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I. I n t r o d u c t i o n  

1. 

One of the most beautiful theorems in one complex variable is the Riemann mapping 

theorem: Any simply connected open set which is a proper subset of C 1 is biholomor- 

phically equivalent to the unit disc. Moreover, the biholomorphism can be determined 

either from knowledge of the Green's function for the Laplacian of the domain (vis-a-vis 

the electric potential for a charged plate), or from the complete metric of constant neg- 

ative curvature (via the exponential map). This theorem is a beautiful example of the 

intimate relationship between the complex analysis, function theory, and the geometry 

of invariant metrics. 

One of the quests in several complex variables is to determine how this theorem 

generalizes. In a ground-breaking paper [L1], Lempert established fundamental results 

concerning the Kobayashi metric for strongly convex domains in C n which again in- 

timately connected the complex analytic properties of a domain with canonical maps 

from the unit ball to the domain via the exponential map for the Kobayashi metric and 

the plurisubharmonic Green's function. In [BD1], these results were used to describe 

and parameterize the moduli space of pointed strongly convex domains up to biholo- 

morphic equivalence. (The results mentioned here will be elaborated upon later in the 

introduction.) 

One new feature which arises in several complex variables is that much of the analysis 

for a domain can be reduced to analysis on the boundary of the domain. More precisely, 

the complex structure from C n restricts to the boundary of a strongly convex domain 

to define a CR structure on the boundary. (Once again, definitions and more complete 

descriptions of these ideas will be provided later in the introduction.) Two strongly 
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convex domains in C '~ are biholomorphically equivalent if and only if their boundaries 

are CR equivalent. On the other hand, the CR structure can be described as an intrinsic 

structure on the boundary. This immediately raises the imbeddability question: Which 

(strongly pseudoconvex) CR structures on a (2n-{-1)-dimensonal manifold M can be 

realized as the boundaries of strongly convex domains in C n+l. It is well known that  if 

n~>2, then they can all be realized as the boundaries of some open complex manifolds, 

while for n=l ,  that  is not the case IN]. 

Returning to the question of biholomorphic equivalence of domains, the fact tha t  it 

can be reduced to a question of the CR equivalence of their boundaries indicates that  there 

should be appropriate analogues of the Riemann mapping theorem, the plurisubharmonic 

Green's function, and the Kobayashi metric which rely completely upon the intrinsic 

geometry of the boundary. Moreover, if these analogues are 'correct',  then they should 

shed light upon the imbeddability question. 

One of the purposes of this paper is to indicate a generalization of the Riemann 

mapping theorem to the space of abstract CR manifolds which are small perturbations 

of the standard CR structure on the unit sphere in C 2. The main technique will be 

to s tudy the interplay between contact geometry and CR geometry, and to use this 

interplay to obtain a normal form for the CR structure on the manifold. The analysis 

will effectively intertwine several different objec ts - - the  complex analytic structure of the 

domain with the CR structure on the boundary, the Kobayashi metric on the domain with 

a canonical foliation of the boundary by circles, the plurisubharmonic Green's function 

for the domain with a normalized choice for a contact form on the boundary, a Riemann 

mapping theorem with the structure of a complex line bundle over p1, and the moduli 

space for convex domains with a normal form for CR structures on the boundary. 

All of the results contained in this paper generalize to higher dimensions. Most of 

them can be pushed much farther than small perturbations of the standard CR structure 

for the sphere. However, the purpose of this paper is to set down as clearly as possible 

the approach to the problem, and to indicate how this approach intertwines such varied 

objects as described in the previous paragraph. To achieve this purpose, we have for 

the most part  narrowed our focus to small perturbations of the standard CR structure 

on S 3. (The three dimensional case has the added interest of addressing the question 

of global obstructions to the imbeddability of CR structures.) However, we have tried 

to introduce as many of the crucial ideas as possible. In a forthcoming paper, we will 

indicate the modifications necessary to extend this approach to higher dimensions. 

Organization of the paper. This paper will contain a rather lengthy introduction. 

The intent of this introduction is to introduce rather carefiflly all of the major  concepts 

and structures required throughout  the paper, and to indicate how this solution to the 
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equivalence problem for the space of CR structures effectively ties together such varied 

objects as described above. It is also our hope to make the relevant sections readable for 

those who are expert in one area without requiring knowledge in the remaining areas. 

The remainder of the paper will proceed as follows. Chapter II will contain the 

necessary preliminary material, setting up the basic notation, introducing the various 

operators and recalling the basic facts from the Hodge theory on S 3. Chapter  III will 

then introduce a linear structure on the space of diffeomorphisms of S 3, and describe an 

'integrability condi t ion ' - - the condition that  the diffeomorphism corresponds to a contact 

diffeomorphism; this integrability condition is a nonlinear PDE which the vector field 

parameterizing the diffeomorphism must satisfy. Chapter  IV will s tudy the solution 

space to this PDE, and show that  if an anisotropic Sobolev space structure is placed on 

the full group of diffeomorphisms, then the solution space forms a Hilbert submanifold; 

that  is, the space of contact diffeomorphisms which are sufficiently near the identity 

admits an anisotropic Sobolev space structure one which considers L 2 estimates only on 

those derivatives in directions which are tangent to the contact distribution. Chapter  V 

considers the action of the contact diffeomorphisms on the CR structure, and shows that  

the contact diffeomorphism group can be used to place the CR structure in various normal 

forms. These results basically follow from writing down the action at a linearized level, 

obtaining the normal form at the linearized level, and concluding that  the nonlinear 

results holds in a neighbourhood by the implicit function theorem for Banach spaces. 

Chapter VI contains the basic imbedding results, and discusses the geometry of the 

situation. In this chapter, we discuss a more general situation, and t ry  to indicate 

tha t  the basic ingredient which is necessary for the analysis in this paper is a strongly 

pseudoconvex CR manifold for which the underlying contact structure admits a S 1 action. 

Acknowledgements. The author would like to express his appreciation to IHES for 

their hospitality while he developed the basic ideas contained in this paper, and to Mike 

Christ, for several helpful conversations on related topics. He would also like to express 

his thanks to Laszlo Lempert for his interest in this work, and to his collaborator Tom 

Duchamp, whose constant help and encouragement were vital ingredients for this work 

to ever see completion. 

2. O u t l i n e  o f  t h e  r e s u l t s  

A contact structure o n  S 3 is a codimension one subbundle of the real tangent space 

satisfying a nondegeneracy condition best described as follows. Let ~? be a 1-form dual to 

this distribution. Then the hyperplane distribution is a contact distribution if yAdy is a 

non-vanishing volume form. Thus, the hyperplane distribution is a contact distribution 
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if it is as far from being integrable as possible. The form y is said to be a contact form. 

Notice that  ~? is only defined up to multiple by a nonvanishing function. 

A CR structure on S 3 is an 1-dimensional subbundle Ho,o) of the complexified 

tangent space such that  H(1,0)~H(1,0) is a subbundle of complex codimension one; in 

this case, the intersection of this subbundle with the real tangent space to S 3 is a real 

codimension one subbundle. We set H(o,D :=H(1,0). Let T be a real globally defined 

transverse vector field to this distribution. Then the CR structure is said to be non- 

degenerate if for any nonzero ZEH(1,0), the bracket [Z, 2]=-i)~T (mod Z, Z) for some 

nonvanishing function A, and it is said to be strongly pseudoconvex if this function A is 

positive. 

It follows immediately from the definitions that  a CR structure defines in a natural  

way a hyperplane distribution of the real tangent space, and that  this hyperplane dis- 

tribution is a contact distribution (fully nonintegrable) precisely when the CR structure 

is nondegenerate. Indeed, let ~7 be a real 1-form dual to the hyperplane distribution 

H(1,o ) ~H(0,1); then the nondegeneracy implies that  7]A&? is nonvanishing. In this sense, 

a strongly pseudoconvex CR structure can be thought of as a contact structure together 

with a smoothly varying complex (or conformal) structure on the hyperplane sections. 

This is the approach in this paper. Consider a CR structure to be described via a two 

step procedure. First, define a hyperplane distribution on M - - t h a t  is, the codimension 

one subbundle of the complexified tangent bundle which consists of the holomorphic 

tangent space and its complex conjugate; specifying this distribution is equivalent to 

specifying a nouvanishing real one form ~7 which is dual to it. (Recall that  the strong 

pseudoconvexity of the CR structure guarantees that  the hyperplane distribution is fully 

non-integrable; that  is, it is a contact distribution. In terms of the dual one form ~], this 

is the condition that  ~]Ad~t0.) Second, on each hyperplane in the distribution, specify 

the splitting into the holomorphic and the conjugate holomorphic directions. 

The main technique in the paper is to use contact geometry and the analysis asso- 

ciated to the 0b operator to obtain a normal form for the pair consisting of a contact 

structure and a conformal structure on the contact distribution. This is achieved as 

follows: 

Step I. A well-known result from contact geometry [G] states that  any two nearby 

contact structures are equivalent (via a diffeomorphism which may change the contact 

form.) Since we are interested in the space of CR structures up to equivalence, we 

may as well fix once and for all the underlying contact structure. This relatively simple 

normalization has the property that  it immediately simplifies much of the remaining 

analysis, and repeatedly does so at several different stages. 

(a) This normalization immediately reduces the remaining action of the diffeomor- 
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phism group to action of the group of contact di~eomorphisms (those which fix the 

contact structure). This is not only a much smaller group, it is also much bet ter  be- 

haved. 

(b) Fixing the contact structure, and restricting attention to small deformations of 

the standard CR structure which have the same underlying contact structure allows for a 

particularly simple representation of the space of CR structures in terms of deformation 

tensors. Indeed, let e be a local section of the standard holomorphic tangent space. Then 

a local section of the deformed holomorphic tangent space can be taken to be of the form 

= e -  r where r E Horn(H(0,1), H(1,0)). (Notice that  we have used the conjugate of the 

deformation tensor in the defining equation in order to agree with standard deformation 

theory- - in  which case the deformation tensor is considered to be a vector valued (0, 1) 

form.) 

(c) Specifying a contact form fixes a splitting of the tangent space necessary to 

make the 0b operator well defined. Since all of the analysis will be done using the initial 

structure and its associated C~b operator, the analysis always uses the same contact form 

and the same splitting. 

(d) The anisotropic Folland-Stein spaces which are adapted to the 0b analysis are 

fully commensurate with the underlying contact structure, and the contact diffeomor- 

phisms preserve these Folland-Stein spaces. 

Step II. In order to understand the action of the space of contact diffeomorphisms 

on the space of CR structures, we first introduce natural Banach space structures on 

the various spaces of objects. The space of CR structures already has a natural linear 

structure when it is represented as the space of deformation tensors. The space of contact 

diffeomorphisms can be given a natural linear structure in various ways; however, since 

we will eventually be using 0b analysis in order to normalize the CR structure, we will 

require a Banach space structure on the space of contact diffeomorphisms which uses 

the weighted (or anisotropic) Sobolev spaces referred to as Folland-Stein spaces (coming 

from the context of 0b geometry [FS]). Notice that  these spaces are also 'natural '  in 

the context of contact geometry, since they are precisely the spaces which are preserved 

under contact diffeomorphisms. 

Step III. We show that  the space of contact diffeomorphisms can be parameterized 

by a single real valued function p on S 3. Using this parameterization, the linearization 

at the origin of the action of the contact diffeomorphisms on the CR structures defined 

by the deformation tensors is given by 

r ~-* r  (2.1) 
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where # is the inverse to the operator e:H(1,o)-+H(~ defined by Z~-+(ZJd~?). (Here 

H (~ is defined as in equation (6.1) by the splitting 

T~(S 3) = C.~]~H(I,~176 

where d~ is contained in the wedge of the last two factors.) By using an inverse mapping 

theorem in Banach spaces, we show that the CR structure can be normalized to lie in 

a complementary subspace to the image of the operator 0b#0b applied to a real valued 

function. 

Normal forms for the CR structure. In order to normalize the CR structure, we 

use the fact that  the underlying CR structure admits a natural S 1 action. This is the 

circular action induced by the standard imbedding of S 3 as the unit sphere in C 2, and it 

is generated by the vector field dual to the standard contact form on S 3. This S 1 action 

on S 3 induces an action on the function spaces and the full tensor algebra of S 3. We use 

this action to decompose the tensor algebra according to its Fourier components, and 

express the normal forms in terms of the vanishing of certain of the Fourier components. 

(Before continuing, we should briefly mention two interpretations of these Fourier 

coefficients. Complex analytically, any funct ion--or  tensor--s  be restricted to the 

boundary of any complex line which passes through the origin. This is the boundary of 

a unit disc, and the Fourier components restricted to the boundary of this disc are the 

standard Fourier components; in particular, any data  with no negative coefficients on the 

boundary of this disc admits a holomorphic extension to the entire disc. Geometrically, 

the sphere can be interpreted as the unit sphere bundle of the tautological line bundle 

over p1; the fibres of this bundle correspond to the boundaries of the complex discs 

referred to above. In this case, functions restrict to any fibre as a function on a unit circle 

in a complex line, and the Fourier decomposition again agrees with the one dimensional 

version. Data with no negative Fourier components admits an extension to the entire 

unit disc bundle over p l - - a  complex manifold--in such a way that  it is holomorphic in 

the fibre directions.) 

