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1. Introduct ion 

An infinite dimensional Banach space X is distortable ff there exists an equivalent norm 

I" [ on X and A>I  such that  for all infinite dimensional subspaces Y of X,  

sup{ly l / Iz l  : y, z �9 S(Y;  I1" II)} > (i.i) 

where S(Y; I1" 11) is the unit sphere of Y. R .C .  James [11] proved that  lx and co are 

not distortable. In this paper we prove that  lz is distortable. In fact we shall prove 

that  12 is arbitrarily distortable (for every A>I  there exists an equivalent norm on 12 

satisfying (1.1)). 

The distortion problem is related to stability problems for a wider class of functions 

than the class of equivalent norms. A function f: S(X)--,R is oscillation stable on X if 

for all subspaces Y of X and for all : > 0 there exists a subspace Z of Y with 

sup{I f (y ) -  f(z)l  : y, z �9 S( Z) } < e. (1.2) 

(By subspace we shall mean a closed infinite dimensional linear subspace unless other- 

wise specified.) It was proved by V. Milman (see e.g., [28, p. 6] or [26], [27] that  every 

Lipschitz (or even uniformly continuous) function f :  S ( X ) - ~ R  is finitely oscillation stable 

(a subspace Z of arbitrary finite dimension can be found satisfying (1.2)). V. Milman also 

proved in his fundamental papers [26], [27] that  if all Lipschitz functions on every unit 

sphere of every Banach space were oscillation stable, then every X would isomorphically 

contain co or Ip for some l~<p<oo. Of course Tsireison's famous example [38] dashed such 

hopes and caused Milman's paper to be overlooked. However Milman's work contains 

the result that  if X does not contain co or lp (l~<p<oo) then some subspace of X 
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admits a distorted norm. Thus the general distortion problem (does a given X contain 

a distortable subspace?) reduces to the case X=lp (l<p<cx)).  

For a given space X, every Lipschitz function f :  S(X)--*R is oscillation stable if and 

only if every uniformly continuous g:S(X)--*R is oscillation stable. Indeed if such a g 

were not oscillation stable then there exist a subspace Y of X and reals a<b such that  

c = {y e s (Y) :  g(y) < a) and D = {y e s ( r ) :  g(y) > b} 

are both asymptotic for Y (C is asymptotic for Y if C e M S ( Z ) ~  for all subspaces Z of 

Y and all ~>0 where C~=(x:d(C,x)<e}). Since g is uniformly continuous, d(C,D) =_ 
in f ( l l c -d  H :cEC, d E D } > 0  and so f(x)=-d(C,x) is a Lipschitz function on S(X) that  

does not stabilize in Y. 

If C and D are asymptotic sets for a uniformly convex space X with d(C,D)>O 
then X contains a distortable subspace. For example, the norm [" I on X whose unit ball 

is the closed convex hull of (AU-AU~f Ba X) is a distortion of a subspace for sufficiently 

small ~ and any choice AE(C,D}. If X=co or l~ ( l ~ p < o v ) ,  then by the minimality of 

X one obtains that  every uniformly continuous f :  S(X)---,R is oscillation stable if and 

only if S(X) does not contain two asymptotic sets a positive distance apart. If X=Ip 
( l < p < ~ )  then this is, in turn, equivalent to X is not distortable. 

T. Gowers [8] proved that  every uniformly continuous function f :  S(co)---*R is os- 

cillation stable. Every uniformly continuous f :  S(ll)---~R is oscillation stable if and 

only if 12 (equivalently lp, l < p < o o )  is not distortable. This is seen by considering the 

Mazur map [25] M:S(ll)--~S(12) given by M(x,) ,~l=((signx,)[x/~[)~.  M is a uni- 

form homeomorphism between the two unit spheres (see e.g., [32, Lemma 1]). Moreover, 

since M preserves subspaces spanned by block bases of the respective unit vector bases 

of ll and 12, C is an asymptotic set for ll if and only i f M ( C )  is an asymptotic set for 12. 

Gowers theorem combined with our main result and that  of Milman's yields 

THEOREM 1.1. Let X be an infinite dimensional Banach space. Then every Lip- 
schitz function f: S(X)--*R is oscillation stable if and only if X is co-saturated. 

(X is co-saturated if every subspace of X contains an isomorph of co.) 

In w we consider a generalization of the Mazur map. The Mazur map satisfies for 

h=(h~) ES(ll) + with h finitely supported, M(h)=x where xeS(12) + maximizes E(h, y ) -  
~'~i hi log yi over S(12) +. ~-~rthermore in this case h=x* ox where x* is the unique support 

functional of x and o denotes pointwise multiplication of the sequences x and x*. These 

facts are well known. We give a proof in Proposition 2.5. 

The generalization is given as follows. Let X have a 1-unconditional normalized 

basis (ei). This just means that  II [xl II=[[xll for all x=~a~e~eX where Ixl=~-:~ lailei. 
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We regard X as a discrete lattice. Coo denotes the linear space of finitely supported 

sequences on N. Thus XMcoo={xeX: suppx is finite} where supp(~-~ aiei)={i:air 
For BC_N and x=~x ie iEX  we set Bx=~ieBXiei. We often write x=(xi), ll is a 

particular instance of such an X and we use the same notational conventions for 11. 

The generalization Fx of the Mazur map is defined in terms of an auxilliary map, the 

entropy function E: (/1MC0o) x X - o [ - c o ,  co) given by E(h,x)=_E(]h[, [xl)-=~i Ihi110g Ixil 

where h =  (hi) Ell MCOo and x =  (xi) E X under the convention 0 log 0---0. Fix h E 11Mcoo and 

B =supp  h. Then there exists a unique x =  (xi) E S(X) satisfying 

(i) Eih, x)>~Eih, y) for all yES(X), 
(ii) supp h=suppx=B, 
(iii) sign xi =sign hi for i �9 B. 

This unique x we denote by Fx(h) and we set 

Exi h) = Eih , Fxih)) = max{Eih  , y):  Y �9 SIX)}. 

