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Introduction

The starting point in the theory of holomorphic extensions of unitary representations
was Ol’'shanskii’s observation that, if W is a pointed generating invariant cone in a
simple Lie algebra g, GG a corresponding linear connected group, and G¢ its universal
complexification, then the set Sw =G exp(:1W) is a closed subsemigroup of G¢ ([O]). This
theorem has been generalized by Hilgert and Olafsson to solvable groups ([HO]) and the
most general result of this type, due to Lawson ({La}), is that if G¢ is a complex Lie group
with an antiholomorphic involution inducing the complex conjugation on gc=L(G¢),
then the set Sy =G exp{iW) is a closed subsemigroup of G¢. The class of semigroups
obtained by this construction is not sufficient for many applications in representation
theory. For instance Howe’s oscillator semigroup (cf. [How]) is a 2-fold covering of such
a semigroup, but it does not fit into any group. In [Ne6] we have shown that given a Lie
algebra g, a generating invariant convex cone WCg, and a discrete central subgroup- of
the simply connected group corresponding to the Lie algebra g+i(WnN(—W)) which is
invariant under complex conjugation, there exists a semigroup S=I'(g, W, D) called the
Ol’shanskii semigroup defined by this data. This semigroup is the quotient S /D, where
S is the universal covering semigroup of S (cf. [Ne3]) and D2;(S) is a discrete central
subgroup of S. Moreover, the semigroup S , also denoted I'(g, W) can be obtained as the
universal covering semigroup of the subsemigroup (exp{(g+iW)) of the simply connected
complex Lie group G¢ with Lie algebra g¢.

A holomorphic representation of a complex Ol’shanskii semigroup S is a weakly
continuous monoid morphism 7:S— B(H) into the algebra of bounded operators on a
Hilbert space H such that 7 is holomorphic on the interior int(S) of S and = is tnvolutive,
i.e., m(s*)=mn(s)* holds for all s€ S. This set is a dense semigroup ideal which is a complex
manifold. One can think of representations of § as analytic continuations of unitary
representations of the subgroup U(S)={s€S:s*s=1} of unitary elements in S.
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In this paper we consider the two principal problems of representation theory for
this setting:

(P1) Describe the irreducible holomorphic representations of S.

(P2) Decompose a holomorphic representation of .S into irreducible representations.

We will obtain a complete solution of (P2) under the assumption that g is a (CA)
Lie algebra, i.e., the group of inner automorphisms of g is closed in the group Aut(g) of
all automorphisms of g. As we will see in Section IV, this condition is a rather natural
one since it entails that every connected group G with L(G)=g is a type I group.

In Section I we will prove a criterion which makes it rather easy to check whether a
given Lie algebra is (CA) or not. We recall in particular that a Lie algebra g is (CA) if
and only if its radical has this property (cf. [VE3]).

Let us say that a subalgebra aCg is compactly embedded if the group generated by
€*d% has compact closure in Aut(g). In Section II we investigate highest weight modules
for Lie algebras containing a compactly embedded Cartan algebra t. This section is
purely Lie algebraic. It contains some generalizations of results which are well known for
semisimple Lie algebras.

In the third section we turn to unitary representations of a Lie group G with Lie
algebra g, where g is a (CA) Lie algebra. Let €Cg be a maximal compactly embedded
subalgebra of g and K=expt the corresponding subgroup of G. Then we show that for
every irreducible representation (r, H) of G the space H¥:* of K-finite analytic vectors is
dense in H. Note that we do not assume that the group K is compact, we only have that
it is compact modulo the center of G (cf. Section I). These results generalize well known
facts from the representation theory of real reductive Lie groups (cf. [Wall], [War]).
The crucial observation is that by using K-invariant heat kernels on G it is possible to
approximate elements in H in a K-equivariant way. So far these results are purely group
theoretic and do not concern holomorphic extensions.

Next we combine these results with the fact that for a holomorphic representation
(w,H) of the Ol'shanskii semigroup S all the self-adjoint operators idn(X), X €W have
a spectrum which is bounded from above (cf. [Ne6]). We use this observation to show
that for every irreducible representation (,H) of the Ol’shanskil semigroup S the space
H¥ is a highest weight module of the Lie algebra gc and that w(int S) consists of trace
class operators.

In Section IV we apply these results to obtain a rather satisfactory disintegration
and character theory for Ol’shanskil semigroups. It is based on the C*-algebras defined
in [Ne6] which, in view of the insights from Section III, turn out to be liminal.

The best known examples for representations which fit into this theory are the
irreducible representations of compact Lie groups, the holomorphic discrete series repre-
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sentations of simple Hermitean Lie groups, the metaplectic representation of the 2-fold
cover H,xMp(n,R) of H,xSp(n,R), where H, denotes the (2n+1)-dimensional Heisen-
berg group, and the oscillator representation of the (2n+2)-dimensional oscillator group.
Other examples are the ladder representations of the subgroups of Mp(n,R) obtained
by restriction of the metaplectic representations.

In a subsequent paper we will obtain a classification of the irreducible representations
and we will show that the holomorphic representations separate the points if and only if
H(W) is a compact Lie algebra and the Lie algebra g@R contains a pointed generating
invariant cone (cf. [Ned]).

1. (CA) Lie algebras and groups

Definition 1.1. A finite dimensional real Lie algebra g is said to be a (CA) Lie algebra if
the group Inn, :=(e®49) of inner automorphisms is closed. We say that a connected Lie
group G is a (CA) Lie group if its Lie algebra has this property.

This notion has first been introduced by van Est [vE1] who proved for example that
g is (CA) if and only if its radical is (CA). A related fact is that a connected Lie group
G has the property that every injective homomorphism into another Lie group is closed
if and only if L(G) is a (CA) Lie algebra and the center of G is compact ([Go]). One
can also construct (CA)-hulls of given Lie algebras with appropriate universal properties
(cf. [Z]). In this section our approach will be via compactly embedded abelian subalgebras
(cf. [HN1, Chapter 8], [Ste]).

Let g be a finite dimensional real Lie algebra, tv:=Rad(g) the radical of g, ¢Cg a
maximal compactly embedded subalgebra, and tC¢ a Cartan algebra, i.e., a maximal
compactly embedded abelian subalgebra of g.

According to [HN1, IT1.7.15] we find a Levi subalgebra sCg with the following prop-
erties:

(S1) [¢,8]Cs,

(52) [enr,s]={0},

(S3) t=(enr)d(tns),

(S4) ¥'Cs, and

(S5) £s:=%Ns is maximal compactly embedded in s.

From (S2) and (S3) we infer that &.:=tNtCZ(¢), so that £, Ct. It follows that
t=t.®t;, where t.:=8. and t,:=tNs is maximal compactly embedded abelian in s. For
a connected Lie group G with L(G)=g we define R:=(expt), S:=(exps), T:=expt, and
K:=expt.
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PRroPOSITION 1.2. The following conditions are equivalent:
(1) The Lie algebra g is a (CA) Lie algebrea.

(2) €24t is closed.

(3) e*d% is closed.

(4) The radical v of g is a (CA) Lie algebra.

Proof. Let G be a Lie group with L(G)=g.

