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I n t r o d u c t i o n  

A fundamental concept in dynamics of a nongradient character is that of a homoclinic 

orbit, introduced by Poincard in 1890 [P]: an orbit of intersection at large of the stable and 

unstable manifolds of a periodic saddle point. It is well known that when such an orbit 

is transversal, it must be accumulated by periodic saddles of the same index (dimension 

of the stable manifold) as the original saddle with respect to which the homoclinic orbit 

is doubly asymptotic, as shown by Birkhoff in two dimensions and Smale in general [Bil, 

[S]. In fact, in this last reference it was proved that transversal homoclinic orbits are 

always part of a hyperbolic Cantor set, a horseshoe, in which the periodic points are 

dense. 

More recently, it has been realized that the creation and unfolding of a homoclinic 

tangency, say for a locally dissipative surface diffeomorphism, gives rise to a striking 

number of intricate and highly relevant dynamic phenomena: cascades of period doubling 

bifurcations [YA], infinitely many sinks IN], [R], [PT3], strange attractors of Hdnon type 

[BC], [MV], and hyperbolic Cantor sets combined or not with the previous elements 

[NP], [PWl], [PT2]. Also, surface diffeomorphisms exhibiting a homoclinic tangency are 

certainly quite common among nonhyperbolic maps, i.e. maps whose limit set is not 

hyperbolic. Conjecturally, these homoclinically bifurcating diffeomorphisms may even 

be dense in the interior of the nonhyperbolic ones, which has turned out to be the case 

for C ~ surface diffeomorphisms but in C 1 topology [AM]. 

Therefore, it seems to us that an important task in dynamics is to unfold the diffeo- 

morphisms exhibiting a homoclinic tangency through k-parameter families and to inquire 

which of the above or other phenomena are more common or prevalent in terms of the 

Lebesgue measure in the parameter space. The main result in the present paper re- 

presents a contribution to such a program. Let us first explain it in a more informal 
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way. 

A homoclinic tangency may be associated to a single periodic orbit or more generally 

to a (hyperbolic) basic set. Recall tha t  a basic set for a diffeomorphism is a compact, 

invariant, hyperbolic and transitive subset of the ambient manifold, which is the maximal 

invariant subset in some neighbourhood of it; moreover, periodic points are dense in it. 

We say that  a basic set is nontrivial if it does not consist of a periodic orbit. It was 

proved in previous papers [NP], [PT1], [PT2] that  for a generic one-parameter unfolding 

if the Hausdorff dimension of the associated basic set is smaller than one, then the initial 
map exhibiting a homoclinic tangency is a Lebesgue density point of hyperbolic dynamics. 

Here we prove a converse to the above statement: if the Hausdorff dimension of the basic 

set is bigger than one, then for almost all one-parameter families of diffeomorphims the 

initial map is not a density point of hyperbolicity. 
To be somewhat more precise, let f be a surface diffeomorphism exhibiting a qua- 

dratic homoclinic tangency q between the stable and unstable manifolds of a periodic 

saddle point p, p being part  of a basic set K with Hausdorff dimension HD(K)  big- 

ger than one. Amongst the germs of smooth families (fs,t), [s[<~] and [t[<~], such 

that  fo,o=f,  we consider those which unfold the homoclinic tangency at q with posi- 

tive speed. After a local diffeomorphism in parameter space, we may assume that  the 

homoclinic tangency happens along t=0 .  We then require that  the relative variations 

with respect to s of the logarithms of the stable and unstable eigenvalues at Ps,t on 

one hand, and of the stable and unstable Hausdorff dimensions of K~,t on the other, 

should not vanish at s=t=O. (Here, Ps,t and K,,t indicate the continuations of p and 

K for Isl and Itl small.) These three transversality conditions define an open and dense 

subset ]) in the space of germs of smooth families (fs,t), fo ,o=f ;  see w Let ~'~(Ks,t) 

and ~U(Ks,t) be the stable and unstable foliations of Ks,t and define for e > 0  small, 

T~,~={tE(-e, e) : some leaf of .T~(Ks,t) is tangent near q to some leaf of ~'8(K~,t)}. We 

observe that  often such orbits of tangency are still called homoclinic, and in fact in our 

case we even call them primary homoclinic tangencies, since they occur between pieces 

of leaves of J:~(K~,t) and ~'s(Ks,t) near the curves in WU(p) and WS(p) whose extreme 

points are p and q. 

With the above notations and assumptions our result can be stated as follows. 

THEOREM. For each fs,tE)), there is c > 0  such that, for almost all sE(-~?,~?), we 

have 
lim sup m(T~,e_____~) > c 

e--*O g" 

where m(.  ) indicates the Lebesgue measure of the set. 

That  such a statement could be true as well as its proof was much inspired by 
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the remarkable result of Marstrand [Mar] concerning the positiveness of the Lebesgue 

measure of almost all linear projections of plane sets of Hausdorff dimension bigger than 

one. In our case, however, the situation is considerably more delicate due to the lack of 
linearity and even smoothness of the "projections" that we have to consider. 

This paper is divided into four sections. The first one contains the precise setting of 

the problem and a more detailed statement of our result than the one presented above. It 

contains, moreover an indication of how the proof proceeds in the next three sections, each 

of them having a different character: analytic, combinatorial and geometric, respectively. 

The analytical part of the proof is inspired by Marstrand's theorem (w The most 

important objective in w is to establish a combinatorial lemma in the context of symbolic 

dynamics, which is one of the main new ingredients with respect to Kaufman's proof of 

Marstrand's theorem in [F]. Finally, in w we present geometric estimations on the first 

and second order variations with respect to parameters of the distance between stable 

manifolds of nearby points in a basic set. 

1. T h e  s e t t i n g  o f  t h e  p r o b l e m  a n d  s t a t e m e n t  o f  t h e  r e s u l t  

1.1. Let M be a smooth surface and f a smooth diffeomorphism of M. Let A1, A2 be two 

(not necessarily distinct) basic sets of f ,  nontrivial, topologically mixing and of saddle 

type. 

For i=l, 2, let piEAi be a periodic point. We assume that WS(pl) and W~(p2) have, 

at a point qEM, a non-degenerate (i.e. quadratic) tangency. 

1.2. We embed f in a smooth 2-parameter family (fs,t) of smooth diffeomorphisms of 

M, with fo,o--f. We will only be interested in the family for small s, t, i.e. [s[, It[ <77 with 

z} > 0 small enough. For small ~7, A1 and A2 have hyperbolic continuations A1 (s, t), A2 (s, t) 

in (_~},~/)2. For i=1,2, zEAi, we denote by z(s,t) the point in Ai(s,t) associated to z, 

and write WS(z, s, t), WU(z, s, t) for the stable and unstable manifolds of z(s, t) relative 

to f~,~. 

Let us fix a small number E >0 and local coordinates (x, y)E [-E, el2 in a neighbour- 

hood V of q such that: 

- -  q has coordinates (0,0); 

- -  the equation of the connected component of q in W~(p2,0, 0)AV is {y=0}; 

- -  the equation of the connected component of q in WS(pl,0,O)AV is {y=gl(x)), 
where glEC~176 [-~,~]) satisfies g~(0)=g~(0)=0, l<g~'(x)~<2 for xE[--~,e]. 

For small ~/, we can follow these connected components through (-7}, ~})2. They will 
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respectively have for equation 

y = g2(x,  s, t)  (with g2(x, O, O) - 0),  

Y = gl (x, s, t) (with gl (x, 0, 0) = gl (x)), 

for smooth maps gl, g2 e C ~162 ( I -e ,  e] x (-~?, ~?)2, [ -e ,  e]). 

1.3. We will make three transversality hypotheses on the family (fs,t). The first one 

is that  the quadratic tangency of WS(pz, f)  and WU(p2, f)  unfolds generically. Using the 

implicit function theorem, this means that  (with ~ small enough) we may assume that 

the coordinates s, t in parameter space are such that: 

- -  for t < 0  and all s E ( - ~ ,  ~), the function x~-*gl(x, s, t)-g2(x, s,t) is strictly posi- 

tive in I -e ,  e]; 

- -  for t=O, the function x-~gl(x, s, t)-g2(x, s, t) is positive and has a single zero 

in [ -e ,  e]; 

- -  for all (x, s, t) E [-~, e] x ( -~ ,  7/) 2, we have 

O (g2-gl)(z, s, t) i> c > 0, 

for some constant c (we take e smaller if necessary). 

On the other hand, there exists a neighbourhood U1 o fp l  in Wl~c(Pl)f~A1, a neigh- 

bourhood U2 of P2 in Wl~c(P2)NA2 , and, for i=l,  2, a continuous map: 

6] • [ -6 ,  

with the following properties: 

- -  Gi(pi)=g~; 
- -  for (s, t)E(--T},~) 2 and zEU1 (resp. U2), {y--G~(z)(x,s,t)} is the equation of the 

connected component of WS(z, s, t)NV (resp. W~'(z, s, t)NV) which corresponds (in an 

obvious meaning) to the component of W 8 (Pl, s, t) N V (resp. W u (P2, s, t) n V) considered 

above. 

The continuity of G1, G2 guarantees that  (restricting U1, U2 if necessary) we have a 

continuous map: 

UlxU2 T, C ~ ( ( - V , ~ ) ,  ( -~ ,~ ) )  

with the following properties, for all (zi, z2)EU1 x Us: 

- -  if t<T(Zl, z2)(s), the function x-*Gi(zi)(x, s, t)-G2(z2)(x, s, t) is strictly posi- 

tive in [-e,e];  

- -  if t=T(Zl, z2)(s), the same function is positive with a single zero in [ -e ,  e]. 
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We can also assume that, for any zlEU1, z2eUz, zE[-e,e], s, tE(-Th~l) we have: 

OdV2(z2)-Cl(Z~))(z, s, t)/> c > O. 

1.4. We now come to our two other transversality hypotheses. 

For s, tE(-~/, ~?), we define the unstable dimension Al(s, t) of the basic set Al(s, t) 

of fs,t to be the Hausdorff dimension of Wl~c(pl,s,t)NAl(s,t ). Similarly, the stable 

dimension A2(s, t) of A2(s, t) is the Hausdorff dimension of Wr s, t)NA2(s, t). 

We assume that 

~1(0, 0)+~2(0,0)  > 1. 

If the two basic sets A1, A2 coincide, AI(0, 0)+A2(0, 0) is just the Hansdorff dimension 

of A=A1 =A2. 

We also assume that 

0 s ~ A l ( S '  t) (8,t)=(0,0) ~2(s,t) #0. 

