Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension

by
JACOB PALIS and
JEAN-CHRISTOPHE YOCCOZ
Instituto de Matemática Pura e Aplicada
Université de Paris-Sud
Rio de Janeiro, Brazil
Orsay, France

Introduction

A fundamental concept in dynamics of a nongradient character is that of a homoclinic orbit, introduced by Poincaré in $1890[\mathrm{P}]$: an orbit of intersection at large of the stable and unstable manifolds of a periodic saddle point. It is well known that when such an orbit is transversal, it must be accumulated by periodic saddles of the same index (dimension of the stable manifold) as the original saddle with respect to which the homoclinic orbit is doubly asymptotic, as shown by Birkhoff in two dimensions and Smale in general [Bi], [S]. In fact, in this last reference it was proved that transversal homoclinic orbits are always part of a hyperbolic Cantor set, a horseshoe, in which the periodic points are dense.

More recently, it has been realized that the creation and unfolding of a homoclinic tangency, say for a locally dissipative surface diffeomorphism, gives rise to a striking number of intricate and highly relevant dynamic phenomena: cascades of period doubling bifurcations [YA], infinitely many sinks [N], [R], [PT3], strange attractors of Hénon type [BC], [MV], and hyperbolic Cantor sets combined or not with the previous elements [NP], [PT1], [PT2]. Also, surface diffeomorphisms exhibiting a homoclinic tangency are certainly quite common among nonhyperbolic maps, i.e. maps whose limit set is not hyperbolic. Conjecturally, these homoclinically bifurcating diffeomorphisms may even be dense in the interior of the nonhyperbolic ones, which has turned out to be the case for C^{∞} surface diffeomorphisms but in C^{1} topology [AM].

Therefore, it seems to us that an important task in dynamics is to unfold the diffeomorphisms exhibiting a homoclinic tangency through k-parameter families and to inquire which of the above or other phenomena are more common or prevalent in terms of the Lebesgue measure in the parameter space. The main result in the present paper represents a contribution to such a program. Let us first explain it in a more informal
way.
A homoclinic tangency may be associated to a single periodic orbit or more generally to a (hyperbolic) basic set. Recall that a basic set for a diffeomorphism is a compact, invariant, hyperbolic and transitive subset of the ambient manifold, which is the maximal invariant subset in some neighbourhood of it; moreover, periodic points are dense in it. We say that a basic set is nontrivial if it does not consist of a periodic orbit. It was proved in previous papers [NP], [PT1], [PT2] that for a generic one-parameter unfolding if the Hausdorff dimension of the associated basic set is smaller than one, then the initial map exhibiting a homoclinic tangency is a Lebesgue density point of hyperbolic dynamics. Here we prove a converse to the above statement: if the Hausdorff dimension of the basic set is bigger than one, then for almost all one-parameter families of diffeomorphims the initial map is not a density point of hyperbolicity.

To be somewhat more precise, let f be a surface diffeomorphism exhibiting a quadratic homoclinic tangency q between the stable and unstable manifolds of a periodic saddle point p, p being part of a basic set K with Hausdorff dimension $\operatorname{HD}(K)$ bigger than one. Amongst the germs of smooth families $\left(f_{s, t}\right),|s|<\eta$ and $|t|<\eta$, such that $f_{0,0}=f$, we consider those which unfold the homoclinic tangency at q with positive speed. After a local diffeomorphism in parameter space, we may assume that the homoclinic tangency happens along $t=0$. We then require that the relative variations with respect to s of the logarithms of the stable and unstable eigenvalues at $p_{s, t}$ on one hand, and of the stable and unstable Hausdorff dimensions of $K_{s, t}$ on the other, should not vanish at $s=t=0$. (Here, $p_{s, t}$ and $K_{s, t}$ indicate the continuations of p and K for $|s|$ and $|t|$ small.) These three transversality conditions define an open and dense subset \mathcal{V} in the space of germs of smooth families $\left(f_{s, t}\right), f_{0,0}=f$; see $\S 1$. Let $\mathcal{F}^{s}\left(K_{s, t}\right)$ and $\mathcal{F}^{u}\left(K_{s, t}\right)$ be the stable and unstable foliations of $K_{s, t}$ and define for $\varepsilon>0$ small, $T_{s, \varepsilon}=\left\{t \in(-\varepsilon, \varepsilon)\right.$: some leaf of $\mathcal{F}^{u}\left(K_{s, t}\right)$ is tangent near q to some leaf of $\left.\mathcal{F}^{s}\left(K_{s, t}\right)\right\}$. We observe that often such orbits of tangency are still called homoclinic, and in fact in our case we even call them primary homoclinic tangencies, since they occur between pieces of leaves of $\mathcal{F}^{u}\left(K_{s, t}\right)$ and $\mathcal{F}^{s}\left(K_{s, t}\right)$ near the curves in $W^{u}(p)$ and $W^{s}(p)$ whose extreme points are p and q.

With the above notations and assumptions our result can be stated as follows.
Theorem. For each $f_{s, t} \in \mathcal{V}$, there is $c>0$ such that, for almost all $s \in(-\eta, \eta)$, we have

$$
\limsup _{\varepsilon \rightarrow 0} \frac{m\left(T_{s, \varepsilon}\right)}{\varepsilon}>c
$$

where $m(\cdot)$ indicates the Lebesgue measure of the set.
That such a statement could be true as well as its proof was much inspired by
the remarkable result of Marstrand [Mar] concerning the positiveness of the Lebesgue measure of almost all linear projections of plane sets of Hausdorff dimension bigger than one. In our case, however, the situation is considerably more delicate due to the lack of linearity and even smoothness of the "projections" that we have to consider.

This paper is divided into four sections. The first one contains the precise setting of the problem and a more detailed statement of our result than the one presented above. It contains, moreover an indication of how the proof proceeds in the next three sections, each of them having a different character: analytic, combinatorial and geometric, respectively. The analytical part of the proof is inspired by Marstrand's theorem (§2). The most important objective in $\S 3$ is to establish a combinatorial lemma in the context of symbolic dynamics, which is one of the main new ingredients with respect to Kaufman's proof of Marstrand's theorem in [F]. Finally, in §4, we present geometric estimations on the first and second order variations with respect to parameters of the distance between stable manifolds of nearby points in a basic set.

1. The setting of the problem and statement of the result

1.1. Let M be a smooth surface and f a smooth diffeomorphism of M. Let Λ_{1}, Λ_{2} be two (not necessarily distinct) basic sets of f, nontrivial, topologically mixing and of saddle type.

For $i=1,2$, let $p_{i} \in \Lambda_{i}$ be a periodic point. We assume that $W^{s}\left(p_{1}\right)$ and $W^{u}\left(p_{2}\right)$ have, at a point $q \in M$, a non-degenerate (i.e. quadratic) tangency.
1.2. We embed f in a smooth 2-parameter family $\left(f_{s, t}\right)$ of smooth diffeomorphisms of M, with $f_{0,0}=f$. We will only be interested in the family for small s, t, i.e. $|s|,|t|<\eta$ with $\eta>0$ small enough. For small η, Λ_{1} and Λ_{2} have hyperbolic continuations $\Lambda_{1}(s, t), \Lambda_{2}(s, t)$ in $(-\eta, \eta)^{2}$. For $i=1,2, z \in \Lambda_{i}$, we denote by $z(s, t)$ the point in $\Lambda_{i}(s, t)$ associated to z, and write $W^{s}(z, s, t), W^{u}(z, s, t)$ for the stable and unstable manifolds of $z(s, t)$ relative to $f_{s, t}$.

Let us fix a small number $\varepsilon>0$ and local coordinates $(x, y) \in[-\varepsilon, \varepsilon]^{2}$ in a neighbourhood V of q such that:

- q has coordinates $(0,0)$;
- the equation of the connected component of q in $W^{u}\left(p_{2}, 0,0\right) \cap V$ is $\{y=0\}$;
- the equation of the connected component of q in $W^{s}\left(p_{1}, 0,0\right) \cap V$ is $\left\{y=g_{1}(x)\right\}$, where $g_{1} \in C^{\infty}([-\varepsilon, \varepsilon],[-\varepsilon, \varepsilon])$ satisfies $g_{1}(0)=g_{1}^{\prime}(0)=0,1 \leqslant g_{1}^{\prime \prime}(x) \leqslant 2$ for $x \in[-\varepsilon, \varepsilon]$.

For small η, we can follow these connected components through $(-\eta, \eta)^{2}$. They will
respectively have for equation

$$
\begin{array}{ll}
y=g_{2}(x, s, t) & \left(\text { with } g_{2}(x, 0,0) \equiv 0\right) \\
y=g_{1}(x, s, t) & \left(\text { with } g_{1}(x, 0,0) \equiv g_{1}(x)\right)
\end{array}
$$

for smooth maps $g_{1}, g_{2} \in C^{\infty}\left([-\varepsilon, \varepsilon] \times(-\eta, \eta)^{2},[-\varepsilon, \varepsilon]\right)$.
1.3. We will make three transversality hypotheses on the family $\left(f_{s, t}\right)$. The first one is that the quadratic tangency of $W^{s}\left(p_{1}, f\right)$ and $W^{u}\left(p_{2}, f\right)$ unfolds generically. Using the implicit function theorem, this means that (with η small enough) we may assume that the coordinates s, t in parameter space are such that:

- for $t<0$ and all $s \in(-\eta, \eta)$, the function $x \mapsto g_{1}(x, s, t)-g_{2}(x, s, t)$ is strictly positive in $[-\varepsilon, \varepsilon]$;
- for $t=0$, the function $x \rightarrow g_{1}(x, s, t)-g_{2}(x, s, t)$ is positive and has a single zero in $[-\varepsilon, \varepsilon]$;
- for all $(x, s, t) \in[-\varepsilon, \varepsilon] \times(-\eta, \eta)^{2}$, we have

$$
\partial_{t}\left(g_{2}-g_{1}\right)(x, s, t) \geqslant c>0
$$

for some constant c (we take ε smaller if necessary).
On the other hand, there exists a neighbourhood U_{1} of p_{1} in $W_{\text {loc }}^{u}\left(p_{1}\right) \cap \Lambda_{1}$, a neighbourhood U_{2} of p_{2} in $W_{\text {loc }}^{s}\left(p_{2}\right) \cap \Lambda_{2}$, and, for $i=1,2$, a continuous map:

$$
G_{i}: U_{i} \rightarrow C^{\infty}\left([-\varepsilon, \varepsilon] \times(-\eta, \eta)^{2},[-\varepsilon, \varepsilon]\right)
$$

with the following properties:
$-G_{i}\left(p_{i}\right)=g_{i} ;$

- for $(s, t) \in(-\eta, \eta)^{2}$ and $z \in U_{1}$ (resp. $\left.U_{2}\right),\left\{y=G_{i}(z)(x, s, t)\right\}$ is the equation of the connected component of $W^{s}(z, s, t) \cap V$ (resp. $W^{u}(z, s, t) \cap V$) which corresponds (in an obvious meaning) to the component of $W^{s}\left(p_{1}, s, t\right) \cap V$ (resp. $\left.W^{u}\left(p_{2}, s, t\right) \cap V\right)$ considered above.

The continuity of G_{1}, G_{2} guarantees that (restricting U_{1}, U_{2} if necessary) we have a continuous map:

$$
U_{1} \times U_{2} \xrightarrow{T} C^{\infty}((-\eta, \eta),(-\eta, \eta))
$$

with the following properties, for all $\left(z_{1}, z_{2}\right) \in U_{1} \times U_{2}$:

- if $t<T\left(z_{1}, z_{2}\right)(s)$, the function $x \rightarrow G_{1}\left(z_{1}\right)(x, s, t)-G_{2}\left(z_{2}\right)(x, s, t)$ is strictly positive in $[-\varepsilon, \varepsilon]$;
- if $t=T\left(z_{1}, z_{2}\right)(s)$, the same function is positive with a single zero in $[-\varepsilon, \varepsilon]$.

We can also assume that, for any $z_{1} \in U_{1}, z_{2} \in U_{2}, x \in[-\varepsilon, \varepsilon], s, t \in(-\eta, \eta)$ we have:

$$
\partial_{t}\left(G_{2}\left(z_{2}\right)-G_{1}\left(z_{1}\right)\right)(x, s, t) \geqslant c>0 .
$$

1.4. We now come to our two other transversality hypotheses.

For $s, t \in(-\eta, \eta)$, we define the unstable dimension $\Delta_{1}(s, t)$ of the basic set $\Lambda_{1}(s, t)$ of $f_{s, t}$ to be the Hausdorff dimension of $W_{\text {loc }}^{u}\left(p_{1}, s, t\right) \cap \Lambda_{1}(s, t)$. Similarly, the stable dimension $\Delta_{2}(s, t)$ of $\Lambda_{2}(s, t)$ is the Hausdorff dimension of $W_{\text {loc }}^{s}\left(p_{2}, s, t\right) \cap \Lambda_{2}(s, t)$.

We assume that

$$
\Delta_{1}(0,0)+\Delta_{2}(0,0)>1
$$

If the two basic sets Λ_{1}, Λ_{2} coincide, $\Delta_{1}(0,0)+\Delta_{2}(0,0)$ is just the Hausdorff dimension of $\Lambda=\Lambda_{1}=\Lambda_{2}$.

We also assume that

$$
\left.\partial_{s} \frac{\Delta_{1}(s, t)}{\Delta_{2}(s, t)}\right|_{(s, t)=(0,0)} \neq 0
$$

(It is known [Man] that Δ_{1}, Δ_{2} are smooth functions of s, t.)
Let n_{i}, for $i=1,2$, be the period of the periodic point p_{i} of f. For $(s, t) \in(-\eta, \eta)^{2}$, let $\bar{\lambda}_{1}(s, t)$ be the logarithm of the modulus of the unstable eigenvalue of the fixed point $p_{1}(s, t)$ of $f_{s, t}^{n_{1}}$. Similarly, let $\bar{\lambda}_{2}(s, t)$ be the logarithm of the modulus of the stable eigenvalue of the fixed point $p_{2}(s, t)$ of $f_{s, t}^{n_{2}}$. We assume that

$$
\left.\partial_{s} \frac{\bar{\lambda}_{1}(s, t)}{\bar{\lambda}_{2}(s, t)}\right|_{(s, t)=(0,0)} \neq 0
$$

1.5. Before stating our main result, we introduce the following notations. Fix some Riemannian metric on M and denote by d_{0} the associated distance.

For $i=1,2$ and $|s|<\eta$, let d_{s} be the distance on U_{i} defined by

$$
d_{s}\left(z, z^{\prime}\right)=d_{0}\left(z(s, 0), z^{\prime}(s, 0)\right)
$$

For r small enough, let $B_{s}^{i}(r)$ be the d_{s}-ball in U_{i} of center p_{i} and radius r. Let $T_{s}(r)$ be the image of $B_{s}^{1}(r) \times B_{s}^{2}(r)$ by the map $\left(z_{1}, z_{2}\right) \mapsto T\left(z_{1}, z_{2}\right)(s)$.

THEOREM. Under the hypotheses above, there are constants $r_{1}>0, c_{1}>0$ such that, if $0<r<r_{1}$ and $s_{0} \in(-\eta, \eta)$ the set

$$
\left\{(s, t):\left|s-s_{0}\right|<|\log r|^{-1}, t \in T_{s}(r)\right\}
$$

has 2-dimensional Lebesgue measure bigger than $c_{1} r|\log r|^{-1}$.
Remark. It is easy to see, and we will prove it later, that we have $T_{s}(r) \subset[-c r, c r]$, for some fixed $c>0$. Therefore, the conclusion of the theorem means that $\left\{(s, t):\left|s-s_{0}\right|<\right.$

Fig. 1
$\left.|\log r|^{-1}, t \in T_{s}(r)\right\}$ has in the rectangle $\left[s_{0}-|\log r|^{-1}, s_{0}+|\log r|^{-1}\right] \times[-c r, c r]$ a relative Lebesgue measure bounded from below (independent of s_{0}, r if they are small enough). See Figure 1.

Corollary. There is a constant $c_{2}>0$ such that for almost all $s \in(-\eta, \eta)$ we have:

$$
\underset{r \rightarrow 0}{\limsup } \frac{m\left(T_{s}(r)\right)}{r}>c_{2}
$$

(where m is 1-dimensional Lebesgue measure).
Proof of the corollary. Take c_{2} small enough. If the corollary is false, there exist $r_{2}<r_{1}$ and a set $A \subset(-\eta, \eta)$ of positive measure such that, for $s \in A$ and $r<r_{2}$:

$$
m\left(T_{s}(r)\right)<2 c_{2} r .
$$

Let $s_{0} \in A$ and $r_{3}<r_{2}$ be such that

$$
m\left(\left[s_{0}-\left|\log r_{3}\right|^{-1}, s_{0}+\left|\log r_{3}\right|^{-1}\right] \cap A\right)>\left(1-c_{2}\right) 2\left|\log r_{3}\right|^{-1} .
$$

Using the remark which follows the theorem (that $m\left(T_{s}(r)\right) \leqslant c r$ for all $r<r_{1}, s \in$ $(-\eta, \eta)$), we contradict the theorem if c_{2} is small enough.
1.6. The remaining part of the paper is devoted to the proof of the theorem. We give here a short account of the ideas underlying this proof.

In order to estimate the Lebesgue measure of the image of the map $T_{s}:\left(z_{1}, z_{2}\right) \mapsto$ $T\left(z_{1}, z_{2}\right)(s)$, we equip $B_{s_{0}}^{1}(r) \times B_{s_{0}}^{2}(r)$ with a Radon measure μ and consider, for each s, its image ν_{s} under T_{s}. We study ν_{s} via its Fourier transform $\hat{\nu}_{s}(\S 2)$, and want to show that

$$
\int\left\|\hat{\nu}_{s}\right\|_{L^{2}}^{2} d s<c<+\infty .
$$

This would indeed easily imply that the support of ν_{s} (contained in the image of T_{s}) has positive Lebesgue measure for almost every s, and give an estimate from below for the mean value (with respect to s) of this measure.

This idea was used by Kaufman to give an elegant proof of Marstrand's theorem. The parameter s plays here the role of the angle in Marstrand's theorem, and the map T_{s} the role of the projection.

For this idea to work, the measure ν_{s} has to be absolutely continuous with respect to Lebesgue measure for almost all s. In Marstrand's theorem, this is a consequence of an energy estimate on the measure μ and of the variation of the angle. In our case, the energy estimate is essentially the same, but the map T_{s} depends in a much more complicated way on the parameter.