Indeed the function Eih , �9 ): {x �9  SIX)+ : supp x CB}--* [-co, 0] is continuous taking 

real values on those x's with supp x=B and taking the value - c o  otherwise. Thus there 

exists x �9  SiX) + satisfying iii) and E(h, x) >~ Eih , y) if y�9 8(X) +, supp yC_ B. Since (ei) is 

1-unconditional and E(h, y)=E(h, By) for all yEX, we obtain ii). (iii) is then achieved 

by changing the signs of xi as needed. The uniqueness of x follows from the strict 

concavity of the log function. If suppx=suppy=B and x~y then E(h, �89 

�89 Ixl)+ �89 lYl). 
We discovered the map E in a paper of Gillespie [7] and we thank L. Weis for bringing 

that  paper to our attention. A similar map is considered in [37]. As noted there other 

authors have also worked with this map in various contexts ([20], [21], [13], [30], [36], 

[14]). The central objective of some of these earlier papers was to show that  elements of 

S(ll) could be written as x* ox with IIx* I] = Hxil=l- Our additional focal point is the map 

Fx itself. For certain X, Fx  is uniformly continuous. In general Fx is not uniformly 

continuous, but retains enough structure (Proposition 2.3) to be extremely useful in w 

In addition it is known (e.g., [37, Lemma 39.3]) that  whenever x=Fx(h) there exists 

x*�9 with x* ox=h. 
We prove (Theorem 2.1) that  if X has an unconditional basis and if X does not 

contain l~  uniformly in n, then there exists a uniform homeomorphism F: S(ll)--* S(X). 
We prove this by reducing the problem, this follows easily from the work of [6] and [23], 

to the case where X has a 1-unconditional basis and is q-concave with constant 1 for 

some q<co. X is q-concave with constant Mq(X) if 

E ]lx~i[ q ) <.Mq(X) IxiI q (1.3) 
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whenever (xi)~=l C_X. The vector on the right side of (1.3) is computed coordinatewise 

with respect to (ej). In this particular case the uniform homeomorphism F is the map 

Fx described above (see the remark before Proposition 2.9). 

One way to attack the distortion problem is to find a distortable space X with 

a 1-unconditional basis and having say M2(X)=I  and possessing a describable pair of 

separated asymptotic sets. Then use the map Fx to pull these sets back to a separated 

pair (easy) of asymptotic sets (not easy) in S(ll). Our original proof that 12 is distortable 

was a variation of this idea using X =T~, the dual of convexified Tsirelson space. However 

much more is possible as was shown to us by B. Maurey. Maurey's elegant argument is 

given in w (Theorem 3.4). We thank him for permitting us to include it in this paper. 

In w we use the map Fx  for X=S* ,  the dual space of the arbitrarily distortable 

space constructed in [34] (see also [35]). As shown in [10] and implicitly in [34], [35] this 

space contains a sequence of nearly biorthogonal sets: Ak C S(S), A*~ C Ba(S*) with Ak 

asymptotic in S for all k. By "nearly biorthogonal" we mean that for some sequence ei ~0, 

]X*k(Xj)]<6min(k,j) i f  k r  x~ eA~, x~EAj, and A*~ (1-ek)-norms Ak. The latter means 

that for all xkEAk there exists x~EA~ with x~(x~)> 1-6~. The particular description 

of these sets is used along with the mapping Fs. to show that the sets 

Ck -- {x e 12: Ixl = ([X~OXkl/HX~ox~[[1) 1/2 for some 

x~ eA~, Xk eAk with [[x~oxklll >i 1--ek} 

are nearly biorthogonal in 12 (easy) and that C~ is asymptotic in 12. By x* ox we mean 

again the element of ll given by the operation of pointwise multiplication. Thus if 

x* = ~ a i e *  and x = ~ ,  b~ei, x* ox=(aibi)i~176 . [[. I[1 is the/l-norm. 

The sets Ck easily lead to an arbitrary distortion of/2. In fact using an argument 

of [10] one can prove the following (see also Theorem 3.1). 

THEOREM 1.2. For all l<p <oo ,  e>0  and h E N  there exists an equivalent norm I �9 I 

on I v such that for any block basis (yi) of the unit vector basis of I v there exists a finite 

block basis (zi)~= I of (Yi) which is (l +e)-equivalent to the first n terms of the summing 

~sis, (si)i~l. 

The summing basis norm is 

n l 

Thus for all A > 1 there exists an equivalent norm ]. } on I n such that no basic sequence in I v 

is A-unconditional in the I" I norm. The sets Ck, in addition to being nearly biorthogonal, 
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are unconditional and spreading (defined in w just before the statement of Theorem 3.4) 

and seem likely to prove useful elsewhere. 

T. Gowers [9] proved the conditional theorem that  if every equivalent norm on 12 

admits an almost symmetric subspace, then 12 is not distortable. Theorem 1.2 shows 

that  one cannot even obtain an almost 1-unconditional subspace in general. 

The paper by Lindenstrauss and Petczyfiski [17] also contains some nice results on 

distortion. They consider a restricted form of distortion in which the subspace Y of (1.1) 

is isomorphic to X.  

Our notation is standard Banach space terminology as may be found in the books [18] 

and [19]. In w we use a number of results in [6] although we cite the corresponding 

statements in [19]. 

Thanks are due to numerous people, especially B. Maurey and N. Tomczak-Jaeger- 

mann. As we noted, Maurey gave us the elegant argument of w The idea of exploiting 

the ramifications of being able to write elements of S(12) as ~ with x in the sphere 

of a Tsirelson-type space X and x* ES(X*) in attacking the distortion problem is due to 

Tomczak-Jaegermann. 

2. Uniform homeomorphisms between unit spheres 

The main result of this section is 

THEOREM 2.1. Let X be a Banach space with an unconditional basis. Then S(X) 

and S(ll) are uniformly homeomorphic if and only if X does not contain l'~o uniformly 
in n. 

A uniform homeomorphism between two metric spaces is an invertible map such 

that  both  the map and its inverse are uniformly continuous. Many results are known 

concerning uniform homeomorphisms between Banach spaces (see [1] for a nice survey of 

these results). Our focus however is on the unit spheres of Banach spaces. The prototype 

of such maps is the Mazur map discussed in the introduction. 

Before proceeding we set some notation. Unless stated otherwise X shall be a Banach 

space with a normalized 1-unconditional basis (ei). We regard X as a discrete lattice. 

x=(x i )eX  means that  x = ~ x i e i ,  [x[=(]xil), and Ba(X)+={xeBa(X):x=lx[}. Ba(X) 

is the closed unit ball of X.  For l<~p<oc, X is p-convex with p-convexity constant 

MP(X) if for all (xi)'~=l C X,  

M (X) Ilx ll , 
_ X i = l  - -  
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where MP(X) is the smallest constant satisfying the inequality. The p-convexification of 

X is the Banach space given by 

X(P) = {(xi):iI(xi)H(p)_~ ~,xilPei 'I/P< oo}. 

