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I n t r o d u c t i o n  

The starting point in  the theory of holomorphic extensions of unitary representations 

was Ol'shanskiY's observation that, if W is a pointed generating invariant cone in a 

simple Lie algebra g, G a corresponding linear connected group, and Gc its universal 

complexification, then the set Sw = G exp(iW) is a closed subsemigroup of Gc ([O]). This 

theorem has been generalized by Hilgert and Olafsson to solvable groups ([HO])and the 

most general result of this type, due to Lawson ([LAD, is that if Gc is a complex Lie group 

with an antiholomorphic involution inducing the complex conjugation on gc=L(Gc) ,  

then the set Sw---G exp(iW) is a closed subsemigroup of Gc. The class of semigroups 

obtained by this construction is not sufficient for many applications in representation 

theory. For instance Howe's oscillator semigroup (cf. [How])is a 2-fold covering of such 

a semigroup, but it does not fit into any group. In [Ne6] we have shown that given a Lie 

algebra 9, a generating invariant convex cone WC_g, and a discrete central subgroup of 

the simply connected group corresponding to the Lie algebra I]+i(WN(-W)) which is 

invariant under complex conjugation, there exists a semigroup S--F(g, W, D) called the 

Ol'shanski~ semigroup defined by this data, This semigroup is the quotient S/D, where 

is the universal covering semigroup of S (cf. [Ne3]) and D~-Trl(S)is a discrete central 

subgroup of .~. Moreover, the semigroup S, also denoted F(9, W) can be obtained as the 

universal covering semigroup of the subsemigroup (exp(i]+iW)) of the simply connected 

complex Lie group Gc with Lie algebra gc. 

A holomorphic representation of a complex Ol'shanski/semigroup S is a weakly 

continuous monoid morphism ~r: S--+B(?t) into the algebra of bounded operators on a 

Hilbert space 7-/such that 7r is holomorphic on the interior int(S) of S and ~r is involutive, 
i.e., ~r(s*)=Tr(s)* holds for allsES. This set is a dense semigroup ideal which is a complex 

manifold. One can think of representations of S as analytic continuations of unitary 

representations of the subgroup U(S)=(sE S:s*s=l} of unitary elements in S. 
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In this paper we consider the two principal problems of representation theory for 

this setting: 

(P1) Describe the irreducible holomorphic representations of S. 

(P2) Decompose a holomorphic representation of S into irreducible representations. 

We will obtain a complete solution of (P2) under the assumption that  g is a (CA) 
Lie algebra, i.e., the group of inner automorphisms of g is closed in the group Aut(i~) of 

all automorphisms of g. As we will see in Section IV, this condition is a rather natural 

one since it entails that  every connected group G with L ( G ) = g  is a type I group. 

In Section I we will prove a criterion which makes it rather easy to check whether a 

given Lie algebra is (CA) or not. We recall in particular that  a Lie algebra g is (CA) if 

and only if its radical has this property (cf. [vE3]). 

Let us say that  a subalgebra aC_g is compactly embedded if the group generated by 

ead a has compact closure in Aut(9). In Section II we investigate highest weight modules 

for Lie algebras containing a compactly embedded Cartan algebra t. This section is 

purely Lie algebraic. It contains some generalizations of results which are well known for 

semisimple Lie algebras. 

In the third section we turn to unitary representations of a Lie group G with Lie 

algebra g, where g is a (CA) Lie algebra. Let ~C9 be a maximal compactly embedded 

subalgebra of g and K = e x p ~  the corresponding subgroup of G. Then we show that  for 

every irreducible representation (r,  7-/) of G the space 7-/K,~ of K-finite analytic vectors is 

dense in ~/. Note that  we do not assume that  the group K is compact, we only have that  

it is compact modulo the center of G (cf. Section I). These results generalize well known 

facts from the representation theory of real reductive Lie groups (cf. [Wall], [War]). 

The crucial observation is that  by using K-invariant heat kernels on G it is possible to 

approximate elements in 7 / in  a K-equivaxiant way. So far these results are purely group 

theoretic and do not concern holomorphic extensions. 

Next we combine these results with the fact that  for a holomorphic representation 

(Tr, 7-/) of the Ol'shanski~ semigroup S all the self-adjoint operators idlr(X), X E W  have 

a spectrum which is bounded from above (cf. [Ne6]). We use this observation to show 

that  for every irreducible representation (~r, H) of the Ol'shanski~ semigroup S the space 

~.~g is a highest weight module of the Lie algebra 9c and that  ~r(int S) consists of trace 

class operators. 

In Section IV we apply these results to obtain a rather satisfactory disintegration 

and character theory for Ol'shanskil semigroups. It is based on the C*-algebras defined 

in [Ne6] which, in view of the insights from Section III, turn out to be liminal. 

The best known examples for representations which fit into this theory are the 

irreducible representations of compact Lie groups, the holomorphic discrete series repre- 
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sentations of simple Hermitean Lie groups, the metaplectic representation of the 2-fold 

cover Hn ~ Mp(n, R) of Hn ~ Sp(n, R), where Hn denotes the (2n + 1)-dimensional Heisen- 

berg group, and the oscillator representation of the (2n+2)-dimensional oscillator group. 

Other examples are the ladder representations of the subgroups of Mp(n, R) obtained 

by restriction of the metaplectic representations. 

In a subsequent paper we will obtain a classification of the irreducible representations 

and we will show that the holomorphic representations separate the points if and only if 

H(W) is a compact Lie algebra and the Lie algebra g@R contains a pointed generating 

invariant cone (cf. [Ne4]). 

I. (CA) Lie algebras and groups 

Definition 1.1. A finite dimensional real Lie algebra g is said to be a (CA) Lie algebra if 
the group Inn s :----(e adg) of inner automorphisms is closed. We say that a connected Lie 

group G is a (CA) Lie group if its Lie algebra has this property. 

This notion has first been introduced by van Est [vE1] who proved for example that 

g is (CA) if and only if its radical is (CA). A related fact is that a connected Lie group 

G has the property that every injective homomorphism into another Lie group is closed 

if and only if L(G) is a (CA) Lie algebra and the center of G is compact ([Go]). One 

can also construct (CA)-hulls of given Lie algebras with appropriate universal properties 

(cf. [Z]). In this section our approach will be via compactly embedded abelian subalgebras 

(cf. [HN1, Chapter 8], [Ste]). 

Let g be a finite dimensional real Lie algebra, r :=l~d(g)  the radical of g, ~c_g a 

maximal compactly embedded subalgebra, and tC_~ a Cartan algebra, i.e., a maximal 

compactly embedded abelian subalgebra of g. 

According to [HN1, III.7.15] we find a Levi subalgebra ~C_g with the following prop- 

erties: 

(s1) 
(s2) 
(s3) 
(S4) 

(ss) 

[~n~,s]=(0}, 
~=(~n~)@(~n~), 
~l C_ ~, and 

~ :--t~n~ is maximal compactly embedded in s. 

From (S2) and (S3) we infer that ~ : - -~n~cZ(~) ,  so that ~ C t .  It  follows that 

t----t~@t~, where tt:--t~ and t~:=tn~ is maximal compactly embedded abelian in s. For 

a connected Lie group G with L(G)=g we define R:--(exp t), S:--(exp s), T:=exp t, and 

K:=exp~. 
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PROPOSITION 1.2. The following conditions are equivalent: 

(1) The Lie algebra i~ is a (CA) Lie algebra. 

(2) e adt is closed. 

(3) e adt" is closed. 

(4) The radical r of g is a (CA) Lie algebra. 

Proof. Let G be a Lie group with L(G)=g .  

(1) =~ (2): The condition that  g is (CA) means that  Ad(G) is closed. The subalgebra 

t' :=ad - l ( L ( e  ad t)) is a compactly embedded subalgebra of g containing t as a central sub- 

algebra. According to the maximality of t as a compactly embedded abelian subalgebra, 

we see that  t '= t ,  so that  e ~tt is closed because Ad(G) is closed. 

