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1. I n t r o d u c t i o n  

In 1976 [He] H~non performed a numerical study of the family of diffeomorphisms of the 

plane ha,b(X, y)=(1-ax2+y, bx) and detected for parameter values a=l.4, b=0.3, what 

seemed to be a non-trivial attractor with a highly intricate geometric structure. This 

family has since then been the subject of intense research, both numerical and theoretical, 

but its dynamics is still far from being completely understood. In particular one could 

not exclude the possibility that the attractor observed by H6non were just a periodic 

orbit with a very high period. 

Recently, in a remarkable paper [BC2], Benedicks and Carleson were able to show 

that this is not the case, at least for a positive Lebesgue measure set of parameter values 

near a=2, b=O. More precisely, they showed that if b>0 is small enough then for a 

positive measure set of a-values near a=2 the corresponding diffeomorphism ha,b exhibits 

a strange attractor. Their argument is a very creative extension of the techniques they 

had previously developed in [BUll for the study of the quadratic family on the real line 

and no doubt it will be important for the understanding of several other situations of 

complicated, nonhyperbolic dynamics. 

When acquainted in 1985 with the work by Benedicks and Carleson, then in progress, 

Palls suggested that one should in this context think of the H6non family as a particular, 

although important, model for the creation of a horseshoe and that the emphasis should 

be put on the occurrence of unfoldings of homoclinic tangencies. He proposed that the 

correct setting for Benedicks-Carleson's results is within this more general framework of 

homoclinic bifurcations and stated the following 

Conjecture. Generic one-parameter families of surface diffeomorphisms unfolding a 

homoclinic tangency exhibit strange attractors or repellers in a persistent way in the 

measure-theoretic sense (i.e. for a positive measure set of values of the parameter). 
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He also suggested the following program for the proof of this conjecture: to extend 

Benedicks-Carleson's methods and results to more general perturbations of the family 

of quadratic maps on the real line---Hdnon-like families--and then make use of the fact 

that generic families of surface diffeomorphisms with homoclinic tangencies admit renor- 

realizations which are Hdnon-like, see [PT2, Chapter III]. The main goal of this paper is 

to carry on this program and so prove Palis' conjecture. 

THEOREM A. Let (f~)~ be a C ~ one-parameter family of diffeomorphisms on a 

surface and suppose that fo has a homoclinic tangency associated to some periodic point 

Po. Then, under generic (even open and dense) assumptions, there is a positive Lebesgue 

measure set E of parameter values near #=0, such that for #EE  the diffeomorphism f~, 

exhibits a strange attractor, or repeller, near the orbit of tangency. 

By an attractor we mean a compact invariant set A having a dense orbit and whose 

stable set Ws(A) has non-empty interior. We call an attractor strange if it has a dense 

orbit with positive Lyapunov exponent ("sensitive dependence on initial conditions", 

Ruelle and Eckmann [RE]). Obviously, strange attractors are always non-trivial (i.e. 

non-periodic) and in our setting they are even non-hyperbolic as will be seen below. 

Similar definitions and comments hold for repellers. 

The generic assumptions mentioned in the statement are those required by the renor- 

malization construction described in Section 2 and are explicitly stated there. Our defi- 

nition of Hdnon-like families is through Theorem 2.1. Up to conjugacy this is the same 

notion as in [PT2], but we need some more information that we also provide in Section 2. 

Theorem A is a direct consequence of this and the following generalization of the main 

theorem in [BC2]. 

THEOREM B. Let O<c<log2 and ~=(~a)a be a Hdnon-like family (see Theorem 

2.1). Then, there is E=E(c,~)C(1,2) ,  with positive Lebesgue measure, such that for 

every aEE there is a compact, ~Oa-invariant set A=Aa satisfying: 

(a) The stable set WS(A) of A has non-empty interior. 

(b) There is zl E A such that 

(i) {~n(zl):n>~0} is dense in A, 

(ii) [[n~(zl)-(1,  0)[[~>e cn for all n~O. 

Hdnon-like maps axe (strongly) area-contracting everywhere in their domain and so 

(Plykin [Py]) they can not have non-trivial hyperbolic attractors. Hence, as we have 

mentioned before, the strange attractors we find are always nonhyperbolic. 

The proof of Theorem B occupies nearly all the paper and consists basicMly of 

variations of the arguments in [BC2], with several of them extended in order to fit into 

our more general setting. In the present paper we might have restricted ourselves to 
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the description of the changes that we need to perform in [BC2], but  this would make 

our presentation hardly readable. Instead, we insert these changes in a fairly detailed 

overview of Benedicks-Carles0n's beautiful and yet difficult construction. In particular, 

by emphasizing their geometrical aspects, we clarify several of the hardest points in this 

construction: definition of critical points, induction: structure, parameter exclusions, etc. 

A simplification of the arguments was also possible at some places, e.g, Section 10, 

We also observe that the same arguments we use to obtain Theorems A and B apply 

(in a considerably easier form) to the one-dimensional setting and yield a proof of the 

abundance of strange attractors for families of endomorphisms of the circle or the interval 

(while unfolding a homoclinic bifurcation). Thus, we obtain as a corollary the next 

THEOREM C. Let (fu)u be a smooth family of maps on [0, 1] or S 1 and Po be a 

hyperbolic periodic point for fo. Suppose that the negative orbit of po intersects the 

unstable set W~'(po) in a non-degenerate critical point of fo. Then, if this homoclinic 

tangency unfolds generically, there is a positive measure set of #-values near #=0 for 

which f ~ exhibits strange attractors. 

Several comments are in order on the meaning and scope of our results. Palis has 

recently proposed a program for a theory of homoclinic bifurcations containing a fairly 

extensive description of the extraordinary richness of phenomena associated to the unfold- 

ing of a homoclinic tangency: cascades of bifurcations, persistent tangencies, infinitely 

many sinks, hyperbolicity, strange attractors, etc. As a scenario for this program, he 

stated the following (very difficult) conjecture: given a surface diffeomorphism, it can 

be approximated either by a stable (hyperbolic) diffeomorphism or by one exhibiting a 

homoclinic tangency. In view Of Theorem A, this means that one expects strange attrac- 

tors to be a very typical phenomenon under nonhyperbolicity of the diffeomorphism (i.e. 

of its limit set). 

On the other hand, the strange attractors we find in the context of Theorem A 

(or B) are fairly structured and seem to share some of the properties of hyperbolic 

attractors. One such property concerns the eigenvalues of the periodic points contained 

in the attractor.  Analogy to what happens in the one-dimensional case (Theorem C) 

suggests that all these eigenvalues are uniformly bounded away from 1 in norm; it seems 

of interest to decide whether this is indeed so. 

Another important property regards the existence of invariant measures supported 

on the attractor. Benedicks and Young have recently announced the construction of 

SRB-measures for the strange attractors in [BC2]. In view of the arguments we present 

here it seems likely that their construction extends to general families of diffeomorphisms 

with homoclinic bifurcations. 
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The proof of Theorem B raises a few other questions which are of interest. A first 

one concerns the basin of the attractor A: for the orientation reversing case (including 

the Hdnon family for b>0) we observe in Section 4 that W~(A) contains a neighborhood 

of A; the same seems to hold also in the orientation preserving case but so far we could 

not give a full argument to prove this. 

For the one-dimensional quadratic family Qa (x)---1 - a x  2 the set of a-values for which 

Qa has chaotic behaviour (positive Lyapunov exponent on the critical orbit) has density 1 

at a=2, see Section 3. Now, a=2 corresponds to simultaneous homoclinic and heteroclinic 

tangencies for the family Q= (Qa)a and so such tangencies exist also (at parameter values 

near a=2) for every family tO----(~Oa)a of SUrface diffeomorphisms sufficiently close to 

r It is natural to ask for the bifurcation parameters denoted in 

Section 4 by a• whether they are points of positive density for the set of a-values 

corresponding to which ~oa has strange attractors. This is not known even for the Hdnon 

family. Observe that one cannot expect this to hold for general homoclinic bifurcations, 

by Palis-Takens [PT1]. 

For the proof of Theorem A we assume, see Section 2, the homoclinic tangency to 

be non-degenerate (quadratic), but this seems unnecessary. Thus, most certainly, we 

can apply our results to the situation originally considered by Hdnon, since very likely 

homoclinic bifurcations occur for the Hdnon family at parameter values near a=l.4, 
b=0.3. In a small scale, this provides an explanation for the chaotic behaviour detected 

by Hdnon. However, the question concerning the existence of a global strange attractor, 
as probably initially intended by H~non, remains an open and very interesting question. 

In a work in development, the second author is also proving Theorem A for higher- 

dimensional manifolds, under the assumptions of codimension one and strong dissipa- 
tiveness. More precisely for a family (f~)~ of diffeomorphisms on an n-manifold, with 

a homoclinic tangency associated to a hyperbolic periodic point P0 of f0, we assume 

that dimE~(p0)--1 and [a)~n_ll<l, where [~ll~.. .~l)~n_ll<l<[al are the eigenvalues 

of Df~(po), k :  period ofpo. 
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2. Hdnon-like fAro|lies 

Let (f~)~ be a C ~ one-parameter family of ditfeomorphisms on a surface, unfolding a 

homoclinic tangency associated to a hyperbolic fixed (or periodic) point P0 of f0. Let 

1 4 r < ~  be fixed. We show that, under generic assumptions (including dissipativeness 

of f0 at P0), one can find renormalizations of (f~)~ which are arbitrarily C r close to 

the family of endomorphisms ~a(x ,y )=(1-ax2 ,0) .  By this we mean that there are 

(small) domains Un on the surface converging to a point q of the orbit of tangency, 

(small) intervals In converging to /~=0 in the parameter space and C ~ n-dependent 

coordinates on In • Un, with the property that, as n--*~, the expression of fn  Ix~• in 

these coordinates converges to ~ in the C r topology, see Figure 1. This construction is 

a variation of [PT2, w and so we only outline the main ideas, the details being easy 

to complete. On the other hand, we also derive additional properties of renormalized 

families for use in the forthcoming sections. 

Assume first that there are /z-dependent C r linearizing coordinates (~, ~/) for f~, 

defined in a neighbourhood U ofp~, the analytic continuation ofpo. Up to a rescaling of 

these coordinates we may assume that U contains ((~, 7/):1~ 142, 17142} and that q----(1, 0) 

and u---(0, 1) belong to the orbit of tangency, u=foN(q). Let f~ be area contracting at 

p~ for small #: IdetDf~(p~)[<l. 
The area expanding case is treated in the same way simply by replacing f by f-x 

in what follows. We denote by A--A~ and c=~ the eigenvalues of Df~(p~) which we 
may assume to satisfy 0 < A < 1< ~r. 
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Finally, the tangency is assumed to be non-degenerate (quadratic) and to unfold 

generically with #. This means that  

.f~ (i +,~, ~/) = (0~,~ 2 +~)l+v#+H~(#, ~, )l), 1 + H2 (,u, ~, y)) 

with h e 0  and r e 0  and HI=OeHI=Oe~HI=O, HI=O, HI=H2=O at (0,0,0). By an 

affine change of coordinates we can even make O~H~(O,O,O)=O and, reparametrizing 

the family if necessary, v =  1 and c9~H~(O, O, 0)=0. Then we introduce new coordinates 

(a,x,y)=r given by 

a = -a(#2~/~-a~+flA~a2~); 

~= __~n((_~); 
a 

= - 

a 

/~ = _ a_a-~ +a-~_flA~; 

a n ~ = - - a -  x + t ;  
C~ 

v = , ,  . 

and define ~n=r162 where we denote f(#,x,y)=(#, f~(x, y)). Observe that  

if we let R= {(a, x, y): 1 • a ~< 3, Ix[ ~< 2, [y[ ~< 2} then ~b~ -1 (R) converges to (0, 1, 0) as n--, oo, 

In particular the domain of definition of ion contains R, at least for n sufficiently large. 

It is fairly easy to check that  

H~n-r ~< g max{ ( AV/~0a~ )~,ao ~} 

and so (~n)n converges to r in the C r topology, uniformly on R. Here and in what 

follows K always denotes a sufficiently large constant independent of n. 

We use D=D(,,u) to denote derivative with respect to the (x, y) variables. Let us 

write 
- c  (, , ) ( ~  ,> 

7,  6~ 

For (#,~,~})Er we have I(~(~,~l)I<.(llO, aii.i#l+liOeall.i~-ll+iicOu~li.iTil)<<.ga-" 
and also, just by continuity, ]/~(~,~/)1, [~(~,)/)[, 16~,(~,)})[<~ K- Moreover detDfoN(q)= 
-~0(q).~/0(q)r and so 1/g<.[detDf~(~,~l)]<~K and ]/~(~,~7)],]'y~(~,)I)]/>l/g, for 

(#, ~, ~7) Er n big enough. As to the derivatives, clearly I]D(a:x,u)aH ~< HD(,,a,v)al [. 
HDr -n and, analogously, I]D(~,X,u)f~[[, HD(~,x,u)~/H, HD(~,~,y)sH<ga-". In pre- 

cisely the same way one obtains the following bounds for the second order derivatives 

]lD~a,x,y)c~H, ]lD(~,x,y)/~]], ]lD~a,x,~)~/H, HD~,,,~)6H<Ka-2% Keeping in mind that  

D~on,a(x,y)= (~,~l) 
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we get 

THEOREM 2.1. Let (f~)~ be a C ~ family of diffeornorphisms as above. Then there 
are K>0 ,  t>O and, given b>O there is no=no(b)>~ l such that any ~--~o~,n>lO, satisfies: 

(a) H~-r t. In particular, H~Hcr(R)<5 (~.g); 

(b) Denote 

D~a(x, y) = D 

Then, in R, 
(i) [AI<~K , v~/K<lB[<<.gv/-b, v~/g<<.[C[<~gv~and 1Dl<~gbr+~. Moreover 

b / g  <.[det D~al<~gb, I ID~U<K and IID~o;lll<g/b. 
(ii) HD(a,x,y)A H <.g, IID(a,x,y)Bll<<.Kb 1/2+/:, [ID(~,x,~)CIl<~gb 1/2+t, HD(a,x,~)Dl[ 

<~gbl+2t. Moreover HD(~,x,~)(det D~a)ll <.gb 1+/: and IID2~aII~K, 
(iii) HD~,x,y):AH<.Kb/:, [[D~a,x,u)BH<~Kb,/2+~/: ' HD(a,x,y)C[[<.gb2 1/2+2/: and 

2 1+3/: HD(a,.,y)DH<~Kb . Finally HD~,.;y)(det D~o~)H~Kb 1+2/: and [[D3~aH<~Kb t. 

In  Sections (4)-(12) we prove that the conclusion of Theorem B holds for all: suffi- 

ciently smooth families ~=(~a)~ satisfying (a)-(b) above for a sufficiently small b. These 

axe what we call Hdnon-like ]arnilies. We fix the values of K and t from now on; for 

convenience we assume K >  10 and t<  �89 We also let r be fixed, sufficiently large (Section 

11). A few other parameters are also involved in the construction, namely �89 < c<co < log 2 

and small numbers ~>0, ~>0,  a:>0 and ~>0. Formally speaking, they are chosen in the 

order' we have listed them: the value of each parameter must be taken to satisfy a certain 

number of conditions which depend only on the ones listed previously to it. For the 

sake of clearness these conditions are stated throughout the proof in the order they are 

required. A small interval ~ in the a-space close to a=2  and a large integer N related to 

it are also fixed, depending on these constants. Finally b is assumed small with respect 

to everything else. 

3. One-dimensional  families 

First we outline Benedicks-Carleson's proof ([BC1], [BC2, Section 2]) that, for a positive 

measure set of values of aE(1, 2), the critical orbit of Q a ( x ) = l - a x  2 has positive Lya- 

punov exponent: This is intended as a summary to be followed in Section 5 through 12 

where their method is adapted to prove Theorem B. We also observe that the arguments 

(and the conclusion) here remain valid if Q=(Q~)~ is replaced by any smooth family (of 

one-dimensional transformations) sufficiently close to it (with 0, 1 replaced ~by the  corre- 

sponding critical point and critical value, respectively). Theorem C follows by combining 
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this with the one-dimensional version of the renormalization technique in the previous 

section (see also Sections 4 and 12). 

Fix �89 <c<co<log 2 and let e>0,/3>0, a > 0  and 6>0 be sufficiently small constants, 

chosen in this order. We denote 

Dn(a) = (Q~)'(1) = H(-2aQ~a(o)) (1) 

and want to show that, there is a positive measure subset E--E(c) of (1, 2), having 2 as 

a point of density, such that for a E E 

ID . (a ) l />  e "c for all n />  1. (2) 

In particular, by Singer's theorem [Si] there are no attracting periodic orbits for Qa if 

aEE. The special role of log2 is due to the following lemma, which is a consequence of 

the fact that Q2 is conjugated to the tent map T ( x ) = l - 2 1 x  [. 

LEMMA 3.1. Given 0<co<log2 and 6>0 there is a0:ao(co ,6)<2 such that for 
ao <~ a<~ 2, if 

(a) IQ~(x)I>~6 /or l<.j<.k and 
(b) Ix[<6 or 

then 

In other words, (maximal) pieces of orbit outside (-6,  6) (free periods) have ex- 

panding behaviour. Now we must deal with the returns, i.e. the iterates u for which 

]Q~(0)H<& Since ([BC1]) 

infiQak(0)i ~<6 for almost every a e  [a0,2] (3) 
k~>l 

we can not prevent the orbit of zero from returning close to itself. However this should 

not happen too fast and we make the basic assumption 

IQ~(0)I i> e -s". (BA) 

The values of aE(l, 2) for which (BA) is not satisfied are excluded from the set E as we 

describe below. 

Using (BA) one can show that the small factors introduced in (2) on returns are 

compensated by the growth of the derivative in the following iterates. The crucial idea 

here is that of binding period, which can be heuristically motivated as follows. If v is 

a return then Q~(0) is close to zero and so their positive orbits remain close (bound) 

to each other for a period of time which depends essentially on how small IQ~(0)I is. 
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During this period the two orbits have similar behaviours. Hence, one may use, in an 

inductive way, information concerning the growth of the derivative on early iterates of 

zero (previous to time v), in order to obtain the same kind of information for the iterates 

in the binding period following v. For the induction to work the length of the binding 

period must be less than v and this is a consequence of (BA). Let us come to a formal 

definition. The binding period associated to the return v is the interval [v+l ,  v+p] where 

p~> 1 is defined by the binding condition 

IQ:+J(0)-Q{(0)I  ~< e - j j  for 1 ~ j  ~p,  p maximum. (BC) 

Then it can be proved 

LEMMA 3.2. There are ~----~(c, o t ,~)>0 and o'=~r(c, oL,~)>0 such that if  

[Q3a(0)[~e -~j f o r l ~ j ~ n  and [Dj(a)[>~e cj f o r l ~ j ~ n - 1  

then for v<~ n a return and p the length of the binding period associated to v, we have: 
(a) 1/o<~I(QJ)'(~)[/[(QJ)'(~I)[<~ ~ for all ~,~/E[Q~+I(0), 1] and l<~j~p; in particular 

I(QJ)'(Q~+~(0))I >~eC~/o Io~ l <<j <~p. 
(b) pE [r/(/~+log 4), 3r1(/9+c)], where r = -  log IQ~ (o) h and ,o  p~< 3avl(~+c) ~ v/2. 
(c) I(Q~+I)'(Q~(O))I ~o'e (p+l)c/3 >11. 

