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1. I n t r o d u c t i o n  and  s t a t e m e n t  o f  resu l t s  

In the celebrated paper [1] Atkinson exhibited an explicit formula for the mean square 

of the Riemann zeta-function on the critical line, which greatly enriched the theory 

of this most fundamental function in number theory (cf. the relevant parts of [2], [3], 

[10]). Our main object in the present paper is to indicate that  if combined with the new 

developments due to Kuznetsov [6], [7] in the theory of automorphic functions, Atkinson's 

idea can be extended to the fourth power mean situation to yield an explicit formula for 

s I(T, A) ---- ( A v ~ )  -1 lr189 14e -(t/a)~ dt 
oo 

(1.1) 

with 0 < A < T ( l o g T )  -1. As will be shown in the separate papers [4], [5] our result (the 

theorem below) gives rise to several important consequences on the error term in the 

asymptotic formula for the unweighted mean 

~o Tlr189 4 dt, (1.2) 

some of which can be regarded as genuine extensions of those deducible from Atkinson's 

formula (see also [3, Chapter 5]). 

When reduced to essentials, Atkinson's idea consists of an effective application of 

Poisson's formula to the following trivial decomposition of double sums: 

m , n  m = n  m < n  r e > n - -  

(1.3) 
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Translating this into the problem of determining the behaviour of (1.1), we encounter 

the identity 

I § § 
k , l , m , n  X k l = m n  k l < m n  k l > m n  I 

(1.4) 

Then the r51e of Poisson's formula in (1.3) is played in this by the spectral expansion of 

SL(2, Z)-automorphic functions. In fact, if quadruple sums are identified with sums over 

2 • 2 integral matrices, the decomposition (1.4) can be written in the form 

Z'(A): { Z +  Z I'(A) 
A d --0 de t  A > 0  det  A < 0  ~ 

Here we have further 

((;)) E f ( A ) =  E f ( A ) = E  E E E f A a , 
d e t A > 0  n = l  d e t A = n  n = l a d = n b = l  A E S L ( 2 , Z )  

(1.5) 

and we are led to the theory of automorphic functions. 

These are stated, however, only for the sake of understanding very roughly the fact 

that the discrete spectrum of the non-Euclidean Laplacian as well as the objects related 

to holomorphic cusp forms appear in our explicit formula for I(T, A). In practice we shall 

first relate I(T, A) to an integral of the product of four zeta-values, which is subsequently 

transformed into sums of Kloosterman sums. Then we shall appeal to Kuznetsov's trace 

formulas which amounts, if generalized as above, to the spectral decomposition applied to 

(1.5). Thereby will emerge a mysterious relation between the Riemann zeta-function and 

automorphic L-functions. But this will be shown first in a restricted range of the relevant 

parameters; and we shall face a crucial problem of analytic continuation. After settling 

this, a specialization of parameters will be undertaken, and certain involved technicalities 

will finish our discussion. 

Now, in order to state our main result we introduce some basic concepts and results 

from the theory of automorphic functions, whose detailed expositions can be found in 

standard literature. It should be stressed here that notations and conventions will be 

introduced at the stages where we need them for the first time, and will be effective 

thereafter. 

Thus, let {.~j=~j+l:xj>O,j>/1}U{O} be the discrete spectrum of the non- 

Euclidean Laplacian acting on the space of all non-holomorphic automorphic functions 

with respect to SL(2, Z). Let ~j be the Maass wave form attached to the eigenvalue Aj, 

so that (~aj} forms an orthonormal base of the subspace spanned by all cusp forms, and 
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each ~oj is an eigenfunction of all Hecke operators T(n),  n~>l, and T ( - 1 ) .  The latter 

means that  we have, for Ira(z)>0,  

(T(n)~j)(Z)=--~ ~d=nb~=lqa j =tj(n)qoj(z) 

with a certain real number tj (n), and 

( T ( -  1)~oj )(z) = ~j ( - 5 )  = ej qaj (z) 

with c j = + l .  The same numbers appear also in the Fourier expansion of qoj: 

qoj(x+iy) = av/-~ E tj(n)Ki,,~ (2~rlnly)e(nx), 
n#O 

where K~(- ) is the K-Bessel function of order u, and e(x) =exp(27rix) as usual. The first 

Fourier coefficient 05 is an important quantity in our discussion. With it we put 

~y = 10s 12(cos h 7rx3) -1. 

Then Kuznetsov [7] has shown that 

E c~j << K 2. (1.6) 

Also we shall need the Maass wave form L-function Hj  (s) attached to qoj, which is defined 

by 

Hi(s) = E tj(n)n-S" 
n = l  

This converges absolutely for Re(s)>2,  for we have the elementary bound 

It~(n)l ~< al(n) ,  (1.7) 

where aa(n) denotes the sum of the ath powers of divisors of n. The multiplicative 

property of tj(n) found by Hecke can be expressed, in terms of Hi(s), by the identity 

cx) 

E aa (n)tj (n)n -8 = r (2s - a)-I Hj (s)Hj ( s -  a), (1.S) 
n = l  

providing Re(s) is sufficiently large. This is a counterpart of Ramanujan's  identity: In 

the region of absolute convergence 

E aa(n)crb(n)n-S = ~(s)~(s-a)~(s-b)~(s-a-b){~(2s-a-b)}-l" (1.9) 
n = l  

13-935202 Acta Mathematica 170. Imprim6 le 30 juin 1993 
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Further, Hi(s) can be continued to an entire function, and satisfies the functional equa- 

tion 

Hi(s) = 2 2 ~ - % 2 ( ~ - l ) r ( l + i z j - s ) r ( 1 - i ~ j - s ) ( s j  cosh(rgj)-cos(~rs))Hj(1-s), (1.10) 

which implies in particular that  uniformly for bounded s 

Hi(s) << x~. (1.11) 

Here and in what follows the letter c denotes generally a positive constant whose value 

may differ at each occurrence, and whose dependency on other constants, e.g. the size 

of s in the above case, will be inferred from the context, though we shall make them 

explicit if necessary. 

Next, we turn to holomorphic cusp forms. Thus, let {qoj,k:l<~j~v~(k)}, 0 ( k ) = 0  

(k < 6), be the orthonormal base, consisting of eigenfunctions of all Hecke operators Tk (n), 

n~> 1, of the Petersson unitary space of holomorphic cusp forms of weight 2k with respect 

to SL(2, Z). This means especially that  we have, for I ra(z)>0,  

1 k d (azffb) 
(Tk(n)~j,k)(z)=-~ E (d) E~J'k =tj,k(n)~j,k(Z) 

a d = n  b = l  

with a certain real number tj,k(n). We define as before, the Hecke L-series Hj,k(s) 
attached to ~j,k by 

( x )  

Hj,k(S) = E tJ,k(n)n-~" 
n : l  

This converges absolutely for Re(s)>2,  since we have 

Itj,k(n)l ~ al (n). (1.12) 

As a mat ter  of fact much more is known, but this elementary bound is sufficient for our 

discussion; the same can be said for (1.7). Corresponding to (1.8) we have, in the region 

of absolute convergence, 

( x )  

o~ (n)t~,k (n )n  -~ = r (2s - a ) - l  Hj,k ( s ) g j , ~  (s - a).  
r t =  l 

(1.13) 

Hj,k(s) can be continued to an entire function, and satisfies a functional equation, which 

implies that  uniformly for bounded s 

Hj,k(S)<<k c, (1.14) 
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where c and the implied constant depend only on s. Also, with the first Fourier coefficient 

Qj,k of qoj,k we put 
aj,k ---- ( 2k -  1)! 2-4k+2~r-2k-llQj, k 12. 

Then, as will be shown in the third section, we have the following analogue of (1.6): 

~(k) 

aj,k <<k. (I.i5) 
j=l 

With these preparations we may now state our main result, which with the obvious 

abuse of notation is embodied in the following 

THEOREM. If 0 < A < T ( l o g T )  -1, then there exist absolute constants c( a, b; k, l) such 
that 

/? (AV~)  -1 1~(�89 

a,b,k,l>~O 
ak-l-bl ~ 4 

i 1 (�89 6 +- j _  O(t;T,A)dt + ~-~ ajHj(�89 (1.16) 
~r ~ 1r j=i 

+ E  E aJ,kHj,k(�89189 +O(T-l(l~ 
k=6  j = l  

Here the constant in the error term is absolute, and 

O(r;T,A)= fo~(x(x+e))-U2 cos (Tlog ( l + l ) )  

A 1 2 
x A ( x , r ) e x p ( - ( ~ l o g  ( l - b ~ ) ) ) d x ;  

�9 i 1 
A(x,r)=Re[x-1/2-*r(w(r)~ sint~(Trr)) F(l+ir)2 

where F is the hypergeometric function, and w(r) is the characteristic function of the set 
of real numbers. 

We remark that  the sums and integrals in the above are all absolutely convergent. 

This follows from (1.6), (1.11), (1.14), (1.15) as well as the rapid decay of O(r; T, A) with 

respect to r. The latter will be shown in the course of the proof. We also stress that  it is 
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possible to consider (1.1) with more general weights than Gauss' ( A V / - ~ ) - I  exp(-(t/A)~). 

But, according to experience our choice appears to be the most practical. 

Now, our formula (1.16) should be compared with the following explicit formula for 

the mean square: For any T, A>0 

C (Av/-~) -1 1~(�89 12e -(t/a)2 dt 
o o  

= (Av~)  -1 Re +i(T+t e -(tlA)= dt+2~/-log(27r) (1.17) 
o o  

+ 4 E d ( n )  (x(x+l)) -'12cos Tlog 1+ cos(27rnx) 

>exp 1 ( l + x ) ) ) d x + 2 x / ~ A _ l e x p ( ( l _ T 2 ) A _ 2 ) c o s ( T A _ 2 ) ,  

where '7 is the Euler constant, and d(n) is the divisor function. This can be proved by 

considering the degenerate case v=+oc, z=+oo in (2.1) below with the aid of (1.3). 

Transforming (1.17) by Voronoi's formula as Atkinson did in a somewhat different 

context, and integrating the result with respect to T, it can be seen that A may be taken 

to 0; thereby one gets an alternative proof of his formula mentioned above. 