(It is known [Man] that A1, A2 are smooth functions of s, t.) 

Let ni, for i=1,2, be the period of the periodic point Pi of f .  For ( s , t ) e ( -~ ,~ )  2, 

let ~l(S, t) be the logarithm of the modulus of the unstable eigenvalue of the fixed point 

pl(s,t) of f ~ .  Similarly, let ~2(s,t) be the logarithm of the modulus of the stable 

eigenvalue of the fixed point p2(s,t) of n2 /:, , .  We assume that 

0s~l(S, t) I 
- - - - - -  p O .  
~2(s, t) (s,t)=(0,0) 

1.5. Before stating our main result, we introduce the following notations. Fix some 

Riemannian metric on M and denote by do the associated distance. 

For i=1,2 and ]s]<z/, let ds be the distance on Ui defined by 

ds(z, z') = do(z(s, 0), z'(s, 0)). 

For r small enough, let B~(r) be the d~-ball in Ui of center Pi and radius r. Let T~(r) be 

the image of B](r) xB2(r)  by the map (Zl, z2)~--*T(Zl, z2)(s). 

THEOREM. Under the hypotheses above, there are constants r l>0 ,  c1>0 such that, 
if O<r<rl and SoE(-y,~?) the set 

{ ( s , t )  : Is-s01 < [log r1-1, t e T~(r)} 

has 2-dimensional Lebesgue measure bigger than cl rllog r1-1. 

Remark. It is easy to see, and we will prove it later, that we have T,( r )C[-cr ,  cr], 

for some fixed c> 0. Therefore, the conclusion of the theorem means that {(s, t ) : ls-  s01< 
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211ogrl -x 

S 0 ~ s 

graph(T(Zl, z2)) 

Fig. 1 

Ilogr1-1, teTs(r)}  has in the rectangle [So-Ilogr1-1, so+llogr1-1] x [-cr, cr] a relative 

Lebesgue measure bounded from below (independent of so,r if they are small enough). 
See Figure 1. 

COROLLARY. There is a constant c2>0 such that for almost all sE(-r / , r / )  we have: 

l imsup m,_o,r,,(T.( ~ > c2 
r ---,0 r 

(where m is 1-dimensional Lebesgue measure). 

Proof of the corollary. Take c2 small enough. If the corollary is false, there exist 

r2<rl and a set Ac( - r / , r / )  of positive measure such that,  for s E A  and r<r2:  

m(Ts(r)) < 2c2r. 

Let soEA and r3<r2 be such that 

m([so-llogr31-1, So+llogr3l-1]NA) > (1-c2)2llog r3] -1. 

Using the remark which follows the theorem (that m(Ts(r))<~cr for all r<r l ,  sE 

(-r/ ,  r/)), we contradict the theorem if c2 is small enough. [] 

1.6. The remaining part of the paper is devoted to the proof of the theorem. We 

give here a short account of the ideas underlying this proof. 

In order to estimate the Lebesgue measure of the image of the map Ts: (zl, z2)~-* 

T(z l ,  z2)(s), we equip B18o ( r )x  B~o (r) with a Radon measure # and consider, for each s, 

its image v8 under Ts. We study v8 via its Fourier transform v8 (w and want to show 

that 

l[f, sl[2L2 dS < c < +oo. 
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This would indeed easily imply that the support of v8 (contained in the image of Ts) has 

positive Lebesgue measure for almost every s, and give an estimate from below for the 

mean value (with respect to s) of this measure. 

This idea was used by Kaufman to give an elegant proof of Marstrand's theorem. 

The parameter s plays here the role of the angle in Marstrand's theorem, and the map 

T8 the role of the projection. 

For this idea to work, the measure v8 has to be absolutely continuous with respect 

to Lebesgue measure for almost all s. In Marstrand's theorem, this  is a consequence 

of an energy estimate on the measure # and of the variation of the angle. In our case, 

the energy estimate is essentially the same, but the map Ts depends in a much more 

complicated way on the parameter. 

More precisely, there are various "angles" involved: at a not too small scale, the 

variation of the "angle" is assured by the relative variation of the logarithms of the 

eigenvalues (second transversality hypothesis, Proposition 1 in w at a very small 

scale, the variation of the angl e is assured by the relative variation of the Hausdorff 

dimensions of A1, A2 (first transversality hypothesis). 

The main problem arises from intermediate scales, which might create a singular part 

of the measures vs. In order to avoid this phenomenon, we have to delete, using a stopping 

time argument, part of the set S l  o (r) • B2o (r), keeping a subset L supporting a positive 

proportion of # but for which these intermediate scales do not occur (Proposition 2 

in w 

All these considerations rely on a quite good control of the map T8 (Proposition 3.10): 

approximate formulas for T~ and its first derivative with respect to the parameter s, 

and bounds for the second derivative. These estimates are themselves consequences of 

approximate formulas and bounds for the distance between stable manifolds of nearby 

points in a basic set, measured along these manifolds, and the variation of this distance 

with parameters (w 

2. Proof of the theorem: the analysis 

2.1. In this section we will give the analytical part of the proof of the theorem. As 

mentioned before, it is inspired by Kanfman's proof of a theorem of Marstrand presented 

in [F]. It requires geometrical estimates and a selection lemma that will be proved in 

later sections. We only state them here. 

In the sequel, c>0, rl >0, j3>1 are constant independent of later choices. 

Let SoE(-rl, r/) , O<r<r l  and I be the interval [So-[logr[-1,So+[logr[-1]. Let 

7-945201 Acta Mathematica 172. lrnprimd le 29 mars 1994 
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t 1 zl, z 1 E B,o (r), z2, z~ E Bs2o (r) and A~ = A i(so, 0) for i =  1, 2. We write 

d = sup(dso (zl, z~), d, o (z2, z~)), 

T(s) = T(zl, z2)(s)-T(z~,  z~)(s), s e I. 

It is assumed that  there exist a measure #~ on B~o(r ) (for i=1 ,2)  and a compact set L 
in 1 2 B,o ( r )x  B,o (r) such that  the following properties hold: 

(i) For any ball Bi of d,o-radius ~e(0 , r )  contained in B~o(r), we have 

c-1~ a '  < #i(Bi) < c~ a ' ,  i = 1, 2; 

(ii) For any sEI, n c S l ( r ) x  By(r); 

(iii) P l  X ~2  (L) > c-  1 r A, +a2; 

(iv) Suppose that  d>r~; then the set 

g :  {s e I :  IT(s)[ < c-ld} 

is empty or is an interval; in the last case we have, for sEJ: 

IT' (s)l >>. c-adllogrl, 

IT"(s)I ~< cdllog r12; 

(v) Suppose that  d<~r ~, and that  (zl, z2)EL, (z~, z~)EL; then the set 

J = {s E I :  [T(s)[ < c - l d  l+ctl~ 

is empty or is an interval; in the last case, we have, for sEJ: 

IT'(s)l >~ c-ldl+cll~ r1-1 ' 

IT"(s)I ~< cd a-~ll~ rl-1 Ilog dl 2- 

2.2. Under these assumptions we will now prove the theorem. Let tt be the restriction 

of #1 • #2 to L. Let So E (--rh y) and 0 < r < rl .  For s E I, let v8 be the image of # by the map 

(Zl, z2)~T(z~,  z2)(s). We win prove that  for almost all sEI, v8 is absolutely continuous 

with respect to Lebesgue measure, and will obtain a bound from below for the Lebesgue 

measure of the support of v~. Because this support is contained in T~(r) (see (ii)), it will 

prove the theorem. 

Let ~ be the Fourier transform of v~. For pER,  we have 

li'(P)lU -- r e2~ipT~'~'(s) d#(z) d#(z'), 
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with Z=(Zl, Z2), Z/"~'(Z i, Z~) and 

Tz,z, (s) = T(zl, z2) ( s ) -T(z  i, z~)(s). 

For po>0, let 

ff  = I~.(p)l 2 dpds = JJL• :Tz,z,(po) d#(z) d#(z'), 

with 

/,f~ /, Zz,z,(po) = e2~iVT~,~,(s) dpds= 1 sin2~rpoT~,r ds. 
po ~ T~,~ , ( s )  

2.3. Fix z, z'EL and just write T for Tz,r We estimate 2:~,~,(po)=2:(po) in various 
cases. The letter d has the same meaning as in w 

Case 1: d>r ~. With J as in w (iv), we have 

~l-j sin2~rpoT(S)T(s) ds] <. cd-1]logr1-1. 

On I, we use the following (classical) lemma. 

LEMMA. Let T be a C 2 monotonous function on an interval J. For any po>0: 

I~J sin 2~rpT(s) ds I ~ e( (inf ]T,])-l+supj [T"[(supj T- inf j  T) 
T(s) (infj IT'I) 3 /"  

Proof. Let u=T(s), ul =supj  T, uo=inf j  T, V(U)=(T' oT-t(u)) -1. 
One has, for u6[uo,ul], 

Iv(u)[ .< (i~f IT'I) -1, 

]V'(u)l ~< sup IT"[ (inf IT'[) -3. 
J 

Also 
I~ sin21rp~ ds = ~[1 sin2~poU o(u)dul" 

Let Vo=V(0) if 0E[uo, ul], Vo=V(uo) if Uo>0, Vo=V(ul) if ul <0. We have 

IV(u)-Vol ~< sup IT"[ (i~f IT'l)-3luh 
J 

hence 
j/~l I sin 2~rpoul o lu{ Iv(u)-vol d u  <<. supj IT"I (i~f IT'l)-3(ul -~o); 
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On the other hand 

~ ul sin21rpou du ~22~Plul sinu du 
~o = ~ o  - ~ < c k o o l ,  

o 71, ~rlvo,Uo 't/, 

which gives the lemma. 
Using the lemma, the definition of J and w (iv), we get in Case 1: 

IIz,z,(po)l ~< cd-lllog r1-1. 

Case 2: d<r ~. Again we have, with the definition of J in w (v): 

~ _ j  sin2rpoT(s) ds <~ cd -1-cll~ Ilogr1-1. 
T(s) 

On J, we use the lemma with the estimates of w (v): 

~j sin 2~rpoT(S)T(s) ds I <<" cd-l-3cll~ ]l~ d12, 

and we conclude that 
]~z,z' (P0)I <~ cd-l-3c[l~ rl-1 [log d] 2. 

2.4. Let 0<0<2r.  By w (i), the set of (z,z') in L x L  for which 

d = sup(dso (Zl, Ztl), dso (z2, z~)) < 

has # • #-measure at most c(rQ) AI+A2 . 
Consequently: 

/~2_T,r~<d<21_,~ r ~z,z' (Po) d#(z) d#(z') <~ Cr2(A~+A2)2-n(A'+A~) An, 

with 
{ r-12n]logr[ -1 if 2-nr > r j3, 

A n :  (r/2n)_l_3cllogrl_~]log(r/2n)[2 if 2-~r<~ r/3. 