The unit vector basis of X (p), which we still denote by (ei), is a 1-unconditional basis 

for X (p) and MP(X(P))=I. These facts may be found in [19, w 

Let Fx: 11 Mc00--*S(X) be as defined in the introduction. As we shaft see in Propo- 

sition 2.5, F x  generalizes the Mazur map. If X=lp (l<p<cx~) and hES(lx)+MCoo then 

Fx(h) =(h~/P). Even in this nice setting however we cannot use our definitions directly 

on infinitely supported elements. Indeed one can find hES(ll) with Et:(h)=-cx~. The 

map Ft2 is uniformly continuous on S(la)Mc00, though, and thus extends to a map on 

S(ll). Ex is not uniformly continuous on S(ll)Dcoo but has some positive features as 

the next proposition reveals. Some of our arguments could be shortened by referring to 

the papers [20], [21], [13], [37] and [7] but we choose to present complete proofs. 

First we define a function ~b(e) that appears in Proposition 2.3. Note that there 

exists a function ~7: (0, 1)---~(0, 1) so that  

log~ vra+ >~](c) i f l a - l l > e  w i t h a > 0 .  (2.1) 

Indeed, let 9(a)=log l(a+ 1/a) for a >0. 9 is continuous on (0, cr strictly decreasing on 

(0, 1) and strictly increasing on (1, c~). The minimum value of g is 9(1)=0.  Thus there 

exists ~7: (0, 1)--~(0, 1) so that l a - l l > r  implies 9(v/-~) >~(e). [] 

Definition 2.2. r for 6E(0, 1). 

PROPOSITION 2.3. Let X have a 1-unconditional basis. 
(A) Let hES(ll)+MCoo, let e > 0  and vEBa(X)  + be such that E(h, v)>.Ex(h)-~b(e). 

Then if u=Fx(h) there exists A C s u p p h  satisfying [IAhlI> l - e  and (1-e)Au<.Av< 
( l + c ) A u  (the latter inequalities being pointwise in the lattice sense). 

(S) Let hl,h2ES(ll)+DCoo with IIhl-h21]~<l. Let xi=Fx(hi) for i=1 ,2 .  Then 

11�89 +x )ll 1-  v/llhl-h ll 

Proof. (A) Let u=(ui) and v=(vi) be as in the statement of (A). We may assume 

that supp u = s u p p  v=B~_supp h. E(h, v) >~ Ex (h) - r  yields 

r  > / Z  hi(log u i - l o g  vi). (2.2) 
iEB 
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Since �89 + and u=Fx(h) we obtain from (2:2) 

r >~ ~] hi[log �89 v,] 
iEB 

= E hi[�89 log u,+ �89 log vi+log �89 ~ - l o g  vi] 
iEB 1 1( v~ u~) 

='~ Ehi(logui-logv,)+Ehilog'~ + �9 
i 6 B  i 6 B  

The first term in the last expression is nonnegative so 

iea 2\VU~ V V i /  

Now IvJui-l]<~e if and only if (1,c)ui<~vi<~(l+~)ui. Let I={ieB: Ivju~-ll>~}. For 
iEI, 

l~ vi v~u~)>7?(~)(by(2.1)). (2.4) 

Let J={iEB :log � 8 9  Thus IC_J by (2.4) and from (2.3), 

Ehi Eh,   h, 
iEI  iEJ 

Thus (A) follows with A=B\I.  
(B) Let ]1�89 Set k l=x l+ex2  and 5~2=x2+exl. Thus suppSh= 

supp22=supp hlOsupph2 and 11�89 Wemay assume ~>0. For jEsupp2l ,  
I log kl j - log x2,jl ~< [ log e[ where 2i = (xi,j) for i = 1,2. 

Prom this and ~1>~xl we obtain 

= E(hl, �89 +x2)) + I log(1-e)l 

>1 �89189 

Thus 

Similarly, 

I log( 1-~)1 ~< �89 ~l)-E(hl, 22)). 

I log(1-e)I <~ �89 x2)-E(h2, xl)). 
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Averaging the two inequalities yields 

e ~< I log(1-e)l ~< �88 ~l)-E(hl,  &~.)-E(h~, &O+E(h~, ~2)) 

= �88 ~ (hl,j-h2,j)(log ~l,j--log :c2,i) 
j 6B  

~< �88 log61 < �88 -1. 

Thus 6~< �89 1/2. Hence II �89 +x2)ll= 1 -  2~>~ 1-11hi-h2111/=. [] 

PROPOSITION 2.4. Let X be a uniformly convex Banach space with a 1-unconditional 
basis. The map Fx : S ( l l ) n Coo --~ S ( X ) is uniformly continuous. Moreover the modulus o] 
continuity of Fx depends solely on the modulus of uniform convexity of X. 

Proof. The uniform continuity of Fx on S(lO+NCoo follows immediately from Prop- 
osition 2.3 (B). 

Precisely, there is a function g(e), depending solely upon the modulus of uniform 

convexity of X, which is continuous at 0 with g(O)=O and satisfies 

IIFx(ha)- Fx(h2)ll <~ g(llha - h211) 

for hl,h2ES(ll)+NCoo. A consequence of this is that if hES(lO+ACoo, x=Fx(h) and 
IC_N is such that IIIhll<e then I[Ixll<g(2e). Indeed if J=N\I ,  

Jh 

Thus since Ix=I(Fx(h)-Fx(Jh/llJhl[)), 

HIxH < I Fx(h)- Fx ( ~ ) t <g(2e). 

For the general case let hi, h2eS(ll)neoo with Hhl-h2H=r Let Fx(lhil)=]x,[ for 
i=1,  2. Then xi-signhio[xit, o denoting pointwise multiplication, satisfies xi=Fx(h 0 
for i=1, 2. Also ]] ]hll-]h2] II ~<llhl-h2]l. Thus if I = { j :  s ignxl j  #s ignx2j} ,  

IIx~-x~.ll ~< II Ix~l-lx21 I1+ ~ ( Ix , ,~ l+ lx2 , j l )~ j  
jEI 

~< g(ll Ih~ I-la21 II)+ II/Ixllll + IlIIx21 II 
~< g(e) +g(2s) +g(2s). [] 

Here is a fact we promised earlier. 
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PROPOSITION 2.5. Let X=lp, l <p<c~ .  Then Fx is the Mazur map, i.e., if h6 
S(ll) + NCo0 then Fx(h)=(h~/P). 