(1) = (2): The condition that g is (CA) means that Ad(G) is closed. The subalgebra
t':=ad ! (L(e2d*)) is a compactly embedded subalgebra of g containing t as a central sub-
algebra. According to the maximality of t as a compactly embedded abelian subalgebra,
we see that t'=t, so that 3! is closed because Ad(G) is closed.

(2) = (1): This follows from [HN1, I11.8.14].

(1) = (3): Since R is the radical of G, the group Ad(R) is the radical of Ad(G),
and therefore closed. Hence (2) implies that the group Ad(R)Ne>!! which has the Lie
algebra ad(tNt)=ad &, is closed. It follows that >3 is closed.

(3) = (2): Since t;Cs is maximal compactly embedded abelian, 2!+ is a maximal
torus in Ad(S), hence it is closed (cf. [HN1, II1.6.16]). Now

et — gadt: padty

is the product of two compact groups, so it is compact.
(1) ¢ (4): [VE3, Theorems 2, 2al. O

Note that the subalgebra ¢, is remarkably small in g, so that (3) in the preceding
proposition is a condition which is fairly easy to check. Note also that t. need not be
maximal compactly embedded in t. This is false for the example R? xs[(2, R), where the
action of s(2,R) is the usual one. Here r=R? and t.={0}.

The following corollary describes a property of {(CA) Lie groups which will be crucial
in the sequel.

COROLLARY 1.3. Let T=expt and K =expt be the analytic subgroups corresponding
to t and €. Then Z(G)CT and the following are equivalent:

(i) G is a (CA) Lie group,

(ii) K/Z(G) is compact, and

(il) T/Z(G) is a torus.

Proof. 1t follows from [HN1, II1.7.11] that Z(G)CT.
(i) = (ii): The subalgebra #:=ad~!(L(Ad(K))) is compactly embedded. Hence £=¢
by maximality. Now the closedness of Ad(G) entails that

Ad(K)=(e®*) = Ad(K) = K/Z(G)



HOLOMORPHIC REPRESENTATION THEORY II 107

is compact.

(ii) = (iii): If Ad(K)=K/Z(G) is compact, then Ad(T)=T/Z(G) is a maximal torus
in K/Z(G) because ad t is a Cartan subalgebra of ad t.

(iil) = (i): In view of T/Z(G)=e*!", this implication follows from Proposition 1.2. O

Let G be a locally compact group and pug a left Haar measure on G. Then C*(G) is
defined to be enveloping C*-algebra of the Banach x-algebra L!(G,ug). The following
result shows that the (CA) property of a Lie group implies that it does not have a “wild”
representation theory (cf. Remark IV.13).

THEOREM 1.4. Let G be a (CA) Lie group such that g contains a compactly embedded
Cartan algebra. Then C*(G) is a C*-algebra of type 1.

Proof. In view of [D2, 2.1], we only have to prove that G is locally isomorphic to
a real linear algebraic group, i.e., that g is the Lie algebra of a real linear algebraic
group. According to [Hoch2], it even suffices to show that ad gCEnd(g) is an algebraic

Lie algebra. Since the group Inng=(e*!8) is closed, it contains the torus T:=e2d¢ and
therefore it is almost algebraic by Corollary I1.27 in [Ne7]. This means that it is the
1-component of a real algebraic group and in particular that ad g is algebraic. d

In Section III we will investigate irreducible unitary representations of (CA) Lie
groups. Note that this class includes in particular all reductive Lie groups and the class
of (2n+2)-dimensional oscillator groups.

II. Highest weight modules

In this section we collect some generalities on highest weight modules of complex Lie
algebras which are complexifications of real Lie algebras containing compactly embedded
Cartan algebras. Since we do not assume that the Lie algebra in question is semisimple,
we will have to prove some of the classical results which are well known for semisimple
complex Lie algebras in a more general setting.

In this section g denotes a finite dimensional real Lie algebra containing a compactly
embedded Cartan subalgebra t. Associated to the Cartan subalgebra tc in the complex-
ification gc is a root decomposition as follows (cf. Theorem II1.4 in [Ne6]). For a linear
functional A€ty we set

gk ={X €gc: (VY etc) [Y, X] = A(Y)X}

A:=A(ge, to) = {A e tc\ {0} : g& # {0}}-
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Then
gc =t0®® gé}’

A€A
A(t)CiR for all A€ A and 0(gd)=gg", where o denotes complex conjugation on gc with
respect to g. Let €Dt denote a maximal compactly embedded subalgebra. Then a root
is said to be compact if gégtc. We write Ay for the set of compact roots and A, for
the set of noncompact roots.

Positive and parabolic systems of roots

Definition IL.1. (a) A subset A* CA is called a positive system if there exists Xo €4t such
that
At ={ e A:A(Xo)>0}.

A positive system is said to be €-adapted if
MXo) > u(Xo) YueAx, AeAy.

Let ATCA be a positive system of roots. For a subset M of a vector space V we
write cone(M) for the smallest closed convex cone containing M and for a cone C in V
the set C*:={veV*:»(C)CR*} is called the dual cone.

We define the mazimal cone and the minimal cone

Crax = Crmax(A¥):=(iA})* C 1,
Coin = Camin(AT) := cone{i[X, X]: X € g3, A € Af}ct.
(b) A subset X CA is called parabolic if there exists E€it such that
E={deA:\(FE)>0}.

Note that this definition generalizes the notion of a parabolic set of roots in the root
system of a complex semisimple Lie algebra (cf. [Bou2, Chapter VI, §1, No. 7, Proposi-
tion 20]). A subset ¥CA is said to be closed if

(Z+X)NACE.

Note that a parabolic subset is automatically closed.
(c) For a closed subset XCA we set

gc(¥) 1=tc€9@9€\:-

AED

Note that the closedness condition implies that gc(X) is a subalgebra of gc. a
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LEMMA I1.2. Let S={A€A:\(E)>0} be a parabolic subset. Then the following
assertions hold:
(i) The set ¥ contains a positive system.
(i) Let
20:=2N-TS={ e A: \(E)=0}

and
TT=E\-E={A€A:X(E)>0}.

Then (Z+XT)NZCTt.
(iii) We define

pz:zgc(Z), 52:=gc(20), and Ny 1= @ gac.
aexrt

Then the following assertions hold:
(a) nx is a nilpotent ideal in py.
(b) sy=pxNpx is a subalgebra of px.
(c) pn=nzxsx.

Proof. (i) The set of all elements in it where no root vanishes is open and dense.
Therefore we find an element E’ in this set such that A(E’)>0 for all AeX*. Then
At:={AeA:\(E')>0} is a positive system contained in A.

{i1) This follows immediately from the definitions.

(iii) This is a consequence of (i) and the fact that g: 8- O

Definition 11.3. Let tCg be a compactly embedded Cartan algebra and €2t the
unique maximal compactly embedded subalgebra ([HHL, A.2.40]). We write W; for the
Weyl group of the compact Lie algebra &. This is the group of linear transformations of
{ generated by the orthogonal reflections in the hyperplanes kerw, w€Ag, with respect
to the restriction of a ¢-invariant scalar product to t (cf. [Ned4, IIL.1]). The connected
components of the set

t\ U kera

acAyg

are called the Ag-chambers. The Weyl group W, acts simply transitive on the set of
Ag-chambers ([Bou2, Chapter V, §3, No. 2, Theorem 1}). O

LEMMA 11.4. Let ¥Cg be maximal compactly embedded with tC €. Then the following
assertions hold:
(i) Z(®)={Xet:(VyeWp) v(X)=X}.
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(ii) Let CCt be a generating We-invariant cone and pz: t— Z(¢) the orthogonal pro-
jection along tN[e,¥]. Then

CNZ()=pz(C) and pz(intC)=intpz(C)+#@.