We take z/small enough to have/kl-4-/k2>c>l and r small enough to have 

3c[log r[ -1 < �89 D-1 

Then we get 

2-'~(AI+A2)An ~< cr-lllog r1-1, 
n~>0 

Z(po) <. c~ 2 ~  + 2 ~ -  1 I log r I- 1. 
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Letting P0 go to cr we conclude that  for almost all sEI, vs has an L2-density X8 with 

respect to Lebesgue measure and that  

f IIx, ll ., ds <~ cr2~l+2~2-1llog r[ -1. 

Therefore there is a set ACI  of Lebesgue measure ~>c-l[logr[ -1 such that,  for sEA: 

On the other hand, the total mass of v, satisfies: 

[[XsIIL1 = vs(R) = # ( L )  > c-lr ~1+~=. 

By the Cauchy-Schwarz inequality, for sEA, the support of v, has Lebesgue measure at 

least c-lr. The theorem is proved. [] 

3.  T h e  s e l e c t i o n  l e m m a  

Our goal in this section is twofold: after recalling some basic material on subshifts of finite 

type, we express the transversality hypothesis on Hausdorff dimensions in the theorem 

in a convenient form; we then proceed to construct a set L satisfying the assumptions 

of w 

More precisely, the contents of this section are as follows. In w167 we recall the 

basic facts that  we need concerning subshifts of finite type and Gibbs measures. In w 

we translate our transversality hypotheses in the symbolic dynamics setting. The end of 

the section is then devoted to check, from the geometrical estimates given in Proposition 3 

in w the conditions (i)-(v) of w for an appropriate set L. An outline is first given 

in w 

3.1. Consider an integer r~>2, and a subshift of finite type ~+ of the unilateral full 

shift on r symbols {1, ..., r}. Let a be the shift map, and A=(aij)l<<.i,j<<.r be the transition 

matrix determining ~.+. We assume in the sequel that  (~+, a) is topologically mixing. 

For x_----(x(1))l>~o and y=(y(l))l>~o in ~.+, define: 

v(x_, y) = inf{//> O: x(l) # y(/)}, 

d(x, y) = exp(-v(x ,  y)). 

Then (~+, d) is a compact ultrametric space, whose balls of positive radius are called 

cylinders. For a cylinder C, we denote by v(C) the integer such that  the diameter of C 

is exp(-v(C)) .  
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r* v"~ n --1 1 For any continuous function ~ on E +, we write ~ = 2 - ~ 1 = 0  ~oa for n~>0. For 

k,n>~O and m>>.k+n, xEE +, we have: 

rain Sk+.~(y)>~ rain S.~(v)+ rain S~(z ) ,  
v(x,~)>~m v(x,y)>>.m v(a"z,z)>~m-n 

rain Sk+n~(y)<<. rain S.~(y)+ max Sk~(z), 
v(z,~)~m v(x,u)>~m v(c,"x,z)>~m-n 

rain Sk+.~p(y)<~ max S.ta(y)+ rain Skip(z). 
v ( x , y ) ) / m  v ( x , y ) ) / m  v ( a " z , z ) ) / m - - n  

3.2. Let ~o be a strictly positive continuous function on E +. For distinct x, y 6 E  +, 

define, with m=v(x, y): 

d~(x,y)--exp(-  rain Sm~o(z)). v(x,z)>>.m 

Putting also d~(x,x)=O, it follows from the inequalities above that d~ is an ultra- 

metric distance on E+. Moreover, for distinct x, y and O<.n<.v(x, y)=m, we have: 

rain S.io(z)-<" d~(a"x,a"y) v(x,z)~>m -~ mg d~(x,y) <" v(~,x)~,nmax S,~o(z). 

We set d=dl. The identity maps: (E+,d)--*(E+,d~), (E+, d~)--*(E+, d) are H61der 

continuous. The balls of positive radius for d~ are the cylinders; we write [B[~ for the 

d~-diameter of a subset B of E +. 

3.3. Let 5~ be the Hausdorff dimension of (E+,d~). For l<~j<~r, let 

r~] = {~  = (x(t))~>o e ~+:  x(0) = j } .  

For n~>0, denote by E~ the set of cylinders C satisfying C C E  +, v(C)>~n+l which are 

maximal with these properties. They form a finite partition of E +. 

PROPOSITION. Let n>/O. We have: 

max E exp(-5~om~nSn~p)/> 1, 
l ~ j ~ r  CEE~ 

exp(-5 moaxS. ) 1. 
1~<j~<r Cer,}' 

Proof. For 5>0 and a finite family B=(B1, ..., B,) of cylinders, let 

H6(B) = ~ IB, I~. 
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First, let ~i<~i~; consider, for each l<~j<.r, a finite covering Bj of ~+ by cylinders. The 

proposition is trivial for n--0, so let n~>l. Let l<~j<.r, C6~.'~; let l<~k<~r be such that 

an(C)=F~ +, and :~Bc be the covering of C whose image under a n is Bk; by w we 

have: 

H~(Bc) <. exp(-Sn~cnS.~)H~(Bk ). 

Therefore, if Cj is the covering of E+ given by the various Bc, C 6 ~ ,  we have: 

max H~(Cj) <~ D max H~(Bk), 
l ~ j ~ r  l ~ k ~ r  

D =  max ~ exp(-6m~nS,~o). 

If we had D~<I, we would get arbitrarily fine coverings with bounded H6, contradicting 

~i<6~. This gives the first inequality in the proposition. 

Let now ~i>6~o, n~>l. Let, for some l<<.j<~r, B be a finite covering of ~+ by cylinders 

B with v(B)>~n+l. For CE~..~, let 3s be the covering of C by those elements of B 

which meet C; if a " ( C ) = E  +, let Cc be the covering of ~+ image of 13c under a n. We 

have: 

and, by w 

m(Bc), 
C6~ 

It6( Bc ) >/exp ( -5  mcax S.~) H~(Cr ), 

As Cc has fewer elements than B and 6 > 6v, we must have D '~  1, proving the second 

inequality of the proposition. [] 

COROLLARY ([MM], [PV]). The map ~ - , ~ ,  defined on the strictly positive contin- 
uous functions on ~+, is continuous. 

Proof. Let C+(~ +) be the space of strictly positive continuous functions on ~+. 

For ~6C+(~  +) and n~>l, define ~ ( ~ )  by: 

max ~-" exp(-5+(~a)m~nSn~)-- 1, 
l ~ j ~ r  

min exp -6~  ~ S.~)  = 1; 
C'EEj 

D'= rain ~ exp(-~fmaxS,~). 
l ~ j  ~r  CZ-~n " C " 

6 j 

hence 

H~(B) >1 D' inf H~(Cc), vet,'; 
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we have 
~ ( ~ )  ~< ~ ~< ~,+(~) 

by the proposition. On the other hand, the maps ~i +, ~i~-, for n~> 1, form an equicontinuous 

family on C+(~+), and the sequence (~f + -&~-),~>~ converge uniformly to 0 on compact 

subsets of C+(~+). The corollary follows. [] 

3.4. Let V>0, and C~(~ +) be the Banach algebra of HSlder continuous functions of 

exponent V on (F,+, d). Here we simplify the notation, indicating an element x E ~  + by 

xE~, +. For ~o EC~(~,, +) and x, yE~,, +, we have 

IS.~(=)-s.~(v)l < c(~), 

for n<~v(x,y) and some constant C(~), v being defined as in (3.1) above. This is called 

the bounded oscillation property of Birkhoff sums. 
For r E C ~ ( ~, + ), t he Perron-Frobenius operator Lr C "y ( ~ + ) --~ C ~ ( E + ) is defined by: 

Lr ~ X(y)exp(-r  
O'y~Z 

We recall Ruelle's theorem, and the relation to Hausdorff dimension ([Bol], [Bo2], [Man]). 

The spectrum of Lr is formed by a simple eigenvalue ~r >0 and a compact set 

contained in {]zl < L~r 

The eigenfunction he associated to ~r is strictly positive; the complementary invari- 

ant hyperplane is the kernel of a probability measure ur on ~+, satisfying L~(vr162162 
Normalizing he by vr162 the probability measure Izr162 is invariant under 

r and ergodic. 

3.5. The map L: r162 from C~(~ +) to s is analytic, with differential 

given by: 

DcL(Ar  (X) = nr (XAr 

The map e: r162 from C~(~ +) to R is analytic, with: 

Dce(Ar  = pC f Ar d#r 

Let ~EC'Y(F,+), ~>0. The Hausdorff dimension $~ of (E+, d~) is the unique 6>0 such 

that ~(~i~o)=l. The map ~ - + ~  is analytic on C~_(~+), with: 

D~6(A~) = fA~od#r 
f ~ d~  ~*' 
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where r  

Finally, let B be a d~-ball of radius r, n=v(B),  and A a measurable subset of B; 

we have: 

c - l r  6 <~ t~(B) <~ cr ~, 

c_ 1 #(A) #(A) #(B') <~ #(an(a)) <~ c - - ,  #(B) 

where # = # 0 ,  6=8~ and c depend only on % 11~117 and Ilia-ill0. 

3.6. Let us now translate in the setting of symbolic dynamics our geometrical trans- 

versality hypotheses. 

Using a Markov partition for A1, we choose a subshift of finite type ~x of the full 

bilateral left-shift on symbols {1, ..., r l},  and a homeomorphism hx: E1--*A1 such that: 

h i  o(7 = f ohl. 

Similarly, we choose a subshift of finite type E2 of the full bilateral left-shift on 

symbols {1, ..., rg.}, and a homeomorphism h2:~2--*A2 such that  

h2oa= f - l o h  2. 

Replacing if necessary f by some iterate, we assume that  both subshifts are topo- 

logically mixing. 

For ie{1,2},  let E+ be the one-sided shifts on symbols {1, ...,ri} and 7ri: ~ i - - ~  + 
be the canonical projections. 

We recall that  there are continuous linear operators Hi: C~(Ei)--~C'Y(E +) and Oi: 

C~(~.i)--*C~(~i) such that,  for CEC~(Ei) ( i=1,2):  

n , ( r  = r 1 6 2  o~(r 

where 7ri: Ei--*E + is the canonical projection. 