More precisely, there are various "angles" involved: at a not too small scale, the variation of the "angle" is assured by the relative variation of the logarithms of the eigenvalues (second transversality hypothesis, Proposition 1 in §3.6); at a very small scale, the variation of the angle is assured by the relative variation of the Hausdorff dimensions of Λ_{1}, Λ_{2} (first transversality hypothesis).

The main problem arises from intermediate scales, which might create a singular part of the measures ν_{s}. In order to avoid this phenomenon, we have to delete, using a stopping time argument, part of the set $B_{s_{0}}^{1}(r) \times B_{s_{0}}^{2}(r)$, keeping a subset L supporting a positive proportion of μ but for which these intermediate scales do not occur (Proposition 2 in §3.6).

All these considerations rely on a quite good control of the map T_{s} (Proposition 3.10): approximate formulas for T_{s} and its first derivative with respect to the parameter s, and bounds for the second derivative. These estimates are themselves consequences of approximate formulas and bounds for the distance between stable manifolds of nearby points in a basic set, measured along these manifolds, and the variation of this distance with parameters (§4).

2. Proof of the theorem: the analysis

2.1. In this section we will give the analytical part of the proof of the theorem. As mentioned before, it is inspired by Kaufman's proof of a theorem of Marstrand presented in [F]. It requires geometrical estimates and a selection lemma that will be proved in later sections. We only state them here.

In the sequel, $c>0, r_{1}>0, \beta>1$ are constant independent of later choices.
Let $s_{0} \in(-\eta, \eta), 0<r<r_{1}$ and I be the interval $\left[s_{0}-|\log r|^{-1}, s_{0}+|\log r|^{-1}\right]$. Let
$z_{1}, z_{1}^{\prime} \in B_{s_{0}}^{1}(r), z_{2}, z_{2}^{\prime} \in B_{s_{0}}^{2}(r)$ and $\Delta_{i}=\Delta_{i}\left(s_{0}, 0\right)$ for $i=1,2$. We write

$$
\begin{aligned}
d & =\sup \left(d_{s_{0}}\left(z_{1}, z_{1}^{\prime}\right), d_{s_{0}}\left(z_{2}, z_{2}^{\prime}\right)\right), \\
T(s) & =T\left(z_{1}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}^{\prime}\right)(s), \quad s \in I .
\end{aligned}
$$

It is assumed that there exist a measure μ_{i} on $B_{s_{0}}^{i}(r)$ (for $i=1,2$) and a compact set L in $B_{s_{0}}^{1}(r) \times B_{s_{0}}^{2}(r)$ such that the following properties hold:
(i) For any ball B_{i} of $d_{s_{0}}$-radius $\varrho \in(0, r)$ contained in $B_{s_{0}}^{i}(r)$, we have

$$
c^{-1} \varrho^{\Delta_{i}}<\mu_{i}\left(B_{i}\right)<c \varrho^{\Delta_{i}}, \quad i=1,2
$$

(ii) For any $s \in I, L \subset B_{s}^{1}(r) \times B_{s}^{2}(r)$;
(iii) $\mu_{1} \times \mu_{2}(L)>c^{-1} r^{\Delta_{1}+\Delta_{2}}$;
(iv) Suppose that $d>r^{\beta}$; then the set

$$
J=\left\{s \in I:|T(s)|<c^{-1} d\right\}
$$

is empty or is an interval; in the last case we have, for $s \in J$:

$$
\begin{aligned}
& \left|T^{\prime}(s)\right| \geqslant c^{-1} d|\log r| \\
& \left|T^{\prime \prime}(s)\right| \leqslant c d|\log r|^{2}
\end{aligned}
$$

(v) Suppose that $d \leqslant r^{\beta}$, and that $\left(z_{1}, z_{2}\right) \in L,\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \in L$; then the set

$$
J=\left\{s \in I:|T(s)|<c^{-1} d^{1+c|\log \tau|^{-1}}\right\}
$$

is empty or is an interval; in the last case, we have, for $s \in J$:

$$
\begin{aligned}
& \left|T^{\prime}(s)\right| \geqslant c^{-1} d^{1+c|\log r|^{-1}} \\
& \left|T^{\prime \prime}(s)\right| \leqslant c d^{1-c|\log r|^{-1}}|\log d|^{2}
\end{aligned}
$$

2.2. Under these assumptions we will now prove the theorem. Let μ be the restriction of $\mu_{1} \times \mu_{2}$ to L. Let $s_{0} \in(-\eta, \eta)$ and $0<r<r_{1}$. For $s \in I$, let ν_{s} be the image of μ by the map $\left(z_{1}, z_{2}\right) \rightarrow T\left(z_{1}, z_{2}\right)(s)$. We will prove that for almost all $s \in I, \nu_{s}$ is absolutely continuous with respect to Lebesgue measure, and will obtain a bound from below for the Lebesgue measure of the support of ν_{s}. Because this support is contained in $T_{s}(r)$ (see (ii)), it will prove the theorem.

Let $\hat{\nu}_{s}$ be the Fourier transform of ν_{s}. For $p \in \mathbf{R}$, we have

$$
\left|\hat{\nu}_{s}(p)\right|^{2}=\iint_{L \times L} e^{2 \pi i p} T_{z, z^{\prime}}(s) d \mu(z) d \mu\left(z^{\prime}\right)
$$

with $z=\left(z_{1}, z_{2}\right), z^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$ and

$$
T_{z, z^{\prime}}(s)=T\left(z_{1}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}^{\prime}\right)(s)
$$

For $p_{0}>0$, let

$$
\mathcal{I}\left(p_{0}\right)=\int_{I} \int_{-p_{0}}^{+p_{0}}\left|\hat{\nu}_{s}(p)\right|^{2} d p d s=\iint_{L \times L} \mathcal{I}_{z, z^{\prime}}\left(p_{0}\right) d \mu(z) d \mu\left(z^{\prime}\right)
$$

with

$$
\mathcal{I}_{z, z^{\prime}}\left(p_{0}\right)=\int_{I} \int_{-p_{0}}^{p_{0}} e^{2 \pi i p} T_{z, z^{\prime}}(s) d p d s=\frac{1}{\pi} \int_{I} \frac{\sin 2 \pi p_{0} T_{z, z^{\prime}}(s)}{T_{z, z^{\prime}}(s)} d s
$$

2.3. Fix $z, z^{\prime} \in L$ and just write T for $T_{z, z^{\prime}}$. We estimate $\mathcal{I}_{z, z^{\prime}}\left(p_{0}\right)=\mathcal{I}\left(p_{0}\right)$ in various cases. The letter d has the same meaning as in §2.1.

Case 1: $d>r^{\beta}$. With J as in $\S 2.1$ (iv), we have

$$
\left|\int_{I-J} \frac{\sin 2 \pi p_{0} T(s)}{T(s)} d s\right| \leqslant c d^{-1}|\log r|^{-1}
$$

On I, we use the following (classical) lemma.
Lemma. Let T be a C^{2} monotonous function on an interval J. For any $p_{0}>0$:

$$
\left|\int_{J} \frac{\sin 2 \pi p T(s)}{T(s)} d s\right| \leqslant c\left(\left(\inf _{J}\left|T^{\prime}\right|\right)^{-1}+\frac{\sup _{J}\left|T^{\prime \prime}\right|\left(\sup _{J} T-\inf _{J} T\right)}{\left(\inf _{J}\left|T^{\prime}\right|\right)^{3}}\right)
$$

Proof. Let $u=T(s), u_{1}=\sup _{J} T, u_{0}=\inf _{J} T, \varphi(u)=\left(T^{\prime} \circ T^{-1}(u)\right)^{-1}$.
One has, for $u \in\left[u_{0}, u_{1}\right]$,

$$
\begin{aligned}
& |\varphi(u)| \leqslant\left(\inf _{J}\left|T^{\prime}\right|\right)^{-1} \\
& \left|\varphi^{\prime}(u)\right| \leqslant \sup _{J}\left|T^{\prime \prime}\right|\left(\inf _{J}\left|T^{\prime}\right|\right)^{-3}
\end{aligned}
$$

Also

$$
\left|\int_{J} \frac{\sin 2 \pi p_{0} T(s)}{T(s)} d s\right|=\left|\int_{u_{0}}^{u_{1}} \frac{\sin 2 \pi p_{0} u}{u} \varphi(u) d u\right|
$$

Let $\varphi_{0}=\varphi(0)$ if $0 \in\left[u_{0}, u_{1}\right], \varphi_{0}=\varphi\left(u_{0}\right)$ if $u_{0}>0, \varphi_{0} \approx \varphi\left(u_{1}\right)$ if $u_{1}<0$. We have

$$
\left|\varphi(u)-\varphi_{0}\right| \leqslant \sup _{J}\left|T^{\prime \prime}\right|\left(\inf _{J}\left|T^{\prime}\right|\right)^{-3}|u|
$$

hence

$$
\int_{u_{0}}^{u_{1}} \frac{\left|\sin 2 \pi p_{0} u\right|}{|u|}\left|\varphi(u)-\varphi_{0}\right| d u \leqslant \sup _{J}\left|T^{\prime \prime}\right|\left(\inf _{J}\left|T^{\prime}\right|\right)^{-3}\left(u_{1}-u_{0}\right) ;
$$

On the other hand

$$
\left|\int_{u_{0}}^{u_{1}} \frac{\sin 2 \pi p_{0} u}{u} \varphi_{0} d u\right|=\left|\varphi_{0}\right|\left|\int_{2 \pi p_{0} u_{0}}^{2 \pi p_{1} u_{1}} \frac{\sin u}{u} d u\right| \leqslant c\left|\varphi_{0}\right|,
$$

which gives the lemma.
Using the lemma, the definition of J and $\S 2.1$ (iv), we get in Case 1:

$$
\left|I_{z, z^{\prime}}\left(p_{0}\right)\right| \leqslant c d^{-1}|\log r|^{-1}
$$

Case 2: $d<r^{\beta}$. Again we have, with the definition of J in $\S 2.1(\mathrm{v})$:

$$
\left|\int_{I-J} \frac{\sin 2 \pi p_{0} T(s)}{T(s)} d s\right| \leqslant c d^{-1-c|\log r|^{-1}|\log r|^{-1} .}
$$

On J, we use the lemma with the estimates of $\S 2.1(\mathrm{v})$:

$$
\left|\int_{J} \frac{\sin 2 \pi p_{0} T(s)}{T(s)} d s\right| \leqslant c d^{-1-3 c|\log r|^{-1}}|\log d|^{2},
$$

and we conclude that

$$
\left|\mathcal{I}_{z, z^{\prime}}\left(p_{0}\right)\right| \leqslant c d^{-1-3 c|\log r|^{-1}}|\log d|^{2} .
$$

2.4. Let $0<\varrho<2 r$. By $\S 2.1$ (i), the set of $\left(z, z^{\prime}\right)$ in $L \times L$ for which

$$
d=\sup \left(d_{s_{0}}\left(z_{1}, z_{1}^{\prime}\right), d_{s_{0}}\left(z_{2}, z_{2}^{\prime}\right)\right)<\varrho
$$

has $\mu \times \mu$-measure at most $c(r \varrho)^{\Delta_{1}+\Delta_{2}}$.
Consequently:

$$
\iint_{2^{-n} r \leqslant d<2^{1-n_{r}}} \mathcal{I}_{z, z^{\prime}}\left(p_{0}\right) d \mu(z) d \mu\left(z^{\prime}\right) \leqslant c r^{2\left(\Delta_{1}+\Delta_{2}\right)} 2^{-n\left(\Delta_{1}+\Delta_{2}\right)} A_{n},
$$

with

$$
A_{n}= \begin{cases}r^{-1} 2^{n}|\log r|^{-1} & \text { if } 2^{-n} r>r^{\beta}, \\ \left(r / 2^{n}\right)^{-1-3 c|\log r|^{-1}\left|\log \left(r / 2^{n}\right)\right|^{2}} & \text { if } 2^{-n} r \leqslant r^{\beta} .\end{cases}
$$

We take η small enough to have $\Delta_{1}+\Delta_{2}>c>1$ and r small enough to have

$$
3 c|\log r|^{-1}<\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right) \cdot \frac{\beta_{-1}}{\beta} .
$$

Then we get

$$
\begin{aligned}
\sum_{n \geqslant 0} 2^{-n\left(\Delta_{1}+\Delta_{2}\right)} A_{n} & \leqslant c r^{-1}|\log r|^{-1} \\
\mathcal{I}\left(p_{0}\right) & \leqslant c r^{2 \Delta_{1}+2 \Delta_{2}-1}|\log r|^{-1} .
\end{aligned}
$$

Letting p_{0} go to ∞, we conclude that for almost all $s \in I, \nu_{s}$ has an L^{2}-density χ_{s} with respect to Lebesgue measure and that

$$
\int_{I}\left\|\chi_{s}\right\|_{L^{2}}^{2} d s \leqslant c r^{2 \Delta_{1}+2 \Delta_{2}-1}|\log r|^{-1}
$$

Therefore there is a set $A \subset I$ of Lebesgue measure $\geqslant c^{-1}|\log r|^{-1}$ such that, for $s \in A$:

$$
\left\|\chi_{s}\right\|_{L^{2}}^{2} \leqslant c r^{2 \Delta_{1}+2 \Delta_{2}-1} .
$$

On the other hand, the total mass of ν_{s} satisfies:

$$
\left\|\chi_{s}\right\|_{L^{1}}=\nu_{s}(\mathbf{R})=\mu(L)>c^{-1} r^{\Delta_{1}+\Delta_{2}}
$$

By the Cauchy-Schwarz inequality, for $s \in A$, the support of ν_{s} has Lebesgue measure at least $c^{-1} r$. The theorem is proved.

3. The selection lemma

Our goal in this section is twofold: after recalling some basic material on subshifts of finite type, we express the transversality hypothesis on Hausdorff dimensions in the theorem in a convenient form; we then proceed to construct a set L satisfying the assumptions of $\S 2.1$.

More precisely, the contents of this section are as follows. In §§3.1-3.5, we recall the basic facts that we need concerning subshifts of finite type and Gibbs measures. In §3.6, we translate our transversality hypotheses in the symbolic dynamics setting. The end of the section is then devoted to check, from the geometrical estimates given in Proposition 3 in $\S 3.13$, the conditions (i)-(v) of $\S 2.1$, for an appropriate set L. An outline is first given in §3.7.
3.1. Consider an integer $r \geqslant 2$, and a subshift of finite type Σ^{+}of the unilateral full shift on r symbols $\{1, \ldots, r\}$. Let σ be the shift map, and $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant r}$ be the transition matrix determining Σ^{+}. We assume in the sequel that $\left(\Sigma^{+}, \sigma\right)$ is topologically mixing.

For $\underline{x}=(x(l))_{l \geqslant 0}$ and $\underline{y}=(y(l))_{l \geqslant 0}$ in Σ^{+}, define:

$$
\begin{aligned}
& v(\underline{x}, \underline{y})=\inf \{l \geqslant 0: x(l) \neq y(l)\}, \\
& d(\underline{x}, \underline{y})=\exp (-v(\underline{x}, \underline{y})) .
\end{aligned}
$$

Then (Σ^{+}, d) is a compact ultrametric space, whose balls of positive radius are called cylinders. For a cylinder C, we denote by $v(C)$ the integer such that the diameter of C is $\exp (-v(C))$.

For any continuous function φ on Σ^{+}, we write $S_{n} \varphi=\sum_{l=0}^{n-1} \varphi \circ \sigma^{l}$ for $n \geqslant 0$. For $k, n \geqslant 0$ and $m \geqslant k+n, x \in \Sigma^{+}$, we have:

$$
\begin{aligned}
& \min _{v(x, y) \geqslant m} S_{k+n} \varphi(y) \geqslant \min _{v(x, y) \geqslant m} S_{n} \varphi(y)+\min _{v\left(\sigma^{n} x, z\right) \geqslant m-n} S_{k} \varphi(z), \\
& \min _{v(x, y) \geqslant m} S_{k+n} \varphi(y) \leqslant \min _{v(x, y) \geqslant m} S_{n} \varphi(y)+\max _{v\left(\sigma^{n} x, z\right) \geqslant m-n} S_{k} \varphi(z), \\
& \min _{v(x, y) \geqslant m} S_{k+n} \varphi(y) \leqslant \max _{v(x, y) \geqslant m} S_{n} \varphi(y)+\min _{v\left(\sigma^{n} x, z\right) \geqslant m-n} S_{k} \varphi(z) .
\end{aligned}
$$

3.2. Let φ be a strictly positive continuous function on Σ^{+}. For distinct $x, y \in \Sigma^{+}$, define, with $m=v(x, y)$:

$$
d_{\varphi}(x, y)=\exp \left(-\min _{v(x, z) \geqslant m} S_{m} \varphi(z)\right)
$$

Putting also $d_{\varphi}(x, x)=0$, it follows from the inequalities above that d_{φ} is an ultrametric distance on Σ^{+}. Moreover, for distinct x, y and $0 \leqslant n \leqslant v(x, y)=m$, we have:

$$
\min _{v(x, z) \geqslant m} S_{n} \varphi(z) \leqslant \log \frac{d_{\varphi}\left(\sigma^{n} x, \sigma^{n} y\right)}{d_{\varphi}(x, y)} \leqslant \max _{v(z, x) \geqslant m} S_{n} \varphi(z)
$$

We set $d=d_{1}$. The identity maps: $\left(\Sigma^{+}, d\right) \rightarrow\left(\Sigma^{+}, d_{\varphi}\right),\left(\Sigma^{+}, d_{\varphi}\right) \rightarrow\left(\Sigma^{+}, d\right)$ are Hölder continuous. The balls of positive radius for d_{φ} are the cylinders; we write $|B|_{\varphi}$ for the d_{φ}-diameter of a subset B of Σ^{+}.
3.3. Let δ_{φ} be the Hausdorff dimension of $\left(\Sigma^{+}, d_{\varphi}\right)$. For $1 \leqslant j \leqslant r$, let

$$
\Sigma_{j}^{+}=\left\{\underline{x}=(x(l))_{l \geqslant 0} \in \Sigma^{+}: x(0)=j\right\}
$$

For $n \geqslant 0$, denote by Σ_{j}^{n} the set of cylinders C satisfying $C \subset \Sigma_{j}^{+}, v(C) \geqslant n+1$ which are maximal with these properties. They form a finite partition of Σ_{j}^{+}.