In these circumstances one may speculate that there might be analogues of Voronoi's 

formula for the sums 
,~(k) 

E E E 
~j<~K k~K j = l  

If they exist, we would be able to complete the analogy between (1.16) and (1.17). This 

appears to be a difficult problem; and we remark only that the arguments developed in 

[8], [13] may probably yield something close to our aim. There is, however, another way 

to enhance the analogy: We consider the asymptotical behaviour of our explicit formula 

and (1.17). Applying the saddle point method to each term of the sum over n in (1.17), 

one may show that for T1/4<A<T(logT) -1 

i_~o (~ 1 I%-(</A): (1.1s) (Av '~ ) - '  [ (~+i(T+t)) dt 

o o  7rn 2 
~ 23/471-1/4~-1/4 E(_l)n- ld(n)n-1/4s in( f (T ,  Tt))exp ( - - - ~ t )  - t - O ( l o g r ) ,  

n z l  

where the implied constant is absolute, and 
7rn 1/2 

f(T,n>-~2Tarcsinh((-~-~) )+(27rnT+Tr2n2)lll-17r. 
As a matter of fact we can relax the condition on A at the cost of introducing complexities 

into the right side, which is unnecessary for our present purpose. On the other hand an 

asymptotical evaluation of O(r; T, A), which is to be carried out in the final section, gives 
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C O R O L L A R Y  T O  T H E  T H E O R E M .  If T1/2 < A<T(logT) -1, t h e n  w e  h a v e  

( A v e )  -1 1~(�89 14e -(t/A)2 dt (1.19) 
oo 

__ ~r ajHj(5)  xj s m ( x j l ~  exp - \  2T ] ] 
j = l  

where the constant B is explicitly computable, and the implied constant is absolute. 

Again we stress that  this condition on A is only for the sake of simplicity in the 

result, and one may consider smaller A as well. 

A feature of (1.19) which one cannot miss to observe is that  it shows clearly that  each 

value of r189 though on average, is related to all eigenvalues of the non-Euclidean 

Laplacian over SL(2, Z) in much the same way as prime numbers do to all complex 

zeros of ~(s). To find a direct explanation of this fact seems to be a deep problem, and 

the solution to it will certainly bring us an image of the zeta-function as a wave in an 

extended sense. 

Finally, it should be mentioned that  the present article has some aspects common 

with Zavorotnyi's work [16], in which he has obtained an asymptotic formula for (1.2) 

with an error O(T 2/3+~) for any fixed r  (cf. [4]). His argument depends, however, on 

Kuznetsov's work [8] in an essential manner; and because of his use of a smoothing device 

which resembles the reflection principle (cf. [2, p. 122]) it appears that  his argument may 

not be improved so as to yield a result as explicit as ours. We stress that  our argument 

is independent of [8]. 

Acknowledgement. We are much indebted to Professors A. Ivid, M. Jutila and N.V. 

Kuznetsov for their kind comments which they made on the announcement articles [11], 

[12] and the draft of the present paper. 

2.  R e d u c t i o n  t o  s u m s  o f  K l o o s t e r m a n  s u m s  

We begin by relating I(T, A) to a meromorphic function of four complex variables. 

Let D+, D_ be the domains of C 4 where all four variables have real parts larger 

than, less than one, respectively. We put, for (u,v, w, z)eD+ and arbitrary A>0,  

Y(u ,v ,w , z )  = --i(Av/-~)-i ; - -  r162162 dt (2.1) 
J(o ) 

where the path is Re( t )=0.  The omission of A on the left side is for the sake of notational 

simplicity; similar abbreviations will be employed at various places in the sequel. 
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Moving the path in (2.1) to the right appropriately, we see that Y is a meromorphic 

function over the entire C a. Then, taking (u, v, w, z) to D_ and shifting the path back 

to the original, we get the following continuation to D_ : 

:- Y(u, v, w, z) = (Av:~)-I r162162 exp - dt 
oo 

1)((u+w-1)((u+z-1)exp((---~) ) + 2 v ~ A _ I  { ( ( v _ u +  u--1 2 

w-1 2 

In this expression the integral is obviously regular throughout D- ;  also the member in 

the braces is regular at the points (u, u, w, w) with u+w~2. The latter can be confirmed 

easily by using the Laurent expansion of ((s) at s=l. In particular Y is regular at the 

point 

PT = (1 § �89 +iT, �89 1 _iT) 

for any real T, and we have 

I(T,A)=Y(PT)-2vr~ A-1Re{ (~/-log(2r)+(�89 exp(( ~ )  2) }. (2.2) 

Because of this identity we seek for some other way of continuing Y from D+ to the 

vicinity of PT. To this end we note that in D+ 

Y(u,v,w,z)-- ~ k-Ul-~m-Wn -~exp - log kl ] ]" 
k,l ,m,n=l 

Hence (1.4) comes into play. We then have the decomposition, in D+, 

Y(u, v, ~., z) = Yo(u, v, w, z )+  r~(u, v, ~., z ) + ~ ( w ,  z, ~, ~), (2.3) 

where Y0 and 1:1 correspond to the parts with kl--mn and kl<mn, respectively. Ra- 

manujau's identity (1.9) gives 

YO(?2, v ,  w ,  z )  : ~ (u -~-w)~(u -~- z )~ (v '~ -w)~(v+z){~(u -~-v '~ -w-[ - z ) )  -1 ,  (2.4) 

which is obviously meromorphic over C a. As for Y1 we have, in D+, 

(3O 

m,n-~ l 
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with 

W(x, ~1) -~ (1 -t-x)-n exp ( -  (1A log(1 +x))2).  

This suggests to us that  we should view Y1 as a result of convolving Fourier coefficients 

of the Eisenstein series for SL(2, Z). In fact, a general theory of such convolutions has 

been already investigated by Kuznetsov [8], and one may appeal to his results, which 

is exactly what Zavorotnyi [16] did in a somewhat different context. However, as we 

have already indicated, if we follow their argument it appears quite difficult for us to 

keep computations explicit at all stages, which is imperative for us; and moreover the 

reconstruction of details which [8] lacks is equally difficult (on this matter see [14]). 

Therefore we shall take a different route, though we start from the same observation as 

[8, (106)]. 

We thus go back to the very reason that  the divisor-sum functions appear in the 

Fourier expansion of the Eisenstein series. This is embodied in another identity due to 

Ramanujan: For Re(~) < 0 

o o  

a~(n) = r  E l~-'c'(n)' (2.6) 
l = l  

where ct(n) is the Ramanujan sum 

 eTn. 
h = l  

(h,0=l 

We regard (2.6) as an expansion over additive characters of the multiplicative function 

a~(n). Then (2.6) provides a means of separating the variables m and n in the factor 

aw-z(m+n) on the right side of (2.5). Thus, the combination of (2.5) and (2.6) yields, 

for those (u, v, w, z) e D+ such that  Re(z) > Re(w) + 1, 

l = l  h = l  m . = l  
(h J)=l (2.7) 

x E e  n W ,w , 
n = l  

in which the right side converges absolutely. 

Then we need further to separate the varibles m and n in the last W-factor. To this 

end we introduce the Mellin transform of W(x, 7/): 

W*(s ,v)  = y~-~(l+y)-'Texp(-(�89 Re(s) > 0. (2.8) 
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This is meromorphic in s, having simple poles at non-positive integers, and entire in y. 

The former assertion can be proved easily by performing partial integration many times, 

which gives at the same time the rapid decay of W* as a function of s. In other words 

we have, for any fixed A,B>O, 

W*(s,y)<<N -A (2.9) 

as s tends to infinity in the strip [Re(s)[<B; here the implied constant depends on 

y, A, A, B. Also we should note for the sake of a later prupose that the Beta-integral 

formula implies 

W*(s'Y)=(Av~)-IF(s) ~ r (y+ i t )  e x p -  X dr, (2.10) 

providing Re(q)>Re(s).  Further, by Mellin's inversion formula we have, for any complex 

y and x>0, 

1 f(~ W,(s,y)x_Sds, (2.11) w ( x , y )  = ) 

where a > 0  is arbitrary. 

At this step we introduce a subdomain of D+: For a > 1 we put 

D(a) = {(u, v, w, z) e D+:  Re(z) > Re(w)+ 1, Re(w) > (~}. 

Then, by (2.7) and (2.11) we have in D(a) 

Yl (U,V,W,Z)=r l~-z-1 Z ~ u+w-s ,u - v ; e  7 
~=1 h=l ) 

(h,O=l 

where 

(2.12) 

D s,~;e = a~(n)e n n -s, 

h 
- ~ -  _ e - - n  12 -s,  

and the right side of (2.12) converges absolutely (cf. (2.9)). We are going to shift the 

path in (2.12) to the right. For this sake we recollect some analytical properties of the 

D-function: If ~r  and (h,/)=1, D(s,~; e(h/1)) has simple poles at s = l  and 1+~ with 
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residues l~-~l(1-~) and / -~-~(1+~) ,  respectively; and there is no other singularity. 

Also we have the functional equation 

D(s,~;e(h)) =2(27c)2S-2-Q~-2S+1F(1-s)F(l+~-s) 
(2.13) 

• {D(1-s , -~;e(~) )cos(2~)-D( l -s , -~;e( -~)  ) cos ( r  ( s - i ) )  }, 

where h h - 1  (mod l). This implies in particular that D(s, ~; e(h/l)) is of polynomial 

order with respect to s in any fixed vertical strip. In fact, these can be proved easily by 

expressing D(s, ~; e(h/l)) in terms of Hurwitz zeta-functions. 

Now we introduce another domain: 

E(f~) = {(u, v, w, z): Re(u+w) < f~, Re(v+w) < f~, Re(u+v+w+z) > 3~}, 

where f~>0 is to be taken sufficiently large, though in the discussion below 13=5 will be 

adequate. We should remark that 

D(a)NE(~)#O, 13 > a + l .  