We have fixed some Riemannian metric on M. For z E E1 and s, t E ( - rh  r/), let: 

)~I(Z, 8, t)  = log  IIThl(~)(,,0L,'IE~ II, 

where E ~ is the unstable subspace of fs,t at the point hi (z)(s, t) of the basic set. Similarly, 

for zE~2, s, tE(- rhr / )  let 

~2(z, s, t) = log IITh~<~)(~,of~)IE" II- 
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We may assume that the Riemannian metrics is such that 

)ti(z,s,t)>>.c>O, i =  1,2, 

for zEEi, s, tE(-rh r]). 
For s, tE(-r / , r l )  , i=1 ,2 ,  let A,(s,t) be the map z~-*Ai(z,s,t) from Ei to R.  There 

exists 7 > 0  such that  hi: (s, t)--*)~i(s, t) is a smooth map from ( - r  h ~)2 to C'r(Ei). 
Let ~oi(s,t)=IIi(~i(s,t)); then (s,t)~-%oi(s,t) is a smooth map from (-r / ,~)  2 to 

Let (s, t)E (-rl,  rl). It is well-known (and we will prove in w that the composition 

Wi~r s, t)OA~(s, t) h;:;., 2~ ,~, (E+, d~o,(,,t)) 

is a biLipschitz homeomorphism on a neighbourhood of ax in ~+. Therefore the Hans- 

dorff dimension A1 (s, t) of W]'~c(pl, s, t)NA1 (s, t) is the same as the Hausdorff dimension 

~l(s, t)  of (~+,d~,(s,t)). 
Similarly, the Hausdorff dimension A2(s, t) of W~c(p2, s, t)OA2(s, t) is the same as 

the Hausdorff dimension 82(s, t) of + (~'2 , d~2(s,t))" 
For (s, t) E (-~/, r/) 2, let 

A~i(s,t)= ff--~(~P,(s,t))=II,( O,~,(s,t)). 

Let #i,,,t =#r with el(S, t )=~,(s ,  t)~(s, t). 
From w we have that 

__o log 8,(s ,  t) = 
Os 

(and a similar formula holds with O/Or). 

t ) )  

Taking r/small  enough, the transversality hypothesis on the Hausdorff dimensions 

is therefore equivalent to: 

I#l,s,t(~ (s, t))#2,,,t ( ~= (s ,  t))-#2,s,t(~2(s, t ))m,, , t (A~, (s, t)) I/> c > O. 

For the eigenvalues of the periodic orbit, we have, for i=l, 2: 

ni --1 n i - -1  

= 

j = 0  j=O 

Hence the transversality hypothesis on the eigenvalues in w means that  (taking 7/small 

enough) we have: 

ISn, ~l(S, t)(al)Snzm~2(8, t)(a2)-Sn=~2(8, t)(a2)Sn, m~l(8, t)al) l /> c > O. 
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3.7. Let us go back to the setting and conditions of w We identify Wl~c(pl, s,t)n 
At(s, t) with a neighbourhood of al in E+ and WjSo~(p2, s, t)nA2(s, t) with a neighbour- 

hood of as in E+. 

Let us fix s0E(-~l,r]) and set, for i=1,2:  

~i~i ,so,O, 

= 

J i = / ~  d#i, 

A~oi = A~oi(s0, 0), 

A& = S~, A~i (ai), 

f A~i din. AJ~ 
d 

We use d~ as distance on ~+ and denote by B~(r) the d~-ball of center a~, radius r. 

Our transversality hypotheses mean that: 

SxAS~ # S2ASt, J1AJ2 # J2AJ1. 

Let z~,z~EBl(r), z2,z~EB2(r) as in w and 

T ! T(s)= (zl,z2)(s)-T(zl,z~)(s). 

The main point of properties (iv), (v) in w is that IT(s)l and IT'(s)l should not 

both be too small at the same time. 

Let vt =v(zl, z~), us =v(z2, z~.). 

It will be a consequence of the geometrical estimates of Proposition 3 below that if 

both IT(s)[ and [T'(s)l are small, then 

D1 = 

are both bounded. 

That this cannot happen when vl,v2 are not too large follow from the hypothesis 

S1AS2~S2ASI: this is the content of Proposition 1 below and will imply conditions (iv) 
of w 

For large vt,va, the Birkhoff sums above are related at most points, through 

Birkhoff's ergodic theorem, to the mean values of the functions considered. 

Roughly speaking, we would like to have, for most zl, z2: 

D1 bounded ==e~ ul/v2 ~ J2/J1; 
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hence 

D2 ~ v2lJz/JI AJ1 - A  J21 >>- C--Iv2 

as JJ JlCJJ J2. 

The set L in condition (v) of w is thus constructed by first deleting exceptional 

points for Birkhoff's ergodic theorem. 

But we have also to take the intermediate values of Vl, v2 into account, which are 

covered neither by Proposition 1 nor by Birkhoff's theorem. This is done using a stopping- 

time argument. The precise construction of L is done in Proposition 2 below. 

The rest of this section is as follows: 

- -  in w we state and prove Proposition 1; 

- -  in w we state Proposition 2, which is then proved in w167 

- -  in w we state Proposition 3, to be proven in w 

- -  in w167 and 3.15 we finally deduce conditions (i)-(v) of w from Proposi- 

tions 1, 2, 3. 

3.8. PROPOSITION 1. Assume that S 1 A S 2 ~ S 2 A S 1  . Then there exist constants 

c0>0, r l>0 ,  ~0>1 such that the following property holds: let 0 < r < r l ,  mi=v(Bi(r)) ,  

v ieN ( for i=l ,2 ) ;  if  

1 ~< inf ( V~l ' m2V2) ~<~~ 

then, for all z lEBl(r) ,  z2EB2(r), we have: 

max(lSVlCPl(Zl)-Bv~p2(z2)l, I~qvl Aqol(Zl)-Svz A~2(z2)])/> c01llog rl . 

Proof. In the following, we write c for various positive constants depending only on 

zi, ri, ~i, A~i. Moreover, the dependence on ~oi, Aqoi is only through I1~i117, IIA~ill'r, 

II~oTlllo, Si, AS,,  Ji, A J,. We use repeatedly the bounded oscillation property for the 

Birkhoff sums of ~oi, A~,, which follows from the HSlder continuity. 

With e>0 small enoughl assume that 

[Svl~l(Zl)-S.2~02(z2)1 < ellog rl, 

and for instance ml ~< vl ~< ml (1 + e ), m2 ~< v2. 

We have, for i~-1,2: 

I m,J < c, 

In~. / Si - , logr]  <c; 
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as ~i is positive, we get: 

c -1 (vi - m i )  - c  < Sv,~oi(zi)- mis~ < c(v~ - m i )  +c, 
ni 

- -~ l log  r l  <~ Suz ~ol (Zl)-Su2~o2(z2) < c--bc(l /1-ml)-c-l(v2-m2).  

For rl  small enough, this implies: 

u2 ~ m2( l+c~) ,  

mi 
Sv,~i(z~)-  ~-iS~ < cellogr I. 

We obtain also in a similar way: 

S~A~oi(zi)- m--A~ ASi < cellogr I. 
n~  

If we had also: 

lSvlA~l(Zl)-Sv2l~2(z2)l  < 61log rl, 

we would get, as c I log r 1/> mi/> c -  11 log r I: 

a contradiction for s small enough. We take /30=1+6 and co=E -1. [] 

3.9. PROPOSITION 2. Assume that JIAJ2r 

There exist constants c l , c2>0  and, for any M > 0 ,  constants r ( M ) > 0 ,  c ( M ) > 0  

such that, for any O<r<r(M), we can find a compact subset L of Bl(r)• with the 

following properties: 

(i) #1 • #2(L)>~(M)#I(BI( r ) )p2(B2(r ) ) ;  

(ii) for any distinct yl, zl e B1 (r), y2, z2 e B2(r) such that (Yl, Y2), (Zl, z2) e L, we 

have: 

sup( IS l ( zl  ) -  z2 )l, ISvl ( Zl ) - A 2( z2 )l ) >1 sup(M, cl (vl W U2 -c211og rl) ) 

where vi=v(yi, z~) for i= l, 2. 

3.10. Proof of Proposition 2. 

will write # for #1 • #2. 

We may for instance assume that J1AJ2 > J2AJ1. We 
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Let ~/>0 be a small positive constant, to be chosen later, independent of M. As #i 

is ergodic for i=1,2, we can find a compact subset K~CE + with # i ( K ~ ) > l - ~ / a n d  an 

integer no such that ,  for n>~no and z i6Ki ,  we have: 

IS .~(=~)-nJ~l  < nn, 

ISnAiai(zi)-nAJil  < tin. 

For a cylinder C C E  +, we define 

K i ( C ) = a - m ( K i ) ~ C ,  m = v ( C ) ;  

if ~/is small enough (independently of C), we have: 

#,(K,(c)) >>. �89 (see w 

LEMMA 1. Assume that ~l<c -~. For i=1 ,2 ,  let z i6E  + and qi,vi be integers such 

that 

Then we have 

(s~a~(z~)-s~,~(z~))+Is.~2(~2)-s.,~,(z~)l 

>>. ( sq~(z~)- s,,a~ (zl ) )-Is,~(z~)-s~, ~ (z~ )l+c(~ +~). 

Proof. Writing 

S~ ~i = Sq, ~ + S~, ~i oaq', 

we get, as ~i~no and aq'(zi)EKi: 

f s~ ,~ (~ , ) - sq ,~ , ( z , ) -~ ,J , I  < ~, ,  

ts~, A ~ ( ~ ) -  s~, A~(z~)- ~/~ J~t < ~ .  

It then follows that:  

Is~2(z2)-sv,~l(Zl)l  >1 I~J2-~lJl l - lsq~2(z2)-sq,~(z~)l-~(~x+~);  
Sv2 n ~ 2  (z2) - Sv, n ~ l  (Zl) ~ ~2 A J2 -- ~ lnYl  ~ Sq2 A~2 (z2) -- Sql t ~ l  (Zl) -- ~(~1 + ~2). 

It remains to see that: 

] ~ J ~ -  P~ JlJ +~2AJ2 - p~AJ~/> c(~a +~2). 
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But we have: 

~2(J1 m g 2 -  J2/~ J1) =- gl(P2 A J 2 -  Vl mg l )  q- m JI(Vl  J1 - P2 J2), 

P l ( , ] l /~ J  2 - g2m J1) = Y2(y2 A J 2 -  ~1AJ1)-4-/~ J2(Vl J1 - P2,./2), 

which implies the last inequality since J1 >0, J2 >0, J1AJ2 >J2AJ1.  [] 

3.11. We now proceed to the construction of L. Fix M > 0, which we may assume big, 

and O<r<r(M), with r(M) small, to be determined later. For i = l ,  2, let mi=v(Bi(r)). 
For zieBi(r), we have: 

ISm,~o~(z i ) - I logr l  l <. c, 

e-l l logr[  ~< mi <~ cllog rl. 

