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Introduction 

It is the purpose of this paper to introduce and study a nonlinear elliptic system of 

equations imposed on a map from a Hermitian into a Riemannian manifold which seems 

to be more appropriate to Hermitian geometry than the harmonic map system. Thus, 

let X be a complex manifold with Hermitian metric (7~$) in local coordinates, N a 

Riemannian manifold with metric (gij) and Christoffel symbols F~k. A harmonic map 

f: X - * N  then has to satisfy 

Oft Ofk = 0, i = 1, . . . ,dim N 
Oz ~ OzZ 

(H1) 

in local coordinates, A disadvantage of this system is that ,  unless X is K/ihler, a holo- 

morphic map need not be harmonic. We therefore replace (H1) by 

/ 02/ i  0/5 Of ~) 
7 ~  ~ _ _ _  i = 0, i - -  1,..., dim N. (H2) 

\ Oz~Oz ~ FF~k Oz ~ Oz~ 

We point out that  (Hi)  and (H2) are equivalent if X is K~ihlerian. In general, (H2) is 

analytically more difficult than (H1) because it neither has a divergence nor a variational 

structure. 

A vague analogue of the difference between (H1) and (H2) is given by the two dif- 

fe rent  possibilities of defining geodesics on a manifold when the connection is not the 

Levi-Civita connection, i.e., not compatible with the metric. One can define geodesics 

metrically I namely as critical points for a length or energy integral, or via the connection, 

(1) Research supported by DOE grant DE-FG02-88ER25065 and NSF grant DMS-8711394. 



222 J. J O S T  AND S.-T. YAU 

namely as being autoparallel. As on a Hermitian non-K~flerian manifold, the canonical 

complex connection is not compatible with the metric, (H1) is analogous to the first 

possibility of defining geodesics, and (H2) to the second. We call a solution of (H2) 

Hermitian harmonic. From the preceding discussion, it is clear that  a Hermitian har- 

monic map need not be harmonic in the ordinary sense, unless X is K~ihlerian. 

We study the existence problem for (H2) by looking at the associated parabolic 

system, i.e., we take ](z, t): X x [0, oo)-- .N and put  Of~/Ot instead of 0 on the right hand 

side of (n2),  with given (continuous) initial values f (z ,  O)=g(z). In order to show that  

a solution of this system exists for all t > 0  and converges to a solution of (H2) as t ~ o o  

we need to impose a negativity condition on the curvature of N. In w we present an 

example that  shows that  the negativity requirement on the image curvature is necessary. 

Namely, we observe that  there is no nontrivial Hermitian harmonic map from a Hopf 

surface into the unit circle. 

In w we study the Dirichlet problem associated with (H2), X now being a compact 

Hermitian manifold with smooth boundary. We solve the Dirichlet problem for given con- 

tinuous boundary values, if N is complete and has nonpositive sectional curvature. This 

may be useful for obtaining existence results for noncompact domains via an exhaustion 

procedure. 

A study of parabolic and elliptic systems with a nonlinearity as in the harmonic 

map problem and without variational or divergence structure has been undertaken by 

von Wahl [vW]. Apart from the fact that  both his and our paper use stability results in 

a crucial manner, our arguments are rather different from his. Also, his main interest is 

not in the context of Riemannian manifolds, and in the harmonic map situation, he does 

not provide conditions that  guarantee that  as t--*oo a solution of the parabolic problem 

converges to a solution of the elliptic one. Some of our estimates are reminiscent of the 

ones of Al'ber [All, 2], Eells-Sampson [ES] and Hartman [Ht] for harmonic maps, but  in 

other places we shall need more refined techniques. 

In w we study applications of our existence result to complex geometry. We extend 

Siu's rigidity theorems IS1] to the case where the manifold M compared with the model 

space is only astheno-K~hlerian, meaning that  it carries a (1, 1) form w with OOw'-2=O 
( m = d i m c  M) for which w m is a positive multiple of the volume form. 

If m=2, the condition OOwm-2=O is automatically satisfied. We can hence show, 

without using Kodaira's classification of compact complex surfaces, that  a compact 

complex surface homotopy equivalent to a quotient of the unit ball in C 2 is already 

4- biholomorphically equivalent to this quotient. Also, without either using Kodaira's re- 

sults or Donaldson's theory of differentiable structures on 4-manifolds, we show that  if N 

is a compact quotient of the unit ball in C 2 (without singularities), and M is a zl-manifold 
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with nontrivial fundamental group, then the connected sum of N and M cannot be ho- 

motopy equivalent to a complex surface. In any case, when compared with the theory 

initiated by Donaldson, we only have to make assumptions on the topological, but  not 

on the differentiable structure here. We obtain a partial extension to higher dimensions, 

namely for complex manifolds M of algebraic dimension at least d imc M -  2. In complex 

dimension 3, the result says that  if the connected sum of a nonsingular compact quotient 

of the unit ball in C 3 and a compact manifold with nontrivial fundamental group can 

carry a complex structure at all, it certainly cannot admit any nonconstant meromorphic 

functions. 

We plan to treat  further applications in a future paper. 

Background material about the analytic aspects can be found in [J1], and the geo- 

metric context is described in [J2]. 

Several extensions of our results are possible. For example, one can consider cases 

where domain and target are not compact but  only complete and of finite volume, or 

where they may have certain singularities. The techniques necessary for such extensions 

are developed in our papers [JY1], [JY2], [JY3], and here we simply refer to them instead 

of elaborating these points any further. 

The first author acknowledges the hospitality of the Institute of Advanced Study 

and financial support from Stiftung Volkswagenwerk and the DFG. The second author 

was partially supported by an NSF grant. 

We are grateful to Paul Ganduchon for discussions and comments leading to the 

remark at the end of w 

1. H e r m i t i a n  h a r m o n i c  m a p s  b e t w e e n  c losed  m a n i f o l d s  

We let X be a compact complex manifold with a Hermitian metric (7~9), ~,/3=1, ..., m : =  

dimc X,  in local coordinates z - - (z l ,  ..., zm), and N a compact Riemannian manifold with 

metric (gij), i , j=l,  . . . ,n :=dimR N in local coordinates ( f l ,  .-., fn). 
We let g: X---*N be a continuous map and look at the parabolic system 

f :X  x[O, oo)---, N 

f(z,O) = g ( z )  (p) 

~/O~f~(z, t )  ~ Of~ Of k )  Of~(z,t) 
7 ~ ~  ~-FjkozaOz~/ Ot =0 ,  i=l,. . . ,n 

with ("/~ , F i 1 il jk =-~g (gji,k +gkl,j--gjk,Z). 
We put for abbreviation for f :  X---*N 

2 i j 
. _ ^ a ~  0 f •176 t~Of  Ofk i=l,...,n. 

a(Y) ~ . -  . Oz,~Oz$ Ty Jk~J~z~ Oz~' 
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The equation in (P) then takes the form 

a ( f ( z , t ) ) - O  f ( z , t )=O.  

By linearizing and using results about linear parabolic systems and the implicit 

function theorem, it follows in a standard manner that (P) has a solution for small t and 

that the integral of existence in [0, c~) is open. 

In order to show closedness and hence existence for all t, we assume that N has 

nonpositive sectional curvature. 
We put 

- Of i Of j 
e( f )  := ~/~ gi j ( f  (z, t) ) ~z ~ -~z ~ �9 

We want to compute 
( 7 ~  0 2 0 \ e  f (). 