The meaning of part (c) is that the growth of the derivative during the binding period 

(which follows from Ca)) fully compensates the small factor Q~(Q~(O))=-2aQ~(O) and 

there is even some overall exponential gain in the interval of time Iv, v+p]. 
We say that a return v is free if it does not belong to any binding period associated 

to some previous return. Let N=vl<v2<...<us<~n be the free returns in [1,n] and 

pl,p2, ...,P8 be the lengths of the associated binding periods. We also denote by 

qo----N-1, q l = ~ 2 - ( v l + p l - b l ) ,  ..., qs_l =tps-(Vs_l-bPs_l-[-1) 

(and q,=n-(vs+p,+l) ,  if n>vs+p,), the lengths of the complementary free periods 

and let Fn=Fn(a)=qo+...+q,-1 (respectively Fn=qo+...+q,-l+qs) be the total free 
time in [1, n]. Then by Lemmas 3.1 and 3.2 

ID.(~)I/> e c~ "e -~"~ e ~F" "e -~" (respectively ID.(~)I/> e ~~ (4) 

The next fundamental step is to make new exclusions of parameters, retaining only 

the values of aE (1, 2) for which the critical orbit spends most of the time in a free iterate 

F.(a) />  ( 1 - e ) n .  (FA) 
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Then, from (4), [Dn(a)l >~e (c~ ~>e ~" if e>0  and a > 0  are taken small enough. 

Clearly, this completes an inductive procedure that  proves (2) for the a-values sat- 

isfying (BA) and (FA) and so we are left to show that  the set of such values has positive 

Lebesgue measure. This requires some notations and an important ingredient is the 

construction of a sequence (P~)~ of families of disjoint intervals in the a-space wi th  the 

property that  the a-derivative 0aQ~(0): has bounded distortion on each wE~Pn. We de- 

fine a sequence Et  D E2 D... D Ek - ~ ~ Ek D... of subsets of (1,2) such that  parameters a E E k 

satisfy the (BA) and the (FA) for all iterates l<<.j<~k and so [Dj(a)[~>e ~ for l<~j<~k. 

E ~ h  Pn is a partition of E n - t  and En is obtained as a union of intervals in Pn. Finally 

we take E=f3,,>~ ~ E,,. 

We begin by fixing w0=(a0,2), ao close to 2. Denote 7k=fk(WO)={Q~(O):aEwo}. 
Clearly Q ~ ( 0 ) = - I  is in the boundary of T~, for k~>2, and from the fact that  Q2 is expand- 

ing at - 1  (eigenvalue =4) one can show, in a fairly easy way, that  7k eventually contains 

zero. Take N minimum such that  0ETN. Observe that  N can be made arbitrarily large 

by taking ao close enough to 2. For 2<~k<~N, 7k:wo3a~Q~(0)  is a diffeomorphism 

and 7k (W0) = (-- 1, be ) with - 1 < b2 <... < bN - ~ < 0 < bN. Moreover, b y  slightly changing a0, 

we may even suppose 7k(w0)N(--&6)=~ for 2<~k<<.N-1 and then, by Lemma 3.1, one 

obtains [Dk(a)[>/e kc~ for all l <~k<~ N - 1  and aEwo. 

Now we start the construction of the E,, and 7~,,, which is done by induction on n. 

For n<~N-1 we take simply En=wo and Pn={wo}, the trivial partition. Suppose now 

that  E~ and Pk were already defined for k<~n-1. We obtain ~on by refining P , - t  as 

follows. Let w be any interval in P , - t .  If 7n(w) does not intersect ( ' ~ ,  6 )we  leave it 

unchanged: w is also an element of Pn. The same holds if n belongs to the binding period 

associated to some return t~<n, i.e. if 

IQ~+~(O)-Q~(0)I ~<e -a~ for all j ~<n-u  and a~oJ. 

In this case still we leave w unchanged even if 7n(w)N(-8 ,6)#O (we call that  a bound 

return situation). Let now n be a free return situation for w: 7~(w) intersects (-8,  6) and 

n does not belong to any binding period (the first such situation occurs for n = N  and 

w=wo). First we write w=w'Uw", with w'=7~-t((-6,6))  and w"=7~-1((-6,6)c). For 

aEw" the iterate n is not a return. By definition each connected component of w" is 

an element of 7~. In order to describe the restriction of Pn to w' we introduce the 

partition {It} of (-8,  6) defined by Ir=(e -~, e-~+l), I_~=-I~  for r > A - - -  log 6. We 

also subdivide each Ir into r 2 intervals Ir,1,...,Ir,r2 of equal length. Two cases must 

be considered at this stage: If 7,,(w') contains no interval I~,i then n is said to be an 

inessential (free) return and we take w' to be an element of ~,~. Otherwise n is an 

essential (free) return and we decompose w'=Uw~,i where each O)r, i is an interval with 
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Ir,iCT~(wr, i) CI,.,i-lUI,.,iUI~,i+l (most of the times Wr,i='7~l(Ir,i) but if some I s j  is not 

fully contained in %,(w') then ~ 1  (I~5) is included in w8,#+1, see Figure 2). By definition, 

the elements of Pn inside w' are precisely these wr,i. 

The main goal of this construction is to obtain the following statement of uniformity 

of the derivative inside each interval of the partitions. 

LEMMA 3.3. There is Ao =Ao(c, a, ~, 6) > 1 such that if wEP~-i and wcE~_l then 

.< [7"(a)[ <.Ao for alla, bew. A~ 17"(5)1 

In the proof of this, one first transfers the situation from the parameter space to the 

x-line through the following result, which is a particular case of the important general 

principle stating that under a sufficiently strong growth of the x-derivative then the x- 

and the a-derivative axe comparable. 

LEMMA 3.4. Given c>0 there is No=No(c)>~l such that if 
(a) 10xQ{(1)[~>3 j for l~<j~<N0-1, 

(b) ]O~Q{(1)]>~e cj for l<.j<~n-1, 
then 

1 [0aQ~-i(1)[ 
36 ~< 0 , , -1 1 ~<36. [=Qa ( )[ 

Observe that ' - n n- t  7~(a)-OaQa(O)=O, Qa (1), while OxQ~-l(1)=Dn_l(a), We take 

a0 close enough to 2 so that the first No iterates of 1 are close to - 1  and so (a) is 

satisfied (Q~(-1)=4>3) .  Assumption (b) follows simply from the fact that wcEn- t .  
This reduces the proof of Lemma 3.3 to proving 

1 [Dn-t(a)[ ~<A~) for all a, bEw (5) 
A~ ~< ID~_t(b)[ 

and for this it is important that on returns the length of 7k(W) is not too big with respect 

to dist(fk(w), 0), as obtained above, see [BC1], [BC2] and Section 11. 

Parameter values aEw~,i, with  [r[>an are excluded by the (BA) and we define 

E~=E,~-I\(U~, [.Jlrl>~,~w~,~), where the first union is taken over all w' corresponding 
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to essentiall returns as above. A bound for the measure of these exclusions can now be 

provided. By the mean value theorem and Lemma 3.3 

m(wn(E,_l  \E" )) = m(Ulrl>~,w~,i) 
e 

(6) 

In order to estimate the length of %~(w) we need the following fact. 

LEMMA 3.5. There is v=r(c ,  a, /3)>0 such that m(7~,(w))>/repC/3m(Tu(w)) for any 
free returns N<.v<#<~n of wEPn-x, wcEn_l ,  where p is the length of the binding 
period associated to u. 

This is a consequence of the mean value theorem together with the expansiveness 

of the x-derivatives during binding periods (Lemma 3.2(c)) and free periods (Lemma 

3.1) and the uniform equivalence of x- and a-derivatives at times v and # (Lemma 3.4). 

Let then k be the last essential return before n (when w was created). The lemma says 

m(~/n(W)) ~>const. enC/3m(Tk(w)). Now, by definition m(fk(w)) ~>m(/r,i)/>const. e -Irl/r2 

for some A<.lrl<.ak<~an and by Lemma 3.2(b) p>~(lrD/(/3+log4 ). It follows 

m(Tn(w)) >1 const, e x p ( - ~ a n ) .  (7) 

Replacing in (6) we get m(wN(En-1 \E~)),,<const. e-~n/2~ and since this holds for 

all wET~n_l, wcEn-1 we have proved that 

m( En-1 \ E" ) <~ const, e-~n/2~ En_l ). (8) 

In order to bound the exclusions determined by the free period assumption (FA) 

Benedicks and Carleson introduce the notion of escape period. We return to the notations 

in the construction of ~n. An essential free return situation n is said to be an escape 
situation for w G ~n-  x if 

m(Tn(w)) >I v~. (9) 

Then the length of at least one of the connected components of 7n(w") is greater than 

/~/3 and we call that an escaping component of 7~n. By definition, an escape period for 

aEEn-1 is a maximal interval Iv, v+e)  such that 

v is an escape situation and a belongs to an escaping component of P~,; (10a) 

[Q~(0)]/>~f for alljG[y,v+e). (10b) 

We also consider [1, N) to be an escape period for all aEwo, although the first escape 

situation is, clearly, n=N. Observe that once an escape period has begun it tends to 
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persist: if &EP~ is an escaping component then its next return p is again an escape 

situation (by Lemma 3.5) and, due to the fact that  v/~>>6, most of the values aE~  

belong to an escaping component of ~ , .  On the other hand, after an escape period 

ends there is a positive probability that  a new one will start  at some subsequent return 

(i.e. there is a definite positive fraction of values of a for which this happens). This is 

a consequence of the exponential growth of lengths (Lemmas 3.1, 3.2(c) and 3.4). By 

combining these two facts one obtains the fundamental lemma below, stating that  in the 

average the critical orbit spends most of the time in escape periods. Let 

Tn(a) -- # { j  e {1, ..., n}:j does not belong to any escape period of a}. 

Clearly, Tn(a) is constant on each wET~n and we denote by T,~(w) this constant value. 

LEMMA 3.6. Fix'y small enough ( 'y=l/1000, say). Then 

1 
m( o) e < e and so 

wE'Pn 
wCBn-i 

m(UT.(~)~>e n w) <. e -'ye"/2 .m(wo). 

We take E,~--E~\(UT,~(~o)>>.enw ) so that  the parameters aEEn satisfy the (FA) 

(escape periods are, obviously, free). On the other hand Lemma 3.6 implies 

m(E~ \En) <~ e-'Yen/2.m(wo) (11) 

and putting this together with (8) we get 

m(En-1 \ En) ~ Soe -a~ .m(wo) (12) 

where B0 and a0 depend on c, a,/3, : and 6 but not on N. It follows, that  

m(E)>~m(wo)- Z m(En-z\En)>~m(wo), l - B 0  e -aon 
n=N n=N 

is positive if N is large enough, i.e. if a0 is close enough to 2. Moreover m(E)/m(wo) 
converges to 1 as a0-*2. 

4. T h e  a t trac tor :  bas ic  p r o p e r t i e s  

In this section we exhibit, for a H~non-like map ~oa, a compact invariant set A--Aa and 

we show that  it is an attractor in the sense that  its stable set has non-empty interior. 

The fact that  (for a positive measure set of parameter values) A is transitive and has 
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positive Lyapunov exponent is much harder to prove and this occupies the remainder of 

the paper. 

The set A is obtained as the closure of the unstable manifold of one of the  fixed 

points of ~oai so we start by studying these points. An immediate computation shows that 

r 2, 0)has exactly two fixed points P=(�89 and Q--(-1,  0), and that the 

eigenvalues of Dr respectively Dr are -2  and 0, respectively 4 and 0. Then P 

and Q have analytic continuations P(~oa) and Q(~o,) defined for ~o, in a neighbourhood 

of r and (if this neighbourhood is small enough) these are the unique fixed points of 

~o,. We also want to describe the unstable sets of these points and the way they unfold 

with the parameter. Let us begin by considering the: family (r Recall that one 

defines W'~(P(r162 with IcRx{O} a small interval containing P(r 

and analogously for Q(r Again it is easy to check that W"(Q(r always has an 

unbounded separatrix (-oo, Q(r and moreover 

�9 for 1<a<2: �89162 Q ( r  

W~(P(r = [ l - a ,  1], bounded separatrix of W~(Q(r = [Q(r 1]; 

�9 for a=2: P(r189 Q ( r  

W~(P(r bounded separatrix of WU(Q(r [-1, 1]; 

�9 for 2<a<3:  0<P(r189 1 - a < - l < Q ( r  

�9 the right-hand side separatrix of W"(Q(r162 1] and W"(P(r 1]. 

The special role of 1 - a  comes from the fact that 1-a=r162 Figure 3 describes 

how the Cak:I--*R parametrize (compact parts of) these W u and how the situation 

changes with the parameter. (In order to make the figures easier to read, multiple 

points of the unstable sets are represented in slightly different levels. The real picture is, 

of course, one dimensional and the folds at the positive orbit of zero correspond in fact 

to velocity zero turn-back points of the parametrization.) 

Observe that the vertical straight line passing through Q being contained in the 

stable set of Q, one may think of the bifurcation at a=2 as the creation of a homoclinic 

tangency associated to Q and of a simultaneous heteroclinic tangency involving W'~(P) 
and WS(Q), Due to the continuous dependence of the local stable and unstable sets on the 

map (see Proposition 7.1), H6non-like families of diffeomorphisms have such homoclinic 

and heteroclinic tangencies for parameter values near a=2, as we now describe. As one 

goes from the endomorphism to the nearby diffeomorphism the turn-back points in the 

unstable sets become real folds and we need to know whether they turn up or down. 
This depends on the signs of the entries of 

D ~  = C 
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it is easy to check that  the first fold of W"(Q) (near (1,0)) turns up if C > 0  and down 

otherwise; analogously the  sign of B determines the orientation of the second fold (near 

(-1,0)). 
Consider first the case det(D~aa)>0 (r B C < 0 ) .  As a increases, this second fold 

moves to the left and we have a first homoclinic tangency associated to Q for a--a+(~p). 
Then for a < a + ( ~ )  we may construct, as in Figure 4, a compact domain D=Da which 

is invariant for ~aa in the sense that  ~Qa(D)cD. Observe that  by Brower's fixed point 

theorem we must have PED and so even PE in t (D) ,  which implies Wu(P)cD. 
The construction of an invariant domain for ~a~ is slightly more complicated in the 

case det(D~aa)<0 (r B C > 0 ) .  Now the tangency between WS(Q) and the second fold 
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w"(Q) w"(P) p 

= ~ D 

Fig. 5 

of WU(Q) is not the first homoclinic bifurcation associated to Q, as Figure 5 shows. 

Observe that the contracting eigenvalue of Dqoa(Q) must be negative since the ex- 

panding one is near r ( - 1 ) =  4. We consider instead the unstable manifold of P. Another 

elementary reasoning shows that its first three folds look like as in the figure. We let 

a_(~o) be the parameter value corresponding to the first tangency between Wu(P) and 

WS(Q) and assume a<a_(qo). Then we may take D as in the figure since, clearly, this 

is invariant and contains W ~ (P). 

We summary this discussion in the following proposition. 

PROPOSITION 4.1. Let ~o=(~oa)a be a Hdnon-like family preserving (respectively re- 

versing) orientation. For a<a+(qo) (respectively a<a_(~o)) there is a compact domain 

DC [-2, 2] 2 which is positively invariant under qaa and contains A = W~'( P ) . 

It is well known, and fairly easy to show, that the basin of A contains non-trivial 

open sets. 

PROPOSITION 4.2 (see [BC2], [PT2]). Let an open domain • cD  be such that Of~C 

Ws(P)UW~(P). Then limn_.+~ dist(~n(z), A)=0 for all z e fL  

Observe that domains ~ as above exist since P has transverse homoclinic points. 

Remark. At least in the orientation reversing case one can show that W ~ (A) contains 

a neighbourhood of A. We just sketch this argument. Note first that for every a there 

is a sequence P=Po>PI>P2>...>Pn>... converging to Q and such that Pn=r 

For a decreasing from 2 the point 1-a=r  crosses these P~ and this corresponds 

to a cascade of homoclinic tangencies associated to P. In fact, the stable set of P is 

formed by the vertical lines passing through each of its backward images. By continuity, 

for ~=(~a)~ a H~non-like family, the stable manifold of P(~oa) contains segments close 

to (compact parts of) these lines. When ~a is orientation reversing one can see that 

the geometry of W'(P(~a)) is as depicted: segments on the left connect to segments on 
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Fig. 6 

the right below W'~(P(~a)) (Figure 6 corresponds to B, C>0,  so that P(~o~) is above). 
This permits to construct, for a<a_(~) ,  domains ~ as in the proposition such that 

AC(f~UW'~(P)) and so Ac(U,~>>.oT~n(n))UW~oc(P). By Proposition 4.2 the open set 

on the right is contained in Ws(A). 

Observe also that even in the orientation preserving case Ws(A) contains at least 

a neighbourhood of Wu(P): this follows simply from Proposition 4.2 together with the 

fact that P has transverse homoclinic points in all its separatrices. 

5. The induction: critical points 

Now we want to extend the one-dimensional argument of Section 3 to general H6non- 

like families in  order to prove Theorem B. A crucial ingredient in this extension is the 

construction of a set of critical points for the H6non-like maps. These are points in 

the unstable manifold W"=W~'(P) which play a role in the proof similar to that of the 

critical point x=O in the one-dimensionai case. This construction turns out to be quite 

complicated and the purpose of this section is to give a heuristic motivation and outline 

of it, as well as to advance some information on the global structure of the argument. 

Rigorous definitions and statements will be given later. 

For zl EW '~ and n>.O denote 

n z Zn+l=(X,~+l,y,~+l)=7~a(1) and wn=wn(zl)=D~o'~(zl)'(1,O). 

Due to the form of D~oa the vectors wn stay nearly horizontal as long as Ixnl  . During 

this period the action of ~o~ on these vectors is essentially that of Q a ( x ) : l - a x  2 and 

2-935203 Acta Mathematica 171. Impdm6 le 28 octobre 1993 
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in particular t[wnll.~2alXn].tlWn_lll. Let now v>~l be a return iterate, i.e. let ]x~t<~. 

Clearly, w~ can no longer be expected to be nearly horizontal: it may have large slope if 

x~ is near zero. We suppose first that  ~ ,  admits (say, in {x>  �89 a contractive foliation, 

meaning a foliation by nearly vertical curves which are (exponentially) contracted by all 

positive iterates of ~a. Although this is not the case in general, the rigorous proof of 

Theorem B will involve geometric ideas similar to these, as we explain below. Then we 

may split wv=wt,+av, as illustrated in Figure 7, where o~ is horizontal and a~ is in the 

contractive direction at Z~+l. Further iterates of a~ play no role in what concerns growth 

of IIw, ll, since they are exponentially small. On the other hand, w~ being horizontal the 

action of D~a on it will again be essentially the multiplication by -2ax,  up to the next 

return where the whole process is repeated. 