We distinguish two cases. (Recall that  we are assuming that  J1AJ2 >J2A./1.) 

Case 1: Sm2A~o2(a2)~Sm~A~Ol(al). 
We have 

lai( Ki( Bi(r ) ) ) >1 �89 Pi( Bi(r) ). 

With an integer mo =mo(M)>>.no to be chosen later, pick cylinders Ci C Bi(r) satisfying: 

and define 

We have 

mi+mo+e >1 v(Ci) >i mi+mo, 

1 C #i(Ki(Bi(r))NCi) >i ~Pi( i), 

L = (C1 NK1 (B1 (r))) • (C2 NK2 (B~ (r))). 

hence condition (i) in Proposition 2 is satisfied if e(M)< 4a-e -c(m~ 

vl, u2 be as in condition (ii) of Proposition 2. 

We have 

I S m ~ l ( z ~ ) - - S m , ~ ( z 2 ) l  <~ C 

p(L)/> �88 �88176 

Let YX, Y2, Zl, Z2, 

and, by the hypothesis of Case 1: 

& , = A ~ 2 ( z 2 ) - & , , A ~ l ( z x )  >>. - c .  

Also, am~(zi)EKi and ui-mi=Pi>/mo>~no; with mi=ai, we then get from Lemma 1: 

(S~2 A~o(z2)-S~lA~ol(zl))+lS~2~o2(z2)-S~l~l(Zl)l >. c((vl +v2)-(ml +m~) )-c'  

>1 cmo  - 4 . 
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With mo>cM and CI,C21 small enough, this implies the inequality in condition (ii) of 

Proposition 2. 

3.12. Case 2: Sm2Acp2(a2)<Sm, ACpl(al). 
The construction of L is more intricate, involving a stopping time argument. 

Consider the family ~" of products C=C1 x C2, where Ci is a cylinder contained in 

B~(r), such that, with q~=v(C~), there exist points uieC1, u2~C2 with: 

[Sq1~O1(U1)--Sq2~2(~2)[ < M, 

ISql ( Ul ) - Sq2 A 2( u2 ) l < M.  

We order ~" by inclusion, and denote by ~'0 the subfamily of maximal elements of ~'. For 

B>0,  let ~'B be the subfamily of ~'o formed by the products C=C1 xC2EYo with: 

v(C~)<~B[logr[, i =  1,2. 

LEMMA 2. For M,B>c, we have: 

gl(Sl(r)) • C U C. 
~B 

Proof. Let uiEKi(Bi(r)), for i=1,2. For all m>~rnl, select an integer r(m)~>m2 

such that 

ISm l(UX)-s cm)  (u2)l c, 
r(rnl)----m2, T(m+l)>/'r(m). 

(this is possible because ~01, ~2 > 0). 

Let Am=Sr(m)A~2(U2)-SmA~OI(Ul) for m>~ml. We 

hence: 

JAm--Am+l [ ~<C, 

and, by the hypothesis of Lemma 2: 

We also clearly have 

--C[Iog r[ < Am~ < c. 

have T(m+ I)<~ T(m)+c, 

c-lm ~ T(m) ~ cm. 

With r(M) small enough, apply Lemma 1, taking qi=mi and B'[logrl<~i<B[logr [, 
v2=r(Vl), B'>c; we get: 

hb, 1 > h ~ l  - -  r  -[-/)2 --rrtl --m2) > 0, 
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hence there exists ml <.m<.vl such that 

ISm~ol(Ul)-ST(m)~2(u2)l <~ c, 

IAml = ISmA~Ol (Ul )-- S~-(m)A~o2(u2)l <x c. 

Let C1 be the smallest cylinder with v(C1)<m containing Ul, and C2 be the smallest 

cylinder with v(C2)<T(m) containing us. We have 

m - c  <~ v(C]) < m x< Vl < Bllog rl, 

T(m)--c~v(C2) <T(m) x< v2 < Bllogrh 

hence C----C1 x C 2 belongs to ~'; this proves Lemma 2. [] 

For C6~'0, define: 

w~(c)= U c', 
C' 6 ~ro 
cnc'#z 

w=(c) = U w,(c'). 
C' 6~ro 

CnC' # Z 

Let also U=Ucey,~ C. 
Choose elements C 1, ..., C N of JrB, with N maximal (JrB is finite), such that: 

i 

Ci+l~  U W2(CJ), l<~i<N.  
5 = 0  

We then have 
N 

v c U w~(cs). 
5 = 1  

With an integer mo=mo(M) )no  to be chosen later, select as in Case 1, for I<.j<~N, a 

product of cylinders 05=0~ x C~ C C5=C~ x C~ such that, for i=  1, 2: 

m0 +v(c~) ~< v(C~) ~< m0+c+~(c~), 
1 A j  ~i(C~ ng , (c~)) />  5 ~ ( C  i ). 

See Figure 2. 

Finally, define 
N 

L = U (C{NKI(C~)) x (C~nK2(C~)). 
j : l  

8 -945201 Acta Mathematica 172. Imprim~ le 29 mars 1994 
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Wl(C') 

1 

w2(c') 

C i 

C j 

Fig. 2 

We first check condition (i) of Proposition 2. 

The C j being disjoint by construction, we have: 

u(L) >1 �88 j) >- �88176 

On the other hand, if C, CIE.To satisfy CClC~r we must have for instance CxcC~, 
C2 DC~; because qoa, qo2 are positive, this implies: 

Iv(C,)-v(C~)[ <. cM. 

From this, it follows, for CE~'0: 

By Lemma 2 we have: 

u(wl(c)) <. ce~ u(c), 

u(w2(c) ) ~ ceCM u(C). 

U D KI(BI(r)) x K2(B2(r)). 

Therefore, we obtain 

l#(Bl( r )  x S2(r)) ~< #(U) ~< E/~(W2(CJ)) ~< cecM2c#(CJ), 

#(L) >1 ~6c-le-C(M+m~ (r) x B2(r)), 

and condition (i) is satisfied provided 

e(M) < ~6c-le -e(M+mO+c). 
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Let yl,Y2,Zl,Z2, vl, v2 be as in condition (ii) of Proposition 2. Let l ~ j ,  k<~N be such 

that (yl, y~.) 6 CJ, (zl, z2) 6 ~k. 

First assume that j<k .  Then, for i=1, 2: 

v~ <. v(C~) <. Bllog rl, 

hence, with c21 small enough 

max(M, cl (vl + v2 - c2 I log r I)) = M; 

if the inequality in Proposition 2 was not valid, the minimal product C=C1 x C2 con- 

taining (Yl, zl) and (y~,z2) (with v(Ci)=vi) would belong to ~'. But then C c W I ( C  j) 
and C k C W2 (C j), contradicting the choice of the C z. 

Assume now that j=k .  With q~=v(C~), we apply Lemma 1 to get: 

>1 (s~A~(z~)- s~, ~ ( ~ , ) ) -  ls~ ~ (~ )  -s~, ~,(=~)1 +c(~ +~ -q, -q~). 

From the definition of ~', 9rB, we have: 

tqd ~< Stlog ~l, 
ISq,~(z2)-sq, v~(~l)l ~< c+M, 

ISq~a~(z~)-S~, a~l(Z~)l ~< ~+M, 

and the inequality of the proposition follows, provided cl,c21 are small enough and 

mo>cM (recall that vi-qi>~mo). 
The proof of Proposition 2 is complete. [] 

3.13. We now state the geometrical estimates proved in w and deduce from them 

the assumptions in w 

PROPOSITION 3. Let ~1 be small enough. 
i + if Zl, z~ 6 ~+, z2, z~. 6 F. 2 satisfy: 

do(z.  a~) < r~ 

do (z~, a~) < r2 

then, writing 

There exist constants r2 >0, c>0 such that, 

for i=1 ,2 ,  

for i =  1,2, 

TI(S) = log ]T(Zl, z2)(s)-T(z~, z2)(s)[, 
! ! 

T2(s) = log IT(z1, z2)(s)-T(zl ,  z~)(s)l, 

v~ = v(z~, z ' )  f o r  i = 1, 2, 



116 J. PALIS AND J.-C. YOCCOZ 

the following estimates, for i= 1, 2, hold: 

r'(s)+~'-I I Ai(aJz,, s, T(zl, z2)(s)) ~< c, 
j = 0  

IT(zl, z2)(s)l <~ csup[d,(Zl, Zl), d,(z2, a2)] = cds, 

d T(zl,z2)(s) <~ cdsIlogdsl. 

3.14. In the context of w let r l > 0 ,  f l > l  to be determined later. 
, t 1 Z2~Z~E Let s0e(-~?,~?), 0 < r < r l ,  I=[so-Ilogr1-1 so+llogrl-1] .  Let Zl,ZleBso(r), 

S2o(r ). Let A ,=Ai ( so ,0 ) ,  

d = sup(dso (zl, z~), dso (z2, z~)), 
T(s) = T(zl,  z2)(s)-T(z~,  z~)(s) 

= [T(zl, z2) ( s ) -T(z~,  z2)(s)] + [T(z~, z2) ( s ) -T(z~,  z~)(s)] 

=Tl(s ) -T2(s) ,  sEI ,  
IT,(s)l = exp ~',(s). 

We assume rl  small enough to have, for any sE(-~?,~), 

B~(rl) C B~(r2) 

which means that  we are in the domain of validity of Proposition 3. 

Let vd=v(zi, z~) for i=1,2. 
Let ~ =~oi(so, 0), A~=A~i(so, 0), #i=]z~,,o,O (cf. w 

Property (i) of w follows from w and Proposition 3 (the metrics d, o and d~, 

being equivalent). 

We now check property (iv), using Proposition 1. We have seen in w that the 

hypothesis of Proposition 1 is satisfied (S1AS2#S2AS1). 
According to Proposition 3 above, we have: 

IT(z1, z2)(s)l -- csup[ds(zl, al), ds(z2, a2)] ~< cr ~, 0 < u < 1. 
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Therefore: 

i~ ~'~'z" ~' ~z~' ~/~))-~Z1 ~,~,z,, ~o, 0) < ~,11o~1-1, 
j=0 

Also 

~ ' - ~  0)-S.,~(z~) 
, j=0 

hence ]ri(s)+S~,~oi(zi)l<cvillogr1-1 (clearly vi)c-l l logrl) .  
We have: 

d ui--1 ui--1 0 5 
ds Z )h(sJzi, s, T(zl,  z2)(s)) = Z -~s A'(a zi, s, TCzl, z2)Cs)) 

j=0 j=0 

s E I .  