(2) ~ (1): This follows from [HN1, III.8.14]. 
(1) =~ (3): Since R is the radical of G, the group Ad(R) is the radical of Ad(G), 

and therefore closed. Hence (2) implies that  the group Ad(R)f~e ~d~ which has the Lie 

algebra a d ( t n t ) = a d t ~  is closed. It follows that e adt" is closed. 

(3) =~ (2): Since t, _Cs is maximal compactly embedded abelian, e a d  t .  is a maximal 

torus in Ad(S), hence it is closed (cf. [HN1, III.6.16]). Now 

is the product of two compact groups, so it is compact. 

(1) r (4): [vE3, Theorems 2, 2a]. [] 

Note that the subalgebra tt is remarkably small in g, so that (3) in the preceding 

proposition is a condition which is fairly easy to check. Note also that  tt need not be 

maximal compactly embedded in r. This is false for the example R 2 )~ ~[(2, R) ,  where the 

action of s[(2 ,R)  is the usual one. Here r = R  2 and t~={0}. 

The following corollary describes a property of (CA) Lie groups which will be crucial 

in the sequel. 

COROLLARY 1.3. Let T = e x p  t and K = e x p  t be the analytic subgroups corresponding 

to t and t. Then Z ( G ) C T  and the following are equivalent: 

(i) G is a (CA) Lie group, 

(ii) K / Z ( G )  is compact, and 

(iii) T/Z(G)  is a torus. 

Proof. It follows from [HN1, III.7.11] that  Z(G)C_T. 

(i) ~ (ii): The subalgebra t : = a d - l ( L ( A d ( K ) ) )  is compactly embedded. Hence t---~ 

by maximality. Now the closedness of Ad(G) entails that  

A d ( g )  -- (e ~ ' )  = A d ( g )  ~ K/Z(C) 
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is compact. 

(ii) => (iii): If A d ( K ) ~ K / Z ( G )  is compact, then A d ( T ) ~ T / Z ( G )  is a maximal torus 

in K / Z ( G )  because ad t is a Cartan subalgebra of ad t. 

(iii) => (i): In view of T/Z(G)---e ad t, this implication follows from Proposition 1.2. [] 

Let G be a locally compact group and PG a left Haar measure on G. Then C* (G) is 

defined to be enveloping C*-algebra of the Banach .-algebra L I(G, Pc).  The following 

result shows that  the (CA) property of a Lie group implies that  it does not have a "wild" 

representation theory (cf. Remark IV.13). 

THEOREM 1.4. Let G be a (CA) Lie group such that 9 contains a compactly embedded 

Cartan algebra. Then C*(G) is a C*-algebra of type I. 

Proof. In view of [D2, 2.1], we only have to prove that  G is locally isomorphic to 

a real linear algebraic group, i.e., that  it is the Lie algebra of a real linear algebraic 

group. According to [Hoch2], it even suffices to show that  adl~C_End(0) is an algebraic 

Lie algebra. Since the group Inn s =(e ad 8) is closed, it contains the torus T:=e ad ~ and 

therefore it is almost algebraic by Corollary II.27 in [Ne7]. This means that  it is the 

1-component of a real algebraic group and in particular that  ad 1~ is algebraic. [] 

In Section III we will investigate irreducible unitary representations of (CA) Lie 

groups. Note that  this class includes in particular all reductive Lie groups and the class 

of (2n+2)-dimensional oscillator groups. 

II. Highest weight modules  

In this section we collect some generalities on highest weight modules of complex Lie 

algebras which are complexifications of real Lie algebras containing compactly embedded 

Cartan algebras. Since we do not assume that  the Lie algebra in question is semisimple, 

we will have to prove some of the classical results which axe well known for semisimple 

complex Lie algebras in a more general setting. 

In this section g denotes a finite dimensional real Lie algebra containing a compactly 

embedded Cartan subalgebra t. Associated to the Cartan subalgebra tc  in the complex- 

ification gc is a root decomposition as follows (cf. Theorem III.4 in [Ne6]). For a linear 

functional )~ E t~ we set 

g~z := {X E gc: (VY E tc)  [Y, X] = )~(Y)X} 

and 

zx := zX(.c, t c ) :=  �9 # {o}}. 
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Then 

A6A 

)~(t) C_ i R  for all )~ �9 A and a(g~)---gc ~, where a denotes complex conjugation on gc  with 

respect to 1~. Let ~_~t denote a maximal compactly embedded subalgebra. Then a root 

is said to be compact if g~c_[~c. We write Ak for the set of compact roots and A n for 

the set of noncompact roots. 

Posit ive and parabolic systems of  roots 

Definition II.1. (a) A subset A + CA is called a positive system if there exists X0 � 9  such 

that  

A + = { ~ � 9  >0}.  

A positive system is said to be ~-adapted if 

~(X0) > ~(Xo) V~ �9 Ak, ~ �9 A~ +. 

Let A+C_A be a positive system of roots. For a subset M of a vector space V we 

write cone(M) for the smallest closed convex cone containing M and for a cone C in V 

the set C* :={vEY*:  v(C)C_R +} is called the dual cone. 

We define the maximal cone and the minimal cone 

Crnax : =  Cmax(A'{-) : =  (iApT) * C [, 

Cmin :-- G r o i n ( i + )  :-- cone{/[X, X] :  X �9 9~, A �9 A + } _C t. 

(b) A subset ZC_A is called parabolic if there exists E E i t  such that  

Note that  this definition generalizes the notion of a parabolic set of roots in the root 

system of a complex semisimple Lie algebra (cf. [Bou2, Chapter VI, w No. 7, Proposi- 

tion 20]). A subset ~ C A  is said to be closed if 

(~+E)nA c E. 

Note that  a parabolic subset is automatically closed. 

(c) For a closed subset E C A we set 

AEE 

Note that  the closedness condition implies that  t~c(E) is a subalgebra of 9c.  [] 
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LEMMA II.2. Let ~----{AEA:)~(E)~>0} be a parabolic subset. 

assertions hold: 

and 

(i) The set ~ contains a positive system. 

(ii) Let 

~~ := ~ n - ~ =  {~e A :~(E)=0} 

Then (Z~-~+)N~C_~ +. 

(iii) We define 

~ + : - - ~ \ - Z - - { A C  A:A(E) >0}. 

Then the following 

p~ :=oc(r0,  ~ :=gc(~~ and n~ := ( ~  ~5. 
c~E~+ 

Then the following assertions hold: 

(a) as  is a nilpotent ideal in p~. 

(b) s ~ - - p 2 M ~  is a subalgebra of p~. 

(c) p ~ = . ~ .  

Proof. (i) The set of all elements in it where no root vanishes is open and dense. 

Therefore we find an element E'  in this set such that )~(E~)>0 for all AEE +. Then 

A + :--{AEA:A(E~)>0} is a positive system contained in A. 

(ii) This follows immediately from the definitions. 

(iii) This is a consequence of (ii) and the fact that g ~ = t ~  ~. [] 

Definition II.3. Let tC_ 9 be a compactly embedded Cartan algebra and ~Dt the 

unique maximal compactly embedded subalgebra ([HHL, A.2.40]). We write VV~ for the 

Weyl group of the compact Lie algebra ~. This is the group of linear transformations of 

t generated by the orthogonal reflections in the hyperplanes kerw, wEAk, with respect 

to the restriction of a ~-invariant scalar product to t (cf. [Ne4, III.1]). The connected 

components of the set 

t \  U kera 
~EAk 

are called the Ak-chambers. The Weyl group 14;~ acts simply transitive on the set of 

Ak-chambers ([Bou2, Chapter V, w No. 2, Theorem 1]). [] 

LEMMA II.4. Let ~C9 be maximal compactly embedded with tC~. Then the following 

assertions hold: 

(i) Z( t )={XEt : (V~eWe)  ~/(X)=X}. 
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(ii) Let CC_t be a generating )'Yt-invariant cone and Pz: t--*Z(t) the orthogonal pro- 

jection along tf3 [t~, ~]. Then 

CnZ(~) - -pz (C)  and pz(int C) - - in tpz (C)  # Z. 