Clearly, one needs to estimate the amount II~ll/llw~-lll of loss on the norms of 

vectors on the return time v. This is related to the angle between w~ and the contractive 

direction at z~+l, which motivates that  we introduce the following notion. A point 

~0=(~o,~/0)EW ~, ]~01<~, is said to be a critical point of ~ ,  if D~,(~o) maps the tangent 

direction to W ~ at ~0 into the contractive direction at ~ ( ~ o )  or, equivalently, if the 

contractive direction is tangent to W ~ at ~ (~o) .  We also assume in the definition that  

W = is almost horizontal and almost flat near r We will see later (Section 9) that  on 

each return v a critical point ~0 can always be found such that  z~ is in tangential position 

with respect to ~o, in the sense that  dist(z~,7)<<lz~-~01, where 7 denotes a nearly flat 

piece of W ~ containing ~o. This permits us to argue as if z~ were in 7: replacing it by a 

suitable z" E~/introduces only an error which is neglectable with respect to [z~-  r We 

may also think of w~-i  as being tangent to W "  at z~ (actually z ' ) :  the angle it makes 

with the tangent direction is also shown to be neglectable relative to Iz~-r From all 

this one obtains in a fairly easy way that  Ilwv II ~ IIw~.-111"lz~-(01, as a consequence of the 
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quadratic nature of the fold of W e near ~1 =q0a(~0). This is completely analogous to the 

one-dimensional case, where we had on each return a loss on the derivative proportional 

to the distance to the critical point. 

Proceeding with our heuristic overview of the proof, one shows then that, with 

positive probability in the parameter space, all critical values have positive Lyapunov 

exponent: there is EC(1,3), with m(E)>0,  such that for aEE, IlWn(Zl)ll~e cn for all 

critical values Zl and n~> 1. In order to get this we imitate the one-dimensional argument 

of Section 3 and parameter exclusions are made so that the basic assumption (BA) and 

the free period assumption (FA) hold for the orbit of each critical point. The fact that 

after all exclusions there remains a positive measure set of parameters is more delicate 

than in dimension one, since now we have infinitely many critical points. This follows 

from the observation that only a number <.e en (e>0 small) of critical points needs to be 

considered at each stage n (the other critical points remaining close bound--to these 

ones during at least n iterations), together with the fact that the exclusions required by 

each critical point decrease exponentially with n ((3.12)). Finally one proves that for 

almost every aEE there is a critical point Zo whose orbit is dense in W ~ (see Section 

12). Clearly, for such parameter values A can not contain periodic attractors. 

Now we want to discuss some of the points in which the rigorous proof of the theo- 

rem differs from this heuristic outline. As we said before, contractive foliations as above 

do not exist in general. On the other hand, if a point zl is )~-expanding up to time n, 
i.e. I[wj(zl)ll~ j for l<.j<~n, with ~>>b then (Section 6) a direction e(n)(zl) can be 

constructed with the property of being exponentially contracted by the first n iterates 

D~(Zl ) ,  l<~j<~n. We think of e(n)(Zl) as an approximation to the contractive direction 

at Zl (which would be contracted by all positive iterates of D~oa) and in fact this con- 

tractive direction may be obtained as limn-.~ e(n)(Zl), if Zl is expanding for all times. 

Using these approximations of contractive directions one may define approximations of 

critical points Z(o n) by the condition that e(n)(~a(Z0(n))) be tangent to W '~ at ~a(Z(on)). 
Of course, this definition makes sense only if we have expansiveness which is precisely 

our goal (with ~=e c) and this shows that an induction procedure involving simultane- 

ously the construction of the critical set and the exclusion arguments is required for the 

proof. We formalize this procedure as follows. Fix (in a more or less arbitrary way, 

see Section 7) a compact neighbourhood Go of the fixed point P in W'~(P). For g>~l 

let Gg=~og(Go)\~g-l(Go). A critical (approximation) point is said to be of generation 

g if it belongs to Gg. First we construct critical approximations z0 (~) in Go and W(o ~) 

in G1, l<~i<.N-2, corresponding to the unique critical points of generation 0 and 1, 

respectively. For n<~N-1, the nth critical set is 

~ n - - J ' ' ( n - 1 )  , .  (n--1)i 
- -  I . ~ ' 0  , ~ ' 0  J "  
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These approximations remain outside (-$,~) for all iterates l<~n<~N-1 and so their 

images z~i)=~(z0(!)) and w~ ~) =~oa (w(0 0) are eCO-expanding, 0 < c < co < log 2, up to N - 1 .  

Actually, the same is still true for every point ~0 which remains bound to some of the 

approximations up to time N - 1 .  For n>~N the construction proceeds by induction. 

We assume that for all k<.n-1 a kth critical set Ck has been constructed, containing 

(k-1)s t  order approximations Z(o k-l) of critical points of generation <<.tgk (8=O(b)<<l 
to be fixed later). For any point ~0 which is bound up to k to some element of Ck, it 

is assumed that ~l=~a(~0) is eC-expanding up to time k. Then we construct the nth 

critical set Cn, composed of (n -1)s t  order approximations of critical points of generation 

<~ 8n. This corresponds to providing better approximations for the critical points already 

encountered (of generation g~8(n-1)) and, possibly, introducing approximations of new 

critical points of generation 8(n-1)<g ~< 6n. By construction all the points of Cn are very 

near Cn-1. This has the consequence that if a point ~0 is bound to some Zo (n-i) ECn up to 

time n then it is also bound up to ( n - 1 )  to some element of Cn_l and so, by induction, ~1 

is eC-expanding up to ( n -  1). In order to obtain the eC-expansiveness at time n, parameter 

exclusions are made, determined by the 2-dimensional analogs of (BA) and (FA). This 

is described in more detail in Section 8, after appropriate notations and techniques have 

been introduced. This completes the induction. At this stage true critical points are, 

finally, defined (as the limit limn--.o~ Z(o n) of increasingly accurate critical approximations) 

and the corresponding critical values are ee-expanding for all times. 

6. Contract ive  d irect ions  

We begin by constructing (approximate) contractive directions for a Hdnon-llke map ~a. 

The crucial property of M=D~a, as far as this section is concerned, is the strong area 

contractiveness 

{det M{ ~< Kb << 1. (1) 

We also make important use of the homogeneity of M 

{{(det M)'{{ ~< g2bt << g .  (2) 
{det M I 

Our construction is essentially different from that in [BC2, Section 5], which is based on 

a continuous fraction development. Instead, we define contractive approximations simply 

to be the maximally contracting directions of the iterates of M. 

Recall that a point Zl is said A-expanding up to time n if {{w~{{/>A ~ for l~<v~<n, 

where w~=w~(zl)=M~(zl).(1,O). We permit A to be less than 1 but we always have 

K>A>I($/IOK)I~ For such a point zl and l~<v~<n let the norm 1 vectors e (~) and 
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f(~) be, respectively, maximally contracting and maximally expanding for M ~ (Zl). These 
correspond to the solutions of 

~oll M~'(zx). (cos O, sin O)It ---- 0 

which are given by 

2(A~B~+C~D~) (A~ B~) (3) 
tg(20)= (A~+C~)-(B~+D~) where M~(z l )=  C~ D~ " 

In particular e (~) and f(~) are orthogonal and the same holds for their images 
M~(zl).e (~) and M~(zl).f (~) (which are, respectively, maximally expanding and maxi- 

mally contracting for (MV(zl))-l). Therefore 

]]M"(Zl).e(~')]] .liM~'(Zl).f(")]l = Idet MU(zl)[ <~ (Kb) u 

and, since the expansion assumption implies 

[lM*'(zl).f(u) II ~ ~, (4) 

we conclude that 

,,M~(zl).e(~)l, ~ (-~-I~. (5) 

In what follows we denote by angle(u, v) the angle between the directions of two 

vectors u and v. This is a number in (-�89 �89 

LEMMA 6.1. (a)iangle(e('),e(~))l<~(3K/A)(Kb/A~)" for all l<#~<u~<n; 

(b) iIM~(Zl)-e (~) II < (4g/A)(g2b/A2)" for all 1 <#<.u<~n. 

Proof. Denote e(~)--M"(zt).e (~) and d~)=M,(z , ) . / (~)  for l~<#,u<n. Let v~2  

and write e (~-1) --~.e(') + r  I. f(~), see Figure 8. Then 

~ li e(~)ii 2 +r/2 li f~(v)ii 2 = Ile(~-~)II 2 = Ile(:-~)II ~ �9 (~2 + r/2), 

giving 

(tg (~(v))2 = (~)2 = ]]e(V-1)ll2_lie(V)l]2 (6) 
IIf~ (v) II 2 -ile(~ v-l) 112' 

where r (~-1) , e(~)). Now from (4), (5) and the fact that b<<A it easily follows 

Ir tg r ~-1. Then, for l <.#<v<n, 
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langie(e ("), e(V))l ~< I*(')1 < < 
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and this proves (a). Finally, (b) is now an easy consequence: 

HM~'(zl)'e(~) H ~< HM~' (Zl)" (e(V) -e(~))H + HM~'(Zl) "e0') ]l 

_ ~ 3K ( K b \ "  / K b ~  ~" (K2b~  ~ [] 

In particular, if Zl is expanding up to n for all n/> 1 then the e (n) converge extremely 
fast and the limit direction has the property of being exponentially contracted by all 

positive iterates of M. We call e(n)(Zl) the nth contractive approximation at Zl. 
One may use (3) to give simple estimates for the contractive approximations e (~), 

l~u~<n, at least for points far from x=O. Let Zl=(xl ,y l )  be such that ]xl]~>5. For 

b<<5, IAl+2axl l~Kb t implies IAli>~iXll>~5. On the other hand (3) and Theorem 2.1 
give 

] tg2O(1)] ~ 4K2v~ 8K2V~ 
~2_2K2 b ~ 5---5--- (7) 

From this, one concludes easily that e O) is nearly vertical (the almost horizontal case in 
(7) is more expanding and so must correspond to fO)): 

~r 4K2v~ (8) 

By Lemma 6.1(a) the same holds for all contractive approximations e (V) 

0(v)-~  -} ~< 4K2v~ + ~< ~/b. (9) 

Now, this implies that wo=(1, 0)=ave (V) +/~vf (V), with {avI ~<2r and I/3vI t> 1 -  2~/b, and 
thus []wvi[ = Have (V) +flvf  (V) [[/> �89 [if (V) ll- Clearly this same argument proves 
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LEMMA 6.2. Let Zl=(Xl,yl) ,  tXll/>~f, be such that for some norm 1 vector Uo we 

have IIMV(Zl).Uoll>~A ~ for all l •v•n. Then 

IIM~(Zl).Voll >/�89 

for all l ~ v ~ n  and all norm 1 vector vo with I s l o p e ( v o ) l ~ .  

LEMMA 6.3. Let Zo, ~o and norm 1 vectors u, v satisfy IZo-~ol ~ a n and Ilu-vll ~ a  n, 
with a~(A/10K2) 2. Then for any l < v ~ n  such that IIMV(Zl).Ull >/A ~, we have 

(a) �89 <.[IM~(zl).ut]/]]MV(~l).Vl] <<.2 and 
(b) [angle(M ~ (Zl). u, M ~ (~l)'v)[< (vfa)2~-~ < (V ~ )n. 

Proof. Clearly 

IIM~(Zl)'U-M~(r ~< IIM~(Zl)- M~(r + IIM~(il)ll" Ilu- vii 

< ~ g~[zj - ~ j [ + g ~ a  n < 2g2va n. 

1 

Hence [[M~(zt).u-M~(;1).vI[<.�89 and now (a) and (b) follow 

easily. [] 

LEMMA 6.4. Let Zl, ~1 be such that Zl=(Xl, Yl), Ix1[ >~f, is A-expanding up to time 

n and [zv-r ~ for every l~g<~n, with V ~ a ~ ( A / I O K 2 )  4. Then 

(a) �89 ~< IIM~(zi).ull/llM~(r ~<2, 
(b) [ angle(M ~ (zl). u, M ~ (~1)" v)[~< ( g  2 vfa/A) ~+1, 

for any 1 <. v<.n and any norm 1 vectors u, v with lslope(u)l ~ ~ and tslope(v)l <-~. 

Proof. Denote uv=MV(Zl).U and vv=MV(~l).V; note that by the previous lemma 

IluvII/>Av/2 for l~v~<n. We claim that we may write v.=a~u~+e~ with 

u 2 i 1 , ~ K X - ~ [ K  vfa~ )~,+1. Io~,~-ll~<~-,-o Z.,1 k ~  ) and II~,,II~<(KV-~ (10) 

Let us prove first this claim and then show that it implies the lemma. We write v= 

C~ou-t-eo with eo a vertical vector. The assumption on the slopes of u and v implies 

I~o-11<~o and 116o11~<]. We decompose eo=5oU+~oeO)(Zl) and then Vl--~-C~lUl"[-el, 
where 

al=aO+&O and ~1 =(M(r  �9 

From (8) (and assuming b small) we get [/~o [ < �88 and [(~o[ ~ (2K2 vfb-/~f2). It follows that 

1 2K2v~  1 

Kab (Kvr~)2. [[el [[ < g a  + - ~  <~ 
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This proves (10) for v = l .  Now we proceed by induction. Let v > l  and;take #=Iv/2]; 

since l ~ # < v  we may assume that (10) holds for #. Let e(~'-~')=e(V-~')(Z~+l) and 
f(~'-~')=f(~'-#)(z~+l) be norm 1 vectors, respectively maximally contracting and maxi- 

mally expanding for MV-#(z#+t). Note that 

IIf~-;")ll/> M~'-"(z"+~)" >>" 2K"--"; 

and so 
e(~,_,,) 2(Kb)"-"K" (11) 

v - .  II ~< ,xv 

Moreover, (11) is easily seen to imply 

~ V 

Idet(u~,, e(~-~'))l = I%-f(v-~')l i> 5K~_--~--; �9 

Again we decompose ~ = 6~u~,-t-~,e (v-~) and get v~, =a~,uv +~, with 

NOW, 

[det(e~.,e(~-~'))l 5KV-"I Is. I I  .<5K/ 'K2v/a '~  ~+1 
16.1- [det(u~,,e(~_.))l ~< A~ .~ ~ . ~ - ~ )  (12) 

showing that a~ satisfies (10). On the other hand 

Idet(u~, ~)1 5g~-~llu~,l].lle~ll ( g 3 v f a ~  ~+1 
I•1 = idet(u~,e~_~,)) I < A~ < ~ , - - - ~ ]  . (13) 

Note moreover that 

IIMV-~'(~+I)-MV-"(Z,+l)ll < g v-• ~ Izj -r <~ 2 g ~ - ' a " + l .  
~+1 

It follows that 

. g3vf 5 .+1 
< (Kv ) 

(recall that u - # ) u / 2 1 > # )  and this completes the proof of the claim. Finally, this to- 

gether with the assumption on a gives 

and the lemma follows easily. [] 

We also need to show that the contractive approximations are nearly constant (uni- 

formly const.vr/;-Lipschitz) functions of the point Zl. This requires some estimates that 

we collect in the following lemma. 



A B U N D A N C E  O F  S T R A N G E  A T T R A C T O R S  25 

and 

Then 

LEMMA 6.5. Write 

e ~ = (cos 0 (v), sin 0 (v)), f(u) = (-- sin 0 (u), cos 0 (u)) 

e(V) =E~(cos0(~),sin0(~)), f (v)=F~(-s in0(~) ,cos0(~)) .  

(a) IID0(V)I], IID0(v II ~< 100(K/A)4~v~, 
(b) IIE'II <~ IIDe(V)]l ~< K2~(K/A) 4~ and the same holds for F~ and f(v ~). 

Proof. In (3) we obtained 

tg20(~ ) =  2(A~B~+C~,D~,) _ 2I~, (14) 
2 2 2 2 - -  " (A~,+C~)-(Bv+D~,) H~, 

Taking derivatives on both sides and using (d/dO)tg=l+tg 2 one gets 

D60, ) = H~,I'~-H~I~ (15) 
H +4I  

From the properties in Theorem 2.1 we have 

IH~I'~- H'vIvl <<. 32K4~V~. (16) 

On the other hand, 
2 2 2 2 2 2 E v -F~ = ((A v +C~)-  (B,+D~,), 2(A~B~,+C~D~)). (cos 20 (v), sin 20 (v)) 

= (Hv, 2I~). (cos 20 (~), sin 20 (~)). 

The two vectors on the right being colinear, by (14), this proves 

H 2 2 2 2 2 (17) 

Replacing (16) and (17) in (15) we obtain (a) for 0 (~) . Observe now that (cos 8(f ) , sin 8 (~)) 

and ( -  sin 6(~ ~) , cos 0(~ ~)) are, respectively, maximally expanding and maximally contract- 

ing for 

M_~(qo:(zl)).det Mv(Zl)= (_Dc~ - B y  
A~ ) "  

Therefore, analogously to (14), 

-2(D~B~,+C~,A~) (lS) 
tg 20(~)= (D~+C~)_(Bv+A~)2 2 2 2 

and now the bound for IIDO 0") II is obtained in precisely the same way as above for IIDO(~')[[. 
As for the proof of (b), we take derivatives on e(V)(zl)=M(zv).e(~l(zl ), ~-t Zv= 0a (Zl), 
and get by induction 

[[De(~') H ~< g2v- l  + g2v-2 +...+ gv+l + gV[[De(V)[[ <~ g 2v 

Clearly, the same argument also works for f(~). [] 
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LEMMA 6.6. There is Ko=Ko(K,A)>O such that 

I[De(V)(zt)ll<~Kox/b, forall :<~u<.n. 

Proof. In view of Lemma 6.5(a), we may restrict here to u~>5 (say). Let 

r = angle(e (u) , e(V-t)) = 0(u) _0(v-l) ,  

,~v) = angle(e~"~, e~ v-t)). 