Proposition. Let $n \geqslant 0$. We have:

$$
\begin{aligned}
& \max _{1 \leqslant j \leqslant r} \sum_{C \in \Sigma_{j}^{n}} \exp \left(-\delta_{\varphi} \min _{C} S_{n} \varphi\right) \geqslant 1, \\
& \min _{1 \leqslant j \leqslant r} \sum_{C \in \Sigma_{j}^{n}} \exp \left(-\delta_{\varphi} \max _{C} S_{n} \varphi\right) \leqslant 1
\end{aligned}
$$

Proof. For $\delta>0$ and a finite family $\mathcal{B}=\left(B_{1}, \ldots, B_{s}\right)$ of cylinders, let

$$
H_{\delta}(\mathcal{B})=\sum\left|B_{i}\right|_{\varphi}^{\delta}
$$

First, let $\delta<\delta_{\varphi}$; consider, for each $1 \leqslant j \leqslant r$, a finite covering \mathcal{B}_{j} of Σ_{j}^{+}by cylinders. The proposition is trivial for $n=0$, so let $n \geqslant 1$. Let $1 \leqslant j \leqslant r, C \in \Sigma_{j}^{n}$; let $1 \leqslant k \leqslant r$ be such that $\sigma^{n}(C)=\Sigma_{k}^{+}$, and $\mathfrak{X} B_{C}$ be the covering of C whose image under σ^{n} is \mathcal{B}_{k}; by $\S 3.2$, we have:

$$
H_{\delta}\left(\mathcal{B}_{C}\right) \leqslant \exp \left(-\delta \min _{C} S_{n} \varphi\right) H_{\delta}\left(\mathcal{B}_{k}\right)
$$

Therefore, if \mathcal{C}_{j} is the covering of Σ_{j}^{+}given by the various $\mathcal{B}_{C}, C \in \Sigma_{j}^{n}$, we have:

$$
\begin{gathered}
\max _{1 \leqslant j \leqslant r} H_{\delta}\left(\mathcal{C}_{j}\right) \leqslant D \max _{1 \leqslant k \leqslant r} H_{\delta}\left(\mathcal{B}_{k}\right), \\
D=\max _{1 \leqslant j \leqslant r} \sum_{C \in \Sigma_{j}^{n}} \exp \left(-\delta \min _{C} S_{n} \varphi\right) .
\end{gathered}
$$

If we had $D \leqslant 1$, we would get arbitrarily fine coverings with bounded H_{δ}, contradicting $\delta<\delta_{\varphi}$. This gives the first inequality in the proposition.

Let now $\delta>\delta_{\varphi}, n \geqslant 1$. Let, for some $1 \leqslant j \leqslant r, \mathcal{B}$ be a finite covering of Σ_{j}^{+}by cylinders B with $v(B) \geqslant n+1$. For $C \in \Sigma_{j}^{n}$, let $\mathfrak{X} B_{C}$ be the covering of C by those elements of \mathcal{B} which meet C; if $\sigma^{n}(C)=\Sigma_{k}^{+}$, let \mathcal{C}_{C} be the covering of Σ_{k}^{+}image of \mathcal{B}_{C} under σ^{n}. We have:

$$
H_{\delta}(\mathcal{B})=\sum_{C \in \Sigma_{j}^{n}} H_{\delta}\left(\mathcal{B}_{C}\right)
$$

and, by $\S 3.2$:

$$
H_{\delta}\left(\mathcal{B}_{C}\right) \geqslant \exp \left(-\delta \max _{C} S_{n} \varphi\right) H_{\delta}\left(\mathcal{C}_{C}\right)
$$

hence

$$
\begin{gathered}
H_{\delta}(\mathcal{B}) \geqslant D^{\prime} \inf _{C \in \Sigma_{j}^{n}} H_{\delta}\left(\mathcal{C}_{C}\right) \\
D^{\prime}=\min _{1 \leqslant j \leqslant r} \sum_{C \in \Sigma_{j}^{n}} \exp \left(-\delta \max _{C} S_{n} \varphi\right) .
\end{gathered}
$$

As \mathcal{C}_{c} has fewer elements than \mathcal{B} and $\delta>\delta_{\varphi}$, we must have $D^{\prime} \leqslant 1$, proving the second inequality of the proposition.

Corollary ([MM], [PV]). The map $\varphi \mapsto \delta_{\varphi}$, defined on the strictly positive continuous functions on Σ^{+}, is continuous.

Proof. Let $C_{+}\left(\Sigma^{+}\right)$be the space of strictly positive continuous functions on Σ^{+}.
For $\varphi \in C_{+}\left(\Sigma^{+}\right)$and $n \geqslant 1$, define $\delta_{n}^{ \pm}(\varphi)$ by:

$$
\begin{aligned}
& \max _{1 \leqslant j \leqslant r} \sum_{C \in \Sigma_{j}^{n}} \exp \left(-\delta_{n}^{+}(\varphi) \min _{C} S_{n} \varphi\right)=1 \\
& \min _{1 \leqslant j \leqslant r} \sum_{C \in \Sigma_{j}^{n}} \exp \left(-\delta_{n}^{-}(\varphi) \max _{C} S_{n} \varphi\right)=1
\end{aligned}
$$

we have

$$
\delta_{n}^{-}(\varphi) \leqslant \delta_{\varphi} \leqslant \delta_{n}^{+}(\varphi)
$$

by the proposition. On the other hand, the maps $\delta_{n}^{+}, \delta_{n}^{-}$, for $n \geqslant 1$, form an equicontinuous family on $C_{+}\left(\Sigma^{+}\right)$, and the sequence $\left(\delta_{n}^{+}-\delta_{n}^{-}\right)_{n \geqslant 1}$ converge uniformly to 0 on compact subsets of $C_{+}\left(\Sigma^{+}\right)$. The corollary follows.
3.4. Let $\gamma>0$, and $C^{\gamma}\left(\Sigma^{+}\right)$be the Banach algebra of Hölder continuous functions of exponent γ on $\left(\Sigma^{+}, d\right)$. Here we simplify the notation, indicating an element $\underline{x} \in \Sigma^{+}$by $x \in \Sigma^{+}$. For $\varphi \in C^{\gamma}\left(\Sigma^{+}\right)$and $x, y \in \Sigma^{+}$, we have

$$
\left|S_{n} \varphi(x)-S_{n} \varphi(y)\right| \leqslant C(\varphi)
$$

for $n \leqslant v(x, y)$ and some constant $C(\varphi), v$ being defined as in (3.1) above. This is called the bounded oscillation property of Birkhoff sums.

For $\psi \in C^{\gamma}\left(\Sigma^{+}\right)$, the Perron-Frobenius operator $L_{\psi}: C^{\gamma}\left(\Sigma^{+}\right) \rightarrow C^{\gamma}\left(\Sigma^{+}\right)$is defined by:

$$
L_{\psi}(\chi)(x)=\sum_{\sigma y=x} \chi(y) \exp (-\psi(y))
$$

We recall Ruelle's theorem, and the relation to Hausdorff dimension ([Bo1], [Bo2], [Man]).
The spectrum of L_{ψ} is formed by a simple eigenvalue $\varrho_{\psi}>0$ and a compact set contained in $\left\{|z|<\varrho_{\psi}\right\}$.

The eigenfunction h_{ψ} associated to ϱ_{ψ} is strictly positive; the complementary invariant hyperplane is the kernel of a probability measure ν_{ψ} on Σ^{+}, satisfying $L_{\psi}^{*}\left(\nu_{\psi}\right)=\varrho_{\psi} \nu_{\psi}$.

Normalizing h_{ψ} by $\nu_{\psi}\left(h_{\psi}\right)=1$, the probability measure $\mu_{\psi}=h_{\psi} \nu_{\psi}$ is invariant under σ and ergodic.
3.5. The map $L: \psi \mapsto L_{\psi}$ from $C^{\gamma}\left(\Sigma^{+}\right)$to $\mathcal{L}\left(C^{\gamma}\left(\Sigma^{+}\right)\right)$is analytic, with differential given by:

$$
D_{\psi} L(\Delta \psi)(\chi)=L_{\psi}(\chi \Delta \psi)
$$

The map $\varrho: \psi \mapsto \varrho_{\psi}$ from $C^{\gamma}\left(\Sigma^{+}\right)$to \mathbf{R} is analytic, with:

$$
D_{\psi} \varrho(\Delta \psi)=\varrho_{\psi} \int \Delta \psi d \mu_{\psi}
$$

Let $\varphi \in C^{\gamma}\left(\Sigma^{+}\right), \varphi>0$. The Hausdorff dimension δ_{φ} of $\left(\Sigma_{A}^{+}, d_{\varphi}\right)$ is the unique $\delta>0$ such that $\varrho(\delta \varphi)=1$. The $\operatorname{map} \varphi \mapsto \delta_{\varphi}$ is analytic on $C_{+}^{\gamma}\left(\Sigma^{+}\right)$, with:

$$
D_{\varphi} \delta(\Delta \varphi)=-\frac{\int \Delta \varphi d \mu_{\psi}}{\int \varphi d \mu_{\psi}} \delta_{\varphi},
$$

where $\psi=\delta_{\varphi} \varphi$.
Finally, let B be a d_{φ}-ball of radius $r, n=v(B)$, and A a measurable subset of B; we have:

$$
\begin{aligned}
c^{-1} r^{\delta} & \leqslant \mu(B) \leqslant c r^{\delta}, \\
c^{-1} \frac{\mu(A)}{\mu(B)} & \leqslant \mu\left(\sigma^{n}(A)\right) \leqslant c \frac{\mu(A)}{\mu(B)},
\end{aligned}
$$

where $\mu=\mu_{\psi}, \delta=\delta_{\varphi}$ and c depend only on $\gamma,\|\varphi\|_{\gamma}$ and $\left\|\varphi^{-1}\right\|_{0}$.
3.6. Let us now translate in the setting of symbolic dynamics our geometrical transversality hypotheses.

Using a Markov partition for Λ_{1}, we choose a subshift of finite type Σ_{1} of the full bilateral left-shift on symbols $\left\{1, \ldots, r_{1}\right\}$, and a homeomorphism $h_{1}: \Sigma_{1} \rightarrow \Lambda_{1}$ such that:

$$
h_{1} \circ \sigma=f \circ h_{1} .
$$

Similarly, we choose a subshift of finite type Σ_{2} of the full bilateral left-shift on symbols $\left\{1, \ldots, r_{2}\right\}$, and a homeomorphism $h_{2}: \Sigma_{2} \rightarrow \Lambda_{2}$ such that

$$
h_{2} \circ \sigma=f^{-1} \circ h_{2} .
$$

Replacing if necessary f by some iterate, we assume that both subshifts are topologically mixing.

For $i \in\{1,2\}$, let Σ_{i}^{+}be the one-sided shifts on symbols $\left\{1, \ldots, r_{i}\right\}$ and $\pi_{i}: \Sigma_{i} \rightarrow \Sigma_{i}^{+}$ be the canonical projections.

We recall that there are continuous linear operators $\Pi_{i}: C^{\gamma}\left(\Sigma_{i}\right) \rightarrow C^{\gamma}\left(\Sigma_{i}^{+}\right)$and Θ_{i} : $C^{\gamma}\left(\Sigma_{i}\right) \rightarrow C^{\gamma}\left(\Sigma_{i}\right)$ such that, for $\psi \in C^{\gamma}\left(\Sigma_{i}\right)(i=1,2)$:

$$
\Pi_{i}(\psi) \circ \pi_{i}=\psi+\Theta_{i}(\psi)-\Theta_{i}(\psi) \circ \sigma,
$$

where $\pi_{i}: \Sigma_{i} \rightarrow \Sigma_{i}^{+}$is the canonical projection.
We have fixed some Riemannian metric on M. For $z \in \Sigma_{1}$ and $s, t \in(-\eta, \eta)$, let:

$$
\lambda_{1}(z, s, t)=\log \left\|\left.T_{h_{1}(z)(s, t)} f_{s, t}\right|_{E^{u}}\right\|,
$$

where E^{u} is the unstable subspace of $f_{s, t}$ at the point $h_{1}(z)(s, t)$ of the basic set. Similarly, for $z \in \Sigma_{2}, s, t \in(-\eta, \eta)$ let

$$
\lambda_{2}(z, s, t)=\log \left\|\left.T_{h_{2}(z)(s, t)} f_{s, t}^{-1}\right|_{E^{\varepsilon}}\right\| .
$$

We may assume that the Riemannian metrics is such that

$$
\lambda_{i}(z, s, t) \geqslant c>0, \quad i=1,2
$$

for $z \in \Sigma_{i}, s, t \in(-\eta, \eta)$.
For $s, t \in(-\eta, \eta), i=1,2$, let $\lambda_{i}(s, t)$ be the map $z \mapsto \lambda_{i}(z, s, t)$ from Σ_{i} to \mathbf{R}. There exists $\gamma>0$ such that $\lambda_{i}:(s, t) \rightarrow \lambda_{i}(s, t)$ is a smooth map from $(-\eta, \eta)^{2}$ to $C^{\gamma}\left(\Sigma_{i}\right)$.

Let $\varphi_{i}(s, t)=\Pi_{i}\left(\lambda_{i}(s, t)\right)$; then $(s, t) \mapsto \varphi_{i}(s, t)$ is a smooth map from $(-\eta, \eta)^{2}$ to $C^{\gamma}\left(\Sigma_{i}^{+}\right)$.

Let $(s, t) \in(-\eta, \eta)$. It is well-known (and we will prove in $\S 4$) that the composition

$$
W_{\mathrm{loc}}^{u}\left(p_{1}, s, t\right) \cap \Lambda_{1}(s, t) \xrightarrow{{h_{1, s, t}^{-1}}_{\Sigma_{1}}} \Sigma_{1} \xrightarrow{\pi_{1}}\left(\Sigma_{1}^{+}, d_{\varphi_{1}(s, t)}\right)
$$

is a biLipschitz homeomorphism on a neighbourhood of a_{1} in Σ_{1}^{+}. Therefore the Hausdorff dimension $\Delta_{1}(s, t)$ of $W_{\text {loc }}^{u}\left(p_{1}, s, t\right) \cap \Lambda_{1}(s, t)$ is the same as the Hausdorff dimension $\delta_{1}(s, t)$ of $\left(\Sigma_{1}^{+}, d_{\varphi_{1}(s, t)}\right)$.

Similarly, the Hausdorff dimension $\Delta_{2}(s, t)$ of $W_{\text {loc }}^{s}\left(p_{2}, s, t\right) \cap \Lambda_{2}(s, t)$ is the same as the Hausdorff dimension $\delta_{2}(s, t)$ of $\left(\Sigma_{2}^{+}, d_{\varphi_{2}(s, t)}\right)$.

For $(s, t) \in(-\eta, \eta)^{2}$, let

$$
\Delta \varphi_{i}(s, t)=\frac{\partial}{\partial s}\left(\varphi_{i}(s, t)\right)=\Pi_{i}\left(\frac{\partial}{\partial s} \lambda_{i}(s, t)\right)
$$

Let $\mu_{i, s, t}=\mu_{\psi_{i}(s, t)}$, with $\psi_{i}(s, t)=\delta_{i}(s, t) \varphi_{i}(s, t)$.
From $\S 3.5$ we have that

$$
\frac{\partial}{\partial s} \log \delta_{i}(s, t)=-\frac{\mu_{i, s, t}\left(\Delta \varphi_{i}(s, t)\right)}{\mu_{i, s, t}\left(\varphi_{i}(s, t)\right)}
$$

(and a similar formula holds with $\partial / \partial t$).
Taking η small enough, the transversality hypothesis on the Hausdorff dimensions is therefore equivalent to:

$$
\left|\mu_{1, s, t}\left(\varphi_{1}(s, t)\right) \mu_{2, s, t}\left(\Delta \varphi_{2}(s, t)\right)-\mu_{2, s, t}\left(\varphi_{2}(s, t)\right) \mu_{1, s, t}\left(\Delta \varphi_{1}(s, t)\right)\right| \geqslant c>0
$$

For the eigenvalues of the periodic orbit, we have, for $i=1,2$:

$$
\bar{\lambda}_{i}(s, t)=\sum_{j=0}^{n_{i}-1} \lambda_{i}\left(\sigma^{j}\left(a_{i}\right), s, t\right)=\sum_{j=0}^{n_{i}-1} \varphi_{i}(s, t)\left(\sigma^{j} a_{i}\right) .
$$

Hence the transversality hypothesis on the eigenvalues in §1.5 means that (taking η small enough) we have:

$$
\left.\mid S_{n_{1}} \varphi_{1}(s, t)\left(a_{1}\right) S_{n_{2}} \Delta \varphi_{2}(s, t)\left(a_{2}\right)-S_{n_{2}} \varphi_{2}(s, t)\left(a_{2}\right) S_{n_{1}} \Delta \varphi_{1}(s, t) a_{1}\right) \mid \geqslant c>0
$$

3.7. Let us go back to the setting and conditions of $\S 2.1$. We identify $W_{\text {loc }}^{u}\left(p_{1}, s, t\right) \cap$ $\Lambda_{1}(s, t)$ with a neighbourhood of a_{1} in Σ_{1}^{+}and $W_{\text {loc }}^{s}\left(p_{2}, s, t\right) \cap \Lambda_{2}(s, t)$ with a neighbourhood of a_{2} in Σ_{2}^{+}.

Let us fix $s_{0} \in(-\eta, \eta)$ and set, for $i=1,2$:

$$
\begin{aligned}
& \varphi_{i}=\varphi_{i}\left(s_{0}, 0\right), \\
& \mu_{i}=\mu_{i, s_{0}, 0} \\
& S_{i}=S_{n_{i}} \varphi_{i}\left(a_{i}\right), \\
& J_{i}=\int \varphi_{i}=S_{i}\left(s_{0}, 0\right) \\
& J_{i} d \mu_{i}, \Delta \varphi_{i}\left(a_{i}\right) \\
&=\int \Delta \varphi_{i} d \mu_{i}
\end{aligned}
$$

We use $d_{\varphi_{i}}$ as distance on Σ_{i}^{+}and denote by $B_{i}(r)$ the $d_{\varphi_{i}}$-ball of center a_{i}, radius r. Our transversality hypotheses mean that:

$$
S_{1} \Delta S_{2} \neq S_{2} \Delta S_{1}, \quad J_{1} \Delta J_{2} \neq J_{2} \Delta J_{1}
$$

Let $z_{1}, z_{1}^{\prime} \in B_{1}(r), z_{2}, z_{2}^{\prime} \in B_{2}(r)$ as in $\S 2.1$, and

$$
T(s)=T\left(z_{1}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}^{\prime}\right)(s)
$$

The main point of properties (iv), (v) in $\S 2.1$ is that $|T(s)|$ and $\left|T^{\prime}(s)\right|$ should not both be too small at the same time.