(iii) If W is an invariant wedge in g and p:g—t the orthogonal projection along
[t, 8]=ges, then
p(W)=Wnt

is a We-invariant cone in t.

(iv) (Ap+Ar)NACA, and A, is invariant under the Weyl group W.

(v) Let X€Z(%) and T C Ay be a parabolic system. Then every neighborhood of X
contains an element Y with Xy={a€As:a(Y)>0}.

Proof. (i) [Ned, I11.8].

(ii) In view of (i), this is a consequence of Theorem 1.10 in [Ne4] because the group
W is finite and therefore compact.

(ii1) [Ned, H1.7].

(iv) Since t acts semisimply on g, there exists a t-invariant subspace pCg with
g=t®Dp. Then tCE entails that

tc=tc® P 8& and pc= P o¢-

AEA AEAP

Moreover, the ¢-invariance of p implies that for A€ A, and g€l the sum A4p is non-

compact whenever
62, 961 # {0}

For yeW, there exists k€ N (tc)={k€ K : Ad(k)t=t} such that y=Ad(k)|¢ ([Ne4,
II1.1]). Hence
a Y- aoy™!
Ad(k)ge =8¢ = dc
and therefore aoy™1 €A, whenever a€A,, and similarly for a€A;.
(v) Since we may without loss of generality assume that Z(¢)={0} and therefore

that X =0, this follows from ([Bou2, Chapter V, §3, No. 3, Theorem 2}). O

PRrROPOSITION I1.5. For a positive system AT CA the following are equivalent:
(1) At is t-adapted.

(2) A} is Wy-invariant.

(3) Cumax(A™) is invariant under W;.

(4) AxUAY is a parabolic set of roots.
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Proof. (1)=>(2): Pick Xg€it such that
A(Xo) > p(Xo) >0

holds for all \e A and p€A}. Set p+:=@A€A: g&. For A€ A} and € Ay we have that
(A£p)(Xo)>0 so that [tc,pt]Cpt. Hence Ad(K)pt=p* and consequently We.Af =
A}

(2)=(3): If A} is invariant under Wk, then the same holds for iA} and for the
cone dual to this set which is Cpax.

(3) = (4): According to Lemma IL.4 (ii), there exists X €int CyaxNZ(€). Then
AyUAY ={a€eA:a(X)>0}

is a parabolic system of roots.
(4) = (1): Pick X €it such that

AkUA;' ={a€A:a(X) >0}

Then every compact root vanishes on X and every noncompact positive root is positive
on X. Hence there exists X; near to X such that

MX1)>u(X1)>0 Vuedf, xeAl.

This means that At is £-adapted. 0
LEMMA I1.6. Let AT CA be a t-adapted positive system. Then a subset SCA with
EOAP:A;DIr is parabolic if and only if XNA}, is parabolic.

Proof. “=": Pick X; €int CipaxNZ(€) (Lemma I1.4 (ii), (iv), Proposition I1.5). Then
every compact root vanishes on X; and hence we find with Lemma II.4 (v) an element
Xo€int Crax arbitrary near to X, such that ENAy={a€A:a(Xy)>0}. Hence

L={aeA:a(Xo) >0}
is parabolic.

“&": This is trivial because tC#E. O

ProrosiTiON 11.7. The following are equivalent:

(1) There exists a t-adapted positive system.
(2) z(2(¥)=¢t.
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Proof. (1)=>(2): If A* is a t-adapted positive system, then X:=A,UA} is a para-
bolic system (Proposition II.5) and therefore we find an element X €it such that

a(X)=0 Ya € Ak,

and
a(X)>0 VaecAf.

Then X € Z(t) and Z(Z(%)) Ckerad X C¢t follows from the fact that (ker ad X)c contains
no root space for a noncompact root.
(2)=(1): If Z(Z(¥))=¢, then there exists X € Z(¥) such that kerad X =¢. Then

Y:={a€A:a(iX) >0}

is a parabolic system of roots which contains A;. Let AT CY be a positive system. Then
Y=A,UA} is parabolic so that A% is t-adapted by Proposition I1.5 (4). O

We recall that Lie algebras with a compactly embedded Cartan algebra satisfying
the two equivalent conditions of Proposition I1.7 are called guasi-Hermitean.

Highest weight modules

Definition 11.8. Let AT CA denote a positive system.

(a) We set b:=b(A*):=pa+, g&:=[b, b], and gé::%.

(b) Let V be a gc-module and v€V. We say that v is a primitive element of V
(with respect to A™) if v#0 and b.vCC.v.

(c) For a g-module V and Aetg we set

VAi={veV: (VX €tc) X.v=AX)v}.

This space is called the weight space of weight A and A is said to be a weight of V is
V*#{0}. We write Py for the set of weights of V.

(d) A gc-module V is called a highest weight module with highest weight A (with
respect to A1) if it is generated by a primitive element of weight .

(e) A g-module V is called £-finite if it consists of &-finite vectors, i.e., if dimU(¢¢).v
<oo for all veV.

(f) Let V be a complex gc-module. A pseudo-Hermitean form, (-, -) on V is said
to be contravariant if

(Xv,w)=—(v, X.w)

for all X egc, v,weV.
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{g) A highest weight module V is said to be unitarizable if there exists a unitary
representation (7, H) of the simply connected Lie group G with L(G): ¢ such that V' is
isomorphic to the gc-module HX>® of K-finite smooth vectors in H (see Section III).
Note that this implies in particular that V is endowed with a positive definite contravari-
ant Hermitean form. O

THEOREM I1.9. Let V be a g-module of highest weight A\ and v a corresponding
primitive element in V of weight A. Then the following assertions hold:

(i) V=U(gg)v.

(i) V=Dsep, VB, every V* is finite dimensional, dim V*=1, and every weight of
V may be written as /\—ZmE A+ Natt, where the n, are nonnegative integers.

(iii) Let X €it such that a(X)>0 holds for all ac At and set 7(X)(v):=X.v for
veV. We set m(B):=dimV?. Then

tre™ ) .= Z m(B)ePX)
BEPv

is finite.

(iv) Every linear operator on V commuting with g is a scalar multiple of the identity.

(v) Suppose that X is real on it. Pick a highest weight vector vx. Then there exists
@ unigque contravariant pseudo-Hermitean form (-, -) on V such that (v, v))=1.

(vi) The radical V1 of the contravariant pseudo- Hermitean form is a unique mazi-
mal proper submodule.