Observe that  

tg r = Ev .t~ d~ (u) 
~ O " g V  

and so 

( : + t g  2 r162 = tg r + ( : + t g  2 ~(V)3D,~(u) 
"rb w / " r V  �9 

Recalling that Ev-Fv=det MV(Zl) we find 

(,.)' 1( , ) 
= ~-~2" d e t M v ( Z l ) ' E  (de tM) '  -2EvF~ j=l  d e t M  (zJ)'MJ-l(zl) 

From Lemma 6.5 and the properties in Theorem 2.1 it follows that  

On the other hand, by (6) and (:9), 

tg 2 ~b(v ) = (IIW -')ll/lle~ v) 11) 2-1 
: -(lles v-,) II/II f~ v) lip 

(:9) 

(20) 

(21) 

(v-l) . (v-l) 
tg a(v-1)V~ = C(zv)'c~ +D(zv)'smOv-1 

�9 ( v - - l )  ( v - - l )  " A(zv)'cosOv_ 1 +B(zv).sinOv_ 1 

On the other hand, 

where we also use [le(vV-!)ll<~Klle(U_]l)ll<~Kl[e(u)_lll<~(K2/b)He(V)ll. Now, we bound 
(v-l) ~ ,  . ( v - l ) . . ( v - 1 ) ,  r a ( v - l ) B y L e m m a  I[Dr Write ev =z~v(cos~v ,sm~v ), so that  -vv  �9 

6.5 

H DO(v) H <~ 100v~. . (23) 
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Fig. 9 

Again we take derivatives and, using Lemma 6.5, obtain 

10OOK4 .K~ (K)~V IIDe~"-l)ll ~< bV~ ' (24) 

which, together with (23) implies 

IIer ~< ~-  

Replacing (21), (22) and (25) in (20) we get 

10K 4 _ z, ( K T~" ( Kb ~ u IIDr ~< - ~ - - . K  \~-/ \ ~ - / .  (26) 

Finally the proof is completed by observing that for ~/> 5 

[K\16 
IID0(~)ll <~ IIDO(4)II+~ [IDr ~< 2 0 0 ~ - )  ~/b. [] 

5 

Observe that the statements and proofs of Lemmas 6.5 and 6.6 remain true as they 

axe, if one thinks of the derivatives as being taken with respect to all three variables 

(a, x, y). Moreover, the argument extends to the second order derivative in a laborious 

but totally straightforward way and we get the following statement to be used in Section 

i i .  

LEMMA 6.7. There is Ko=Ko(K,A)>O such that 

Ile(~)llc2(a,x,~) <~Kov~ /or all l <~v<~n. 

A~) for i~<~. The Sections 10 and 11 require a good control on the variation of vi 

following estimate is sufficient for that purpose. Observe that for i=v this is much 

better than Lemma 6.5. 
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LEMMA 6.8. There is K1--KI(K,A) such that for all 4<~i<~v 

IID(~,~,u)e~ ~) II ~< (glb) i-3" 

Pro@ We denote D=D(a,~,u) and 

= angle(e (/), e (v)) = angle( f (0, f(~)), 

r = angle( e~ "), f~ ")) = �89  r + Cf 

with Ce---angle(e~/), e~ ~)) and dpf=angie(f~ i), f~)), see Figure 9. We get 

F,- ! ( l+tg2r162162 

Trivially IFdEiI~(K2/b) ~. Moreover, by (21), 

KIt  i 

On the other hand, from (26), 

[[Dr ( . ~ )  ( _ ~ ) s  ~ 2 0 ( K ) a  K8b\i+l 
g 

Thus, for i~>4, 

[[DCel[ ~< ~ \ A9 ]. 

The same argument gives an even better estimate for De I and we conclude that 

IIDr ~< ~ \ A0 ].  

Observe now that Ile~ ~)11. II/[ ~)11 s inr  Mi(zi) and so 

[[e~,)[[t (det Mi), [[f~v)[[, 
He~L')H = "-~et-'-~ (zl)-- [[f(v)l] 

- -  - cos r De. 

As in the proof of Lemma 6.5, 

A~ \ A 5 }" 

(2z) 
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2K 7 / K 1 2 \  i (~) 

Write a~o f~)={{S~ (~){{(cos~-, sin~-) and note that 

{{DT{{~ 1{ fff,){{ 

On the other hand, e~)= {{e~ ~) H(cos(7--{-r sin(7--{-r and so 

]lDel ~) II < II {{el ~) I1' II + {{el ~) I1" IID(r +~b)ll. 

Now the lemma follows from (27), (28), (29) and Lemma 6.1. 

29 

(28) 

(29) 

[] 

7. A lgor i thms  for th e  co n s t ru c t io n  o f  critical  po ints  

7A. Genera t ion  zero 

We restrict from now on to an interval ~o of a-values close to a=2 but  with s u p ~ o < 2  

(compare Section 3). We assume b small enough so that  a+(~o)>sup ~o (respectively 

a - (7~)>sup~o)  and so Section 4 applies to ~oa,aEfto, for all H~non-like families under 

consideration. 

Let us explain how approximations Zo (n) to the critical points are obtained, using 

the contractive approximations e (n). We say that a segment 7 is a C2(b) curve if it 

is the graph of a function y--y(x) with {{){, I~){~b ~/2, 0 < t <  1 as in Theorem 2.1. The 

critical approximations Zo (n) are always constructed in C2(b) pieces of W u. First we let 
(o) ~, (o) Zo (~ be the point of W~n(x.=O) closest to P in W ~ and denote z~ --~a[Zo ). Define 

Vo=[~ ~ z~ ~ c w  ~ and, for g~>l, Vg=~(Vo)\~-1(Vo). By assuming ~o close enough 
to a=2 (and b sufficiently small) we have that,  for 

(5o = 10(2 - sup  no), (1) 

the pieces of Go and G1 inside {llxll ~<1-6o} are C2(b) curves. This follows simply from 

the Lipschitz (even smooth) dependence on the map of (compact parts of) stable and 

unstable manifolds. 

PROPOSITION 7.1. Let U be a neighbourhood of 0 E R  n and g=(gt)~ be a C k m- 

parameter family of (not necessarily invertible) maps g~: U--~R n. Suppose that OEU is 
a hyperbolic fixed point for go and let Rn=  E"@E 8 be the corresponding splitting. Then, 
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z~) Go 

-l-b6o 
z(0) 3C 

G1 

P 

0 

Fig. 10 

for h close to g and t close to 0ER m, the map ht has a unique hyperbolic fixed point near 

OEU and its local unstable manifold may be written as graph(Oh(t,. )), with 

Oh(t ,"  ): X e Be(O) C E u t-.+ Oh(t,  x )  e E s 

a C k map. Moreover this can be done in such a way that 

r (h,t,x)~ Ch(t, x) 

is C k (with bounded C k norm) in all variables on a neighbourhtmd of (g, 0ER 'n, 0eEl'). 
In particular 

h ~ r  ) e C k - l ( V , E  8) 

is a Lipschitz (even C 1) function, i f  we consider it as taking values in the space of 

C k-1 maps V - + E  s, V a neighbourhood o f O E R  "~ •  ~', endowed with the C k-1 topology, 

Finally, analogous facts hold for the local stable manifold. 

The first part of the proposition is quite standard. The main idea to prove the 

smoothness of r in all variables, is to consider F: (h,t,p)~-*(h,t,  ht(p)) and to obtain 

graph(C) as a C k local center-unstable (respectively center-stable) manifold associated 

to the fixed point (g, 0E R m, 0E U) of F, see [PT2, Appendices I, IV], [Ru, Chapters 6, 7], 

[Sh, Chapter 5] for details. 

In our setting this gives GoN{Ix I <~ 1-~o} as the graph of y(x)=y~(a ,  x) with 

Ily~llc2(,,x) <~ const, b', (2) 

and analogously for G1, see Figure 10. 

First we want to construct approximations Z(o '~) for a critical point in Go. We begin 

with z0 (~ above. Observe that z~~176 ) is eC~ up to time N - 1  as a 

consequence of part (b) of the following two-dimensional version of Lemma 2.1. 

LEMMA 7.2. Given 0<co<log2 and /~>0, there are r162 and bo-- 

bo(co,~)>0 such that for ae[2-eo ,2+eo]  and if b<bo(co,~) the following holds. Let 
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v be a unit vector with I slope(v)] ~ ~ and zl -~ (xi, Yi), 0 <~ i ~ k + 1, be a piece of orbit with 
] x i l ~  for l<.i<~k. Then we have: 

(a) For aU l <i<k,  Jslope(Dvi(z,).v)l< r and I[D :(zl)'vll/>alx, l'llDvi-l(  )'vll. 
(b)//]xo[<<.6 or [Xk+,l~ t h e n  [[D~(zx).vJ[>~e k~~ 

Proof. (a) is an immediate consequence of our defnition of H~non-like map and (b) 

is analogous to Lemma 4.6 of [BC2]. [] 

Let z(x)=(x,y(x))  parametrize the C2(b) piece of Go in Ix[~l-/f0. We take q(n)(x) 
such that (q(n)(x), 1) is colinear to e (n) (~a(Z(X))), 1 ~ n ~  N - 1 .  This is defined in some 

interval Ixl<.a. By (6.9) 
Iq(n)(x)l <. ~ (3) 

and Lemma 6.6 gives 

2KKoV~ (4) 

(dot representing derivative with respect to x). On the other hand, the tangent space to 

W ~' at ~a(z(x)) is generated by (t(x), 1), where 

t(x) = A(z(x) )+ B(z(x) )y(x) 
C(z(x) ) + 

Now 

i(x) = 

where (Theorem 2.1) 

A'(z(x)). (1, y(x))C(z(x)) + other terms 
( C(z(x) )+ D(z(x) )y(x) ) 2 

2~/'~ 
IA'(z(x)) '(l 'y(x))C(z(x))l  >1 --K--' }C(z(x))] �9 V~[1/K,K] 

and all the other terms are of order ~b 1/2+t. Therefore, for b small 

ii(x)[ 1> 1 A'(z(x))'(1,y(x)) I 1 
2 C(z(x)) >1 Kv~" (5) 

Finally, note that Theorem 2.1 (a) implies ]A(z(o~ ~ and this leads to 

[t(O)l < 2K2b t-U2. (6) 

Now we are in position to exhibit the critical approximations z (n). First, by (3)-(6), 

It((}) _.q(l~ (0)l .,~ 3 K  2 b t - 1 /2  
1 

and [i(x)-q(1)(x)l~2K-~ ~ for [x]~a .  
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Hence, there is a unique x (1) E [ -a ,  a] such that 

= (7) 

and, moreover, 

Ix(t){ < 6K3V~. (8) 

We take z(D=(x(1),y(x(D)) and (7) means that  e (1) is tangent to W u at ~o~(z(1)). Now, 

by Lemma 6.1(a), Iq(2)(x(1))-q(t)(x(l!)l <.3K(Kb) and so, using also (4)=(5), 

1 It,(x(1))-q(2)(:r,(1))l <3K2b and It(x)-~(2)(x)[/> 2Kx/b on Ixl ~<a. 

As above we conclude the existence of a unique x (2) such that 

t(x(2))-..~q(2)(X (2)) (9) 

and 

IX (2) --X(1) I • 6K3bvfb (10) 

and we take z(02):(x(~),y(x(2))). By repeated use of this procedure we find, for each 

l<n<~N-1, a unique point z~n)=(x('~),y(n)), such that e (n) is tangent to W"  at z~ n)= 
 o(z0 (")) and 

[Zo ('+1) -Zo(") I ~< 10v/b K(n+2)b ~ ~< (Kb) n. (11) 

7B.  H i g h e r  g e n e r a t i o n s  

Clearly, the same argument can be applied to any C2(b) segment of W u, as long as we 

have a convenient (i.e. with small {t-ql) initial point to use in the place of Zo (~ One way 

such a starting point can be found is by relating the C2(b) segment to another one where 

a critical approximation is already known to exist. That  is how critical approximations 

of higher generations are obtained. In order to explain this let ~/: x~-~z(x)=(x, y(x)) and 
~/:x~-*$(x)=(x,~l(x)) be two C2(b) segments of W ~ defined for IX-Xo{<~l. We denote 

zo--z(xo) and ~o=~(xo) and let ~1 be eC-expanding up to some #/>1. Moreover ~0 is 

supposed to be a #th critical approximation, i.e. t(xo)=~(#)(zo), where (~(#)(x), 1) is 

colinear to e(#)(qoa(~(x))) and (t(x), 1) generates the tangent space to W"  at ~o~(~(x)). 

We use similar notations for 7- Fix 

a o =  ~ (12) 
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and assume that 

and 

where d =  [Zo - fro I- 

d ~< ~-~ (13) 

l~>x/-d (14) 

In particular, by Lemma 4.3, every ~(z(x))  with I - ol<v  is 

expanding up to time /z. Observe that  the C2(b) segments ~/,'~ must be disjoint and 

this plays a crucial role: together with (14) it implies ly(xo)-~(xo)l~<2v/-d. Iterating 

once under D~a (and using the definition of Hdnon-like map) we get It(xo)-t(xo)l<<. 
8g4(v/-d+d/v/-b). On the other hand, Lemma 6.6 gives Iq (") (xo)-~(~')(xo)l ~< 2gKov/-bd, 
so that  

,t(xo)-q(~)(Xo),<~ 10K4 (v/-d+ --~b) �9 

Then. using the same procedure as above we find a #th critical approximation Zo(")= 

z(x("))E7 with 

v/-d l (15) Ix(")-zol .< 20K5 (v/bv/-d+d) ~< T ~< 4" 

Now, if there is expansiveness up to higher iterates, we can proceed from Z(o ") to construct 

(~+~) (~) <~(Kb) ~, u = # , # + l , . . . .  as before Zo ("+1), Zo ("+2), ..., with z o - z  o 

In particular, by this algorithm the critical approximations 

Zo e = aon{Ixl 1-6o} 

induce critical approximations of generation 1, 

@ )  e = G, n{Izl 1-6o}. 

Observe that  conditions (13) and (14) are satisfied if b is small enough. As we said in 
r (n-l) Section 5, for n ~< N - 1  the nth critical set is defined by Cn = lZo , w~ n- l )  }. 

7C. The  contract ive  fields 

We end this section with the analog of the construction in Lemma 5.8 of [BC2]. This plays 

an important role in the binding procedure in Section 9. Let ~=(x,y) be ),-expanding 

up to time m and satisfy 26<{x1<1-26o. In this region the first contractive field e (1) 

is always well defined and we have shown that it is nearly vertical, as in Figure 11. In 

particular we can integrate the e(1)-trajectory 1 "1 of ~ from (say) y = - K b  t to y=Kb t. 
Note that  W~'C{lyl<~Kbt}. For any ~EF 1 we have ]~-~{<<.hgb t and Iqoa(r/)-qoa(~)l~< 

3--935203 Acta Matheraatica 171. Imprimd le 28 oetobre 1993 
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const, bt(const, b)<.(5Kb~) 2 as consequence of Lemma 6.1(b). It follows from Lemma 

6.4(a) that  y is also expanding up to time 2 and then we conclude, as in Lemma 6.3(a), 

that  the same holds for every CEU 1--(.j~er~ [y--(r, y§ where O<a<,.(A/IOK2) 2 is fixed 

and [y-(r, y+(r] denotes the horizontal straight segment of length 2(r centered at y. Now 

we integrate F 2, the e (2) trajectory of ~, and observe that  it hits y=•  t before leaving 

U 1. In fact, given any CEF2M[y--a,y+(r] ,yEF 1, we have 

le(2)(r 2go(r 

as a consequence of Lemmas 6.1(a) and 6.6. Hence, the maximal horizontal distance 

between F 1 and F 2 in {lyl~Kb ~} is less than lOKKoab~<<a. Now we define U2= 
[Jver2 [Y - a 2 ,  Y+ a2] C U 1 and conclude that  all its points are expanding up to time 3. 

For yEF 2 this follows from Lemma 6.4(a) using 

]Y-~I ~ 5Kbt and ]~(y)-~o~(~)] ~ const, bt(const, b) ~ ~ (5Kbt) ~+1, 1 ~ v ~< 2; 

then one extends it to arbitrary CEU 2 by the same calculations as in Lemma 6.3(a). 

In this way we eventually get to show that  the e (m) trajectory F m of ~ is an almost 

vertical curve crossing {]Yl ~ Kbt } and so cutting Go, G1 inside the region (5< Ix I < 1 -  ~i0}. 

Moreover, for yEF m 

] ~ ( y ) - ~ ( ~ ) ]  < (5Kbt) ~+1 for 0 ~< v ~ m. (16) 

Applying Lemma 6.4 to zl =~, r =-~ we conclude that  

!]lD~(y).v] I <~ ]]D~(~).ul ] <~ 2]lD~(y) .v]  I (17) 2 
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langle(D~(~?) .v, D~(~).u) l  <~ (Kbt/2) ~+l (18) 

for l~<u~<m and all norm 1 vectors u,v with I s lope l<~.  In particular this holds for 

7?EF~NGi,u=(1,O) and v= norm 1 vector tangent to Gi at ~?, i=0 ,  1. 

8. T h e  i n d u c t i o n :  b i n d i n g ,  fo ld ing  a n d  t h e  s p l i t t i n g  a l g o r i t h m  

Now we start the inductive step in the proof of Theorem B. This turns out to be quite long 

due mostly to the fact that a great deal of information concerning the previous iterates is 

required and must therefore be included in the induction hypothesis. The precise content 

of this induction hypothesis is stated in this section, where we also introduce some of 

the main ideas involved in the proof to be detailed later. For the time being the value 

of aEf~o is fixed. The questions related to the variation of the parameter are treated in 

Section 11. 

As we mentioned in Section 5, it is assumed that  for each k<~n-1 a set Ck of 

( k - 1 ) s t  critical approximations of generation g<~Ok has been constructed. Here and in 

what follows O=O(b)~l/log(1/b)<<l, see (9.17) for the precise definition. The approx- 

imations of critical v a l u e s  z~k-1)~-~a(Z(ok-1))E~a(Ck), are supposed to be cO-expanding 

up to time k. Let V(~,r) denote the interval in W "  of center ~EW "  and radius r. We 

assume that  V(z(ok-1),pO0 k) is a C2(b) curve for every z~ h-1)eCh, where po---po(g,t~) is 
_(h-1) 

a small fixed constant, see (9.9). Moreover, if g=l+m>~l is the generation of z o 

then ~-~m(~(z(h-1), oOh)) must be contained in G ln{ l~  I ~<1-6o}, with 6 o = 1 0 ( 2 - s u p  f/0) 

as in (7.1) and its tangent vectors must be expanded by D ~ .  Observe that  Z(o h-l) 
is the unique element of Ch in "/(Z(o k-l), l#Oh) Indeed, ~o (h-l) be another such element. o �9 
Reversing the argument of w we associate to Z(o h-l) and ~(o h-l) uniquely determined se- 

(k-l) (k-2) (k--3) ... and r (h-D r (h-2) r (h-3) of increasingly coarser crit- quences z 0 ~ z 0 , z 0 , , , , ... 
~Ok ".> ~l+ 1 ical approximations. Let l~>l be minimum such that  uo ~vo (Co as in (7.12)). Then, 

by (7.11), the points ~o ,~0 are defined and we have z o - z  o ~L~xv} .<..o o -~.eo 
(0 ~(z) .< ok and analogously for ~t),  r In particular z o --~d -~0o �9 Now the minimality of l 

implies that  Iz~ ~) ~(0,.< l -~o  I'~a0 or else 1=1. In either case we have expansiveness up to time l 

for every ~a(~), ~e[Zo (0, ~o(0]cW ~, and now w implies f l 0 _ z ( 0  and so , (h-l)  /.(h--l) ~0 - - ~ 0  ~0 ~ b 0  " 

Now, from the fact that  ChcLJg<,.oh Gg and length(Ug,.<0 h Gg)<...K~ ~ 
we obtain the following bound for the number of critical points of generation g<~Ok 

#Ck ~< 4 (1) 
\ ~ o /  " 

Now we construct Cn and this corresponds to 
_(n-2) (n-l) 

(a) replacing every ~o EC.-I by the associated (n-1)st approximation z o ; 



36 L. MORA AND M. VIANA 

_(n-l) (b) introducing approximations z 0 of critical points of generation 8 ( n - l ) <  

g~Sn. 
Part (a) is a simple application of the reasoning in w From the inductive assump- 

( n - - l ) _  , (n--2) n - l x ~  ," (n-2) O(n- -1 )~  
tions it follows that there is a unique z 0 ~V(z 0 ,Co )LV(Zo , ~0 j such 

~("-1)=7~(z0(n-1) ) and actually that e(n-1)(z~ '~-1)) is tangent to W u at zl 

( 1 ~  n-1 
(n--l) (n--2) ~< (Kb)n-2 ~< (2) z0 -z0 

_(n--l) We denote by C~n the set of points ~0 obtained in this way. Part (b) of the definiton 

is through the algorithm of w We let C" consist of the (n-1)s t  critical approximations 

4 n-l) of generation E(8(n-1),On] such that V(4"-l),p~ n) is as above and which can 

be obtained by applying the algorithm to a point r ('~-1) EC~ with 

dist (r (n-l) , ~(Z0 (n- l )  , k0gn)) < b tg/s < b tS(n-1)/5. (3) 

The motivation for this comes from the binding construction of Section 9, see (9.18). In 

particular, by (7.15) 

/ ' 1 ~  "-1 
Iz(on--1)--c(n--1)l < btg/lO < bts(n-1)/l~ < k "~ ) ' (z~) 

see also (9.19). Then we take Cn--C:UC:. 