Since the contact diffeomorphism is parameterized by a real valued function, it is 

completely determined by either its negative Fourier coefficients or its positive Fourier 

coefficients, (Notice that  we are being a little sloppy here in regards to the zeroth- -or  S 1 

invariant--coefficient; we have to treat  this with special care in the paper.) Furthermore, 

the ~b#Ob operator respects the Fourier decomposition. Thus we can normalize either 

the negative or the positive Fourier components of the CR structure. If we a t tempt  to 

normalize the negative coefficients to be zero, we find that  there is an infinite dimensional 

obstruction; this obstruction corresponds to CR structures which do not bound convex 

domains. If these bad negative coefficients vanish, then it is easy to conclude that  the 



C O N T A C T  G E O M E T R Y  AND CR S T R U C T U R E S  ON S 3 

deformation tensor extends holomorphically to define a complex manifold of which the CR 

manifold is the boundary. On the other hand, if we normalize the positive coefficients, 

we find that  there is no obstruction, and that  we can always make the deformation 

tensor have only negative Fourier coefficients. In this case, the CR structure extends 

holomorphically to the exterior of the unit circles (or, in terms of the dual bundle, 

holomorphicaUy to the interior) to define a complex manifold for which the CR structure 

is the pseudoconcave boundary. 

3. Background results----complex analysis 

The Kobayashi metric. The infinitesimal Kobayashi metric at a point pED assigns a 

length to each tangent vector vETpD as follows: 

Ilvll := (sup{A I f : /N --, D is holomorphic; f(O) =p ,  f '(O) = Xv}) -1 

where /X is the unit disc in C 1. The indicatrix for the Kobayashi metric at the point 

pED is the sublevel set in TpD of the infinitesimal metric corresponding to all vectors of 

Kobayashi length less than one. This is a circular domain in the tangent space at p. 

In ILl], Lempert  showed that  for a strongly convex domain D, the infinitesimal 

Kobayashi metric defines a Finsler metric on D (that is, it restricts to the tangent space 

TpD at any point pED as a norm), and that  the appropriately renormalized exponential 

map at any point pED is a homeomorphism from the indicatrix Bp onto the domain D, 

and a diffeomorphism away from the origin. (Recall that  the exponential map for a 

metric is a map from the tangent space to the domain which takes straight lines through 

the origin to geodesics--distance minimizing curves. The appropriate normalization and 

invaxiant description of this map was due to Patrizio [P].) Furthermore, the restriction of 

this map to any complex line through the origin is holomorphic, and an isometry relative 

to the Kobayashi metric on the indicatrix (thought of as a circular domain inside the 

tangent space TpD with its natural complex structure) and the Kobayashi metric on the 

domain D. This map is called the circular representation, 

gtp: Bp ~ D 

between the indicatrix and the domain. This result is a natural  generalization of the 

Riemann mapping theorem to the class of strongly convex domains in C n. 

The plurisubharmonic Green's function. One possible generalization of the harmonic 

Green's function from one complex variable to several variables is known as the plurisub- 
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harmonic Green's function. It is defined as the function up which satisfies the homoge- 

neous Monge-Amp~re equation 

u is plurisubharmonic in D, 

(O~u) n = 0 in D\{p} ,  

u = 0 on OD, 

u(z )=log lz -p[+O(1  ) as z ~ p .  

In the same paper ILl], Lempert showed that if 5p: D ~ R  denotes the Kobayashi 

distance from the point p and T v denotes the real valued function on D defined by the 

formula 

rp(q) := tanh2(6p(q)), (3.1) 

then the function log(rp) is smooth away from p, and satisfies the homogeneous Monge- 

Ampere equation with logarithmic singularity at p. This indicates that the plurisubhar- 

monic Green's function with logarithmic singularity at p is naturally determined by the 

Kobayashi distance from p. 

Conversely, the behaviour for the Kobayashi metric centred at p (and consequently, 

the Riemann map) can be completely determined by the plurisubharmonic Green's func- 

tion up. First, it is clear that the Kobayashi distance from p is determined from u v by 

using the relation (3.1); more is true, though. Since OOu is a closed two form of constant 

rank n - 1 ,  the two dimensional distribution on the tangent space which is annihilated 

by this form is integrable, and the integral submanifolds of this distribution are complex 

curves which correspond to the geodesics for the Kobayashi metric. Since there is a 

canonical Poincar6 metric determined on each of these curves, the Riemann map centred 

at p is again completely determined by the function up. 

Finally, we should note that the Pdemann map pulls back the Green's function from 

the domain D to the Green's function for the circular domain Bp; in the case of the 

circular domains, the Green's function is the same as the logarithm of the Kobayashi 

norm on TpD. 

The moduli space. Since the Kobayashi metric is a biholomorphic invariant of the 

domain, the circular representation is a biholomorphic invariant of the pair (D,p) and 

can be used to construct moduli for the domain. A pair of pointed domains (D,p) and 

(D',p') are said to be equivalent if there is a biholomorphism f:  D--*D' with f(p)=p'.  

Because the Kobayashi metric is a biholomorphic invariant, the linear equivalence Bp~--B~ 
follows and there is a commutative diagram 
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Bp ~D 

, i 
B~ ~P) D. 

Thus, the pointed domains are equivalent if and only if the equivalence factors through 

a linear equivalence of their circular representations. 

The above observations lead to a natural construction of a moduli space for pointed 

domains up to biholomorphic equivalence. First, we use the circular representation to 

pull back the complex structure from the domain D, and represent it as a deformation 

of the complex structure on the circular domain Bp; we refer to the circular domain with 

this deformed complex structure as the circular model. Then, two pointed domains will 

be biholomorphically equivalent if and only if their circular models are linearly equivalent. 

The description of the moduli space is thus reduced to describing the moduli space of 

circular models. The power in this approach lies in the fact that the space of circular 

models admits a very elegant description, and it can be effectively parameterized. (See 

[BD1] for details.) 

Restriction to the boundary. If S 3 is differentiably imbedded as the boundary of a 

strongly convex set in C 2, then the complex structure from C 2 restricts to the image of 

S 3 to define a one complex dimensional subbundle of the complexified tangent bundle to 

the image---a CR structure. Furthermore, since the image is the boundary of a strongly 

convex set (strongly pseudoconvex would be sufficient), the CR structure thus defined is 

strongly pseudoconvex. 

When studying such questions as the equivalence of bounded convex domains in C 2, 

it is sufficient to restrict one's attention to the equivalence of their boundaries. Indeed, it 

was a deep theorem by C. Fefferman [Fe] that any biholomorphic map between strongly 

convex domains extends smoothly to a diffeomorphism (and hence, a CR equivalence) 

between the boundaries. (The local version of this result is due to Lempert [L1].) On the 

other hand, it has long been known that any CR equivalence between the boundaries can 

be extended to a biholomorphic map between the interiors. (In one complex variable, 

there are conditions on the parameterization of the boundary equivalence; given those 

conditions, the extension follows from Cauchy's integral formula.) 

The implication of these observations is that any naturally defined object on the 

interior of a convex domain should correspond to some invariant object on the boundary 

of the domain; any description of the moduli space for convex domains should have a 

corresponding description of a moduli space for CR structures on the boundary of the 

domain. The main purpose of this paper is to draw this correlation for the case of small 
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perturbations of the standard sphere. 

4. Interpretations of  the results 

Relation to convex domains. The results in this paper arose from an a t tempt  to describe 

the Lempert map (and the modular data  for convex domains) completely in terms of 

analysis on the boundary of the domain. As a natural  result, the particular normaliza- 

tions which we have chosen lead to a rather precise correspondence between objects on 

the boundary and objects on the domain. This correspondence should not be lost in 

the analysis in the paper, and we would like to emphasize it here. Before we draw this 

correspondence, we should remind the reader that  the normalization procedure can be 

interpreted as (i) fixing the underlying coordinate system, and finding a normal form for 

a CR structure under the action of the diffeomorphism group, or (ii) finding a canonical 

map from the standard sphere to the CR manifold such that  the CR structure pulls back 

under this map to one in normal form. 

Modular data, normal forms and the Riemann mapping theorem. It will be shown 

in this paper that  if the CR structure is normalized to have only strictly positive Fourier 

coefficients in the deformation tensor, then it naturally corresponds to a point in the 

moduli space for strongly convex domains [BD1]. More precisely, if the CR structure 

is CR equivalent to that  on the boundary of a convex domain D, then the circular 

model for the convex domain is obtained as follows: Let pED be a base point, and 

pull back the complex structure from the domain to the indicatrix via the exponential 

map for the Kobayashi metric. Write the new complex structure on the indicatrix as a 

deformation of the standard one, and restrict it to the boundary. The indicatrix with the 

deformed complex structure obtained in this fashion is the circular model for the domain 

D, and the boundary of indicatrix with the deformed CR structure is in the normal 

form presented in Theorem 14.2. Moreover, the space of circular models described in 

[BD1] is equivalent to the space of CR structures presented in the normal form given in 

Theorem 14.2 which have no negative (or weight <4, according to the parameterization 

given in the statement of the theorem) Fourier coefficients. Since the circular model for 

the domain D is obtained from the Riemann mapping, obtaining the normal form for the 

CR structure can be viewed as constructing the circular model or the Riemann mapping 

completely from the CR structure on the boundary. 

Notice that  the normal form constructed in this way is only determined up to the 

choice of a base point pED, and a framing at p; this corresponds to the action of a finite 

dimensional group on the normal form (i .e .-- the 'normal form' is only normalized up to 

the action of this finite dimensional group), and we will run into this same indeterminancy 
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in our normalization procedure in this paper.  I t  follows from these observations that  the 

effect on the circular model of changing the base point of the domain is equivalent to the 

action on the normal form of this finite dimensional group. 

I t  is the agreement of the normal form with the description of the circular models 

in the moduli space which leads to the following correspondence. 

Kobayashi discs. In ILl], Lempert  showed that  the singular foliation of the domain 

by extremal  Kobayashi discs through a base point induced a smooth foliation of the 

boundary  by circles. In the normalization procedure on the boundary, we s tar t  with a 

smooth foliation by circles, and the normalization procedure can be considered to be 

normalizing this fol ia t ion-- that  is, finding a differentiably equivalent foliation by circles 

such that  the new circles are the boundaries of extremal  discs for the Kobayashi metric. 

Plurisubharmonic Green's function. The normalization of the circle foliation is also 

equivalent to the normalization of the choice of a contact form. (Actually, the choice of a 

contact form also picks out a natural  R 1 action which is generated by the characteristic 

vector field, and in our normalization procedure, we require this to be a free S 1 action; 

this is slightly more structure than  a differentiable foliation by circles.) On the other 

hand, a solution u to the homogeneous Monge-Amp~re on the domain D also induces a 

natural  contact form i 0u on the boundary, for which the foliation by Kobayashi discs is 

the characteristic foliation associated to the restriction of iOu to the boundary. Thus, 

the normalized contact form is the 'gradient '  of the Green's  function on the boundary  of 

the domain. 

Extension results. The basic idea behind the extension results is rather  simple- 

minded. Start  with a contact structure which is invariant under a free S 1 action. Then 

the manifold M fibres as a principal S 1 bundle over a Riemann surface Z, and the con- 

tact  s tructure can be defined by a contact form y which is S 1 equivariant, and restricts 

to the fibres as the Maure r -Car tan  f o r m - - t h a t  is, the contact form y is a connection 

form on the principal bundle. The principal S 1 bundle imbeds in a complex line bundle 

E:=M| C 1 over ~,  and the S 1 action on M c E  imbeds in a C* action on E.  Construct  

an invariant CR structure on M by choosing any complex structure on ~, and defining 

the holomorphic tangent space on M to be the horizontal lift (via y) of the holomorphic 

tangent space on ~,. This CR structure can be extended to define a complex structure 

on E in such a fashion that  the holomorphic tangent vectors to the fibre directions are 

holomorphic on E (i .e.--if  r is a fibre coordinate, then r 0 /0~  is holomorphic on E)  and 

the horizontal lifts of the holomorphic tangent directions on ~ to C* invariant vector 

fields are holomorphic. Using this complex structure, E is a holomorphic line bundle 

over ~. 
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The extendable normal forms, then, are precisely those which can be expressed 

relative to the invariant CR structure via a deformation tensor which has no negative 

Fourier coefficients relative to the S 1 action. The trick is that the extension result is 

then reduced to a one complex variable result--if, when restricted to any fibre it has 

no negative coefficients, then it extends holomorphically to the entire fibre. It is then 

sufficient to show that this extension defines a deformation of the complex structure on 

the relatively compact component U of (E\M) which is integrable; by the Newlander- 

Nirenberg theorem, U with this deformed complex structure is an open complex manifold 

with the original CR manifold M as its boundary. 