Proof. (Cf. {Bou3, Chapter VIII, §6, No. 1, Proposition 1] for the semisimple case.)
(i) It follows from the Poincaré-Birkhoff-Witt theorem that

U(gc) =U(gc)U(tc)U(8E) =U(gc)U(b)
([Boul, Chapter I, §2, No. 7, Corollary 6]). Hence
V =U(gc).V =U(gc)U(b).v =U(gc)-v- (2.1)
(i), (iii) We have seen above that V' =U(gg).v. This means that the mapping
U(ge)®C -V, XQz+— zX.w,

is surjective. Moreover, one checks easily that this mapping is a morphism of tc-modules,
where C=C,, is considered as a t¢c module via X.z:=A(X)z. Hence it suffices to prove the
assertions of (ii) and (iii) for the tc-module V':=U(gg)®Cx because the multiplicities
of the quotient module V are smaller than in V'.

8—945203 Acta Mathematica 173. Imprimé le 5 octobre 1994
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Now we use the Poincaré-Birkhoff-Witt theorem once again to see that U(gg)=
S(gg) as tc-module, where the latter denotes the symmetric algebra of go. Moreover

S(ge)= Q) S(ac).
aEAt
Let my:=dimg g&. Then S(gg®)=2S(C_s)®™=.
For the module S(Cg) with 3(X)<0 and the morphism 7g: tc—End(S(Cg)), it is
immediately clear that each weight space has multiplicity 1 and that

oo
1
ma(X) _ nB(X) - ___ -
tre Z%e =)
n=—

Now let 7': tc—End(V’) denote the representations of tc on V’. Then the tensor
product decomposition yields

tre” (X) = A X) H U‘—Falm < 00.
acAt
We conclude in particular that all the multiplicities are finite because they arise as the
coefficient of e#(X) for BePy..

(iv) Let A be a linear operator on V commuting with g. Then AVACV? holds for
each weight 8. So AveV*=Cu. Let Av=cv. Then (2.1) entails that A=cidy.

(v) We write X+— X* for the complex antilinear antiautomorphism of the universal
enveloping algebra U(gc) which extends the antilinear antiautomorphism X— —X of gc-
For a vector u in V we define the ezpectation value (u) as the coefficient of vy in the
additive decomposition of u into weight vectors. For AelU(gc) we claim that

(A*.’U)‘) = (A.’U)\>.

To see this, according to the Poincaré-Birkhoff-Witt theorem, we may assume that
A=BCD, where BeU(gt), Cel(tc), and DelU(gl) are monomials in a certain set of
generators. Then A*=D*C*B*, and we see that

(A.v3)=(BCD.vy) = {0} = (D" C*B* vx) = (A*.v3)

if B,D#1. Therefore we may assume that B=D=1, i.., that Acl(tc). We write
A:U(te)=S(tc)—~C for the unique algebra homomorphism extending A. Then the fact
that A(t)CiR entails that

(A"va) = A(A%) = MA4) = (A.03)
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because both homomorphisms A—A(A4) and A— A(A*) are complex linear and extend
the linear functional A on tc.

With this information, it is immediate that the prescription
{A.wy, Buy) :=(B*A.v))
is well defined and defines a pseudo-Hermitean form on V. For C€l{(gc) we have that
(CA.vx, Buy) = (B*(CA).vx) ={((C*B)* A).vx) = (A.vx,C"B.vy).

Hence the form is contravariant.

(vi) Let V- ={veV:(v,V)={0}} denote the radical of the pseudo-Hermitean form.
Then V- is a submodule of V and it does not contain vy.

Suppose, conversely, that ECV is a proper submodule. Then vy€El since
the weight space decomposition is orthogonal and therefore Uy,.va=V CE+L. Hence
ECV+i O

The proof of the following result carries over word for word from the semisimple
case. For further results on highest weight modules see [Bou3, Chapter VIII, §6, No. 3]
and [J].

ProPOSITION 11.10. For every A€ty there exists an irreducible highest weight mod-
ule Vx which is unique up to isomorphy. If A(t)CiR, then V) carries a nondegenerate
contravariant pseudo-Hermitean form and if, conversely, V) is a module with highest
weight A which carries a nondegenerate coniravariant pseudo-Hermitean form, then V
18 irreducible and therefore isomorphic to V.

Proof. Let b:=g xtc be as above. Then the functional A€ty defines a one-dimen-
sional representation of b on C. Write L, for the corresponding U(b)-module. Since
U(gc) is a free right U(b)-module (Poincaré-Birkhoff-Witt), we set

Z(A):==U(gc)®u)La-
Let e:=1®1€Z(A). Then it is clear that e is a primitive element of weight A because
Xe=X.(181)=X®1=10X =AX)(1®1)=A(X)e

holds for all X €b, where ) is viewed as a functional on b which vanishes on g&. According
to Theorem I1.9, the tc-module Z(\) is semisimple.
If WC Z()) is a submodule, then the semisimplicity with respect to tc yields that

W= wt= P WnzZ\)*).

HEL: HEL:
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The hypothesis W*#{0} implies that W=2Z()) because Z(\) is generated by e. If
W*={0}, then
wczNe= @ Z00-
HAENELS
Let F) denote the sum of all submodules different from Z()\). Then F)CZ())+. Hence
F) is the largest proper submodule of Z()\) different from Z(\), so E(A):=Z(A)/F) is
irreducible and the image of e is a primitive element of weight .

We show that E()\) is unique up to isomorphy. Suppose that V is an irreducible
highest weight module with highest weight A and v, a highest weight vector. Let K
denote the kernel of the representation of U(b) on L. Then codim K=1 and Ly =U(b)/ K
as left U(b)-modules. Let J:=U(gc)K. Then Z(A\)=2U(gc)/J as left U(gc)-modules.
Since K.vy={0}, we conclude that J.v={0}. Hence we have a morphism

P Z(A) -V

with 9)(e)=v. Since V is irreducible, ker ¢ is a maximal submodule of Z()) not containing
Z(A)*. Thus kery=F and therefore ¢ induces an isomorphism of E()) onto V.
Assume, in addition, that A\(t)CiR. Then Theorem II.9 (v) shows that a highest
weight module V| with highest weight X is irreducible if and only if the contravariant
form is nondegenerate. This completes the proof. O

PRrROPOSITION I1.11. Let V be an irreducible highest weight module and ¥CA a
parabolic system containing the positive system A*. Then

Vi i={veVingv={0}}

is an irreducible sy -submodule of highest weight .

Proof. First we note that V)_ff is an sx-submodule because ny is an ideal in px. Note
also that vAEVg .
Using the Poincaré-Birkhoff-Witt theorem, we get
U(gc) =U(s)U(sz)U (ns).
So
14 =U(gc).v,\ =U(E)U(5z).v,\.

Pick Xp€it such that
Y={a€A:a(Xo) >0}

Then Xo€Z(sx) and for f€—¥\X, and XEQEQE we have that

XVHC yrtB
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with (u-+8)(Xo)=(Xo)+B(Xo) <p( Xo).
We conclude that

VAX)(X4):={v eV : Xo.v=AXo)v} =U(ss).vr C V.

Suppose that
VAXo)(Xo) £ V.

Then the fact that Vg is a semisimple tc-module entails the existence of a weight y and
v, €VFNVY such that p(Xo)<A(Xo)-
Now
U(ge) v, =UmU(Es) v, S P VP
B(Xo)<n(Xo)

is a submodule which is strictly smaller than V, contradicting the irreducibility. Hence
Vi =U(sx).vx proves that Vi is a highest weight module of weight A for the Lie alge-
bra Sy.