Oz~ Oz~ 
We may assume that at the point under consideration 

~/a~ =6=~ (1) 

gij = 5ij, gij,k = 0, for all indices, (2) 

by choosing appropriate local coordinates. Then denoting partial derivatives by sub- 

scripts 

Oz-~z $ e( f )  i i i i 

+^~9 ~i ~i (3) 
�9 ,6~Jz~Jz~ 

q- fiz~z,z, fi~ q- fiz~ fiz~z, z~ 

Differentiating the equation (P) for f ( z ,  t), we obtain 

Changing indices to combine the terms with second derivatives of 9ij into a curvature 

term and using the Schwarz inequality to get rid of the terms with first derivatives of 

3, ~ ,  we obtain 

( 02 ~ )  1 2 2  i j k l  
OzTOz~ e(f)  >>. ~ID fl  - R i j k t f : ~ f ] , f : ~ f : ~ - c e ( f ) .  (4) 

Here, (R~jkl) is the curvature tensor of N, and D2f  is the matrix of second derivatives 

of f in our local coordinates, and c~>0 is a constant. 
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Remark. The Bochner type inequality (4) and its derivation are the same as for 

ordinary harmonic maps (cf. [ES]) except that  now an additional term containing first 

derivatives of the domain metric has to be handled by the Schwarz inequality. This 

accounts for the factor �89 in (4). The curvature term remains the same. 

Since the curvature of N is nonpositive, consequently 

(7 ~ 020z~Oz# O)e(f)>~-ce(f).  (5) 

We now consider families f(z, t, s) of solutions of (P), with initial values f(z, O, s) = 
g(z, s), for O<<.s<~so. As before, we compute (assuming again (2)) 

(7 
~ 02 

Oz~OzO 
~-t)( gijOfiOfjOs Os ) 

[" 02 f ` 02 fJ of' oft of a f  
Os Oz ~ Os OzO ] >>'0 

(6) 

by our curvature assumption. 

Applying this with 

f(z,t ,s) :=f(z,t+s) at s=O,  

we obtain with 
Op 015 

k(z , t )  :=go Os Os 

7 ~r k= 7 gijf:,tfJz,t--7 Rijktf~fJz, f~f~.~ Oz~ Oz ~ (7) 

= 2lVft 12 -7~#(R(f~, fz , ) f t ,  An) 

in invariant notation; here, ( . ,  �9 ) is the scalar product in TN, and V is the covariant 

derivative in f - ITN,  and the norm comes from the metric in f-XTN| 
A consequence of (7) is 

LEMMA 1. Suppose that N has nonpositive sectional curvature. Then 

sup g,j(f (z, t) ) O_~*f' o f  J 

zEX Ot 

where f is a solution of (P), is nonincreasing in t. 

Proof. We put I(z, t ,s)=f(z, t+s).  Then 

aI '  Of J 
k(z, t) = g~j Ot Ot " 



226 J. JOST AND S.-T. YAU 

Since by (7) (.y O)k> O, (8) 

the claim follows from the maximum principle for parabolic equations. [] 

We let f~ be any map with bounded C2-norm in the homotopy class of 

f ( . ,  0), e.g., f ( . ,  0) itself or a harmonic map homotopic to it. 

Furthermore, for two homotopic maps gl,g2: X---~N, we define the homotopy dis- 

tance 

d(gl,g2)(z) 

by choosing a homotopy 

G:X• 1]--+ N, 

G(z,O)=gl(z), G(z, 1)=g2(z) 

and defining d(gl, g2)(z) as the length of the unique shortest geodesic arc from gl(z) to 

g2(z) homotopic to G(z, s), 0~<s~<l. 

We now want to compute 

_ 0 2  

~ Oz~Oz~ d~(f( . , t), fo). 

We have to establish some notation first. In order not to deviate from our previous 

conventions we continue to use a complex notation although we are going to embark 

upon a purely real argument. 

We put, for a = l ,  ...,m, and similarly for ~=1 ,  . . . ,~ ,  

v,~ :=v~@v~ := ~z~ ( f , t )~  o_~fO eTs(.,~)NeTsoY" 

We furthermore let 

c = cz: [0, d( f ( . ,  t), f~ --+ N 

be the geodesic arc from /(z,t) t o  /~ with Ic'l-x, defined as before through the 

homotopy between f ( - ,  t) and f0, 

e l ( Z  ) :~- --c'z(O ) 
e (z) := c'z(d(/(., t), f~  
or,tan a , no r  �9 a a , t a n  i = 1, 2. v i := (v~,ei)ei, v, .=v, - v  i , 

We also note the chain rule for 

g:X---+N, r N--* R 
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- o5 Og(z)  
7~Oz~Oz$ r162 Oz ~ ' Oz~ ] +((gradr (9) 

We then have, based on Jacobi field estimates of Karcher [Kr] and J/iger-Kaul [J/iK], cf. 
[J1], Sections 2.2 and 2.5 and in particular (2.5.6), 

- 02  - - O t ~ , ' /  t~,tan__ ct,t&n,Vl~,tan..~V2~,tan ) 7~Oz~cOz------~d2(f(',t),f~ L~vl +v2 (10) 
+/ . . , ~ , , o ~  ~,~o~ . .~,~or . . ~ , n o r ~  ~ Z ~ , ~  t ) , f O ) ,  

\ V l  - - V 2  , "Ul - - v 2  l ]  --  ClteI, J I ,  " , 

noting that la(f(.,t))l=l(Of/Ot)(.,t)l is bounded by Lemma 1 and that la(f~ is 
bounded by assumption. We also have, if the curvature of N is bounded from above 
by - # < 0 ,  

05 cosh(#d(f,f~ ,c~flVa,nOr,V~l,nor)+ I cx,nor /~,nor\-~ 
7~Oz~Oz--------~d2(f(',t),f~ fo)) r ~\ 1 \Vl ,v2 /J 

2 / a ,no r  ~ ,n o r \  (11) 
sinh (#d(f, f~ \v 1 , v 2 , - c2, 

cf. [J1], formula before (2.5.6), again using that I~(f(" ,t))l and Io(f~ are bounded; 
these bounds of course determine the values of the constants cl and c2. 

We integrate (10) and then integrate the left hand by parts twice and obtain 

Ix  e(f(.,t))<~ca Ix d2(f( "t)'f~ (12) 

where the constants depend on Cl, If~ 2, and the bounds for the second derivatives of 

We also recall (4): 

(7  '~  Oz~OzB 02 O)e(f(.,t))>~-ce(f(.,t))+�89 (13) 

Since 

( . r ~  02 

Oz~Oz$ 

with c5 depending on first derivatives of 7 ~3, we also have 

From (15), one obtains the pointwise bound (cf. [ES] or [J1], 3.3) 

e(f(z,t)) <<.c7 sup f e ( / ( . , t ) ) ,  
to <~ r<<. t J X 

1 0 ( ~z0 ) 1 0 ( 0 _ ~ ) )  ,t)) 2Oz~ ~ -~-~zZ ~"~ e(f(. <c~lDSfl.e(f)l/L 
(14) 

(15) 

(16) 
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for some constant depending also on ( t - to )  -1 and to 1, with t0>0. 

Noting that  

d2(f( �9 , r), fO) ~< 2d2(f(., t), f(-, T))+2d~(f( �9 , t), fO) 

and 

by Lemma 1, we obtain from (12) and (16), with Idf(z,t)l:=e(f(z,t)) 1/2, 

and then also 

(/x Idf(z, t)l <~ c9 d2( f ( . ,  t), fo) +c'9 (17) 

Idf(z, t)l ~< ClO sup d(f(  . , t), f~ 
wEX 

LEMMA 2. Suppose again that N has nonpositive sectional curvature. 

tion of (P) exists for all t>>.O. 

Proof. We already observed that  the set of those t up to which a solution exists is 

open and nonempty. 

Furthermore, (18) implies in conjunction with Lemma 1 

( 1 8 )  

Then a solu- 

Idf(z, t)t < c(l+t) 

for some constant c. 

Since we also have a bound on I(Of/Ot)(z, t)l by Lemma 1, linear parabolic regularity 

yields C2,a-estimates for a solution of (P). 

This implies closedness and hence global existence. [] 

We now want to study the question whether f ( - ,  tn) converges smoothly to some 

map in the same homotopy class, at least for some sequence tn-'-+(X). 

We let Zo E X be a point where 

d2(f( �9 , t ) , f  ~ 

attains its minimum. 