We should point out the philosophical correlation with the Bishop extension tech- 

niques. In [Bi], Bishop extended complex structures by finding complex discs along which 

to extend the structures (see also [HT]). In the current situation, we are essentially doing 

the same thing, where we are choosing a canonical family of discs by any of the following 

normalization techniques: (i) the solution to the homogeneous Monge-Amp~re equation, 

(ii) finding the family of Kobayashi discs which all pass through a given point, (iii) using 

CR geometry to normalize the choice of a contact form on the boundary. 

Direct imbedding methods. In the final section of this article, we indicate how to 

obtain a direct imbedding of the CR manifold. The technique is to use the solution 

operator for the ~ operator associated to the S 1 invariant CR structure, and the normal 

form of the deformed CR structure, to directly produce CR functions relative to the 

deformed CR structure by modifying functions which are CR relative to the S 1 invariant 

structure. The main idea behind this technique was implicitly used in [BD1] in the 

parameterization of the moduli space. However, this technique has not yet been used to 

its potential, and there are some interesting features which are worthwhile to point out: 

(i) In general, it is difficult to write down explicit expressions for solution operators 

to the 0b equation on CR manifolds; however, in this case, it is possible to do so by 

comparing the given CR structure with a second CR structure which is invariant under 

a free S 1 action. 

(ii) The expressions for the solution operators rely on two essential pieces of data: 

the solution operator relative to the S 1 invariant CR structure, and the solution to 

the homogeous Monge-Amp~re equation. More precisely, associated to the solution to 

the homogeneous Monge-Amp~re equation is a canonical volume form on the boundary 

(that is, the CR manifold). The CR functions for the deformed CR structure which 

are obtained by the above process are equivalent to those obtained by starting with 

the CR functions relative to the undeformed CR structure, and adding on a component 

which is L 2 perpendicular relative to the volume form associated to the homogeneous 

Monge-Amp~re equation. 
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(iii) There are very few known examples where the Kobayshi metric can be computed 

explicitly. As the value of this metric is becoming increasingly apparent, this is a huge 

gap in the theory. In particular, while it is shown in [BD1] that  there is a natural corre- 

spondence between strongly convex domains and their circular models, explicit examples 

of this correspondence are hard to find. This technique makes explicit how examples 

of the correspondence can be obtained via the 'back door ' - -s tar t ing with the circular 

model, and finding the CR imbedding functions. In simple examples, these imbedding 

functions can be explicitly written down. 

(iv) Continuing along the lines of the last comment, the explicit maps from the 

circular models to domains in C ~ define canonical representatives within the class of 

strongly convex domains up to biholomorphic equivalence. It would be of interest to study 

what properties these canonical representatives possess, and whether the real ellipsoids 

are among the list of these representives. (If they are, then these are likely to be the 

'best '  choice of canonical representatives; if not, then there is likely some other procedure 

for obtaining the canonical representatives.) 

Relation to other results. Epstein has recently extended his work with Burns [BE] 

to a study of CR structures on three dimensional circle bundles. In [El, he analyses the 

space of three dimensional CR manifolds which admit a free S 1 action, as well as small 

perturbations of such structures. He shows that  small perturbations of the S 1 invariant 

CR structure are generically nonimbeddable, but if the perturbat ion can be written as 

a deformation using only positive Fourier coefficients, then any imbedding of the S 1 

invariant CR structure can be per turbed to an imbedding of the deformed structure. 

We believe that  a Combination of a sharpened version of his 'generic non-imbeddability' 

results and our normal form analysis could lead to a rather simple description of the 

imbeddable CR structures in terms of a filtration of the Hilbert space of normal forms. 

For example, in the case of small deformations of the sphere, we show in this paper 

that  there is a Hilbert subspace of the space of normal forms which corresponds to those 

which are imbeddable as the boundaries of convex domains; then, using a stability result 

obtained by Lempert (see [L3]), it follows that  this Hilbert subspace is precisely the 

space of imbeddable CR structures. In general, we expect that  the set of the imbeddable 

normal forms will still form a Hilbert subspace, but  tha t  there will be further linear 

obstructions on the space of imbeddable normal forms which correspond to obstructions 

to imbeddability in a neighbourhood of certain special imbeddings of the S 1 invariant 

CR structure. 

Also, in the paper cited above, Lempert [L3] studied the imbeddability of CR struc- 

tures using the notion of Beltrami differentials. These Beltrami diffentials basically corre- 

spond to the Lie derivative with respect the circular action of the deformation tensor used 
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in this paper; alternatively, they can be related to an anti-holomorphic twist tensor (see 

e.g. [BD2] where the anti-holomorphic twist associated to the Monge-Amp~re foliation 

for strongly convex domains is related to the deformation tensor used in the description 

of the moduli space in [BD1]). His notions of inner actions and outer actions correspond 

to the deformation tensor having only nonnegative and nonpositive Fourier coefficients 

respectively. The result which we referred to in the last paragraph is a stability result for 

small perturbations of S 3. He established it using the elegant trick of gluing the complex 

manifold which the interior normal form bounds (if it does bound) to the complex man- 

ifold which the exterior normal form bounds in order to construct a compact complex 

manifold which is topologically p2 with the origin blown up, and analysing the stability 

of the spectrum of [ '7 5 o n  the hypersurface contained in this compact complex manifold. 

Finally, Cheng and Lee have also announced that  they are able to obtain a trans- 

verse slice theorem for the action of the group of contact diffeomorphisms on the space 

of CR structures. More precisely, they have shown that  given an arbitrary compact 3- 

dimensional strongly pseudoconvex CR manifold, there is a smooth local sfice for the 

action of the contact diffeomorphism group on the space of CR structures in a neigh- 

bourhood of the given one. Such a result would give a family of normal forms for nearby 

CR structures in terms of deformations of a fixed inital CR structure. 

II. A n a l y s i s  o n  S 3 

5. T h e  g e o m e t r y  

Consider S 3 c C 2 - - R  4. We will use coordinates (xl,yl,x2,y 2) on R 4, and the identi- 

fication zk=xk-kiyk for R4~C 2. The complexified tangent space to S 3 has a natu- 

ral framing given by e=z~O/Oz 1-z~O/Oz 2, ~, T = - 2  Im(zlO/Oz ~-~-z20/OZ2), with dual 

coframing w=z2dzl-z ldz  2, 9, 71=-Im(~log [z[2). With this framing, e is a basis for 

the holomorphic tangent space H(1,0) to S 3 (that is, the restriction of the holomorphic 

tangent space T(1,0) for C 2 to the sphere), and the vector field T is the generator of 

the circular action (z 1, z2)~-~(ei~ 1, ei~ 2) with period 2r.  The fact that  S 3 is strongly 

pseudoconvex implies that  the dual form ~ is nondegenerate; in this case, d~-----iwA~ and 

~^d~#0. 
The above framing for S 3 is also adapted to a natural  contact structure on S 3. 

(Recall that  a contact structure is a co-dimension one distribution on the real tangent 

space which is fully non-integrable that  is, if the distribution is defined by a dual one- 

form, called a contact form, the one-form is non-degenerate; this is the odd-dimensional 

analogue of a symplectic structure.) In this case, the natural contact structure is defined 

by the real and imaginary parts of the holomorphic tangent vector e, and the associated 



C O N T A C T  G E O M E T R Y  A N D  C R  S T R U C T U R E S  O N  S 3 15 

contact form is ~. The nondegeneracy condition on the contact form is that  yAd~?---- 

r /A(iwA~)~0. The vector field T is the characteristic vector field for the contact form 

r/; that  is, it is the vector field which is characterized by the conditions 

(1) T J ~ / ~ I ,  

(2) TJdy=O. 

Next, we consider S a from the point of view of a principal bundle. The characteristic 

vector field T generates a circular action on S 3, with quotient space $2; that  is, S a admits 

the fibration $1--*$3~S 2, called the Hopffibration. In this picture, the orbits of the 

S 1 action are the intersections of complex lines through the origin in C 2 with the unit 

sphere S 3, and the orbit space is the space of complex lines through the origin, pa  ___S 2. 

An algebraic geometric interpretation of this bundle is as follows. The punctured 

complex plane C2\{0} fibres as a punctured complex line bundle over the space of 

complex lines through the origin in C2- - tha t  is, p I ~ S 2 ;  this fibration is given by a 

point pE (32\{0} mapping to the complex line through the origin which it defines. This 

is a holomorphic fibration (the quotient map is holomorphic), and it identifies C2\{0} 

with a punctured holomorphic line bundle over p1; for obvious reasons, this is called the 

tautological line bundle E over p1, or more precisely, it is the complement of the zero 

section of E.  

A norm on C 2 is the square root of a strongly convex function of the form h = e H t zI 2, 

where H is a function which is constant along the lines through the origin. (In particular, 

H respects the above fibration, and defines a function on p1.) The sub-level sets of 

the norm are strongly convex circular domains (domains which are invariant under the 

circular action), and the sub-level set corresponding to the value 1 is the indicatrix for 

the norm. The norm on C 2 defines a norm on the tautological line bundle E,  and the 

level set for the value 1 corresponds to the bundle of unitary vectors in the tautological 

line bundle. 

The imaginary part of the one form 

- Im(0 log h) = - Im(0 log J zl 2 + OH) = ~7- Im(0H)  

restricts to the level set h = l  to define a contact form whose characteristic vector field 

is again the generator of the circular action. On the tautological line bundle, the form 

0 log h is a connection form. (More precisely, the form 0 log h is the connection form; a 

tangent vector to E is horizontal if it is annihilated by 0log h). This connection form 

restricts to the U(1) bundle of unitary frames (the level set h = l )  as - i~+OH. 

The relevance of the above discussion is as follows. When H - 0 ,  the level set h = l  

corresponds to the unit sphere in C 2. In this case we will at various times interpret the 

one form i01ogh=~? as (1) a contact form on the level set h=l  (in order to use contact 
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geometry to normalize the CR structure on the boundary), (2) dual to a circular action 

(in order to use Fourier analysis in the normalization procedures), (3) a connection form 

on the U(1) (or S 1) bundle of unitary frames over p1 (in order to define horizontal lifts 

of frames from p1, or S 1 invariant lifts), and (4) the restriction of a connection form on 

E to the bundle of unitary frames (in order to define extensions of CR deformations to 

deformations of the complex structure on E). The nondegeneracy of ~? (where drt=iw Ar 

can be variously interpreted as (1) the strong pseudoconvexity of the CR structure on S 3, 

(2) the nondegeneracy of the contact form, (3) the negativity of the curvature form of the 

line bundle E (and the negativity of the line bundle), and (4) the fact that d~/descends 

to p1 to define a symplectic structure on p1 (the curvature form defines a positive 

Ks form on p1). Under these various guises, changing the norm h corresponds 

to (1) changing the indicatrix, (2) changing the norm on the tautological line bundle, 

(3) changing the connection form on the tautological bundle E (or the splitting into 

horizontal and vertical directions), (4) changing the contact structure (notice that the 

fibration of C 2 \ {0} over p1 defines a natural identification---or diffeomorphism--between 

any two indicatrices, and we may equivalently be considering ourselves to always be 

working on the standard S 3 and simply changing the contact structure, or the connection 

form), and (5) changing the symplectic form on p1 (the curvature form). 

6. The  ope ra to r s  

The vector field T which generates the circular action induces a natural splitting of the 

complexified cotangent bundle 

T~(S 3) = C.~?~H(I'~176 (6.1) 

Using this splitting, the boundary Cauchy-Riemann operator acting on forms, denoted 

by Cgb, becomes well-defined, and on functions, it is defined by the formula 

Au 

It extends to define the (0, 1) part of a Hermitian connection on the holomorphic tangent 

bundle to $3; furthermore, the (1, 0) part of the associated Hermitian connection is nat- 

urally denoted by 0b, where the metric is the induced metric coming from the imbedding 

$3C C 2. The adjoint operator to 0b is denoted by which on 0~, (0, 1) forms is given by 

the formula 

For basic facts about these operators, and the operators Db--O~Ob+ObO~, and its 

conjugate Db=~Ob-FObO~, one may consult [FS], [BD1]. 
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There is a real variable analogue of these operators. Define a partial connection by 

^ - -  

d = Ob + Ob, 

and the associated sub-Laplacian by 

s = d*d+dd*. 

In terms of the framing for S 3 given above, this operator, acting on functions, may be 

written 

/~(f) = - ( e + ~ ) ( e + ~ ) ( f ) -  J(e+~)J(e+~)(f), 

where 

and 

2 0 2 0 X 1 0 1 0 

- �9 - 2 0 2 0 x l  0 _ y :  0 
J (e+e)=~(e -e )=x  -~yyl +y OxYx:- ~y2 Ox ~" 

(J  is the complex structure tensor for C2.) The operator /~ may be thought of as 

a 'horizontal' Laplacian--the associated self-adjoint operator to the horizontal partial 

derivative (t=Ob+Ob=d (mod ~?). 

Using this horizontal Laplacian, the operator [:]b on functions may be expressed as 

Ob = --e~= 1A + �89 

and its conjugate as 

~b = I -̂~A- �89 (6.2) 

Let G be the Green's operator associated to Oh. (This operator will be discussed more 

fully in the next section.) Then the commutation relations 

(6.3) [T, s  = [G,/~] = [G, T] = [G, A] = [~, T] = 0 

hold, and the fact that  

E]b[-'] b ---- 1~ ~ " ~  �88 TT  

is a real operator implies that  GG is a real operator. 