Proof. Let heS(ll)+nCoo, B = s u p p h  and Fx(h)=x. Then suppx=B and the vec- 

tor (x~)ieB maximizes the function l ~ + B g ( y i ) ~ e B  hilogy~ under the restriction 

~-~ie8 y~ --1. By the method of Lagrange multipliers this implies that there is a number 

c#0  so that hdx~=cpx~ -1 for ieB.  Thus x~=(cp)-l/ph~/p. Since I[x[{p=l, 

e=p -1 and ~.._~i/p f o r i 6 B .  [] 

If X is uniformly convex, by Proposition 2.4 the map Fx extends uniquely to a 

uniformly continuous map, which we still denote by Fx,  from S(ll)-~S(X). 

PROPOSITION 2.6. Let X be a uniformly convex uniformly smooth Banach space 
with a 1-unconditional basis. Then Fx: S(ll)---,S(X) is invertible and (Fx ) -1 is uni- 
formly continuous, with modulus of continuity depending only on the modulus of uniform 
smoothness of X. For xeS(X) ,  Fxl(x)=sign(x)ox* ox=lx*lox where x* is the unique 
support functional of x. 

Proof. For xES(X) there exists a unique element x*ES(X*) such that x*(x)=l. 
The biorthogonal functionals (e*) are a 1-unconditional basis for X* and thus we can 

* * X *  express x * - ~ x i e  i and write =(x*). The element x* ozES(ll) + and signx*--signx. 
Let G(x)=lx*lox. G is uniformly continuous. Indeed the map S(X)gx~-,x*, the sup- 

porting functional, is uniformly continuous since X is uniformly smooth. The modulus 

of continuity of this map depends solely on the modulus of uniform smoothness of X (see 

e.g., [4, p. 36]). Let G(xi)=h~=[x*{oxi for i=1,2. Then 

lihl-h21[ = {{ Ix~{~ < II {x~io(xl-x2)il +ll(IxTI- Ix;I)ox211 

< II x~ II" II Xl - x2 II + II Ix~ l - Ix~ l  ll" IIx2 II ~< II x l  - x2 II + II x~ - x~ II 

which proves that G is uniformly continuous. 

It remains only to show that G=F~ 1. Since G(x)=signxoG(Ix{) we need only show 

that G(F(h))=h for h6S(ll)+NCoo and F(G(x))--x for xES(X)+aCoo. 
If heS(l~)nCoo and x=Fx(h) then, as in the proof of Proposition 2.5, the method 

of Lagrange multipliers yields that VE(h,x)=(hi/xi)iesupph equals a multiple of 

(x*)iesupph where x* is the support functional of x. This multiple must be 1 and 

hi=x* ox~ or G(F(h))=h. 
That F(G(x)) =x follows once we observe that ff h=x* ox=y* oy, all norm 1 elements, 

then x=y. Assume for simplicity supph={1,2,...,n}. Define f(z)=llzlI-E(h,z ) for 

zEU, a convex open subset of the positive cone Ba((e~)~=l) + which contains both x and 

19-945204 Acta Mathematica 173. Iraprim6 le 2 d~cembre 1994 
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y and is bounded away from the boundary of the cone. f(z) is strictly convex so Vf(z)-=O 
for at most one point. But Vf(z)=O if and only if h=z* oz. [] 

COROLLARY 2.7 [37, Lemma 39.3]. Let X have a 1-unconditional basis and let 
heS(l~ )NCoo with xeFx(h) .  Then there exists x* eS(X*) with x* ox=h. 

Proof. We may restrict our attention to X=(ei)~esupph. The result follows if X is 

smooth from the proof of Proposition 2.6. Let I1" IIn be a sequence of smooth norms 

on X with II" I]n-*ll" II and such that  x/Hxlb~eFx,(h ). Then use a compactness argu- 

ment. [] 

Before proving Theorem 2.1 we need one more proposition. Recall that  X (p) is the 

p-convexification of X. The map Gp below is another generalization of the Mazur map. 

PROPOSITION 2 . 8 .  Let 1 < p < o o  and let X be a Banach space with a 1-unconditional 
basis. The map Gp:S(X(P))---,S(X) given by a~,(x)=sigu(z)olzlp=((siguzd]xd p) /or  

x=(xi) is a uniform homeomorphism. Moreover the modulus of continuity of Gp and 
G~ 1 are functions solely o/ p. 

Proof. As usual (ei) denotes the normalized 1-unconditional basis of both X and 

X (p). Let x, yES(XO')) with 6=llx-yll(p). We shall show that  

2 1 - ~ p  < II ap (~) - G, (y)II ~< ~" + ~'/~ + 2 (1 - (1 - v ~  )P) 

which will complete the proof. 

Let x- - -~  xdei and y=y~ yiei. 

I l a ~ ( z ) - G , ( y ) l l  = s ign(xi ) lx i lP-s igu(y i ) ly i l ' )e i  
" i = l  

iEI+ iEI_ 

where 

I+ = {i :sigu(x~)=sigu(yi)) and I_ = {i :sign(xi) #sign(yi)}. 

We denote the two terms in the last norm expression as d+ and d_, respectively. 

Since aP-bP~(a-b)Pand aP+bP>~21-P(a+b)P for a>~b>/O we deduce from the 1- 

unconditionality of (ei) that  
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To prove the upper estimate we begin by noting that 

Set q = l - ~  and c = ( 1 - q ) - P = ~  -p/2. For a,b~O with O~b~qa we have 

c(a-- b) p -  C ap - b p ) >1 c(1 - q)Pa p - a p = aP(c(1 - q)P - 1) = 0. (2.5) 

Let I+={iEI+:Ly~l<qlx~l or Ix~l<qly~l} and I~=I+\I'+. Write d+=s +d~ where d~= 

d~ =d+ ' ~-~ie~,+(Ixilp-lyilp)ei and -d+. Thus (2.5) yields that  

c ~ = ~p/2. 