Let WCVy be an sg-submodule. According to the irreducibility of V' we now have
that

V CU(ge).W =U(g)U(ss).W CU(Nx).W.

Hence
VX (X) W C VAZO(X,),

shows that W=Vy. a

COROLLARY I1.12. Let V' be an irreducible highest weight module, A a t-adapted
positive system and p*::@aeA: 9&. Then Vi:={veV:ptv={0}} is an irreducible tc-
submodule. For each B€Py there exists a weight a€Py, such that

ﬂEa— Z N()’)’.

yeay

Proof. In view of the preceding lemma, the first assertion follows from the fact that
¥:=ArUA/ is a parabolic system of roots (Proposition IL.5).
For the second assertion we recall that

U(gc)va=U(gg)-va =U(p 7 U(kc).ua=U(p™ ). H4

holds for every highest weight vector v,. 0
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III1. Irreducible representations

In this section G denotes a simply connected Lie group, g=L(G) its Lie algebra. First
we recall the notation of Section I. We pick a maximal compactly embedded subalgebra
£ and choose a Cartan algebra tCt. We write T:=expt and K:=expt.

Definition TIL.1. Let (m,H) be a unitary representation of the group G, i.e., m: G—
U(H) is a continuous homomorphism into the unitary group.

(a) We write H>® (H“) for the corresponding space of smooth (analytic) vectors.
We write dm for the derived representation of g on H*. We extend this representation
to a representation of the complexified Lie algebra gc on the complex vector space H™.

(b) A vector vE€M is said to be K-finite if it is contained in a K-invariant finite
dimensional subspace of H. We write HX for the set of K-finite vectors in H.

(c) For a Lie group G we write G for the set of equivalence classes of irreducible
unitary representations of G.

(d) For an irreducible representation x of K we write [x] for the class of x in K and
Hi,y=Hy(K) for the corresponding isotypic subspace of HE. a

PRroPOSITION I11.2. For an irreducible unitary representation (mw,H) of the (CA)
Lie group G the following assertions hold:
(i) The space HX of K-finite vectors is dense in H.

(ii) H=®x€I?H[X] (K).

Proof. (i) Since G is a (CA) Lie group, K/Z(G) is a compact group (Corollary 1.3).
According to the assumption that = is irreducible, it follows from Schur’s lemma that
7(Z(G))CC1. Hence there exists a unitary character x of Z(G) such that

n(z)=x(z)1 VzeZ(G).

Let us consider m:G—U(H) as a morphism of topological groups and write
q:U(H)— PU(H) for the quotient morphism onto the projective unitary group. We also
set G¥:=G xS! and extend 7 to a continuous unitary representation

Gt S U(H), (g,2)— zr(g).

Then gon? is constant on Z(G)xS!, hence factors to a morphism #: G/Z(G)— PU(H).
Thus gop(K)=#(K/Z(G)) is a compact group and

U:=q M (#(K/Z(G))) =7"(KY),

where K#=K xS! is also compact because the kernel of ¢ is isomorphic to Staqi(S1).
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The essential consequence of this observation is that the set of U-invariant subspaces
of H equals the set of K-invariant subspaces of H. This makes it possible to apply the
representation theory of compact groups to decompose H. Therefore (i) follows from the
Peter-Weyl Theorem ([Wall, p. 25]).

(ii) Since 7(K*) is compact, we have a Hilbert space direct sum

H= P Hu(KY.
acKt
On the other hand
H[x”](Kﬁ) =M (K)

which proves the assertion. O

~ The next step is to prove that even the analytic K-finite vectors, i.e., the space
HEw:=HKNHY is dense in H whenever r is an irreducible representation of a (CA) Lie
group. We will obtain this by a tool which also yields some information for groups which
are not necessarily (CA).

We start by choosing a K-invariant positive definite scalar product on g. Let
Xj,..., X, denote an orthonormal basis of g with respect to this scalar product. Further
let Q:=Y""_, X2€U(g). We claim that ¢ commutes with Q. To see this, let Zct and
(Z,X;]=>"", a; jXi. Then a; j=-a;; and therefore

0VZ-20=) Xi(X:Z)-(ZX)Xi=) Xi(X:Z-ZX:)—-(ZXi— X:Z)X;

=1 =1

n n
= Z —Xiaj,in—aj’,«Xin = Z (ai,j—ai,j)X,-Xj =0.
i,j=1 i,j=1

We also set Xo:=) - tr(ad X;)X;. Then (Xo,X)=trad X for all Xeg. Since
w: X—trad X is a homomorphism of Lie algebras, we conclude that weg* is invariant
under the coadjoint action. Hence the element X, is invariant under K because the
scalar product is invariant under K.

Now we write X; for the left invariant differential operator on G defined by

Xif(g):= %

flgexptX;).
=0

t=

Then the mapping X;— X; defines a homomorphism of Lie algebras, and the differential
operator

n
N:=>" X2+tr(ad X;)X;

i=1
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is biinvariant under K on C*°(G).

Then Nyo:=N ICSQ(G) is a densely defined symmetric operator on the Hilbert space
L?*(G) with respect to a left Haar measure ug and A:=N is a negative self adjoint oper-
ator on L%(G) ([G4, p. 81]). The corresponding one-parameter semigroup of contractions
(Ut)ier+ ([P, p. 15]) is given by

U(f)=f*pr Vt>0

([Nel, IV 4]), where p,€C“(G) is a function with the following properties:

(1) pe(g)>0 for all geG.

(2) [ope(x) dmg(z)=1 for all ¢>0.

(8) pe*ps=pi4s for t,s>0.

Now the fact that Ny and therefore Nf=A commutes with K, entails that U; com-
mutes with the right action of K on L?(G). Hence p; is invariant under conjugation with
K, ie., constant on the K-conjugacy classes.

LEMMA II1.3. Let G be a connected Lie group, £ a compactly embedded subalgebra
of g=L(G), K=expt, and (Uy,)nen a basis of the filter of 1-neighborhoods. Then there
exists a sequence of functions f,€C>(G) such that:

(1) fa20,

(2) [ fn(9) duc(g)=1, where pc is a left Haar measure on G,

(3) supp(fn)CUn,

(4} f. commutes with K, i.e., 8p* fo=[fnxb; for all ke K.

Proof. Let V,,CU, be a K-invariant compact neighborhood of 1. Let h, satisfy
(1)-(3) with V,, instead of U,,. Then we set

fai= /U(hnov) dpy (1),
where U denotes the closure of {I:k€ K} in the Lie group
Aut(G) = {7 € Aut(G) : 7(m1(G)) = m1(G)} = {7 € Aut(g) : 7(m1(G)) =m1(G)}-

This subgroup is compact because it is a closed subgroup of the compact group U=

Ad(K)CAut(g) which in turn is compact since £ is compactly embedded. O

We apply this to unitary representation. Note that the following proposition says
nothing about the existence of K-finite vectors which is guaranteed by Proposition III.2
if G is a (CA) group.
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ProprosiTiON II1.4. Let (w,H) be a unitary representation of the Lie group G.
The space HE* of K-finite analytic vectors is dense in HX. If [)\]EI? and H[Ii] is the
corresponding isotypic component in HX | then the analytic vectors in ’Hg] are also dense.