(6.4) 

7. Hodge theory 

The spaces F k used in this paper are the weighted (or anisotropic) Sobolev spaces which 

we refer to as Folland-Stein spaces. (For basic facts about these spaces, and the properties 

2-945201 Acta Mathematica 172. lmprim6 le 29 mars 1994 



18 J . S .  BLAND 

of the various operators, see [Fo], [FS]. Most of the estimates work equally well for the 

weighted/F spaces, and the HSlder spaces; however, in the case of the H61der spaces, 

the estimates break down when we try to project onto the subspace of functions which 

have only positive Fourier coefficients.) The norms are equivariant with respect to the 

circular action (z 1, z2)~-*(ei~ ei~ 2) on S 3 c C  2, and more generally, under the action of 

the unitary group. Under the circular action, the space of L 2 functions decomposes into 

invariant subspaces; the components of a function in these invariant subspaces will be 

known as its Fourier components, or Fourier coefficients. Under the action of the unitary 

group, the space of L 2 functions on S 3 further decomposes into the invariant subspaces 

Bm,,~, where m is the 'holomorphic' degree, and n the 'conjugate holomorphic degree' 

of the function. (For a full analysis of this decomposition into invariant subspaces in 

the present context, one should refer to [Fo].) The projection operators onto the various 

invariant subspaces are bounded in the weighted Sobolev norms. The two projections 

of particular importance in this paper are the Szeg5 projection, and the projection onto 

the subspace having only positive Fourier components. 

The function space norms may be extended to norms on the spaces of sections of 

various bundles, such as rk(A(~ in the standard way. In this case, the norms 

on the sections are equiwalent to the norms on the coefficients, when the sections are 

expressed relative to the coframing 7/, w, tD and its dual framing. 

At various times, the symbol F k will contain subscripts; these subscripts will refer to 

those elements in the F k space which have only components which lie in some invariant 

subspace. For example, F~_, ro k, Fk__ refer to those elements with only strictly positive, 

zero, and strictly negative Fourier coefficients respectively, and F~ will refer to the 

mth coefficient or to those elements in the imth eigenspace of the operator T. (Notice 

that Fok(S 3) corresponds to functions which are invariant under the S 1 action, and hence 

descend to functions on the quotient space p1.) The space F0k,Re will refer to the subspace 

of real valued functions which are invariant under the circular action--that is, real valued 

functions having only zero Fourier coefficients. Finally, F~_ will refer to the subspace 

which is L 2 orthogonal to the CR functions. Similarly, if we subscript a function in an 

analogous manner, it will refer to the L 2 projection of the function onto the corresponding 

subspace. 

We have the following 0b Hodge theory for S 3. 

THEOREM 7.1 (Folland-Stein). On S 3, there exist integral operators S ( Szeg5 pro- 

jection onto the CR functions), G (the canonical solution operator for Ob) and Q (the 
projection of the space of (0, 1) forms onto the kernel o fO~) with the following properties 
(the operator Avgu takes the average value of the function--or is its L 2 projection onto 
the constants): 
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For a/unction u, 

(1 )  u=GE]bU.-~- ,~u= r"]bGu--~- S u =  (Gr']bU) _ + (G[-']bu)o -~- A v g ( u )  -~- (Gl-lbu)+ -{- (Su)+, 

(2) kerG-~(u I ObU=O}, 

(3) u = V DbU + Su = ObVu + Su = (G •bU)-+ (Su)_ + (G fflbu)o + Avg(u) + (G ~]bU)+, 

(4) kerG---{u I Obu=O}, 
(5) u = (GG [-']b[--]bU) "~- (SU)+ "Jr" (SU)-- "~" Avg(u). 

For a (0, 1) form r 

(1) r162162 
(2) QO~b=0, 

(3) 
Furthermore, the operators are bounded operators between the following spaces: 

(1) G: q=O, 1, 
(2) S: Fk(S3)~Fk(S3),  

(3) Q: 

Proof. The basic estimates for this result are contained in [FS]. In the case of the 

Heisenberg group, everything has been worked out quite explicitly in [GS]; a similar 

approach could be applied to the case of the sphere (see e.g. [Ge]). For more general 

imbeddable three dimensional CR manifolds, one can proceed as in [BG]; the basic facts 

that are needed in this context are that ~)---operators of order 0 are bounded on L 2, and 

that G and S are 1--operators of order - 2  and 0 respectively (see e.g. [BE]). [] 

Remark 7.2. The appropriate generalization of this fact to higher dimensions (in 

the context of this paper) is that there exists a bounded homotopy operator 

P: rk(A(~ - ,  rk+l(A(~ 0 < q ~< n, 

such that for CEFk(A(~ (0<q<n) ,  

r = 0bPr162 

III.  T h e  d i f f e o m o r p h i s m  g r o u p  

8. D i f f e o m o r p h i s m s  o f  S 3 

Our aim in this section is to identify a natural linear structure on the space of diffeomor- 

phisms of S 3 which are sufficiently close to the identity. We will do this by identifying 

small diffeomorphisms with vector fields which are tangent to S 3. 

Consider S3cC2 '~-R 4. Then the linear structure of R 4 may be used to identify a 
) 

diffeomorphism F: $3---*S 3 given by x~-*F(x)=y with the vector F ( x ) - x  tangent to R 4 
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and based at x. After adding an appropriate multiple A of the radial vector field yiO/Oyi 
based at F(x), the new vector field g - Z + A g ,  considered as a tangent vector to R a based 

at Z, is tangent to S 3. This multiple A is given by solving the equation ( g - Z + A g ,  Z ) = 0  

where ( - , . )  is the Euclidean inner product.  The solution A is given by A--(1/(Z, g ) ) -  1. 
Conversely, given a small vector field V on S 3, we may identify a smooth map 

$3--"8 3 by 

If V~ is sufficiently small in the C 1 norm, then this smooth map is a diffeomorphism. 

9. T h e  in tegrab i l i ty  c o n d i t i o n  

In this section, we would like to s tudy the extra conditions imposed on a vector field by 

requiring that  it induce a contact diffeomorphism on S 3. This will require introducing 

new notation in order to write the conditions in a manageable form. For this reason, we 

will proceed in this section to first do the calculations, and then summarize the results 

at the end of the section in the form of a proposition. The proof of the proposition will 

consist of the calculations leading up to it. 

Consider the map $3--*S 3 defined by radially projecting the map S3~--~R 4 given by 

(x k, yk)~_. (x k + X  k, yk +yk)  onto the sphere. Under this map, which we will refer to as 

�9 , the contact form y pulls back to (here u is the Euclidean norm [[(x+X,y+Y)[[): 

k - - - + Y k ~ d ( X k + X k  ) 
= -~{ (xk+X~)d(yk+yk) - - (yk+yk)d(xk+Xk)}  

= -~(y+(Xkdyk- -Ykdxk)§  k - y k d X k ) + ( X k d Y k - Y k d X k ) )  

= ~ (~ l+d(xkYk-ykXk)+2(Xkdy  k - -Ykdxk)+(Xkdyk--YkdXk)) .  

The map �9 is a contact diffeomorphism if and only if r for some nonvanishing 

function p. (Notice, in particular, that  this implies that  �9 is a local diffeomorphism.) 

Thus the condition that  ( X, Y) corresponds to a contact diffeomorphism is that  r  

(mod y); we will henceforth refer to this condition as the integrability condition. 

At this stage, it is convenient to introduce some formalism. We shall do this twice 

once using the real structure of R a and a second time using the complex structure of C 2. 
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Recall that the characteristic vector field T for the contact form ~7 is defined by the 

conditions 

(1) T/~?-- 1, 

(2) T_]dy=O. 
(We have now restricted to S 3, where dy is of rank 2.) For the tangent vector V= 
X k O/Ox k §  O/Oyk write 

V = X~ + VH where VH-J ~? = O. 

Next, we introduce the partial exterior derivative d by d=d (mod 7), where this is 

defined relative to the splitting of the cotangent space defined by T. Then the integra- 

bility condition on V=X~ becomes 

I (X  ~ VH):= d(X~ k --YkdXk) = O. (9.1) 

The final term in this last expression can be written in a more elegant fashion by 

using the inner product ( - , . )  coming from l:t 4 as well as the complex structure operator J 

defined by J(O/Oxk)= O/Oy k, J(O/Oy k) =-O/Ox k and corresponding to the identification 

R4~"C 2 =  . Then 

Xk [IY k - yk  d x  k = (JV, dV). (9.2) 

Since V=X~ and J T - - - v  where u is the outward pointing unit normal to S 3, we 

can use the partial connection V on T(S 3) corresponding to c~ and expand this term to 

(JV, dV) = ( - X ~ 2 4 7  JV , ,  d( X~ )) 

= (dVH, JVH)+ (d(X~ JVH)-X~ dVI-I) -X~ d(X~ 

= (dVH, JVH)+d((X~ JVH)-  ((X~ d g v , ) - X ~  dYH)-X~ d(X~ 

= (dVH, JVH)4-0+ (J(X~ dVH) -X~  dVH) -X~ d(X~ 

= (dVH, JVH) -2X~ dVH) +X~ X~ 

= (dVH, JVH) +2X~ VH) +0 

= (dVH, JVH)-X~ 

(The last line follows from explicitly writing out both sides of the equation, and using 

the observation that du is the 'shape operator' for S 3 restricted to the directions tan- 

gent to the contact distribution.) Substituting this into equation (9.1), the integrability 

condition becomes the vanishing of 

I( X ~ VH ) :-- d( X ~ -f (VH-J d~l) 4- <dVH, JVH) - X ~ ( JVI~I-J d~l). (9.3) 
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Our second expression for the integrability condition will be in terms of the standard 

CR structure on S a induced by the complex structure of C 2. First notice that the contact 

form ~/=-Im(zkdzk)= - Im((glog Iz[ 2) annihilates both the holomorphic and conjugate 

holomorphic tangent spaces to S 3. Thus, we can write 

VH=Z+2 
in a canonical fashion, where Z is a vector field of type (1, 0). Using the canonical splitting 

of the complexilied cotangent bundle of S 3, which is induced by ~? and its characteristic 

vector field T, into 
T~S 3 = C.~}@H(1, ~ @H(0,1), 

and the fact that the integrability condition IE H 0'~ @H (0'1) is a real form, an equivalent 

integrability condition is that the projection of I onto the (0, 1) subspace is zero. Taking 

note of the facts that JZ=iZ  and d=0b+Ob, the complexified integrability condition 

becomes the vanishing of 

I(~176 Z) := Ob(X~ ZAd~+ (J(Z+ Z), Ob(Z+ 2 ) ) - X ~  YZA&?). 

Setting 

(X, Y) = X~  Z+ Z = X~  fe+ ]~, 

the complexified integrability condition becomes the vanishing of 

I(~176 fe) = Ob(X~ f~+(i( fe--  f~), (Obf)e+(Obf )~)--xO(i fe-J iwAc0) 

= Ob(X ~ + i f ~ + X ~  ~( fObf- fo~f)  

= &(X  ~ +if~+X~ l ( fObf - - fObf  ). 

We have established the following proposition. 

PROPOSITION 9.4. Let �9 denote the diffeomorphism of S s obtained from the vector 

field 
(X, Y) = X~  VH = X~ fe+ f ~ 

by mapping the point (x, y) to the point (x+X,  y + Y) and radially projecting it back to 
the sphere. Then 

r = ~ ( ~ + d ( x ~  +(VHJdy)+ (J(X, Y), d(X, Y))) 

and if we define the integrability tensor by 

I (X  ~ VH) = d(X ~ + (VHJ &7) + (X k ~-k _ yk dXk), 

and its complexified version by 

I(~ ~ fe) =Sb(X~ f ~ T  X~ f ~ + l  (f-Obf -- fObf ), 

then ~ is a contact diffeomorphism if and only if I=0 .  



CONTACT GEOMETRY AND CR STRUCTURES ON S 3 23 

COROLLARY 9.5. I f  the vector field (X, Y)  is invariant under the S 1 action, then 

~ * ~ = y § 1 7 6  VH)). 

Proof. Since the vector field (X, Y) is invariant under the S 1 action, it defines a 

bundle automorphism; since the fibration is preserved by the map r  and y restricts to 

the fibres to have period equal to 2r ,  this property is preserved after pulling it back by 

the map ~. This means that  r  (mod w,~),  and the result follows. [] 

IV.  C o n t a c t  d i f f e o m o r p h i s m s  

10. 