From (10), we have 

_ ~92 
"y~ OzaOz------- ~ d2(f( �9 , t), fo) ~ - c l d ( f ( " ,  t), f0), (19) 



A NONLINEAR ELLIPTIC SYSTEM AND RIGIDITY THEOREMS 229 

and applying the maximum principle on X\B(zo ,R)  and on B(zo,R), for R>0 ,  we 

obtain 

supd2(f(.,t),f~ sup d2( f ( . , t ) , f~176  (20) 
zEX OB(zo,R) zEX 

for some constant depending on R and the geometry of X.  Now 

sup d2(f(  �9 ,t),  fo)  ~< d2( f ( .  ,t),  f~ 
OB(zo,R) (21) 

+ 2 R  sup d(f(. , t) , f~176 
zEB(zo,R) 

Using (20), (21), (18), we obtain for an appropriate choice of R>0 ,  

sup d2(:(  �9 , t), f~ <. inf X d-2(f( �9 , t), f~ sup d ( f ( . ,  t), f~ (22) 
zEX zCX 

where Cll depends on If~ 2, a bound for ]Of lOt], and the geometry of X (through c(R)). 
Before we study the general existence problem, we treat  two---not mutually 

exclusive--cases, which are easier to handle: 

Case 1. N has negative curvature. 

Let - # < 0  be an upper curvature bound. 

We want to estimate d(f(x, t), f(y,  t)) for x, y eX .  From (22), we see that  for lifts 

to universal covers, ] ,  ]o and any z e  a fundamental domain of X,  ](z,t)  is contained 

in B(]~ R2)\B(f~ R1), where the ratio R2/R1 of the radii is uniformly bounded. 
~,nor We define v 1 (z), Vl~'n~ a = l ,  ..., m, ~ =  1, ..., m, as above as that  component of the 

resp. derivative of f(z,  t) that  is normal to the geodesic from f(z,  t) to f~ defined by 

the homotopy between f ( . ,  t) and fo. We then have 

Y 
<V 1 ,V 1 ) (Z) )  dzJrc l2 ,  d(f(x , t ) ,](y , t ) )  < f~ (7 ~ ~,nor $,nor 1/2 

where z runs on the shortest geodesic from x and y and c12 depends on the above ratio 

R2/R1 and on d(f~ fO(y)); actually c12=2R2/Rl+d(f~ fO(y)) will do. 

Hblder's inequality yields 

~x y - c~ nor ~,nor 
d 2 ( ] ( x , t ) , f ( y , t ) ) < 2 d ( x , y )  ~a~(v  1 ' , v  1 )(z)dz--}-2c22 . (24)  

Then, identifying X with a fundamental domain, 

iX d2(/(x't)'/(Y"))dy~c13/x '(x' Y)2-2m(~~176 vl~'n~ (Y)) dY-J-c14 (,5) 
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by introducing polar coordinates centered at x (2m=dimrt  X); c13 and 04  depend on 

the geometry of X. 

From (25) 

(26) 

We now return to (11). On the left hand side, we may write 

d ( f ( . ,  t), f 0 ) _  in_f d ( f ( . ,  t), f~ 
zE2~ 

By (22), this quantity is bounded by a lower order term. 

We then integrate (11) over X and integrate the left hand by parts twice. We obtain 

fx "~'~ /v c''"~ v ~'n~ ~,~ d ~, (27) / \ 1 ~ 1 i1,~11 t / ~ C 1 7 ,  

with c17 depending on the energy of fo and #, and also on the constant 01 of (22) and 

on bounds for the second derivatives of 3, ~i. 

Combining (26) and (27), 

f x  fxd2(](x,t),](Y,t))dydx<<, cls �9 

In particular, there exists some x o E X  with putting 

p := ](x0, t), 

x d2 (](x, t),p) dx <<. C19 

Returning to (12), we conclude 

and finally from (16) 

_ ClS h (2s) 
V o l ( X ) ]  

x e ( f ( x ,  t)) dx <~ c2o, 

e(f(z, t)) <~ c~1, 

for all z E X, t >_-to > 0. Having fixed to > 0 sufficiently small, the constant c21 is indepen- 

dent of t >/to. 

Since by Lemma 1, also [Of~Or[ is bounded independently of t, standard results 

about linear parabolic equations imply C 2'~ bounds for a solution of (P), again indepen- 

dent of t, and hence global existence. 
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Moreover, there exists a sequence tn--~c~, for which f ( . ,  tn) converges to a smooth 

map f ~  in the same homotopy class. 

Case 2. This case is the following: 

N, as always, has nonpositive sectional curvature, our initial map g is smooth, and 

we have 

e(g*Tg) ~ O, 

where e denotes the Euler class. 

We have the following simple topological result. 

LEMMA 3. Let M, N be compact differentiable manifolds, g: M---~N smooth, and 

e(g *TN) # O. 

Then for any continuous h: M--+N, homotopic to g, there exists some xoEM with 

g(xo)=h(xo). 

Proof. Let H: M •  [0,1]--~N be a smooth homotopy with H(z, O)=g(z), H(z, 1)= 

h(z) for all zEM. 
We now suppose g(x)~h(x) for all xEM. We may then paxametrize the homotopy 

H in such a way that  (OH/Ot)(x,t)it=or for all x. Then (OH/Ot)(x,t)it=or is a 

nowhere vanishing cross section of g*TN. Consequently 

e(g*TN) = O, 

where e denotes the Euler class, cf. [St]. 

This contradiction proves the claim. 

We apply Lemma 3 to f ( . ,  t) and f0. Then 

inf ~z ( f ( . ,  t), f~ = O, 
z E X  

and from (22) 

[] 

sup d ( f ( . ,  t), f~  • C11. 
z E X  

(18) then yields a bound for e(f(z,$)), independent of t, and since [(Of/Ot)(z,t)l is also 

bounded by Lemma 1, we get global existence and convergence of f ( . ,  tn) to a smooth 

map in the same homotopy class for some sequence t n ~ c ~  as before in Case 1. 

We can now address the existence question. 

16--935202 Acta Mathematica 170. Imprimd le 30 juin 1993 
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Definition. We call a solution f :  X ~ N ,  X Hermitian, N Riemannian, of 

- 0 2 f  ~ , ~ O f 3 0 f  k 
7 ~ - - -  - 0 ,  i= l , . . . , n ,  (E) 

Oz~Oz~ ~-7 l~k-~-J Oz~ 
Hermitian harmonic. 

THEOREM 1. Let X be a compact Hermitian manifold. Let N be a compact Rie- 

mannian manifold of negative sectional curvature. Let g: X--* N be continuous, and sup- 
pose that g is not homotopic to a map onto a closed geodesic of N.  Then there exists a 
map 

f:X---* N 

homotopic to g and satisfying 

.3[ 02f i Of j Of~'~ 
i =0 ,  i = 1,. . . ,n.  ~ Oz-~z~ ~rjk oz~ o :  ] 

Proof. The assumptions mean that  we are in the situation of Case 1. As noted 

there, for some sequence kn--~co, f (x ,  tn) converges to a smooth map f (x)  in the same 

homotopy class. We have to show that  f is Hermitian harmonic. Put t ing s=t in (7), we 

( 7 ~  0 2 
Oz'Oz~ ~ )  (giJOfi cgfJ) Ot 

Since 
Of i Of j 

- -  > 1 0 ,  g~J Ot Ot 
the maximum principle implies that  both terms on the right hand side converge to zero 

as t -*co .  Therefore, 

v(x):=t._,oolim O~f~(x, tn) 

is a parallel section of T N  along f (X) .  The assumptions that  N has negative curvature 

and that  f cannot map M onto a closed geodesic then imply v_=O. Hence 

Of (X, tn o'(f(x))  = t,~--,oolim ~r(f(x, tn))= t.--,oolim ~ - ,  ) = 0 ,  

and f is Hermitian harmonic. [] 

Remark. In the case where g is homotopic to a constant map, of course g is homo- 

topic to a Hermitian harmonic map, namely a constant one. In this case also the global 

existence and convergence become easy, since in this case 

d2(f(z, t), p), 

for any pEN, is a globally defined smooth subsolution of 

(7 
~ 02 

obtain 
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THEOREM 2. Let X be a compact Hermitian manifold. Let N be a compact Rie- 
mannian manifold of nonpositive sectional curvature. Let g: X - * N  be smooth and 
e(g*TN)r where e is the Euler class. 