Furthermore, 

Hd~l'<~ (1-qP)ll~,(]xi]'+'y~lV)eill<~2(1-qP)<~2(1-(1-V~)P). [] 
iEl+ 

ProoI of Theorem 2.1. It follows quickly from work of Enflo that  if X contains l~  

uniformly in n then S(X) is not uniformly homeomorphic to a subset of S(ll). Indeed En- 

flo [5] proved that  a certain family of finite subsets of Ba( /~) ,  h E N ,  cannot be uniformly 

embedded into Ba(/2) and hence neither into Ba(/1). But  B(l~) embeds isometrically 

into S(/n~ +1) and hence these finite subsets embed uniformly into S(X). 
For the converse assume that X does not contain l~  uniformly in n. We may suppose 

that  X has a 1-unconditional basis (ei). Indeed if (ei) is a normalized basis for X,  

IX[~I[ ~ ]xilei[[ is an equivalent 1-unconditional norm. Furthermore the map x~--*x/ilxl[ 
is easily seen to be a uniform homeomorphism between S(X, I" I) and S(X, ]1" ]1). 

By a theorem of Maurey and Pisier [23], X has cotype q' for some q '<c~.  This 

implies that  X is q-concave for all q>qt ([19, p. 88]). Fix q>q'. There exists an equiv- 

alent norm on X for which (e~) is stiff 1-unconditional and for which Mq(X)--1 ([19, 

p. 54]). The 2-convexification of X in this norm, X (2) , satisfies M2q(X (2)) = 1 =M s (X (2)) 

([19, p. 54]). In particular X (2) is uniformly convex and uniformly smooth ([19, p. 80]) 

and so Fx(2): S(ll)--~S(X (2)) is a uniform homeomorphism by Proposition 2.6. Thus 

G2oFx(2):S(I1)~S(X ) is a uniform homeomorphism by Proposition 2.8. [] 

Remark. If X has a 1-unconditional basis and Mq(X)=I for some q<c~,  the map 

G2oFx(2)=Fx. Furthermore the modulus of continuity of Fx and F~ 1 are functions 

solely of q. 

The uniform homeomorphism theorem extends to unit bails by the following simple 

proposition. 
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PROPOSITION 2.9. Let X and Y be Banach spaces and let F: S(X)--*S(Y) be a 

uniform homeomorphism. For xeBa(X)  let F(x)=}}x[]F(x/llxl[ ) if x#O and F(0)=0. 

Then F is a uniform homeomorphism between Ba(X) and Ba(Y). 

Proof. Clearly F is a bijection. Since F-l(y)=HyllF-l(y/lly]l ) for y~0,  it suffices 

to show that F is uniformly continuous. Let ] be the modulus of continuity of F, i.e., 

Let xl, x2 EBa(X) with Hxi -x21t =~, A1: lIxl II, As = Hx2 tl and AI i> A2. 

If A2 <~1/4  this is less than ~-~-2~ 1/4. Otherwise 

~ _ ~ =  1 

2~ 2~ 

Thus 

II (xl) - F(xs)ll  -<< max( +l(2v ), [] 

Remark. It is not possible, in general, to replace "uniformly homeomorphic" by 

"Lipschitz equivalent" in Theorem 2.1. Indeed if S(X)  and S(Y)  are Lipschitz equivalent, 

then an argument much like that of Proposition 2.9, yields that X and Y are Lipschitz 

equivalent which need not be true (see [1]). 

There exist separable infinite dimensional Banach spaces X not containing l~'s 

uniformly such that Ba(X) does not embed uniformly into ls. For example the James' 

nonoctohedrai space [12] has this property. Indeed, Y. Raynaud [31] proved that if X is 

not reflexive and Ba(X) embeds uniformly into 12, then X admits an/1-spreading model. 

Fouad Chaatit [2] has extended Theorem 2.1. He showed one can replace the hy- 

pothesis that X has an unconditional basis with the more general assumption that X is 

a separable infinite dimensional Banach lattice. N. J. Kalton [15] and M. Daher [3] have 

subsequently discovered proofs of this result using complex interpolation theory. 
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3. l~ is arbitrarily distortable 

Let X be a Banach space with a basis (e~). A block subspace of X is any subspace 

spanned by a block basis of (ei). X is sequentially arbitrarily distortable if there exist a 

sequence of equivalent norms ll" Ili on x and EiJ.0 such that:  

I1" I[i~ll" [I for all i and for all subspaces Y of X, and for all i 0 e N  there exists 

yES(Y, H" Ilio) with [lyHi<<.emin(i,io) for i~io, 

We note that  if X contains an asymptotic biorthogonal system with vanishing con- 

stant (see [10]), then X is sequentially arbitrarily distortable. 

If X is sequentially arbitrarily distortable then X is arbitrarily distortable. Indeed fix 

i>1  and let Y be a subspace of X. Choose x E Y  with Ilxlli=l and Ilxl[l~<el. Let [1" ][1~ < 

I]" I[<Cll[ �9 II1 and &--x/[Ix H. Then II~l]i=l/][xH~l/Clel. Choose yEY  with []y]]i+l--1 

and Hytli~<E~. Then for Y=Y/]IYH, []YHi<E~/IlYH<~ei. Thus I]~}li/ll~]li>~l/Clele~. Fur- 
thermore we have 

THEOREM 3.1. Let X be a sequentially arbitrarily distortable Banach space with a 
basis (ei). For all n e N  and 6>0 there exists an equivalent norm I" I on X with the 
following property. Let (yi)in=l be a normalized monotone basis for an n-dimensional 

X n Banach space. Then every block basis of (ei) admits a further finite block basis ( i)i=l 
which is (l +e)-equivalent to (yi)i~=l. 

The space S of [34] was shown in [10] to be sequentially arbitrarily distortable. The 

argument used to prove Theorem 3.1 is a slight variation of an argument which appears 

in [10] which, in turn, has its origins in [24]. 

Proof of Theorem 3.1. Choose for h e N  and ~>0, (Bi)~(~) a finite sequence of n- 

dimensional Banach spaces, each having a normalized monotone basis, such that  every 

normalized monotone basis of length n is (l+c)-equivalent to the basis of some B~. Let 

(wi)~l be a normalized monotone basis for W - ( ~ , , , i  B.~)~2 such that  the monotone 

basis of each B~ is 1-equivalent to (wi)ieA? for some segment A~CN.  Let (w~) be the 

biorthogonal functionals of (wi). 