In the last chapter, we showed that  we could introduce a linear structure on the space 

of diffeomorphisms near the identity by identifying diffeomorphisms with vector fields 

tangent to $3; we can make this into a weighted Banach space structure by using the 

weighted Sobolev space norms on the coefficients of the vector fields. We also showed 

that  the subset of diffeomorphisms which preserved the contact structure was a non-linear 

subset-- those which satisfied a non-linear PDE which we referred to as the integrability 

condition. In this section, we would like to show that  the space of solutions to this PDE 

is a Banach submanifold, and hence, that  the space of contact diffeomorphisms inherits 

a natural  weighted Banach space structure. The main theorem will be the following: 

THEOREM 10.1. Let S 3 have the standard contact structure defined by the one 

form ~?. Then there is a natural weighted Banach space structure on the space of contact 

di~eomorphisms close to the identity. In particular, there is a neighbourhood of the origin 

in this Banach space which can be parameterized by a single real valued function. 

We should point out the interest in this theorem. It is well known that  contact 

diffeomorphisms can be parameterized by a single real valued function, called the gener- 

ating function; moreover, one can parameterize them in such a fashion that  the generating 

function is in some Sobolev space if and only if the diffeomorphism is in the Sobolev space 

with one less derivative. Theorem 10.1 asserts that  one can replace the ordinary Sobolev 

spaces by weighted (or anisotropic) Sobolev spaces--those which involve L 2 estimates 

on derivatives only in those directions which are tangential to the contact distribution. 

In one sense, these weighted spaces are perhaps the most natural  spaces in which to be 

working, since contact diffeomorphisms preserve the weighted spaces; on the other hand, 

in this instance it is absolutely essential. We will be solving the 0b equation later in the 

paper, and we would like to do so without losing derivatives. These weighted spaces (in 
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this context, they are referred to as the Folland-Stein spaces) are precisely the spaces 

for which one can solve the ~ equation without losing derivatives. 

The existence of the weighted Banach space structures on the space of contact dif- 

feomorphisms of S 3 with its standard contact structure is really a theorem in contact 

geometry. Its proof could be given without reference to CR geometry by using a Hodge 

theory for the partial exterior derivative d. However, we have used the analysis associ- 

ated to the ~ operator in the proof because this is the 'existing technology straight off 

the shelf' with which we are most familiar. 

11. D e s c r i p t i o n  o f  t h e  m a p  L 

In the last chapter, we expressed the condition that  the vector field ( X ~  
corresponds to a contact diffeomorphism as the vanishing of the (0, 1) form (we will 

henceforth refer to this expression simply as I): 

---~ 1 (0 ,1 ) (X O, re) ~- & ( X  O) +i f ~ +  X~ f&+ ~-~ (lOb f - -  fObf ). I 

We would now like to parameterize the set of all vector fields which satisfy this integra- 

bility condition. 

Let ( X ~  be a vector field. Then the (1, 0) component can be expressed 

as it is as fe,  or, alternatively, after raising an index via the natural two form associated 

to the contact form, we can express it as a (0, 1) form. That  is, 

f e..Jd~? = f e..J ivJ AD = i fD. 

On the other hand, for any (0, 1) form, we have the Hodge decomposition 

= (11.1) 

where the operator G is the canonical solution operator associated to 0b, and the operator 

Q can be taken to be defined by the equation above. (Thus, it is the orthogonal projection 

onto the kernel of the operator 0~; see Theorem 7.1.) Define 

p-- GO~ (i f~) (11.2) 

and 

so that  

iH~ = Q(i f~)  (11.3) 

i.fO = Obp+iH~; (11.4) 
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then p is orthogonal to the CR functions, and H is conjugate CR. Throughout the 

remainder of this section, the functions f ,  p, H will be related as above. This will lead 

to a considerable simplification in the calculations. 

We now introduce a mapping L which is admittedly somewhat complicated. The 

purpose of this non-linear mapping is to construct a local Banach space diffeomorphism-- 

the domain of which is the space of F k vector fields (or diffeomorphisms), and the image of 

which will lie in a certain linear subspace of the range if and only if the diffeomorphism is 

a contact diffeomorphism. Thus, the map will induce a weighted Banach space structure 

on the space of contact diffeomorphisms. 

Roughly speaking, the idea behind the map L is as follows. One would like to 

construct an isomorphism (X ~ fe)~--~(I,g), where g is a real valued function. Then the 

inverse image of (0, g) would be the contact diffeomorphisms, and the function g would 

para.meterize them. Unfortunately, if the data (X ~ fe) have k derivatives, then I has 

only (k -1 )  derivatives. 

This issue is circumvented by breaking I into components. By Hodge theory, 

I = o~GOgI+Q(I). 

We will show that the only component which loses too many derivatives is 0b of the real 

part of GO~I. (The other components all have k derivatives.) Thus, we break I into its 

components, and when we invert the map, we set X~ then the inverse map gains 

back one derivative on this component. We also gain one derivative in the mapping L by 

choosing the real valued function g to be roughly the real part of GOg(if~). The addi- 

tional complications in the mapping L arise from incorporating the reality condition--it 

is necessary to further decompose the spaces according to their negative and positive 

Fourier components, and to replace the operator 0~0b by the closely related real opera- 

tor ~-]bi--~b . 

We now define the mapping. Using f ,  p, H as in equation (11.4), define the mapping 

L by: 

L(XO, fe) -* = ((COg I ) _ ,  Re(a0gI)0, Avg(X~ 

(COg (if~))_, Re(G0g (i/w))o, (GG' Im(Db0gI))0, 

( GG Im(E]bO; I) )+, Q( I) ) (11.5) 

= ((GO~ I)_, Re(G0gI)0, Avg(X~ 

p- ,  Re(p0), ( GG Im([DbO~ I) )o, 
( GG Im(DbOg I) )+, Q( I) ) (11.6) 

where Avg(X ~ is the L 2 projection of the function X ~ onto the constants. 
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PROPOSITION 11.7. The vector field X~ fe+ ]~ corresponds to a contact diffeo- 
morphism if and only if 

L(X ~ fe) = (0, 0, Avg(X~ (G3; (i f~) )_, Re(G3; (i f~) )o, O, O, O) 

= (0, 0, Avg(X~ p_, Re(p0), 0, 0, 0). 

Proof. It is clear that if I=O, then L(X ~ .re) has the above form. It suffices to 

establish the converse. The integrability condition is that I=0. On the other hand, by 

the Hodge decomposition given in Theorem 7.1, the (0, 1) form I can be written as 

I = ObGO; I + Q( I ). 

Clearly, if the image of L is as stated in the proposition, then Q(I)--O. It suffices to 

show that GO;I=O. The vanishing of the first two components in the image show that 

(GO;I)_ =0 and Re(GO;I)o=O. Next, 

(C#Im( b3;0)+ = 0. 

Apply [~b[-] b to both sides to obtain: 

(Im(E]bO; I) )+ = ( h )+ 

for some CR function h (see Theorem 7.1). Expanding the left hand side of this equation, 

(Im(DbO; I) )+ = l ( ([]bO; I)+ --(DbO; I ) -  ) = h+. 

By the previous calculations, G(O;I)_--0, so ObG(O;I)_ =(O;I)_ =0. Substituting this 

observation into the above equation, one concludes that 

~---(E]b3; I)+ ~- h+. 
2i 

Since G []b is the identity on the space of functions with only positive Fourier coefficients 

(see Theorem 7.1), applying G to both sides of the above equation yields 

(3;1)+ =Oh+.  

Finally, since the operator G is defined to be zero when restricted to the CR functions 

(Theorem 7.1), and since the operators G and 0 commute (see equation (6.4)), the above 

equation becomes 

GO;I+ = GGh+ = UGh+ = O. 

A similar (but substantially simpler) argument using the vanishing of the third to 

last factor shows that the imaginary part of the zeroth Fourier coefficient of GO;I also 

vanishes. [] 
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PROPOSITION 11.8. The map L is a C ~ mapping 

L: Fke(S 3) x rk (H(,,o) (S3)) -~ r k_ (s  3) x r[~,o,• 3) • Re • (s 3) 
k + l  3 k + l  3 xF0,Re,.(S )xF0,Re,• ) 

•177 3) • 

Proof. The components of the mapping L are all given by compositions of relatively 

well understood operators. Thus, the main point to check in the proof will be the 

definition of the map - - t ha t  is, that  the image of the map L lies in the appropriate 

spaces. 

To this end, a routine calculation shows that  I maps from F k (S 3) x F k (H(1,0)(S 3)) --* 

Fk-I(H(~ This fact, plus routine calculations, show that  all factors of the image 

of L lie in the appropriate spaces except possibly the last three. For each of these 

components, we will have to check that  the operators do not lose too many derivatives. 

To check that  the second and third to last factors of L lie in the appropriate spaces, 

it is sufficient to show that  the map 

(X ~ fe) ~ Im DbO~I 

is a mapping from Fke ( s  3) • (We point out that  the crucial 

observation here is that  we are restricting to the imaginary part of the map [:]bO~I; the 

real part  of this map actually does lose too many derivatives. In fact, the map L is as 

complicated as it is precisely in order to finesse this point.) 

We now calculate as follows (modulo terms in Fk -3 - - tha t  is, terms which do not 

lose too many derivatives): 

(since ~bDbX ~ is a real operator applied to a real valued function) 

Taking note of the fact that  the first term in the last line is zero (it is the imaginary part 

of a real valued funct ion--  notice tha t  C]b[:]b=[]b~b), we find that  Im([~bO~I) is in F k-3 

as required. 
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To check the regularity of the last factor of the mapping L, is sufficient to show that 

e J  QoI: r ~ ( s  3) x rk(H(1,0)(S3)) -~ r ~ (S3). 

On the other hand, since the image of Q is the space of one-forms in the kernel of 0~, the 

image of ~J Q is the space of conjugate CR functions. Also, the operator G[Z]b restricts 

to the space of conjugate CR functions as an isomorphism. Hence, it is also sufficient to 

show that 

[~bo~lQoI: F~te(S 3) x rk (H0,o) ($3)) --+ rk-~(s3). 

To this end, calculating modulo terms in Fk(H(~ 

>) 

by Theorem 7.1, and 

Furthermore, calculating modulo terms in Pk-2(S3): 

= �89 k-2 

= �89 k-2 

= � 8 9  � 8 9  k - 2  

---- �89 S(e(f  T ( f ) -  fT(I)))-I-F k-2 
= F  k - 2  ' 

where the last line uses the fact that for any function u 

9e(u )  = e J  ( ~ e ( u ) . ~ )  = e J  Q ( e ( u ) - ~ )  = e J  Q ( & u )  = 0, 

by Theorem 7.1. The proposition follows. E1 
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12. The  l inearized map DI,  

The linearization of L at the origin is 

DL(X ~ fe) = ((GO~DI)_,Re(GO~DI)o, Avg(X~ -* " - -* " - (GO0; (z fw) )_, Re(GO b (*fw))o, 

(CGIm(DbO;DI))o, (GGIm([JbO;DI))+, Q(DI)) 

= ((G~;DI)_, Re(G~DI)o, Avg(X~ Re(po), 
( VG Im(E]bO~ D I) )o, ( GG Im(DbO~ D I ) )+, Q( D I ) ). 

Substituting DI(X  ~ fe)=ObX ~ f~=ObX~ § then O~DI=Ylb( X~ +p), and 

D L ( X ~ f e ) -- ( ( GDb ( X ~ -F p ) )_ , Re(G[]b(X ~ +p))o, Avg(X~ p- ,  Re(po), 

( GG Im(E]b[]b( X~ +p) ) )o, ( GG Im([]bOb( X~ +p) ) )+, iR~;) 

= (X ~ +p_, Re(GDbX~ Avg(X~ Re(po), (GG []bDb Im(p))o, 

( GG ODi~b Im(p))+, iR~),  

where we have used the facts that X ~ is real and F]b[-]b i s  a real operator. Continuing 

the calculation (and using Theorem 7.1 again): 

DL(X ~ re) = (X ~ +p_, X ~ -Avg(X~ Avg(X~ 

p_, Re(p)o, ( GG [3b[]b Im(p))o, ( GG []bDb Ira(p))+, iHff;) 

= (X ~ +p- ,  X ~ - Avg(X ~ +Re(p)o, Avg(X~ 

p_, Re(p)o, Im(p)o, (Ira(p))+ -S(Im(p))+,  iHYJ). 

This map is clearly invertible. Components 4, 5, 6 and 7 uniquely determine the function 

p. (Recall that p is defined to be orthogonal to the CR functions.) The last component 

then uniquely determines f by if~;=Obp+iH~. Finally, once p is known, X ~ is uniquely 

determined by the first three components of the map. (Recall that X ~ is real.) We have 

proved the following theorem. 

THEOREM 12.1. There is a neighbourhood of the identity in the space of r k contact 
k+l 3 diffeomorphisms which is parameterized by a neighbourhood of zero in the space rue ( S )  

of real valued functions on S 3. The parameterization is as follows: 

p ~ L-1 (0, 0 , -  Avg(p), p_, Po-Avg(p), 0, 0, 0). (12.2) 

COROLLARY 12.3. The linearization of this parameterization is 

p ~ (X ~ fe) = (-p,  (&p)#) (12.4) 

where # : ( ig~ )~-+ ge is the operator that maps (0, 1) forms to their associated (1, 0) Hamil- 
tonian vector field. 