(iii) If  W is an invariant wedge in 0 and p:0--*t the orthogonal projection along 

[t, 9] =tteff, then 

p(W)=wnt 

is a PY~-invariant cone in t. 

(iv) (Ap+Ak)MAC_Ap and Ap is invariant under the Weyl group l/i2e. 

(v) Let X E Z(~) and ~k C Ak be a parabolic system. Then every neighborhood of X 

contains an element Y with Ek = { a E A k : a( Y ) >~ O ). 

Proof. (i) [Ne4, III.8]. 

(ii) In view of (i), this is a consequence of Theorem 1.10 in [Ne4] because the group 
14;~ is finite and therefore compact. 

(iii) [Ne4, III.7]. 

(iv) Since ~ acts semisimply on 9, there exists a binvariant subspace pC9 with 
l~=~@p. Then tC_~ entails that 

@ and po : 0 
AE~k AEAp 

Moreover, the ~-invariance of p implies that for AEAp and #EAk the sum A-F# is non- 
compact whenever 

# (o). 

For ~/el/Ye there exists k e N K ( t c ) - - { k e K  :Ad(k)t=t} such that 3,=Ad(k)lt ([Ne4, 
III.1]). Hence 

Ad(k)g~ = 0~ ~ = O~ ~ 

and therefore c~o0'-lEAp whenever aEAp and similarly for aEAk.  

(v) Since we may without loss of generality assume that Z([~)={0} and therefore 
that X=0 ,  this follows from ([Bou2, Chapter V, w No. 3, Theorem 2]). [] 

PROPOSITION II.5. For a positive system A+ C_A the following are equivalent: 

(1) A+ is t-adapted. 

(2) A+ is )/Ye-invariant. 

(3) Cmax(A +) is invariant under )/Vs. 

(4) ~:uAp+ is a parabolic set of roots. 
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Proof. (1) ~ (2): Pick XoEit  such that 

~(Xo) > ~(Xo) > 0 

holds for all AEA + and #EA +. Set p + : = ~ e ~ +  g~. For AEA + and # �9  we have that 

(A+#)(Xo)>0 so that [tc,p+]Cp +. Hence Ad(K)p+=p + and consequently We.A+= 
A+.  

(2) ~(3) :  If A + is invariant under We, then the same holds for iA+ and for the 

cone dual to this set which is Cmax. 

(3) ~ (4): According to Lemma II.4 (ii), there exists Xe in t  CmaxDZ(t). Then 

A~ u/,~ = {~ �9 A: ~(x)/> 0} 

is a parabolic system of roots. 

(4) ~ (1): Pick X E i t  such that 

Ak U'~,~ = ( ,  �9 A : , ( x ) / >  0}. 

Then every compact root vanishes on X and every noncompact positive root is positive 

on X. Hence there exists X1 near to X such that 

~(xl)  > , (Xl )  > 0 v ,  �9 A~ +, ~ �9 A~ + 

This means that A+ is t-adapted. [] 

LEMMA II.6. Let A + C A  be a t-adapted positive system. Then a subset EC_A with 

EnAp=Ap+ is parabolic if and only if ~ N A  k is parabolic. 

Proof. "=*": Pick X1eint Cm~xnZ(t) (Lemma II.4 (ii), (iv), Proposition II.5). Then 

every compact root vanishes on X1 and hence we find with Lemma II.4 (v) an element 

XoEint Cm~ arbitrary near to X1 such that ~ n A k = { a E A k  :a(Xo)~>0}. Hence 

= { ~  �9 A :  ~(Xo)/> 0} 

is parabolic. 

"~" :  This is trivial because tCt. 

PROPOSITION II.7. The following are equivalent: 

(1) There exists a t-adapted positive system. 

(2) Z(Z(t) )=t .  

[] 
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Proof. (1) ::~ (2): If A+ is a t-adapted positive system, then E : = Ak UA+  is a para- 

bolic system (Proposition II.5) and therefore we find an element X � 9  such that  

a ( x )  = 0  Va �9 Ak, 

and 

~ ( x ) > 0  w �9 zx~+. 

Then XeZ( t )  and Z(Z(t))CkeradXC_t follows from the fact that  (ker a d X ) c  contains 

no root space for a noncompact root. 

(2) ~ (1): If Z(Z(t ) ) - - t ,  then there exists XeZ( t )  such that  k e r a d X = t .  Then 

z := (~ �9 z~: ~(ix) >10} 

is a parabolic system of roots which contains Ak. Let A+ C_ E be a positive system. Then 

E----AkUAp+ is parabolic so that  A+ is t-adapted by Proposition II.5 (4). [] 

We recall that  Lie algebras with a compactly embedded Cartan algebra satisfying 

the two equivalent conditions of Proposition II.7 are called quasi-Hermit�9 

Highest weight modules 

Definition II.8. Let A+ CA denote a positive system. 

(a) We set b:=b(A+):=pA+, {]+:=[b,b], and - + {]C :={]C" 
(b) Let V be a {it-module and v E V. We say that  v is a primitive element of V 

(with respect to A+) if v # 0  and b.vC_C.v. 
(c) For a {]-module V and Aet~ we set 

v ~ := {v �9 v :  ( v x  �9 ~ )  x . v  = ~ ( x ) ~ } .  

This space is called the weight space of weight A and A is said to be a weight of V is 

V ~ # {0}. We write :Pv for the set of weights of V. 

(d) A {]c-module V is called a highest weight module with highest weight A (with 

respect to A+) if it is generated by a primitive element of weight A. 

(e) A {]-module V is called t-finite if it consists of t-finite vectors, i.e., if dimL/(tc).v 

<oo for all vEV. 
(f) Let V be a complex {]c-module. A pseudo-Hermitean form, ( . ,  �9 } on V is said 

to be contravariant if 

(X.v ,  w) = - (v, X . w )  

for all XE{]c, v, wEV. 
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(g) A highest weight module V is said to be unitarizable if there exists a unitary 

representation (Tr, 7-/) of the simply connected Lie group G with L (G)=g  such that  V is 

isomorphic to the go-module 7-/g'~ of K-finite smooth vectors in 7-/ (see Section III). 

Note that  this implies in particular that  V is endowed with a positive definite contravari- 

ant Hermitean form. [] 

THEOREM II.9. Let V be a g-module of highest weight A and v a corresponding 

primitive element in V of weight A. Then the following assertions hold: 

(i) V=lg(g3).v. 

(ii) V = ( ~ c p v  V 3, every V ~ is finite dimensional, d i m V a = l ,  and every weight of 

V may be written as )~ - -~eA+ n=e~, where the n~ are nonnegative integers. 

(iii) Let X E i t  such that c~(X)>O holds for all a e A +  and set r (X ) ( v ) := X .v  for 

vEV.  We set m(13):=dimV ~. Then 

t re ' (X)  := Z m(3)e~(X) 
/3E~v 

is finite. 

(iv) Every linear operator on V commuting with g is a scalar multiple of the identity. 

(v) Suppose that A is real on it. Pick a highest weight vector vx. Then there exists 

a unique contravariant pseudo-Hermitean form ( . , . )  on V such that (v~, vA)=1. 

(vi) The radical V • of the contravariant pseudo-Hermitean form is a unique maxi- 

mal proper submodule. 

Proof. (Cf. [Bou3, Chapter VIII, w No. 1, Proposition 1] for the semisimple case.) 

(i) It follows from the Poincar6-Birkhoff-Witt theorem that 

U ( g c )  =u(g~)u({c)u(g +) = u ( g c ) u ( b )  

([Boul, Chapter I, w No. 7, Corollary 6]). Hence 

v = u ( g c ) . v  = u ( g c ) u ( b ) . v  = u (gC) .v .  (2.1) 

(ii), (iii) We have seen above that V=L/(gc).V. This means that the mapping 

u(gc)| v, X|  

is surjective. Moreover, one checks easily that  this mapping is a morphism of {c-modules, 

where C = Ca is considered as a {c module via X.z:= A(X)z.  Hence it suffices to prove the 

assertions of (ii) and (iii) for the {c-module V ' := /4(gc) |  because the multiplicities 

of the quotient module V are smaller than in W. 