It suffices to prove that  for all n E N  there exists an equivalent norm I" I on X such 

that  every block basis of (ei) admits a further block basis (xi)~=l which is ( l §  
W n equivalent to ( i)i=l. 

Let h e N ,  ei~0 and let I1" Ili be a sequence of equivalent norms on X satisfying the 

definition of sequentially arbitrarily distortable. Let s > 0  with n h e < l .  We may assume 

that  maxi e i< �88 

Let Xi--(X,  I1" Ili). Let (z*)i~ 2 be an enumeration of all elements of the linear span 
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of (e*) which have rational coordinates. Set 

. . ~ 2  

r = z* = bi zkj : kl <...  < kn2, (zk~)i=l is a finite 
i = l  j = ( i - - 1 ) n + l  

block basis of (e~') with z~  E 3 Ba(X~'), 

z~,§  for 1 ~ < i < n 2 - 1  and y'~ b ~ ;  e r a ( W * )  . 
i-----1 

Define I" I on X by 

I~1 = sup{l~'(~)l : ~* e r} .  

Then 311Xlll<<.lx]<6nZ[]xl] for all x e X  and so ]. ] is an equivalent norm on X. 

Let Z be any block subspace of X. Since X being distortable cannot contain ll [11], 

we may assume by [33] that  Z is spanned by a normalized weakly null block basis of 

(ei), denoted (zi). Using the argument that  a subsequence of (zi) is nearly monotone for 

any given norm [. li and a diagonal argument we may suppose that  for all i, HPA[[i<2.5 

whenever A_CN is a segment of N with i~<min A. (Here PA is the projection PA(~-~ aizi)= 

E,~A a,~i.) 
- -  n 2 From our hypotheses we can then choose block bases (xi)i=l of (zi), and [z* ~n2 of k k i ] i= l  

(e~) satisfying kl < k2 <... < k,~2 and 

(i) z~, ~3Ba(X;) and z~,+~ e3Ba(Xi,) for l<~i<n 2, 
(ii) z~,(~i)=~ii for 1~<i, j<~n 2, 

(iii) ]}~'i]]j<�89 i f j C k ~ - i  and H~illk,_, ~<1. 
Let x i=(1/n)  in n Zj_.(i_l)n+lX, j for l<~i<~n, and let lIE1 a iwiH=l=E~aib i  where 

]I E ~  biw'~}l--l" Let 
n 

z* = E b i  
in  

j -~( i - -1)n+l  i=-I 

and note that z*EF. Thus 

ai:~i ~ Z* a i x i  = aibi  -~ 1. 
x 1 1 

in , * e3 Ba(X~), For the reverse inequality, let Z*= ~ = t  ci ~ j = ( i - t ) , + t  zmj E F with z,m 
z~,+, e 3 B a ( X * , )  for i<n  2 and n , ][ ~ 1  c~wi [I ~< 1. Let J0 be the smallest integer such that  

mjo ~tkjo. We first deduce from the definition of F and the choice of (~i) that  Iz*, (~'i)] <e  

and ]z'mj(~i)]<e if i<jo, j<~n 2 and i # j .  Secondly we claim that  

{mjo,m~o+l,...,m,,}n{kjo,k~o+~,...,k,,}=~. 
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Indeed, if not, let j~Jo be the smallest integer such that mj=ki for some i~jo. If 

j=jo then i>jo. B u t  then (letting ko_=l) z~n~E3Ba(X~o_l) and II~il[kjo_l<�89 which 

contradicts z~,(~i)=l .  If J>Jo then z*~ E 3 B a ( X * j _ I )  and II~[[mj_l <�89 since m j - l #  

ki-1, yielding again a contradiction to z* (~i)= 1. ki 

Z* - * It follows that  [ m~o(Xi)l<e if i#jo and IZm~( i)1<6 if j>jo and i<<.n 2. Let jo = 
ion+so with O~<io<n, l~<so~<n. Then 

X / = l  -- j=(i--1)n+l X i = l  j = ( i - - 1 ) n - I - 1  

' ~ c ,  ai+So-l~ ~ I--~l C/o+laio+l I 
' i = 1  n 

n 

We used that from monotonicity the first term in the next to last inequality does not 

exceed 

max c ,a , ,  c,a, ) 
" i = 1  ~ ~ i = 1  ' /  

and Ic~ml~<2 for all i. [] 

Remark. The proof of Theorem 3.1 requires only the following condition. For all ~ > 0 

there exists a sequence of equivalent norms I1" I1 -< I1" II on x such that for all subspaces 

Z of X and all i 0EN there exists yES(Z, H" Ilio) with Ilyll <  if i#io. Theorem 1.2 is a 

special case of Theorem 3.1. 

Theorem 1.2 yields that  a sequentially arbitrarily distortable Banach space can be 

renormed to not contain an almost bimonotone basic sequence. Since I[si-2s211 =1, the 

best constant that  can be achieved for the norm of the tail projections of a basic sequence 

is 2. 

Other curious norms can be put on sequentially arbitrarily distortable spaces X. For 
W n example let ( i)i=i be a normalized 1-unconditional 1-subsymmetric finite basic sequence 

and let ~ > 0. One can find a norm on X such that every block basis contains a further 
{Z ~n l~+e W n block basis (zi) with ~ k, Ji=l ( i)i=l whenever kl<...<k,~. This is accomplished by 

taking (using the terminology of the proof of Theorem 3.1) 

~ kin * (Z* ~oQ 
F =  z* -- bi E z,n ~ : ~ , b j j = l  is a block basis of (e*) 

i=I j=(k~-l)n+l 

with z* ,  e 3Ba(X~),  z*m~+l e 3Ba(X*~)  for j E N ,  

kl < k~ <. . .  < kn a n d  . ._.  b~w_ <<.1 . 

1 
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THEOREM 3.2. For l < p < o o ,  lp is sequentially arbitrarily distortable. 

In order to prove Theorem 3.2 we will make use of the Banach space S introduced 

in [34]. 

The space S has a 1-unconditional 1-subsymmetric normalized basis (ei) whose norm 

satisfies the following implicit equation 

[[xl[ = max ([Ix[leo , sup 1 l } 1~>2 r ~ [IEixl[ 
i = l  EI <E2<... <Et 

where r  ). 