Proof. This follows from a straightforward calculation. [] 
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COROLLARY 12.5. Under the parameterization in the above theorem, the linear sub- 

space of the parameter space given by S 1 invariant functions corresponds to the contact 

diffeomorphisms which are S x equivariant--that is, the lift of symplectic diffeomorphisms 

of the quotient space SS/S a ~ S  2 relative to the symplectie form drl. 

Proof. The proof follows from a careful check of the steps in the proof of the above 

theorem. If we restrict at the outset to diffeomorphisms which are equivariant with 

respect to the S 1 action, then all of the maps involved restrict to the subspaces where 

the data  is invariant under the S 1 action. (In fact, the only nonlinear map involved is 

the tensor for the integrability condition, I ,  and it is easy to check that  I is invariant 

under the S 1 action if the diffeomorphism is equivariant.) It follows from the proof, then, 

that  the space of S 1 equivariant contact diffeomorphisms are parameterized (in the same 

fashion) by the real-valued S 1 invariant functions p. Notice in this case that  p descends 

to a real valued function on S 2, the S 1 equivariant contact diffeomorphisms descend to 

diffeomorphisms on S 2 which preserve the symplectic form d~?, and we are parameterizing 

the space of symplectomorphisms of S 2. [] 

Remark 12.6. Notice that  S 1 invariant data  roughly corresponds to the lift of ob- 

jects from S 2. In this vein, S 1 invariant CR structures correspond to the lift of complex 

structures on S 2, and S 1 equivariant contact diffeomorphisms correspond to symplec- 

tomorphisms on S 2. The action of the S 1 equivariant contact diffeomorphisms on S 1 

invariant CR structures corresponds to the action of symplectomorphisms on the com- 

plex structure, and a normal form for $1 invariant CR structures will correspond to a 

normal form for the complex structure on S 2. (We are considering the coordinate sys- 

tem on S 2 to be fixed, here.) Finally, if we consider the full space of S 1 equivariant 

diffeomorphisms, these will include diffeomorphisms of S 2 which change the symplectic 

form on S 2, and their lifts will change the contact form to a new S 1 invariant contact 

form. Since all complex structures on S 2 are equivalent (via some diffeomorphism), we 

immediately obtain that  all S 1 invariant CR structures can be normalized to be the lift 

of the standard complex structure on p1 __.S 2 via an S 1 invariant contact form, although 

the contact forms may be different. The choice of the contact form to use for the lifting 

corresponds to the choice of a norm on C 2 (or the tautological line bundle over p1),  and 

the lift of the complex structure via the contact form ~) to an S 1 invariant CR structure 

is CR equivalent to the CR structure obtained by restricting the complex structure on 

C 2 to the circular domain defined by the norm associated to the form #. Thus, there is 

a natural correspondence between the following objects: (i) circular domains in C 2, (ii) 

norms on C 2, (iii) norms on the tautological line bundle over p1,  (iv) curvature forms 

(or symplectic forms) on P 1 ~ $ 2 ,  (v) connection forms (or S 1 invariant contact forms 
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normalized to have period 2~r on the fibres) on S 3, and (vi) S 1 invariant CR structures 
Oil ~3 .  

V. N o r m a l  f o r m s  

13. T h e  a c t i o n  o f  c o n t a c t  d i f f e o m o r p h i s m s  o n  t h e  C R  s t r u c t u r e  

We now determine how contact diffeomorphisms act on the space of the CR structures. 

LEMMA 13.1. If ~ is the diffeomorphism associated to the vector field X~ + f e + f ~, 
then 

r = ~ ( d ( f ( l + i X ~  f2~+(l+iX~ 

Proof. The vector field 

X~ fe+ f~= 2Re((iX~ + fz2) ~-~+(iX~ ) o ~ )  

corresponds to the contact diffeomorphism 

~ ( Z  1, Z 2) = l ( z l - ~ - Z 1  , z2--~Z 2) 

where u=(Izl+Z112+lz2+Z212)l/2 and 

( z  I , z ~) = ((iXOz ~ + fJ  ), ( i X ~  2 _ Iz T )). 

= ~ ((z2+Z2)d( zl +,Z 1) - (z 1 +Zl)d(z2+Z2)) 

1 = ~<d((zl +zl ) ,  (z2 + Z~)), ((z2 +Z~) , - (z l+z l ) ) )  

= l<d((l+iX~ z2)+f(z ~ , - z i ) ) ,  ((l+iX~ 2, - z l )+ f ( z  i , z2))) 
152 

1 0 0 0 2  2 1 1 2 =-~(]d( l+iX )+(1-I-iX )df +( l+iX ) (z dz - z  dz ) 

- f2(z2dz i -  zi dz2)+(l +iX~ dzl + z2dz2 + z2dz2 + zl dzi) ) 

= ~(d(.f(l+iX~176 

which is the statement in the lemma. [] 
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THEOREM 13.2. If the vector field X ~  + f e+ ]~ corresponds to the contact diffeo- 

morphism associated to the generating function p, then the pullback CR structure 

r is defined by the 1-form 

& = w+ ~(f( l+iX~ - f2 +#(1 - i X ~  2 + #e( f (1- iX~ _ 
03. 

e(f(1 +iX~ - # f  2 + (1 +iX~ 2 + #e(f(1 - i X ~  

The action of contact diffeomorphisms on CR structures is 

((X ~ re), Iz), A) ft 

where ft is defined by &=w+/~ .  

Proof. Using the result in Lemma 13.1, 

(~ + : )  = ~ (a(f( l+ i x ~  - f2~ + (1 +iX~ 

+ # d ( f ( X - i X ~ 1 7 6  

= ~ ( e ( f ( l + i X ~ 1 7 6 1 7 6  

+ ~ (e(f(1 + i X ~  f :  +/~(1-iX~ 2 +#~(f (1- iX~ (rood ~). 

It follows that the new CR structure is defined by the function/2: 

e ( f ( l + i X ~  f2 +#(1 - iX~  ~- +#e( f (1 - iX~  (13.3) 
/2 = e(f(1 +iX~ _ # f 2  + (1 +iX~ 2 +#e( f (1- iX~ 

[] 

COROLLARY 13.4. The linearization of the action of contact diffeomorphisms on 

CR structures at the origin is 

((xo, ]e),/2), dA ~/2 = ~(f) +/2 = --i~p+/2. 

Proof. Let #, X ~ f be small--O(t)--and compute ~ modulo terms O(t2). 

{~(f)+~or _ - -2-  
= ~ §  {e~- ]~ i -~ -~o}  ~ + o ( t  ) 

= w+ (~(f)-t- # o (I))~-I- O(t 2) 

= wq-(~(f) -b/z)r 0 (t2), 

and the first variation at (X ~ fe)=(O, 0),/z=O is 

~/2( ( R ~ ]e),  /2 ) = ~(]) + /2. (13.5) 

[] 
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Remark 13.6. The description of the linearization of the action of contact diffeo- 

morphisms on the CR structures is actually more satisfying when expressed in terms of 

deformation tensors. In this invariant formulation, the CR structure corresponding to/2 

is given by the deformation tensor 

(13.T) 

and the linearization of the action becomes 

r162 (13.8) 

= r  (13.9) 

(See equation (2.1) for the definition of the operator # . )  This formulation has the added 

advantage that  it preserves the homogeneity of the Fourier decomposition. If the function 

p is S 1 invariant, then so is the associated deformation tensor; however, the coefficient 

function/2 is not S 1 invaxiant because it is expressed relative to a framing which is not 

S 1 invariant. 

14. Normal  forms 

In this section, we present various normal forms for the deformation tensor; before stating 

the results, we will discuss the main ideas in the procedure. At the linearized level, we see 

in Corollary 13.4 that  we are free to modify the form of coefficient/2 of the deformation 

tensor by terms of the form - i ~ p ,  for some real valued function p. Since p is real valued, 

we are free to choose the negative Fourier coefficients o fp  in such a fashion as to normalize 

certain coefficients of the function/2 to be zero, and allow the positive coefficients of p 

to be completely determined by the negative coefficients and the condition that  p is real. 

This results in the natural normalization that  the coefficients of/2 be perpendicular to 

the image of - i~(p_) ,  at least at the linear level; the nonlinear version then follows from 

the inverse mapping theorem in Banach spaces (for some neighbourhood of the origin). 

Similarly, we could use the positive coefficients of p to determine the normal form for/2. 

There are two points which will become readily apparent in this normalization pro- 

cedure: 

(1) The zeroth (or S 1 invariant) Fourier coefficient of p plays a special role. On 

the formal level, we are trying to normalize a complex valued function by the action of 

a real-valued function. While it is true that  the formal result of this procedure can be 

written down, the answer is not as satisfying as for the other coefficients. On the other 

hand, since this coefficient corresponds to the S 1 equivaxiant contact diffeomorphisms 

(or bundle automorphisms which preserve the connection form ~), it is natural to treat  

3-945201 Acta Mathematica 172. Imprim~ le 29 mars 1994 
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this coefficient separately, and allow arbitrary S 1 equivariant diffeomorphisms in order to 

normalize the CR structure. This will result in a change in the contact form to a new S 1 

invariant one, but  it will enable us to normalize the corresponding complex valued Fourier 

coefficient of fi to be zero. (We will see later that  this coefficient of fi will correspond to 

the S 1 invariant component of the CR structure, and thus descends in a natural  way to 

define a complex structure on $2; normalizing it to vanish is equivalent to normalizing 

the corresponding complex structure on S 2 ~ P  1 to be the standard one.) 

(2) Since we are normalizing the coefficient fi of the deformation tensor relative to 

the framing (e, g, T)  which is not S 1 invariant, the degree of homogeneity of the Fourier 

coefficients will be thrown off; thus, the zeroth Fourier coefficient of p will actually be 

normalizing the fourth Fourier coefficient of ft. This change in the homogeneity could 

have been avoided by referring to the deformation tensor as a whole, or choosing a bet ter  

framing. However, we have chosen this approach in this paper for two basic reasons. 

The first is that  in a paper which is already in preparation, we will deal with the higher 

dimensional case, and we will be forced into presenting the invariant approach there. 

The second reason is that  we feel it is also worthwhile to present this approach. Since 

S 3 is parallelizable, we can do (and have presented much of it as such) all of the analysis 

relative to a fixed parallel framing for S 3, thus obviating the need to refer to tensorial 

analysis. From an analytic point of view, this eliminates much of the machinery which 

seems to be inherent in this problem--a t  least in higher dimensions. 

THEOREM 14.1. Let #EFk- I (S3 )  define a sufficiently small deformation o/the stan- 

dard CR structure of S 3 which is compatible with the standard contact structure. Then 

there is a contact diffeomorphism ~p parameterized by - ' -~k+ l ( s3 )  such that tt can be /)~: XRe 

placed in the normal form f~ E (coker(g) 2 r Fk-  1 ~ m < 4  m )@(~m~>aF~-l)  �9 Furthermore, the 

contact diffeomorphism is unique up to an S 1 equivariant contact diffeomorphism plus a 

preliminary automorphism of the standard CR structure. 

Proof. Consider the map 

k--1 k--1 (rk+l,m((coker(~)2N@Fm)(~(@F m )) k - i  3 k + l  3 (r (S))(~)(r~o Re(S )) k Re ] ~  
m < 4  m ~ 4  

defined by 

(p, po) 

where r is the contact diffeomorphism corresponding to p, and P0 is the zeroth Fourier 

coefficient of p. The linearization of this map at the origin is 

(p, ~) ~-~ ( # - i ~ p ,  po). 



CONTACT GEOMETRY AND CR STRUCTURES ON S 3 35 

The linearized map is surjective, with kernel {(p, #)ll~--po--O, ~ p _  =0}. It is clear that 

the kernel of this linearized map is the set of infinitesimal contact diffeomorphisms which 

preserve the standard CR structure of S 3 (and which are not S 1 equivariant--these are 

included in the last factor of the map). More directly, p is in the kernel of the linearized 

map if and only if p is the restriction of the real part of a linear holomorphic function 

on C 2. [] 

THEOREM 14.2. Let #Erk-a (S  3) define a su]flciently small deformation of the stan- 

dard CR structure of S 3 which is compatible with the standard contact structure. Then 

there is a diffeomorphism of S 3 and a new S 1 invariant contact structure defined by an 

S 1 invariant contact form ~ such that the CR structure can be placed in the normal form 

~E(c~ Fk-l~m j, where f~ defines a deformation of the CR structure 

defined by ~, and the F k-1 spaces are defined relative to the contact structure defined 

by ~. Furthermore, the diffeomorphism is unique up to composition with a preliminary 

automorphism of the standard CR structure. 

Remark 14.3. (1) We should first say a word of explanation about the terminology 

in this and the previous theorem. There is actually a finite dimensional family of nor- 

malizing diffeomorphisms (and their corresponding normal forms) parameterized by the 

projection of (p§ onto the kernel of the linearized map. Elements in the kernel of 

the linearized map correspond to automorphisms of the standard CR structure on $3; 

thus, we may consider the normalizing diffeomorphism to be uniquely determined up to 

a preliminary automorphism of the standard CR structure on S 3. 