We work, for a moment, in this joint domain. Then we have, on noting (2.9) as well as 

the facts on the D-function mentioned above, 

1 h h . 
s u  

(h,0--1 
oc 

= lU--v--lr - 1,113) E c l ( n ) n l - u - w  ( 2 . 1 4 )  

n = l  
oo 

+l~-~-~r + 1)w*( ~ + ~ -  1, ~) Z c~(~) ~ - ' - ~ ,  
n----1 

where /3>a+1. In the integral over the line Re(s)=fl we have Re(u+w-s)<O and 

Re(v+w-s)<O, so that we may replace D(u+w-s, u-v; e(h/l)) by the absolutely con- 

vergent Dirichlet series inferred from (2.13). This yields, after some rearrangement, 

h = l " , ,  E2-~i f~)l  1 D(u+w- s,u-v; e(-[))~(s,e(-[))W(s,w)ds h h . 
(h , l )= l  

=2(2~r)~-z-Q ~-~ ~ m�89189 (2.15) 
m,n~l 

( [~r , ,'~.[47rvf-m-n z)S(m,n;l)-~\ l ;u,v,w, •176 l ;~ '~ '~ '  
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Here S(m, n; l) is the Kloosterman sum 

l 

E e(}(mh+nh)) ,  
h = l  

( h , / ) = l  

and 

r  u, v, w, z) = 2-~ ) \ 2 /  (2.16) 

x P ( s +  1 -u-w)P(s+ 1 - v -  w)W*(s, w) ds, 

~(x;u,v,~,z) = 1 f~e (~,+o+,~+~-1-~ 2~i ) ~ /  cos(~(~+�89 (2.17) 
xr(s+ l-u-~)r(s+ l-v-~)W*(s, w) ds. 

Note that  the last integral converges absolutely by virtue of (2.9). 

Collecting (2.6), (2.12), (2.14) and (2.15), we obtain 

LEMMA 1. YI(U, v, w, z) can be continued meromorphically to the domain E03), and 
there we have the decomposition 

Yl(U,~,~,z)=y=(u,~,~,z)+yr (2.1s) 

Here 

Y2(u, v, w, z) (2.19) 

= ~(u+z)r w){~(u+z-v-w+2)} -1 

+~(v+ z)r 1)((z-w+ l){(v-u+ l)W*(u+w-1, w){~(v+ z - u - w +  2) } -1, 

Ya- (u, v, w, z) = -  2(2r r )W-z- l r  + 1) 

X k m�89189176 n(u'v'w'z)' 
m , n = l  

Y+(u, v, w, z) = 2 (21r )~ ' -z - l~(z -w+ 1) cos (�89 v)) 

__}(1 ~-z)_ �89 (,~+w-,,-,-1) _ r_~ re'+ I~. 
X "fIl~ . . . . .  I~ O v - - u ~ ' l $ ) l k v n . , , n , ~  ~ ~"U~ ~"tu~ Z)~ 

m , n - ~ l  

where 

(2.20) 

(2.21) 

~ 1 7 6  4 '~ -tv ~ u , v , w , z ) , K=.Iu, v,w,z)= ~. ~S(m,-n; 0~( 
I=i 

,<,o(u,v,=,z)=E17s(m,n;,)+ 
/=1  

(2.22) 

(2.23) 
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and ~, r are defined by (2.16), (2.17). 

In fact, as can be easily checked, the series for Y3 i converge absolutely and uniformly 

in E(/3). It should be remarked that  we need here only trivial bounds for Kloosterman 

sums. This ends the reduction of our problem to sums of Kloosterman sums. What  we 

have to undertake next is to continue Y~ to the whole C 4. That  will be achieved in the 

subsequent sections. 

But,  before proceeding further we make here a little digression. This is to remark 

on the existence of an alternative argument which yields Lemma 1. As a mat ter  of fact, 

in the original version of our proof of Lemma 1 we exploited a simple idea given in [9], 

which is, in short a twist of (1.3). For any (a, b)=l we have 

m , n  a r a = b n  a m < b n  a m > b n  s 

What  is important  in this is that  the left side is independent of a and b. Thus, multiplying 

both sides by certain weights depending on a and b, and summing over all (a, b)--l ,  one 

may get a transformation of the left side. When f is sufficiently smooth the result of this 

process is essentially a sum of Kloosterman sums. A special case is, indeed, Lemma 1. 

In general, this argument may be regarded as a completion of van der Corput 's method, 

and will probably be used as a means to get some non-trivial bounds for exponential 

sums with the aid of SL(2, Z) theory. 

3. Spectral expansion 

The aim of this section is to separate the variables m and n in K~,,~ by appealing to 

Kuznetsov's trace formulas. 

We begin with K~,  n which is easier than the other. To this we apply the following: 

LEMMA 2. Suppose that W(x) is, for x>~O, continuously differentiable to third order, 

and satisfies the conditions 

~(0) = ~o'(0) = O, (3.1) 

and 

as x tends to -t-cr Put 

3 
I~(v) (X)I << X -1990 (3 .2 )  

v=o 

~o ~ dx ~(r)  = 2 cosh(wt) K2i~(x)~(x) x "  
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Then we have, for any positive integers m and n, 

1 S ( m ' - n ; l ) ~ \  l ] = Z ejaj t j (m)t j (n)e(xj)  
~=1 j=l  (3.3) 

F +1 (mn)_i~cr2~r(m)~r2ir(n)l~(l+2ir)l_2~(r)dr. 
"K e o  

Here ej, aS, tj(n), xj  are all defined in the first section. 

This is a corrected version of [6, Theorem 7] (see also [8, Theorem 2.7]). We note 

that  this trace formula has been stated erroneously in some basic literature too. The 

proof is similar to that  of [7, Theorem 2], and may be described very briefly as follows: 

We consider the inner product (Urn(z, Sl), U~(z, s2)) instead of (Um(z , 81 ), Un(Z, $2)); the 

latter is the case treated in [7] (precise definitions of these can be found there). We then 

obtain, as an analogue of [7, (4.50)], 

oo  

oo ( 47r~/mn ~ --_ Z ~jotjtj (m)tj (n )H(~ j ,  t) 8zr-lv/-m--n Z 1 - 2 S ( r n , - n ; l ) g 2 ' t k  ~ ] 
1 = 1  j----1 (3.4) 1/? +-~ (mn)-ir a2i~(m)a2~r(n)l~(l+2ir)l-2H(r,t)dr, 

o o  

where IIm(t)l<�88 and H(r,t) is defined by [7, (4.51)]. Next, we observe that because 

of (3.1) and (3.2) the above qb(r) satisfies the same condition as that  for h(r) in [7, 

Theorem 1]. In fact, this can be derived from the representation 

~(r) = F~/1 cosh(~r) f(~/4) r(s+ir)r(s-ir)~*(-2s)4 ~ ds, 

where ~* is the Mellin transform of ~. Having these, we may proceed just  as in 

[7, pp. 327-329], and find that (3.4) yields (3.3) with ~ on the left side being replaced by 

~(x) = -~ r sinh(~rr)K2i~(x)r dr. 
o o  

If ~(x) has a compact support on the positive real axis, then the inversion formula for 

the Kontrovich-Lebedev transform (the K-Bessel transform) gives immediately r  

while the general case can be handled by the usual approximation argument. This ends 

the proof of Lemma 2. For more details see our manuscript [15], where refinements of 

Lemma 2 and [7, Theorem 2] can be found. 

Now, let us use Lemma 2 with ~ (x )=~(x ;  u, v, w, z) defined by (2.17). We assume 

naturally that (u, v, w, z) is a point in E(/3). Then ~(x; u, v, w, z) is obviously continu- 

ously differentiable to third order and satisfies (3.1); also we may show (3.2) by shifting 
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the path in (2.17) to the right appropriately. Note that  we need (2.9) here. Hence we 

have, in E(~), 

0,0 

Km, n (u, v, w, z) = ~ ejaytj (m)tj (n)~b(~r u, v, w, z) 
j = l  

/? +1 (mn)-i~ a2i~(m)~2i~(n)]~(l+2ir)l-2~(r; u, v, w, z) dr 
7r o o  

(3.5) 

with 

~b(r; u, v, w, z) = 2 cosh(Trr) K2ir(x)~o(x; u, v, w, z) dx - - .  

X 

Inserting (2.17) into the last integral, we get a double integral. On noting that  K~r(x)<< 

t logxt as x---~+0 and <<exp(-cx) as x-~+oc ,  both uniformly for all real r, and that  we 

have (2.9), we see that  the double integral is absolutely convergent. Interchanging the 

order of integration, and computing explicitly the inner-integral, we find that  

cosh( r)f(  
(3.6) 

Next, we shall show that  the left side of (3.5) converges uniformly in any compact subset 

of E(fl). In fact, we have, for any fixed A>0,  

r u, v, w, z) << I"I-A (3.7) 

when real r tends to +o~ while (u ,v ,w,z)EE(~)  remains bounded; here the implied 

constant depends on the compact set to which (u, v, w, z) belongs. Combined with (1.6) 

and (1.7), this gives the uniformity of convergence in (3.5). To show (3.7) we move the 

path in (3.6) to the one consisting of the straight lines connecting the points ~ - i o c ,  

~- �89  Ir]i, B - 1 M i  , B+ llrli ' Z+ �89 Irl i and ~+icx), where S > 0  is to be taken sufficiently 

large. If Irl is larger than a constant determined solely by the compact subset of E(~) 

under consideration, on this change of the path we do not encounter any singularity. 

Then on the new path we apply Stirling's formula and (2.9) to the integrand, getting 

(3.7) immediately. 

Now, we insert (3.5) into (2.20). By virtue of (1.6), (1.7) and (3.7) we may inter- 

change freely the order of summation and integration as far as (u ,v ,w,z)EE(3) .  We 

then obtain, by (1.8) and (1.9), 
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LEMMA 3. We have, in E(~), 

y~-(u,v,w, ~)=Y~,l(U,V,w,z)+Y~:~(u,v,w,z), (3.s) 

where 

Y~:~(u, v, w, z) 

1 ~(o) ~ ~i ( � 8 9 2 4 7 2 4 7 2 4 7 1 6 2 2 4 7 1 6 2 2 4 7 2 4 7  

x r189 z - v - w +  1) -{ )~  (�89 (v + z - u - w +  1) +{)~ (�89 (v+ z - u - w +  1) -{)  

x {~(1 +2~)~(1-2~)}-1 (I)(~; u, v, w, z) d~, (3.9) 

Here 

OO 

Y;2 (u, v, ~ , z )=  ~ ~j.~Hj (�89 (~+v +~  + z -  1))H~ (�89 z - v - w +  1)) 
j = l  

• Hj ( � 8 9 2 4 7  u, v, w, z). 

(3.10) 

r u, v, w, z) ---- -2(27r)w-z-1r u, v, w, z) (3.11) 

with ~ being defined by (3.6). 