8-945203 Acta Mathematica 173. lmprim~ le 5 octobre 1994 
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Now we use the Poincar4--Birkhoff-Witt theorem once again to see that  L/(gc)~ 

S(gc)  as tc-module, where the latter denotes the symmetric algebra of l~c. Moreover 

r 

Let m~ :=dimc g~. Then ,9(gc~)-~$(C_~) | 

For the module ~q(C~) wi th /3 (X)<0  and the morphism 7r~: tc--*End(S(C~)), it is 

immediately clear that  each weight space has multiplicity 1 and that  

o o  

tr  e ~ ( x )  = ~ e nz (x )  -- 1 
1-e~(X) 

n----O 

Now let r ' :  tc--~End(V') denote the representations of tc  on V'. Then the tensor 

product decomposition yields 

tr e ~' (x)  = e ~(x) 1 
H ( l _ e - ~ ( x ) ) , ~  < oo. 

a6A+ 

We conclude in particular that  all the multiplicities are finite because they arise as the 

coefficient of e ~(x)  for/367~v ,. 

(iv) Let A be a linear operator on V commuting with g. Then A V  ~ C_ V/3 holds for 

each weight/3. So A v 6 V ~ = C v .  Let A v = c v .  Then (2.1) entails that  A = c i d y .  

(v) We write X~-*X* for the complex antilinear antiautomorphism of the universal 

enveloping algebra/d (gc) which extends the antilinear antiautomorphism X ~-~-X of g c- 

For a vector u in V we define the expectation value (u) as the coefficient of v~ in the 

additive decomposition of u into weight vectors. For A6/4(gc) we claim that  

(A*.v~) = (A .vx) .  

To see this, according to the Poincar4-Birkhoff-Witt theorem, we may assume that  

A = B C D ,  where S6/4(g+),  C6/4( tc) ,  and D6/I (g  +) are monomials in a certain set of 

generators. Then A* = D * C * B * ,  and we see that  

(A.v~)  = ( B C D . v ~ }  = {0} = (D*C*B*.v~)  = (A*.v~} 

if B , D ~ I .  Therefore we may assume that  B = D - - 1 ,  i.e., that  Aff/I( tc) .  We write 

A:/4(tc) ~q(tc)--* C for the unique algebra homomorphism extending A. Then the fact 

that  A(t) C_iR entails that  

(A*.v~) = )~(A*) = A(A)  = (A.v~ I 
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because both homomorphisms A~-~A(A) and A~-+A(A*) are complex linear and extend 

the linear functional A on to.  

With this information, it is immediate that  the prescription 

(A.vx, S.vx) := (B*A.vx) 

is well defined and defines a pseudo-Hermitean form on V. For CE/4(gc)  we have that  

(CA.v:~, B.v:~) --- (B*(CA).v:~) = (((C*B)*A).vx) = (A.v:~, C*S.vx). 

Hence the  form is contravariant. 

(vi) Let V j- ={vE V:(v,  V)--{O}} denote the radical of the pseudo-Hermitean form. 

Then V • is a submodule of V and it does not contain vx. 

Suppose, conversely, that  EC_V is a proper submodule. Then vxEE • since 

the weight space decomposition is orthogonal and therefore ldgo.vx=VCE • Hence 

E C V  • [] 

The proof of the following result carries over word for word from the semisimple 

case. For further results on highest weight modules see [Bou3, Chapter VIII, w No. 3] 

and [J]. 

PROPOSITION II.10. For every ~Et~ there exists an irreducible highest weight mod- 

ule V~ which is unique up to isomorphy. I f  A(t)CiR,  then V~ carries a nondegenerate 

contravariant pseudo-Hermitean form and if, conversely, V~ is a module with highest 

weight ~ which carries a nondegenerate contravariant pseudo-Hermitean form, then V~ 

is irreducible and therefore isomorphic to V~. 

Proof. Let b:=9 + )~ tc be as above. Then the functional AEt~ defines a one:dimen- 

sional representation of b on O. Write L~ for the corresponding U(b)-module. Since 

/g(9o) is a free right/4(b)-module (Poincar&-Birkhoff-Witt), we set 

Z(A) :=/~(9c) | L~. 

Let e : = I |  Then it is clear that  e is a primitive element of weight )~ because 

X.e = X.(1 | 1) = X |  = I |  = A(X)(I |  1) = A(X)e 

holds for all X E [~, where A is viewed as a functional on b which vanishes on 9 +. According 

to Theorem II.9, the tc-module Z(A) is semisimple. 

If W C_ Z(A) is a submodule, then the semisimplicity with respect to to yields that  

w= G 
~ t 5  ,e t5  
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The hypothesis W~r implies that W=Z(A) because Z(A) is generated by e. If 

W ~ = {0}, then 

w c  z(~)+ : :  O z(~)~.  

Let F~ denote the sum of all submodules different from Z(~). Then F~ C Z(~)+. Hence 

F~ is the largest proper submodule of Z(A) different from Z()~), so E(A)::Z()~)/F~ is 

irreducible and the image of e is a primitive element of weight A. 

We show that E(A) is unique up to isomorphy. Suppose that V is an irreducible 

highest weight module with highest weight A and v~ a highest weight vector. Let K 

denote the kernel of the representation of/g(b) on L~. Then codim K =  1 and L~ ~/4(b)/K 

as left/g(b)-modules. Let J : : / ~ ( g c ) g .  Then Z(A)-~lg(gc)/J as left/~(gc)-modules. 

Since K.v~={0}, we conclude that J.v={0}. Hence we have a morphism 

r z ( ~ )  -~ v 

with r =v. Since V is irreducible, ker r is a maximal submodule of Z(A) not containing 

Z()~) ~. Thus kerr  and therefore r induces an isomorphism of E(A) onto V. 

Assume, in addition, that A(t)CiR. Then Theorem II.9 (v) shows that a highest 

weight module V~ with highest weight )~ is irreducible if and only if the contravariant 

form is nondegenerate. This completes the proof. [] 

PROPOSITION II.11. Let V be an irreducible highest weight module and ~ C A  a 

parabolic system containing the positive system A +. Then 

v~ + :-- (v e v :  ~ . v  = {0)} 

is an irreducible ~-submodule of highest weight )~. 

Proof. First we note that V + is an s~-submodule because n~. is an ideal in p~. Note 

also that v~ ~ V +.  

Using the Poincar(:*--Birkhoff-Witt theorem, we get 

So 

u(~c) =u(~)u(~ )u(.~ ). 

v = U(gc) .v~  = u(~)u(~).v~. 

Pick XoEit  such that 

= {~  ~ ~ :  ~(Xo)/> o).  

Then X o E Z ( ~ )  and for f l E - ~ \ ~ ,  and XEg~cC_~--~ we have that 

X .V  ~ C_ V ~+~ 
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with (#+fl)(Xo)=#(Xo)+fl(Xo)<#(X0). 
We conclude that  

v~r176 := {~ e v :  Xo.~ = ~ (XoM = u(~=) .~  c v + .  

Suppose that  

y~(Xo)(Xo) # y~ + 

Then the fact that  V + is a semisimple to-module entails the existence of a weight # and 

vuEVuMV + such that  #(X0)<A(X0). 

Now 

U(~o).v, = U ( ~ ) U ( ~ ) . v ,  C ~[~ V ~ 
~(Xo)~<~(Xo) 

is a submodule which is strictly smaller than V, contradicting the irreducibility. Hence 

V + =//(s~).v~ proves that  V + is a highest weight module of weight A for the Lie alge- 

bra ~. .  

Let W c_ V + be an s~-submodule. According to the irreducibility of V we now have 

that  

Y C_ U(Oo).W = U ( ~ ) U ( ~ ) . W  c U(~) .W.  

