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1. I n t r o d u c t i o n  

A number of conjectures originating from the 1970's and before is related to the prime 

decomposition of middle binomial coefficients, i.e. binomial coefficients of the form 

Most of these problems were raised by Paul Erdbs and some of his co-authors (see [3], 

[4], [5], and [6, Problems B31, B33]). Apar t  from being interesting in itself, the prime 

factorization of middle binomial coefficients has an important  application in elementary 

number  theory, namely the distribution of primes. 

Chebyshev was the first mathemat ic ian who (around 1850) could prove that  the 

prime counting function r (x )  satisfies 

X 
7c(x) ~ log x '  

(1) Supported by the Tata Institute of Fundamental Research (Bombay) and the Hannoversche 
Hochschulgemeinschaft. 
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which means that  zr(x) is bounded from above and below by the function on the right. 

This can be obtained by studying middle binomial coefficients which--for two reasons-- 

are an appropriate tool: They have nice multiplicative properties, most of all many 

distinct prime factors, and a simple additive property, that  is, their recursion formula. 

With this in mind, Erd6s and others investigated more closely the prime decomposi- 

tion of middle binomial coefficients. Despite the fact that  these are "almost" squarefree, 

i.e. they have only very few prime factors of order at least 2, it was conjectured that  for 

any integer a and sufficiently large n>no(a), there is always a prime p such that  

This conjecture was settled for the case a--2 by S~rkSzy [13] in 1985. Recently, the 

general conjecture was confirmed by the author [11]. In fact, much more was shown: 

- -  One can choose P>Po for any P0 in (1), if n>no(a,po) [11]. 

- -  These results extend to binomial coefficients of the form 

if d is "not too large" compared with n [11]. 

- -  Let sa(n, d) denote the largest ath power dividing the binomial coefficient in (2). 

Then for small d, we have asymptotically 

log sa(n, d) ..~ C(a)n 1/~ 

with an explicitly given constant C(a) [12]. 

An open problem, which has not been dealt with so far, pertains to the function 

E(n) :=max{ j :  pj ( 2 : ) f o r s o m e p r i m e p } = m a x { e ( ( 2 : ) ; p ) : p C p } ,  

where 

e(n;p) := max{e :pe[u}, (5) 

i.e. E(n) is the largest exponent in the prime factorization of (2n). Clearly, the conjecture 

mentioned above is equivalent to 

E(n) --~ oc, n---* oc, 

which follows from the result in [11]. In this paper, we shall present a lower bound for the 

function E(n), which gives the first answer to a question of Erd6s (see [6, Problem B31]). 

It shows that E(n) is at least of order (log n) ~ for some positive constant 5. More 

precisely, we obtain the following 
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THEOREM. For sufficiently large n, we have 

( log n )1/10 

E(n) >> \ (log log n) 3 " 

We like to mention that  one can easily show 

E(n) << log n, (4) 

and 

E(n) >> log n for almost all n. 

Concerning the true size of E(n), we make the 

C O N J E C T U R E .  F o r  n---+(:x), we  have 

(5) 

E(n) ~ log n. 

In w we shall prove the upper bound (4) of the conjecture, as well as (5). Moreover, 

some heuristic argument for the lower bound in our conjecture will be given. w167 will 

be devoted to the proof of the theorem. A major effort is made to keep all the results 

along the way explicit with respect to certain parameters. We did, however, disregard 

any constants that  are not important  for our final result. 

The following notation will be used throughout the paper. As widely accepted, N, 

Z, and C designate the sets of natural numbers 1, 2, 3, ..., integers, and complex numbers, 

respectively. By P we denote the set of primes 2, 3, 5, 7, 11, ..., while the letter p with or 

without subscript will always be restricted to be an element of P.  For real x, we define 

e(x)=exp(27rix). 111 the explicit and implicit constants (as in O(.  ) or, equivalently, <<) 

are absolute and positive unless otherwise indicated. We adopt the convention that  the 

constants c and C, which always are assumed to be absolute and positive, may change 

their values within inequalities. This enables us to write 

x 1-c log x << x l -c ,  

for instance. While c is supposed to denote small constants, C will be used for large 

ones. 

Acknowledgement. This paper was written while the author enjoyed the pleasant and 

inspiring atmosphere of the Tata  Institute of Flmdamental Research at Bombay, India. 

I would like to express my gratitude to Professor S. Srinivasan for his kind hospitality. 

Special thanks are due to him as well as to Professor K. Ramachandra and Professor 

T .N.  Shorey for helpful discussions. 
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2. A heu r i s t i c  c o n s i d e r a t i o n  

The upper bound (4) of our conjecture is simply proved by applying the familiar decom- 

position of factorials, namely 

~ z 

/ log 2n log 2__._nn 
< Z 1 ~  1--~gp ~< log2 

l~a~log 2n/logp 

No improvement over (4) is known (see [6, Problem B31]). In fact, it is quite easy to 

show that  we have log n also as a lower bound, at least for almost all n, i.e. (5) holds. 