We shall prove in the next section that  ~ can be continued meromorphically to the 

entire C 5. As a preparation we observe here that  �9 exists in a fairly wide range of the 

five variables. In fact we may define �9 by 

+(~; u, v, w, z) 

/= =i(2~)=-=-2 cos(~) cos(~(w+ ~(u+v)-~))r( �89 

x I,(�89 (-s)I'(s+ l-u-w)I'(s+l-v-w)W*(s, w) ds, 
(3.12) 

where the path is curved to ensure that  the poles of the first two FF-factors in the integrand 

lie to the right of the path, and those of other factors are on the left of the path; we assume 

that  (, u, v, w, z are such that  the path can be drawn. Note that  the poles of W*(s, w) 
are at non-positive integers. When ( is purely imaginary and (u, v, w, z)EE(~), i.e., the 

situation in Lemma 3, the line Re(s )=~  can be used as the path; so (3.11) holds under 

the new definition (3.12) of r 

Let us now turn to K+,n. To this we may apply [7, Theorem 2]. However, we 

shall take a different way, for a direct application of this trace formula causes some 

difficulties peculiar to our present situation. We shall use, instead, Kuznetsov's spectral 

decomposition [7, (7.26)] of the Kloosterman-sum zeta-function: 
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LEMMA 4. For positive integers rn, n we put 

z~,~ (~) = ( 2 . 4 ~ ) ~ - ~  ~ s(m, n; l)l -:~. 
l= l  

(3.13) 

Then we have, for Re(s)> 1 5, 

Z 1 m,~(s) = ~ sin(rs) E a j t j ( m ) t j ( n ) F ( s - � 8 9 1 8 9  (3.14) 
j = l  

. r ( k - l + s )  + ~ P~,~ (k) ~-(-~(k +-y~_ ~ ) (3.15) 

+ ~  sin(~s) (mn)-~r a2~r(m)a~(n)[r - � 8 9  �89 dr 
O 0  (3.16) 

1 F(s) (3.17) 
2 ~ , ~ r ( l _ s )  

Here 5m,n is the Kronecker delta, and 

Pm o(k) = ( 2 k - 1 ) ~  1 (4.  _ r  , ~ S ( m ,  n; l)J2k-1 \ l ] 
l~l 

(3.18) 

with the J-Bessel function J2k-1. 

The sum in (3.13) converges absolutely for Re(s)> 3 because of Weil's estimate 

for S(m,n;l).  But, the sums (3.14), (3.15) and the integral (3.16) are all absolutely 

convergent for Re(s)>�89 This is trivial for (3.16); and for (3.14) it follows from (1.6) 

and (1.7). As for (3.15) we remark that (3.18) implies 

1 (2~.q/-~)2k_ 1, (3.19) P.~,,~(k) << F(2k- 1) 

where the implied constant is absolute; this is a consequence of the trivial bound for 

S(m, n; l) and the integral representation 

1 V 
2(~X) ~01 1 J~(x) = v/~F(v+�89 ) cos(xt)(1-t2) ~-U2 dr, Re(v) > 2" 

Thus the above assertion on (3.15) follows. 

Also, we remark that by virtue of the well-known identity of Petersson we have 

~(a) 

Pm,n(k) = (-1)  k 2 E aJ,ktj,k(m)tj,k(n)+(--1)k--11(2k- 1)hm,n 
j = l  

(3.20) 
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with the notation introduced in the first section; note that  when k<6  the sum over j is 

empty. Then, (3.19) and (3.20) yield (1.15); in fact, Pl,l(k) is infinitesimally small as k 

tends to +c~. 

Now the relation between Zm,,~ and our K+,n is obvious: We have, in E(/~), 

g+,~(u,v,w,z) 

= 27ril ~(~) ds. 

Into this we insert (3.14)-(3.17), getting the decomposition 

4 

K+, n(u'v'w'z)= E L~!,(u,v,w,z), (3.21) 
V=�92 

where the terms are in the obvious order. Then, by (3.14) we have, after interchanging 

the order of summation and integration, 

OO 

nO)m,~,lu, v, w, z) = ~ ajtj(m)tj(n)r v, w, z), (3.22) 
j = l  

where 

r 1 f(~) sin(�89189 (3.23) 

xr( l(u+v+w+ z - 1 ) - i r - s ) F ( s + l - u - w ) F ( s + l - v - w ) W * ( s ,  w) ds. 

This procedure is legitimate. In fact, for real r and fixed (u, v, w, z) the integral along 

R e ( s ) = ~  of the absolute value of the integrand in (3.23) is O(e-~l~l/2), which is a conse- 

quence of Stirling's formula and (2.9). Then (3.22) is confirmed by (1.6) and (1.7). Thus 

we have, in particular, 
r  u, v, w, z) << e - ' l r l /2 (3.24) 

uniformly in any compact subset of E(/~). 

Similarly we have 

1 F L (3) (u v,w,z)= (mn)-i~2~(m)a2i~(n)l~(l+2ir)l-2r (3.25) 
r a i n \  ' ~ oo 

Before considering L (2)m,~ it is expedient to introduce another function of five complex 

variables: 

~(~; u, v,w, z) (3.26) 

1 f i~ F(l(u+v+w+z_l)+~_s)_.  s = - -  ~ 1 ' (  + 1-u-w)F(s+l:-v-w)W*(s,w)ds. 
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Here the path is curved so that the poles of r(�89 and those of 

r(s+l-u-w)r(s+l-v-w)W*(s,w) are separated to the right and the left, respec- 

tively, by the path; and ~, u, v, w, z are such that the path can be drawn. This function 

will play an important r61e in our discussion below. 

We then note that the combination of (2.9), (3.19) and Stirling's formula allows us 

to interchange the order of summation and integration in r(2) giving ~m~n ,  

k = l  

(3.27) 

for (u, v, w, z)EE(j3). In this, each E-factor has the representation (3.26) with ( = k - � 8 9  

and the path Re(s)=f~, and moreover we have, for any fixed A>0, 

Z(k-�89 -~, k~>l (3.28) 

uniformly in any compact subset of E(D). To show the latter we may assume naturally 

that k is larger than a constant determined solely by the compact set under consideration. 

We then shift the path in the integral for E(k- �89 u,v,w, z) to the line a e ( s ) = B  with 

a fixed large B>0.  The rest of the proof is a simple application of (2.9) and Stirling's 

formula to the integrand. 

Because of (3.28) we may modify (3.27) as follows: 

L(2)m,n,(u , v, w, z) = L(hm!,~(u, v, w, z)+ L(6m!n(u, v, w, z), 

where 

L~!,~(u,v,w,z) =k~=l {Pm,n(k)+~(--1)k(2k--1)hm,n }E(k-�89 

and 

L(m6!n(u,v,w,z)= 1 5  Z(--1)k-I(2k--1)'.~(k--�89 
27r ?7~n 

k = l  

Then (3.20) implies 

~(k) 
L (5) (u v,w,z)= ~r m,.,  , -i E ~ ( - l ) ~ " J , k t ~ , k ( m ) t J , ~ ( n ) = - ( k - } ; u ' ~ ' ~ ' z )  �9 

k=6 j = l  

On the other hand we have 

(3.29) 

(3.30) 

L~!~(u, v, w, z)= -L~L(u, v, w, z). 

14-935202 Acta Mathematica 170. Irnprim~ le 30juin 1993 

(3.31) 



200 Y. MOTOHASHI 

To show this we note the identity 

1 r (k- l+s)  
2k- ) r ( k + l - s ) -  

r(k+s) r(k-l+s) + 
r ( k + l - s )  r ( k - s )  

This and (3.26) with ~=k-�89 and the path Re(s)=f~ imply that  (3.29) can be written as 

L (6) (u v ,w ,z )=  1 m,~ , , ~-~rTr Sm,n E (--1) k- l { Fk + Fk-1} , 
k=l  

where 

1 ~(~ F(l(u+v+w+z)+k-s) 1-u-w)F(s+l-v-w)W*(s,w)ds. F k = ~  ) r(�89 

But we have Fk<<(l+k) -A 
Hence (3.32) reduces to 

(3.32) 

1 L(6) (u v, w, z) = ~ h m , , F o ,  

which is equivalent to (3.31). 

Thus we may write (3.21) as 

g+,,~(u, v, w,z) = L~!,~(u, v,w,z) + L~!n(u, v, w,z) + L~!,(u, v, w,z). 

We insert this into (2.21). By virtue of (1.6), (1.7), (1.12), (1.15), (3.24) and (3.28), we 

may interchange freely the order of summation and integration as far as (u, v, w, z)E E(~).  

Then, collecting (1.8), (1.9), (1.13), (3.22), (3.25) and (3.30), we obtain 

LEMMA 5. We have, in E(~), 

Y+(u,v,w,z) =Y~+3,1 (u,v,w,z)+Ya+,2(u,v,w,z)+Ya+3(u,v,w,z), (3.33) 

where 

1 fo  r189189 

xr189 z - v - w +  l)+~)C(�89 z - v - w +  l)-~) 

•  ( l ( v  + ; -  u -  w + 1) + ~ ) ;  (�89 (~ + z -  ~ -  w + 1 ) - ~ )  

x {r +2{)r -2{)}-1~({ ;  u, v, w, z) d{, 

O 0  

Y~2(~,v,w,z)= ~ .~g~(}(~+v+w+z-1))g~(�89 l)) 

• H~ ( } ( v + z - u - w +  1))~,(ixj; ,~, v, w, z), 

(3.34) 

(3.35) 

(k~>0), which can be proved in just the same way as (3.28). 
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Here 

y~+~(u,~,~,z) 
~(k) 

= �89 ~-z cos(�89 Z Z(--1)kaj,kHj,k( �89 ( u + v + w + z - 1 ) )  
k=S j=l 

x Hj,k(�89 z--v--w+ 1))Hj,k(�89 z--u--w+ 1))~(k-�89 u, v, w,z) .  

(3.36) 

�9 (~; ~, , ,  w, z) = 2(2 . )  ~ -~-1  c o s ( � 8 9 1 6 2  ~, . ,  w, ~) 

with r being defined by (3.23). 

As before, ~ can be defined more generally by 

F �9 (~; ,~, ~, ~ ,  z) -- -i(2,~) ~ -~ -~  cos(�89 - v)) s i n ( � 8 9  - 2~)) 

x r ( � 8 9 1 8 9  (3.37) 

x F(s+ 1 - u - w ) r ( s +  1 - v - w ) W * ( s ,  w)ds, 

where the convention about the path and the location of ~, u, v, w, z is the same as in 

(3.12). 