. j  u i - - 1  .~ 

5=0 
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with, as above: 

,i'~/_ 0 
-~s Ai( a~z~, s, T( Zl, z2 )( s) ) - S~, A~oi(zi) i[ < cvi l log r1-1 

and IdT(z8, z2)(s)/ds I <<.r '~. Therefore 

~-,(~)+s~,,,~,(~,) I < c~,llog rl -I 

Let 1<~<]3o, with j3o as in Proposition 1. We apply Proposition 1 with balls 
B1, B2 of radius cr containing 1 2 Bso (r), Bso (r) (the respective distances are equivalent). 
We assume for instance that 

d= dso(zl, Z'l) > r E, 

which implies, with the notations of Proposition 1: 

ml ~< Ul ~</~oml, 

if rl  is small enough. 

If the set J of w property (iv), is empty, there is nothing to prove. Assume that 
J contains a point slEI.  We have 

[log d+S~l~ol(zl)[ ~< c, 
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hence 

and also 

Therefore 

But 

and 

imply v2<.cilogr I. We then get: 

I r l ( s ) - logdi< .c ,  s e I ,  

I IT~(s~)l-IT2(s~)ll< c-ld. 

I ~ l ( ~ ) - ~ ( s , ) ]  ~< ~. 

]T2(Sl)+ S~2~2(Z2)] <~ cv2llogr[ -1 

]r2(s l )- log d I ~< c 

[Svl ~01(Zl)--Sv2~02(Z2)[ ~ C. 

Then, by Proposition 1 and the estimates above for dT~(s)/ds, we get 

> c l l l ~  rl, I.  

Also 

[d~(rl(s)-r2(s)) <c ' l og r '  2. 

This shows that  J is an interval and gives the estimates of property (iv) in w 

3.15. For sEI, there is a constant c such that  

Bso(C-lr) C Bs(r) C Bso(Cr). 

Indeed, the distance d~ is equivalent to di,~,0, the distance dso to the distance di,~o,0, 

and the property is clearly true for the balls relative to these distances. 

The hypothesis J1 A J2 ~ J2 A J1 of Proposition 2 is satisfied, as we have seen in w 

With M to be determined later, we apply Proposition 2 in balls Bi(c-lr), in order to 

satisfy property (ii) of w Property (iii) of w (with L as in Proposition 2) follows 

from the conclusion (i) of Proposition 2 and w 

We now check property (v). We therefore assume that  (Zl, z2)En, (Z'l, z~)EL and 
d<~r ~ (with ~ >  1 as above). Again there is nothing to prove when J is empty, hence we 

assume that  there exists sl E I  with 

I IT~(~)I-IT2(~)]  I < c-~a ~+~l~~ ~l-,. 



HOMOCLINIC TANGENCIES FOR HYPERBOLIC SETS 

Assume for instance that  d=dso(Zl, z~). We have: 

Ilogd+S~,~px(z~)l <<. c, 

ITl(s)+S~,~l(Zl)[ <<. cvlllog r[ -1, 

and therefore 
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It2 ( s l ) - n  (sx)[ < cllog r1-1 Ilog dl, 

IS~, ~01(zl)-~o2(z2)l < c(vl +v2+llog dl)llogrl -t. 

But, I log d+  S~ 1 ~a (za)] ~ c implies 

c- l l log dl < Vl < cllog d I, 

and for the last inequality to hold we must then also have c - l  I log d I < v2 < cl log d I. There- 
fore 

IS~l~1(z1)-Sv2~2(z2)l < cllog d I Ilogrl - t .  

For M big enough (and r l  small enough), we have 

sup(M, Cl(Vl +v2 - c2110g rl) ) > cllog d I Ilog r1-1, 

hence, by Proposition 2: 

IS~,A~t(zl)-S~2A~2(z2)l > sup(M, cl[(Ul +U2)-c2110grl]). 

Then we will have, for s6I, rl small enough, M big enough: 

d(Tl(s) sup(M, cl(vl +v2 - c21 log r])), �89 > 

< cllog dl 2 , 

from which we deduce easily that  J is an interval and that  the estimates of property (v) 
of w hold in J.  

We have thus reduced the proof of the theorem to the proof of Proposition 3. 

4. The geometrical  est imates  

The aim of this section is to prove Proposition 3 and thus finish the proof of our main 
result. 
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In w using the smooth dependence on parameters of the stable and unstable 

foliations of the basic set A1, we introduce appropriate local charts around each point 

of A1. 

These charts are then used in w167 to obtain estimates of the distance between 

two nearby stable manifolds of A1 along these manifolds and its variation with param- 

eters. The main part of the calculation actually takes place in some group of jets; we 

therefore adopt a slightly more abstract setting to make this apparent. 

In w we do some preparatory work in order to finally obtain in w the estimates 

in Proposition 3. The calculation is quite long but straightforward; it consists essentially 

in translating the estimates on the distances between stable manifolds (w via the im- 

plicit function theorem, to estimates on the parameter intervals corresponding to various 

tangencies as in Proposition 3. 

4.1. We start from constants r co>l,  c1>0 and a continuous map L: 

E1 ~ C ~ 1 7 6  co] 2 x (-T/, y)2, M) 

with the following properties. 

(i) Let ZlEEZ, s, tE(--~,T/); the map L,,t(Zl): 

(x ,y)--~L(zl)(x ,y ,s , t )  

is an embedding of [-co, co]2 into M whose image Us,t(zl) contains an e-neighbourhood 

of hl,s,t(Zl); we have 

(ii) 

L,,t(Zl)(0, 

L,,dZl)(X, 

Ls,dZl)(0, 

Let z lE~l ,  s, tE ( -y ,y ) ;  

F,,t(Zl) 

0) = hl,8,t (Zl), 

o) c W'(Zl, s, t), 

y) c W~(Zl, s, t), 

the map Fs,t(Zl): 

x e I-co,co], 

y e [-co,co]. 

= ( L s , t ( O ' Z l ) ) - l o f s , t o L s , ~ ( Z l )  

is defined on [-1,112; it may be written in this square under the form 

Fs,t(Zl )(X, y) = (=l:x exp Hs,t(zt )(x, y), =l:y exp Ks,t(Zl)(X, y) ), 

where the + or - signs depend (continuously) only on Zl. The maps Fs,t(Zl) together 

define a continuous map F: 

r.1 -~ c~([ -1 ,112 • ( -~ ,  ~)2, [_co, co]~), 

and similarly for Hs,~(Zl), Ks,t(Zl). 
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We have Ks,t(Zl)(O, 0)=At(z1, s, t) (cf. w and define ~l(Zl, s, t )= -Hs , t ( z l ) ( 0 ,  0); 
for zlE~l, s, tE(-y,~l) 2, we have: 

/~l(Zl,S, t)  ~/Cl >0,  

LOI (Zl, S, t) )/ Cl ~>0. 

(iii) Let x l E E l ( j ) ,  z~ EEl(k) ,  with j r  (i.e. they belong to distinct elements of the 

Markov partition). Then 

u, , t (Zl)nU, , t (z l )  = z ,  for a~ (8, t) e ( - 7 ,  ~)~. 

4.2. We consider now the following slightly more general situation. 

Let P be an open set in a parameter space R a. For i/>0, let Fi: [-1,  1] 2 x P- -*R 2 be 

a map which may be written in the form: 

Fi(x, y,p) = (xexp Hi(x, y,p), y exp Ki(z,  y,p))  

with smooth maps Hi, Ki: [-1,112x P--*R. 

Define 

e~(p) = -Hi(O,  O, p), 

~ (p)  = g~(o, O,v), 

and assume that,  for some constant c1>0, all pEP, i~>0: 

Loi(P) ~ e l ,  

.~i(P) ~ e l .  

For n~>0, define 

n--1 
.r = ~ .,(p), 

i-----0 
n--1 

~(-)(p) = ~ ~,(p). 
i=0 

Assume that we have, for some constant c2>0: 

Io~n~(z, y,p)[ ~< c2, 

IO, H~(z, Y,P)I ~< c2, 

]o~g~(z, U,P)I <. c2, 

IOuKi( x, Y,P)I <~ c2. 
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Let 0E(0, 1]. Consider a smooth map 

p-~  (x0(p), u0(p)) 

with values in (0, 8] 2. As long as xi(p)e(O, 0], yi(p)e(0,  0], we define: 

(xi+l (p), Yi+ l (P) ) = Fi (xi (p), Yi (P), P). 

Define 

then we have 

Xi (p) = log xi (p), Y/(p) = log Yi (P); 

Ix~+l (p ) -Xi (p )+o i (p ) l  ~ c2( xi(p) + yi(p) ), 

IYi+l (p ) -Yi (p) -Ai (p) l  ~ c2( xi(p) + yi(p) ). 

From now on, we adopt the following convention: We denote by Cl,C2,C3, . . .  constants 

which depend only on: 

- -  bounds on Fi, Hi, Ki, uniform in i; 

- -  bounds on the map g introduced in w 

- -  bounds on the map p~-*Xo(p). 
We also use the letter c for such (unspecified) constants. 

We assume that  
1 ~  ~ - - I ~ - - C l / 2 [ I  ) - - I .  

LEMMA 1. Assume that for some n>/O, we have 

0 < xO(p) < 8, 

0 < Yo(P) < 0 exp(--A(n)(P))- 

Then (xi(p), yi(p) ) is defined for O<~ i <~ n and we have: 

IXi(p)-Xo(p)+O(i)(p)l < �89 

[Yi(P)- Yo(P)- A(O(P)I < �89 

Proof. This is clear if i=O; assume that  it is true for O<.i<.j<n. Then, for O<.i<.j, 
we have: 

0 < xi(p) < OeCl/2e -it1 (< 0 if i > 0), 

0 < Yi(P) < OeCl/2e (i-n)c' (< 8), 
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and therefore 
J 

1 - e  - c l  
i = 0  

which proves the statement of the lemma for j + l .  

We recall, for further purposes the estimates 

0 < xi(p) < OeCl/2e-iC', 

0 < Yi(P) < OeC~/2e(i-'~)c~, 

< �89 

under the hypotheses of the lemma. 

Let us now study partial derivatives with respect to the parameters. 

P=(pa,  ...,Pd) and Oj for O/Opj. 
Let l<xj<~d. For O<~i<xn, define 

OjYi ] '  OjKi(xi,yi,p) ' 
M,=(l+xiO~Hi(xi ,y i ,P)  YiOuHi(xi,yi,P) 

Then, for O<<.i<n, we have 

J}J+) = MiJ (j) + Vi (j). 