Proof. Since HX is the sum of finite dimensional K-modules, it follows that

K _ K
HY = P HE).
AleR

So it remains to show that the set of analytic vectors in ’H[If\] is dense in this space. Let
UEH[I§]. We set v, :=7(fn).v with f, as in Lemma II1.3 and

w(fa) 0= /G fu(9)m(g).v duc(g),

where pg denotes Haar measure on G. Then m(K) commutes with 7(f,), so that v, €
'Hg]. On the other hand v, € H* and v, —wv.
Next let gp +:=fn*p; with p, as above. Then

llgn,ellx < Il fnllllpella =1

yields g, : € L'(G).

The following argument follows the proof of Theorem 4.4.5.7 in [War]. We set
Unt:=7(gn¢).v. Then [War, 4.4.5.14] implies that v, €H* with lim; .o vn,t=vn. On
the other hand ¢,; commutes with K so that the same argument as above shows that
Un,t E’Hﬁi“’. We conclude that ’Hﬁi“’ is dense in H[’f(]. O

CoROLLARY II1.5. If the spaces 'H{f\'] are finite dimensional for every [A]EI? , then
HECH.

This is the point where representation theory of Lie algebras comes in. For X €g
and ve HX® we have that

n(k)dn(X)v =dr(k Xk~ )n(k)v.

Thus
span (K )dn (X )v C spandn(g)n(K)v,

and the latter space is at most of dimension (dim g)(dim 7(K)v). It follows that the
representation of the Lie algebra gc lives on the rather well behaved subspace HX:>
of H. In the following we always consider this g-module as a module of the universal
enveloping algebra U(gc). From now on we only consider Lie algebras g containing a
compactly embedded Cartan algebra t.
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THEOREM 111.6. Let (m,’H) be a unitary representation of connected Lie group G,
tCg a compactly embedded Cartan algebra, At a positive system, and X €int(iAT)*.
Then (1) = (2) holds for the following assertions:

(1) The operator idn(X) is bounded from above and HK #{0}.

(2) HE“ contains a primitive element with respect to A™T.

If (2) is satisfied, then the following are equivalent:

(3) = is an irreducible representation.

(4) HE® is a highest weight module with respect to AT and H¥ is dense.

(5) HK is an irreducible highest weight module with respect to At and HX is
dense.

If (5) is satisfied, then HX =HX-> consists of analytic vectors and (1) is satisfied.

Proof. (1) = (2): Since HX #{0} by assumption, Proposition III.4 shows that there
exists a K-finite unitvector vy in H*. We may assume that vo€ H* for a functional petg.

Then

8
U(g&)-vo C 45 HX”,

BEp+3 e a+ Noa

and since ia(X)>0 for all a€A™*, and idn(X) is bounded from above, there exists a
Aety such that $A(X) is maximal among all those with HPNU(gE).vo#{0}. Pick a
unit vector v€ H*NHX which is contained in U(gE).vp. Then veHY and g&.v={0}.
Therefore v is a primitive element of weight A with respect to A*.

(3) = (4): Suppose that = is irreducible and that (2) is satisfied. Set H,:=U(gc).v,
where v is a primitive element in H*:*. Then H, is a highest weight module of highest
weight A. Thus all the subspaces H?, 3 €Pyx are finite dimensional by Theorem I1.9 (ii).
Pick B€Pyx. Suppose that (HX)#£HB. Then there exists a vector v’ €(HX )P which is
orthogonal to the finite dimensional subspace H2. But this means that v’ is orthogonal
to the whole space H,,.

Since H,, consists of analytic vectors, it is dense in H because it is invariant under
gc, so that its closure is a G-invariant subspace of H ([War, 4.4.5.6]). On the other hand
this subspace is orthogonal to v’. Hence v'=0 and therefore HK =H,. We conclude in
particular that H¥ CH* and that H¥ is a highest weight module with highest weight A
with respect to A™.

(4) = (5): If H¥-*® is a highest weight module with highest weight A, then the scalar
product on H induces a nondegenerate contravariant Hermitean form and therefore H¥:*°
is irreducible {Proposition I1.10).

(5) = (3): Suppose that H*>> is an irreducible highest weight module with highest
weight A. All the tc-weight spaces in HX+> are finite dimensional by Theorem IL9 (ii).
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Hence all the weight spaces in H¥ are finite dimensional and therefore H¥ CH“ (Corol-
lary IIL.5).

Suppose that the representation 7 is not irreducible and that H=7, ®H> is a non-
trivial G-invariant orthogonal decomposition. Let P; denote the orthogonal projection
on H;. Then the P; commute with K and therefore map H¥ into %¥. Since P; also
commutes with the action of gc on H™, it follows that HK *HX @HX is a direct sum
decomposition of gc-modules. Therefore the irreducibility of HX yields a contradiction
because no factor can be trivial since 7¥ is dense. This proves that the representation
is irreducible.

(5)=(1): If (5) holds, then it is clear that iA(X) is the maximal eigenvalue of
idm(X) on HX and hence that the operator idw(X) is bounded from above. O

In [Ne8] we will show that whenever there exist unitarizable highest weight modules
with respect to a positive system A, this positive system must be -adapted.

Note that there are two crucial properties of a unitary representation which are
dealt with in the two parts of Theorem III.6, namely the existence of K-finite vectors
and the density of the space of K-finite vectors. If one does not want to worry about these
problems one has to impose the assumption that the representation under consideration is
irreducible and that G is a (CA) Lie group (cf. Corollary I11.7). As the subrepresentations
of the regular representation of R show, one cannot expect to have any K-finite vector
without imposing any restrictions on the type of the representation.

CoOROLLARY II1.7. Let (7, H) be an irreducible unitary representation of the con-
nected (CA) Lie group G, tCg a compactly embedded Cartan algebra, A* a positive
system, and X €int(iA*)*. Then the following are equivalent:

(1) The operator idm(X) is bounded from above.

(2) HEY contains a primitive element with respect to At.

(3) HX is an irreducible highest weight module with respect to At.

If (1)~(3) are satisfied, then HX consists of analytic vectors.

Proof. Since the space H¥ is dense by Proposition II1.2, the assertions follow im-
mediately from Theorem IIL6. u

In the following we write By (H) for the space of trace class operators on the Hilbert
space H (cf. [We, p. 167]). If (r,H) is a holomorphic representation of an Ol’shanskil
semigroup S, then we recall that the kernel of 7 is defined by ker m:=7~1(1).

THEOREM II1.8. Let S=I'(g, W, D) be an Ol’shanskii semigroup, g a (CA) Lie al-
gebra containing a compactly embedded Cartan algebra, and (w,H) an irreducible holo-
morphic representation. Then the following assertions hold:

(i) HX is an irreducible highest weight module of the Lie algebra gc.
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(ii) For every s€int(S) the operator n(s) is a trace class operator, i.e., m(int §)C
B;(H).

Proof. (i) First we choose a regular element X eWNt. Then the fact that (7, H)
is a holomorphic representation of S entails that the operator idn(X) is bounded from
above ([Ne6, IIL.1]). Now Corollary IIL.7 yields that H¥ is an irreducible highest weight
module with respect to the positive system

At :={a€A:ia(X)>0}.

