 and that we have r>1. We have to study the equation

r—1
—a-1™+f(m)a +Y . fi(m)a]* =0. (1.7)
i=1

Let ¢ be the order of the root of unity a,. We split equation (7.7) into c equations

r—1

(—aa:b+fr(b+mc))aﬁ+mc+z fi(b+mec)ait™ =0, b=0,...,c—1. (7.8)

i=1

By hypothesis, for each b (0<b<c—1) the left hand side of (7.8) represents a nondegen-
erate recurrence sequence or it is identically zero. If there exists a by with 0<bp<c—1
for which we get a zero sequence, then we have in particular

fi(z)=0 fori=1,..,r—1

and

fr(z) =ao;t.
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Thus our initial sequence is of the shape

m

Uy, =doy;,

and hence it is periodic.

Consequently, we may suppose that (7.7) has only finitely many zeros. But then we
are in a position to apply Lemma 4.1 to equation (7.7). In fact, since r>1 our hypothesis
implies in particular that there exists a pair 4,5 (1<4,7<r) with i#j such that a;/a;
is not a root of unity, and this was the second general assumption we needed in Lemma
4.1.

Since r>1, the left hand side of (7.7) is an expression with r-+1 characteristic roots,
so in the notation of Lemma 4.1 we replace 7 by r+1 and we have ¢>3. Now the relations
we obtain in Lemma 4.1 may be chosen such that for each j (1<j<ts) the coefficient
vector (dﬁ), cey dﬁQl,arH) has some particular predesigned component equal to zero. We
choose this component such that in the relations of Lemma 4.1 we get rid of the term
corresponding to —a-1™ in (7.7), and we infer from Lemma 4.1:

At least one third of the solutions m€Z of (7.7) sastify one at least of t5 relations
of the type

,
Y gP(m)ar =0, 1<j<ts (7.9)
i=1

where the ggj ) are polynomials having

deg gz(j) <deg f; for each pair i,7 with 1<i<r,1<j<ts. (7.10)

Equations (7.9) however are of the type considered in Theorem 1.3. Since
T
T+ Z deg fi<n
i=1

we conclude using {7.10) that for each j (1<j<ts) (7.9) has not more than
(4(w+d)d>™ “wtd)® (7.11)

solutions. Allowing the factor ts for the number of relations (7.9) and the factor 3, as we
may have covered only one third of the solutions we finally see that (1.5) has not more
than

3t5(4(w+d)dn2 " “ (@ td)®
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solutions. In our context the parameter ¢ occurring in Lemma 4.1 is bounded by n+1.
Thus using (4.11) we obtain

3ts(4(w+d)d)? " (W)

< (6(n+1)(n+ 1)1+ (4(w+d)dl)2 "V s+ D)° | 3.92581). (4(wd)dl)Z " D)
< (4(w+d)d!)240n!d!(w+d)e -(4(w+d)d!)239("+1)!d!(w+d)6

< (@wHddy? T et

and Theorem 1.2 follows.
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