For O<~i<~n, define 

[] 

We write 

A(i) B(i) ) 
M (i) = Mi-1 ... Mo = C(i)D(i) 

M(i) = M,~-I ... Mi = ( A ( i )  B(i) ) 
\ C(i)D(i) 

M , = ( a ~  b~) 
ci di ' 

with estimates (under the hypothesis of Lemma 1): 

[ a i -  1[ < c2eCt/28e-iCl, 

[cil < c2eCl/20e -ic~, 

Ibil < c2eCl/2Oe(i-n) ~', 

[di- 1[ < c2eCl/20e (i-n)ci. 

Using the recursion formulas for the A(i),A(i), ... it is easy to prove that  there exist 

constants c3, c4 > 0 depending only on cl, c2 such that  if we assume that  

0<c3 



124 J. PALIS AND J.-C. YOCCOZ 

then  we will have, for O<~i<.n: 

We also have 

and therefore 

[ A 0 ) -  11 < c40, 

IB(OI < caOe 0-")~, 

IC (0] <e40,  

[D (0 - 1[ < e40e (i-n)el , 

[A(o - 1[ < e40e -icl , 

[B0) [ < e40, 

[C(o - 1[ < c40e - i c l  , 

[D(0 - 11 < e40. 

M(o) = M(0M(0 ,  

B(o) = A(oB(O +B(oD(O,  

D(o) = Co)B(O +Do)DO) ,  

[B(o) - B(01 < e0e 0-")c~ , 

]D(o) - D(0[ < e0e 0-")c~ �9 

On the other hand,  we have: 

n- -1  

JO) = M(o)jO) + ~ M(i+I) Vi(J), 
i=O 

n - - I  

OjX~ = A(o)OjXo+ B(o)OjYo+ Z (A(i+I)OjHi+ Bo+DOjKi ), 
i=O 

n - 1  

OjY. = C(o)OjXo + D(o)Oyro + Z (Co+I)OJHi + Do+l)OjKi)" 
i=O 

Suppose tha t  on our domain we have 

la~a~Hd ~ c, 

laja~K~l ~ c, 

laja~K~l ~ c .  

The following lemma is then  immediate.  
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LEMMA 2. There are constants c3,c 4 depending only on c~,c2 such that, if 

0 < zo(p) < o, 

0 < yo(p) < Oexp(--A(n)(P)), 

0 < c3 < 1elc21e-C~/2(1--e-C~) -1, 

then, one has: 

(03X~ + ~ Ojoi) - A(o)OjXo- B(o) ( O~Yo+ ~ OjAi) ] <~ cO, 
' " " i = O  i = 0  

OjYn-C(o)OjXo-D(o) (OjYo+ ~ Oj)~i) <~ CO, 
i=0 

where IA(o)-ll<c40 , IB(o)l<c40, IC(o)1<c40, ID(o)-ll<c40. 

4.3. We will also need estimate for second partial derivatives. Let 1 ~ j ,  k ~< d. Define 

\ o, okYi ) 

Then we have 

l (j'k) A/f I(J'k)-J-r (I(J)~l(k)~-a-~(J)l(k)-~-q(k)l(J).a-V (j'k) 
~ ' i+1  = lv'Li~ i *Oik"'i "r ]--~i "i --"'i ~i -- "i 

with 

\ xiOxOjKi yiOyOjKi ] ' \ OjOkKi ] ' 

(x 22 ) ~O~H~+xiO~H~ ~y~O~O~gi y~O~H~+y~O~H~ 
S~= OK 2 2 �9 ~ x ~+~O~K, ~y~OxO, Ki yiO, K~+y~O~Ki 

and we write the symmetric tensor product J~J)~j~k) with coordinates 

ojx~okx, ) 
a~X, OkY~+OkX~OjY~ �9 

We have 
n--1 

= M ( o ) j 2 ,  + ""  -WI ( i +  1).r~i 

i=O 

with R}J,a)__Si(j~j)8 | (a))+ S~(J) j; (k) + S~(k) j; (j) +V/(j,k). 
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Y~ 

(~o(p),yo(v)) 

p=(pl,  ...) 

y~ (~,, (p), y ,  (p)) 

X 

Fig. 3 

Assume that there are constants c, Co such that all second partial derivatives of Hi, 

Ki are bounded in our domain by c, and that: 

I I J f  II < Con, 

IIJ, Ck)ll < Co~. 

Then, for some constant C1 =C1 (Co) we have: 

sup(llSd[, [IS} ~) 11, [IS} k) I) ~< c e x p ( -  inf(i, n-i)cl), 

II JP'~) - M(o)Jo (j'~) II < C, n ~. 

4.4. We now fix 0 such that 

0 < c 3 ,  0 < ~ c ~  -1 (cf. Lemma2) .  

W e  add the following newfea ture :  there is a smooth map g: [O,O]xP---*[O,O], which 

satisfies 

g(x,p)>c>O, xe[0 ,0 ] ,  peP, 

and such that: 

y,(p)  = g(~n(p),p),  p e P .  

See Figure 3. We also assume that p---*(xo(p), Yo(P)) satisfies the hypothesis of Lemma 2. 
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Write 

For l<~j<.d, we have: 

n - - 1  

+ E oj ,, 
i = 0  

n - - 1  

: Op'o + F_, oj 
i = 0  

y,,o~Y,, =or 

with IxnOxgl<ce -cln and l a j xn -or  
Joining this to the conclusion of Lemma 2, we obtain (as yn > c > 0 )  

IOjX.- A<o)O~Xo- B<o)OYol < c, 

IC(o)O~Xo+ D(o)OjYol < c+c~-C~"lOjX,,I, 

from which we deduce, as [cgjXol<~c, for n>~cs: 

IOjXnl <. c, 

IOjYol ~< c. 

For second derivatives, we have, for l<.j<~k~d: 

yn(ajYnOkY. + ajakYn) = Cgjakg+xnOja.gOkXn 

+ zno, go~o~ x , .  

Then, we see from w and above tha t  we have for n>~c5: 

We have 

and therefore 

IIJ~J)ll < cn, 

iiJr162 < ~2. 

laJY, I < c, la~Ynl < c, 

[O~OkY,~[ < c+ce-Cl"lO~cgkX, I. 

In the same way as for first derivatives, tha t  allows to conclude that ,  for n ~>c6 ~> c5, 

[OjO~ Yol < ~2. 

127 
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4.5. We now proceed to prove Proposition 3. We use the notations of w 

p =  (_~/, ~)2, ~} small enough. 

The maps 

Let 

~,,, --~H C~176 I]2 xP, R), 

~I K--~C~176 1] 5 xP, R) 

are continuous, hence there is a constant c2>0 such that,  for all zl �9 s, t �9 ~})2, 

x, yE[ -1 ,  1]: 

IO=H,,,(Zl)(=, Y)I ~< c2, 

IO~H,,,(~I)(=, Y)I ~< c2, 

IO=K,,,(,,)(=, Y)I < c2, 

IO~K,,,(z~)(x, Y)I ~< c2. 

We determine then, from Cl (in w and c2 above, constants c3, c4 as in Lemma 2, 

and choose 0 with 

0<C3, 0<~0C41. 

There exists no > 0 such that,  for all s, t �9 (-7/, z}), Xl, x~ �9 ~+ with v (Zl, z~)/> no, the point 

hl,~,t(zl) lies in Us,t(zl) and the equation of Wl~oc(Zi, s, t)NUs,t(zl) is 

y=g,,/,~(=,s,t) 

in the coordinate system given by L~,t(z~). 
For each Zz, z~, the map gzl/z i is smooth, and these maps together give a continuous 

map: 

v, ~ c~([-co, ~o] • (-~, ~) ~, [-~o, ~o1) 

where Vl ~---{(z1, zl)�9 ~"], 1 + x ~-'~t : V(Z1, Zi)~n0}" 
We choose no > 0 big enough such that, for (zl, z~)�9 VI, the image of g,1/~i is actually 

contained in [-e-cl/2�89189 

We choose, once and for all, an integer too, multiple of the period of al, such that 

the point q' =fmo (q) belongs to Uo,o(al), with coordinates (01,0), where 0 < [01[~ �89 
We will consider tangencies near q' instead of q. The map T' related to q' and the 

map T related to q satisfy T'(amozl, a-'~~ z2). Once rno is fixed, it is clearly 

equivalent to prove Proposition 3 for T or Tq We will actually prove it for Tq But to 

keep notations simple, we assume that mo =0, T=Tq 
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Let 0 < el < 1 I O~1 be a small number such that the component of q' in W ~ (a2, 0, 0)N 

[ l0 10] in the coordinate system Lo,o(al) has equation: [ O l - e l , O l + e l ] x  L--~ ,~ 

y =,,o(z), Ix-O~l<~, 

with ~o(01)=~o'(01)=0, I~v"(x)l >c>0 .  

Let nl be an integer ~>n0, and let zl, z~ E E+, z2 E E+ with v(zl, al)>~nl, v(z'l, al)>1 
nl, v(z2, a2)~>nl. We claim that if el is small enough and nl is big enough the following 

properties hold, with constants independent of s, t, Zl, z~, z2 (provided y is also small 

enough). 

(i) The connected component of WU(z2, s,t)N[O1-el, 01 +ex] x [-�89 �89 we are in- 

terested in has equation 

y = ~o, ,~/=I .  (x, s, t) 

in the coordinate system Ls,t(z~), for a smooth function ~Z2/*i; all partial derivatives of 

~2/~; and g,,/,~ of order up to 3 are bounded by a constant c. 

(ii) For s, tE(-~h~), Ix-Oil<el, we have 

I O ~ / = ;  (z, s, t)l > c > 0, 

IOt~o=,/~ (x, s, t)l > c > 0 ,  

IOt(~/=l  -g=,/=; (x, s, t))l > c > 0, 

IO~(~=~/,~ -g=,/=l(x, s, t))l > c >  0. 

(iii) For s, t E ( - y , ~ ) ,  x,x'e[Ol-el,01+el], we have 

IO=g~/=~ (x, 8, t)l ~< ctg~,/=i (x', s, t)l, 

]5~g=,/,i(x,s,t)] <~ c]g=,/,i(x',s,t)]. 

(iv) For s, tE(-n ,  rl) the function O=~Oz,/,~ (resp. 0~(~o~2/~ ~ -g,l/,'~)) has a (unique) 

zero ~(s,t) (resp. c(s,t)) in [01-el ,  01+el].  We have 

IOscl <. c7, IO, c[ <. c7, 

IO8~1 < c7, IO#l < c7. 

and second partial derivatives are bounded by c. 