Remark. Conditions on how the expression in (3) varies with the parameter will be 

necessary for the proof of Lemma 11.2. These conditions axe also part of our definition 

of C: but for the sake of making the presentation easier to follow we postpone their 

statement to Section 11 ((11.7)) where this is used and can be better motivated. 

Actually, we even assume that for each l<~k<~n-1, cO-expansiveness up to time k 

has been obtained for every ~1 =~(~o)  with ~0 bound to Ck in the sense of the following 

defnition. We say that ~o is bound to Ca up to time p if there is zo--Z (k-l) ECa such that 

k-1/e /~  \i  
I~i-zjl<~hke-PJ foralli<~j<~p, withhk=2-~l ~--~)E(1,2 ). (BC1) 

If this holds for some p>~k then we say simply that ~o is bound to Ck. The only purpose 

of introducing the coefficients hk is to get (recall (2)-(4)) 

~0 bound to Ck+l (up to p) ~ ~0 bound to Ck (up to p). 

In particular, if ~0 is bound to Cn then, by induction ~1 is cO-expanding up to time (n-1) .  

Now such points must be shown to be eC-expanding at time n. This requires parameter 

exclusions and is done by adapting the argument of Section 3, as we explain in the sequel. 
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First one defines returns and binding periods for points bound to Ck. The general 

idea is the same as in dimension one. One fixes 6>0 small and returns u<~k of~0=(Xo, Y0) 

correspond to having Ix~l <6. For such a u, a critical point r is found with the properties 

(tangential position) described in Section 5. One excludes parameter values so that in 

the remaining set I~-~01~>e - ~ .  Finally the binding period associated to u is given 

by I ~ + j - ~ j l ~ e  -~j,  for l~j<<.p (13>a). However, in our present setting details require 

some more care and in fact the definition is done by induction. For each k<~n-1, returns, 

binding points and binding periods are supposed to have been defined for all zoECk and 
times <~k. If ~0 is bound to Ck, we choose zoECk as in (BC1) and let returns, binding 

points and binding periods of ~0 coincide with those of Zo. In particular these notions 

are defined for all ~0 bound to C,, and times ~<n-1. Let z0EC,~ and suppose first that n 

belongs to the binding period introduced by some return u < n  of z0. Take u maximum 

and let ~0 be the binding point for zu. Then n is a (bound) return for z0 iff (n -u )  is a 

return for r We take the same point to bind both z,~ and ~n-~ and define the binding 

period for z,~ to be [n+l,n+p] if the binding period for ~,~_~ is [ n - ~ + l , n - v + p ] .  
Suppose now that no binding period associated to an earlier return contains n. Then n 

is a (free) return for z0 iff Ix~l<6. In this case a binding point r must be found to 

use in the binding of z~ and this is done in Section 9. Moreover, we restrict to a-values 

for which holds the 

d,~(Zo) =-]z~ -~ol >1 e- '~.  (BA) 

The binding period In+l ,  n+p] is defined as follows. First, one lets po>/1 (the primary 

binding period) be given by 

[z~+j-~j[ < he -~j for l < j  <Po, Po maximum (BC2) 

where h---h(K, a)~<1 (to be precised later, see (10.21)) is introduced for purely technical 

reasons. We show in Section 10 that 

P0 ~ 5 log d,~ ( zo ) -1 <~ 5an. (5) 

On the other hand, trivially, z~ remains bound to r up to P0. Therefore, we may speak 

of returns and binding periods during this interval of time. Now p~> 1 is defined by: 

�9 (p+l)  is a free iterate for zn, i.e. it is not contained in any binding period of zn; 

�9 l~p~po  is maximum with this property. 

This assures that at the end of the binding period introduced by the free return n the 

point z0 is again in a free iterate. We also need to know that P~Po. To show this, observe 

that if p<p0 then there must be returns vl--p<v2<...<vs<po of za, such that each vi+l 

is contained in the binding period [~,~ + 1, ~,~ +p~], 1 ~< i ~< s -  1, and [~8 + 1, vs +ps] contains 
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Z~ 

Fig. 12 

W~ 

P0. It is part of our induction assumption that (5) holds for all returns v~k  of points in 

Ck, k<~n (&,(.) denoting always the distance to the corresponding binding point). Then 

pl~5ap0 (by construction Pl is the length of the binding period associated to a free 

return ~P0 of some element of some 0k) and, analogously Pi+l ~ 5c~pi for all 1 ~ i ~ s -1 .  

It follows 
$ 

P0 - P  < Z(5c~)i'P0 < 10ap0. (6) 
1 

This also has the following useful consequence: 

[ Z n T p + l  - -  ~p+l[ ~ [ Z n + p o + l  - -  ~n+po+l ]" K -  t0~po >/he-2~(p+l) (7) 

if c~ is sufficiently small with respect to ]3. 

As in dimension one, it is crucial to show that the orbit of z0 (and of every ~0 bound 

to it) has an expanding behaviour in the interval of time 

In, n+p] = return U binding period 

(recall Lemma 3.2). However, the proof (and even the precise statement) of this, to be 

given in Section 10, as well as the binding algorithm of Section 9, require a more detailed 

description of the whole construction at stages k<~n-1. Before we can complete the 

formal statement of our induction hypothesis, containing this description, we must in- 

troduce some notations and discuss another typically higher-dimensional difficulty which 

was already outlined in Section 5: the creation of folds in W '~. 

Let us begin by making some geometric considerations. Let #4  k be a return for 

zoEOk and r be the corresponding binding point. A typical situation is described in 

Figure 12: w~-i is nearly horizontal. 

At the next iterate a fold of W ~ is created and w~ may have a very large slope. 

After that, the orbit z~+j spends some time outside (-6, ~i) and during this period one 

expects to see expansion in the horizontal, direction (Lemma 7.2) and strong contraction 
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Zu 

(1 

Fig. 13 

in the vertical direction (Lemma 6.1). Hence the vectors wu+ j should be getting more 

and more horizontal, so that  the slope of w~+l, say, is again of order ~/b. The interval of 

time [#+1, #+/]  will be called the folding period associated to the return #. 

This geometric description is quantified by a splitting procedure as introduced in 

Section 5. At time #+1  we decompose w~=wu+a~, where w~,=(u~,,O) is horizontal 

and a ,  has the direction of a convenient contractive approximation. Observe that  

zu+l is close to the point r which is already known to be expanding. Now we define 

ca~+j---D~'~(z~+l).~ and a~+j=D~oJ(z~+l).a~,. As long as we stay outside (-~i,~i) the 

vectors w,+j remain nearly horizontal (Lemma 7.2). On the other hand the au+j de- 

crease exponentially and so for l sufficiently large we may add a~,+t back to the nearly 

horizontal component (making w~+l=wu+~), with no significant effect on its norm or 

direction. Notice that  a~ is assumed only to be in a contractive approximation (and not 

in the real contractive direction, which at this stage is not yet defined) and so we have 

control (contraction) on its iterates during only a finite interval of time. That  is why 

we must add this component back and restore w~+t at the end of the folding period. 

Of course, it may happen that  a new return u occurs still during the folding period 

[#+1,#+/ ] .  This corresponds to a return of the binding point (0 and creates a higher 

order fold. In such a situation again we force wu to be horizontal and a new correction 

term (Dcp,~(z~,).w~,_l-wv) is added to a~. Actually, we may have a whole hierarchy of 

folds inside folds, as in Figure 13, and this corresponds to having several terms in the 

a-component, see below. 

The exact definition of the folding period is somewhat arbitrary and actually our 

choice differs (essentially by a multiplicative factor) from that  in [BC2]. Again, some 

combinatorial care must be taken since we need the following two properties to hold for 

any folding period F= [#+ 1, #+/]:  

(a) any folding period starting inside F must also end inside F; 

(b) # + l  is not a return; moreover zu+l+l satisfies 2~f< ]x~,+t+ll < 1-26o. 
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Recall that in the region 5<lxI<l-5o the contractive vector fields are nearly vertical 

and Go, G1 are C2(b), at least if b<<(2-a), see Section 7. Hence the construction of w 

applies there and this plays an important role in the binding construction of Section 9. 

We give the definition for free returns # ~ k  of critical points ZoEgk and this is 

extended for general returns of points ~0 bound to Ck in precisely the same way as for 

the binding period. First one considers the primary folding period [#+1, #+/0] defined 

by 
101ogK l - 1  �9 

lo = ~ o g ~  ogdu(zo) +z (8) 

where 0<~i<~4 is chosen in such a way that property (b) holds at time #+10+l.  Observe 

that lo is much smaller than the binding period: for ~f>0 sufficiently small (7) gives 

log dt~ (Zo) -1 
P/> 2(log g+21~)" (9) 

Now 1 is defined by: 

�9 for any return vE [#+1, #+l] the (primary) folding period of u ends at time ~<#+/; 

�9 l/~ l0 is minimum with that property. 

The fact that l exists and l,,~lo is obtained by a geometric-series argument as for the 

binding period. We get in general 

10 log K 20 log K log d, (~0) -1 +4. 
log(l/b) log d~,(~o) -1 < l ~< log(1/b--------~ (10) 

We remark the following direct consequence of (10), which will be used several times in 

the sequel. If e=e (t) is the lth contractive approximation then 

IID~ "e(~l)l[ • 4K(K2b) l <~ 4K(V~)ld~(~0) 2. (11) 

Now we give the precise definition of the splitting algorithm described above. For 

O<~#<~k<~n-1 and ~o bound to Ck we write W~u=W/~(~l)=0J/zq-6r/~, where w~ and a~, are 

constructed as follows. 

(i) wo=wo=(1,O) and (to=0. 

(ii) Let &~=D~a(~,).w~-i and 5~,=D~a(~#)'a~,-1. 
(iii) If/z is a return for ~o, split &,=a,-e(~,+l)+f~,.(1,0) where e=(q, 1)=(q (t), 1) 

has the direction of the lth contractive approximation, l = length of the folding period, 

and then take 

w~, = &~-a~ , . e (~+l )=  j3~,-(1, 0), a~ = ~,  +c~, .e(~+l) .  
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(iv) If # is the end of a folding period, ~=#1+ /1 ,  let 

D h e 

more generally, if s/> 1 folding periods [#1, #1 +/1], ..., [/~s, ~s + ls] end at time #, take 

8 $ 

w, = &, +~-~ a , , D ~  (~m+l)" e(~m+i), a,  = (r , -  Z am D~o~ (~m+i)'e(~m+i). 
1 1 

(v) If neither (iii) nor (iv) apply then take simply w , = ~ ,  and a~,=#~. Recall also 

that  (iii) and (iv) never apply simultaneously. 

The algorithm is designed in such a way that the w-component corresponds essen- 

tially to the horizontal (1-dimensional) part of w~: 

LEMMA 8.1. For every O<. u<. k<~ n - 1  and ~o bound to Ck 

[ slope(w~,(r ~< b t. 

The proof of this requires more inductive information and is postponed to the end of 

the section. On the other hand, the a-component in the splitting contains the geometric 

complication coming from the creation of the folds. It has the form 

i 

each term in the sum corresponding to a fold created in a previous return and still 

affecting ~0 and the w-vector at time #. An iterate ~u is said to be fold-free for ~0 if 

au_ l (~ i )=0 ,  i.e. W~_l(~l)=Wu_i(~t). Fold-free iterates are quite dense in the set of 

times: 

LEMMA 8.2. Given #>>.1 there are fold-free iterates ] ~ 1 ~ . ] ~ . ~ 2  with 

20a log K 
# 2 - ~ 1  ~< log(l/b) ~+4 .  

Moreover, if u > # is a free iterate then this may be replaced by 

100 log 2 K 

Proof. The first part, is a direct consequence of (10) and the (BA). For the second 

one suppose that  ~ belongs to a folding period [k+l ,  k+l]. The corresponding binding 

period must satisfy u-k>p>~logdk(~o)-l/31ogK, by (9). It follows from (10) that 
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l~< (60 log 2 K/log(l/b))(~, - k) +4  ~< (100 log 2 K/log( l /b))( ,  - p )  +4  where we also use the 

fact l << p. [] 

Now we conclude the statement of our induction. For k<~n-1 we assume that:  

�9 Whenever r,=k is a free return for ZoECk a binding critical point r is defined 

for zn. Parameter  values are chosen so that  

dv(zo) =- Iz~,-r >1 e -'~'. (BA) 

For every ~o bound to z0 

(12a) 

and 
IZ~(~l)l I1~(~,)11 

~d~(~0) ~< II,,,~-~(~)II II~-~(~)II ~< ~d~(~0). (125) 

Moreover, (12a), (12b) hold for every return v ~ k  of any point ~0 bound to Ck, at least 

if we take there snghtly worse factors 5 g v ~  (for (12a)) and a and 3a (for (125)). 

�9 If p ~< k is a return for Zo ECk then its binding period satisfies p<~ 5av < v. Moreover, 

there axe T1, T2 > 1 depending only on K, a and/3, such that  given any ~o bound t o  Zo 

1 II~+~(~i)II ~T~ for O<.j<~p-1. (13) 

and, denoting cl = (c+co)/2,  

(14) II~v§ ~ T2eClCp+l)/3 ~ 1 (Co is the binding point of ~ ) .  

�9 Parameter  values are excluded so that  in the remaining set holds the 

Fk(a; Zo) >/(1 - e ) k  (FA) 

with Fk denoting the total number of free iterates in the interval of time [1, k]. 

The way the (BA) and the (FA) are obtained requires some explanation which will 

be given in Sections 11 and 12, where we also show that  a positive Lebesgue measure set 

of a-values remains after all the exclusions. 

Here we observe that  the conditions above assure the eC-expansiveness up to time k 

for all ~l=~a(~o), ~0 bound to C~, k<~n-1. We write 

1 
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Let l<~<v2<. . .<us~<k be the free returns of ~0. For each v--vi, P=Pi, 

`,+P I1~(~1)11 [J~`,+p(51)l] d`,(50)/> 1. 
I I  I1~,-1(~1)11 = I1~`,(~)11 

On the other hand, denoting #=Vi+l, q = # - v - p - 1 ,  

. -1  I1~(~1)11 I1~.-1(~1)11 I1~.-~(~1)11 >~e~oq 
1-[ I1~,-~(~1)11 = I1~`,+~(~)11 I1~`,+~(~1)11 ` ,+p+l  

by Lemma 7.2 (recall also the definiton of binding period). It follows, as in (3.4), 

Now we use 

LEMMA 8.3. For any l <~#<~ k<~ n - 1  and ~o bound to Ck 

g-%-~"llw.(~l)l[ <<. 11'~.(6)11 ~< gSe(~+'~)~'lb~ 

Proof. Analogous to Lemma 7.7 of [BC2]. [] 

This gives I[wk(~l)][ >~K-5e (cl-~)k ~e r (because we may restrict to k>.N) and com- 

pletes the argument. For the proof of Lemma 8.3 one needs the following result which 

will also be used in Section 9. 

LEMMA 8.4. For any l~<#<v~<k~<n-1 and ~o bound to Ck 

[Jw,.(~l)[I/> rain.<./.<,, [J~o~-x(~l)[[ ] [Iw"(~x)[[ ~> min.<~.<`,(ad~(~o))[[~o.(~l)[[ 

(~ith the eon~ention: dy(~o)=lxjl if  G=(x;,y~) i~ not a ~tu~n iterate). 

Proof. Analogous to Lemma 7.6 of [BC2]. [] 

We close this section with the 

Proof of Lemma 8.1. We prove by induction on v that 

[ slope(w`,((1))[ ~< const. ~-~ (v~) i ~< b t (15) 

Observe that this is trivial for ~,=0 and for ~, a return. Suppose then that i//>1 is not 

a return for (0- Assume moreover that (15) has been proved for all iterates #~<v-1 
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of every point bound to Ck,v<~k<.n-1. If no folding period ends at time v we write 

W~_l(~l)--u(1,p), with IPI<~ bt and then 

I slope(w~(~))[ = I slope(D~'w~-~(~l))I  < ~ v ~  

implying (15). Let now u coincide with the end of a folding period #+ l .  We take such a 

# minimum and then property (a) in the definition implies 

0)v (~1) =/~t (~1)03l (~/~+ 1 ) "~-O~/~ ( ~ 1 ) D ~ .  e(~z+l ). 

Now, by induction I slope(~(~,+~ ))1 ~<const. E~ (v~)*. On the other hand the induction 

hypotheses give 

5Kx/b "8K(K2b) l 

and so I slope(w~(~l))-slope(wl(~u+l))l <const .  (y/-~)/+l. 

(16) 

[] 

9. Binding and loss of  growth on returns 

Let n be a free return for a point zoEC,~. We describe here how a critical point r 

is found to use in the binding of z, .  As we observed before, in order that  we have 

Ilwn(zl)ll~lz,~-r it is crucial that  (zn,wn-l(Zl)) be in tangential position 

to a C2(b) segment ~ containing r in the sense that  

(zn,7) << Izn-r and langle(w,~_l(Zl),t(%~?))l << Iz , -~ol  

where t(% ~?) denotes the tangent direction to ~/at 7. 

The basic ingredient of the binding construction is Lemma 9.1 below. This is es- 

sentially Lemma 6.6 of [BC2] but, since our definitions differ from those in [BC2], it is 

stated here in a slightly different form whose proof we present in order to explicit the 

conditions on ~0 in our setting. Recall that  we define d~(~o)=lx~l when ~=(x~,y~)  is 

a non-return iterate. 