Let $\nu_{1}=v\left(z_{1}, z_{1}^{\prime}\right), \nu_{2}=v\left(z_{2}, z_{2}^{\prime}\right)$.
It will be a consequence of the geometrical estimates of Proposition 3 below that if both $|T(s)|$ and $\left|T^{\prime}(s)\right|$ are small, then

$$
\begin{aligned}
& D_{1}=\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right| \\
& D_{2}=\left|S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)\right|
\end{aligned}
$$

are both bounded.
That this cannot happen when ν_{1}, ν_{2} are not too large follow from the hypothesis $S_{1} \Delta S_{2} \neq S_{2} \Delta S_{1}$: this is the content of Proposition 1 below and will imply conditions (iv) of $\S 2.1$.

For large ν_{1}, ν_{2}, the Birkhoff sums above are related at most points, through Birkhoff's ergodic theorem, to the mean values of the functions considered.

Roughly speaking, we would like to have, for most z_{1}, z_{2} :

$$
D_{1} \text { bounded } \Longrightarrow \nu_{1} / \nu_{2} \approx J_{2} / J_{1}
$$

hence

$$
D_{2} \approx \nu_{2}\left|J_{2} / J_{1} \Delta J_{1}-\Delta J_{2}\right| \geqslant c^{-1} \nu_{2}
$$

as $J_{2} \Delta J_{1} \neq J_{1} \Delta J_{2}$.
The set L in condition (v) of $\S 2.1$ is thus constructed by first deleting exceptional points for Birkhoff's ergodic theorem.

But we have also to take the intermediate values of ν_{1}, ν_{2} into account, which are covered neither by Proposition 1 nor by Birkhoff's theorem. This is done using a stoppingtime argument. The precise construction of L is done in Proposition 2 below.

The rest of this section is as follows:

- in §3.8, we state and prove Proposition 1;
- in §3.9, we state Proposition 2, which is then proved in §§3.10-3.12;
- in $\S 3.13$, we state Proposition 3, to be proven in $\S 4$;
- in $\S \S 3.14$ and 3.15 we finally deduce conditions (i)-(v) of $\S 2.1$ from Propositions $1,2,3$.
3.8. Proposition 1. Assume that $S_{1} \Delta S_{2} \neq S_{2} \Delta S_{1}$. Then there exist constants $c_{0}>0, r_{1}>0, \beta_{0}>1$ such that the following property holds: let $0<r<r_{1}, m_{i}=v\left(B_{i}(r)\right)$, $\nu_{i} \in \mathbf{N}($ for $i=1,2) ;$ if

$$
1 \leqslant \inf \left(\frac{\nu_{1}}{m_{1}}, \frac{\nu_{2}}{m_{2}}\right) \leqslant \beta_{0}
$$

then, for all $z_{1} \in B_{1}(r), z_{2} \in B_{2}(r)$, we have:

$$
\max \left(\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right|,\left|S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)\right|\right) \geqslant c_{0}^{-1}|\log r| .
$$

Proof. In the following, we write c for various positive constants depending only on $z_{i}, r_{i}, \varphi_{i}, \Delta \varphi_{i}$. Moreover, the dependence on $\varphi_{i}, \Delta \varphi_{i}$ is only through $\left\|\varphi_{i}\right\|_{\gamma},\left\|\Delta \varphi_{i}\right\|_{\gamma}$, $\left\|\varphi_{i}^{-1}\right\|_{0}, S_{i}, \Delta S_{i}, J_{i}, \Delta J_{i}$. We use repeatedly the bounded oscillation property for the Birkhoff sums of $\varphi_{i}, \Delta \varphi_{i}$, which follows from the Hölder continuity.

With $\varepsilon>0$ small enough, assume that

$$
\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right|<\varepsilon|\log r|
$$

and for instance $m_{1} \leqslant \nu_{1} \leqslant m_{1}(1+\varepsilon), m_{2} \leqslant \nu_{2}$.
We have, for $i=1,2$:

$$
\begin{aligned}
\left|S_{m_{i}} \varphi_{i}\left(z_{i}\right)-\frac{m_{i}}{n_{i}} S_{i}\right| & <c \\
\left|\frac{m_{i}}{n_{i}} S_{i}-|\log r|\right| & <c
\end{aligned}
$$

as φ_{i} is positive, we get:

$$
\begin{gathered}
c^{-1}\left(\nu_{i}-m_{i}\right)-c<S_{\nu_{i}} \varphi_{i}\left(z_{i}\right)-\frac{m_{i}}{n_{i}} S_{i}<c\left(\nu_{i}-m_{i}\right)+c, \\
-\varepsilon|\log r|<S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)<c+c\left(\nu_{1}-m_{1}\right)-c^{-1}\left(\nu_{2}-m_{2}\right) .
\end{gathered}
$$

For r_{1} small enough, this implies:

$$
\begin{gathered}
\nu_{2} \leqslant m_{2}(1+c \varepsilon), \\
\left|S_{\nu_{i}} \varphi_{i}\left(z_{i}\right)-\frac{m_{i}}{n_{i}} S_{i}\right|<c \varepsilon|\log r| .
\end{gathered}
$$

We obtain also in a similar way:

$$
\left|S_{\nu_{i}} \Delta \varphi_{i}\left(z_{i}\right)-\frac{m_{i}}{n_{i}} \Delta S_{i}\right|<c \varepsilon|\log r| .
$$

If we had also:

$$
\left|S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)\right|<\varepsilon|\log r|,
$$

we would get, as $c|\log r| \geqslant m_{i} \geqslant c^{-1}|\log r|$:

$$
\left|S_{1} \Delta S_{2}-S_{2} \Delta S_{1}\right| \leqslant \frac{n_{2}}{m_{2}}\left(\left|S_{1}\left(\frac{m_{2}}{n_{2}} \Delta S_{2}-\frac{m_{1}}{n_{1}} \Delta S_{1}\right)\right|+\left|\Delta S_{1}\left(\frac{m_{1}}{n_{1}} S_{1}-\frac{m_{2}}{n_{2}} S_{2}\right)\right|\right) \leqslant c \varepsilon
$$

a contradiction for ε small enough. We take $\beta_{0}=1+\varepsilon$ and $c_{0}=\varepsilon^{-1}$.
3.9. Proposition 2. Assume that $J_{1} \Delta J_{2} \neq J_{2} \Delta J_{1}$.

There exist constants $c_{1}, c_{2}>0$ and, for any $M>0$, constants $r(M)>0, \varepsilon(M)>0$ such that, for any $0<r<r(M)$, we can find a compact subset L of $B_{1}(r) \times B_{2}(r)$ with the following properties:
(i) $\mu_{1} \times \mu_{2}(L)>\varepsilon(M) \mu_{1}\left(B_{1}(r)\right) \mu_{2}\left(B_{2}(r)\right)$;
(ii) for any distinct $y_{1}, z_{1} \in B_{1}(r), y_{2}, z_{2} \in B_{2}(r)$ such that $\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in L$, we have:
$\sup \left(\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right|,\left|S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)\right|\right) \geqslant \sup \left(M, c_{1}\left(\nu_{1}+\nu_{2}-c_{2}|\log r|\right)\right)$
where $\nu_{i}=v\left(y_{i}, z_{i}\right)$ for $i=1,2$.
3.10. Proof of Proposition 2. We may for instance assume that $J_{1} \Delta J_{2}>J_{2} \Delta J_{1}$. We will write μ for $\mu_{1} \times \mu_{2}$.

Let $\eta>0$ be a small positive constant, to be chosen later, independent of M. As μ_{i} is ergodic for $i=1,2$, we can find a compact subset $K_{i} \subset \Sigma_{i}^{+}$with $\mu_{i}\left(K_{i}\right)>1-\eta$ and an integer n_{0} such that, for $n \geqslant n_{0}$ and $z_{i} \in K_{i}$, we have:

$$
\begin{array}{r}
\left|S_{n} \varphi_{i}\left(z_{i}\right)-n J_{i}\right|<\eta n, \\
\left|S_{n} \Delta \varphi_{i}\left(z_{i}\right)-n \Delta J_{i}\right|<\eta n .
\end{array}
$$

For a cylinder $C \subset \Sigma_{i}^{+}$, we define

$$
K_{i}(C)=\sigma^{-m}\left(K_{i}\right) \cap C, \quad m=v(C)
$$

if η is small enough (independently of C), we have:

$$
\mu_{i}\left(K_{i}(C)\right) \geqslant \frac{1}{2} \mu_{i}(C) \quad(\text { see } \S 3.5)
$$

Lemma 1. Assume that $\eta<c^{-1}$. For $i=1,2$, let $z_{i} \in \Sigma_{i}^{+}$and q_{i}, ν_{i} be integers such that

$$
\bar{\nu}_{i}=\nu_{i}-q_{i} \geqslant n_{0}, \quad \sigma^{q_{i}}\left(z_{i}\right) \in K_{i}
$$

Then we have

$$
\begin{aligned}
& \left(S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)\right)+\left|S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)-S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| \\
& \quad \geqslant\left(S_{q_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \Delta \varphi_{1}\left(z_{1}\right)\right)-\left|S_{q_{2}} \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \varphi_{1}\left(z_{1}\right)\right|+c\left(\bar{\nu}_{1}+\widetilde{\nu}_{2}\right)
\end{aligned}
$$

Proof. Writing

$$
S_{\nu_{i}} \varphi_{i}=S_{q_{i}} \varphi_{i}+S_{\bar{\nu}_{i}} \varphi_{i} \circ \sigma^{q_{i}}
$$

we get, as $\bar{\nu}_{i} \geqslant n_{0}$ and $\sigma^{q_{i}}\left(z_{i}\right) \in K_{i}$:

$$
\begin{array}{r}
\left|S_{\nu_{i}} \varphi_{i}\left(z_{i}\right)-S_{q_{i}} \varphi_{i}\left(z_{i}\right)-\bar{\nu}_{i} J_{i}\right|<\eta \bar{\nu}_{i} \\
\left|S_{\nu_{i}} \Delta \varphi_{i}\left(z_{i}\right)-S_{q_{i}} \Delta \varphi_{i}\left(z_{i}\right)-\bar{\nu}_{i} \Delta J_{i}\right|<\eta \bar{\nu}_{i}
\end{array}
$$

It then follows that:

$$
\begin{gathered}
\left|S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)-S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| \geqslant\left|\bar{\nu}_{2} J_{2}-\bar{\nu}_{1} J_{1}\right|-\left|S_{q_{2}} \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \varphi_{1}\left(z_{1}\right)\right|-\eta\left(\bar{\nu}_{1}+\bar{\nu}_{2}\right) \\
S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right) \geqslant \bar{\nu}_{2} \Delta J_{2}-\bar{\nu}_{1} \Delta J_{1}+S_{q_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \Delta \varphi_{1}\left(z_{1}\right)-\eta\left(\bar{\nu}_{1}+\bar{\nu}_{2}\right) .
\end{gathered}
$$

It remains to see that:

$$
\left|\bar{\nu}_{2} J_{2}-\bar{\nu}_{1} J_{1}\right|+\bar{\nu}_{2} \Delta J_{2}-\bar{\nu}_{1} \Delta J_{1} \geqslant c\left(\bar{\nu}_{1}+\bar{\nu}_{2}\right)
$$

But we have:

$$
\begin{aligned}
& \bar{\nu}_{2}\left(J_{1} \Delta J_{2}-J_{2} \Delta J_{1}\right)=J_{1}\left(\bar{\nu}_{2} \Delta J_{2}-\bar{\nu}_{1} \Delta J_{1}\right)+\Delta J_{1}\left(\bar{\nu}_{1} J_{1}-\bar{\nu}_{2} J_{2}\right) \\
& \bar{\nu}_{1}\left(J_{1} \Delta J_{2}-J_{2} \Delta J_{1}\right)=J_{2}\left(\bar{\nu}_{2} \Delta J_{2}-\bar{\nu}_{1} \Delta J_{1}\right)+\Delta J_{2}\left(\bar{\nu}_{1} J_{1}-\bar{\nu}_{2} J_{2}\right)
\end{aligned}
$$

which implies the last inequality since $J_{1}>0, J_{2}>0, J_{1} \Delta J_{2}>J_{2} \Delta J_{1}$.
3.11. We now proceed to the construction of L. Fix $M>0$, which we may assume big, and $0<r<r(M)$, with $r(M)$ small, to be determined later. For $i=1,2$, let $m_{i}=v\left(B_{i}(r)\right)$. For $z_{i} \in B_{i}(r)$, we have:

$$
\begin{gathered}
\left|S_{m_{i}} \varphi_{i}\left(z_{i}\right)-|\log r|\right| \leqslant c \\
c^{-1}|\log r| \leqslant m_{i} \leqslant c|\log r|
\end{gathered}
$$

We distinguish two cases. (Recall that we are assuming that $J_{1} \Delta J_{2}>J_{2} \Delta J_{1}$.)
Case 1: $S_{m_{2}} \Delta \varphi_{2}\left(a_{2}\right) \geqslant S_{m_{1}} \Delta \varphi_{1}\left(a_{1}\right)$.
We have

$$
\mu_{i}\left(K_{i}\left(B_{i}(r)\right)\right) \geqslant \frac{1}{2} \mu_{i}\left(B_{i}(r)\right)
$$

With an integer $m_{0}=m_{0}(M) \geqslant n_{0}$ to be chosen later, pick cylinders $C_{i} \subset B_{i}(r)$ satisfying:

$$
\begin{aligned}
m_{i}+m_{0}+c \geqslant v\left(C_{i}\right) & \geqslant m_{i}+m_{0} \\
\mu_{i}\left(K_{i}\left(B_{i}(r)\right) \cap C_{i}\right) & \geqslant \frac{1}{2} \mu_{i}\left(C_{i}\right)
\end{aligned}
$$

and define

$$
L=\left(C_{1} \cap K_{1}\left(B_{1}(r)\right)\right) \times\left(C_{2} \cap K_{2}\left(B_{2}(r)\right)\right)
$$

We have

$$
\mu(L) \geqslant \frac{1}{4} \mu_{1}\left(C_{1}\right) \mu_{2}\left(C_{2}\right) \geqslant \frac{1}{4} e^{-c\left(m_{0}+c\right)} \mu_{1}\left(B_{1}(r)\right) \mu_{2}\left(B_{2}(r)\right),
$$

hence condition (i) in Proposition 2 is satisfied if $\varepsilon(M)<\frac{1}{4} e^{-c\left(m_{0}+c\right)}$. Let $y_{1}, y_{2}, z_{1}, z_{2}$, ν_{1}, ν_{2} be as in condition (ii) of Proposition 2.

We have

$$
\left|S_{m_{1}} \varphi_{1}\left(z_{1}\right)-S_{m_{2}} \varphi_{2}\left(z_{2}\right)\right| \leqslant c
$$

and, by the hypothesis of Case 1:

$$
S_{m_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{m_{1}} \Delta \varphi_{1}\left(z_{1}\right) \geqslant-c .
$$

Also, $\sigma^{m_{i}}\left(z_{i}\right) \in K_{i}$ and $\nu_{i}-m_{i}=\bar{\nu}_{i} \geqslant m_{0} \geqslant n_{0} ;$ with $m_{i}=a_{i}$, we then get from Lemma 1:

$$
\begin{aligned}
\left(S_{\nu_{2}} \Delta \varphi\left(z_{2}\right)-S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)\right)+\left|S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)-S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| & \geqslant c\left(\left(\nu_{1}+\nu_{2}\right)-\left(m_{1}+m_{2}\right)\right)-c^{\prime} \\
& \geqslant c m_{0}-c^{\prime} .
\end{aligned}
$$

With $m_{0}>c M$ and c_{1}, c_{2}^{-1} small enough, this implies the inequality in condition (ii) of Proposition 2.
3.12. Case 2: $S_{m_{2}} \Delta \varphi_{2}\left(a_{2}\right)<S_{m_{1}} \Delta \varphi_{1}\left(a_{1}\right)$.

The construction of L is more intricate, involving a stopping time argument.
Consider the family \mathcal{F} of products $C=C_{1} \times C_{2}$, where C_{i} is a cylinder contained in $B_{i}(r)$, such that, with $q_{i}=v\left(C_{i}\right)$, there exist points $u_{1} \in C_{1}, u_{2} \in C_{2}$ with:

$$
\begin{aligned}
\left|S_{q_{1}} \varphi_{1}\left(u_{1}\right)-S_{q_{2}} \varphi_{2}\left(u_{2}\right)\right| & <M \\
\left|S_{q_{1}} \Delta \varphi_{1}\left(u_{1}\right)-S_{q_{2}} \Delta \varphi_{2}\left(u_{2}\right)\right| & <M
\end{aligned}
$$

We order \mathcal{F} by inclusion, and denote by \mathcal{F}_{0} the subfamily of maximal elements of \mathcal{F}. For $B>0$, let \mathcal{F}_{B} be the subfamily of \mathcal{F}_{0} formed by the products $C=C_{1} \times C_{2} \in \mathcal{F}_{0}$ with:

$$
v\left(C_{i}\right) \leqslant B|\log r|, \quad i=1,2
$$

Lemma 2. For $M, B>c$, we have:

$$
K_{1}\left(B_{1}(r)\right) \times K_{2}\left(B_{2}(r)\right) \subset \bigcup_{\mathcal{F}_{B}} C
$$

Proof. Let $u_{i} \in K_{i}\left(B_{i}(r)\right)$, for $i=1,2$. For all $m \geqslant m_{1}$, select an integer $\tau(m) \geqslant m_{2}$ such that

$$
\begin{gathered}
\left|S_{m} \varphi_{1}\left(u_{1}\right)-S_{\tau(m)} \varphi_{2}\left(u_{2}\right)\right| \leqslant c \\
\tau\left(m_{1}\right)=m_{2}, \quad \tau(m+1) \geqslant \tau(m)
\end{gathered}
$$

(this is possible because $\varphi_{1}, \varphi_{2}>0$).
Let $\Delta_{m}=S_{\tau(m)} \Delta \varphi_{2}\left(u_{2}\right)-S_{m} \Delta \varphi_{1}\left(u_{1}\right)$ for $m \geqslant m_{1}$. We have $\tau(m+1) \leqslant \tau(m)+c$, hence:

$$
\left|\Delta_{m}-\Delta_{m+1}\right| \leqslant c
$$

and, by the hypothesis of Lemma 2:

$$
-c|\log r|<\Delta_{m_{1}}<c
$$

We also clearly have

$$
c^{-1} m \leqslant \tau(m) \leqslant c m
$$

With $r(M)$ small enough, apply Lemma 1 , taking $q_{i}=m_{i}$ and $B^{\prime}|\log r|<\nu_{i}<B|\log r|$, $\nu_{2}=\tau\left(\nu_{1}\right), B^{\prime}>c$; we get:

$$
\Delta_{\nu_{1}}>\Delta_{m_{1}}-c^{\prime}+c\left(\nu_{1}+\nu_{2}-m_{1}-m_{2}\right)>0
$$

hence there exists $m_{1} \leqslant m \leqslant \nu_{1}$ such that

$$
\begin{gathered}
\left|S_{m} \varphi_{1}\left(u_{1}\right)-S_{\tau(m)} \varphi_{2}\left(u_{2}\right)\right| \leqslant c \\
\left|\Delta_{m}\right|=\left|S_{m} \Delta \varphi_{1}\left(u_{1}\right)-S_{\tau(m)} \Delta \varphi_{2}\left(u_{2}\right)\right| \leqslant c .
\end{gathered}
$$