Hence 

v~X~ r W r v~(X~ 

shows that  W = V  +. [] 

COROLLARY II. 12. Let V be an irreducible highest weight module, A+ a ~-adapted 

positive system and p+ :=~acz~+ t]~. Then V+ :={vEV: p+.v----{0}} is an irreducible ~c - 

submodule. For each flE'Pv there exists a weight aE'Pv+ such that 

f l e a - -  ~ No')'. 
~E~ 

Proof. In view of the preceding lemma, the first assertion follows from the fact that  

:=/Xk U&+ is a parabolic system of roots (Proposition II.5). 

For the second assertion we recall that  

U(~c).v~ = u(oc).v~ = u(p-  )U(~c).v~ = u ( p - ) . ~ +  

holds for every highest weight vector v~. [] 
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III. Irreducible representations 

In this section G denotes a simply connected Lie group, g = L ( G )  its Lie algebra. First 

we recall the notation of Section I. We pick a maximal compactly embedded subalgebra 

t and choose a Cartan algebra tc_t. We write T : = e x p t  and K : = e x p t .  

Definition III.1. Let (lr, 7-/) be a unitary representation of the group G, i.e., 7r: G--* 

U(7-/) is a continuous homomorphism into the unitary group. 

(a) We write 7-/~176 (?-/~) for the corresponding space of smooth (analytic) vectors. 

We write d~r for the derived representation of g on 7-/~176 We extend this representation 

to a representation of the complexified Lie algebra gc  on the complex vector space 7-/~176 

(b) A vector vET/ is said to be K-finite if it is contained in a K-invariant finite 

dimensional subspace of 7-/. We write ~.~g for the set of K-fini te  vectors in 7-(. 

(c) For a Lie group G we write G for the set of equivalence classes of irreducible 

unitary representations of G. 

(d) For an irreducible representation X of K we write [X] for the class of X in K and 

T/ix ] =7-/[x ] (K) for the corresponding isotypic subspace of ~.~g. [] 

PROPOSITION III.2. For an irreducible unitary representation (~r, 7-l) of the (CA) 

Lie group G the following assertions hold: 

(i) The space ~.~g of K-finite vectors is dense in ~t. 

(ii) Tl=~xeRTl[x](g  ). 

Proof. (i) Since G is a (CA) Lie group, K/Z(G)  is a compact group (Corollary 1.3). 
According to the assumption that  7r is irreducible, it follows from Schur's lemma that  

~r(Z(G)) C_C1. Hence there exists a unitary character X of Z(G) such that  

. ( z )  = x (z ) l  Vz e z(a). 

Let us consider 7 r :G~U(~/ )  as a morphism of topological groups and write 

q: U(7-l)---~PU(7-l) for the quotient morphism onto the projective unitary group. We also 

set G ~ :=G • S 1 and extend ~r to a continuous unitary representation 

U(U), (g,z) z . (g) .  

Then qoTr~ is constant on Z ( G ) x S  1, hence factors to a morphism ~: G/Z(G)---~PU(TI). 

Thus qop(K)=~c(K/Z(G)) is a compact group and 

V := q-l(~r(g/Z(G))) = 7r ~ (g~), 

where K ~ = K x  S 1 is also compact because the kernel of q is isomorphic to SI-~r~(S1). 
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The essential consequence of this observation is that  the set of U-invariant subspaces 

of T/equals the set of K-invariant subspaces of 7-/. This makes it possible to apply the 

representation theory of compact groups to decompose :7-/. Therefore (i) follows from the 

Peter-Weyl Theorem ([Wall, p. 25]). 

(ii) Since Ir(K~) is compact, we have a Hilbert space direct sum 

On the other hand 

7-/= ~ n[~](K~) �9 
a~R~ 

7-/[x~ ] (K ~) = 7-/[x I (K) 

which proves the assertion. [] 

The next step is to prove that  even the analytic K-finite vectors, i.e., the space 

~ g , ~  :__~K nT/~ is dense in 7-/whenever r is an irreducible representation of a (CA) Lie 

group. We will obtain this by a tool which also yields some information for groups which 

are not necessarily (CA). 

We start by choosing a K-invariant positive definite scalar product on ~. Let 

X1, ..., Xn denote an orthonormal basis of g with respect to this scalar product. Further 
n let :=~-~i=l X2E//(g) �9 We claim that  ~ commutes with ft. To see this, let ZE~ and 

[Z, Xj] =~i~1 ai,jXi. Then a~,j = - a j , i  and therefore 

a z - z a =  x (xiz)-(zx )x  = xdx z-zxi)-(zx -x z)x  
i = 1  i = l  

= ~ ~ -Xiaj,iXj-aj#XjXi ~ (aij-aij)XiXj=O. 
i,j=l i , j~l  

X We also set o:=~i=ltr(adXi)Xi. Then (Xo,X)=tradX for all XEg.  Since 

w:XHtradX is a homomorphism of Lie algebras, we conclude that  wEg* is invariant 

under the coadjoint action. Hence the element X0 is invariant under K because the 

scalar product is invariant under K.  

Now we write 2(i for the left invariant differential operator on G defined by 

: =  d XJ(g) f(gexptXi). 

Then the mapping Xi~-~Xi defines a homomorphism of Lie algebras, and the differential 

operator 
n 

g := E X~ +t r (ad  Xi)X~ 
i = 1  
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is biinvariant under K on C~(G). 

Then No:= Nlcy~(G ) is a densely defined symmetric operator on the Hilbert space 

L2(G) with respect to a left Haar measure #G and A:=N~) is a negative self adjoint oper- 

ator on L2(G) ([Gs p. 81]). The corresponding one-parameter semigroup of contractions 

(Ut)t~R+ ([P, p. 15]) is given by 

Ut(f)=f*pt  Vt>O 

([Nel, IV.4]), where Pt �9 C~(G) is a function with the following properties: 

(1) p , (g )>0  for an g e C .  

(2) f cp t (x)dmc(x)=l  for all t>0. 

(3) pt,ps=pt+s for t,s>O. 
Now the fact that N0 and therefore N~ =A commutes with K, entails that Ut com- 

mutes with the right action of K on L2(G). Hence Pt is invariant under conjugation with 

K, i.e., constant on the K-conjugacy classes. 

LEMMA III.3. Let G be a connected Lie group, t a compactly embedded subalgebra 

of it=L(G), K=exp  t, and (Un)neN a basis of the filter of 1-neighborhoods. Then there 
exists a sequence of functions fnEC~ G) such that: 

(1) fn~>O, 

(2) fG  here , c  is a left Haar measure on C, 

(3) supp(f~) CUn, 

(4) f,~ commutes with K, i.e., ~k* f,~=f,~*~k for all keK .  

Proof. Let Vn C Un be a K-invaxiant compact neighborhood of 1. Let ha satisfy 

(1)-(3) with Vn instead of Un. Then we set 

fn := /v(hn~ d#v('Y), 

where U denotes the closure of {Ik : k � 9  in the Lie group 

Aut(G) -- {~/e Aut(G): 3'(rrl (G)) = 7h(G)} -- {~/�9 Aut(it): ')'(71"1 (G)) - - - -  7rl (G)}- 

This subgroup is compact because it is a closed subgroup of the compact group U ~  

Ad(K) c_ Aut(g) which in turn is compact since t is compactly embedded. [] 

We apply this to unitary representation. Note that the following proposition says 

nothing about the existence of K-finite vectors which is guaranteed by Proposition III.2 

if G is a (CA) group. 
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PROPOSITION III.4. Let (7r,7-l) be a unitary representation of the Lie group G. 

g is the The space 7-I K'~ of K-finite analytic vectors is dense in TI g .  I f  [A]EK and 7-/[~] 

corresponding isotypic component in 7-l K, then the analytic vectors in TI~] are also dense. 

Proof. Since 7-/K is the sum of finite dimensional K-modules, it follows that  

K 7-/K= ~ 7-/IX]. 