Then there again exists a Hermitian harmonic map f homotopic to g. 

Proof. Using the analysis of Case 2, the proof is similar to the one of Theorem 1. 

From the proof of Lemma 3, we see that f * T N  cannot have a nonzero cross-section, in 

particular no nontrivial parallel section. This finishes the proof. [] 

Remark. Similarly, we can show existence if x(N)r and g: X--~N is continuous 

with g*: g n ( g ,  Z ) - * H n ( X ,  Z) injective (n--dim N). 

Namely, we may assume that g is smooth, and since e(TN)=x(N)wN,  where wN is 

a generator of Hn(N, Z), we then have by functoriality 

e(g *T N) = g* ( e(T N) ) = x( N)g * (WN ) ~ 0 

by our assumptions, and Theorem 2 applies. 

We now return to the general case of a nonpositively curved target N. 

In (10), we replace ~2( f ( . ,  t), f0) on the left hand side by 

d2(f( . ,  t), f o ) _ ~ f  d2(f( . ,  t) , /~ 

(22) implies that  this quantity is bounded by Cll SUpx d(f("  ,t), f0).  We then integrate 

the left hand side by parts twice and obtain 

x e ( f ( z ,  t)) dz < d ( f ( - ,  t), f~ (29) C22 s u p  
z E X  

and using (16) as above then 

Idf(z, t) I < c24( sup t~(f(. ,  t), f~ ) l/2 ' ~-c2~. (30) 
w E X  

Consequently, for any zl, z2 EX,  

o 1/2 
d(f(zl , t) ,  ](z2,t)) <~ c26( sup d ( f ( - , t ) ,  f )(w)) +c23. (31) 

w E X  

Now suppose that  for some sequence tn--*c~, 

d(f( .  , tn), f~ -~ cx~ (32) 

for some w and hence by (22) for all wEX.  
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For any two zl, z2EX, we look at the geodesics 3,[, 3,~' from f~ resp. f~ to 

f(zl,tn) resp. f(z2,tn), as always in the homotopy class determined by the homotopy 

between fo and f ( . ,  t). We parametrize each of these geodesics by arclength on some 

interval [0, Tn], with 3 '~(0)=f~ and 3"~(T,,)=f(zi,t,,) ( i=1,  2). Actually, Tn should 

also carry an index i=1 ,  2, but on account of (22), this will be inessential for the sequel. 

By (32), T,~--*~. After selection of a subsequence, 3,{' and 3'~ converge to geodesic rays 

3'1 and 3'2, resp. 
Since N has nonpositive sectional curvature, 

d(3,~(7"), 3,~(r)), 

where the distance is always measured in some fixed homotopy class of arcs connecting 

3,~(T) and 3,~(~-) (alternatively, we lift things to universal covers), is a convex function 

of r. Since by (30), d(3,~(Tn),3,~(Tn))<,.c2s(Tn) 1/2, for large Tn, this convexity implies 

that for any fixed v~>0 

n " " ~  ~ n - " *  ~ L ~ T ] .,~ ~ - I- l lrg 

= d(3,~ (0), 3,~ (0)). 

Therefore, the limiting rays 3'x, 3'2 satisfy 

d(3,1(T),3,2(T)),.<d(3,x(O),3"2(O)) for all ~-~>0. (33) 

We let f0 be a harmonic map homotopic to f ( . ,  t), and put 

forzl x, 

Differentiating (33), we obtain 

e( f ( z ) )  <~ e(f~ for all z �9 X. (34) 

Since f0  as a harmonic map is energy minimizing, we conclude 

e( f ( z ) )=e( f~  for a l l z e X .  

In particular, each f~ is harmonic and, by the uniqueness theorem of Al'ber and Hartman 

(the argument is given in Theorem 4 below), satisfies the same estimates on its C~-norm 

a s  f 0 .  

The preceding construction implies that,  if (32) holds, for each tn (after selection of 

a subsequence), we can find a harmonic map f~ of the same energy as f0 with 

d ( f ( - ,  gn), fn)  ~< c29(d(f(",  tn), f~ (35) 
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We can repeat the procedure with fn  in place of f0. After a finite number of iterations, 

we either obtain for each n a harmonic map f"~ homotopic to fo,  satisfying the same 

estimates as fo, and with 

d(f(.,  tn), ~'n) < const. (36) 

independent of t,~, or N is fiat. Namely, in each iteration step, we generate at least one 

more fiat direction, cf. the argument of Theorem 4 below. Of course, if N is fiat, we may 

assume that  N is a torus, by lifting to finite covers, and then we can also trivially find a 

harmonic map f n  homotopic to f0, and satisfying (30). 

We may apply the reasoning leading to (18) with the variable map f'~ instead of the 

fixed map f0 and obtain 

Idf(z, t~) I ~< Clo sup d ( f ( . ,  t , ) ,  f")(w)+C'~o <~ const., (37) 
w E X  

by (36). 

Estimate (37), combined with the reasoning of the proof of Theorem 1, yields 

THEOREM 3. Let X be a compact Hermitian manifold, N a compact Riemannian 

manifold of nonpositive sectional curvature. Let g: X--*N be continuous, and suppose g 

is not homotopic to a map ~: X--*N for which there is a nontrivial parallel section of 

~ - I (TN) .  

Then g is homotopic to a Herrnitian harmonic map f: X--*N. 

We can also study the uniqueness question. We should remark that  the statement 

and proof of Theorem 4 below apply as well to harmonic as to Hermitian harmonic maps. 

THEOREM 4. Suppose N has nonpositive sectional curvature. Let fo, f l  be homo- 

topic Hermitian harmonic maps. Then fo and f l  can be joined by a parallel family fs, 

0 <~ s <~ 1, of Hermitian harmonic maps, and 

is independent of s. 

Also, for any vETzX,  

i j 

dr(v)) - 0 .  

I f  N has negative sectional curvature, and if fo and f l  are not maps onto points or closed 

geodesics, then fo= f l .  

Proof. We shall use a method of Al'ber fal l ,  2] and Hartman [Ht]. 
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We let fs(z), 0~s~<l, x fixed, be the geodesic from fo(X) to fi(x) in the homotopy 

class determined by the homotopy between f0 and fl .  We let f (x,  t, s) be a solution of 

(P) with initial values fs(x), for each s, 0~<s ~< 1. 

We recall (6), i.e., 

(7,~# 0 ~ COzaOx ~ O ) ( g ' i O f ' "  --~s (x , t , s )~s  (x , t ,s))  >10. (38) 

We denote by d the distance function obtained by measuring the length of geodesic arcs 

in the homotopy class determined by the homotopy between fi  and f2. 
Now 

Of i , . Of i 
d2(f(x,t,s),fo(x))<~ sup gij(f(x,t ,a))-~s (X,~,a)-~s (X,t,a ) 

o<~a<<, s (39) 
<~ d2(fs(x),fo(x)) 

by the maximum principle from (38). 

Then (18) yields a bound for the spatial gradient of f (  x, t, s) independent of t, and 

we conclude that the solution to (P) with initial values f~(x) exists for all time and 

converges to some map f(x,  s) as t--*oo. We choose xoEX with 

d(fo(xo), fi(xo)) -- sup d(fo(x), fl(x)). 
xEx 

By construction therefore 

d(fo(xo), fs(xo) ) = sup d(fo(x), f ,(x) ). 
xEX 

From (39) 

d(f0(x , t, s), fo(xo)) = d(fs(xo), fo(xo)) (40) 

and similarly 

d(f(xo, t, s), fl (xo)) = d(f8 (xo), fl  (xo)) (41) 

(40), (41) and the choice of f~(x) imply f(xo, s)=f(xo, t, s)=fs(Xo) for all s. 
Recalling 

Of ~ Of j Of i Of j 
~exSUpgiJ(f(x't's))----<supgiJ(f~(x))-~sOs Os ~ex Os for 0~<s~< 1, 0 < t < o o ,  

we note that for all t, the supremum is attained at X=Xo and is independent of t. 