Let C_{1} be the smallest cylinder with $v\left(C_{1}\right)<m$ containing u_{1}, and C_{2} be the smallest cylinder with $v\left(C_{2}\right)<\tau(m)$ containing u_{2}. We have

$$
\begin{gathered}
m-c \leqslant v\left(C_{1}\right)<m \leqslant \nu_{1}<B|\log r|, \\
\tau(m)-c \leqslant v\left(C_{2}\right)<\tau(m) \leqslant \nu_{2}<B|\log r|
\end{gathered}
$$

hence $C=C_{1} \times C_{2}$ belongs to \mathcal{F}; this proves Lemma 2 .
For $C \in \mathcal{F}_{0}$, define:

$$
\begin{aligned}
& W_{1}(C)=\bigcup_{\substack{C^{\prime} \in \mathcal{F}_{0} \\
C \cap C^{\prime} \neq \varnothing}} C^{\prime}, \\
& W_{2}(C)=\bigcup_{\substack{C^{\prime} \in \mathcal{F}_{0} \\
C \cap C^{\prime} \neq \varnothing}} W_{1}\left(C^{\prime}\right) .
\end{aligned}
$$

Let also $U=\bigcup_{C \in \mathcal{F}_{B}} C$.
Choose elements C^{1}, \ldots, C^{N} of \mathcal{F}_{B}, with N maximal (\mathcal{F}_{B} is finite), such that:

$$
C^{i+1} \not \subset \bigcup_{j=0}^{i} W_{2}\left(C^{j}\right), \quad 1 \leqslant i<N .
$$

We then have

$$
U \subset \bigcup_{j=1}^{N} W_{2}\left(C^{j}\right)
$$

With an integer $m_{0}=m_{0}(M) \geqslant n_{0}$ to be chosen later, select as in Case 1 , for $1 \leqslant j \leqslant N$, a product of cylinders $\widehat{C}^{j}=\widehat{C}_{1}^{j} \times \widehat{C}_{2}^{j} \subset C^{j}=C_{1}^{j} \times C_{2}^{j}$ such that, for $i=1,2$:

$$
\begin{gathered}
m_{0}+v\left(C_{i}^{j}\right) \leqslant v\left(\widehat{C}_{i}^{j}\right) \leqslant m_{0}+c+v\left(C_{i}^{j}\right), \\
\mu_{i}\left(\widehat{C}_{i}^{j} \cap K_{i}\left(C_{i}^{j}\right)\right) \geqslant \frac{1}{2} \mu_{i}\left(\widehat{C}_{i}^{j}\right) .
\end{gathered}
$$

See Figure 2.

Finally, define

$$
L=\bigcup_{j=1}^{N}\left(\widehat{C}_{1}^{j} \cap K_{1}\left(C_{1}^{j}\right)\right) \times\left(\widehat{C}_{2}^{j} \cap K_{2}\left(C_{2}^{j}\right)\right)
$$

Fig. 2
We first check condition (i) of Proposition 2.
The C^{j} being disjoint by construction, we have:

$$
\mu(L) \geqslant \frac{1}{4} \Sigma \mu\left(\widehat{C}^{j}\right) \geqslant \frac{1}{4} e^{-c\left(m_{0}+c\right)} \Sigma \mu\left(C^{j}\right)
$$

On the other hand, if $C, C^{\prime} \in \mathcal{F}_{0}$ satisfy $C \cap C^{\prime} \neq \varnothing$, we must have for instance $C_{1} \subset C_{1}^{\prime}$, $C_{2} \supset C_{2}^{\prime}$; because φ_{1}, φ_{2} are positive, this implies:

$$
\left|v\left(C_{i}\right)-v\left(C_{i}^{\prime}\right)\right| \leqslant c M .
$$

From this, it follows, for $C \in \mathcal{F}_{0}$:

$$
\begin{aligned}
& \mu\left(W_{1}(C)\right) \leqslant c e^{c M} \mu(C) \\
& \mu\left(W_{2}(C)\right) \leqslant c e^{c M} \mu(C)
\end{aligned}
$$

By Lemma 2 we have:

$$
U \supset K_{1}\left(B_{1}(r)\right) \times K_{2}\left(B_{2}(r)\right)
$$

Therefore, we obtain

$$
\begin{array}{r}
\frac{1}{4} \mu\left(B_{1}(r) \times B_{2}(r)\right) \leqslant \mu(U) \leqslant \Sigma \mu\left(W_{2}\left(C^{j}\right)\right) \leqslant c e^{c M} \Sigma \mu\left(C^{j}\right), \\
\mu(L)
\end{array} \frac{1}{16} c^{-1} e^{-c\left(M+m_{0}+c\right)} \mu\left(B_{1}(r) \times B_{2}(r)\right), ~ \$
$$

and condition (i) is satisfied provided

$$
\varepsilon(M)<\frac{1}{16} c^{-1} e^{-c\left(M+m_{0}+c\right)} .
$$

Let $y_{1}, y_{2}, z_{1}, z_{2}, \nu_{1}, \nu_{2}$ be as in condition (ii) of Proposition 2. Let $1 \leqslant j, k \leqslant N$ be such that $\left(y_{1}, y_{2}\right) \in \widehat{C}^{j},\left(z_{1}, z_{2}\right) \in \widehat{C}^{k}$.

First assume that $j<k$. Then, for $i=1,2$:

$$
\nu_{i} \leqslant v\left(C_{i}^{j}\right) \leqslant B|\log r|
$$

hence, with c_{2}^{-1} small enough

$$
\max \left(M, c_{1}\left(\nu_{1}+\nu_{2}-c_{2}|\log r|\right)\right)=M
$$

if the inequality in Proposition 2 was not valid, the minimal product $\widetilde{C}=\widetilde{C}_{1} \times \widetilde{C}_{2}$ containing (y_{1}, z_{1}) and (y_{2}, z_{2}) (with $v\left(\widetilde{C}_{i}\right)=\nu_{i}$) would belong to \mathcal{F}. But then $\widetilde{C} \subset W_{1}\left(C^{j}\right)$ and $C^{k} \subset W_{2}\left(C^{j}\right)$, contradicting the choice of the C^{l}.

Assume now that $j=k$. With $q_{i}=v\left(C_{i}^{j}\right)$, we apply Lemma 1 to get:

$$
\begin{aligned}
\mid S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right) & -S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)\left|+\left|S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)-S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right|\right. \\
& \geqslant\left(S_{q_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \Delta \varphi_{1}\left(z_{1}\right)\right)-\left|S_{q_{2}} \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \varphi_{1}\left(z_{1}\right)\right|+c\left(\nu_{1}+\nu_{2}-q_{1}-q_{2}\right)
\end{aligned}
$$

From the definition of $\mathcal{F}, \mathcal{F}_{B}$, we have:

$$
\begin{gathered}
\left|q_{i}\right| \leqslant B|\log r| \\
\left|S_{q_{2}} \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \varphi_{1}\left(z_{1}\right)\right| \leqslant c+M \\
\left|S_{q_{2}} \Delta \varphi_{2}\left(z_{2}\right)-S_{q_{1}} \Delta \varphi_{1}\left(z_{1}\right)\right| \leqslant c+M
\end{gathered}
$$

and the inequality of the proposition follows, provided c_{1}, c_{2}^{-1} are small enough and $m_{0}>c M$ (recall that $\nu_{i}-q_{i} \geqslant m_{0}$).

The proof of Proposition 2 is complete.
3.13. We now state the geometrical estimates proved in $\S 4$, and deduce from them the assumptions in §2.1.

Proposition 3. Let η be small enough. There exist constants $r_{2}>0, c>0$ such that, if $z_{1}, z_{1}^{\prime} \in \Sigma_{1}^{+}, z_{2}, z_{2}^{\prime} \in \Sigma_{2}^{+}$satisfy:

$$
\begin{array}{ll}
d_{0}\left(z_{i}, a_{i}\right)<r_{2} & \text { for } i=1,2 \\
d_{0}\left(z_{i}^{\prime}, a_{i}\right)<r_{2} & \text { for } i=1,2
\end{array}
$$

then, writing

$$
\begin{aligned}
\tau_{1}(s) & =\log \left|T\left(z_{1}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}\right)(s)\right| \\
\tau_{2}(s) & =\log \left|T\left(z_{1}^{\prime}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}^{\prime}\right)(s)\right| \\
\nu_{i} & =v\left(z_{i}, z_{i}^{\prime}\right) \quad \text { for } i=1,2
\end{aligned}
$$

the following estimates, for $i=1,2$, hold:

$$
\begin{gathered}
\left|\tau_{i}(s)+\sum_{j=0}^{\nu_{i}-1} \lambda_{i}\left(\sigma^{j} z_{i}, s, T\left(z_{1}, z_{2}\right)(s)\right)\right| \leqslant c \\
\left|\frac{d}{d s}\left(\tau_{i}(s)+\sum_{j=0}^{\nu_{i}-1} \lambda_{i}\left(\sigma^{j} z_{i}, s, T\left(z_{1}, z_{2}\right)(s)\right)\right)\right| \leqslant c \\
\left|\frac{d^{2}}{d s^{2}} \tau_{i}(s)\right| \leqslant c \nu_{i}^{2} \\
\left|T\left(z_{1}, z_{2}\right)(s)\right| \leqslant c \sup \left[d_{s}\left(z_{1}, z_{1}\right), d_{s}\left(z_{2}, a_{2}\right)\right]=c d_{s} \\
\left|\frac{d}{d s} T\left(z_{1}, z_{2}\right)(s)\right| \leqslant c d_{s}\left|\log d_{s}\right|
\end{gathered}
$$

3.14. In the context of $\S 2.1$, let $r_{1}>0, \beta>1$ to be determined later.

Let $s_{0} \in(-\eta, \eta), 0<r<r_{1}, I=\left[s_{0}-|\log r|^{-1}, s_{0}+|\log r|^{-1}\right]$. Let $z_{1}, z_{1}^{\prime} \in B_{s_{0}}^{1}(r), z_{2}, z_{2}^{\prime} \in$ $B_{s_{0}}^{2}(r)$. Let $\Delta_{i}=\Delta_{i}\left(s_{0}, 0\right)$,

$$
\begin{gathered}
\quad d=\sup \left(d_{s_{0}}\left(z_{1}, z_{1}^{\prime}\right), d_{s_{0}}\left(z_{2}, z_{2}^{\prime}\right)\right), \\
T(s)=T\left(z_{1}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}^{\prime}\right)(s) \\
=\left[T\left(z_{1}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}\right)(s)\right]+\left[T\left(z_{1}^{\prime}, z_{2}\right)(s)-T\left(z_{1}^{\prime}, z_{2}^{\prime}\right)(s)\right] \\
=T_{1}(s)-T_{2}(s), \quad s \in I \\
\\
\quad\left|T_{i}(s)\right|=\exp \tau_{i}(s) .
\end{gathered}
$$

We assume r_{1} small enough to have, for any $s \in(-\eta, \eta)$,

$$
B_{s}^{i}\left(r_{1}\right) \subset B_{0}^{i}\left(r_{2}\right)
$$

which means that we are in the domain of validity of Proposition 3.
Let $\nu_{i}=v\left(z_{i}, z_{i}^{\prime}\right)$ for $i=1,2$.
Let $\varphi_{i}=\varphi_{i}\left(s_{0}, 0\right), \Delta \varphi_{i}=\Delta \varphi_{i}\left(s_{0}, 0\right), \mu_{i}=\mu_{i, s_{0}, 0}$ (cf. §3.9).
Property (i) of $\S 2.1$ follows from $\S 3.5$ and Proposition 3 (the metrics $d_{s_{0}}$ and $d_{\varphi_{i}}$ being equivalent).

We now check property (iv), using Proposition 1. We have seen in $\S 3.7$ that the hypothesis of Proposition 1 is satisfied ($S_{1} \Delta S_{2} \neq S_{2} \Delta S_{1}$).

According to Proposition 3 above, we have:

$$
\left|T\left(z_{1}, z_{2}\right)(s)\right|=c \sup \left[d_{s}\left(z_{1}, a_{1}\right), d_{s}\left(z_{2}, a_{2}\right)\right] \leqslant c r^{u}, \quad 0<u<1
$$

Therefore:

$$
\left|\sum_{j=0}^{\nu_{i}-1} \lambda_{i}\left(\sigma^{j_{i}}, s, T\left(z_{1}, z_{2}\right)(s)\right)-\sum_{j=0}^{\nu_{i}-1} \lambda_{i}\left(\sigma^{j_{i}}, s_{0}, 0\right)\right|<c \nu_{i}|\log r|^{-1}, \quad s \in I
$$

Also

$$
\left|\sum_{j=0}^{\nu_{i}-1} \lambda_{i}\left(\sigma^{j} z_{i}, s_{0}, 0\right)-S_{\nu_{i}} \varphi_{i}\left(z_{i}\right)\right|<c
$$

hence $\left|\tau_{i}(s)+S_{\nu_{i}} \varphi_{i}\left(z_{i}\right)\right|<c \nu_{i}|\log r|^{-1}$ (clearly $\left.\nu_{i} \geqslant c^{-1}|\log r|\right)$.
We have:

$$
\begin{aligned}
\frac{d}{d s} \sum_{j=0}^{\nu_{i}-1} \lambda_{i}\left(\sigma^{j} z_{i}, s, T\left(z_{1}, z_{2}\right)(s)\right)= & \sum_{j=0}^{\nu_{i}-1} \frac{\partial}{\partial s} \lambda_{i}\left(\sigma^{j} z_{i}, s, T\left(z_{1}, z_{2}\right)(s)\right) \\
& +\frac{d}{d s} T\left(z_{1}, z_{2}\right)(s) \sum_{j=0}^{\nu_{i}-1} \frac{\partial}{\partial t} \lambda_{i}\left(\sigma^{j} z_{i}, s, T\left(z_{1}, z_{2}\right)(s),\right.
\end{aligned}
$$

with, as above:

$$
\left|\sum_{j=0}^{\nu_{i}-1} \frac{\partial}{\partial s} \lambda_{i}\left(\sigma^{j} z_{i}, s, T\left(z_{1}, z_{2}\right)(s)\right)-S_{\nu_{i}} \Delta \varphi_{i}\left(z_{i}\right)\right|<c \nu_{i}|\log r|^{-1}
$$

and $\left|d T\left(z_{1}, z_{2}\right)(s) / d s\right| \leqslant r^{u}$. Therefore

$$
\left|\frac{d}{d s} \tau_{i}(s)+S_{\nu_{i}} \Delta \varphi_{i}\left(z_{i}\right)\right|<c \nu_{i}|\log r|^{-1}
$$

Let $1<\beta<\beta_{0}$, with β_{0} as in Proposition 1. We apply Proposition 1 with balls B_{1}, B_{2} of radius $c r$ containing $B_{s_{0}}^{1}(r), B_{s_{0}}^{2}(r)$ (the respective distances are equivalent). We assume for instance that

$$
d=d_{s_{0}}\left(z_{1}, z_{1}^{\prime}\right)>r^{\beta}
$$

which implies, with the notations of Proposition 1:

$$
m_{1} \leqslant \nu_{1} \leqslant \beta_{0} m_{1},
$$

if r_{1} is small enough.
If the set J of $\S 2.1$, property (iv), is empty, there is nothing to prove. Assume that J contains a point $s_{1} \in I$. We have

$$
\left|\log d+S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| \leqslant c
$$

hence

$$
\left|\tau_{1}(s)-\log d\right| \leqslant c, \quad s \in I,
$$

and also

$$
\| T_{1}\left(s_{1}\right)\left|-\left|T_{2}\left(s_{1}\right)\right|\right|<c^{-1} d .
$$

Therefore

$$
\left|\tau_{1}\left(s_{1}\right)-\tau_{2}\left(s_{1}\right)\right| \leqslant c
$$

But

$$
\left|\tau_{2}\left(s_{1}\right)+S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right| \leqslant c \nu_{2}|\log r|^{-1}
$$

and

$$
\left|\tau_{2}\left(s_{1}\right)-\log d\right| \leqslant c
$$

imply $\nu_{2} \leqslant c|\log r|$. We then get:

$$
\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right| \leqslant c .
$$

Then, by Proposition 1 and the estimates above for $d \tau_{i}(s) / d s$, we get

$$
\left|\frac{d}{d s}\left(\tau_{1}(s)-\tau_{2}(s)\right)\right|>c^{-1}|\log r|, \quad s \in I .
$$

Also

$$
\left|\frac{d^{2}}{d s^{2}}\left(\tau_{1}(s)-\tau_{2}(s)\right)\right|<c|\log r|^{2} .
$$

This shows that J is an interval and gives the estimates of property (iv) in $\S 2.1$.
3.15. For $s \in I$, there is a constant c such that

$$
B_{s_{0}}\left(c^{-1} r\right) \subset B_{s}(r) \subset B_{s_{0}}(c r)
$$

Indeed, the distance d_{s} is equivalent to $d_{i, s, 0}$, the distance $d_{s_{0}}$ to the distance $d_{i, s_{0}, 0}$, and the property is clearly true for the balls relative to these distances.

The hypothesis $J_{1} \Delta J_{2} \neq J_{2} \Delta J_{1}$ of Proposition 2 is satisfied, as we have seen in $\S 3.10$. With M to be determined later, we apply Proposition 2 in balls $B_{i}\left(c^{-1} r\right)$, in order to satisfy property (ii) of $\S 2.1$. Property (iii) of $\S 2.1$ (with L as in Proposition 2) follows from the conclusion (i) of Proposition 2 and $\S 3.5$.