(2) The fact that the normal form is only determined up to a finite dimensional family 

has an interesting interpretation. Elements in the kernel of the linearized map correspond 

to automorphisms of the standard CR structure on S 3, or equivalently, the restriction to 

the boundary of biholomorphic automorphisms of the standard unit ball in C 2. In [BD1], 

we showed that for a bounded strongly convex domain in C n, there was a unique normal 

form for the CR structure on the boundary of the domain associated to any choice of 

marking for the domain--that is, for any choice of base point and holomorphic framing 

at that point; thus, the normalizing diffeomorphisms (or the associated normal forms) 

were parameterized by the choice of marking for the domain. Similarly, the biholomorphic 

automorphisms of the standard ball are parameterized by the markings of the ball. Thus, 

we may naturally consider our normal form to be normalized up to the choice of a 

marking of the domain which it 'bounds' (although different markings may result in 

the same normal form--as in the case of the standard CR structure). Alternatively, we 

could completely pin down the normal form for the CR structure by marking the CR 

manifold--choosing a base point on S 3, and specifying certain components of the second 
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order framing at that  point. 

Remark 14.4. Before beginning the proof, we should draw attention to a subtlety 

that  is present. Theorem 14.1 normalizes the form up to an S 1 equivariant diffeomor- 

phism. Thus, the proof of Theorem 14.2 is totally concerned with the action of S 1 

equivariant diffeomorphisms. These have additional properties which will be utilized in 

the procedure. 

(1) S 1 equivariant diffeomorphisms are bundle automorphisms, and they preserve 

the homogeneity of the coefficients. Thus, we may restrict our attention to its action on 

the S 1 equivariant part  of the CR structure. (Notice that  this may also be considered as 

the lift of a complex structure from S 2 via the connection form.) 

(2) For S 1 equivariant data, the weighted Sobolev spaces agree with the unweighted 

Sobolev spaces; in particular, they do not depend upon the choice of S 1 equivariant 

contact form which is used to define the weighted spaces. 

(3) We will allow the use of general S 1 equivariant diffeomorphisms to normalize the 

data. Thus, we will be changing the contact structure, but the new contact structure will 

still be invariant under the S 1 action, and it will be defined by a new contact form which 

is still dual to the flow of the action. Changing the contact structure is tantamount  

to changing the splitting of the tangent bundle to S 3 into its horizontal and vertical 

components. 

(4) Finally, and herein lies the subtlety, we will be considering the action of the 

diffeomorphism on the coefficient # which defines the deformation. If we have changed 

the splitting along the way (or the contact form), we will simply consider the coefficient 

# to be defining the deformation relative to the new splitting. As a result, there will 

be many inequivalent CR structures having the same coefficient function #, but having 

different contact forms; in particular, in the case that  the coefficient # of the deformation 

tensor is identically zero, we will be recovering strongly convex circular domains, and the 

contact form can be used to define a norm on the tautological line bundle over p1 (or a 

norm on C 2) for which the set of all points of norm less than one is the corresponding 

circular domain. 

Proo]. We start  with the normal form given in the previous theorem. Since we are 

only considering diffeomorphisms which are invariant under the S 1 action, it follows that  

its action on the CR deformations will preserve the homogeneity (or Fourier weighting) 

of the various coefficients. Thus, it is sufficient to understand the action on the zeroth 

Fourier coefficient. At this level, the weighted spaces are the same as the unweighted 

spaces. (This observation is important,  and somewhat subtle; the coefficient determining 

the normal form for the deformation tensor will still be in the weighted Sobolev spaces, 
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but where the weighting is defined by the new contact structure.) 

We now consider the action of the S 1 invariant diffeomorphism (I, iqOOp, where ~I,p 

is the contact diffeomorphism induced by the real valued function p, and ~)iq is the 

diffeomorphism induced by the vector field 2 Re(Obiq) # =fe+f~. Since the second factor 

in this diffeomorphism is not a contact diffeomorphism, we must consider its action on 

both the contact structure and the C1% structure. 

To this end, Corollary 9.5 shows that 

r ~(,+I(O, 2Re(Obiq)#))= ~(y+2Rel(~ 

Similarly, Lemma 13.1 shows that 

r = -~ (w + d/- .f2~). 

Thus, under the action of the diffeomorphism ~q ,  the contact structure defined by ~ and 

the CR structure defined by w+poO are pulled back to those defined by the new forms 

and 

= (y+2 Re 1(~ (Obiq)#)) 

= (w+df-f2~)+(l~or 

The linearization of these actions at the origin is given by 

~? ~-, ~?+2 Re(~iq)#J(iwA~) = *?+2 Re Obiq 

and 

o r  

Consider now the map 

(F0k+l) ~ (c~ NFk-1) (3 ( ( ~  F k - l )  __, (coker(~)2 nFk-1)@ ( ( ~  F k - l )  
m > 4  m/>4 

defined by 

(Po +iqo, #) ~ ((~i*q ~ 
where # defines the CR structure in conjunction with the new contact structure defined 

by 7). The linearization of this action at the origin is 

(po+iqo, #)H (#-i~(po+iqo) ). 
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Since the linearized map is surjective, the normal form for/2 follows. Furthermore, since 

the kernel of the linearized map is given by holomorphic automorphisms of S 2, with 

its standard complex structure, the normalizing diffeomorphism is determined up to a 

holomorphic automorphism of S 2. 

We now consider the remainder of the S 1 equivariant diffeomorphism group. Since 

the full group is parameterized by three real valued functions (the coefficients of the vector 

field), and since we have already considered vector fields with arbitrary parameters in 

the contact directions, it suffices to consider the diffeomorphisms corresponding to vector 

fields of the form X = X ~  (Notice that  these correspond to diffeomorphisms which 

simply ' rotate the f ibres ' - - that  is, they cover the identity map on $2.) While it is true 

that  it would have been just as simple to consider the full diffeomorphism group at once, 

we felt that  it was more interesting to t reat  it in stages in order to see the effects of the 

various subgroups on the normalization procedure. 

Consider a diffeomorphism corresponding to a vector field of the form X = X ~  

denote the diffeomorphism by ~xo.  Then again by Corollaries 9.5 and 13.1, 

= 

In particular, ~co  preserves the normal form for the deformation tensor; thus, it suffices 

to choose X ~ in such a fashion as to normalize the contact form. 

To this end, we consider 

r %0 3 ; ( . )  = % (7) 

and its linearized action on the contact form 

r/~-. ~/+d(X ~ +2 Re(0biq) = -- Im 0(log [z] 2 +2q) +2 Re 0 (X ~ 

= - Im t~(log e 2q ]Zl 2 ) +2 Re 0 (X ~ 

where we have extended the definitions of the S 1 invariant functions q, X ~ to C* invariant 

functions on C2\0 ,  and used the 0 operator from C 2. Thus, X ~ is completely determined 

(up to a constant) by the requirement that  the contact form ~] be the restriction to S 3 

of minus the imaginary part  of 0 log u for some norm u on C ~. Such contact forms are 

completely determined either by their curvature form, or by the norm (up to scale) which 

they induce on C 2. 

Finally, notice that  the linearized map is surjective onto the space of Hermitian 

connection forms described above. Thus, the normalized data  for a CR structure consists 
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of a norm (up to scale) on the tautological line bundle E (or equivalently, its connection 

form or its indicatrix in C2), and a deformation tensor in normal form which describes a 

deformation relative to the associated contact form; conversely, any such data  is the data  

for some CR structure. Finally, any CR structure admits only a finite dimensional set 

of possible 'normal forms', which differ by a preliminary automorphism of the standard 

CR structure. [] 

Remark 14.5. The normalization for the contact form in the above theorem could 

also have been expressed in terms of the Hodge theory for S 2. First, any S 1 invariant 

contact form ~ which is dual to the S 1 action differs from the standard contact form 

by the pullback of a real valued form 0 from S 2. Using the complex structure tensor J 

on S 2, we can use Hodge theory to express 0 uniquely as 

0 = du+ Jdv  

where u, v are real valued functions, and Jdv  is co-closed. The normalization in the 

previous theorem is that  the difference between the two contact forms is of the form 

O=Jdv; such contact forms are completely determined by their curvature forms. 

Remark 14.6. Before stating the next theorem, we will have to introduce the full 

harmonic decomposition for the sphere. Let Bm,n denote the invariant L 2 subspaces 

under the SU(2) action, where m represents the holomorphic degree of the subspace, 

and n the conjugate holomorphic degree. 

We include some basic facts about the various operators on these spaces. First, 

e: Bm,n I ~ 
Bm-l,n+l,  m >! 1, 

( O, m = O ,  

e:Bm,nl > ~ Bm+l,n-1, n ~  l,  

t O, n=O.  

Consider the operator ~e: Bm,,~-*Bm-l,n+l--*Bm,n, m>~ 1. 

ker(~e) = 0  - -~  ~e is invertible on Bin,n, m>~l 

---+ ~ is surjective onto Bin,n, m > O. 

It follows that  the operator 

ee: Bm,n iso> Bm+2,n-2, n > 1, 
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satisfies the following: 

and 

ker(~ 2) = Bm,o(gBm4 C ( ~ Fk), 
k>~-I 

coker(~ 2) = Bo,n*B,,,, C ( ~ F k )  
k~<l 

rk -~ Fk+4, 

k<0 k<4 

THEOREM 14.7. Let ~eFk-l(S3) define a sufficiently small deformation of the stan- 

dard CR structure of S 3 which is compatible with the standard contact structure. Then 

there is a contact diffeomorphism of S 3 such that the CR structure can be placed in the 

normal form fie ~I<4 Fk-l" Furthermore, if we additionally require that the components 

o f#  in B2,n~B3,n are specified to be zero, then the contact di~eomorphism is unique up 

to an S 1 equivariant contact diffeomorphism plus an automorphism of the standard CR 

structure. 

Proof. Consider the map 

((e _1) ) Re X r/k \(S2,nUS3,n) ---,r (S)XF0,Re(S ) 
1~4 

defined by 

(p, 

where r is the contact diifeomorphism corresponding to p. The linearization of this 

action at the origin is 

(p, ~) ~ (#- iggp,  po). 

The linearized map is surjective, with kernel {(p, p)[l~=po=O, ~ p _  =0}. It is clear that 

the kernel of this linearized map is the set of infinitesimal contact diffeomorphisms which 

preserve the standard CR on S 3 (and which are not S 1 equivariant--these are included 

in the last factor of the map). More directly, p is in the kernel of the linearized map if 

and only if p is the restriction of the real part of a linear holomorphic function on C 2. [] 

V I .  I m b e d d i n g  r e s u l t s  

15. Extens ion  r e s u l t s - - S  a 

In this section, we will prove imbedding results for CR structures in their normal form. 

We will show that in general, any small perturbation of the standard CR structure on 
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S a is the strongly pseudoconcave boundary of a domain in a complex manifold. (This 

is a special case of a result due to Kiremidjian [K].) Our proof will use the normal form 

given in Theorem 14.7, and this normal form can be thought of as the exterior normal 

-form. (In the proof, we will show that  the deformation extends to a deformation of the 

complex structure on the exterior of the unit ball in p2.)  On the other hand, if in the 

normal form given in Theorem 14.1, there are no negative Fourier coefficients, then the 

CR manifold bounds a convex domain in C2; this normal form can be thought of as the 

interior normal .form, since the deformation extends to a deformation of the complex 

structure on the interior of the unit ball. The method of proof in both  cases will be to 

explicitly write down the deformation of the complex structure on the associated complex 

manifold. In the latter case, the normal form will be identified with the circular model for 

convex domains [BD1], and we will obtain the corollary that  if there exist any negative 

coefficients in the normal form, then the CR structure does not bound a convex domain. 

THEOREM 15.1. Let # 6 F k- 1 ($3) define a sut~ciently small deformation of the stan- 

dard CR structure of S s. Then the CR structure imbeds as the boundary of a convex 

domain if and only if it can be placed in the normal form #6~m>~ 4 F k-1. Furthermore, 

after composition with an S 1 equivariant diffeomorphism, the normal form agrees with 

the data corresponding to a point in the moduli space for marked convex domains. 

Remark 15.2. In the above theorem, the meaning of the various normalizations 

becomes clear. First, recall that  the modular data  for a convex domain is given by 

data  on the tautological line bundle over p1 consisting of a norm on the line bundle 

(the indicatrix) and a deformation of the complex structure which is horizontal and 

holomorphic in the fibre directions. On the other hand, the preliminary normal form 

for the CR structure on the boundary of D (considered as a CR structure on S 3 via a 

diffeomorphism) corresponds to one which extends to define a deformation of the complex 

structure on the unit disc bundle in the tautological line bundle, but  for which the 

extension does not necessarily restrict to the zero section to agree with the standard 

complex structure on p1. The secondary normalization corresponds to composing with 

a diffeomorphism of p1 so that  the deformed complex structure on the zero section agrees 

with the standard one on p1, at the possible cost of changing the norm on the complex 

line bundlc the indicatrix. That  is, the normal form for the CR structure consists 

of an S 1 invariant contact form, and a deformation tensor with only strictly positive 

Fourier coefficients. This corresponds to a point in the moduli space [BD1]. Finally, 

the diffeomorphism which places the data  for the boundary of the convex domain D in 

normal form is unique up to the choice of a base point for the Kobayashi metric on D 

and the choice of framing at that  point. 
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Proof. The proof of the theorem lies in expressing the normal form for the CR 

structure as a deformation of the standard CR structure on the sphere. Then, we can 

either extend the CR structure directly to produce a complex manifold for which it is 

the strongly pseudoconvex boundary, or we can appeal to the moduli space constructed 

in [BD1]. 