This ends the spectral expansion of Yl(U, v, w, z) when (u, v, w, z) is in E(~). What 

remains for us to do is to continue analytically the above expansions to a neighbourhood 

of the point PT. 

4. Analyt ic  cont inuat ion  

The aim of this section is to show that the spectral expansions obtained in the preceding 

section can be continued to the entire C 4, and thereby we finish the proof of the existence 

of Y1 as a meromorphic function over C 4. 

By virtue of Lemmas 1, 3 and 5 our problem is equivalent to studying the analytical 

properties of the functions ~, �9 and E, for the functions Hj and Hj,a are entire. But, 

their definitions imply readily the relations: 

r u, v, w, z) = (2~)~-z 4 sin(r~) {sin(~r( l (z-w)+~))~(~;u'v 'w'z)  (4.1) 

- s in  (~r ( l ( z - w ) - ~ ) ) E ( - ~ ;  u, v, w,z)  }, 

�9 (~; u, v, w, z) -- (2~)~-z  cos( �89  
4 sin(~r~) {=-(~;u,v,w,z)-7~(-~;u,v,w,z)) .  (4.2) 

Hence our problem is reduced to the study of ~, and we are going to show that it is 

meromorphic over the entire C 5. Intuitively this fact can be inferred from (3.26) by 
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deforming the path appropriately. However, the topological situation involved here is 

somewhat complicated; so we employ an explicit argument to avoid any ambiguities. 

To this end we introduce the set 

g = {(4, u, v, w, z):  at least one of ~+ �89 1), 4+ �89 1) 
(4.3) 

and 4+�89 is equal to a non-positive integer} 

We put N*=CS\N, which is open and arcwise connected. This can be proved easily by 

connecting two points of N* by a straight line with possible indents. If (~, u, v, w, z)E N*, 

then we can obviously draw a path which is needed in (3.26); thus E is well-defined at 

all points of N*. Then, by a routine argument we can show that  E is regular and single- 

valued over N*. Namely, starting at a point of N*, E can be continued analytically 

to any point of N*, and the result is always given by the representation (3.26) with a 

suitable choice of the path. 

Having this, we confine (~, u, v, w, z) in the domain defined by the conditions: 

Max{I Re(u)h I Re(v)l, I Re(w)l, I Re(z)l} < Q (4.4) 
Re(~) > 3Q, 

where Q is a large positive constant. Then we may use the line Re(s)=/3 as the path 

in (3.26); the above domain is a subset of N*. On setting this, we insert (2.8) into 

(3.26). The resulting double integral is absolutely convergent. Interchanging the order 

of integration, we have 

5 = y ( l + y )  exp(-(�89 (4.5) ~(~; u, v, w, z) -1 -w 

where 

G(y; 4; u, v, w, z) 

: 1  ' 
21ri ) r(~(3-u-v-w-z)+4+s) 

or rather, using the hypergeometric function F ,  

G(y; 4; u, v, w, z) = F(A)F(B)F(C)-IF(A, B; C; -y)y~+ �89 (~+v+w+z-1) (4.7) 

with 

A=4+�89 B=4+�89 C = 1 + 2 4 .  

We then invoke Gauss' integral representation of the hypergeometric function: For lYl < 1 

/o' F(c) xa-l(1-x)C-a-l(1-xy) -b dx, 
F ( a ,  b; c; y)  - r (a )r (c -  a) 



A F O R M U L A  F O R  T H E  F O U R T H  P O W E R  M E A N  O F  T H E  R I E M A N N  Z E T A - F U N C T I O N  203 

providing Re(c)>Re(a)>0. Thus, if 0~<y<l, we have, instead of (4.7), 

F(~~ l ( v [ - z - u - w - b  I)) y{+�89 
a(y ;  ~; u, v, w, z) = r f f +  l ( v + w - ~ -  z +  1)) 

(4.8) 

x x~+�89189189 dx. 

But both sides of (4.8) are obviously regular for Re(y) >0; hence, by analytic continuation, 

(4.8) holds for all y ) 0 .  We next transform (4.5). To this end we note that for any complex 

r/and any positive integer P 

1 
r( ,7+l)  0+x )~  

P - - 1  F(j + 1)~((y- j + 1 ) x J  F(P) F (-~-- P + 1 ) x P  fo 1 ---- "j~o ~ (1-o)P-l(1--kxO) n-P 48. 

We apply this to the last factor of the integrand of (4.8); then we get a new expression 

for G(y; ~; u, v, w, z), which consists of a sum with P terms and an explicit remainder 

term. This sum is exactly the sum of the residues of the first P poles of the integrand 

in (4.6) which are on the right of the path. Inserting this result on G into (4.5), we find 

that 

v - :  r ( j + ~ + l ( u + z _ v _ w + l ) ) r ( j + ~ + � 8 9  
E(~; u, v, w, z) = ~ ( -  1)J r ( j  + 1)r(j  + 1+ 2~) 

j=O 

xW*(j+~+�89 " 1 "v r ( p + ~ + � 8 9  ) + ( -  ) ~ (4.9) 

x (l-x)~+�89 

with 

fo:fo Jp(x; ~; U, V, W, Z) = X P+~T �89 (1 --o)P--ly P+~+ �89 

x (l+xyO)-P-~+�89 exp( -  (1A log(l+y)) 2) dydO. 

So far we have assumed (4.4); but we may now drop it. Indeed (4.9) yields a meromorphic 

continuation of E to the whole e 5. The meromorphy of the first P terms in (4.9) is 

obvious. In the last term of (4.9) we perform partial integration [P/2] times. The 

resulting integral converges absolutely and uniformly in the domain which is defined 

solely by Max{[ Re(~)[, IRe(u)], IRe(v)[, IRe(w)[, [Re(z)[}<P/6. Since P is arbitrary, 

we have finished the proof of the first assertion in the following: 
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LEMMA 6. E(~; U, V, W, Z) is meromorphic over the entire C 5, and regular except for 

the points in the set N defined in (4.3). Moreover, if [~[ tends to infinity in any fixed 

vertical strip, we have, for any fixed A>0,  

~(~; u, v, w, z) << I~I-A (4.10) 

uniformly for bounded (u, v, w, z). And the same holds when Re(~) tends to +o0 m any 

fixed horizontal strip. 

The decay property (4.10) can be proved in much the same way as (3.7); also the 

third assertion in the lemma can be shown by a slight modification of the proof of (3.28). 

So we may omit the details. 

As an imediate consequence of Lemma 6 we state 

COROLLARY TO LEMMA 6. I f  (q-~, U, V, W, Z) are not in N, then the relations (4.1) 

and (4.2) hold; thus �9 and �9 are meromorphic over C 5. Also, as functions of ~, they are 

of rapid decay uniformly for bounded (u, v, w, z) when I~[ tends to infinity in any fixed 

vertical strip. In particular, Y3~,2 exist as meromorphic functions over the entire C4; and 

the same holds for Y3+,3 . 

The assertion on Y~2 is a consequence of (1.6), (1.11) and the rapid decay of r and 

�9 . Similarly the assertion on Y3+,3 follows from (1.14), (1.15) and the last statement in 

Lemma 6. We should remark here that  if (+~, u, v, w, z ) ~ N  then we can draw the paths 

in (3.12) and (3.37). 

Now it remains for us to consider the continuation of Y~I which are the contributions 

of the continuous spectrum. To this end we assume first that  (u, v, w, z) is in E(~).  Then, 

putting 

Yc(u, v, w, z) ---- Y3.1 (u, v, w, z)-~ Y3+,l(U, v, w, z) (4.11) 

and 

S(~; u, v, w, z) = ~ (�89 ( u + v + w + z -  1 ) + ~ ) ( ( l ( u + v + w + z -  1 ) -~ )  

x ~ ( � 8 9  

x ( ( l ( v +  z - u - w +  l)+~)r189 z - u - w +  X)-~), 

we have, by (3.9), (3.34), (4.1) and (4.2), 

Y~(., v, w, z) = 2i(2~) ~-~-~ fo (2~)~ {c~ v)) -sin(~(l(~-~) +~)) } 
) 

• S(~; u, v, w, z)r(1-2~){r162 u, v, w, z) ~. 
(4.12) 
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Here we have used the functional equation for ~(s) to transform the factor ~(1-2~)  -1. 

We are going to shift the path in (4.12) to the right. The singularities of the integrand 

which we may encounter in this procedure are all poles, and located at 

�89 � 8 9  � 8 9  (4.13) 

and 

~12, n/2, n = 2 , 3 , . . .  (4.14) 

with Q running over all complex zeros of ~(s). In fact, when (u, v, w, z)EE(/~), Lemma 6 

implies that E(~; u, v, w, z) is regular for Re(~)~>0. And the poles given in (4.13) come 

from S(~; u, v, w, z); those in (4.14) from F(1-2~)r  -1. 

We then assume that besides (u, v, w, z)EE(/3), 

Max{I Re(u)h ] Re(v)], IRe(w)[, [ Re(z)]} < R (4.15) 

with an arbitrary large positive integer R. Further, we may suppose, by an obvious 

reason, that the poles given in (4.13) are all simple, and do not coincide with any of 

those given in (4.14). Then we move the path in (4.12) to Re(~) - -3R+ 1 ~, getting 

(4.16) 

Here F_ and U are the contributions of residues at the poles given in (4.13) and (4.14), 

respectively; y(R) is the same as (4.12) but  with the path Re(~)=3R+�88  By virtue of 

Lemma 6, F_ and U are meromorphic over C 4, and y(R) is regular in the domain (4.15) 

without the condition (u, v,w, z)EE(~). Since R is arbitrary, Yc is meromorphic over 

C 4. Therefore we have established the crucial 

LEMMA 7. Yl (u,v, w, z) exists as a meromorphic function over the entire C 4, and 
the decomposition (2.3) holds throughout C 4. 

In fact, this is a result of collecting (2.18), (2.19), Lemma 3, Lemma 5, Corollary to 

Lemma 6, (4.11) and the meromorphy of Yc which has just been proved. 