We now check property (v). We therefore assume that $\left(z_{1}, z_{2}\right) \in L,\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \in L$ and $d \leqslant r^{\beta}$ (with $\beta>1$ as above). Again there is nothing to prove when J is empty, hence we assume that there exists $s_{1} \in I$ with

$$
\left|\left|T_{1}\left(s_{1}\right)\right|-\left|T_{2}\left(s_{1}\right)\right|\right|<c^{-1} d^{1+c|\log r|^{-1}}
$$

Assume for instance that $d=d_{s_{0}}\left(z_{1}, z_{1}^{\prime}\right)$. We have:

$$
\begin{aligned}
& \left|\log d+S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| \leqslant c \\
& \left|\tau_{1}(s)+S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| \leqslant c \nu_{1}|\log r|^{-1}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\left|\tau_{2}\left(s_{1}\right)-\tau_{1}\left(s_{1}\right)\right| & <c|\log r|^{-1}|\log d| \\
\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right| & <c\left(\nu_{1}+\nu_{2}+|\log d|\right)|\log r|^{-1}
\end{aligned}
$$

But, $\left|\log d+S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)\right| \leqslant c$ implies

$$
c^{-1}|\log d|<\nu_{1}<c|\log d|
$$

and for the last inequality to hold we must then also have $c^{-1}|\log d|<\nu_{2}<c|\log d|$. Therefore

$$
\left|S_{\nu_{1}} \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \varphi_{2}\left(z_{2}\right)\right|<c|\log d||\log r|^{-1}
$$

For M big enough (and r_{1} small enough), we have

$$
\sup \left(M, c_{1}\left(\nu_{1}+\nu_{2}-c_{2}|\log r|\right)\right)>c|\log d||\log r|^{-1}
$$

hence, by Proposition 2:

$$
\left|S_{\nu_{1}} \Delta \varphi_{1}\left(z_{1}\right)-S_{\nu_{2}} \Delta \varphi_{2}\left(z_{2}\right)\right|>\sup \left(M, c_{1}\left[\left(\nu_{1}+\nu_{2}\right)-c_{2}|\log r|\right]\right)
$$

Then we will have, for $s \in I, r_{1}$ small enough, M big enough:

$$
\begin{aligned}
& \left|\frac{d}{d s}\left(\tau_{1}(s)-\tau_{2}(s)\right)\right|>\frac{1}{2} \sup \left(M, c_{1}\left(\nu_{1}+\nu_{2}-c_{2}|\log r|\right)\right) \\
& \left|\frac{d^{2}}{d s^{2}}\left(\tau_{1}(s)-\tau_{2}(s)\right)\right|<c|\log d|^{2}
\end{aligned}
$$

from which we deduce easily that J is an interval and that the estimates of property (v) of $\S 2.1$ hold in J.

We have thus reduced the proof of the theorem to the proof of Proposition 3.

4. The geometrical estimates

The aim of this section is to prove Proposition 3 and thus finish the proof of our main result.

In §4.1, using the smooth dependence on parameters of the stable and unstable foliations of the basic set Λ_{1}, we introduce appropriate local charts around each point of Λ_{1}.

These charts are then used in §§4.2-4.4 to obtain estimates of the distance between two nearby stable manifolds of Λ_{1} along these manifolds and its variation with parameters. The main part of the calculation actually takes place in some group of jets; we therefore adopt a slightly more abstract setting to make this apparent.

In $\S 4.5$, we do some preparatory work in order to finally obtain in $\S 4.6$ the estimates in Proposition 3. The calculation is quite long but straightforward; it consists essentially in translating the estimates on the distances between stable manifolds (§4.4), via the implicit function theorem, to estimates on the parameter intervals corresponding to various tangencies as in Proposition 3.
4.1. We start from constants $\varepsilon>0, c_{0}>1, c_{1}>0$ and a continuous map L :

$$
\Sigma_{1} \rightarrow C^{\infty}\left(\left[-c_{0}, c_{0}\right]^{2} \times(-\eta, \eta)^{2}, M\right)
$$

with the following properties.
(i) Let $z_{1} \in \Sigma_{1}, s, t \in(-\eta, \eta)$; the $\operatorname{map} L_{s, t}\left(z_{1}\right)$:

$$
(x, y) \rightarrow L\left(z_{1}\right)(x, y, s, t)
$$

is an embedding of $\left[-c_{0}, c_{0}\right]^{2}$ into M whose image $U_{s, t}\left(z_{1}\right)$ contains an ε-neighbourhood of $h_{1, s, t}\left(z_{1}\right)$; we have

$$
\begin{aligned}
& L_{s, t}\left(z_{1}\right)(0,0)=h_{1, s, t}\left(z_{1}\right), \\
& L_{s, t}\left(z_{1}\right)(x, 0) \subset W^{s}\left(z_{1}, s, t\right), \quad x \in\left[-c_{0}, c_{0}\right] \\
& L_{s, t}\left(z_{1}\right)(0, y) \subset W^{u}\left(z_{1}, s, t\right), \quad y \in\left[-c_{0}, c_{0}\right]
\end{aligned}
$$

(ii) Let $z_{1} \in \Sigma_{1}, s, t \in(-\eta, \eta)$; the map $F_{s, t}\left(z_{1}\right)$:

$$
F_{s, t}\left(z_{1}\right)=\left(L_{s, t}\left(\sigma z_{1}\right)\right)^{-1} \circ f_{s, t} \circ L_{s, t}\left(z_{1}\right)
$$

is defined on $[-1,1]^{2}$; it may be written in this square under the form

$$
F_{s, t}\left(z_{1}\right)(x, y)=\left(\pm x \exp H_{s, t}\left(z_{1}\right)(x, y), \pm y \exp K_{s, t}\left(z_{1}\right)(x, y)\right)
$$

where the + or - signs depend (continuously) only on z_{1}. The maps $F_{s, t}\left(z_{1}\right)$ together define a continuous map F :

$$
\Sigma_{1} \rightarrow C^{\infty}\left([-1,1]^{2} \times(-\eta, \eta)^{2},\left[-c_{0}, c_{0}\right]^{2}\right)
$$

and similarly for $H_{s, t}\left(z_{1}\right), K_{s, t}\left(z_{1}\right)$.

We have $K_{s, t}\left(z_{1}\right)(0,0)=\lambda_{1}\left(z_{1}, s, t\right)$ (cf. §3.6) and define $\varrho_{1}\left(z_{1}, s, t\right)=-H_{s, t}\left(z_{1}\right)(0,0)$; for $z_{1} \in \Sigma_{1}, s, t \in(-\eta, \eta)^{2}$, we have:

$$
\begin{aligned}
\lambda_{1}\left(z_{1}, s, t\right) & \geqslant c_{1}>0, \\
\varrho_{1}\left(z_{1}, s, t\right) & \geqslant c_{1}>0 .
\end{aligned}
$$

(iii) Let $x_{1} \in \Sigma_{1}(j), z_{1}^{\prime} \in \Sigma_{1}(k)$, with $j \neq k$ (i.e. they belong to distinct elements of the Markov partition). Then

$$
U_{s, t}\left(z_{1}\right) \cap U_{s, t}\left(z_{1}^{\prime}\right)=\varnothing, \quad \text { for all }(s, t) \in(-\eta, \eta)^{2}
$$

4.2. We consider now the following slightly more general situation.

Let P be an open set in a parameter space \mathbf{R}^{d}. For $i \geqslant 0$, let $F_{i}:[-1,1]^{2} \times P \rightarrow \mathbf{R}^{2}$ be a map which may be written in the form:

$$
F_{i}(x, y, p)=\left(x \exp H_{i}(x, y, p), y \exp K_{i}(x, y, p)\right)
$$

with smooth maps $H_{i}, K_{i}:[-1,1]^{2} \times P \rightarrow \mathbf{R}$.
Define

$$
\begin{aligned}
\varrho_{i}(p) & =-H_{i}(0,0, p), \\
\lambda_{i}(p) & =K_{i}(0,0, p),
\end{aligned}
$$

and assume that, for some constant $c_{1}>0$, all $p \in P, i \geqslant 0$:

$$
\begin{aligned}
& \varrho_{i}(p) \geqslant c_{1}, \\
& \lambda_{i}(p) \geqslant c_{1} .
\end{aligned}
$$

For $n \geqslant 0$, define

$$
\begin{aligned}
\varrho^{(n)}(p) & =\sum_{i=0}^{n-1} \varrho_{i}(p), \\
\lambda^{(n)}(p) & =\sum_{i=0}^{n-1} \lambda_{i}(p) .
\end{aligned}
$$

Assume that we have, for some constant $c_{2}>0$:

$$
\begin{aligned}
& \left|\partial_{x} H_{i}(x, y, p)\right| \leqslant c_{2}, \\
& \left|\partial_{y} H_{i}(x, y, p)\right| \leqslant c_{2}, \\
& \left|\partial_{x} K_{i}(x, y, p)\right| \leqslant c_{2}, \\
& \left|\partial_{y} K_{i}(x, y, p)\right| \leqslant c_{2} .
\end{aligned}
$$

Let $\theta \in(0,1]$. Consider a smooth map

$$
p \rightarrow\left(x_{0}(p), y_{0}(p)\right)
$$

with values in $(0, \theta]^{2}$. As long as $x_{i}(p) \in(0, \theta], y_{i}(p) \in(0, \theta]$, we define:

$$
\left(x_{i+1}(p), y_{i+1}(p)\right)=F_{i}\left(x_{i}(p), y_{i}(p), p\right)
$$

Define

$$
X_{i}(p)=\log x_{i}(p), \quad Y_{i}(p)=\log y_{i}(p) ;
$$

then we have

$$
\begin{array}{r}
\left|X_{i+1}(p)-X_{i}(p)+\varrho_{i}(p)\right| \leqslant c_{2}\left(x_{i}(p)+y_{i}(p)\right) \\
\left|Y_{i+1}(p)-Y_{i}(p)-\lambda_{i}(p)\right| \leqslant c_{2}\left(x_{i}(p)+y_{i}(p)\right)
\end{array}
$$

From now on, we adopt the following convention: We denote by $c_{1}, c_{2}, c_{3}, \ldots$ constants which depend only on:

- bounds on F_{i}, H_{i}, K_{i}, uniform in i;
- bounds on the map g introduced in §4.4;
- bounds on the map $p \mapsto X_{0}(p)$.

We also use the letter c for such (unspecified) constants.
We assume that

$$
\theta<\frac{1}{4} c_{1} c_{2}^{-1} e^{-c_{1} / 2}\left(1-e^{-c_{1}}\right)^{-1}
$$

Lemma 1. Assume that for some $n \geqslant 0$, we have

$$
\begin{aligned}
& 0<x_{0}(p)<\theta, \\
& 0<y_{0}(p)<\theta \exp \left(-\lambda^{(n)}(p)\right) .
\end{aligned}
$$

Then $\left(x_{i}(p), y_{i}(p)\right)$ is defined for $0 \leqslant i \leqslant n$ and we have:

$$
\begin{array}{r}
\left|X_{i}(p)-X_{0}(p)+\varrho^{(i)}(p)\right|<\frac{1}{2} c_{1} \\
\left|Y_{i}(p)-Y_{0}(p)-\lambda^{(i)}(p)\right|<\frac{1}{2} c_{1}
\end{array}
$$

Proof. This is clear if $i=0$; assume that it is true for $0 \leqslant i \leqslant j<n$. Then, for $0 \leqslant i \leqslant j$, we have:

$$
\begin{aligned}
& 0<x_{i}(p)<\theta e^{c_{1} / 2} e^{-i c_{1}} \quad(<\theta \text { if } i>0) \\
& 0<y_{i}(p)<\theta e^{c_{1} / 2} e^{(i-n) c_{1}} \quad(<\theta)
\end{aligned}
$$

and therefore

$$
c_{2} \sum_{i=0}^{j}\left(x_{i}(p)+y_{i}(p)\right)<\frac{2 \theta c_{2} e^{c_{1} / 2}}{1-e^{-c_{1}}}<\frac{1}{2} c_{1}
$$

which proves the statement of the lemma for $j+1$.
We recall, for further purposes the estimates

$$
\begin{aligned}
& 0<x_{i}(p)<\theta e^{c_{1} / 2} e^{-i c_{1}} \\
& 0<y_{i}(p)<\theta e^{c_{1} / 2} e^{(i-n) c_{1}}
\end{aligned}
$$

under the hypotheses of the lemma.
Let us now study partial derivatives with respect to the parameters. We write $p=\left(p_{1}, \ldots, p_{d}\right)$ and ∂_{j} for $\partial / \partial p_{j}$.

Let $1 \leqslant j \leqslant d$. For $0 \leqslant i \leqslant n$, define

$$
\begin{aligned}
J_{i}^{(j)} & =\binom{\partial_{j} X_{i}}{\partial_{j} Y_{i}}, \quad V_{i}^{(j)}=\binom{\partial_{j} H_{i}\left(x_{i}, y_{i}, p\right)}{\partial_{j} K_{i}\left(x_{i}, y_{i}, p\right)} \\
M_{i} & =\left(\begin{array}{cc}
1+x_{i} \partial_{x} H_{i}\left(x_{i}, y_{i}, p\right) & y_{i} \partial_{y} H_{i}\left(x_{i}, y_{i}, p\right) \\
x_{i} \partial_{x} K_{i}\left(x_{i}, y_{i}, p\right) & 1+y_{i} \partial_{y} K_{i}\left(x_{i}, y_{i}, p\right)
\end{array}\right)
\end{aligned}
$$

Then, for $0 \leqslant i<n$, we have

$$
J_{i+1}^{(j)}=M_{i} J_{i}^{(j)}+V_{i}^{(j)}
$$

For $0 \leqslant i \leqslant n$, define

$$
\begin{gathered}
M^{(i)}=M_{i-1} \ldots M_{0}=\left(\begin{array}{cc}
A^{(i)} & B^{(i)} \\
C^{(i)} D^{(i)} &
\end{array}\right) \\
M_{(i)}=M_{n-1} \ldots M_{i}=\left(\begin{array}{cc}
A_{(i)} & B_{(i)} \\
C_{(i)} D_{(i)}
\end{array}\right) \\
M_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right)
\end{gathered}
$$

with estimates (under the hypothesis of Lemma 1):

$$
\begin{aligned}
\left|a_{i}-1\right| & <c_{2} e^{c_{1} / 2} \theta e^{-i c_{1}} \\
\left|c_{i}\right| & <c_{2} e^{c_{1} / 2} \theta e^{-i c_{i}}, \\
\left|b_{i}\right| & <c_{2} e^{c_{1} / 2} \theta e^{(i-n) c_{i}} \\
\left|d_{i}-1\right| & <c_{2} e^{c_{1} / 2} \theta e^{(i-n) c_{i}} .
\end{aligned}
$$

Using the recursion formulas for the $A^{(i)}, A_{(i)}, \ldots$ it is easy to prove that there exist constants $c_{3}, c_{4}>0$ depending only on c_{1}, c_{2} such that if we assume that

$$
\theta<c_{3}
$$

then we will have, for $0 \leqslant i \leqslant n$:

$$
\begin{aligned}
&\left|A^{(i)}-1\right|<c_{4} \theta, \\
&\left|B^{(i)}\right|<c_{4} \theta e^{(i-n) c_{1}}, \\
&\left|C^{(i)}\right|<c_{4} \theta, \\
&\left|D^{(i)}-1\right|<c_{4} \theta e^{(i-n) c_{1}}, \\
&\left|A_{(i)}-1\right|<c_{4} \theta e^{-i c_{1}}, \\
&\left|B_{(i)}\right|<c_{4} \theta, \\
&\left|C_{(i)}-1\right|<c_{4} \theta e^{-i c_{1}}, \\
&\left|D_{(i)}-1\right|<c_{4} \theta .
\end{aligned}
$$

We also have

$$
M_{(0)}=M_{(i)} M^{(i)}
$$

and therefore

$$
\begin{aligned}
B_{(0)} & =A_{(i)} B^{(i)}+B_{(i)} D^{(i)}, \\
D_{(0)} & =C_{(i)} B^{(i)}+D_{(i)} D^{(i)}, \\
\left|B_{(0)}-B_{(i)}\right| & <c \theta e^{(i-n) c_{1}}, \\
\left|D_{(0)}-D_{(i)}\right| & <c \theta e^{(i-n) c_{1}} .
\end{aligned}
$$

On the other hand, we have:

$$
\begin{aligned}
J_{n}^{(j)} & =M_{(0)} J_{0}^{(j)}+\sum_{i=0}^{n-1} M_{(i+1)} V_{i}^{(j)} \\
\partial_{j} X_{n} & =A_{(0)} \partial_{j} X_{0}+B_{(0)} \partial_{j} Y_{0}+\sum_{i=0}^{n-1}\left(A_{(i+1)} \partial_{j} H_{i}+B_{(i+1)} \partial_{j} K_{i}\right), \\
\partial_{j} Y_{n} & =C_{(0)} \partial_{j} X_{0}+D_{(0)} \partial_{j} Y_{0}+\sum_{i=0}^{n-1}\left(C_{(i+1)} \partial_{j} H_{i}+D_{(i+1)} \partial_{j} K_{i}\right)
\end{aligned}
$$

Suppose that on our domain we have

$$
\begin{aligned}
& \left|\partial_{j} \partial_{x} H_{i}\right| \leqslant c, \\
& \left|\partial_{j} \partial_{y} H_{i}\right| \leqslant c, \\
& \left|\partial_{j} \partial_{x} K_{i}\right| \leqslant c, \\
& \left|\partial_{j} \partial_{y} K_{i}\right| \leqslant c .
\end{aligned}
$$

The following lemma is then immediate.