The strong maximum principle applied to (38) then shows that 

Of j a 

gij(f(x, t, s) ) ~s  Os 
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is independent of x and t. 

Since 8 was the arc length parameter  on the geodesic fs(x0),  

O fo~ s Of j gij(f(xo, t, s)) Os 

and consequently 

Oof_• O f j 
8)) o8 

is independent of s as well. Thus, for each x and t, f (x , t ,  .) is a curve of equal length 

from fo(X) to f1(x). Since f (x ,  0,. ) was a minimal geodesic, f (x ,  O, s)=f(x ,  t, s) for all 

x, t, 8. In particular,  f (x ,  t, s) is independent of t, i.e., 

f (x , t , s )  = f (x ,  s) ---- fs(x) 

then is Hermitian harmonic for each s. 

The claims then are easy consequences of the fact that  because  

t, 
o f  t 

Os 
is constant and because of the curvature assumption on N,  both  terms on the right hand 

side of (6) have to vanish. 

Remark. The Hermitian harmonic map  equation differs from the s tandard one by 

a linear first order term. Our method described in this paragraph works more generally 

if we replace the second order elliptic operator  in the harmonic map  equation by one 

which differs from it by such a linear first order term. Of course, one has to make sure 

tha t  such an operator  is invariantly defined. For example, one may take a vector field V 

on the domain X and add a te rm of the form (dr, V), the brackets denoting evaluation 

of a vector field on a one-form. Actually, the difference between the Hermit ian and the 

s tandard harmonic  map  equation can be expressed in such a manner,  

2. A c o u n t e r e x a m p l e  

We let H m be the quotient of c m \  {0} by the action of 

w ~ h(w)  := Aw 

for some )~ > 1. 

For m=2, H 2 is a Hopf surface. 

We put 

ds 2 :_- ~(dr2 +rdw2), 

where r := ]wl, and dw 2 in the s tandard metric on the unit sphere S 2m-1. This defines a 

Hermit ian metric on C m \{0} which passes to the quotient H m. 
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THEOP~EM 5. For m>~2, there is no nontrivial Hermitian harmonic 

f: H m ~ S 1, 

where S 1 is the unit circle (parametrized by [{3, 2r)). 

Proof. If there would exist such a map, then by the uniqueness result of Theorem 4, 

it would have to be homotopically nontrivial and independent of the angle w E S  2m-1, 

depending only on the radius r. 

We consider the lift to universal covers, denoted by the same letter 

/:c~\{0}-~R 

The fact that f passes to quotients means that 

f (Aw) = f (w)  +2~r 

for all wECm\{0}. Also, because of the uniqueness result of Theorem 4, we get for #>  1 

log # 
f(•w) --- f(w) +2~r log 

This is a functional equation for the logarithm, implying that 

log w 
f (w )  = 2r log A" 

We shall now show that for m/> 2, f(w)--2~rlog w/log A does not satisfy the equation 

for a Hermitian harmonic map. In order to derive the equation, we consider 

02 o (as 

since f depends only on r, 

021 Or Or Of 02r 

= Or2 Ow n Ow$ § Ow~Ow $ 

o2 f w' o s ( 
- Or2 2r 2r § Or \ 2r ~r 3 ]" 

The equation for a Hermitian harmonic map then is 

02 y r O2 y 
0 =row~Ow~ = ~ ~2  + -  

2 m -  1 Of 
4 Or' 
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or equivalently 
02f . 2 m - 1 0 f  

O=-~ir2 ~ r Or" 

The logarithm, however, satisfies the equation 

cO2 f , 10J, 
O=-~ir2 ~ r 

which is different from the previous one for m/> 2. This completes the proof. [] 

One can actually even show that for m=2, for any Hermitian metric on the Hopf 

surface H = H  2, not just for the above radially symmetric one, there is no nontrivial 

Hermitian harmonic 

f:  H --* S 1. 

Namely, by Lemma 7 below, such a Hermitian harmonic map would be pluriharmonic, 

hence harmonic w.r.t, any Hermitian metric (compatible with the complex structure), 

thus in particular w.r.t, ds 2 as above. This, however, was just seen to be impossible. 

3. The  Dir ichlet  problem 

We now let X be a compact complex manifold with a nonempty smooth boundary OX. 
Otherwise, the assumptions on X and N and the notation are as in w except that N 

need only be complete, but not compact. For the moment, we assume that the map 

g: X ~ N  is of class C2,% 

We look at the parabolic system 

f :Xx[O,  oo)-'-* N 

f(z, 0) = g (z )  for z ~ x 

f (z ,  t) = g(z) for z E OX, 0 ~< t ~< oo (P') 

aB/O2f!(z, t) ~i Of j Of k )  Ofi(z, t) 
7 ~Oz~Oz~-~3k-5-~Z~Oz~_ ~ - 0 ,  i=l , . . . ,n .  

Again, it follows from the theory of linear parabolic systems that (P~) has a solution for 

small t and that the interval of existence is open. A detailed treatment of the relevant 

construction can be found in [Hm]. 

We now assume again that N has nonpositive sectional curvature. Since 

Of=O onOX f o r t > 0 ,  
Ot 

Lemma 1 pertains to the present situation. 
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In order to obtain spatial estimates, we let f0 be any map with bounded C2-norm 

and f~  =giox, for example, g itself, or the harmonic extension of glox. Of course, f0 

has to be homotopic to g. 

(22) of w holds again, and the maximum principle this time implies 

sup d2( f ( . ,  t), f~ <<. c, (1) 
zEX 

for some constant c, independent of t, since for wEOX, 

t), f ~  = 0. 

This then can be used to obtain interior gradient bounds as in w 

At the boundary, we need a more refined argument. 

LEMMA 4. There exist 60>0 and Ro>0 with the following property: 
If f is a solution of (P) for O<~t<~T and if for some to, 0<to~<T, f (B(xo,R) , to)C 

B(p,5), xoEX, B(xo,Ro)CX,  0<5~50,  for some R, 0<R~<R0, pEN, (B(q,r):= 
{q':d(q, q') <<.r}, d being the distance function of the manifold containing q), then 

c6 (grad denotes the spatial gradient), (2) l grad f(xo, to)l <<. -~ 

where 50, Ro and c depend on the geometry of X and N and on 

Of(~to)  L~ 

Proof. We shall use ideas of E. Heinz [Hz] and of [JK]: 

We put 

# : =  max (R-d (x ,  xo))lgradf(x,  to)l. 
xEB(xo,R) 

There exists xl EB(xo, R) with 

#= (R-d(Xl,XO) ) i graxi f(xl,to)I 

and 

We put 

# 
I gradf(xo,to)l <<. -~. 

d:= R-d(xx ,  xo). 

We choose local coordinates near q=f(x l ,  to) with 

(3) 

gij(q)=Sij, g~j,k(q)=0 for all i , j ,k .  (4) 
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In these coordinates, 

- 0 2 - �9 O f  3 O f  k 
7~-----~-f~(~, to) = -7~r )~  

O z ~ O z ~  Oz ~ Oz~ 

Ofi(x, to) 
Ot ' 

i= l,...,n. 

Thus, since the F}k are obtained from the first derivatives of gij, 

7 ~ ~ ~02~ ~ p(x, tO) ~ Cl~ ] grad f(x, to)t2+c2. 
oz oz l 

c2 of course depends on the L~ of Of/Or. 

We now choose local coordinates at x 1 with 

We also abbreviate 

~(x):=f(x, to) and ~'(x):=~(x)-~(Xl). 