(ii) First let X be as above. Then Proposition II.9 implies that 7(Exp(iX))=
e4"X)e B (H). Now pick s€intS. Then there exists s’€intS and £>0 such that
s=s'Exp(ieX) ([HN2, 3.19(v)]). Hence

7(s) = n(s')m(Exp(ie X)) € B(H)B1(H) C B1(K)

([We, p. 165]). O

In [Ne8] we will see that the assumption that G is a (CA) group is not necessary in
Theorem IIL.8.

IV. Disintegration and character theory

In the preceding section we have seen that for every irreducible holomorphic represen-
tation of an Ol’shanskil semigroup S=T'(g, W, D) the elements in the interior of S are
mapped onto trace class operators whenever g is a (CA) Lie algebra. Since the (CA)
assumption is not really necessary (cf. [Ne8, Theorem IV.3]), we anticipate this result
from [Ne8] and do not make this assumption in this section.

We will show how this fact can be used to derive a rather satisfactory disintegration
theory for holomorphic representations of §. We also apply the theory of liminal C*-
algebras to show that two irreducible representations are equivalent if and only if their
characters coincide.

Definition 1V.1. (a) Let A be a C*-algebra. Then A is called liminal or CCR
(completely continuous representations), if for every irreducible representation (7, H) of
A the image 7(A) is contained in the algebra K(H) of compact operators on H. A C*-
algebra A is said to be postliminal if all nontrivial quotients of A contain a nonzero closed
two-sided liminal ideal. Note that for separable A this means that A is a C*-algebra of
type I (cf. [D1, §9]).
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(b) Let S be an Ol’shanskii semigroup. A nonzero function a: S—R™ is called an
absolute value if a(st)<a(s)a(t) for all s,t€S and a(s*)=a(s) for all s€S. We write
A(S) for the set of all locally bounded absolute values on S.

Let ac€.A(S). A representation (7, H) of S is called a-bounded if |\7(s)||<ca(s) for
all s€S. g

In [Ne6] we have constructed for each a€.A(S) a C*-algebra C*(S, @) whose repre-
sentations are precisely the a-bounded holomorphic representations of S. More precisely
we have the following theorem.

THEOREM IV.2. The C*-algebra C*(S, o) has the following properties:

(i) There exists a homomorphism j: S— M(C*(S, a@)) mapping int(S) into C*(S,a)
such that j|;, sy is holomorphic and span j(int S) is dense in C*(S, a).

(ii) For every nondegenerate representation (n, ) of C*(S, ) we have an extension
7' to a representation of the multiplier algebra and (7’'<j,H) defines a holomorphic -
bounded representation of S on H.

(i) For every a-bounded holomorphic representation (w,H) of S there exists a
unique representation (%,H) of C*(S,a) such that #'oj=n, where &' denotes the ex-
tension of T to the multiplier algebra.

Proof. [Ne6, Theorem IV.2]. a

THEOREM IV.3. Let S be an Ol’shanskii semigroup and a€.A(S). Then the C*-
algebra C*(S,a) is liminal.

Proof. Let (m,H) be an irreducible representation of C*(S, ). Then we use Theo-
rem IV.2 to see that we have a corresponding a-bounded holomorphic representation 7
of S on H. Now Theorem IIL.8 (cf. [Ne8, Theorem IV.3]) entails that

#(int §) € By (H) C K(H).

Since #(int S) spans a dense subspace of 7(C*(S, ¢)) by Theorem IV.2, it follows that 7
maps C*(S, a) into K(H). a

Definition IV 4. (i) Let S be an Olshanskii semigroup. We write S for the set of
equivalence classes of irreducible holomorphic representations. This set is called the dual
of S.

(ii) Let 7€ S. For s€int § we set

O (s) :=trm(s).

Note that this function is well defined (Theorem III1.8). It is called the character of m. [l
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Our next objective is the result that two irreducible representations are equivalent
if and only if their characters agree. For the proof we need the following lemma which is
a generalisation of Proposition 4.2.5 in [D1].

LEMMA IV.5. Let C be a liminal C*-algebra and m1, ..., 7, a set of pairwise non-
equivalent irreducible representations. Set m:=@;_, ;. Then

7(C) =P K(H.).
i=1

Proof. We prove the assertion by induction over n. For n=1 the image m(C) is
a closed *-invariant subalgebra of K(H;) which acts irreducibly on H; (cf. [D1, 1.8.3]),
hence 71 (C)=K(H,) follows from [Wal2, p. 293].

Assume that n>>2 and that the assertion holds for collections of n—1 representations.
Let J,:=kerm,. Using [Wal2, p. 304], we see that the restrictions m;|;, are irreducible
for i=1,...,n—1. Since J, is a liminal C*-algebra ([Wal2, p. 303]), and the restrictions
7i|7, are pairwise nonequivalent by [D1, 2.10.4], the induction hypothesis implies that

7(Jn) = ED K(H,).

i=1

Since on the other hand 7,(C)=K(H,), we find that

7(C) =n(Jn)+7(C) = P K (M) 0

=1

For the following we recall some facts from functional analysis concerning the space
B,(H) of Hilbert-Schmidt operators on a Hilbert space H.

PROPOSITION IV.6. Let H be a Hilbert space and H*2=H its dual space endowed with
the scalar product (v,w) :={w,v). For v,w€H we write p, ,, for the rank-one operator
zw{z,w)v. Then the following assertions hold:

(i) The mapping

HQH— By(H), v@wr— Py,

induces an isomorphism H®H=By(H), where the scalar product on Ba(M) is given by
(A, B)=tr(AB*)=tr(B"A).

(ii) The assignment m(X).A:=XA defines a symmetric representation of B(H) on
the Hilbert space By(H).
(i) B1(H)CBa(H) is a dense subspace.
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Proof. (i) [We, p. 170].
(ii) In view of [We, p. 165], it only remains to check that the representation is
symmetric:

(r(X)*.A,B)=(A,n(X).B) =tr(A(XB)*)
=tr(AB*X*)=tr(X*AB*)=(n(X").A, B).
(iii) In view of [We, p. 162], this follows from the fact that
HN)NI=(N) CI*(N)

is a dense subspace. O

COROLLARY IV.7. For each m€S the character O, is a holomorphic function
on int S.

Proof. 1t follows from Proposition IV.6 (ii) that the mapping B(H)— B(B32(H)) de-
fined by the left multiplication representation is holomorphic. Hence the mapping

int S — B(B2(H)), s+ (A m(s)-A),
is holomorphic. It follows in particular that for each t€int S the function
s (m(s), w(t)) = tr(m(s)m(t)*) =tr(m(st™))

is holomorphic. Now the assertion is a consequence of [HN2, Proposition 3.19] because
we may without loss of generality assume that S is simply connected. O

LEMMA IV.8. Let S be an Ol'shanskii semigroup and my,...,Tn a set of pairwise
noneguivalent irreducible representations. Set m:=@;_, ;. Then ©(S) spans a dense
subspace in

P B:(Hs).
=1
Proof. Let X;€By(H;), i=1,...,n, and X:=@]._, X;€B3(H). Suppose that
tr(X=(S)) ={0}.