LEMMA 9.1. Fix )~o su~ciently small ()~0=(~f/2) 2, say). If  n is a free return 

for ZoECn, there are l=ml<m2<. . .<ms<.n  with mi+l<~3mi for all l ~ i < . s - 1  and 

n<~3ms, such that each n - m s  is a favorable position for Zo, meaning that 

(a) 2~i<lxn-m~] < 1-25o; 

(b) n - m s  is a fold-free iterate; 
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(c) dj(zn-m,)>/AJo +1 for all O<.j<~mi-1. 

Proof. Let k be the last return before n and #=k+l+l ,  where I is the length of 

the folding period of k. (Taking ~f small and no close to 2 we may assume (n-k)/>10, 

say.) Since [p, n) contains no returns or folding times one finds easily l=ml  <m2 <. . .< 

m ~ - l < m r = n - #  favorable positions as in the statement. Observe also that by Lemma 

8.2, #-k<~const./log(1/b)(n-k)+4<~�89 Now we suppose that mi~ �89  has 
been defined and obtain mi+l as follows. Let #i>/n-3mi be a fold-free iterate with 

#i-(n-3mi)<~const./log(1/b)mi+4<.lmi. We let I=[# i ,n )  and observe that dj(zo)>~ 
(Ke/3) -[II for all jEI .  In fact, i f j  is a return 

dj(zo) >/(Kef~) j -n >1 (Ke~) -III 

(because n does not belong to the binding period of j )  and otherwise 

dj(z0)/> �89 �88 t> �88 ~-~/> �88 - ~ '  i> (ge~) -~1. 

This reduces the construction of mi+l (and so the proof of the lemma) to proving 

LEMMA 9.2. Let I=[p, q) be a time interval such that iterate p is fold-free and it is 
in the region 2~<Ix1<1-250 and moreover 

infl dj(zo) >1 ( ge~) -Ill. (1) 

Then there is uE[p, 1 ~(p+q) ) a fold-free iterate in the region 2~f<lx I <1-2~f0 such that 

dv+j(Zo) >1 AJo +1 for all u <~ y+j  < q. (2) 

Proof of Lemma 9.2. This is trivial for small intervals: if 

log A o 1 
III < logg+f~ '  (3) 

we take u=p and (2) is an immediate consequence of (1). The proof proceeds by induc- 

tion on the length of the interval. Let m>~l be such that 4m-3<~lI]<.4m and set J= 
[p,p+2m). Suppose first that 

i n f j  dj(zo) >1 ( Ke f l )  - [ J I  . (4) 

By induction there is a good iterate uE[p,p+m) with d~+j(zo)>/AJo +1 for all u~<u+j< 

p+2m. Also, forp+2m<~u+j<qwe have d~+j(zo)>~(Ke~) -III >/(Ke~) -4m >~(Ke~)-4J >~ 

Ag +1, as long as ~i>0 is small enough to imply, say 

A0 ~< (KeZ) -1~ (5) 
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This proves the lemma for I when (4) holds. Now we consider the opposite case. Let 

the infimum be attained at PEJ .  Clearly, we may restrict to the case where I does not 

satisfy (3). Then 

(geZ) -IJI <. (Ke~) -Ixl/2 < V/-~o < . �89 (6) 

implying that P is a return. Its binding period satisfies 31J]/4>~3m/2 (because (4) does 

not hold). Let p = ~ + l + l  where [ is the length of folding period of ~ and observe 

that, due to (1), p'P<~const./log(1/b)m+4<m/2. We take L=[fi,  p + m ) .  Then LC 

[P+I,P+i~] and so dj(zo)>~e-a(J-~ for all j e L  (at least if a > 0  is small 

enough). Again by induction, there is a good ue[#, # + m / 2 )  with 

d~+j(zo) >1 AJo +1 for v <~ v+j  < p + m  (7) 

and now one checks as before that  (7) holds for all v<~u+j<q. [] 

Properties (b) and (c) in the lemma have the important consequence that Zn-m~ 
is expanding up to time mi. To show this we use Lemma 8.4 as follows. Given any 

l<.j<~mi we take, as in Lemma 8.2, a fold-free iterate k>~j with 

k - j  <. 2 0 I ~ 1 7 6  A~ j + 4 .  
log(l/b) 

Then IlWn_m,+j_l(Zl)H)/KJ-knwn_m,+k_l(Zl)H-~KJ-kllogn_m,+k_l(Zl) H and so, by 

Lemma 8.4, ]lWn_m~+j_l(Zl)]]>~ �89 if b is small enough. Since 

wn-m,-l(Zl)--w~-m,-l(z l)  is nearly horizontal (Lemma 8.1) we get from Lemma 6.2 

(;o; (8) 

This means that  we are in a position to apply the procedure of w with ~=Zn-m~, 
m=mi  and A= (A0/K) 5, to obtain a segment F m~ of the e(m~)-orbit of zn- ,~  cutting G1, 

see Figure 14. We consider the point ~?[0 ~] = F  m~ NG1 and the segment ~/~i] =~/(~][oi], ~ ) C  
G1, where 

00=\ 10K' ] (9) 

and denote also r][i]=~om'(r][0/] ) and ~/[i]--~om'(~/~i]). Observe that  %[i] is Ca(b): using the 

fact that  ~][i] is close to Ix} =0  one concludes in a fairly easy way that if ~]o [i] is near Ix]--2/f 

or ]x]--1-2~o then ms must be large, so that  ~/[0 i] is always contained in ~f<]x l<l -~o .  

LEMMA 9.3. "y[i] is a Ca(b) curve for all l ~i<~ s. 

For the proof of this we need 
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Go 

G1 

Fm~ 

Z~ 

P 

Fig. 14 

LEMMA 9.4. If v<~ n is a free iterate for zo then 

K-Se /l~ 

for every ~o bound to Zo and l <~ k ~ v -1 .  

Proof. Analogous to Lemma 7.13 of [BC2]. [] 

Proof of Lemma 9.3. Fix l<~i<~s. We write simply m=mi,z}-_~}[i],~/=~[i], etc. Since 

Wn--m--:(Z:)=Wn--m--I(Zl) and t(~/o; ~}o) are both nearly horizontal, we have by (7.18) 

[angle(wn-l(z:), t(7; 77))1 ~< (Kbt/2) m+l ~ const, b t. (1o) 

On the other hand W n _  1 (Z1)=0Jn--1 (Zl) is also nearly horizontal, giving 

I slope(t(~/; 7}))1 ~< const, b t << b t/2. 

This reduces the proof of the lemma to showing that  the curvature of ~/ satisfies 

k(~/)<<b t/2. We denote q,j--to~(~/o), where 70 is parametrized by arc-length with "yo(0)-- 

r/o. Clearly, 

~j+:=D~a.~j and ;~j+l-~D~a.;~j+D2~a.(~j,~j). 

Using k(~fj)--tdet(~fj,~j)i/tl~/jlt 3 we get the relation k('yj+:)<~K~(IdetD~alk('/j)+Lj) 
where 

f II:,ll 7 Kj= ~ ]  and Lj=ldet(D~oa.tj,D2~aa.(tj,tj))l, tj---- ii~/jii. 

It follows that  

m--i 

k(~/--~/m) <~ (Kb)mKm-:'... "Kok(~/o)+ E (Kb)m-l-JKm-: .....KjLj. 
0 

(ii) 
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I 
I 
I ,' ~/Ikl 
I �9 
I 
I 

I Z 
4, n 

,/[k+l], 
I 
I 

" 1 ~o,o ~/[o1 

_ .y[k+l] 

Go 

Fig. 15 

The properties in Theorem 2.1 give 

Lj ~ 8K 2V~ for all j. (12) 

By Lemma 6.3 and (7.17) 

and so, using also Lemma 9.4, 

Hence, 

Ilwn-,~+j-~(z~)ll for every l<~j<~rn 
II~,,-m-l(z~)ll 

II'yjll II~,,,-m+;-l(z~)ll e-Cm-~)/~o. 
IIr ~ I I~n-~(zl) l l  < const. 

= ( 7 \ ~ ]  ~< const, e -3('~-j)/1~ 

Replacing in (11) we obtain k(~/)~<const.v~ if b is small enough. 

(13) 

[] 

Observe moreover that 

II,y[~]ll/> 1 for all 1 ~< i ~< s. (14) 

This follows from II~[~]H~llwn_l(zl)ll/llwn_m,_l(zx)ll, invoking either Lemma 9.4 (if mi 
is large) or Lemma 7.1 (otherwise). In particular, ~/[i] D~/(~/[i], p~,)DT(~/[i], 5Q~), where 

g~=l+mi. Clearly, ~/[i] cGg~ and gi+l <.3gi and this remains true for i=O if we denote 
~O=Gln{x=xn} , ~Ioj=~(~fol, �89 

We are now in position to exihibit the binding point of zn. Observe that, up to taking 

/5 and b small enough, we may assume that ~/(~?[0], ~ )  contains the critical approximations 

W(o i-1) E G1A Ci constructed in w 

Definition. Let k~>0 be maximum such that ~(~/[k], pog~), respectively ~(~[0], ~ )  if 

k--0, contains some element r of C~, see Figure 15. Then the binding point for zn is 

r162 



ABUNDANCE OF STRANGE ATTRACTORS 49 

We restrict from now on to values of the parameter for which this construction yields 

d~(zo) -Iz.-Col/> e -~".  (BA) 

This means that parameter exclusions are made and these are analysed in Section 11 and 

12. For the time being we assume that (BA) holds and prove that ( zn ,wn- l (Z l ) )  is in 

tangential position to 7 [k]. 

LEMMA 9.5. Let ~l=~ [k] and'y=~/[k]. Then 

Izn-~ll <~ b3t/5dn(zo) and langle(W~_l(Zl),t(~/;~/))l ~< b3t/Sdn(zo). 

As  a consequence, there is a C2(b) curve ~/ containing Co and zn, tangent to "y at ~o and 

tO 0Jn_l(Zl) at z~. 

Pro@ Observe that  by construction, 

lu -z~ l  ~< b 3t/~.b ~g~/5 (15) 

and 

langle (~-1  (Zl), t(7, n))l ~< b a~/5b ~/5.  (16) 

In fact, (15) is a direct consequence of (7.16) I~-z~l ~< (5Kbt) g~ and the deduction of (16) 

is only slightly more complicated: for gk > 1 it follows from (7.18) 

[ang le (w~-  1 (Zl) ,  $(7, T]))I ~ ( Kbt/2)g~ ; 

for g k = l  we use ((7.2) and Lemma 6.3) 

[angle(Wn_l (Zl), t(G1, y[0] ))[ ~< [ slope(wn-1 (Zl))[+l slope(t(G1,7/[~ ))1 ~< const, b t. 

Let us consider first the case gk <~ 0n/3. We claim that 

_5gk 
dn(zo) >1 Vo , (c) 

which, in view of (15) and (16), immediately implies the lemma. We prove (C) by 

contradiction: assuming that it does not hold we construct (starting with C0) an i n -  1)st 

critical approximation ~0 Eq,(~/[ k+l], Qg~+I) which we show to belong to Cn; since gk+l <~On 

this contradicts the maximality of k. The details of this argument require the precise 

definition of 0 which we now state: 

10R log(i /a0)  
0 =  tlog(1/b) ' R > I  to be given in (10.11). (17) 

4-935203 Acta Mathematica 171. lmprim6 le 28 oetobre 1993 
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%[~+1] 

~mk+l 

d?+~ 1 c~ ,ro~,,] 

Frnk 

' '[t~k]k+ 1 - m'k ~[k-.I.-1] ~;k.+ 1] 

~Ifl ~ G ~  

F i g .  16 

Also, before describing these details, let us observe that in the case gk >>.9n/3 the lemma 

is a simple consequence of the (BA) (and (15)-(17)): 

ggk log b <. nO log b <<. -an .  

Hence, the lemma will be proved once we have completed the 

Proof of the claim (C). Let l~<#~<n-1 be such that O#<gk+l~<0(/z+l) and r 

r (~-1) F(~-2) , r (~) be the sequence of critical approximations obtained from r by 
reversing the algorithm of w Notice that for every p<<.i<~n-1 

Ir (~)-~[k] I ~< I~;o(~)-r + Iz.-~[k]l 
<~ ( Kb)i + ~o~ gk +btg~/s ~- Z~Oo~ sg.~ 

and ~(i)ECi+I (because ~o E Cn and gk <. 8#<~9i). We apply the algorithm of w to 50 = 

r to find a #th critical approximation ~o (~) E~=~/07[k+i], Q~+~). The crucial estimate 
here is 

d = dist(5o, ~) ~< (5Kbt) g~ , (18) 

which is a consequence of the construction of w see Figure 16. Together with the 
definition of 0 this implies (7.13): 

K2(5Kbt) gk <. btg~+l/5 <~ b~e~/5 < a~ ~. 

Moreover, we may take/=go ~ and then (7.14) holds (for b small enough). Hence, there 

is indeed a critical approximation ~o (~) in 3,[k+1]. It is not difficult to check that ~0 (~) 

belongs to C~+1: notice in particular that f(z)'-P' and, by (7.15), '~0 "- L'/~+ 1 

~o (") ~(") ~+�88 "k+'/l~ (19) - - ~ o  
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Then ~/[k+l] contains also an element ~(n-1) of Cn (obtained by increasing the precision 

of ~(~)) and actually, by (7.11), (15) and (19), 

[C0(n--1) __~[kq-1][ < 2(Kb),_t_btg~+l/lO +~hgk + 2btgh/5 < ~+1, 

contradicting the choice of k. [] 

Now we axe in position to formalize the heuristics of Section 5 to estimate the loss 

on the norm of the w-vectors on returns. 

LEMMA 9.6. Let n be a free return for zoECn. Then 

3a [~n(Zl)l 5a 
la~(zl)l < 4Kv/-b[[w~_l(zx)ll and -~d~(zo) ~ Hw,,_l(zl)ll <. -~d~(zo). 

Proof. Let s~-*z(s)=(s+zo, y(s)) paxametrize the C2(b) curve ~ of Lemma 9.5, with 
(0=z(0). We split the tangent vector to ~a(~), t(s)=at(s)e(~oa(z(s)))+j3,(s)(1,O), with 
e=e(t)=(q, 1) colinear to t h e / t h  contractive direction. This gives 

at=C(z)+D(z)y and f~t=A(z)+B(z)y-atq. (20) 

Since ~ is C2(b) 

lath I&tl < 2 g v ~  (21) 

and so, using also Lemma 6.6, I s  (1, Y)I ~<2K~.  From A'(z)~(-2a, 0) (Theorem 

2.1) we get I~t§ I <4Kv~,  leading to 

(2a-4gv~)  Isl ~< IZds)-ZdO)l ~< (2a+4gv~)lsl. (22) 

Since ~0 is an (n -1)s t  approximation, Lemma 6.1(a) gives 

langle(t(0), e (l) (;1))1 <~ 4g(gb) z, 

which implies (recall (S.11)) 

II~t(O)l <. 5g(gb)t]lt(O)ll <~ log(gb)  l <. v~dn(zo). (23) 

Let now zn=z(a). Then, ~ being C2(b), 

I~1 dn ( zo ) < (1-F bt/U) lal (24) 

and 
Wn-l(Zl) --At(a), with (1 -b  t/2) < IAI < 1. (25) 

IIw~-i(z~)ll 
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Denoting ~,,=o,,.</11<,.,,,-~11 and it follows 

I~n(zl)l <<. tat(cr)l <~ 2Kv~,  

I~n(z~)l <~ [/3t(a)l <~ (2a+5Kv~ )dn(zo) and 

1-b  t/2 
I~n(zO I >1 (1-bt/2)lflt(a)l >1 ~ (2a-5gv/-[~ )d,~(zo). [] 

We also need to show that  the lemma holds for any point r bound to z0. This is 

easier to do using Lemma 10.2, so we postpone it to Section 10 (Corollary 10.4). 

Finally, Lemma 9.6 is also (essentially) true when n is a bound return. 

LEMMA 9.7. Let n be a bound return for zo~Cn. Then 

[a~(~l)] ~< 5gv/~ and adn(~l) ~< []~n(~l)[ • 3ada(~l) 

for every ~o bound to zo up to time n. 

Proof. Take k~>l minimum such that  v = n - k  is a return for ~o and its binding 

period contains n. Then k is a free return for the binding point ~0 of ~ and ~ is bound 

to ~0 up to time k. By induction 

I~k(5~+l)l<-.4Kv~ and ~dk(r 

If there are no folding periods [#+1 ,#+/ ]  with #<~v<#+l<n then 

~n--1 (~1) -~" ~v(~l)~k--1 (~v+l),  

implying 

~ n ( ~ l ) = ~ k ( ~ + l )  and ~n(~l)---~k(~+l). 

Suppose now that  there are such folding periods, corresponding to returns #1 <#2 < .-. < 

#s=v. Let first #--#1. Then 

Wn-l (~ l )  - ~ l ~ t t ( ~ l ) W n - I ~ - l ( ~ p + l ) - b o L ~ t ( ~ l ) D ~ P n a - " - l e ( ~ + l )  �9 

By induction 

Ila~,(r - t ' - I  .e(r ~< 5Kx/b Ilwt,_l(~l)l1.8K(K2b)'K "-"-z-a 

~< const.v~ll~,,_~(~l)lld,,(r ~(v~)'K k, 

while 

]]~,u (~1)02n--~-- 1 (~+1)]]  ~ adtt (~o)][o2tt - 1 (~1)]] eel (n - i t -  1). 
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It follows that [angle(Wn-l(~l),wn-#-l(~,§ ~Kk(vfb) I. Similar estimates 

for the contribution of each [#i+l ,# i+/ i ]  are obtained in precisely the same way: just 

replace above ~0 and n - #  by (~,~-1 and n - # i ,  respectively. Summing all this, 

[angle(w=_1 (~1), 02k--1 ( ~ g + l ) ) l  <'~ const.v/bg k (~/b)t, 

where now l=l, is the length of the folding period associated to v. Note that d,~(~o)~ 

dk (~o)>1 e -~k. On the other hand, k ~ 5 log dt,(~0) -1 (inductive assumption on the length 

of binding periods, recall Section 8) and the definition of / imply  K k (v/b)t ~< e_~k" There- 

fore, [angle(o~n_l(~X),OJk_l(~u+x))i<~const.v~dn(~o). baron this one gets, easily, 

I ~ ( ~ ) - ~ k ( ~ + l ) l  <~ const, bd~(~0) <~ K v ~  

and 

I~,~(~l)-~k(,'~+~)l < r bdn(~o) <~ �89 
[] 

10. The  binding period 

Let again n be a return for zoEC~. In this section we show that In+I,  n+p] satisfies the 

inductive properties of binding periods, recall Section 8. The global strategy is that of 

w167 7.3 in [BC2] but we manage to use 
v 

1 

(instead of A~=maxx~<,~<~ It/a-(s[, see remark after Lemma 7.8 in [BC2]) to express 

the estimates corresponding to time v in terms of iterates previous to v. This permits 

to obtain the property of bounded distorsion on binding periods (Corollary 10.3) as 

an immediate consequence and allows us to give a more direct and, we hope, more 

transparent form to the argument. Moreover, segments of the proof in [BC2] (e.g. the 

free iteration estimates, Lemma 7.9) had to be replaced by more general arguments, 

independent of the precise form of the family. 