5. Specialization 

In this section we shall finish the proof of our explicit formula for I(T, A). Having 

proved Lemma 7, it remains for us only to specialize (2.3) by setting (u,v,w, z)=PT. 
This amounts to studying the local behaviour, around PT, of the various components of 

YI which have been introduced in the above discussion. 
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More explicitly, collecting (2.18), (3.8), (3.33), (4.11), Corollary to Lemma 6 and 

Lemma 7, we now have the decomposition, over C a, 

Yt(u, v, w, z) = {Y2 + Yc + Ya.2 +Y3+2+Y3+,3}(u, v, w, z) (5.1) 

with the obvious abuse of notation. In this Y3,~ are regular at PT. To see this we observe 

that  when (u, v, w, z) is near PT the point (it, u, v, w, z) with an arbitrary real r is not 

in the set N defined in (4.3); hence by (4.1) and (4.2) the functions r  and 

�9 (ir; u, v, w, z) are regular at PT for each real r. Then, as a special case of the statement 

on Y3,~2 in Corollary to Lemma 6 we can conclude that  they are in fact regular at PT. 
Also, we can show similarly that  ]I3,+3 is regular at PT. Namely we may set (u, v, w, z) =PT 
in the series expansions (3.10), (3.35) and (3.36) without any modification, and find that  

{ Ya.2 + Y~2 + Ya+,3 } ( PT ) 

o~ 1 o~ ~(k) (5.2) 
(~) -(k-~,PT). =~'~ajHj(1)3{r - - ,  ,...,,--., 1 3_ 1. 

j = l  k=6 j = l  

Note that we have dropped e,'s, for Hj (�89 =0 if e, = - 1 ,  which is a consequence of (1.10). 

Next, we consider Yc in the immediate neighbourhood of PT. We return to (4.16), 

and move the contour in y(R) back to the imaginary axis, while keeping (u, v, w, z) close 

to PT. The poles which we encounter in this process are those given in (4.14) (n<~6R), 

and � 8 9  which is close to �89 For, other poles of S(~; u, v, w, z) are either 

close to - �89 or cancelled by the zeros of the factor cos(�89189162 
and moreover Lemma 6 implies that  ~(~; u, v, w, z) is regular for Re(~)/>- 1. We denote 

by F+(u, v, w, z) the contribution of the pole � 8 9  Then we have 

Y~(')(u, v, w,z)  = f +(u, v, w , z ) - V ( u ,  ~, ~ , z ) +  Yg (u, ~, ~,z) ,  

where Y~* has the same expression as the right side of (4.12) but with different (u, v, w, z). 

Hence, by (4.16), 

Yc(u, v, w, z) = {f+  + F _  }(u, v, w, z)+Y*(u, v, w, z) (5.3) 

when (u, v, w, z) is close to PT. Here we should note that  Y~* is regular at PT, and 

Y:(PT) = 1 f_~ l~(�89 8 {~+~,}(it;  PT) dt. (5.4) 
7r ~ [ff(l+2it)[ 2 

This ends the local study of the decomposition (5.1) in the vicinity of PT. By replacing 

PT by P-T we get the same result as above for Yl(W, z, u, v). Then, invoking Lemma 7, 

we collect (2.3), (2.4), (5.1) and (5.3). This gives, for (u, v, w, z) near PT, 

Y(u ,v ,w,z )  =M(u ,v ,w , z )+Y*(u ,v ,w , z )+Yc(w,  ziu, v ) 
(5.5) 

+{Y~2 + r ~  + Yz+~}(u, ~, ~, z) + {r3:2 +Y3+~ + r ~  }(~, z, u, v), 
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where 
M(u, v, w, z) = Yo(u, v, w, z) + Y2(u, v, w, z)+ Y2(w,z, u, v) 

(5.6) 
-t- {F+ +F_  }(u, v, w, z)+{F+ + F_}(w, z, u, v). 

We should stress here that M is regular at PT, for we know already that in (5.5) all 
members except for M axe regular at PT. Hence we have, by (5.2), (5.4) and (5.5), 

Y(PT)----M(PT)+2Re (~jHj(�89 

1 o~ O(k) 
§ 2 E E(--1)kaj,kHj,k(1)3---(k-1;PT) (5.7) 

k=6 j = l  

l f ~  I,(�89 6 ] + -  {r Pr) d~ 
~" oo [~'(1+2it)[ 2 

Here we have used the fact that for real r and integral k we have ~(ir; P_T):g2(ir; PT), 
kO(ir; P_T)=k~(ir; PT) and ~ ( k -  �89 P-T)----~(k-- �89 PT); these axe consequences of the 
definitions (3.12), (3.26) and (3.37). 

We axe now going to transform M(PT) into a closed from. For this sake we compute 
F+ explicitly. We have 

F_(u, v, w, z) = - (2~)  ~-z {cos ( l~ (u-v) )  -cos(~  (z + �89 (u+v))) } ~ ( u + z -  1 ) r  w) 

xr162189162  -1 

•  

+(2~) ~-z {cos( �89 ~ +  �89 (u-  v))) } 

•189 -1 

x := (�89 (u+ z - v - w -  1); ~f, V, W,Z) 

+(2~) ~-~ {cos(�89 v)) +cos(~ (z -  w + �89 (v-  ~))) } 

• r z -1) ( (u+w)r  l){cos(�89 z - u - w ) ) r  z +u+w) } -1 

• =_(�89 z - ~ - ~ -  l)~ u, v, w,z) 
and 
F§ v, ~, ~) = -(2~) ~-~ {cos(�89 v)) - cos (~ (~+  �89 (~ +v))) } r  1 )~ (2 -v -~ )  

xr z--1)~(2--u--w){cos(�89 z) )r } -1 

•189 Z--3); U, V, W,Z). 

In order to simplify these we note that (4.1) and (4.2) give 

(2~-) ~,-~ {cos (�89 ~-(,~-v))+cos(~-(z- ~,+ �89 (u- v))) ) sec(�89 + z- v- ~,)) 

x~(�89 + ~ -  v -  ~ -  1); ~, v, ~, z) 
= 4{r  ~}  (�89 ( ~ + z - v - ~ -  1); ~, v, ~,  z), 
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(2~)~-~ { cos(�89 +cos( . (z -  . ,+ �89 ~))) } sec( �89 z-~ . -~) )  
•  �89 z - ~ , - ~ -  , ); ,~, v, w, z) 

= 4 { r  ( � 8 9  ~, v, ~,  z) 

as well as 

(2~) ~-z sec( l~(u+,+~+z))  

• [{cos(�89 cos(~(z + �89 }Z(�89 z-3); u, v, w,z) 
+ {eos(�89 ~))-  cos(~ (w+ �89 }~(--~ (~+~ + ~ + z-3); u, ~, w, z)] 

: -4{r189 u, v, w, z). 

Collecting these and (2.4), (2.19), (5.6), we find that 

lO 
M(u,v ,w,z )= ~_Mj(u ,v ,w,z ) ,  

j=o 

where 

Mo(u, v, w, z) = r247162247162247 z){r247 z) } -1, 

(5.8) 

Ml(~, v, w, z) 

= ~ ( u + z ) ~ ( v q - w -  1 ) ~ ( z - w W 1 ) ~ ( u - v + l ) { ~ ( u - - k z - v - w §  - 1, w),  

M2(u,v,w,z) 

= ~(v.-kz)~(u-kw- 1 ) ~ ( z - w  q - 1 ) ~ ( v - u W 1 ) { ~ ( v - } - z - u - w + 2 ) } - l W * ( u - b w -  1, w), 

M3(u, v~ w, z) = 4 ~ ( u §  1 ) r  1 ) r  u -  w ) ~ ( 2 - v - w ) { ~ ( 4 - u - v - w - z ) }  -1 

• { ~ + ~ }  (�89 (~+v+w+z-3) ;  ~, v, w, z), 

M4(~, v, w, z) = 4 r 1 6 2 1 6 2  l ) { r  -1 

x ( ~ + ~ }  ( � 8 9  1); u, v, w, z), 

Ms(u, v, w, z) -~ 4~(v--bz- 1)~(u§ 1 ) (~ (2§  -1 

x {~q-@} (�89 1); u, v, w, z), 
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and for 1<~j~<5 

Mh+s(u, v, w,z) = Mj(w,z, u, v). 

In (5.8) we set (u, v, w, z)=PT+(al, a2, a3, a4)5 (a vector sum) with small complex 6, 

and expand each term into a Laurent series in 6. The singular parts must cancel out 

each other, for M is regular at PT; and the sum of the constant term is equal to M(PT), 
regardless of the choice of (al, a2, a3, a4). We choose it in such a way that  no singularities 

of any of the Mj (0~<j~10) are encountered when 151 tends to 0. This is possible, for 

the exceptional al,a2,a3,a4 satisfy a finite number of linear relations. Thus, we shall 

assume hereafter that  650  is small, and (al, a2, a3, a4) is chosen as above; and we denote 

(hi, a2, a3, a4)6 by either (6) or (61,52,53, 64). 

Now, let us compute the constant terms of Mj(PT+(6)) (0~<j~<10). Since Mo is 

trivial, we begin with M1. This is not difficult. By (2.10) we have 

M1 (Pr + (6)) = r +64 + 1)r + 63)~(64 - 63 + 1)r - 65 + 1){~(2 + 61 - 65 -63  +64))  -1 

• r(6~ + 6 3 ) ( a v ~  )--1 /~ F(�89 62 
r(�89 +63- i (T+t) ) -e - (~ /A)~  dt. 

Hence the singularity of M1 at PT is of order 4. We then see that  the constant term of 

MI(PT+(6)) is a linear combination of the first five coefficients of the power series in 6 

for the last integral. Thus the constant term in question has the form 

(Av/-~)-I E d(a,b;k, )[--F--) (�89 (5.9) 
oo a,b,k,l>/O 

akq-bl~4 

with the obvious abuse of notation; the constants d(a,b;k,l) may depend on (al ,a2, 

a3,a4). Apparently M2, M6 and M7 can be treated in just the same way, and their 

constant terms have the same form as (5.9). 