The fact that  S is arbitrarily distortable [34] and complementably minimal [35] 

hinges heavily on two types of vectors which live in all block subspaces: l~+ averages 

and averages of rapidly increasing l~ "~ + averages or RIS vectors. Precisely, following the 

terminology of [10], we call x E S  an l'~+ average with constant C if ][xlI =1 and x=) -~=  1 xi 

for some block basis (xi)i~l of (ei) where IIxilI <~Cn -1 for all i. 
X N Let M,(z)=r 2) for x e R .  h block basis ( i)i=1 is an RIS of length N with 

constant C - 1 + e < 2  if each xk is an l~k+ average with constant C, 

nl >/2CM,(N/E)/2e in 2 

and 

�89162 1/2 >1 1 supp(xk-1)l for k = 2, ..., g .  

The vector N x = ( ~ i = l  x')/ll ~-~=1 xil[ is called an RIS vector of length Y and constant C 

and we say that  the Pals sequence N (xi)i=l generates x. 

LEMMA 3.3 [10]. Let ei~O. There exist integers pa Too and reals ~k~O with 

so that if 

and 

(1 +2/ik) -1 > l--ca 

Ak = {x E S : x is an RIS vector of length Pk with constant l+dik} 

{ x. } * = x* where t~*~p~ is a block sequence in Ba(S*) Ak x* E S* : = r 1 V~i Jl 

then: 

(a) Ix~(xt)i<6min(k,t) if k~l ,  x~ E A~ and x teAt .  
(b) For all k E N  and xEAk there exists x*EA~ with x*(x)> l--ek. This follows 

from the fact if x is generated by ~(xiji=l, ~p~ then I[ ~ x i I I  <~(l + 2~k)p~/r ). 

Moreover Ak is asymptotic in S for all kEN.  
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Using the sets Ak and A~ we can define the following subsets of ll 

Bk = (~~ x~ e A~, xk e Ak and Ix~l(Ixkl) = II~o~kll~ >/1--~k}. 

A set of sequences B is unconditional if x=(xi)EB implies that (+xi)EB for all 

choices of signs and B is spreading if x=(xi)EB implies ~ i  xien~ eB for all increasing 

* C  * sequences (hi). Note that Ak_Ba(S ) and the sets Ak and A~ are unconditional and 

spreading. Thus the sets BkCS(ll) are also spreading and unconditional. 

THEOREM 3.4. The sets Bk CS(ll ), keN, are unconditional, spreading and asymp- 
totic. 

We postpone the proof of Theorem 3.4. 

Proof of Theorem 3.2. We first give the argument for p=2. Let Ck={vES(12): 
lvl2EBk}. Ck is just the image of Bk in S(12) under the Mazur map. Since the Mazur 

map preserves block subspaces and is a uniform homeomorphism, Ck is asymptotic in 

12 for all k. Moreover the Ck's are nearly biorthogonal. Indeed if vkECk, vlECl with 

k~l let Ivkl2=(X~OXk)/[x~l(Ixkl) and Ivtl2=(x~ox~)/lx~l(Ixll) be as in the definition of 

Bk and Bt. Then letting )~=(1-el) -1 

(Ivkl, Ivzl) < ~--~ IX*k(j)xk(j)x~(j)xl(j)I x/2 
J 

<~ A ~ Ix*k(j)x,(j)l ~ Ixr(j)xk(j)l) (by Cauchy-Schwarz) 
J J 

=~(Ix~h IXll)I/2(lX~}, IXkl) 1/2 • ) t e m i n ( k , l )  (by Lemma 3.3). 

Define Ilxllk =sup{l{x, v)t: veCkUek Ba(lz)). 
I fp~2  we use a similar argument. Let Ck={veS(Ip):lvlPEB~} and Dk={veS(lq): 

IvlqeBk} where 1/p+l/q=l. Define II" Ilk on tp by 

Ilxllk = sup{l(z, ~)l:v e DkUsk Ba(lq)}. 

Again, via the Mazur map, Ck is asymptotic in lp. 
- -  *o Let VkECk and vtEDt with kr Let lvklP=(x*koxk)/Ix*kl(Ixk]) and Ivllq--(xl xl)/ 

Ix~l(Ixll) be as in the definition of Bk and Bt. Assume p>2. Then 

I(Ivkl, Iv~l)l ~< A ~  Ix~(j)xk(j)ll/P[x[(j)xl(j)l x/q 
J 

= A ~_, ]x*k(j)xk(j)x'i(j)xt(j)la/Plx~ (j)xl(j)] l/q-lIp. 
J 
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Using HSlder's inequality with exponents �89 and p / (p -2 )  and the fact that 1 / q - l / p =  

(p-2) /p  we obtain that the last expression is 

\~/p z \(p-2)Ip 
~ ~min(k,l) 

from the first part of the proof. The same estimates prevail if p<2. [] 

Remark. The proof yields that for l<p<oo,  1 /p+l /q=l  there exist sequences CkC 

S(lp) and Dk C S(lq) of nearly biorthogonal asymptotic unconditional spreading sets. 

It remains only to prove Theorem 3.4 which entails only showing that each B~ is 

asymptotic. This will follow from the following 

LEMMA 3.5. Let Y be a block subspace O[ll and let e>O, mEN. There exists a vector 

u E S which is an l'~ + average with constant l + e  and u*eBa(S*) with d( u * o u, S(Y))<e. 

Indeed assume that the lemma is proved and let k E N and ~ > 0 with 

( l+e)-1(l+2~k) -1 > 1-ek. 

From the lemma we can find finite block sequences fu .~p~ CS(S) and/ -  *~p~ CBa(S*) t / i = 1  --  kt~i ]i----i - -  

along with a normalized block sequence P~ (y i ) i=tcS(Y)  and l~<Ai<l+e for i<~pk such 

that 

(1) u - r X ' P ~  u,)/l l " '  - , ~ = 1  E~=lu~ll is an RIS vector of length Pk and constant (1+64) 

generated by the RIS tu .~ph 

(2) II~;o~-y~llx<e for i<~pk, 
(3) u*ouj=0 if i c y  and [[Aiu*oui[[t=l for i<~pk. 