Lemma 2. There are constants c_{3}, c_{4} depending only on c_{1}, c_{2} such that, if

$$
\begin{aligned}
& 0<x_{0}(p)<\theta, \\
& 0<y_{0}(p)<\theta \exp \left(-\lambda^{(n)}(p)\right), \\
& \theta<c_{3}<\frac{1}{4} c_{1} c_{2}^{-1} e^{-c_{1} / 2}\left(1-e^{-c_{2}}\right)^{-1},
\end{aligned}
$$

then, one has:

$$
\begin{gathered}
\left|\left(\partial_{j} X_{n}+\sum_{i=0}^{n-1} \partial_{j} \varrho_{i}\right)-A_{(0)} \partial_{j} X_{0}-B_{(0)}\left(\partial_{j} Y_{0}+\sum_{i=0}^{n-1} \partial_{j} \lambda_{i}\right)\right| \leqslant c \theta, \\
\left|\partial_{j} Y_{n}-C_{(0)} \partial_{j} X_{0}-D_{(0)}\left(\partial_{j} Y_{0}+\sum_{i=0}^{n-1} \partial_{j} \lambda_{i}\right)\right| \leqslant c \theta
\end{gathered}
$$

where $\left|A_{(0)}-1\right|<c_{4} \theta,\left|B_{(0)}\right|<c_{4} \theta,\left|C_{(0)}\right|<c_{4} \theta,\left|D_{(0)}-1\right|<c_{4} \theta$.
4.3. We will also need estimate for second partial derivatives. Let $1 \leqslant j, k \leqslant d$. Define

$$
J_{i}^{(j, k)}=\binom{\partial_{j} \partial_{k} X_{i}}{\partial_{j} \partial_{k} Y_{i}} .
$$

Then we have

$$
J_{i+1}^{(j, k)}=M_{i} J_{i}^{(j, k)}+S_{i}\left(J_{i}^{(j)} \stackrel{s}{\otimes} J_{j}^{(k)}\right)+S_{i}^{(j)} J_{i}^{(k)}+S_{i}^{(k)} J_{i}^{(j)}+V_{i}^{(j, k)},
$$

with

$$
\begin{gathered}
S_{i}^{(j)}=\left(\begin{array}{ll}
x_{i} \partial_{x} \partial_{j} H_{i} & y_{i} \partial_{y} \partial_{j} H_{i} \\
x_{i} \partial_{x} \partial_{j} K_{i} & y_{i} \partial_{y} \partial_{j} K_{i}
\end{array}\right), \quad V_{i}^{(j, k)}=\binom{\partial_{j} \partial_{k} H_{i}}{\partial_{j} \partial_{k} K_{i}}, \\
S_{i}=\left(\begin{array}{lll}
x_{i} \partial_{x} H_{i}+x_{i}^{2} \partial_{x}^{2} H_{i} & x_{i} y_{i} \partial_{x} \partial_{y} H_{i} & y_{i} \partial_{y} H_{i}+y_{i}^{2} \partial_{y}^{2} H_{i} \\
x_{i} \partial_{x} K_{i}+x_{i}^{2} \partial_{x}^{2} K_{i} & x_{i} y_{i} \partial_{x} \partial_{y} K_{i} & y_{i} \partial_{y} K_{i}+y_{i}^{2} \partial_{y}^{2} K_{i}
\end{array}\right),
\end{gathered}
$$

and we write the symmetric tensor product $J_{i}^{(j)} \stackrel{s}{\otimes} J_{i}^{(k)}$ with coordinates

$$
\left(\begin{array}{c}
\partial_{j} X_{i} \partial_{k} X_{i} \\
\partial_{j} X_{i} \partial_{k} Y_{i}+\partial_{k} X_{i} \partial_{j} Y_{i} \\
\partial_{j} Y_{i} \partial_{k} Y_{i}
\end{array}\right) .
$$

We have

$$
J_{n}^{(j, k)}=M_{(0)} J_{0}^{(j, k)}+\sum_{i=0}^{n-1} M_{(i+1)} R_{i}^{(j, k)}
$$

with $R_{i}^{(j, k)}=S_{i}\left(J_{i}^{(j)} \stackrel{s}{\otimes} J_{i}^{(k)}\right)+S_{i}^{(j)} J_{i}^{(k)}+S_{i}^{(k)} J_{i}^{(j)}+V_{i}^{(j, k)}$.

Fig. 3
Assume that there are constants c, C_{0} such that all second partial derivatives of H_{i}, K_{i} are bounded in our domain by c, and that:

$$
\begin{aligned}
& \left\|J_{i}^{(j)}\right\|<C_{0} n, \\
& \left\|J_{i}^{(k)}\right\|<C_{0} n .
\end{aligned}
$$

Then, for some constant $C_{1}=C_{1}\left(C_{0}\right)$ we have:

$$
\begin{aligned}
\sup \left(\left\|S_{i}\right\|,\left\|S_{i}^{(j)}\right\|,\left\|S_{i}^{(k)}\right\|\right) & \leqslant c \exp \left(-\inf (i, n-i) c_{1}\right) \\
\left\|J_{n}^{(j, k)}-M_{(0)} J_{0}^{(j, k)}\right\| & <C_{1} n^{2}
\end{aligned}
$$

4.4. We now fix θ such that

$$
\theta<c_{3}, \quad \theta<\frac{1}{10} c_{4}^{-1} \quad \text { (cf. Lemma 2) }
$$

We add the following new feature: there is a smooth map $g:[0, \theta] \times P \rightarrow[0, \theta]$, which satisfies

$$
g(x, p)>c>0, \quad x \in[0, \theta], p \in P
$$

and such that:

$$
y_{n}(p)=g\left(x_{n}(p), p\right), \quad p \in P
$$

See Figure 3. We also assume that $p \rightarrow\left(x_{0}(p), y_{0}(p)\right)$ satisfies the hypothesis of Lemma 2.

Write

$$
\begin{gathered}
\widetilde{\partial_{j} X_{n}}=\partial_{j} X_{n}+\sum_{i=0}^{n-1} \partial_{j} \rho_{i}, \\
\widetilde{\partial_{j} Y_{0}}=\partial_{j} Y_{0}+\sum_{i=0}^{n-1} \partial_{j} \lambda_{i}
\end{gathered}
$$

For $1 \leqslant j \leqslant d$, we have:

$$
y_{n} \partial_{j} Y_{n}=\partial_{j} g+x_{n} \partial_{x} g \partial_{j} X_{n}
$$

with $\left|x_{n} \partial_{x} g\right|<c e^{-c_{1} n}$ and $\left|\widetilde{\partial_{j} X_{n}}-\partial_{j} X_{n}\right|<c n$.
Joining this to the conclusion of Lemma 2, we obtain (as $y_{n}>c>0$)

$$
\begin{aligned}
&\left|\widetilde{\partial}_{j} X_{n}-A_{(0)} \partial_{j} X_{0}-B_{(0)} \widetilde{\partial_{j} Y_{0}}\right|<c, \\
& \quad\left|C_{(0)} \partial_{j} X_{0}+D_{(0)} \widetilde{\partial_{j} Y_{0}}\right|<c+c e^{-c_{1} n}\left|\widetilde{\partial_{j} X_{n}}\right|,
\end{aligned}
$$

from which we deduce, as $\left|\partial_{j} X_{0}\right| \leqslant c$, for $n \geqslant c_{5}$:

$$
\begin{aligned}
& \left|\widetilde{\partial_{j} X_{n}}\right| \leqslant c \\
& \left|\widetilde{\partial_{j} Y_{0}}\right| \leqslant c .
\end{aligned}
$$

For second derivatives, we have, for $1 \leqslant j \leqslant k \leqslant d$:

$$
\begin{aligned}
y_{n}\left(\partial_{j} Y_{n} \partial_{k} Y_{n}+\partial_{j} \partial_{k} Y_{n}\right)= & \partial_{j} \partial_{k} g+x_{n} \partial_{j} \partial_{x} g \partial_{k} X_{n} \\
& +x_{n} \partial_{k} \partial_{x} g \partial_{j} X_{n}+\left(x_{n} \partial_{x} g+x_{n}^{2} \partial_{x}^{2} g\right) \partial_{j} X_{n} \partial_{k} X_{n} \\
& +x_{n} \partial_{x} g \partial_{j} \partial_{k} X_{n} .
\end{aligned}
$$

Then, we see from $\S 4.3$ and above that we have for $n \geqslant c_{5}$:

$$
\begin{gathered}
\left\|J_{i}^{(j)}\right\|<c n, \\
\left\|J_{n}^{(j, k)}-M_{(0)} J_{0}^{(j, k)}\right\|<c n^{2} .
\end{gathered}
$$

We have

$$
\left|\partial_{j} Y_{n}\right|<c, \quad\left|\partial_{k} Y_{n}\right|<c,
$$

and therefore

$$
\left|\partial_{j} \partial_{k} Y_{n}\right|<c+c e^{-c_{1} n}\left|\partial_{j} \partial_{k} X_{n}\right| .
$$

In the same way as for first derivatives, that allows to conclude that, for $n \geqslant c_{6} \geqslant c_{5}$,

$$
\left|\partial_{j} \partial_{k} Y_{0}\right|<c n^{2} .
$$

4.5. We now proceed to prove Proposition 3. We use the notations of §4.1. Let $P=(-\eta, \eta)^{2}, \eta$ small enough.

The maps

$$
\begin{aligned}
& \Sigma_{1} \xrightarrow{H} C^{\infty}\left([-1,1]^{2} \times P, \mathbf{R}\right), \\
& \Sigma_{1} \xrightarrow{K} C^{\infty}\left([-1,1]^{2} \times P, \mathbf{R}\right)
\end{aligned}
$$

are continuous, hence there is a constant $c_{2}>0$ such that, for all $z_{1} \in \Sigma_{1}, s, t \in(-\eta, \eta)^{2}$, $x, y \in[-1,1]$:

$$
\begin{aligned}
& \left|\partial_{x} H_{s, t}\left(z_{1}\right)(x, y)\right| \leqslant c_{2}, \\
& \left|\partial_{y} H_{s, t}\left(z_{1}\right)(x, y)\right| \leqslant c_{2}, \\
& \left|\partial_{x} K_{s, t}\left(z_{1}\right)(x, y)\right| \leqslant c_{2} \\
& \left|\partial_{y} K_{s, t}\left(z_{1}\right)(x, y)\right| \leqslant c_{2} .
\end{aligned}
$$

We determine then, from c_{1} (in $\S 4.1$) and c_{2} above, constants c_{3}, c_{4} as in Lemma 2, and choose θ with

$$
\theta<c_{3}, \quad \theta<\frac{1}{10} c_{4}^{-1}
$$

There exists $n_{0}>0$ such that, for all $s, t \in(-\eta, \eta), x_{1}, x_{1}^{\prime} \in \Sigma_{1}^{+}$with $v\left(z_{1}, z_{1}^{\prime}\right) \geqslant n_{0}$, the point $h_{1, s, t}\left(z_{1}\right)$ lies in $U_{s, t}\left(z_{1}^{\prime}\right)$ and the equation of $W_{\text {loc }}^{s}\left(z_{1}, s, t\right) \cap U_{s, t}\left(z_{1}^{\prime}\right)$ is

$$
y=g_{z_{1} / z_{1}^{\prime}}(x, s, t)
$$

in the coordinate system given by $L_{s, t}\left(z_{1}^{\prime}\right)$.
For each z_{1}, z_{1}^{\prime}, the map $g_{z_{1} / z_{1}^{\prime}}$ is smooth, and these maps together give a continuous map:

$$
V_{i} \xrightarrow{G} C^{\infty}\left(\left[-c_{0}, c_{0}\right] \times(-\eta, \eta)^{2},\left[-c_{0}, c_{0}\right]\right)
$$

where $V_{1}=\left\{\left(z_{1}, z_{1}^{\prime}\right) \in \Sigma_{1}^{+} \times \Sigma_{1}^{+}: v\left(z_{1}, z_{1}^{\prime}\right) \geqslant n_{0}\right\}$.
We choose $n_{0}>0$ big enough such that, for $\left(z_{1}, z_{1}^{\prime}\right) \in V_{1}$, the image of $g_{z_{1} / z_{1}^{\prime}}$ is actually contained in $\left[-e^{-c_{1} / 2} \frac{1}{2} \theta, e^{-c_{1} / 2} \frac{1}{2} \theta\right]$.

We choose, once and for all, an integer m_{0}, multiple of the period of a_{1}, such that the point $q^{\prime}=f^{m_{0}}(q)$ belongs to $U_{0,0}\left(a_{1}\right)$, with coordinates $\left(\theta_{1}, 0\right)$, where $0<\left|\theta_{1}\right| \leqslant \frac{1}{2} \theta$.

We will consider tangencies near q^{\prime} instead of q. The map T^{\prime} related to q^{\prime} and the map T related to q satisfy $T^{\prime}\left(\sigma^{m_{0}} z_{1}, \sigma^{-m_{0}} z_{2}\right)=T\left(z_{1}, z_{2}\right)$. Once m_{0} is fixed, it is clearly equivalent to prove Proposition 3 for T or T^{\prime}. We will actually prove it for T^{\prime}. But to keep notations simple, we assume that $m_{0}=0, T=T^{\prime}$.

Let $0<\varepsilon_{1}<\frac{1}{2}\left|\theta_{1}\right|$ be a small number such that the component of q^{\prime} in $W^{u}\left(a_{2}, 0,0\right) \cap$ $\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right] \times\left[-\frac{1}{2} \theta, \frac{1}{2} \theta\right]$ in the coordinate system $L_{0,0}\left(a_{1}\right)$ has equation:

$$
y=\varphi(x), \quad\left|x-\theta_{1}\right| \leqslant \varepsilon_{1},
$$

with $\varphi\left(\theta_{1}\right)=\varphi^{\prime}\left(\theta_{1}\right)=0,\left|\varphi^{\prime \prime}(x)\right|>c>0$.
Let n_{1} be an integer $\geqslant n_{0}$, and let $z_{1}, z_{1}^{\prime} \in \Sigma_{1}^{+}, z_{2} \in \Sigma_{2}^{+}$with $v\left(z_{1}, a_{1}\right) \geqslant n_{1}, v\left(z_{1}^{\prime}, a_{1}\right) \geqslant$ $n_{1}, v\left(z_{2}, a_{2}\right) \geqslant n_{1}$. We claim that if ε_{1} is small enough and n_{1} is big enough the following properties hold, with constants independent of $s, t, z_{1}, z_{1}^{\prime}, z_{2}$ (provided η is also small enough).
(i) The connected component of $W^{u}\left(z_{2}, s, t\right) \cap\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right] \times\left[-\frac{1}{2} \theta, \frac{1}{2} \theta\right]$ we are interested in has equation

$$
y=\varphi_{z_{2} / z_{1}^{\prime}}(x, s, t)
$$

in the coordinate system $L_{s, t}\left(z_{1}^{\prime}\right)$, for a smooth function $\varphi_{z_{2} / z_{1}^{\prime}}$; all partial derivatives of $\varphi_{z_{2} / z_{1}^{\prime}}$ and $g_{z_{1} / z_{1}^{\prime}}$ of order up to 3 are bounded by a constant c.
(ii) For $s, t \in(-\eta, \eta),\left|x-\theta_{1}\right|<\varepsilon_{1}$, we have

$$
\begin{aligned}
\left|\partial_{x}^{2} \varphi_{z_{2} / z_{1}^{\prime}}(x, s, t)\right|>c>0, \\
\left|\partial_{t} \varphi_{z_{2} / z_{1}^{\prime}}(x, s, t)\right|>c>0, \\
\left|\partial_{t}\left(\varphi_{z_{2} / z_{1}^{\prime}}-g_{z_{1} / z_{1}^{\prime}}(x, s, t)\right)\right|>c>0, \\
\left|\partial_{x}^{2}\left(\varphi_{z_{2} / z_{1}^{\prime}}-g_{z_{1} / z_{1}^{\prime}}(x, s, t)\right)\right|>c>0 .
\end{aligned}
$$

(iii) For $s, t \in(-\eta, \eta), x, x^{\prime} \in\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right]$, we have

$$
\begin{aligned}
& \left|\partial_{x} g_{z_{1} / z_{1}^{\prime}}(x, s, t)\right| \leqslant c\left|g_{z_{1} / z_{1}^{\prime}}\left(x^{\prime}, s, t\right)\right| \\
& \left|\partial_{x}^{2} g_{z_{1} / z_{1}^{\prime}}(x, s, t)\right| \leqslant c\left|g_{z_{1} / z_{1}^{\prime}}\left(x^{\prime}, s, t\right)\right| .
\end{aligned}
$$

(iv) For $s, t \in(-\eta, \eta)$ the function $\partial_{x} \varphi_{z_{1} / z_{1}^{\prime}}\left(\right.$ resp. $\left.\partial_{x}\left(\varphi_{z_{2} / z_{1}^{\prime}}-g_{z_{1} / z_{1}^{\prime}}\right)\right)$ has a (unique) zero $\hat{c}(s, t)$ (resp. $c(s, t))$ in $\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right]$. We have

$$
\begin{array}{ll}
\left|\partial_{s} c\right| \leqslant c_{7}, & \left|\partial_{t} c\right| \leqslant c_{7}, \\
\left|\partial_{s} \hat{c}\right| \leqslant c_{7}, & \left|\partial_{t} \hat{c}\right| \leqslant c_{7} .
\end{array}
$$

and second partial derivatives are bounded by c.
(v) For $s \in(-\eta, \eta)$, the points $T\left(z_{1}, z_{2}\right)(s)$ and $T\left(z_{1}^{\prime}, z_{2}\right)(s)$ belong to $(-\eta, \eta)$; we write $\bar{t}=t-T\left(z_{1}^{\prime}, z_{2}\right)(s)$. In the parameter coordinates (s, \bar{t}), all estimates above are still valid.

Fig. 4
All estimates and claims are straightforward, taking first ε_{1} very small and then n_{1} very big; estimate (iii) holds because the stable foliation of the basic set is, uniformly in s, t, of class $C^{1+\alpha}$ for some $\alpha>0$.
4.6. We fix points $z_{1}, z_{1}^{\prime}, z_{2}$ as above, but we will assume that

$$
v\left(z_{1}, a_{1}\right) \geqslant n_{2}, \quad v\left(z_{1}^{\prime}, a_{1}\right) \geqslant n_{2}, \quad v\left(z_{2}, a_{2}\right) \geqslant n_{2}
$$

for an integer $n_{2} \geqslant n_{1}$, still to be chosen.
Let $n=v\left(z_{1}, z_{1}^{\prime}\right)-n_{0}$; for $0 \leqslant i<n$, let

$$
F_{i}:[-1,1]^{2} \times(-\eta, \eta)^{2} \rightarrow \mathbf{R}^{2}
$$

be the $\operatorname{map}(x, y, s, t) \mapsto F_{s, t}\left(\sigma^{i} z_{1}^{\prime}\right)(x, y)$.
By changing the signs of the coordinates in the coordinate systems $L_{s, t}\left(\sigma^{i} z_{1}^{\prime}\right)$, $0 \leqslant i \leqslant n$, we may assume that the F_{i} are exactly of the form considered in §4.2.

We will work with the parameter coordinates (s, \bar{t}) considered in $\S 4.5(\mathrm{v})$. To keep notations simple, we just write (s, t) again for these new coordinates. We therefore have $T\left(z_{1}^{\prime}, z_{2}\right)(s)=0$, which means:

$$
\varphi(\hat{c}(s, 0), s, 0) \equiv 0
$$

We are interested in the function $T\left(z_{1}, z_{2}\right)(s)=t(s)$ which is defined by:

$$
\varphi(c(s, t(s)), s, t(s))=g(c(s, t(s)), s, t(s)) .
$$

We have written φ for $\varphi_{z_{2} / z_{1}^{\prime}}$ and g for $g_{z_{1} / z_{1}^{\prime}}$. See Figure 4.