We choose a linear function 1 (linear w.r.t, the coordinates) with 

II(x)l <lX-Xll and (gradl(xl),grad~(Xl))=lgrad~(x~)l 

and put, for Q>0, Q<d, 

a(x) := l(x)(Ix - -$1  t - 2 m  --  e - 2 m )  

(the absolute value again being taken w.r.t, the coordinates); we also let 

De := (Ix-xll < e}. 

We compute, for 0<e<~,  with 7:---det ~ 

/D~\D~(a~/a$ 02 ~, ~,~/a~ 02 a)~dz 1 dz m 
O z ~ O z ~  r - ~  Oz~Oz~  ... 

+ .IO[(D~\D~ ) (a grad ~ ' - ~ '  grad a, d~). 

Now 

O z ~  ~ < I~z(o~/Oz~Oz ~ )~'l -y, 

(5) 

(6) 

(7) 
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since l(x) <~ Ix- Xlh 
/D. ~0,Ta~ 02 a 7 <<" JDf, I~'l Oz~,Oz~ 

because of (6), the Lipschitz continuity of 7 a~ and the fact that 

Moreover, 

0 2 

Ozai99z~ a = 0, alODa = O, 

L 2m L l~tl 

l im( f~  ( a grad ~o'-~ot grad a, d~) ) =w2ml grazl ~o( xt ) l �9 
t--,0 D~ 

We conclude 

fix fD '7'~(02/Oz'~Oz~ )~(x)' 2m I~(x)-~(xx)l+ [x_xtlZm_ 1 ~ grad~(xx)[  = ~ -~-~ -x~l---o , 

+e'f  , Ix-xa[  2'~ , IX-Xll  2m- l"  

We put 
o=d0,  0<0~<1. 

Then, from (8), (5) 

d~m02mc4 flx-x,I--d0 l~o(x)-~(x~)l a : I ~ ~(Xl)l < 

f~ I g~~ ec~ dO+c7 f I ~o(x)l 
"~-C5~ IX__ 2~1[2rn--I JiZ-ZlI~d8 [;r,--Xll 2m- l"  I -=iI<~ a'e 

By definition of # and d, for xEDae 

# 
I g ~  ~(x)l "< d(1-O)'  

consequently from (9) 

or, assuming 0~< �89 

# ~ 2c46 . c8~/z20 0 
- ~ *  d(-0-~-o)2 ~d~+~7~-0~ 

/.L ~ 2c4~ +c90#2 +c100R2 +c110#R. 
0 

(8) 

(9) 

(10) 
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This holds for all 9 with 0<0~<�89 

If we choose 50 sufficiently small, we can find some A>0 with the property that 

whenever 0 < 5 ~ 50 
2c4 

~-c~A~ ~< �89 
A 

Then either #<2A5, or there exists 0~< �89 with 

A5 

# 

Using this 0 in (10), we get 

#2 ~ 2CloASR 2 +CllA6#R, 

whence 

This and (3) would imply 

<~ c12(5+51/2)R. 

l grad f(xo, to)l ~< c12(5+51/2). 

Since this then would have to hold for all ~f, 0<5~<5o (by just shrinking R accordingly), 

we conclude that in the above alternative, the first case has to occur, i.e., 

# < 2A5. 

In conjunction with (3), this implies (2). [] 

We can now prove a gradient bound at the boundary: 

LEMMA 5. Let f be a solution of (pt), where N is simply connected and nonposi- 

tively curved. Then for zEOx ,  t~>t0>o 

[ grad f ( z ,  t)l ~< const. (grad denotes the spatial gradient), 

where the constant depends on the geometry of X and N and the initial and boundary 

values g, and on to. 

Proof. We shall use arguments from [HKW] and [JK]. 

Lemma 4 gives interior gradient bounds, and it consequently suffices to show that if 

d(zo, OX)=R, we have 

max d(f(z,  t), f(zo,t))  <<. cR (11) 
d(z,zo)~R 
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or equivalently, if d(zl, zo) = R, Z 1 ~_ O X ,  d(z2, z0) ~< R, z2 E X, we have 

d(f(zl, t), f(z2, t)) < c_R, (12) 

for some constant c depending only on X, N, g. 

We may assume that  R is smaller than the injectivity radius of X. We can then lift 

f ( . ,  t)lB(zo,R ) to a map into the universal cover/V of N. We denote the lifted map again 

by f(z, t). 
We may obviously assume 

f(zl,t) ~ f(z2,t). 

We fix some r > 0 .  Since N has nonpositive sectional curvature and is complete, any 

two points in 2V can be joined by a unique geodesic arc. We continue the geodesic arc 

from f(z2,t) to f(zl,t) beyond f(zl,t) until we reach a distance r from f(zl,t). The 

corresponding point is denoted by q=q(z2). Because of the nonpositivity of the curvature 

of N again, the squared distance function from q, d2( �9 , q) is (strictly) convex. From the 

chain rule, as f satisfies (W) 

(7 ~ Oz~Oz~02 O)d2(f(z,t),q))>~O. (13) 

There exists some fixed Ro > 0, smaller than the injectivity radius of X, with the property 

that  for every zl EOX, 

X' := X'(zl) := {z e X: dist(zl, z) ~< Ro} 

is homeomorphic to a ball. 

As before, we lift fix, to a map in to/~.  

In order to have OX' smooth, we may round off the corners slightly, without changing 

the notation. 

We then solve the following linear parabolic problem: 

h:X'x [0, oo) --*R 

(7~# 02 
Oz~Oz~ O )h(z,t)=O (L) 

h(.,t)lox, = d 2 ( f (  - , t) ,q)lox,  for t~>O (14) 

h(z,O)=d2(f(z,O),q) for all zeX ' .  

Since f has C 2,~ boundary values on aX~NOX, so does h. 
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The maximum principle implies 

d2(f(z,t),q)<~h(z,t) for all t>>.O, z E X .  (15) 

Now 
d(f(zl ,  t), f(z2, t)) = d(f(z2, t), q) - d ( f ( z l ,  t), q) by choice of q 

<~ l (d2(f(z2, t), q)-d2( f (z l ,  t), q)) (16) 

~< ~r (h(z2, t ) -h (z l ,  t)) 

by (14), (15), since zl EOX. 

Thus, (12) is reduced to a boundary Lipschitz bound for the solution of the linear 

problem (L). This in turn is known from the theory of linear parabolic equations, noting 

that h has C 2,~ boundary values on OX~nOX. [] 

Since we have established time-independent gradient estimates, we obtain global 

existence Of a solution of (P~) as in w and likewise convergence to some smooth map f 

with f]ox=glox,  at least for some sequence f ( .  ,tn), t n - - ~ .  

THEOREM 6. Let X be a compact complex manifold with nonempty smooth boundary 
OX and Hermitian metric (Ta$). 

Let N be a complete Riemannian manifold of nonpositive sectional curvature. Let 

g: X--*N be continuous. Then there exists a unique Hermitian harmonic map f: X - * N ,  
i.e., f satisfies 

-[ 02 -i ri Of J Ofk~ 
7 a Z ~ t  + jk-~z~ Oz# 1=0,  i = l , . . . , d i m N  

in local coordinates, with 

f iox = giox 

and which is homotopic to g w.r.t, fixed boundary values. 

Proof. We first assume that 9 is of class C 2,~, and let f (z ,  t) be a solution of (P'). 

As just observed, f (z , t )  exists for all t>0, and a subsequence f(z,t,~), tn--*c~, 
converges to a smooth map f ,  homotopic to g, and with f]ox=glox. 

As in w proof of Theorem 1, 

v(x) := lim Of (x, t) 

is a parallel section of f - I T N .  Since v(x)=0 on OX as we keep the boundary values fixed, 

v(x) vanishes identically. This implies that f is Hermitian harmonic. Also f[ox=g[ox 
by construction, and f is homotopic to g. 
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In order to treat the case where g is only continuous, we choose a sequence gn of 

C 2,~ maps converging uniformly to g. For each gn, we get a corresponding solution 

f,~(x, t) of (P') with Hermitian harmonic limit fn(x) by what we have already proved. 