K is dense in this space. Let So it remains to show that  the set of analytic vectors in 7-/[~1 

vC?-/~]. We set v~:=Ir(fn).V with fn as in Lemma III.3 and 

= fG d,G(g), 

where g c  denotes Haar measure on G. Then ~r(K) commutes with 7r(fn), so that  vn E 

K On the other hand vnCT-/~ and vn-*v.  ?/[~]. 

Next let qn,t:=fn*Pt with Pt as above. Then 

[[qn,t][1 ~ [ [ f n [ [ l [ I P t [ l l  = 1 

yields qn,t E L 1 (G). 

The following argument follows the proof of Theorem 4.4.5.7 in [War]. We set 

vn,t:=~r(qn,t).v. Then [War, 4.4.5.14] implies that  v,~,tET-I ~ with limt--.ov,~,t=vn. On 

the other hand qn,t commutes with K so that  the same argument as above shows that  

~ ,K,~ g,~ is dense in g [] Vn,t ~rt[~] . We conclude that  7-/[~] 7-/[~]. 

g finite dimensional for every [~] c K,  then COROLLARY III.5. I f  the spaces 7-/[~] are 
7-[ K C 7-~ w . 

This is the point where representation theory of Lie algebras comes in. For X Eg 

and vETl g ,~  we have that  

~( k )dn( X )v = dr(  k X k-1)cr( k )v. 

Thus 

span 7r( K )dTr( X )v C_ span dTr( g fir( K )v, 

and the latter space is a t  most of dimension (dimg)(dim~r(K)v).  It follows that  the 

representation of the Lie algebra gc  lives on the rather well behaved subspace 7-/g'~ 

of 7-/. In the following we always consider this g-module as a module of the universal 

enveloping algebra/~(gc) .  From now on we only consider Lie algebras g containing a 

compactly embedded Cartan algebra t. 
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THEOREM III.6. Let (Tr, 7-l) be a unitary representation of connected Lie group G, 

tC9 a compactly embedded Cartan algebra, A + a positive system, and XEint( iA+), .  

Then (1) =~ (2) holds for the following assertions: 

(1) The operator id~r(Z) is bounded from above and T/Kr 

(2) 7/g,w contains a primitive element with respect to A +. 

If  (2) /s satisfied, then the following are equivalent: 

(3) ~r is an irreducible representation. 

(4) 1-I g,~176 is a highest weight module with respect to A+ and ~_~g is dense. 

(5) T/g'~162 is an irreducible highest weight module with respect to A+ and ~t-[K is 

dense. 

I f  (5) is satisfied, then ~_[K:~.~K,oo Consists Of analytic vectors and (1) is satisfied. 

Proof. ( 1 ) ~  (2): Since 7-/gr by assumption, Proposition III.4 shows that there 

exists a K-finite unitvector v0 in 7/'% We may assume that v0 E/-/~ for a functional #Et~.  

Then 

c 

and since i~(X)>O for all c~EA+, and idr(X I is bounded from above, there exists a 

AEt~ such that iA(X) is maximal among all those with /-/~nH(g+).v0#{0}. Pick a 

unit vector vET-l~Ml-I g which is contained in/4(g+).v0. Then ve7/~ and $+.v={0}. 

Therefore v is a primitive element of weight A with respect to A+. 

(3) ~ (4): Suppose that ~r is irreducible and that (2) is satisfied. Set 7-Q :=L/(gc).v, 

where v is a primitive element in 7-/K''~. Then/ ' / .  is a highest weight module of highest 

weight A. Thus all the subspaces 1-/~, f l E P ~  are finite dimensional by Theorem II.9 (ii). 

Pick/3ETanK. Suppose tha t  (~'~g)f~'~vfl. Then there exists a vector VtE(~-~K) fl which is 

orthogonal to the finite dimensional subspace ~ff. But this means that v' is orthogonal 

to the whole space 7/v. 

Since 7-/v consists of analytic vectors, it is dense in 1-/because it is invariant under 

go, so that its closure is a G-invariant subspace of 7-/([Wax, 4.4.5.6]). On the other hand 

this subspace is orthogonal to v'. Hence v'=O and therefore ?-lg=?-l,. We conclude in 

particular that ~.~g C_~t.~w and that ?/K is a highest weight module with highest weight A 

with respect to A+. 

(4) ~ (5): If 7-/g,~176 is a highest weight module with highest weight A, then the scalar 

product on 7i induces a nondegenerate contravariant Hermitean form and therefore/_/K,oo 

is irreducible (Proposition II.10). 

(5) ~ (3): Suppose that 7-/g,~176 is an irreducible highest weight module with highest 

weight A. All the tc-weight spaces in 7/g,oo are finite dimensional by Theorem II.9 (ii). 
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Hence all the weight spaces in ,~.[K a re  finite dimensional and therefore ~/K C_7_/~ (Corol- 

lary III.5). 

Suppose that  the representation r is not irreducible and that  7-/=7-/107-/2 is a non- 

trivial G-invariant orthogonal decomposition. Let Pj denote the orthogonal projection 

on ~/j. Then the Pj commute with K and therefore map 7"~ g into 7-/g. Since Pj also 

commutes with the action of gc on 7-/~ it follows that  ~-~K---~7-[K(~K is a direct sum 

decomposition of 9c-modules. Therefore the irreducibility of 7-/g yields a contradiction 

because no factor can be trivial since ~.~g is dense. This proves that  the representation 

is irreducible. 

(5) ~ (1): If (5) holds, then it is clear that  i)~(X) is the maximal eigenvalue of 

id~r(X) on  7-~ g and hence that  the operator ida(X)  is bounded from above. [] 

In [Ne8] we will show that  whenever there exist unitarizable highest weight modules 

with respect to a positive system A+, this positive system must be C-adapted. 

Note that  there are two crucial properties of a unitary representation which are 

dealt with in the two parts of Theorem III.6, namely the existence of K-finite vectors 

and the density of the space of K-finite vectors. If one does not want to worry about these 

problems one has to impose the assumption that  the representation under consideration is 

irreducible and that  G is a (CA) Lie group (cf. Corollary III.7). As the subrepresentations 

of the regular representation of R show, one cannot expect to have any K-finite vector 

without imposing any restrictions on the type of the representation. 

COROLLARY III.7. Let (~,7-l) be an irreducible unitary representation of the con- 

nected (CA) Lie group G, tC 9 a compactly embedded Cartan algebra, A+ a positive 

system, and XEint( iA+)*.  Then the following are equivalent: 

(1) The operator idr (X)  is bounded from above. 

(2) Tl g'~ contains a primitive element with respect to A+. 

(3) ~.~g i8 an irreducible highest weight module with respect to A+. 

/ f  (1)-(3) are satisfied, then ~I~ consists of analytic vectors. 

Proof. Since the space 7-/g is dense by Proposition III.2, the assertions follow im- 

mediately from Theorem III.6. [] 

In the following we write B1 (7-/) for the space of trace class operators on the Hilbert 

space 7-/ (cf. [We, p. 167]). If (r,  7-/) is a holomorphic representation of an Ol'shanski~ 

semigroup S, then we recall that  the kernel of ~r is defined by ker r :=Tr-l(1) .  

THEOREM III.8. Let S=F(g ,W,D)  be an Ol'shanski~semigroup, g a (CA) Lie al- 

gebra containing a compactly embedded Cartan algebra, and (~r, 7-/) an irreducible holo- 

morphic representation. Then the following assertions hold: 

(i) 7-l K is an irreducible highest weight module of the Lie algebra go. 
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(ii) For every se in t (S)  the operator 7r(s) is a trace class operator, i.e., 7r(intS)C_ 

S l  ( Tl) . 

Proof. (i) First we choose a regular element X E W N t .  Then the fact that  (~r,7-/) 

is a holomorphic representation of S entails that  the operator idTr(X) is bounded from 

above ([Ne6, III.1]). Now Corollary III.7 yields that  7-//~ is an irreducible highest weight 

module with respect to the positive system 

A+ := {a  �9 A : i a ( X )  > 0}. 