(v) For s e ( - ~ , y ) ,  the points T(Zl,Z2)(s) and T(z~,z2)(s) belong to (-~/,~7); we 

write t= t -T(z~ ,  z2)(s). In the parameter coordinates (s, t ) ,  all estimates above are still 

valid. 

9--945201 Acta Mathematica 172. Imprim6 le 29 mars 1994 
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~=0 

~=t(~) 

graph(g)=W~(zl) 

~ W'(z~) 

graph(~)=W~(z2)  

I . . h (~0,y0) ~ a p  (g) 

- ~  W~(zl) 

graph(~o) 

lyo(~, ~)1 ~ la(~, ~, ~)1 ~~-(~, ~)~t(s), for I~[ <t (~)  

Fig. 4 

All estimates and claims are straightforward, taking first ~1 very small and then nl  

very big; estimate (iii) holds because the stable foliation of the basic set is, uniformly in 

s,t, of class C l+a for some (~>0. 

? 4.6. We fix points za, zl,  z2 as above, but  we will assume that  

v(zl,al)~n2, v(z~,al)>/n2, v(z2,a2)>/n2, 

for an integer n2 ~ n l ,  still to be chosen. 

Let n=v(zl,z~)-no; for O<.i<n, let 

F~: [ -1 ,  1] 5 x ( - n ,  n) 2 -~ R 2 

be the map (x, y, s, t)HFs,t(aiz~)(x, y). 
By changing the signs of the coordinates in the coordinate systems L,,t(aiz~), 

O~i~n, we may assume that  the Fi are exactly of the form considered in w 

We will work with the parameter coordinates (s, t )  considered in w (v). To keep 

notations simple, we just write (s, t) again for these new coordinates. We therefore have 

T(Z~l, z2)(s)=O, which means: 

~(~(s, o), s, o) - o. 
We axe interested in the function T(zl, z2)(s)=t(s)  which is defined by: 

~(c(~, t(~)), ~, t(~)) = g(c(s, t(s)), ~, t(~)). 

We have written ~o for ~oz2/zl and g for gz~/zi. See Figure 4. 
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Write g=g~zl/~-z~. We have, as v(anzl,anz~) is a fixed integer no: 

~ ~ l~(=,s,t)l > c > O .  

By Lemma 1 in w we have therefore, for XE[01- -81 ,~I+$I ]  , 8, tE ( - -~ ,~ ) :  

0 < c < Ig(x, s, t)l exp ~(n)(s, t) < 0. 

Let us just write 7r(s,t) for exp-A(n)(s,t).  We estimate Ic(s,t)-~(s,O)l. We have 

l~(s, 0)-~(s ,  t)l < crltl, 

o~ (~ (8 ,  t), ~, t) = o, 

IO~o(c(~, t), ~, t)l--IO=g(c(s, t), s, t)l < ~ ( s ,  t), 

hence (as 10~ol>c>O) 
le(s, O)-c(s,  t)l < c[~r(s, t )+ Itl ]. 

But ~o( ~( s, 0), s, O )=O=~o( ~( s, 0), s, 0)=0. Therefore 

ko(c(s, t), ~, o)1 < c[(~r(~, t)) 2 +t2].  

On the other hand, writing a(s)=Ot~o(c(s, t(s)), s, t(s)), we have: 

la(s)l ~>c>0, 

and, for [tl~<lt(s)l, 

IO,~(c(s, t(s)), ~, t ) -a(~) l  < clt(~)l. 

Summarizing, the function X: u--,~o(c(s, t(s)), s, u) for lul < It(~)l satisfies 

Ix(O)l < e[~(s, t(~)) ~ +t(s)2], 

x(t(~)) = g(c(s, t(~)), s, t(~)), 

la(s)l = Ix'(t(s))l/> c >  O, 

I x ' (u ) - x ' ( t ( s ) ) l  < ctt(~)t. 

Let yo(s, t)=g(c(s, t), s, t). We have 

log lyo(~, t)l 
~(s, t)  < c, 

hence It(s)-yo(s,  t (s)) /a(s) f  < c(~r(s, t(s))) 2. 
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In particular, writing 7r(s)=~r(s, t(s)): 

l~ <c.  

Let us now estimate t~(s). From the defining relation 

r =0, 

with r t)=~o(c(s, t), s, t ) -g(c(s ,  t), s, t), we get 

t'(s) = -[o,r t(s))]-lo,r t(s)),  

where 

We have 

(by w (iii)), 

Osr = Os~+OscOx~- O, yo, 

ore = Ot~+OtcO,~-Otyo.  

o , ~ ( c ( s , t ( s ) ) , s , t ( s ) ) = a ( s ) ,  

IOx~(c ( s , t ( s ) ) , s , t ( s ) ) l= lO~g(c ( s , t ( s ) ) , s , t ( s ) ) l<~( s )  

IOs~(c(s, t(s)), 8, t(s))-os~(e(s, o), s, o)1 < c~(s) 

(because It(a)l <~( s ) ,  It(s, t)-~(s, 0)1 <~(s ) ) ,  

os~(~(s, o), s, o) = o 

(because Ox~(~(s, 0), s, O)-qa(~(s, 0), s, 0)--=0). 
On the other hand, with xo(s, t) =c(s, t), we have, in the notation of w 

y,~(s,t) =[?(xn(s,t),s,t) 

w i t h  e s t i m a t e s :  
C7 

c-----z--7 lot log Ixoll < O1 - -  C - " - - - " ~ "  los log Ixoll < ol -c1'  

Taking n2 big enough, the calculations in w are valid and we get: 

+ E; .<c, 
i=0 

IOtyol < err(s, t)n < cr(s, t)llog r(s, t)l. 
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Therefore 

Io~r t(~))-yo(~, t(s))o~,~("~(~, t(~))l < c~(s), 

Ia~r t(s))-~(~)l < c~(s)llog ~(~)I, 

with lyo(s, t(8))-~(s)t(~)l < c(~(~)) 2. 
We conclude that: 

P 8 n - - I  

Let us now estimate from above the second derivative t ' (s ) .  We have: 

o,r162 ~ +20~0,r162 = o, 

hence 

with 

It"(s)l < c(I0~r ~(s)l lOsOtr ~(8)I I02r 

a2 r = o~ ~ +  ( O~c)~ O~+ 2O~cO~O~+o2 ~-O2yo. 

According to w we have, for n2 big enough: 

o~ log lyol < ~ ,  

o,o, log lyo[ < cn ~, 

02 log lyol < ~2,  

as log lyol < ~ ,  

therefore 

We already obtain: 

iO~yol < ~ ( 8 ) ,  

IO2yol < ~ ( ~ ) .  
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In the formu/a for O,~r t(,)) we ha,e: 

IO~g(c(s, t(s)), s, t(s))l = 10~(c(s, t(s)), s, t(s))l < cr(s). 

We compare Osc(s, t(s)) with O~(s, 0). We have 

o~o,~(~(s, t), s, t )+ ~ ~(~(~, t), s, t )o~(s,  t) - o, 

o~o,(~-g)(c(s ,  t), s, t ) + ~  (~-g)(c(s, t), s, t)o,c(s, t) - o, 

with 

Io~o~,(e(s, o), ~, o)-oxo,~o(c(s, t(s)), s, t(s))l < ~(~) ,  

IO~(~(s, o), s, o ) - ~ ( ~ - g ) ( c ( s ,  t(s)), s, t(s))l < cr(s) 

(recall w (iii)), hence 

10~c(s, t (s) ) -  O,e(s, o)1 < c( - ( , )+  IO~O~9(c(s, t(s)), s, t(s))l. 

Let 
{ ,o(U,S,t)-----U, U~. [01--EI,01- '~-~I]  , 

~lo(U,S,t)=g(U,S,t), UE [01- -81 ,01-+E1] .  

The discussion in w167 applies to (xo,Yo) (depending now on three parameters 

u, s, t) and we get 

Therefore 

But we observe that 

therefore 

laxO, g(c(s, t(s)), s, t(s))l = la~O~9ol < cn2~(8). 

IO, c(s, t ( s ) ) -o ,e(s ,  o)1 < ~ r ( s ) .  

o~(~(s,  o), s, o)+o,e(s, o)o,o~,(e(s, o), s, o) = o, 

o,o~(~(s,  o), s, o)+o~(s ,  o)o~(e(s,  o), ,, o) = o, 

102~p(c(s, t(s)), s, t(s))+asc(s, t(s))asc%o(c(s, t(s)), s, t(s))l ~< cn2~r(s), 

IO.O~o(c(s, t(s) ), s, t(s) )+O.c(s, t(s) )O~(c(s, t(s) ), s, t(s))l .< cn2~r(s), 
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and we conclude that  

10~r t(s))l < ~2~(~), 
It"(~)l < ~2~(~), 

d2 it(s)l < cn 2. I Ts~ log 
Recapitulating, we have proved, as log r ( s ) = -  n-1 Z,=0 ~,(s,t(~)): 

log "-~ ~,(s, t(~)) It(~)l+ <~, 
i = 0  

d log I t (s) l+~ O,,Xi(s,t(s))  < c, 
i = 0  

I d~ It(~)l <~2. log 

Let us see that  this indeed gives the estimations for Tt as in Proposition 3. We have 

n - - 1  n - - 1  

~i(8' t(8))-- Z )~i(s, O)l < anTr(8) < c, 
- i = 0  

n - - 1  n - - i  

i~=O Os~i(8' t (8))-Z Os~i(8' O)l ~ cnTr(8) ~ i : 0  

As our t-variable here is really {=t -T(z ' l ,  z2)(s), we have in fact 

d i ,  
O, Ai(s, 0) = ~ss At (or z t, s, T(z~, z2)(s)) 

where the notations of w are used in the right hand term. We have TI(S)=Iog It(s)l. 
The integer Ul in Proposition 3 is here n+no+mo: more precisely, in the sum 

y]~.z_-lo At(a3z'l, s,T(z~, z2)(s)), the sum Zj~_=-~ Ai(s,0) missed the first m0 terms (when 

we replaced q by q') and the last no terms. But mo, no are fixed integers. Therefore we 

have proved the required estimates for T1 (S). The estimates for T2 are true for the same 

reasons. The last two estimates in Proposition 3 are immediate, writing: 

T(Zl, z2) = T(Zl, z2 ) -T (Z l ,  a2)+T(zl, a 2 ) - T ( a l ,  a2). 

Proposition 3 is, therefore, proved. [] 
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