By a reasoning analogous to the proof of Theorem 4, for n, m E N  

sup d(f~(x,t),fm(x,t))<., sup d(f~(x,t) , fm(x,t))  
x~x,t~>0 (x,t)e(ox,[0,~)) 

o r  zEX,t=O 

= sup d(g,~(x), gin(x)). 
zEX  

Consequently, (fn(x, t)) forms a Cauchy sequence in the C~ and thus converges 

to some limit f(x,  t). Since the maps fn(x, t) satisfy uniform interior estimates, they also 

solve our parabolic system, and the limit f (x)  for t---~oo is the limit of f,~(x)for n---,c~ 

and is Hermitian harmonic, coincides with g on OX and is homotopic to g. 

Uniqueness follows from the proof of Theorem 4. [] 

4. Some rigidity theorems in Hermitian geometry 

For our first applications, we formulate 

Definition. Let X be an m-dimensional Hermitian manifold. X is called astheno- 

K~i~ler(2) if it carries a (1, 1) form w satisfying: 
(i) 00win-2 =0, 

(ii) w m is a positive multiple of the volume form. 

We do not know the most general condition under which a compact Hermitian 

manifold is astheno-K~ilfler. 

One necessary condition, however, is immediate: 

LEMMA 6. Let X be a compact astheno-Kiihler manifold. Then every holomorphic 
1-form on X is closed. 

Proof. Let w satisfy the conditions of the definition. Let ~o be a holomorphic 1-form, 

i.e., 0~=0.  Then 

/OqoAOCpAwm-2=/~oACpAOOw m-2 since ~ is holomorphic 

= 0  by( i ) ,  

and this implies 0~=0 by (ii). 

(2) after the Greek word for "weak" 
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LEMMA 7. Let N be a compact locally Hermit• symmetric space of noncompact 

type, and assume that the universal cover of N does not have the upper half plane H as 

a global factor. Let X be a compact astheno-KShler manifold of dimension m. 

Let 

f :X--~ N 

be Hermit• harmonic. Then f is pluriharmonic. If f has real rank =2 dime N at some 

point, then f is • holomorphic. 

Proof. This follows as in [S1]. Namely, from (19) and our assumption on w, we get 

0 = .~ gijOf i AOfJAOOw m-2 

= ~ (Ri~k~hf i A Of J A Of k A Of tAw m- 2 _ gijD,~fi A D" Of JAw m-2 ). 

The integrand on the right hand side is pointwise nonnegative, because w "~ is a positive 

multiple of the volume form of X,  cf. [S1] or [J2], pp. 132 ft. Hence, the integrand is 

identically zero, and the analysis of IS1] of the curvature expression yields the claim. [] 

The rank condition imposed on f can be considerably relaxed, depending on the 

dimension and rank of N, cf. [$2]. Here, we only note the following result, obtained in 

the same manner as Lemma 7. 

LEMMA 8. Let N be a compact Kiihler of stron91y negative curvature, i.e., 

Rijk~( Ai B J - C i  DJ)( AZ B k -CZ D ~ ) > 0 

unless the terms in brackets vanish. Let f and X be as in Lemma 8. 

If the real rank of f at some point is at least 3, then f is • holomorphic. 

Remark. Actually, for the preceding results, w m need only be a positive multiple of 

the volume form on a dense subset of X. 

Combining these results with Theorem 1 or Theorem 2, we obtain 

THEOREM 6. Let N be a compact locally Hermit• symmetric space of noncompact 

type, without the upper half plane H as a global factor of its universal cover, o( let N be a 

compact strongly negatively curved Kiihler manifold. Let X be a compact astheno-Kiihler 

manifold. 

If X is homotopy equivalent to N, then X is + biholomorphically equivalent to N. 

Proof. By Theorem 1 there exists a Hermit• harmonic homotopy equivalence 

f:X---* N. 

17-935202 Acta Mathematica 170. Imprim6 le 30 juin 1993 
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By Lemma 7 or 8, resp., f is 4- holomorphic. Since f ,  as a homotopy equivalence, is of 

degree 4-1, an easy argument shows that  f has maximal rank everywhere, cf. IS1]. Thus 

f is 4- biholomorphic. [] 

We note that  the condition 

00~ "~-2 = 0 

is automatically satisfied for m=2 .  Thus we obtain the following result, without having 

to use Kodaira's classification of compact complex surfaces. 

COROLLARY 1. Let the compact KShler manifold N be covered by the unit ball in C 2. 

Then any compact complex surface X which is homotopy equivalent to N already is 4- 

biholomorphically equivalent to N.  

This easily follows from Theorem 3 by equipping X with a Hermitian metric and 

noting that  N has strongly negative curvature, cf. [S1]. 

COROLLARY 2. Let N be a compact complex surface with a K~hler metric of strongly 

negative curvature, for example a nonsingular quotient of the unit ball in C 2. Let M be 

a compact manifold of four real dimensions with 7h(M)r Then the connected sum of 

M and N cannot carry a complex structure. 

Proof. We proceed by contradiction and assume that  the connected sum of M and 

N, denoted by X, carries a complex structure. We equip X with a Hermitian metric 

and choose a (1, 1) form w for which w 2 is a positive multiple of the volume form. There 

exists a map 

f : X - - ,  N 

of degree one, obtained by collapsing M to a point. By Theorem 1, we may assume that  

f is harmonic. Lemma 8 implies that  f is 4- holomorphic. 

The next lemma then yields the desired contradiction, since f maps ~h(M) to 

0ETrl(N): 

LEMMA 9. Let X ,  Y be compact complex manifolds of the same dimension, and 

let f: X - ~ Y  be holomorphic and of degree 4-1. Then f is injective on the fundamental 

group. 

Proof. Let V be the subset of X where the Jacobian of f vanishes. V is a complex 

hypersurface, and f restricted to X \ V  is injective, since of degree 4-1. 

If f is not injective on 7h(X), then V ~ O .  We let ~ETh(X), ~ 0 ,  with f#(a)----0. 

Since V has real codimension 2, a can be represented by a loop ~/with ~MV--O. 

Consequently, f is injective on % Since f#((~)--0, f(~y) bounds a disk D in Y. Since 
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f ( V )  is of complex codimension at least 2, i.e., of real codimension at least 4, we may 

assume DMf(V)=O.  Since 

f : X \ Y - - * Y \ f ( Y )  

is bijective, f - l ( D )  is a disk with boundary  7, contradicting the assumption that  7 

represents a nontrivial element of 7rl(X). 

Remark. For Corollary 2, we neither need Kodaira ' s  classification of compact  com- 

plex surfaces nor Donaldson's theory of differentiable structures on 4-manifolds, and in 

any case, we on ly  need an assumption on the topological, but  not on the differentiable 

structure of X,  the connected sum of M and N.  

The preceding results can be partially extended to higher dimensions as follows: 

THEOREM 7. Let N be a compact complex manifold of dimension n, with KShler 

metric of strongly negative curvature, for example a nonsingular quotient of the unit ball 

in C n. Let M be a compact manifold of 2n real dimensions, with ~rl(M)~0.  For any 

complex structure on the connected sum of M and N,  denoted by X ,  there cannot be any 

meromorphic map from X onto a compact complex manifold of (complex) dimension 

n - 2 .  In particular, the algebraic dimension of X is at most n - 3 .  

Remark. We do not know whether X can carry any complex structure at  all. 

Proof. Assume H:  X--*Y is a meromorphic map from X onto a compact  complex 

manifold Y of dimension n -  2. Removing the points of indeterminancy of H by blowing 

ups, we may assume that  H is holomorphic. Since H is onto, the generic fibre is a 

smooth compact  complex surface. We denote the fibers by Cy=H- l ( y ) ,  for any yEY.  