(ii) First let X be as above. Then Proposition II.9 implies that  r (Exp( iX ) )=  
eid~r(X)EBl(~). Now pick sEin tS .  Then there exists s ' � 9  and ~>0 such that  

s=s'  Exp(ieX) ([HN2, 3.19 (v)]). Hence 

7r( s) = 7r( s')Ir(Exp( i eX  ) ) �9 B(  ~)B1 (~)  C B1 ( ?-l) 

([We, p. 165]). [] 

In [Ne8] we will see that  the assumption that  G is a (CA) group is not necessary in 

Theorem III.8. 

IV. Disintegration and character theory 

In the preceding section we have seen that  for every irreducible holomorphic represen- 

tation of an Ol'shanskii semigroup S=F(g ,  W, D) the elements in the interior of S are 

mapped onto trace class operators whenever g is a (CA) Lie algebra. Since the (CA) 

assumption is not really necessary (cf. [Ne8, Theorem IV.3]), we anticipate this result 

from [Ne8] and do not make this assumption in this section. 

We will show how this fact can be used to derive a rather satisfactory disintegration 

theory for holomorphic representations of S. We also apply the theory of hminal C*- 

algebras to show that  two irreducible representations are equivalent if and only if their 

characters coincide. 

Definition IV.1. (a) Let A be a C*-algebra. Then A is called liminal or C C R  
(completely continuous representations), if for every irreducible representation (Tr, 7-/) of 

A the image 7r(A) is contained in the algebra K(~/) of compact operators on 7-/. A C*- 

algebra A is said to be postliminal if all nontrivial quotients of A contain a nonzero closed 

two-sided liminal ideal. Note that  for separable A this means that  A is a C*-algebra of 

type I (cf. [D1, w 
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(b) Let S be an Ol'shanskiY semigroup. A nonzero function a: S--*R + is called an 

absolute value if a(st)<,.a(s)a(t)  for all s, t E S  and a( s* )=a(s )  for all sES .  We write 

fit(S) for the set of all locally bounded absolute values on S. 

Let aEfit(S). A representation (~r,?-/) of S is called a-bounded if [l~r(s)l[<.a(s) for 

all s E S. [] 

In [Ne6] we have constructed for each aEfit(S) a C*-algebra C*(S, a) whose repre- 

sentations are precisely the a-bounded holomorphic representations of S. More precisely 

we have the following theorem. 

THEOREM IV.2. The C*-algebra C*(S,a )  has the following properties: 

(i) There exists a homomorphism j: S--* J~ ( C* ( S, a ) ) mapping int(S) into C* ( S , a)  

such that Jlint(S) is holomorphic and spanj( int  S) is dense in C*(S, a). 

(ii) For every nondegenerate representation (r,  7-l) of C* ( S, a)  we have an extension 

7r p to a representation of the multiplier algebra and (lr%j, 7-/) defines a holomorphic a-  

bounded representation of S on 7-i. 

(iii) For every a-bounded holomorphic representation (r,  Tl) of S there exists a 

unique representation (~r,7-() of C*(S ,a )  such that ~r'oj=Tr, where ~r' denotes the ex- 

tension of ir to the multiplier algebra. 

Proof. [Ne6, Theorem IV.2]. [] 

THEOREM IV.3. Let S be an Ol'shanski~ semigroup and aEfit(S).  Then the C*- 

algebra C*(S, a) is liminal. 

Proof. Let (r,  7-/) be an irreducible representation of C*(S, a). Then we use Theo- 

rem IV.2 to see that  we have a corresponding a-bounded holomorphic representation ~r 

of S on 7-/. Now Theorem III.8 (cf. [Ne8, Theorem IV.3]) entails that  

~r(int S) C_ BI (H)  C_ K(7-/). 

Since/r(int S) spans a dense subspace of ~r(C*(S, a))  by Theorem IV.2, it follows that # 

maps C * ( S , a ) i n t o  g(?-/). [] 

Definition IV.4. (i) Let S be an Ol'shanskiY semigroup. We write S for the set of 

equivalence classes of irreducible holomorphic representations. This set is called the dual 

orS. 
(ii) Let IRES. For sEint S we set 

e~ ( s )  :-- tr lr(s). 

Note that this function is well defined (Theorem III.8). It is called the character of Tr. [] 
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Our next objective is the result that  two irreducible representations axe equivalent 

if and only if their characters agree. For the proof we need the following lemma which is 

a generalisation of Proposition 4.2.5 in [D1]. 

LEMMA IV.5. Let C be a liminal C*-algebra and Irl, ..., lr,~ a set of pairwise non- 

equivalent irreducible representations. Set r:=(~)in=l ~h. Then 

~r(C) = ( ~  g(~/~). 
i = l  

Proof. We prove the assertion by induction over n. For n = l  the image ~1(C) is 

a closed *-invariant subalgebra of K(7-/1) which azts irreducibly on ~1 (cf. [D1, 1.8.3]), 

hence 7rl(V)=g(?-/1) follows from [Wal2, p. 293]. 

Assume that n~> 2 and that the assertion holds for collections of n - 1  representations. 

Let J~:=kerlr,~. Using [Wal2, p. 304], we see that  the restrictions 7riIj~ are irreducible 

for i=1 ,  ..., n - 1 .  Since J~ is a liminal C*-algebra ([Wal2, p. 303]), and the restrictions 

~rilj~ are pairwise nonequivalent by [D1, 2.10.4], the induction hypothesis implies that 

n - - 1  

7 r ( J n ) - - ~ g ( 7 - L i ) .  
i=1 

Since on the other hand ~rn(C)--K(?-l~), we find that 

n 

7r(C) = 7r(J , )+r , (C)  = ~ K(Ui) .  [] 
i=l 

For the following we recall some facts from functional analysis concerning the space 

B2(7-/) of Hilbert-Schmidt operators on a Hilbert space ~/. 

PROPOSITION IV.6. Let 7-[ be a Hilbert space and 7-l* ~ l  its dual space endowed with 

the scalar product (v, w)~ :=(w, v). For v, wET-I we write Pv,~ for the rank-one operator 

x~-~ (x, w)v. Then the following assertions hold: 

(i) The mapping 

~| B2(~), v| 

induces an isomorphism Tl@~-B2(7-l), where the scalar product on B2(:H) is given by 

(A, B) = tr(AB*) = t r (B 'A) .  

(ii) The assignment r ( X ) . A : = X A  defines a symmetric representation of B(7-l) on 

the Hilbert space B~( 7"l). 

(iii) B1 (7-/) C_ B 2 (7"[) is a dense subspace. 
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Proof. (i) [We, p. 170]. 

(ii) In view of [We, p. 

symmetric: 

127 

165], it only remains to check that  the representation is 

( r (X)* .A ,  B) = (A, zc(X).B) = t r (A(XB)*)  

= t r (AB*X*)  = t r (X*AB*)  = (zc(X*).A, B). 

(iii) In view of [We, p. 162], this follows from the fact that  

l l (N)NI~(N)  C_/~(N) 

is a dense subspace. 

COROLLARY IV.7. 

on int S. 

For each ~rES the character O~ is a 

[] 

holomorphic function 

is holomorphic. Now the assertion is a consequence of [HN2, Proposition 3.19] because 

we may without loss of generality assume that  S is simply connected. [] 

LEMMA IV.8. Let S be an Ol'shanski[ semigroup and rl , . . . , lrn a set of pairwise 

nonequivalent irreducible representations. Set ~r:--~i~=l zci. Then ~r(S) spans a dense 

subspace m 
n 

i = 1  

Proof. Let Xi  E B2 (7-l~), i = 1,..., n, and X :-- ~i~=1 Xi  E B2 (7"/). Suppose that  

tr(X (S)) = {0}. 

We have co show that  X=O. 