On the other hand M3 is not easy. We divide this into two parts M3j  and M3,2 

corresponding to �9 and ~,  respectively, in the obvious manner. We deal with M3,1 only, 

for M3,2 is quite similar. We first separate the singular part of 

~(�89 

on the present supposition, i.e. (u,v,w,z)=PT+(5). We note that  �89 
is close to -�89 thus we need to consider ~(~; u, v, w, z) in a neighbourhood of the point 

(-�89 PT)eC 5, which is in the set N defined in (4.3). We suppose, for a moment, that  

Re(~) is close to - �89 but I Im(~)l is not small. Then we can draw the path in (3.12). We 



210 Y .  M O T O H A S H I  

move it to the line Re(s)=�88 We encounter only one pole at s- - �89  
which is simple; so we have 

~((;  u, v, w, z) = (I)0 ((; u, v, w, z )+r  u, v, w, z), (5.10) 

where 

�9 0(~; u, v, w, z) = -(2~) ~-~-I cos(~) sin(~(~+ �89 w)))r(-2~) 

xr (~+ l(v+z-u-w+l))r(f+ �89 1))W* (:-{- l(u+v+w-l-z- i), w), 

and <I)1 has the same expression as (3.12) but with Re(s)=�88 as the path. We may 

now drop the condition on Im(:), since ~1 is regular in a neighbourhood of (-�89 PT). 
Then, (5.10) entails a decomposition of M3,1. We denote by M (~ and M (I) the parts 3,1 3,1 

corresponding to (I)0 and (I)l, respectively. We have, at (u, v, w, z)=PT+(6), 

�9 o ( �89  ~-3);  ~, v, w,~) 

= �88 ~-~, cos(~ (6, + �89 + ~2)))(cos �89 ~(61 +~2 +63 +~,))-I 

• r(~ +~,)r(6~ +64)(Av~)-I f/ 
F( 1 

~ ~4 

F(�89 e -('/a)~ dt, 

where we have used (2.10). Hence, as in the case of M1, M(3~ has the constant 

term of the form of (5.9). We next consider M (1) Since q)l is regular at (-�89 PT), the 3,1 " 

constant term in M~I ) (PT + (6)) is a linear combination of the first three coefficients of the 

power series in 6 for Vl (�89 ~, ~, ~, z) with (~, ~, w, z)=P~+(6). We shah 
show that this is fairly small when T is large. For this sake we transform (I)i by inserting 

(2.10) into its defining integral representation. The resulting double integral converges 

absolutely. We interchange the order of integration, and set ~--�89 We 

get, in the vicinity of PT, 

(~I(�89 1" w--z--1 ---- ~,(2r) sin( �89 

x ~ F(w+it) /4) 

x r ( s +  1 - u - w ) F ( s + l  -v -w)F(u+v+w+z-2-s )F(w-s+i t ) ( s in l r s )  -1 ds dr. 

In this we set (u,v, w, z)=PT+(6), and denote the result by (I)~(6), so that  we are con- 

cerned with ((I)~)(~)(0) (u=0,  1, 2). We then shift the above path Re(s)=�88 to Re(s)= 5. 

We encounter poles at s=�89 61+62+63+64+1 and 1. These are all simple, 

because of our choice of (al, a2, a3, ca). We now have 

4 

�9 ~(6) = Z ~ , j  (6), (5.11) 
j = l  
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where 

/? 
-~(2, , ,  oo F(�89 

r )= 1 _~3-~4 sin(�89 )-i e-(~/P')2 

•189189189 
• F ( -  �89 +51 +52 +St +i(T+t)) (cos 7r(i(T+t)-53)) -1 dt, 

r = �88 ~-~, (cos 1 ~(51 +5~ +53 +5~))-~ cos (~ (5~ + �89 +5:))) 
/ ~  F(- �89 

• F(1 q-51+ 54)F(1 + 55 + 54) (A v/~)-  1 oo F(�89 e -(t/z~)2 dt, 

(I)~,3 (5) ---- -- 1 (27r)53-54 (cos 1 T'(51 -Jr 52 --~- 53 --[- 54)) - 1 COS (Tr (53 --~- 1 (51 -~- 52))) 

X F(X --51 -- 53 )F (1 -52  - 53){r(2  - 5 1 - 5 2  - 5 3  - 5 4 ) } - 1  ( A V / ~ ) - 1  

/_ ~ e -(t/6)2 
X 1 - i (T+t)  dt, -~+53  

e-- ( t /A)~  
~(2~) sm(~(~l +55+53+54))(~v~) -1 fo~ 

�9 ~ , 4 ( 5 ) = 1 "  ~3-64-1 �9 1 -oo r ( 1 + 5 3 - i ( T + t ) )  

X ~f5/4) COS (71" (53 + 1 (51 + 52) -- 8 ) ) r  (8 - 51 - 53)r(8 - 55 - 53) 

x F(51 + 52 + 5a + 54 - s)F (1 + 5a - i(T + t) - s) (sin 7rs) --1 48 dr. 

Then, by Stirling's formula we see easily that  

3 
E ~ , J  (5) << T -l+~l~l +e -r (5.12) 
j = l  

uniformly for T, A>0  and small complex 5. Similarly we have 

(I)~, 4(5) << A - I  / _ : / _ ~  (l+[T+tl)r 

xexp(-3~r[r]-lr[T+t+r[+~TrtT+t[-(t/A) 2) dtdr (5.13) 

<<( T-5/4+c[5[ +e--c(T/A)2. 

Collecting (5.11)-(5.13), and using Cauchy's integral formula with the circle [5[= 
(log T) -1, we find that the relevant differential coefficients of (I)~(5) at 5--0 are 

O((log T)2(T -1 +exp(-c(T/A)2)); 
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hence the constant term of M(31 ) (PT+ (~f)) has the same bound. This ends the treatment 

of M3. In much the same way we can deal with Mj, j = 4 ,  5, 8, 9, 10, and get the same 

result as that on M2. 

Gathering these considerations we conclude that M(PT) is the sum of a term of the 

form of (5.9) and a term of the order of (log T)2x  (T -1 +exp(-c(T/A)2)) uniformly for 

T, A>0 .  

Returning to (5.7), we see that  to finish the proof of our theorem it remains for us 
,~ 1. to relate {(I)-[-~}(ir; PT) and -(k-3,  PT) to the hypergeometric function. By (4.1) and 

(4.2) we have, for real r, 

i _ .  1 i ( l + ~ ) ~ ( z r ; P T ) + ~ ( 1 - -  i )~(--ir;PT). (5.14) { + + ~ } ( i r ;  PT) = 
sinh(~rr) 

On the other hand, (4.5) with (4.7) holds obviously on the present specialization, too; 

and we have 

r ( � 8 9  ~ y-1/2+ir(l+y)-l/2+iT 
=-(it; PT) = r(l+2ir) (5.15) 

1 +Jr; l+2ir; - y )  dy. x e x p ( -  (�89 l~ 1 +Y))2)F(�89 +ir, 3 
Hence 

~0 ~176 
1 y_l/2(X_~_y)_l/2_ki T exp(_  (�89 A log( l+y) )2)  {++ko}(ir;  PT) = -~ 

xRe[yir(l+siul~(Trr))F(l+ir)2_,li ~(1--~zr)l~'(3q-ir, �89 

Further, we observe that  (5.15) holds also for k - 1  in place of ir, and thus get a rep- 
1 .  resentation o f - ( k - 3 ,  PT). After replacing the variable y by 1/x, we insert these into 

(5.7), and end the proof of our theorem. 

6. Asymptotics 

In this final section we shall s tudy the asymptotical behaviour of our explicit formula 

(1.16), and prove (1.19). Obviously we may always assume that 

0 < A < T(log T) - I ,  (6.1) 

and that A is sufficiently large. 

Our problem is equivalent to analysing the function e ( r ;  T, A). We begin with the 

case r=i(1-k) where k ~ l  is an integer. We note first that  by (2.8) we have 

]W" (s, 1-iT)] <, W" (Re(s), 1) << A-Re(s), (6.2) 
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providing Re(s) is positive and bounded. On the other hand, by (3.26) we have 

O(i(�89 =(-1)kRe{~(k-�89 } 

=(-l)kRe[~'~z~(W4)~F2(s)W*(s'�89 ] 

Hence, shifting the path to the right appropriately we see that for any fixed A > 0  we 

have 

A k, k<~A (6.3) O(i(�89 (kA) -A, k>A 
uniformly in T; the implied constant depends on A at most. 

We then turn to the case where r is real. By (5.14) our problem has been reduced to 

the asymptotical study of =.(Jr; PT). We know already that this is of fast decay when r 

tends to ~=c~, but  what we need now is a result which is uniform in the three parameters 

r, T, A. 
To get such a result we note first that we have, more precisely than (6.2), 

W* (8, �89 -iT) << A -  Re(s) exp(_l  Im s]/T) (6.4) 

with the same condition on Re(a). This can be shown by turning the line of integration 

in (2.8) with ~]= �89 -iT by T -1 sgn(Im(s)), and taking the absolute value of the integrand. 

Then we have 

W* (s, �89 -iT) << W* (Re(s), �89 e x p ( -  I Im silT), 
which gives (6.4); note that we need (6.1) here. Next we set (~,u,v,w,z)=(ir, PT) in 

(3.26) with the path Re( s )=  1, and move the path to R e ( s ) = m  an arbitrary positive 

integer. We get 

r~-~ (_l)T(l+�89 W*(l+�89 �89 7~(ir; PT) = Z F(l+ l)F(l + l +2ir) l=O 

The estimate (6.4) implies that  the sum over l is 

<< e-lrllT ((l +,r,)A)-i/~ (l + (lr~ ) m-1). 

On the other hand the last integral is, by (6.4) and Stirling's formula, 

<<A-m s  ,s-irl)-mexp(-2 (2N-ls+irl+ls-irl)-~ ) lds ' 

x / Irl <</k-m{(1-t-lrl)-2mr2m-t-(1-t-}rl) m-le P ~ -  ~-~)  } ,  
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where the implied constant depends only on m. Taking m sufficiently large in these, we 

get, for any fixed A>0,  

E(ir; PT) << IrI-A, T(log T) 2 ~ Irl, (6.5) 

providing 

T a ~< A ~< T(log T) -1, (6.6) 

where a > 0  is an arbitrary fixed small constant, and T is larger than a constant deter- 

mined solely by a and A. 

We then move to the case 

]r I ~< T(log T) 2, (6.7) 

and assume (6.6). This time we use the expression 

Z(ir;PT)= R(y,r)y-i/2+~(l+y)-l/~+~Texp(--(�89 2) dy, (6.8) 

where 

R ( y , r )  = ex; (6.9) 

this is equivalent to (5.15). In (6.8) we replace the path by the one consisting of the 

segment L1 connecting 0 and y* and the half line L2 connecting y* and +cx~e ~, where 

#--sgn(r)(T(logT)2) -1, y* = A -1 logT4-i(14-A -1 logT) tan# .  