We call y E Y  regular, if Cy is nonsingular, and call y singular otherwise. We note that  

the singular fibers may be of higher dimension than the regular ones. We equip X with 

a Hermit ian metric. This then induces a Hermit ian metric on each Cy. 

We look at the map  

g: X--* N 

of degree one, obtained by collapsing M to a point. We put  

gy := glc~ , for y E Y. 

We now distinguish several cases: 

Case 1. For each regular fiber Cy, gy is homotopic to a constant map. We consider 

the Hermitian metric on C~ as a Riemannian metric ( 7 ~ ) ,  with real indices a , /3 ,  and 
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consider the heat flow for the ordinary harmonic map problem: 

fy:Cu• cx~)---~ N, 

Of~ 1 0 ~/a~v/_ ~ +~/~f~F~ k for i -- 1, ..., dimR N, 
Ot ~ Ox a \  ox ] ox Ox f3 (1) 

with real coordinates x a, 

f~(x ,O)=gAx ) for all x e C ~ .  

By stability of the heat flow, fy depends smoothly on y, for y regular, and so does the 

limit map f y ( . ,  o0). Each fu( ", c~) is constant, by uniqueness of harmonic maps because 

the image has nonpositive curvature. The constant may depend on y, however. 

Although our subsequent argument will not exploit this, we note here that we may 

extend this convergence to the smooth part  of the singular fibers by taking limits. The 

reason is the following: 

Since g may be assumed smooth, we have a uniform bound of the energies of the maps 

gy. We then get uniform estimates on the maps fy, at least away from the singularities 

of the singular fibers, because we can always control the maps on a ball of radius R by 

the total energy and the geometry of the ball of radius 2R, cf. [J1] for details. 

In any case, for each singular fiber C, we choose a small neighborhood U and put  

E:=OU, in such a way that  U in particular intersects no other singular fiber and that  C 

is a deformation retract of U. Since E intersects only regular fibers, we obtain a limiting 

map f ~ ( . ,  oc). Since a fiber generically intersects E in a curve and since the limit map 

is constant on each fiber, the real dimension of the image of Z under f ~ ( . ,  c~) is at most 

2 n - 2 .  Since N is a K(~r, 1)-space, f E ( . ,  oo) may be extended smoothly to U as a map 

f v ( ' ,  oc), in such a way that  the real dimension of the image is at most 2 n - 1 .  We have 

thus constructed a continuous map f :  X---*N which is homotopic to g but  which cannot 

be surjective as its image has dimension at most 2 n - 1 .  This is a contradiction, since g 

is of degree 1. 

Case 2. For each regular y, gy is homotopic to a map onto a closed geodesic of 

N. Since closed geodesics in N are unique in their homotopy classes, because of the 

negativity of the sectional curvature, each gy then is homotopic to a map onto the same 

closed geodesic. 

One can then use the heat flow (1) for the ordinary harmonic map problem as in 

Case 1 and extend the resulting map again to the singular fibers and homotop g into a 

map g~ of lower rank, reaching a contradiction as before. 

Having ruled out Case 1 and Case 2, we can apply Theorem 1 to homotop each gy, 

for regular y, into a Hermitian harmonic map fy: Cy---*N. We have to distinguish two 

further cases. 
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Case 3. The maps fy have real rank ~ 2 everywhere. As in [JY3], one obtains a 

compact holomorphic curve Ey, and a holomorphic map hy:C~--~Eu and a harmonic 

map ~y: E y ~ N  with 

fy = ~py ~ w 

If the curves E u have genus 0, ~y is constant, and the analysis of Case 1 applies. If Ey 

has genus 1, ~y maps Zu onto a closed geodesic, by Preissman's theorem (cf. e.g. [J2]), 

and the analysis of Case 2 applies. We may therefore assume that  the genus of Ey, for 

generic y, is at least 2. 

If the conformal structure of Zu is independent of y, then all maps ~y have the same 

image in N by uniqueness of harmonic maps, and we can homotop g into a map of lower 

rank essentially as in Case 2. 

We then treat  the case of varying conformal structure. We have a smooth map 

f:X\D---* Mg 

by mapping each Cy holomorphically onto Eu, where D is some divisor (possibly empty) 

in X,  and 2r is the universal modular curve of genus g. Of course, strictly speaking, 

the universal modular curve only exists after lifting to finite covers. We therefore have to 

check local liftability near the branch points of .Mg. Since X is smooth, we can locally 

choose a fixed marking for the fundamental group of each Cy, and the image of this 

fundamental group under h u can then be used to fix a local marking for the fundamental 

group of Zu. This implies local liftability. 

We can thus lift to finite covers (without changing notation) so that  the image A4g 

is smooth. We equip .Mg with its Weil-Petersson metric. Since its holomorphic sectional 

curvature is negative by an old result of Ahlfors, we can use an argument of Kalka [K1] 

to conclude that  f as a smooth family of holomorphic maps from the fibers Cy is also 

holomorphic in the directions transverse to the fibers. We shall discuss Kalka's argument 

in Case 4 below in more detail. Thus, 

f: X\D ~.Mg 

is holomorphic. Since the holomorphic sectional curvature of Adg has a negative up- 

per bound (see [T]), we can use an extension of Yau's Schwarz lemma, due to Royden 

(Theorem 2 in [R]), to show that  f extends to a holomorphic map 

h 

f : X --~ .A4 g 

into the stable curve compactification Adg of Adg; details can be found in [JY4]. 
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This means that  we can associate a Riemann surface ~v, possibly with nodes, to 

each yEY, not only to the regular ones. Moreover, because N is negatively curved we 

can then also define harmonic maps ~v: Zv ---*N for singular y's as limits of those for 

regular ones. 

We thus obtain 

gl: X---, N 

by defining g'(z)=wyohy(z) for zECy, and as before we see that  on the one hand g' is 

of lower rank, and on the other hand homotopic to g, thus reaching a contradiction as 

before. 

Case 4. It remains to s tudy the case where for generic y, the Hermitian harmonic 

fy: C~--~N has real rank />3 at some point. Lemma 8 implies that  such a f~ has to be 

4- holomorphic. Also fv depends smoothly on y, by uniqueness and a priori estimates. 

We now want to display Kalka's argument [K1] to show that  such a smooth family of 

holomorphic maps into a negatively curved target, defined on a complex parameter  space 

is a holomorphic family. 

We look at the holomorphic map 

H : X ~ Y .  

Let yo be regular, with fyo holomorphic. 

We let w 1, w 2 denote local holomorphic coordinates on Cvo. The Cauchy-Riemann 

equations on Cv, for close to Y0, then take the form 

o f  . j o f  
or ~-~3~7w~ =0, (4) 

where of course #~(yo)=O. 
Put t ing f=fy and differentiating (4) w.r.t. ~, we obtain 

o2f +#~ o~f o#~ o f - o .  (5) 
o~o~ ~ ~ - ~  o~ ow-----J 

Since H is holomorphic, 0#~/0.~=0, and consequently (5) implies that  Of~Off is holo- 

morphic on Cy. 

Of~Off is a section of f - I T N  which is a negative bundle as N has negative holomor- 

phic sectional curvature and f is not constant on the fibers. As all holomorphic sections 

of a negative bundle vanish, Of~Off=O, and f is holomorphic in y, as claimed. 

So far, f is defined only on the regular fibers, but since N has negative holomorphic 

sectional curvature, we may again apply the Schwarz lemma to extend f as a holomorphic 
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map to all of X.  Since the action of f on the fundamental  group is the same as tha t  of g 

(this follows, because the union of the singular fibers has real codimension at least 2 in 

X)  and since N is a K(~r, 1)-space, f is homotopic to g, and this t ime Lemma 9 yields a 

contradiction as in the proof of Corollary 2. 

In conclusion, we have reached a contradiction in every possible case, and thus a 

meromorphic H: X - - ~ Y  as above cannot exist. This proves the result. [] 

Corollary 1 can obviously be extended in the same way as Corollary 2. 
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