Let a(s):=max{[[Iri(s)][:i=l,.. . ,n}. Then a is a locally bounded absolute value 

on S and we obtain corresponding representations ~r'~, ..., ~r"~ of the liminal C*-algebra 

s ~-~ (~r(s), ~r(t)) -- tr(Tr(s)~r(t)*) -- tr(r(st*)) 

is holomorphic. It follows in particular that  for each fe in t  S the function 

int S--* B(B2(TI)), s ~-* (A ~-~ ~r(s).A), 

Proof. It follows from Proposition IV.6 (ii) that  the mapping B(~) -*B(B2(? t ) )  de- 

fined by the left multiplication representation is holomorphic. Hence the mapping 
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For AEB(TI) and sEint  S we set Fx(A):=tr(Xr(s)A) .  Using that  

I tr(X~r(s)A)l <. IlXr(s)AII1 <. IIX~r(s)lllllAII, 

([We, p. 165]), we conclude that  Fx is continuous. Thus Fx(1r(S))={O} entails that  

Fx (Tr(C* (S, t~)))-- {0}. Using Lemma IV.5, we deduce that  tr(Xilr(s)g(7-li))= {0} holds 

for i--1, ..., n. It follows in particular that  

tr(Xilri(s)B2(Tl~)) = {0}, 

and therefore Xir i (s )=O.  Finally Xi=O follows from the fact that  the irreducible repre- 

sentation (~h, 7-/i) of S is cyclic. [] 

THEOREM IV.9. If T rl, ..., ~r,~ represent disctinct elements of S, then the characters 

O~1, ..., 0 ~  are linearly independent. 

Proof. Suppose that  )-~i=1 iO~,=O on i n tS  and choose X i E B I ( ~ i ) .  We define a 

B function F on ~)i=1 2(~/i) by 

n 

F(A) :-- E Ai tr(XiAi).  
i = 1  

Then this function is continuous on ~)i~1 B2(7-/i) because XiEB2(7-li) (Proposition 

IV.6 (iii)). 

Now we make the special choice Xi:=lh(s) for a fixed sEint  S. Then 

F(~h (t), ..., ~,~(t)) = E )h tr(~i (st)) = )hO~, (st) = O, 
i = 1  i = l  

so that  Lemma IV.8 implies that  F vanishes on (~)i~1 B2(?-/i). We conclude that  

A, t r ( r i ( s ) r i ( s )* )  =)~dlri(s)ll 2 = 0 Vs e int S. 

Picking s such that  r i ( s ) r  it follows that  •i=0. [] 

COROLLARY IV.10. Two irreducible holomorphic representations of an Ol ' shanskff 
semigroup S are equivalent if and only if their characters agree. [] 

For the following theorem we recall from [NeC] that  a holomorphic function r on 

int S is said to be positive definite if for Sl, ..., SnEint S the matrix (r ..... ,~ is 

positive semidefinite. For such a function r one can construct a Hilbert space 7-/r of 

holomorphic functions on int S such that  the function r is a reproducing kernel, i.e., 

f ( s )=( f ,  r where r (t)=r for all s, t e i n t  S (cf. [NeC, Proposition II.9]). For a 

function f on int S we define the function r~(s) ( f ) :  t~-*f(ts) on int S for each sES. 
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THEOREM IV.11. Let (~r,7-/) be an irreducible holomorphic representation of the 

Ol'shanskif semigroup S. Then O~ is a holomorphic positive definite function on int S 

and the mapping 

7-/o~ --* B2(7-/), 7rr(s).e~ ~-~ 7r(s), 

induces a unitary isomorphism of the reproducing kernel Hilbert space 7to~ onto the space 

B2(7-/) of Hilbert-Schmidt operators on TI. The inverse of this mapping is given by 

A ~-+ s ~-~ tr(Ar(s)) .  

Proof. First we note that  

(Tr(s), 7r(t)> = tr(Tr(t)*Tr(s)) = O~(t*s) 

for s, tEint  S. From these relations it is immediate that  the span of 7rr(S).O~ in 7-/o~ is 

mapped isometrically onto 7r(S)CB2(7-() ([Ne6, II.9]). Hence it extends to an isometry 

of the completion 7-/o~ onto B2(7-/) which is onto since 7r(S) spans a dense subset by 

Lemma IVI8. 

For the same reason it suffices to check the formula for the inverse on 7r(S) where it 

is trivial. [~ 

T h e  t o p o l o g y  on  t h e  d u a l  

Definition IV.12. We write S~ for the set of unitary equivalence classes of a-bounded 

irreducible holomorphic representations of S. Then 

~ t ( S )  

is a directed union of subspaces. We endow the sets S~ with the topology inherited by 

the bijection S ~ C * ( S ,  a)^ which in turn is inherited from the bijection 

C*(S,a)^--~Prim(C*(S,a)), ~r ~-+ ker ~ 

([D1, 4.4]), where the space of prime ideals which in this case coincides with the set of 

maximal ideals is endowed with the Jacobson topology. In this topology the closure of a 

set A of ideals is given by the set of all ideals containing [7 A. 

If a~<~ in Jr(S), then we have a canonical morphism C*(S,~)--+C*(S,a) of C*- 

algebras since the identity representation of C* (S, a) is fl-bounded. This morphism is 

surjective because the image of int S generates both. Thus C*(S, a T can be identified 

with a subset of C*(S,~) ̂  ([D1, 2.11.2, 3.2.1]). 

We define a topology on S by saying that  a subset AC_S is closed if and only if the 

intersections ANS~ are closed for all aeA(S) .  [] 

9-945203  Acta Mathematica 173. Imprim6 le 5 oetobre 1994 
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PROPOSITION IV.13. The topology on S has the following properties: 

(i) The subspaces Sa are closed subspaces of S. 

(ii) Each Sa is a Baire space which is locally quasi-compact. 

(iii) The points in S are closed. 

(iv) Let s=s* Eint S. Then the function 7r~-*O~(s) is lower semicontinuous on S. 

Proof. (i) This is immediate from the definition. 

(ii) [D1, 3.4.13] and [D1, 3.3.8]. 

(iii) This follows from the fact that  all closed subspaces S~ have this property ([D1, 

4.4.11). 

(iv) In view of the definition of the topology on S, it suffices to check this on the 

subspaces S~. Now the assertion follows from [D1, 3.5.9] since S~=C*(S,c~)". [] 

Disintegration of representations 

THEOREM IV.14. Let (7r,7-l) be a holomorphic representation of the Ol'shanski~ semi- 

Then there exists a Borel measure # on Sa C_ S and a direct group S and II (s)ll. 
integral of representations 

such that: 

(i) (Tr, 7-{) is unitarily equivalent to (f~ 7r~ d#(w), f~ n~dt~(w)). 
(ii) There exists a subset N o r s  such that #(N)={0}  and if w E S \ N , then ( Tro~ , 7-l~ ) 

is equivalent to ( ~ |  with (~ro~,~l~)ew and V~ a Hilbert space. 

(iii) If  wES,  then set n(w):=dim Vow. Then n is a #-measurable function from g to 

the extended positive axis [0, oo] which is called the multiplicity function. 

Proof. This follows from [Wal2, p. 334] if we extend 7r to a representation of C* (S, (~) 

and recall that S~=C*(S,  a~' .  [] 

Remark IV.15. If G is a connected Lie group and S an Ol'shanskil semigroup such 

that G~-U(S)o, then we can consider the C*-algebra C*(G) and in this algebra the ideal 

consisting of all those elements which are annihilated by those representations which 

do not extend to holomorphic representations of S. Then A:=C*(G)/ I  is a C*-algebra 

which describes the representation theory of S and if G is a (CA) group, then Theorem 1.4 

shows that  A is postliminal. It would be interesting to know whether this C*-algebra is 

also liminal or not. 

Remark IV.16. Let us say that  a holomorphic representation (Tr, 7-/) of S is tracable 

if r ( int  S)C B1 (7~). Such a representation decomposes into a discrete direct sum because 
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the opera tors  of i n t S  are represented by compact  operators.  How is it possible to recon- 

struct  lr from its character? We conjecture that  two such representations are equivalent 

if and only if they have the same character. Note tha t  if we associate to the character O~ 

its reproducing kernel Hilbert space on S, we loose the information on the multiplicities 

but  not on the support  in S. 
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