Let u*=(1/(l+e)r - * Then u*eAi and from Lemma 3.3(b) 
Z-a1  "'i'u i �9 

1 Pk 1 
I1~*~ = (1+~)r fJ E~  �9 udl ~> ( 1 + ~ ) ( 1 + 2 ~ )  > 1-E~. 

E 1  ~ i U i  ~  and so using (2) Thus (u*o~,)/fJ~,*o~,JlleB~. Now O , * o u ) / f J u * o u l l x = ( 1 / p k )  "~ * 

1 P~ { 1 pk 

This proves that Bk is asymptotic in ll. 

In order to prove Lemma 3.5 we first need a sublemma. We denote the maps Es* (h) 

and Fs* (h) by E,(h) and F,(h), respectively. 
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SUBLEMMA 3.6. Let m , K  be integers and let 0 < r < l  be such that logr 
h m K  Let ( i)i=l be a normalized block sequence in l +. Then there exist in l~ a normalized 

block basis (bi)im__l of (hi)~ K such that 

Z E , ( b j ) - E ,  bj < vm. (3.1) 
j = l  ~ j = l  " 

Proof. vrt K 
For each i ~ m  g, let vi=F.(hi). Now (1/~b(mK))~'~1 vieBa(S*) and so 

m K  ~ K  

E. >/ 1 

~rt/( 

= E Z(hi, v i ) - m  K log r K) 
1 

m K 

= E E . ( h i ) - m  K log r 
1 

(3.2) 

Let Z.,i=Iv'mK hi=z.,j=lV"~ d 1J where (d~)~= 1_ is a block basis of (hi), each d~ consisting of the sum 

of m K-x of the hi's. Break each d} into m successive pieces, each containing m K-2 of 

the h~'s to obtain d}--~-~= 1 d~j,, and continue to define dta,~ for l ~k  and ae{1 ,  ..., m} ' - t  

in this fashion. Consider the telescoping sum 

m K m K wb ~rt 

i = l  ~ i = l  j = l  " j = l  

+ , l ) - E .  ,t + .... 
j = l  L l = l  \ / = 1  / a 

For l<~s<.K, the sth level of this decomposition is the sum of m s-1 nonnegative 

terms of the form (for a e ( 1 ,  ...,m} 8-x) 

E dS (3.3) E . ( d ~ j ) - E .  ~,l �9 
/ = 1  ~ l = l  " 

If each of these terms is greater than T~T~ K - s + 1  then the sum of all terms on the sth level 

is greater than rm K and so the sum over all K levels yields 

m K rn K 
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which contradicts (3.2). 

Thus the number (3.3) does not exceed the value 7"rn K - s + l  for some s and multi- 

IId . ll-m we index a. Let bl=d,~3/[Ida,l[ [ . 8  " Using E.(ah)=aE.(h) for a > 0  and 8 _ K - ,  

obtain 
m (~_l)TmK_.s_~l 

~"~E,(bz)-E. b, <~ mi,:_, =rm. [] 
l=1  

Proof of Lemma 3.5. Let e>0,  m E N  and let Y be a block subspace of li with 

block basis (hi). By unconditionality in S it suffices to consider only the case where 

(hi)CS(ll) +. Let O<~'<r (see Definition 2.2) and choose K E N  such that  TK> 
b m h - *  K log(r By Sublemma 3.6 choose a block basis ( i)1 of ( i)i=l,  (bi)'~CS(l~) with 

E.(b,)-E.  b, (3.4) 
1 

. m * with suppx~=suppbj. For j ~ m  let Choose x*=F.(~,~.=l bj) and write x ---~,j=l xj 
w~=F.(bj). As we noted in w for each j there exists TiES(S) + with bj=w~owj and 

supp wj =supp bj. By (3.4) we have 

~ E ( b j , w ; ) - E  bj,x* =Z[E(bj ,w;) -E(bj ,x i )]<Tm<V(e) .  
j = l  X j = l  " j = l  

Since each term in the middle expression is nonnegative we obtain 

E(bj,x;)>E(bj,w~)-r for j ~< m. 

By Proposition 2.3 (A) there exists sets Hj  _Csupp bj such that  [[Hjbj [11 > 1 -E  and 

(1 - e ) Hj  w~ ~< Hj x~ ~< ( 1 + e) Hj  w; pointwise for all 1 ~< j ~< m. 

Hjbj---Hjw~owj and IIHjx~-Hjw~I[<~ so IIHjbj-Hjx~owjIIl <~e. Thus 

[Ibj-Hjx~owjl[l <~ 2e for l <<.j <~ rn. (3.5) 

From this we first note that  Hjx~(wj)>~ 1 - 2 e  and so for ai 's nonnegative, 

1-2E) ajwj >Ix* ajwj >1 ajHjxj(wj) aj . 
1 j = l  ~ j = l  " 

By unconditionality (wj)~n=l is an lF sequence with constant (1-2e)  -1. 

Secondly, set 

1 "~ 1 "~ 
w=--~lwi  and .= 1 Wj], j~l 
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w is an l~ average with constant ( 1 - 2 e )  -1. Furthermore 

3:1  -- 1 "j-----i " 1 

1 ,n 
- llbj-H  *o  lll + il - ll. 
m j = l  

The first term is <2e by (3.5). Since ll~"~3_~ 1 wjll~>m(1-2e), i l w - ~ ] l ~ 2 ~ / ( 1 - 2 e ) .  Thus 

d _ 

which proves Lemma 3.5. [] 

Remark 3.7. Our proof of Theorem 3.2 actually shows that  lp admits an asymptotic 

biorthogonal system with vanishing constant (see [10]). B. Maurey [22] has recently 

extended the results above. He has proven that  if X has an unconditional basis and does 

not contain l~ uniformly, then X contains an arbitrarily distortable subspace. B. Maurey 

and the second named author have independently shown that  one can construct the sets 

Bk to be symmetric ((x~)EBk=~(x~(i))eB~ if 7r is a permutation of N).  

N. Tomczak-Jaegermann and V. Milman [29] have proven that  if X has bounded 

distortion, then X contains an "asymptotic lp or co". X has bounded distortion if for 

some A<c~, no subspace of X is A-distortable. A space with a basis (ei) is an asymptotic 

lp if for some C < oo for all n whenever 

IIx ll=l ( i = l , . . . , n ) ,  

then (xi)~ is C-equivalent to the unit vector basis of l~. 
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