We note that on the new path we have R(y,r)<<l uniformly for all r satisfying 

(6.7), since ]Arg(l+yx)l~< # there. Then we see readily that  the contribution of L2 is 

O(exp(-c(logT)2)). On the other hand we have on L1 

sgn(r) Argy- -  arctan 14- t a n #  t> 2T(logT)3" 

Thus the contribution of L1 is O(exp(--AM(2Tlog 3 T)-I)). Hence we have 

Z(ir;PT)<(exp 2T(logr)3 ] 4-exp(-c(logT)2), ]rl <. T(logT) 2. (6.10) 

The estimates (6.5) and (6.10) imply that we may now restrict ourselves to the range 

Irl ~< T( log  T)5 (6.11) 
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as far as we assume (6.6). To deal with this case we use again (6.8) with (6.9), but this 

time we interchange the order of integration: 'We have 

~01 Z(ir; PT) = (x(1-x) ) - l /2+i~V(x ,  r) dx, (6.12) 

where 

V(x, r) = y-1/2+ir(lq-y)-l/2+iT(1Txy)-l/2-ir exp( - - (1A 2 log( l+y) )  ) dy. (6.13) 

First we settle two special cases. Thus, if frl ~<log3~ T we divide the last integral into two 

parts according to O<~y<~T -1 loga~ and T -1 log 3~ T<y. These are estimated, respec- 

tively, by taking simply the absolute value of the integrand and by performing partial 

integration. We then find that 

7~(ir; PT) <<T-1/2(logT) 15, Irl ~< (logT) 3~ (6.14) 

On the other hand, if r is positive, we turn the line of integration in (6.13) by 7r/6, and 

take the absolute value of the integrand. This gives 

E(ir; PT) << e -or + e  -c0~ T)2, 0 < r < T (log T) 5. (6.15) 

Gathering these observations, we see that  more restrictively than (6.11) we may 

a s s u m e  

-TA(lOg ~< r <~ - (log T) 3~ (6.16) T) ~ 

For these r we compute S(ir; PT) asymptotically. To this end we impose a rather drastic 

condition on A: 
T 112 ~< A ~< T(log T) -25. (6.17) 

This is only for the sake of simplicity; in fact the computation may well be carried out 

on the assumption (6.6) only. Note that the upper bound of A is implied by (6.16). 

Now, we apply the saddle point method to V(x, r) on the condition (6.16) and (6.17). 

The saddle point is located at Y=Y0: 

y0 = 2lrl ( T - I r l  + ( (T - I r l )  2 +4xTIrl)l/2) -x, (6.18) 

which is approximately Irl/T. This lies between 0 and 2A -1 log5T because of (6.16). 

We move the path in (6.13) to the one consisting of two segments $1, $2 and a half line 

83: 

Sl----- {Y= A(1--~ exp(17ri)) ; 0 ~< )~ ~<Y0}, 

$2 = { y =  yo(1 +~ e x P ( � 8 8  < ~ ~ E}, 

$ 3 =  { y =  A ( l + e  exP(�88 y0 ~< A}, 

15- 935202 Acta Mathernatica t 70, Imprirn~ le 30 juin 1993 
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where E is a small positive constant. On $1 the integrand of V(x, r) is 

<<A -1/2 exp{-{r[ arctan (~_--~_ c ) +  (T+ [r[)arctan ( syo ) } ,  
~+(v~-~)yo  

which is, by (6.16)-(6.18), 
<< A-l/2 exp(- le2lrl). 

Hence $1 contributes O(exp(-adlrl)) to V(x,r) uniformly for 0~<x~<l. We consider 
next $3. Here the integrand is 

<< A-1/2 exp{ ,r[ arctan (~--~+~)-T arctan (x/~+ ( ~ + e ) y o )  - ~ (A log(a +A))2 }. 

We have used the fact that on $3 
2 eA 

1 ~_22 A2 } +i arctan (v/~+ ( ~ + e ) ~ ) ,  log(1 +Y) = 2 log{ (1 +A (1+ ~ 2 ) )  + 2  

and thus 
ae[(log(l+y)) ~]/> (log(l+a)) ~- ~ /> �89 

providing e is sufficiently small. Then, we see readily that Sa contributes 0 (exp ( -  �89 e 21r I)) 
to V(x,r) uniformly for O~x~l. We now have, on (6.16) and (6.17), 

V(x, r) = V0(x, r)+O(exp(-�89 (6.19) 

where Vo(x,r) is the contribution of $2, and the implied constant is absolute. By the 
definition we have 

Vo(x, r) = yoe '~/4 9(() exp(if(()) dg, (6.20) 

where 

g(~) = (y(l +y)(l +xy)) -1/2 exp(- (�89 log(l+y))2), 

f(~) = r log y +T log(l+y) - r log(1 +xy) 

with y=yo(l+~exP(�88 We have 

f(~) = f(O)+ i f "  (0)~2 + ~ f'" (0)~3 +O([rl~4), 

where 
1 T 2 _  _ _  

\ l + x y o ]  ] '  
f'"(o)=O(Irl). 

(6.21) 
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These imply in particular that exp(if(~))<<exp(-�89 ( -~<~<r  Thus we may 
truncate the integral in (6.20) at ~=• ~o=[r[ -2/5, so that uniformly for 0~<x~<l, 

Vo(x, r) = V1 (x, r) +O(exp(-c]r I ~/5)), (6.22) 

where Vl(x, r) is the part corresponding to -~o ~<~<~o, and the constant in the error 

term is absolute. We then note that if I~l ~<~o we have 

exp(if(~)) =exp(if(o)+�89 (6.23) 

as well as 
[ 9' + }, (6.24) g(~) =g(0) [,1+ (0)~+O((1 (Ayo)2)~ 2) 

where (g'/g)(O)<<l+(Ayo) 2. Here the assertion on g(~) may require a proof: We have 

(log(1+y))2 = (log(l+yo)) 2 + 2e '~i/4 . Yo~ log(1 +Yo) + O((~Yo)2) �9 
~ Y o  

But 
Yo~ log(l+yo) <<yo~frl -:/~ <<T-~Jrl s/~ 

l+yo 

which is O((AlogT) -2) by (6.16) and (6.17). Thus 

exp(-  (�89 log(1 +y))2) = exp(-  (�89 log(1 +yo)) 2) (1 +b~+O((Ayo~)2)) 

with 
b= 1 ~i/4A2 Uo log(l+yo)<<(Ayo)2, 2 t+yo 

which implies (6.24). Now, by (6.23) and (6.24) we have, for I~1 ~<~o, 

9(~) exp(if(~)) = 9(0) exp (if(O)+ �89 2) 
t 1 .  X {l+g(o)~-4-~f'tt(O)~3+O((1+(Ayo)2)(l-4-,r,~2)2~ 2) } 

with the implied constant being absolute. This and (6.21) give 

( 27r ~ 1/2 
Vl(x,  r) ~-- eTri/4yog(O ) exp(if(O)) \ ~ ]  {l+O(Ir)-l(l+(Ayo)2))} 

uniformly for 0 ~ x ~< 1. Thus we have 

Vl(x,r) =e~/4 ( 2~ ) l/2exp{ iTlog(l +yo)+ir l o g - -  

• (1+ o((irl-1 + -1)log1  T)). 
l+xyo \ 2T ] 
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But, we have also 

r 2 
T log( l + yo ) + r log 1 +Y~ = r l~ ~T + ( x -1 )  -T +O ( ]~--~ ) " 

These and (6.12), (6.19), (6.22) yield, after some rearrangement, 

~(ir;PT)= - -  exp -~-+ir lOgeT 2T \2T] J 
1 ir 2 

• fo (x(1-x11-1/2 exp(irlog(x(1-x)l+--f-x) dx (6.25) 

+O(T-1/2(M-I +A-1)exp( - (  Ar~ 2T ] ] l~ ' 

as far as (6.16) and (6.17) hold. To this integral we may again apply the saddle point 

method. The computation is, however, quite routine. So we may state only the result: 

It is equal to 

(Tr)~ , 1 [ 1  ir 2 ' 1/2exp\~ri_2irlog2+-~](l+O(]rl-1 + A  -1 log5 T)). 

Inserting this into (6.25) we obtain, on (6.16) and (6.17), 

log 2~ T 7*~(ir;PT):---i21/27r(T]r[)-1/2exp( irlOg ]?'[4"~- ,2T ] (Ar ~2~ (1-[-0(----~)) (6 .26 )  

where the implied constant is absolute. This ends our discussion on S(ir; PT) when r is 

real. 

We can now finish the proof of (1.19). First, (1.14), (1.15) and (6.3) imply that  

the contribution of the holomorphic cusp forms, i.e., the double sum in (1.16), can be 

neglected. Next, collecting (1.6), (1.11), (5.14), (6.5), (6.10), (6.14) and (6.15), we see 

that  the contribution of the non-holomorphic cusp forms is equal to 

1 Z c~jHj(1) 3Re{~(-ixj;PT))+O(1)" 
0og T)3O ~<~,j < ~ (log T)6 

We should stress here that  this holds on the condition (6.6) only. If T(log T) -2~ <A~< 

T(logT) -1, then the last sum is empty. Thus we may assume that  (6.17) holds, without 

violating the assumption in the corollary. Then we can use (6.26), and see that  the above 

is equal to 

7f Z oLjHj(~)I 3 _1/2  . ( ( (ixj~2~ 
xj s ln \x i  l~ 4--eT] exp \ / - \  2T ] 

(log T) 3~ ~<gj ~< ~ (log T) 5 (6.27) 

-{-O(t-1/2(logV)2~ E c~jIUj(1)13~;1}-{-O(X). 
,~ ~< ~ (log T? 
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Here we invoke the following spectral  mean  value of  Hj  (�89 

aJHj(�89 4 << KZ(log K )  2~ 

~ < K  

whose proof  can be found in [13]. This and  (1.6) yield tha t  the error te rm in (6.27) is 

O(A-1T1/2(log T)36), which ends the t r ea tment  of the sum over the discrete spec t rum 

in (1.16). Finally, combining the above results on E(ir ;  PT) with the classical bounds  for 

individual values and the four th  power mean  of  if(�89 +it) ,  we find tha t  the  contr ibut ion 

of the continuous spec t rum is infinitesmally small as T tends to  infinity. Thereby  we 

conclude our proof  of  (1.19). 
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