First we state an elementary result to be used in the sequel. 

LEMMA 10.1. Let ~>0 and vl,v2,el,e2 be such that Ilvi+eill~>ellvill for i=l ,2 .  
Then 

(a) II vl -I-g'l II/IIv2 +~2 II ~< (llvl II/Ilv2 I1)(1 +x/ , ' );  
(b) tangle(v1 -'I'-E1, V2 "I'-E2)I ~ langle(vl, v2)l+2x/L 

where 
X= an-leZv v "  Ilelll Ilzl-e211 I llv~ll 116211 ~ 1, 2)',,-wT-~ -,- ,,.-r:-~-i 

Ilvxll IIv211 IlVlll IIVlll 
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LEMMA 10.2. Let Y0,~0 be bound up to time q<.k to a same element of Cs,s~n. 

Then, for all O~v~q, 

IIw~(,i)ll ~< exp 8K dk-~0) and langle(w~(~h),w~(r ~< 2,~/bO~. 
IIw ,(r 1 

Proof. We structure the argument in a way quite similar to that of the proof of 
Lemma 8.1. The lemma is contained in the following claims which are proved by induction 
on  V: 

,[w~0?l),, ( 4 K L ( C f ~ ) i . ~  Ok ) ( ~ Ok ) 
11~(6)11 ~<exp dk-~o) ~<exp 8K dk-~o) (la) 

0 

V 

langle(w~ if/l), w~ (r , i 
1 

Note that this holds, trivially, when v=0. Let v ~ l  and assume that (la), (lb) have 
been obtained for every iterate #~min{k, v - l }  of each pair of points bound to a same 
element of Ck, k~n. Suppose first that v is a return. We write, as in the proof of Lemma 
9.6, 

&~(~h) -- ~(~h)(q,  1)(~+1)+fl~( .1)-(1,  0) 

and analogously for r Then we have ~,=Cu+Dv and f l ,~=Au+Bv-~q,  where 
 n-l= II  -lll(u, v). It fonows that 

]~v (~ l )  -- ~v (~ l ) ]  ~<~ 2Kv/b(]~]u - ~ v l +  2r  O r - l )  < 4 K v / b  O~. (2) 

Analogously, using Lemma 6.6 ]fl~(~/1)-~(~l)] ~<2K(]~?~-~]+2r implying 

[~(~h)-fl~(r ~< 4 K & - [ ~ v ( r  (3) 

Clearly, this gives 

&) [[w~(~l)]_____~] ~<exp 4 g E ( C f b ) i .  E dk--~o) " l + 4 K  

~<exp 4K (r  dk-~0) 
0 1 

proving (la). On the other hand (lb) is trivial on returns. 
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Suppose now that u is neither a return nor the end of a folding period. Again we 

write w,,_l=llw~,_lll(u,v), with (Lemma 8.1) [vl<~btlul and so lul~l.  Then (lb) is an 

immediate consequence of 

[angle(wv(r/1), w~,(~l))l ~< I slope(oJ~,(r/x))- slope(oJ~,(G))[ 

<~ l ( 4v/-bK2lrl~,-~,l +4g2b. 2"~rb O~,_l ) <~ ~o~. 

Moreover, 

II (Au+Bv, Cu+Dv)(rll ) -  (Au+Bv, Cu+Dv)((.1)ll <. 4KO~, 

while II(Au+Bv, Cu+Dv)(r >1 Ix~l =d~(r It foUows that 

Ilw~(r/1)l-------J <exp 4KE(~ / -b ) ' .  E dk--~o) 
I I~ , , ( r  o 

and (la) is proved in this case. 

Finally, let there be some folding period [#+1, #+/] ending at time u. Take such # 

minimum. Then, as we remarked in the proof of Lemma 8.1, 

~3u (171) = ~/..t (171)~a31 ( ?'//.t + 1 ) "-I- ~/.t (171)D~o t 'e  ( 0 , + 1 )  = II ~',, - 1 (171)II(~ (7}1) -I- ~ ( ~ I ) ) ,  

V(~/1) =]~/~(?]1)03l(~//~+1) and s ) = ~ # ( T / 1 ) D ~ / - e ( ? / # + I ) .  

We introduce analogous notations for ~1 and want to apply Lemma 10.1. By induction 

(la) and (lb) hold for wt(~,+l) and wl(~/,+l). Clearly, we also have the right to assume 

(2) and (3) to hold for every return previous to y, in particular for #. Then (recalling 

also dj ( (~o ) < 2dj 070)) 

1 

llv(n~)l---~ ~< l + 8 K  , ] dk(Cj~)] (4) 

r  (r Observe that where O'k=Ok(rl~ , k 4 b now 

l ! k 

e0 
k = l  s----1 

oo 
~< 100K E e('~-~)k" 

k = l  
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Hence, from (4) one gets 

I IV(~I)I I  

IIv(,lx)ll 

L. MOR.A AND M. VIANA 

~ < 1 + 8 K ~ + 7 - '  Z Ok (5) 

with T'>0 depending only on K, a, ;3 (and not on b). On the other hand, using Lemma 
6.8, 

and so 

IIE(~71 ) - 6(~1 )11 ~< 4Kv/b O~-4K(K2b) t + 5 K v / - b  " 2(K1 b) I-3 Irh, _ ~1 

~< const. (x/b)'+tdu(r 

Again by induction 

11~(Ol)-~(6)11-<c u I+1 [Iv(r/1)[[ .~ o st.(v/b) dg(C'o)eg. (6) 

[angle(v(~x), v(ffl ))l ~< 2 r O~. (7) 

Finally, (recall (8.16) for instance) 

I1~(01)11 .< const.(v~),+ldu(ffo) (< �89 (8) 
IIv(~/1)ll 

and analogously for ~1. Replacing (5)-(8) we get 

l 

4X~<c~176 t+ld~(ff~ E O~ (9) 
k = l  dk(r " 

Notice that, due to the (BA) and the definition of/, dk(ff~,)~>dt,(ffo) for all 1 <~k<~l. Hence, 
the last term in (9) is bounded by 

l l k 

const. (x/-b)Z+l Z O ~ ~< const. (x/b)Z+l ~--~ Z (r Irh,+j - ~t,+j I ~< (r O ~ 
k = l  k = l  j = l  

and this gives 

Now, from Lemma 10.1(b) and (10) 

l /+1  

langle(w~ (Th), w. (if1))I ~< ~--'~(r + (r ~< E ( ~ )  ion" 
i=1  i=1  
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and this proves (lb). On the other hand Lemma 10.1(a) gives 

�9 /11o~,,-1(,7~)11 I Iv( ,7~) l l 'x_ 2 log IIo.',.(v~)1111,,.(r . < ~ o g ~ . ~  ~ ) .  x 
#-1 ~,-1 Ok 0~, 

<~ 4K E ( r )i " E dk ( ~o--~ + 4K du ( ~o ) 
o 1 

! ! 

+ 4 K E ( C / ~ ) , . E  O~ +(r 
o 1 dk(~u) 

Clearly O~<O~+k. We add the last terms and then (la) follows immediately. [] 

Suppose now t h a t n  is a return for zoECn. Let ~0 be the binding point for z,~ 

and p denote the length of the binding period associated to this return. Notice that 

p<~Llogdn(zo) -1 is not yet available at this stage. 

COROLLARY 10.3. For all 0<. k<.min{p, 5 log d~(z0) -1 } 

I/~n(Zx)l HO')k (r l[ 

with 7"1=~'1(K, a, ~). Moreover the same holds for any ~o that remains bound to zo up to 

n+k.  

Proof. Let ~0=~.  The lemma gives (recall the deduction of (5)) 

( ) {{wa(~h){~ ~< exp 100KEeJ(~- f l )  "=T" (11) 
II~k(r 1 

On the other hand, w~+~(~l) differs from ~n(~l)w~(Wl) only by the recomposition of fold 

terms corresponding to folding periods #<~n<#+l<.n+k. The effect of such terms was 

analysed in the proof of Lemma 9.7 and in the present situation this gives 

8 

II~,~+k(r ~< I~.(~)1 II~k(nl)ll H ( l + c o n s t . V ~ K k ( v / b ) l ' )  �9 
1 

(12) 

The definition of folding periods implies K k ( ~ ) h  < K k (v~)z. (V~)8-i ~< (v~)8-i and so 

the upper inequality follows if we take 

( fi/ ~'1 =2T ) r  l+const, i+1 . (13) 
0 

The lower bound is obtained in the same way. [] 

We take a pause in the deduction of the binding period estimates, in order to extend 

Lemma 9.6. 
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COROLLARY 10.4 .  

< 4 g j b  and 

for every point ~o bound to Zo up to time n. 

Proof. Lemma 10.2 gives 

Let n be a free return for Zo ECn. Then 

3a , ~ . ~ . . ,  5a 

n-1 
langle(wn-l(~l),w,~_l(Zl))l <~ 2r y~ (.~/b)~-l-'e-.e' ~< lO~/-be -~n. 

1 

On the other hand ]~n-znl ~<2e-~n<<e -~n (because n>~N). It follows that 

I~=-nl<<dn(~o) and langle(w.-1(~l),t(7;17))l<<d~(~o). 

and so we may take a nearly flat and nearly horizontal curve -~ tangent to 7 at ~0 and to 

03n_1(~1 ) at ~ .  Now the proof proceeds as that of Lemma 9.6. [] 

We also need to obtain estimates for the distorsion of the w-vectors on bound orbits. 

This is now fairly easy. 

LEMMA 10.5. Let ~7o and ~o be bound up to time q<.s to a same element of Cs, 

s<~ n. Then for all O<~ v<~ q 

and 

Ok 
IIw,/r . 1 

u 
Ok 

]angle(w~0h), w~((1))] < 4 ~/-b e (~+~)~ 
1 dk((o)" 

Proof. We write w~=w~+au and use Lemma 10.1. Recall first that (Lemma 8.3) 

[[w~[[ ~>const. e -~ l l~ l [ .  For each term in O'u(~l ) we have 

[[a#D~ -~' -e07~+1)[ [ ~< const.v~ I/~#(~?l )[d~,O?o ) - l  ( g2b)  ~-~. 

On the other hand, Corollary 10.3 gives 

It follows that 

IIO'v(~l)ll ~ 2 c~176 <" ~/~e~" 
~t 

(14) 
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Clearly, the same holds for ~1. On the other hand, Lemma 10.2 implies 

Ok < const.v  
1 

where the constant depends only on K, a and fL Using also Lemma 6.8, this leads to 

I[a~D~-~.eO?,+l)-a~Dcp~-~(r I < const.ffb llw~_l (~/1)11 dk(r 
1 

Therefore 

(r/i)ll < dk(r 1 

From (14), (15) and the estimates in Lemma 10.2 we find 

1/  

X < const. ~/b e ~ Z Ok 
1 dk(r " 

Now Lemma 10.1 gives 

(15) 

II0")v(~l) II exp(const, ee~x)< exp( (8K+ C/be (e+~)~) ~ dk--~0)) 

and langle(w~ (yl), w~(r < 2r (O~ +e (e+~)~)-~ Ok/dk(~o)) and the lemma follows im- 
mediately. [] 

LEMMA 10.6. Let s~-*71o(S)=(Xo-t-s,y(xo-t-s)) be a C2(b) curve, with ~0=r/0(0)ECk, 
k < n. Let q < k - 1  and 0<a<2~f be such that 

I~1~( s ) - ~ l  < h e - ~  for all 1 < v < q and 0 < s < a. (BC2) 

(a) Then [[w~(r - ~  for all 0 < v < q - 1 .  
(b) /f moreover IlWq(~l)lla 2 < h2e - ~ q  then lTlq+l(s)-iq+ll< he-2lJ(q+l). 

Proof. Part (a) is proved by induction on v. Notice that case v : 0  is trivial. We 
split the tangent vector to ~oa(~0), to(s):ao(s)e(s)+l~o(s)(1,O), where e(s):(~(s) , l )  

has the direction of the qth contractive approximation at ~h(s). As in (9.22), (9.23), 
[~o(0)1 <const.(Kb) q and as< [~o(s)-~o(O)[ <3as. 

Let now ~>1 and assume that (a) has been proved for v -1 .  We have t~(s)= 
ao(s)D~.e(s)+~o(s)w~(s) (denoting w~(s)=w~(,l(s)). We write 

II v(s)ll 
IIw (0)ll 
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and want to estimate A(s) and Ile~(s)[I. For this we use Lemma 10.5 but  first we must 

bound e (e+~)~ ~ 1  Ok(s)/dk(~O)<.4 ~-~1 e(e+a)v+aJlrlJ(S)--~Jl" We assume (e+a)<<jb, so 

that  
(e+cz) ~< ( ~ + c ) - 2 ( e + c z )  (16) 

/3- (e+cz)  2(log g + ( e + c z ) )  

and distinguish two cases in the sum above. For j>~((e+cO/(13-(e+cO))u we use the 

binding condition to get e (*+'~)u+'~j b?j(s)-r  ~<e -*j.  In the opposite case argue we as 

follows. By i n d u c t i o n  eC(V-1)s2~J]wv_l(O)]]a2 ~ e  - /3(v-1)  and so 

[~j ( s ) -~ j [  ~< 2KJ s <. 5KJe -(~+c)v/2. 

In view of (16) this gives e(~+~):+~Jlrlj(s)-~jl<~be-eJ in this case. Now Lemma 10.5 

implies 

T =1 ~< A(S) ~< ~" (17) 

Jl~(s)ll -< 2r ~< �89 (18) 
with 

T = e x p  50K e -6j . (19) 
1 

Let us now write ~.+l(a) -~+l=fo  t~(s)ds in the form 

/o /o (,7~+1(o)-r ~o(s)D~oX.e(s)as- ~o(o)w~(s)as 
(20) 

=w~(o) ff  ~(s)(~o(s)-~o(O)) as+ff ~(s)(~o(s)-~o(O))~(s) as. 
Clearly, H foaO(s)D~~ <<. bgv~ .8K(g2b)~a<<. (x/b ) ~, and 

fo~O(O)w~(s)ds <~ (gb)qg~ a<~ (4~)  ~ 

On the other hand 

fo~(~)(~o(s)_~o(O))~(~)a~ .< 1 ~(o)ff ~(~)(~o(s)-~o(0))a~, 
as a consequence of (18). Moreover 

T -1  act2 f a  as -5-  "< Jo ~(s)(Zo(~)-Zo(O)) "< ~3~22 

Hence, from (20) 1 Hw ~ (0)Haa 2/2T <<. he - ~  + (2V~)~ < 2he - ~ .  We define 

1 - 5 0 K  e - ~  (21) h = (10~-) -1 = ~ exp 
1 

and (a) follows. Finally the same argument also gives 

I~q+l(s)-Cq+ll ~< 5rllWq(0) ll~ 2+he-2~q 
and (b) is now an easy consequence. [] 
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COROLLARY 10.7. Let n be a return for zoEC,~ and p be the length of its binding 

period. Then p<~ (2/c) log dn(z0) -1 ~<5an. Moreover, for some 7"2 =T2(K, a, f/) we have 

[Iw~+n(~l)tld~(~o)/> v2eCl(P+l)/311CZn(~l)l I >1 llr 

for all ~o that remain bound to Zo up to time n+p. 

Proof. Let ~o be the binding point for ~n and take s~-~o(s), as before a C2(b) curve 

with ~n =~?o(a). For v > (2/e) log dn(~o) -1 we have IIw~(r 2 ~> 9eC~dn (~o) 2/>e - ~  and 

so (BC2) can no longer hold at time v, by Lemma 10.6(a). This proves the first part of 

the corollary. On the other hand (8.7) and Lemma 10.6(b) imply 

HWp(~i)][~r2/> h2 e -2~p. 

Recall also that p + l  is a free iterate for ~n, by definition of binding period. It follows 

that 
1> -h hecCp+l)/3. 

7"1 7"1 

Finally, as in the proof of Corollary 10.3 ((12)) 

I lun+p(,h) l l  t> �89 Ilup(  +l)ll/> �9 

and the corollary follows by taking T2=h/2T1. [] 

11. Dependence  on the parameter.  Partit ions 

Now we establish the tools (partitions, uniformity of a-derivatives) required to prove that 

the (BA) and the (FA) are satisfied by all critical points and at all times, for a positive 

measure set Ek of a-values. In brief terms, what one does is to apply to each critical 

point z0 the argument of Section 3, constructing partitions :Pk(z0) and sets Ek(zo) of 

good parameter values for zo at time k. The exclusions corresponding to each z0 have 

estimates analogous to (3.12) and then one uses (8.1) to bound the total measure of the 

excluded set and prove that E=Nk>>.I NzoCC~ Ek(zo) has positive Lebesgue measure. 

Naturally, this requires some explanation: critical points depend on the parameter 

and are defined only for special values of aE~0 and so it makes no sense to speak of the 

same critical point for different values of the parameter, at least globally. On the other 

hand, critical approximations are, by definition, solutions of equations 

e(a; ~(a; z)) colinear to t(WU(a), ~(a; z)) 
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and so one may use the implicit function theorem to find analytic continuations of them 

for nearby parameter values. This permits us to bypass the difficulty above in the 

following way. Whenever introducing a new critical approximation z0 we take r a 

lower order approximation to which z0 has remained bound and show that  z0 admits an 

analytic continuation to an interval w of a convenient partition associated to r Then 

partitions and exclusions for z0 at further iterates are done inside w. Note that  some 

care must be taken in the choice of w so that  the escape argument applies to z0: w--~R 2. 

Formally, the whole construction is still part of the induction developed in the pre- 

ceding sections. We start with the interval 120 and the critical approximation z(0 ~) EGo 

and w0(i) E G1 introduced in Section 7. 

LEMMA 11.1. For all l <. i <. N - 1 ,  Z(o i) and W (o i) are defined on all 12o. Moreover 

II o( )(a)JJ, < b ~/~ for all a e f~o. 

Proof. Let x--*z(a, x)--(x, y(a, x)) parametrize Go(a) (respectively G1 (a)) in Ixl �89 
say. The critical approximations are given by r x(a))), where x(a) is the 

implicit solution of 

F(a, x) = (A(a; z)+ B(a; z)Oxy(a, x) )-q(a; 7~(a; z) )(C(a; z)+ D(a; z)O~y(a, x) ) = O. 