We have to show that X =0.
Let a(s):=max{|m;(s)lj:i=1,...,n}. Then a is a locally bounded absolute value

on S and we obtain corresponding representations 7y, ..., T, of the liminal C*-algebra

C*(S, a).
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For A€ B(H) and s€int S we set Fx(A):=tr(Xn(s)A). Using that
|tr(X7(s)A)| < [| X7 (s) Al < | X7 (s)l2]| All,

([We, p. 165]), we conclude that Fx is continuous. Thus Fx(m(S))={0} entails that
Fx(n(C*(S, a)))={0}. Using Lemma IV.5, we deduce that tr(X;m(s)K(H;))={0} holds
for i=1,...,n. It follows in particular that

tr(X;mi(s)B2(M;)) = {0},

and therefore X;m;(s)=0. Finally X;=0 follows from the fact that the irreducible repre-
sentation (m;, H;) of § is cyclic. O

THEOREM IV.9. If my,..., T, represent disctinct elements of §, then the characters
Or,y.ey On, are linearly independent.

Proof. Suppose that Z;;l AiOx, =0 on int S and choose X;€B;(H;). We define a
function F on @, Ba(H;) by

F(A) = i )\i tr(X,-A,-).

i=1
Then this function is continuous on @, B2(H;) because X;€B,(H;) (Proposition
IV.6 (iii)).

Now we make the special choice X;:=m;(s) for a fixed s€int.S. Then

F(m1(t), .., ma(t)) = Z Ai tr(mi(st)) = Z AiOr,(st) =0,

so that Lemma IV.8 implies that F vanishes on @], B2(H;). We conclude that
A tr(mi(s)mi(s)*) = M| mi(s)||5=0 Vs€int$.

Picking s such that 7;(s)#£0, it follows that A;=0. O

COROLLARY IV.10. Two irreducible holomorphic representations of an Ol’shanskii
semigroup S are equivalent if and only if their characters agree. a

For the following theorem we recall from [Ne6] that a holomorphic function ¢ on
int S is said to be positive definite if for sy, ...,s, €int S the matrix (¢(s}s;))i,j=1,...,n is
positive semidefinite. For such a function ¢ one can construct a Hilbert space Hy of
holomorphic functions on int S such that the function ¢ is a reproducing kernel, i.e.,
F(s)=(f, ps+), where @ (t)=¢(ts*) for all s,t€int S (cf. [Ne6, Proposition I1.9]). For a
function f on int S we define the function ,.(s)(f):t— f(ts) on int S for each s€S.
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THEOREM IV.11. Let (w,H) be an irreducible holomorphic representation of the
Ol’shanski? semigroup S. Then ©, is a holomorphic positive definite function on int S
and the mapping

Heo,— Ba(H), m,(5).Or— n(s),

induces a unitary isomorphism of the reproducing kernel Hilbert space He_ onto the space
B>(H) of Hilbert—Schmidt operators on H. The inverse of this mapping is given by

A s tr{An(s)).

Proof. First we note that

(m(s), m(t)) = tr(m(¢)*m(s)) = O (s)

for s,t€int S. From these relations it is immediate that the span of 7,.(5).O, in He, is
mapped isometrically onto 7(S)C Bz(H) ([Ne6, I1.9]). Hence it extends to an isometry
of the completion Hg, onto Ba(H) which is onto since 7(S) spans a dense subset by
Lemma IV.8.

For the same reason it suffices to check the formula for the inverse on 7(S) where it
is trivial. ]

The topology on the dual

Definition 1V.12. We write* 5, for the set of unitary equivalence classes of a~bounded
irreducible holomorphic representations of S. Then

is a directed union of subspaces. We endow the sets §a with the topology inherited by
the bijection S, =(C*(S,a)" which in turn is inherited from the bijection

C*(S,a) — Prim(C’*(S., a)), m—kermw

([D1, 4.4]), where the space of prime ideals which in this case coincides with the set of
maximal ideals is endowed with the Jacobson topology. In this topology the closure of a
set A of ideals is given by the set of all ideals containing () A.

If <8 in A(S), then we have a canonical morphism C*(S,3)—C*(S,a) of C*-
algebras since the identity representation of C*(S, ) is O-bounded. This morphism is
surjective because the image of int § generates both. Thus C*(S,a)” can be identified
with a subset of C*(S,8)" ([D1, 2.11.2, 3.2.1]).

We define a topology on S by saying that a subset A§§ is closed if and only if the
intersections ANS, are closed for all a€.A(S). a

9--945203 Acta Mathematica 173. Imprimé le 5 octobre 1994
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PROPOSITION IV.13. The topology on S has the following properties:

(i) The subspaces S, are closed subspaces of S.

(i) Fach S, is a Baire space which is locally quasi-compact.

(iii) The points in S are closed.

(iv) Let s=s*€int S. Then the function m—©,(s) is lower semicontinuous on S.

Proof. (i) This is immediate from the definition.

(ii) [D1, 3.4.13] and [D1, 3.3.8).

(iii) This follows from the fact that all closed subspaces S, have this property ([D1,
4.4.1}).

(iv) In view of the definition of the topology on S, it suffices to check this on the
subspaces S,. Now the assertion follows from [D1, 3.5.9] since So=C*(S,a)". O

Disintegration of representations

THEOREM 1V.14. Let (x,H) be a holomorphic representation of the Ol’shanskii semi-
group S and a(s):=||n(s)||. Then there erists a Borel measure u on 5.CS and a direct

(/; 7o du(w), /; H. du(w))
such that:

(i) (m, M) is unitarily equivalent to ( fg@ T, dp(w), fge,B Ho, dp(w)).

(ii) There ezists a subset N of S such that p(N)={0} and if weS\N, then (7., Ha)
is equivalent to (%,Q1I, 'ﬁw@Vw) with (ﬁw,ﬁw)ew and V,, a Hilbert space.

(i) If weS, then set n(w):=dim V,,. Then n is a p-measurable function from S to
the extended positive azis [0, 00] which is called the multiplicity function.

integral of representations

Proof. This follows from [Wal2, p. 334] if we extend 7 to a representation of C*(S, a)
and recall that S,=C*(S,a)". O

Remark IV.15. If G is a connected Lie group and S an Ol’shanskii semigroup such
that G=U(S)o, then we can consider the C*-algebra C*(G) and in this algebra the ideal
consisting of all those elements which are annihilated by those representations which
do not extend to holomorphic representations of S. Then A:=C*(G)/I is a C*-algebra
which describes the representation theory of S and if G is a (CA) group, then Theorem 1.4
shows that A is postliminal. It would be interesting to know whether this C*-algebra is
also liminal or not.

Remark IV.16. Let us say that a holomorphic representation (m, H) of S is tracable
if m(int S)C By (H). Such a representation decomposes into a discrete direct sum because
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the operators of int-S are represented by compact operators. How is it possible to recon-

struct 7 from its character? We conjecture that two such representations are equivalent

if and only if they have the same character. Note that if we associate to the character O,

its reproducing kernel Hilbert space on S, we loose the information on the multiplicities

but not on the support in S.

[BCR]
[BK1]
[BK2]
[Boul]
[Bou2)
[Bou3]
[Br]

[D1]
[D2)

[FD]

[Fo]
(G

(Go
(HH]

[HHL)
(Hi]

[HN1]
[HN2]

[HO]
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