To this end, we consider the sphere as the unit circle bundle sitting inside the 

tautological line bundle over p1. Let w be a local complex coordinate for p1, and let 

be a holomorphic fibre coordinate. Choose a horizontal lift ~ of the holomorphic vector 

field O/Ow (using the contact form ~/as the connection form on the unit circle bundle). 

Then the new CR structure can be written as a deformation tensor 

r e Hom(H(o,1), H(1,o)) 

where 

A straightforward calculation shows that  dzV, ~,/5 are related to 3, e, It by 

de=-~, ~=-(2e, ~=~It. 

Notice that  when the deformation is expressed relative to this S 1 invariant flaming, 

then the weight 4 terms of It correspond to weight 0 terms of ~. It follows that  if the 

deformation data  It is in the normal form given in the theorem, then the coefficient ~ in 

the deformation tensor has no negative Fourier components (they start  at weight zero), 

and it may be extended as a tensor to the entire unit disc bundle over p1 by analytic 

extension, disc by disc. Although it is originally interpreted as a deformation tensor CE 

Hom(H(0,1), H(1,o)), it may be naturally identified as an element CeHom(T(0,1),T(1,o)), 

or as a deformation of the fun complex structure of the unit disc bundle. It is easy 

to check that  the deformed complex structure satisfies the integrability conditions (see 

[BD1]), and that  it extends smoothly to the zero section p1. (The zero Fourier coefficients 

correspond to a deformation of the complex structure on p1.)  Thus, the deformed CR 

structure bounds a complex manifold. It is clear that  it is a strongly pseudoconvex 

boundary. 

Now act on the deformation tensor by an S 1 equivariant diffeomorphism which puts 

the deformation tensor in the normal form described in Theorem 14.2. Then the data  

for the normal form consists of an S 1 invariant contact form (which is equivalent to 

prescribing a norm on the tautological line bundle E over p1, or an indicatrix for the 

norm in C 2) and a deformation tensor describing the CR structure relative to the lift 
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of the standard complex structure on p1 to an S 1 invariant CR structure. This normal 

form corresponds to a circular model (or a point in the moduli space) precisely when the 

deformation tensor has only strictly positive Fourier coefficients. 

Finally, notice that  if in fact the CR structure is equivalent to one on the boundary of 

a convex domain in C 2, then the circular model shows that  the CR structure is equivalent 

to one in the normal form given in the statement of Theorem 14.2 with only strictly 

positive Fourier coefficients in the deformation tensor; this property is preserved under 

the action of the finite dimensional group which is not normalized by this procedure. This 

shows that  for CR manifolds which are sufficiently small perturbations of the sphere, the 

CR manifold imbeds as the boundary of a domain in C 2 if and only if the normal form 

has only strictly positive Fourier coefficients. [] 

Our next theorem is a special case of a theorem due to Kiremidjian [K]; we include 

it as an application of our normal form analysis. 

THEOREM 15.3 (Kiremidjian). Let ~EFk-l(~q 3) define a suj~iciently small defor- 

mation of the standard CR structure of S 3. Then there is a complex manifold for which 

this CR manifold is the strongly pseudoconcave boundary. 

Proof. The proof follows from direct construction of the manifold. The original 

sphere can be considered to be imbedded in p2; as such, it is the strongly pseudoconcave 

boundary of the complement of the unit ball. 

Alternatively, we may proceed as follows. Consider the tautological line bundle E 

over S 2. By taking the one point compactification of the leaves, this sits inside a p1 

bundle over S 2. The total space of this bundle is again p2 with the origin blown u p - -  

denoted ~2; the blow up of the origin is the original S 2. In this interpretation, the 

complement of the unit ball in p2 is the exterior of the unit disc bundle in the p1 bundle 

over S 2. It also naturally fibres as a unit disc bundle over the hyperplane at infinity 

in p2. These considerations show that  this bundle is naturally identified with the dual 

of the unit disc bundle associated to the tautological line bundle over S 2. 

As in the previous theorem, the deformed CR structure can be expressed as 

r e Hom(H(0,1), H(1,0)) 

where 

r 1 7 4  

By the normal form in Theorem 14.7, there is a contact diffeomorphism which will nor- 

realize the coefficient ~ in the deformation tensor to have no positive Fourier coefficients. 

This implies that  the tensor can be extended to the exterior of the unit disc bundle inside 
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the p1 bundle. As before, the tensor defines a deformation of the full complex struc- 

ture of the unit disc bundle over the hyperplane at infinity, which is integrable. Thus, 

the CR hypersurface bounds this complex manifold, and it is clear that  it is a strongly 

pseudoconcave boundary. 

Alternatively, if we dualize the bundle (or consider the S 1 bundle as an S 1 bundle 

over the hyperplane at infinity, and hence as the unit circle bundle in the dual to the 

tautological line bundle over the hyperplane at infinity), then the negative coefficients 

become positive coefficients, and the deformation tensor can be analytically extended as 

a tensor on the full unit disc bundle (by holomorphically extending it along the discs), 

and viewed as a deformation of the full complex structure of the unit disc bundle. Again, 

the deformed complex structure is integrable. It follows that  the CR manifold bounds 

this complex manifold, and it is clear that  it is strongly pseudoconcave. [] 

16.  G e n e r a l  e x t e n s i o n  r e s u l t s  

The results in the previous section can be easily generalized to the case where the under- 

lying contact manifold admits a free transverse S 1 action. In this case, the natural  re- 

quirements for the extension of the CR structure to a complex structure on an associated 

manifold is a normal form in which the CR structure can be written as a deformation 

of an S 1 invariant CR structure, where the deformation tensor has no negative Fourier 

coefficients (or alternatively, no positive ones). Finding the normal form can be viewed 

as finding the boundaries of a natural family of discs along which to do a Bishop type 

extension of the complex structure. 

THEOREM 16.1. Let M be a compact three dimensional CR manifold such that 

the underlying contact manifold admits a free transverse S 1 action. Suppose, further, 

that the CR structure admits a normal form relative to this S 1 action which has no 

negative Fourier coefficients. (More precisely, the given CR structure can be expressed 

as a deformation of an S 1 invariant CR structure with no negative Fourier components 

in the deformation tensor.) Then M is the strongly pseudoconvex boundary of a complex 

manifold. 

Proof. First, since S 1 acts freely on M, the quotient space ~ of M by the S 1 action 

is a smooth compact surface, and M fibres as a principal S 1 bundle over ~. Choose an 

S 1 invariant contact form y on M, normalized such that  the periods of the fibres of the 

map are 27r. 

Choose a complex structure for ~, and let w be a local holomorphic coordinate 

on ~. The complex structure on ~ can be lifted to a n  S 1 invariant CR structure on M 
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by defining the horizontal lift e of O/Ow--via the connection form ~---to be a basis for 

the holomorphic tangent space on M. (Alternatively, e is dual to the invariant forms 

~}, dw , d~. ) 

Consider the prescribed CR structure on M to be a deformation of the S 1 invariant 

CR structure just constructed. Let ~ be a holomorphic vector field for the deformed 

complex structure. Since it has the same underlying contact structure, it can be written 

a s  

(The reason for taking the complex conjugates of the coefficients and for the minus sign 

will become apparent below.) The strong pseudoconvexity condition implies tha t  

is non-vanishing on M. Thus, the term [a[ 2 -  [f~[2 is nowhere zero, and either [a[ > [~3[ or 

[/3[ > ]a I. We may assume that  [a[ > [/3[. (Otherwise, by starting with the conjugate of 

the complex structure on Z, we can change between the two cases above.) Since this is 

a global condition on the coefficients, and a basis for the holomorphic tangent space is 

only determined up to multiplication by a non=vanishing function, we will normalize our 

choice of ~ by requiring that  a_--1. 

Associated to the S 1 principal bundle M over E is a complex line bundle E over 

defined by 

E := C| M. 

The S 1 action on M naturally extends to an S 1 action on E,  and is canonically imbedded 

in a C* action on E. Choose a local fibre coordinate ~; the vector field ~0 /0~  is a 

generator of the C* action on E. Extend the S 1 invariant vector field e on M c E  to a 

C* invariant vector field on E. Define a C* invariant complex structure on E by choosing 

the pair 0/0~, e to be a basis for the the holomorphic tangent space. Using this complex 

structure, E becomes a holomorphic line bundle over r., and M is the unit sphere bundle 

in E associated to some Hermitian metric on the holomorphic line bundle E.  The form 

~} extends to E as a connection form for this metric. 

The coordinates (w, ~) are local holomorphic coordinates for the holomorphic line 

bundle, and the surface ~ may be considered as the zero section of this holomorphic line 

bundle. Extend the basis ~ = e - ~  for the given CR structure on M c E  to a vector field 

on the unit disc bundle U of E (that is, the connected component of the complement of 

M which contains the zero section of E)  by extending the coefficients harmonically along 

the fibres. Extend the CR structure from the unit sphere bundle M c E  to an almost 
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complex structure on U by defining 

0 

to be a basis for the almost complex structure. (Notice that  when ~=0 ,  this recovers 

the holomorphic structure of the complex line bundle.) This almost complex structure 

is integrable as long as the coefficient/~ is conjugate holomorphic in the fibre directions; 

that  is, f~ has no negative Fourier coefficients. 

In terms of the dual coframing for the CR structures, the S 1 invariant coframing 

dual to the holomorphic tangent space for the S 1 invariant CR structure on M is given 

by ~, dw, d~, and a coframing for the given CR structure is given by ~?, o), ~ where 

= dw+~d~.  

In a more invariant formulation, the given CR structure can be expressed as a deformation 

CEHom(H(0,1), H(1,0)) of the S 1 invariant CR structure by 

where 

e=e-$(e) 

r 1 7 4  

The deformation tensor r extends to define a deformation of the complex structure on 

the unit disc bundle U if the coefficients of r relative to an invariant framing have no 

negative Fourier coefficients. [] 

Remark 16.2. The zeroth Fourier components in the deformation tensor correspond 

to a deformation of the complex structure on ~. In particular, they can be eliminated 

by appropriately choosing the original complex structure on Z, or the S 1 invariant CR 

structure. 

17. Direct  imbedding results 

The last section characterizes those deformations of the CR structure which arise from 

deforming the complex structure on a holomorphic line bundle. It follows from basic 

results on complex manifolds that  the ring of CR functions for these deformed structures 

is a small perturbation of the ring of holomorphic functions for the S 1 invariant complex 

structure. However, it is instructive to Mso give a direct construction of this perturbat ion 

argument, using only the solution for the []b operator of the S 1 invariant CR structure. 

(Notice also that  it can be expressed in terms of solutions for the 0 operator on tensor 

powers of a holomorphic line bundle over the Pdemann surface ~.) 
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THEOREM 17.1. Let M be a principal S 1 bundle over a complex surface ~ with 

connection form rl. Suppose that 71 defines a contact structure on M. Suppose, in addi- 

tion, that M admits an S 1 invariant CR structure for which the cohomology for [7 b lies 

completely in the negative Fourier components. Let r define a deformation of this CR 

structure which has only strictly positive Fourier components. Then, if r is sufficiently 

small, M with the CR structure defined by r is imbeddable as the strongly pseudoconvex 

boundary of a domain in a complex manifold. 

Proof. We begin by referring to the basic facts about the I'-] b operator which we will 

be using--namely, that  the Green's operator produces the canonical solution for the 0b 

equation with estimates, and it solves the equation whenever the one form is orthogonal 

to the kernel of 0~. We will per turb the CR functions relative to the S 1 invariant CR 

structure to obtain CR functions for the given CR structure by an iterative procedure 

which involves iteratively solving for a correction term using the solution operator to the 

Cgb equation in the S 1 invariant CR structure. 

The iterative procedure is as follows. Let h be a CR function for the S 1 invariant CR 

structure, and let u=~k~=l Uk be such that  h = h + u  is the corresponding CR function 

for the given CR structure. Then we can solve iteratively as follows: 

~oUl = r 

ObUk=r k > l .  

Notice that  at each stage, the solution exists as long as the kernel of 0~ is orthogonal 

to the positive weight Fourier components. Furthermore, we could write down the full 

iterative solution to this procedure as follows: 

= h + u  = G r  h 

k = 0  
o o  

= hq-OgG ~-~(r162 
k = 0  

This sum converges as long as the operator sup-norm of O~Gr is less than one. Fur- 

thermore, 

k=O k = 0  
o o  

= (DbG- I )  ~--~(r162 
k = 0  

In the case that  DbG=I on the space of positive Fourier coefficients, then the right 

hand side vanishes, and the iteratively defined function h is CR relative to the given CR 

structure. [] 
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