Here (q, 1) is colinear to the corresponding contractive approximation and we denote 

z--z(a,x). Now, all the terms in (OaF)(a,x(a)) are ~<const. b t, as a consequence of 

Theorem 2.1, Lemma 6.6, (6.9) and (7.2). Observe in particular that  [OaA+OzA'Oaz[ <~ 
const, b t because [x(a)[~<const.v~, recall w Hence [(OaF)(a, x(a))[ ~<const. b t. On the 

other hand, the same is still true for the terms in (OxF)(a, x(a)), except for ]OzA.Oxz] >~2. 
Therefore [(0xF)(a, x(a))[ ~> 1. It follows that  [~(a)[~ const, b t and then, using (7.2) once 

more, IIr [] 

For k<.N-1  we set simply Ek=~o. Clearly, we may choose ~oC(1, 2) so that  time 

N is an escape situation for Zo (N-2): ~o -~ R2, (i.e. length( z(N- ~) (~0)) > V~ ) and also for 

w (N-2). At stage n ~ N  we assume that  Ek has been constructed for k<~n-1 in such a 

way that,  given any aoEEk and ~0=~0 (k-1)Eck there are mE[�89 and wCi~0 

an interval with 

g -3m/2 < length(w) < e -2m/3, (1) 

such that  r admits analytic continuation to w with: 

�9 r satisfying the properties of Section 8 ((BA), (FA), expansiveness, bind- 

ing, etc.) for all aEoJ and times ~<m-1; 
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�9 time m being an escape iterate (i.e. belonging to an escape period) of ~o(m-2): 
0J ----~ R 2" 

Let now aoEEn-1 and 5o=Z(on-1)ECn(ao). By definition, there is ~o=~o(n-2)E 

Cn-l(ao) such that ~o remains bound to ~o up to time n - 1 .  Let m e  [�89 n] and wCf~o 

be the interval associated to ~o in the sense of the inductive assumptions above. We 

denote Zo=Z(o m-2) and ~o=r (m-2). 

LEMMA 11.2. ZO admits analytic continuation defined on w. Moreover [l$o(a)ll <~b r 
where T iS a small positive constant. 

Proof. The statement on the derivative is proved by induction on the generation. 

We assume that 

 o(a) = (2) 
1 

~= generation of ~o, and prove that the same holds for zo. Clearly, we may suppose 

that the generation of zo is g=[0n]>~ since in case g ~ 0 ( n - 1 )  (corresponding to part 

(a) of the definition of Cn, recall Section 8) we have simply z0=~o and so the lemma is 

immediate. Let s~--~(a, s)=(s ,  ~l(a, s))EGl(a) be a smooth parametrization and denote 

z(a, s)= (x(a, s), y(a, s))----~o g-i  Ca; ~(a, s)). Here aE~ and the domain SC {Is[ ~ 1 - ~io} of 

s-values is fixed in such a way that z(ao, S) coincides with ~/(Zo, So~ recall Section 8. 

We denote 7(a) : z (a ,  S) and, in a similar way, define "~(a) continuation of ~/(~o, ~o ~ for 

aew. Our purpose is to show that the algorithm of w applies to 7(a),-~(a) for all aew. 

Clearly, for any r~> 1 

Ilzllc~(a,s) <~ K~, with K2 =K2(K, r ) .  (3) 

By definition of critical point (recall Section 8 and (9.14)) 

1108Yll (ao, s) <~ b t/2 and IlO, z(ao, s)l I >I 1, 
IlOs ll 

implying ]lO, x(ao, s)l I >1 1. This (essentially) persists for all aew, at least if b (and so 0) 

is small and N is large: 

IIO x(a, s)ll/> IIO x(ao, s)lI-K la-aol I> �89 n/> �88 (4) 

We denote t(a, s):(Osy/Osx)(a, s), the slope of the tangent to 7(a), and then (3), (4) 

give 

Iltllc2(a,8) <~ g~,  for some K3 : g 3 ( g ) .  (5) 
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Recall that V(ao)--~/(zo, ~~ ) is C2(b), by definition. For general aEw we have at least 

It(a, s)l <.b t/2+const.(K~e-~/3) n ~ ~ and analogously IO~t(a, s)l~ 1-~ and this is per- 

fectly sufficient for algorithm w Naturally, similar properties hold for ~(a). The prob- 

lem of checking (7.13) is somewhat delicate and actually requires some additional infor- 

mation. We write ~/(a) and ~(a) as the graphs of x~-*~(a, x) and x~-*~l(a, x), respectively. 

Then (8.3) means I~(ao, x)-~/(ao, x)l <.b t~ (~a]"). We suppose r E N  fixed in such 

a way that 
e -r/lO ~ 0 .2 (6) 

and include in the definition of C~ the condition that 

0 i  - - .~ 2 n  I ~(Y-~?)l~=aol'~ao , f o r a l l l < . i < ~ r - 1 .  (7) 

On the other hand (3) and (4) give, in a straightforward way, 

II llc < ,x) K~, where K4-- K4(K,r), (8) 

and analogously for f?. Hence, for all aEw 

r - -  1 _ 2 n  o r . / ' g  
uO _ - - 2 c m i / 3  - -  ~ I x 4  ~ - - 2 c m r / 3  

-TV. 
0 

K 2 V l  

(9) 

as we pretended. Finally, (7.14) follows easily from this and the remark that the length 

of v(a) and "~(a) does not implode, recall (4). Therefore the algorithm of w applies 

on all aEw and it yields a uniquely defined extension zo:w~a--~zo(a) of z0. We write 

zo(a)=(xo(a),~(a, xo(a))) and ~o(a)=(~o(a),~?(a,~o(a))) and then (9) and (7.15) give 

Ixo(a)-~o(a)l ~a~. On the other hand, xo(a) is given implicitly by 

F(a, x) = (A(a; z)+ B(a; z)O~(a, x) )-q(a; ~(a; z) )(C(a; z)+ D(a; z)Ox~(a, x) ) = O, 

z----(x,~(a,x)), and so by (5), (8) and Lemma 6.7, I 0(a)l <Kg, for some K5--K5(K). 
Clearly, the same argument and conclusion hold for ~0. Since we also have the lower 

bound in (1) for the length of w, we are in position to apply Hadamard's lemma (see 
. " n / 2  g [BC2, Lemma 8.7]) to get Ixo(a)-~o(a)l~2a o K 5. A similar argument works for yo(a)-- 

~(a, xo(a)) and T0(a):~?(a, ~o(a)) and we get [l~o(a)-~o(a)l[ <~const.(K~ ~/2 <-ao/a <. 
1 h'r9 ~v , as long as b is small and we take, say 

t 
T = 10R (see (11) below). (10) 
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This gives (2) for zo and completes the proof of the lemma. [] 

Remark 1. It is straightforward to check that  in the definition of ao one may replace 
1 2 g by 5 (/>llDcpall), getting in this way ao=  (5~'6) �9 Then (6) holds if 

r > 40 log 250. 

Of course, this explicit bound on r is far from being the best possible. 

Remark 2. We must also go back to the proof of the claim (C) in Lemma 9.5 and 

check that  ~(~') satisfies (7), in order to conclude that  it belongs to C~,+1. This can be done 

as follows. Let zo=zo(ao) be the point being bound at time n. It extends to zo:w--*R 2 

with length(w)/> e -2cn/3. In this interval the binding construction is uniform and we have 

(9.18) r for all aEw. On the other hand, as 

in (8) IO~r for all l<<.i<~r, with Kr=KT(K,r). Then we may apply nadamard 's  

lemma to 0~-1r and 0~+1r successively for i=l,  2, ..., r - 1 ,  to obtain [O~ar tg/a'3~ for 

all l<~i<<.r-1. In order to have this imply (7) we just have to take in the definition of/9 

((9.17)) 

R = 3  r. (11) 

We let from now on zo: w ~ R  2 be as above and describe the construction of the 

partitions 79~(zo) and the sets of good parameter values E~(zo)CW for iterates 

m-l<~v<~n. This is quite analogous to the one-dimensional procedure so we just recall 

the main ideas. First we set Em_l(ZO)=W and 79m_1(zo)={w}. Then, given m<~v<~n 
and 3E79~_1(Zo), 3 c E ~ - l ( z o )  we distinguish the following cases. If v is not a return 

situation for 3, i.e. if z~(3)M{Ixl<8}=O then, by definition, 3E79~(zo). If v is a bound 

return situation, again we take 3 to be in 7~(Zo). Suppose now that  n is a free return 

situation. We take ~o=~0(ao)=(~o,r/o) to be the binding point of z~,(ao), aoE3, and say 

that  n is essential or inessential, according to whether {xn(a)-~o: aE3} contains some 

Ir, i (Section 3) or not. In the inessential case still 3E79~(Zo). On the other hand, if v is 

an essential situation then we define w'~C3 and w~,iCw~=3\w ~ by 

aEw" ~lxn(a)--~ol>~ and aEwr,i~(Xn(a)-~o)EIr, i , l  <~ i<~r2,]rl>//k. 

By definition the w~,i and the connected components of J '  are the elements of P,(z0) 

inside 3. It follows from Lemma 11.3 below that  on free iterates z~(3) is a nearly straight 

and nearly horizontal curve so the situation can be described by Figure 17. 

Corresponding to the basic assumption, parameter values aElJ{wr,i: Irl>c~v} are 

excluded: they do not belong to E~(zo). Observe that  (Lemma 11.2) 150(a)-501~< 
b~e-~/3<<e - ~  and so d~(zo(a))>~lx~(a)-r Incidentally, this shows 

5-935203  Acta Mathematica 171. Irnprim6 le 28 octobre 1993 
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w"(ao) r 
I 
I 

(.dr.,, i O'lr, i Zv 
I :222221 I I { ~D- l I I I I 

Fig. 17 

that  the particular choice of a0 above is irrelevant. We also apply the escape argu- 

ment and exclude parameters so that  the number of free iterates of z0 in [1, u] satisfies 

F[1,v](a; z0)~>(1-e)u for every parameter value in the remaining set Ev(zo). It is con- 

venient at this point to assume that  all returns and binding periods of zo(a) in [1, u) 

coincide for all a E ~. Since, by construction, log dj (z0 (a)), 1 ~ j ~ v -  1, is nearly constant 

on ~ this can be obtained just by slightly adjusting the definitions, without affecting the 

arguments of Sections 8-10. 

In order to estimate these exclusions we now need to show that  on free return 

situations the curve z~(~) is nearly horizontal and its velocity has bounded distorsion. 

This corresponds to Lemma 3.3 in the one-dimensional setting. For the sake of simplifying 

the notations we let w~(a)=w~(zl (a)) and w~(a)=wv(zl(a)). 

First we need a higher-dimensional version of Lemma 3.4. 

LEMMA 11.3. For all 2<~ u<~ n and aE~E'P~-l(Zo), ~ c E ~ - l ( z 0 )  we have 

! II v(a)II ~<100. 
lO0 IiW -l(a)ll 

Moreover, i / u  is a free iterate then langle(~(a),  wv_l(a)) I <~b t/2. 

This is proved in the same way as for the Hdnon case in [BC2, Lemmas 8.1, 8.4], with 

M~=D~o=(zv) and ~ov=0~oa(z~). Observe that,  although our statement on the angle is 

somewhat stronger, it actually follows from the proof of [BC2, Lemma 8.1] together with 

the easy remark that  both w~-I and 2 ~o~_x ~ ( -X~_l ,  0) are nearly horizontal if u is a free 

iterate. 

COROLLARY 11.4. For every m<~ u<~ n and CaET~(Zo),(oCE~_t(zo) 

K -3u/2 ~ length(5~) ~< e -2eu/3.  

Proof. Take #E [~v ,  u] a free iterate (recall Corollary 10.7). Note that  z~(&) is 

nearly straight, by Lemmas 8.1 and 11.3. Hence 

length(~)-inf Hw~_l(a)l ] ~< const, length(z~(~)) ~< coast. 



A B U N D A N C E  OF S T R A N G E  A T T R A C T O R S  6 7  

and so length(&)~<const, e-C(~-l)~<e -2c/2/3. Let now m<~A<<.v be the moment at which 

& was created. By construction 

e--CtA 
length(5~) .sup ]] wA- 1 (a)]] /> const, length(zA (&))/> const. (aA)------ 5 

and so length(o~) ~>const. K -  ~ e - ~  / ( aA ) 2 >/ K -3/2/2. [] 

LEMMA 11.5. There is T3=T3(K,a,~,5)>O such that if v is a free return situation 

for Y~ETa/2_l(zo), &cE/2-1(z0), then for all a, a' e~  

Iiw/2-1(a')l] ~<r3 and [angle(w/2_l(a),w/2_l(a'))[ <<. 5r : 11~/2-1(a)11 

Proof. We denote 

k 

Tk = Tk(a, a') = E(C/b)k-J([a--a'[ + [ z j ( a ) -  zj (a')[). 
1 

The lemma is an immediate consequence of the following facts: 

/2--1 

E Tk ~r (K ,a ,~ ,5 ) ,  (12) 
1 dk(zo(a)) 

IIWY--I (a t ) l ]  (8KE dk('~o(a)) ) ]]w/2'l(a)[[ ~<exp /2-1 Tk (13a) 
\ 1 

and 

langle(w/2_l(a), w/2_l(a')) I <~ 2r T/2_1. (13b) 

Here we only need to derive (12) since then (13a), (13b) follow in precisely the same way 

as Lemma 10.2. Clearly, 

/2-1 k /2-1 k 

- 1 Z  (r const, e-c/2/2 F (CZ) 
1 1 1 1 

is uniformly bounded, so we are left to show that 

/2--1 Ok ~ T'(K, oI,~,5) 
e~(zo(al) 1 

I k with Ok=Ok(a , a  )=Y~I (~fb)k-JlzJ(a)--zJ(a')l" For this we adapt the one-dimensional 
argument, [BC1, Lemma 5], [BC2, w Let N=Vl<V:<. . .<v~=v be the free return 
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situations for 9. Suppose first j<~N. Lemmas 7.2 and 11.3 (and the fact that both zj(~) 

and zg(~) are nearly straight) give Izj(a)--zj(a')l<~const.e-C~ It 
follows that 

Ok < const.e -c~ (N-k)tZ N (a) -- ZN (a')l 

for all k<~N. Let now i~>1, #=v~, ~=ui+l and p be the length of the binding period 
associated to #. For #+l~<j~<#+p we have, by Lemma 11.3, 

We write 

I1~'~1___~1 ~aonst" IIw~-xll =coast. D~a-~-l(llw~-~ ii) I1~.11 IIw.-xll 

w~ __ ~e+~t~(1,  0) 
IIw~-lll 

where e= (q, 1) has the direction of the pth contractive approximation. Then 

Ilzj I___/I ~< const.(l~t,l(Kb)J-t,-1 + i/~, i "ilwj_~_l (zl,+l)H) 
I1~.11 

< const.((gb) j - " - I  +e-/3(J-~-l)d~(zo) -1) 

< const.(e-t~(J-"-l)d~(z0)-l), 

by Lemmas 9.6 and 10.6. Therefore (again because z~(~) is nearly straight) 

Iz j (a ) -  z~(a')l < coast e -13(j-tt-1) [zlt(a)-z"(a')l 
�9 d,(zo(a)) 

Observe also that we may assume (inductively) that 

O,  < const.lzt,(a )-z~(a')l .  

Then, given any #+l~<k~<#+p, 

Ok ~< const. ((~/b)k-Ulzu(a)--zu(a')l+e-~(k-u)[zu(a)--zu(a')l 
du(zo(a)) ]" 

Hence, by the (BA) 

Ok 
dk(zo(a)) 

~< const, e -(~-~)(k-") Iz~(a)-z"(a')l 
d~(zo(a)) 

Suppose now #+p<k~<A. By Lemmas 9.4 and 11.3 we have 

(14) 

(15) 

Izj(a)-zj(a')l <. coast, e(J-~)/l~ (16) 



for all j ~ A. Then 

Hence 
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Ok <~ (const. (~/b)k-"e-C~-k)/l~ e -<)~-k)/10) IZA ( a ) -  zA(a')[. 
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Ok <<, const, e-(~-k)/l~ (17) 

and we also we recover (14) for time ), (with the same constant). Altogether this gives 

8 

,+-1 Oh const. Z Iz~i(a)-z~i(a')[ 
Z dk(-~o(a)) <<" d~,(zo(a)) 

1 1 

Moreover, if 5 is small then vi+l-vi  is large and (16) gives [z~,+l(a)-z~,+l(&)]>~ 
2[z~,(a)-zv, (a')[ (compare Lemma 3.5). In particular we may write for each fixed r 

y:~ ]z~,(a)-z~,(a')] ~<const. [z..(a)-z~.(a')[ 
r,=~ d~,(zo(a)) d,.(zo(a)) 

where the sum is taken over the free returns vi for which z~(r and we denote by 

#, the maximum of such ui. Finally, by construction of ~, 

Z ]z~.(a)-z~.(a')] <const. Z 1 
r d,.(zo(a)) -~ < co. [] 

Remark. Observe that we even proved (compare [BC2, Lemma 8.8]) 

]angle(wv- 1 (a), wv-1 (a')) [ .~ const. r [z~ (a) - zv (a') [. 

Now the uniformity of the a-derivatives on free returns is an immediate consequence 

of Lemmas 11.3 and 11.5. 

COROLLARY 11.6. There is T4 =~-4( K, ~, fl, 5) such that if u is a free return situation 
for ~ET~v_l(Zo), ~cE~-l(zo) ,  then for all a ,a 'e~ 

II  (a')ll 
][~v(a)l-------- ~ < T4 and ]angle(~v(a), ~v(a'))] ~ 10r 
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12. Conc lus ion  

Now we have completely recovered the formalism of the one-dimensional situation. Ex- 

clusions of parameter values hEW determined by the (BA) and (FA) during [m, n] are 

made as described before. It follows from the (FA) that  a parameter c~Ew in En(zo) 
must have an escape iterate M e  [ �89  n]. This assures that  Zo satisfies the inductive 

assumptions of Section 11 and so that  whenever it is used, in a forthcoming iterate, 

as the binding point of some higher-generational 50, we have convenient ~ and ~ to 
(,~-2) 

start  the construction for 50. Actually we must also check that  z 0 satisfies Lemma 

11.2 but  this presents no difficulty: the fact that  it is defined on all & follows simply 

from the expansiveness and the statement on the derivative may be easily derived from 

Iz(~n-2)-z~m-2)[<(Kb) m-2 by another use of Hadamaxd's lemma. 

The total excluded measure is (cf. (3.12), see also [BC2, Section 2]) 

m(w\E,~(Zo)) <~ Boe-~~ (1) 

where B0 and c~0 depend on K, a,/~ and 6 but  not on N or b. 

We define E,~=E,~_l\(Uzo(w\En(zo))) and then (1) and (8.1) give 

m(En-l \E,~) <, 4Bo((K/go)~ e-~~ n. 

By taking O=O(b) small enough we may replace this by m(En_l\En)<,4Boe -~~ and 

now the proof that  E=~,~>~N E,~ has positive Lebesgue measure follows in precisely the 

same way as for the one-dimensional case in Section 3. 

This completes the induction argument started in Section 7. For aEE true critical 

points axe defined and their images are expanding for all times. We may take, say, 

z0 =limi z (i) the critical point of generation zero and then Zl =~a(zo)  satisfies (b)(ii) in 

Theorem B. Moreover, for almost every aE/~ the positive orbit of zl is dense in A. This 

is shown in precisely the same way as in the Hdnon case, [BC2, Section 10], so we do not 

detail it here. The proof of Theorem B is complete. 
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