Write $\tilde{g}=g_{\sigma^{n} z_{1} / \sigma^{n} z_{1}^{\prime}}$. We have, as $v\left(\sigma^{n} z_{1}, \sigma^{n} z_{1}^{\prime}\right)$ is a fixed integer n_{0} :

$$
\frac{1}{2} e^{-c_{1} / 2} \theta>|\tilde{g}(x, s, t)|>c>0 .
$$

By Lemma 1 in $\S 4.2$, we have therefore, for $x \in\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right], s, t \in(-\eta, \eta)$:

$$
0<c<|g(x, s, t)| \exp \lambda^{(n)}(s, t)<\theta
$$

Let us just write $\pi(s, t)$ for $\exp -\lambda^{(n)}(s, t)$. We estimate $|c(s, t)-\hat{c}(s, 0)|$. We have

$$
\begin{gathered}
|\hat{c}(s, 0)-\hat{c}(s, t)|<c_{7}|t| \\
\partial_{x} \varphi(\hat{c}(s, t), s, t)=0 \\
\left|\partial_{x} \varphi(c(s, t), s, t)\right|=\left|\partial_{x} g(c(s, t), s, t)\right|<c \pi(s, t)
\end{gathered}
$$

hence (as $\left|\partial_{u}^{2} \varphi\right|>c>0$)

$$
|\hat{c}(s, 0)-c(s, t)|<c[\pi(s, t)+|t|] .
$$

$\operatorname{But} \varphi(\hat{c}(s, 0), s, 0)=\partial_{x} \varphi(\hat{c}(s, 0), s, 0)=0$. Therefore

$$
|\varphi(c(s, t), s, 0)|<c\left[(\pi(s, t))^{2}+t^{2}\right] .
$$

On the other hand, writing $a(s)=\partial_{t} \varphi(c(s, t(s)), s, t(s))$, we have:

$$
|a(s)| \geqslant c>0,
$$

and, for $|t| \leqslant|t(s)|$,

$$
\left|\partial_{t} \varphi(c(s, t(s)), s, t)-a(s)\right| \leqslant c|t(s)| .
$$

Summarizing, the function $\chi: u \rightarrow \varphi(c(s, t(s)), s, u)$ for $|u| \leqslant|t(s)|$ satisfies

$$
\begin{gathered}
|\chi(0)|<c\left[\pi(s, t(s))^{2}+t(s)^{2}\right], \\
\chi(t(s))=g(c(s, t(s)), s, t(s)), \\
|a(s)|=\left|\chi^{\prime}(t(s))\right| \geqslant c>0, \\
\left|\chi^{\prime}(u)-\chi^{\prime}(t(s))\right|<c|t(s)| .
\end{gathered}
$$

Let $y_{0}(s, t)=g(c(s, t), s, t)$. We have

$$
\left|\log \frac{\left|y_{0}(s, t)\right|}{\pi(s, t)}\right|<c,
$$

hence $\left|t(s)-y_{0}(s, t(s)) / a(s)\right|<c(\pi(s, t(s)))^{2}$.

In particular, writing $\pi(s)=\pi(s, t(s))$:

$$
\left|\log \frac{|t(s)|}{\pi(s)}\right|<c
$$

Let us now estimate $t^{\prime}(s)$. From the defining relation

$$
\psi(s, t(s))=0
$$

with $\psi(s, t)=\varphi(c(s, t), s, t)-g(c(s, t), s, t)$, we get

$$
t^{\prime}(s)=-\left[\partial_{t} \psi(s, t(s))\right]^{-1} \partial_{s} \psi(s, t(s))
$$

where

$$
\begin{aligned}
\partial_{s} \psi & =\partial_{s} \varphi+\partial_{s} c \partial_{x} \varphi-\partial_{s} y_{0}, \\
\partial_{t} \psi & =\partial_{t} \varphi+\partial_{t} c \partial_{x} \varphi-\partial_{t} y_{0} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\partial_{t} \varphi(c(s, t(s)), s, t(s)) & =a(s) \\
\left|\partial_{x} \varphi(c(s, t(s)), s, t(s))\right| & =\left|\partial_{x} g(c(s, t(s)), s, t(s))\right|<c \pi(s)
\end{aligned}
$$

(by $\S 4.5$ (iii)),

$$
\left|\partial_{s} \varphi(c(s, t(s)), s, t(s))-\partial_{s} \varphi(\hat{c}(s, 0), s, 0)\right|<c \pi(s)
$$

(because $|t(s)|<c \pi(s),|c(s, t)-\hat{c}(s, 0)|<c \pi(s)$),

$$
\partial_{s} \varphi(\hat{c}(s, 0), s, 0)=0
$$

(because $\left.\partial_{x} \varphi(\hat{c}(s, 0), s, 0) \equiv \varphi(\hat{c}(s, 0), s, 0) \equiv 0\right)$.
On the other hand, with $x_{0}(s, t)=c(s, t)$, we have, in the notation of $\S 4.2$:

$$
y_{n}(s, t)=\tilde{g}\left(x_{n}(s, t), s, t\right)
$$

with estimates:

$$
\left|\partial_{s} \log \right| x_{0}| |<\frac{c_{7}}{\theta_{1}-\varepsilon_{1}}, \quad\left|\partial_{t} \log \right| x_{0}| |<\frac{c_{7}}{\theta_{1}-\varepsilon_{1}}
$$

Taking n_{2} big enough, the calculations in $\S 4.4$ are valid and we get:

$$
\begin{gathered}
\left|\frac{\partial_{s} y_{0}}{y_{0}}+\sum_{i=0}^{n-1} \partial_{s} \lambda_{i}\right| \leqslant c \\
\left|\partial_{t} y_{0}\right|<c \pi(s, t) n<c \pi(s, t)|\log \pi(s, t)|
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\left|\partial_{s} \psi(s, t(s))-y_{0}(s, t(s)) \partial_{s} \lambda^{(n)}(s, t(s))\right| & <c \pi(s), \\
\left|\partial_{t} \psi(s, t(s))-a(s)\right| & <c \pi(s)|\log \pi(s)|,
\end{aligned}
$$

with $\left|y_{0}(s, t(s))-a(s) t(s)\right|<c(\pi(s))^{2}$.
We conclude that:

$$
\left|\frac{t^{\prime}(s)}{t(s)}+\sum_{i=0}^{n-1} \partial_{s} \lambda_{i}(s, t(s))\right| \leqslant c
$$

Let us now estimate from above the second derivative $t^{\prime \prime}(s)$. We have:

$$
\partial_{t} \psi t^{\prime \prime}+\partial_{t}^{2} \psi\left(t^{\prime}\right)^{2}+2 \partial_{t} \partial_{s} \psi t^{\prime}+\partial_{s}^{2} \psi=0
$$

hence

$$
\left|t^{\prime \prime}(s)\right|<c\left(\left|\partial_{s}^{2} \psi\right|+\pi(s)|\log \pi(s)|\left|\partial_{s} \partial_{t} \psi\right|+\pi^{2}(s)|\log \pi(s)|\left|\partial_{t}^{2} \psi\right|\right)
$$

with

$$
\begin{aligned}
\partial_{s}^{2} \psi & =\partial_{s}^{2} c \partial_{x} \varphi+\left(\partial_{s} c\right)^{2} \partial_{x}^{2} \varphi+2 \partial_{s} c \partial_{s} \partial_{x} \varphi+\partial_{s}^{2} \varphi-\partial_{s}^{2} y_{0} \\
\partial_{s} \partial_{t} \psi & =\partial_{s} \partial_{t} c \partial_{x} \varphi+\partial_{s} c \partial_{t} c \partial_{x}^{2} \varphi+\partial_{s} c \partial_{t} \partial_{x} \varphi+\partial_{t} c \partial_{s} \partial_{x} \varphi+\partial_{s} \partial_{t} \varphi-\partial_{s} \partial_{t} y_{0} \\
\partial_{t}^{2} \psi & =\partial_{t}^{2} c \partial_{x} \varphi+\left(\partial_{t} c\right)^{2} \partial_{x}^{2} \varphi+2 \partial_{t} c \partial_{t} \partial_{x} \varphi+\partial_{t}^{2} \varphi-\partial_{t}^{2} y_{0}
\end{aligned}
$$

According to $\S 4.4$, we have, for n_{2} big enough:

$$
\begin{aligned}
\partial_{s}^{2} \log \left|y_{0}\right| & <c n^{2} \\
\partial_{s} \partial_{t} \log \left|y_{0}\right| & <c n^{2} \\
\partial_{t}^{2} \log \left|y_{0}\right| & <c n^{2} \\
\partial_{s} \log \left|y_{0}\right| & <c n \\
\partial_{t} \log \left|y_{0}\right| & <c n
\end{aligned}
$$

therefore

$$
\begin{aligned}
\left|\partial_{s}^{2} y_{0}\right| & <c n^{2} \pi(s) \\
\left|\partial_{s} \partial_{t} y_{0}\right| & <c n^{2} \pi(s) \\
\left|\partial_{t}^{2} y_{0}\right| & <c n^{2} \pi(s)
\end{aligned}
$$

We already obtain:

$$
\begin{array}{r}
\left|\partial_{t}^{2} \psi(s, t(s))\right|<c \\
\left|\partial_{s} \partial_{t} \psi(s, t(s))\right|<c .
\end{array}
$$

In the formula for $\partial_{s}^{2} \psi(s, t(s))$ we have:

$$
\left|\partial_{x} g(c(s, t(s)), s, t(s))\right|=\left|\partial_{x} \varphi(c(s, t(s)), s, t(s))\right|<c \pi(s)
$$

We compare $\partial_{s} c(s, t(s))$ with $\partial_{s} \hat{c}(s, 0)$. We have

$$
\begin{array}{r}
\partial_{x} \partial_{s} \varphi(\hat{c}(s, t), s, t)+\partial_{x}^{2} \varphi(\hat{c}(s, t), s, t) \partial_{s} \hat{c}(s, t) \\
\equiv 0 \\
\partial_{x} \partial_{s}(\varphi-g)(c(s, t), s, t)+\partial_{x}^{2}(\varphi-g)(c(s, t), s, t) \partial_{s} c(s, t)
\end{array}
$$

with

$$
\begin{array}{r}
\left|\partial_{x} \partial_{s} \varphi(\hat{c}(s, 0), s, 0)-\partial_{x} \partial_{s} \varphi(c(s, t(s)), s, t(s))\right|<c \pi(s) \\
\left|\partial_{x}^{2} \varphi(\hat{c}(s, 0), s, 0)-\partial_{x}^{2}(\varphi-g)(c(s, t(s)), s, t(s))\right|<c \pi(s)
\end{array}
$$

(recall §4.5 (iii)), hence

$$
\left|\partial_{s} c(s, t(s))-\partial_{s} \hat{c}(s, 0)\right|<c\left(\pi(s)+\left|\partial_{x} \partial_{s} g(c(s, t(s)), s, t(s))\right|\right.
$$

Let

$$
\begin{cases}\tilde{x}_{0}(u, s, t)=u, & u \in\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right] \\ \tilde{y}_{0}(u, s, t)=g(u, s, t), & u \in\left[\theta_{1}-\varepsilon_{1}, \theta_{1}+\varepsilon_{1}\right]\end{cases}
$$

The discussion in $\S \S 4.2-4.4$ applies to ($\tilde{x}_{0}, \tilde{y}_{0}$) (depending now on three parameters $u, s, t)$ and we get

$$
\left|\partial_{x} \partial_{s} g(c(s, t(s)), s, t(s))\right|=\left|\partial_{u} \partial_{s} \tilde{y}_{0}\right|<c n^{2} \pi(s)
$$

Therefore

$$
\left|\partial_{s} c(s, t(s))-\partial_{s} \hat{c}(s, 0)\right|<c n^{2} \pi(s) .
$$

But we observe that

$$
\begin{aligned}
& \partial_{s}^{2} \varphi(\hat{c}(s, 0), s, 0)+\partial_{s} \hat{c}(s, 0) \partial_{s} \partial_{x} \varphi(\hat{c}(s, 0), s, 0)=0 \\
& \partial_{s} \partial_{x} \varphi(\hat{c}(s, 0), s, 0)+\partial_{s} \hat{c}(s, 0) \partial_{x}^{2} \varphi(\hat{c}(s, 0), s, 0)=0
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \left|\partial_{s}^{2} \varphi(c(s, t(s)), s, t(s))+\partial_{s} c(s, t(s)) \partial_{s} \partial_{x} \varphi(c(s, t(s)), s, t(s))\right| \leqslant c n^{2} \pi(s) \\
& \left|\partial_{s} \partial_{x} \varphi(c(s, t(s)), s, t(s))+\partial_{s} c(s, t(s)) \partial_{x}^{2} \varphi(c(s, t(s)), s, t(s))\right| \leqslant c n^{2} \pi(s)
\end{aligned}
$$

and we conclude that

$$
\begin{aligned}
\left|\partial_{s}^{2} \psi(s, t(s))\right| & <c n^{2} \pi(s), \\
\left|t^{\prime \prime}(s)\right| & <c n^{2} \pi(s) \\
\left|\frac{d^{2}}{d s^{2}} \log \right| t(s)|\mid & <c n^{2} .
\end{aligned}
$$

Recapitulating, we have proved, as $\log \pi(s)=-\sum_{i=0}^{n-1} \lambda_{i}(s, t(s))$:

$$
\begin{aligned}
|\log | t(s)\left|+\sum_{i=0}^{n-1} \lambda_{i}(s, t(s))\right| & <c \\
\left|\frac{d}{d s} \log \right| t(s)\left|+\sum_{i=0}^{n-1} \partial_{s} \lambda_{i}(s, t(s))\right| & <c \\
\left|\frac{d^{2}}{d s^{2}} \log \right| t(s)|\mid & <c n^{2}
\end{aligned}
$$

Let us see that this indeed gives the estimations for τ_{1} as in Proposition 3. We have

$$
\begin{array}{r}
\left|\sum_{i=0}^{n-1} \lambda_{i}(s, t(s))-\sum_{i=0}^{n-1} \lambda_{i}(s, 0)\right|<c n \pi(s)<c, \\
\left|\sum_{i=0}^{n-1} \partial_{s} \lambda_{i}(s, t(s))-\sum_{i=0}^{n-1} \partial_{s} \lambda_{i}(s, 0)\right|<c n \pi(s)<c .
\end{array}
$$

As our t-variable here is really $\bar{t}=t-T\left(z_{1}^{\prime}, z_{2}\right)(s)$, we have in fact

$$
\partial_{s} \lambda_{i}(s, 0)=\frac{d}{d s} \lambda_{1}\left(\sigma^{i} z_{1}^{\prime}, s, T\left(z_{1}^{\prime}, z_{2}\right)(s)\right)
$$

where the notations of $\S 3.10$ are used in the right hand term. We have $\tau_{1}(s)=\log |t(s)|$. The integer ν_{1} in Proposition 3 is here $n+n_{0}+m_{0}$: more precisely, in the sum $\sum_{j=0}^{n-1} \lambda_{1}\left(\sigma^{j} z_{1}^{\prime}, s, T\left(z_{1}^{\prime}, z_{2}\right)(s)\right)$, the sum $\sum_{j=0}^{n-1} \lambda_{i}(s, 0)$ missed the first m_{0} terms (when we replaced q by q^{\prime}) and the last n_{0} terms. But m_{0}, n_{0} are fixed integers. Therefore we have proved the required estimates for $\tau_{1}(s)$. The estimates for τ_{2} are true for the same reasons. The last two estimates in Proposition 3 are immediate, writing:

$$
T\left(z_{1}, z_{2}\right)=T\left(z_{1}, z_{2}\right)-T\left(z_{1}, a_{2}\right)+T\left(z_{1}, a_{2}\right)-T\left(a_{1}, a_{2}\right)
$$

Proposition 3 is, therefore, proved.

References

[AM] Araujo, A. \& Mañé, R., On the existence of hyperbolic attractors and homoclinic tangencies for surface diffeomorphisms. To appear.
[BC] Benedicks, M. \& Carleson, L., The dynamics of the Hénon map. Ann. of Math., 133 (1991), 73-169.
[Bi] Birkhoff, G. D., Nouvelles recherches sur les systèmes dynamiques. Mem. Pont. Accad. Sci. Nuovi Lyncei, 1 (1935), 85-216.
[Bol] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math., 470. Springer-Verlag, 1975.
[Bo2] - Hausdorff dimensions of quasi-circles. Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11-25.
[F] Falconer, K. J., The Geometry of Fractal Sets. Cambridge Univ. Press, 1985.
[Man] Mañé, R., The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 1-24.
[Mar] Marstrand, J. M., Some fundamental properties of plane sets of fractional dimensions. Proc. London Math. Soc., 4 (1954), 257-302.
[MM] Manning, A. \& McCluskey, H., Hausdorff dimension for horseshoes. Ergodic Theory Dynamical Systems, 3 (1983), 251-261.
[MV] Mora, L. \& Viana, M., Abundance of strange attractors. Acta Math., 171 (1993), 1-71.
[N] Newhouse, S., The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101-151.
[NP] Newhouse, S. \& Palis, J., Cycles and bifurcation theory. Astérisque, 31 (1976), 44-140.
[P] Poincaré, H., Sur le problème de trois corps et les equations de la dynamique (Mémoire couronné du prix de S. M. le roi Oscar II de Suède). Acta Math., 13 (1890), 1-270.
[PT1] Palis, J. \& Takens, F., Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms. Invent. Math., 82 (1985), 397-422.
[PT2] - Hyperbolicity and creation of homoclinic orbits. Ann. of Math., 125 (1987), 337-374.
[PT3] - Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Fractal Dimensions and Infinitely Many Attractors. Cambridge Univ. Press, 1993.
[PV] Palis, J. \& Viana, M., On the continuity of Hausdorff dimension and limit capacity for horseshoes, in Dynamical Systems, Valparaiso, 1986. Lecture Notes in Math., 1331. Springer-Verlag, 1988.
[R] Robinson, C., Bifurcation to infinitely many sinks. Comm. Math. Phys., 90 (1983), 433-459.
[S] Smale, S., Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, pp. 63-80. Princeton Univ. Press, 1965.
[YA] Yorke, J. A. \& Alligood, K. T., Cascades of period doubling bifurcations: a prerequisite for horseshoes. Bull. Amer. Math. Soc., 9 (1983), 319-322.

Jacob Palis
Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina, 110
Caixa Postal 34021
22460 Rio de Janeiro, RJ
Brazil
E-mail address: jpalis@impa.br

Jean-Christophe Yoccoz
Département de Mathématiques
Université de Paris-Sud
Bâtiment 425
91405 Orsay Cedex
France

Received August 28, 1991
Received in revised form January 20, 1993