In order to see this, we first recollect that  for almost all n<N the sum S2(n) of 

the digits of n in binary expansion satisfies S2(n)~�89 this is obtainable by a 

straightforward counting argument. More precisely, for any r >0, 

card{n < N:  ( �89 log2N<S2(n ) < (�89 log2 N } = ( l+o(1))N.  (6) 

Using this and Lemma 12, we obtain 

card{n<N:e((2:);2) <. �89 �89 

This means that  for almost all n<N, 

which proves (5). 

In order to tackle our conjecture, one is tempted to make use of the bounds given 

in [12]. For this reason, let sj(n) be the largest J t h  power dividing (2n). The main result 

in [12] is that  for any s > 0  and sufficiently large n>~no(J,~), 

e x p ( ( C ( J ) - E ) n  ll g) < s g(n) < exp( ( C( J) +E)nll3), (7) 

where 

Now 

-\g) ) 
k=l 

oo 1 
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~ : =  ( � 8 9  

By (7), it follows for sufficiently large n that 

8j(~t) ~ exp( ( �89  

For 

we have 

which is equivalent to 

logn < �89 2)J  2, 

log n < J ( J  - 1) log 2 + J log log 2, 

89 

(s) 

With 
6 :---~ ( 1 )  2 J  , 

we obtain by (7) for sufficiently large n 

sj(n) >/exp((�89 (n) 

The inequality 

is equivalent to 

log n t> 2(log 2)2J 2 

exp((1)ZJr~l/J)>/2. 

We have for all x ~> 0 

f(x) := 2 ~ - x l o g  2 - 1/> 0, 

since f ( 0 ) = 0  and f'(x)>~O for x~>0. Hence (10) implies 

[l~J--1 1 �9 C(J)>(~) ~ , o g z > ( � 8 9  2J-1. 

exp((1)J-lnl/J)<2. 

By (8), we get s j ( n ) < 2 ,  i.e. s j ( n ) = l .  Therefore, we have shown that  for sufficiently 

large n 

8j(n) > 1 =::k logn>/ �89 2. (9) 

On the other hand, 

C ( J ) >  21/J(1)J-l(1-(1)l/J):(1-'~J-l('~l/J-1). (10) 
k21 ~-  
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With (11) we conclude that  for sufficiently large n 

log n >~ 2(log 2)2J 2 ~ s j (n)  > 1. (12) 

By definition, 

E ( n ) = m a x { j :  p J ( 2 : ) f o r s o m e p r i m e p } = m a x { J : s g ( n ) > l } .  

If (9) and (12) held for sufficiently small n, they would imply 

E(n) ~ ~/log n, 

which, however, contradicts (5). 

The reason why this argument apparently fails is that  the exponential sums which 

are used in [12] can be bounded non-trivially only if the summation variable ranges over 

large intervals of primes. On the other hand, the above proof for the lower bound in (5) 

suggests that  small primes are the ones to look at. In fact, (5) was shown by taking just 

the prime p--2 into account. Formulae similar to (6) do hold for any prime p. Assuming 

that  the p-ary expansions of an integer with respect to different primes p are independent 

of each other, the conjecture seems to be reasonable. 

3. A n  e x p o n e n t i a l  s u m  e s t i m a t e  of  K a r a c u b a  

We will make use of the following result due to Vinogradov. 

LEMMA 1 ([16] or [17]). For n ) 1 2  and a positive integer l, let 

kl = n l +  [ i n ( n +  1)+ 1] 

and 
D~ = (20n) �89 

Then for positive integers k ~ kl and P, we have 

~01 ~1, P 2k ""]~ E e(O;nxn"J'-'"-]-OqX) d~176 <DIp2k-�89 
0 0 x = l  

The next lemma which is crucial for our principal result is mainly due to 

Karacuba [8], but sharpens and simplifies it in a way which suits our purpose; it was also 

obtained in a slightly weaker form by G.J .  Rieger. The proof follows Karacuba's ideas. 
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LEMMA 2. Let N,  O<~P' <P, n, t>0 and 2~Sl<...<st~n be integers, let co<l and 

c3 <c2 <Cl < 1 be positive real numbers satisfying 

and 

P/> 81/~a , 

/> max (12, 1 1 n 
k 

(13) 

(14) 

con <. t < n. (15) 

Furthermore, let f (x)  be a real function having a continuous (n+ l)-st derivative in N ~ 
x ~ N + 2 P  such that for N ~ x ~ N + 2 P  

~ f(n+l)(x ) p-el(n+1), (16) 

and for j = 1, ..., t and N<.x ~ N + P  

P-C~sJ <~ l--~jv f(sJ)(x) <~ (17) 

Then~ for  

we have 

N+P' 

s=  e(f(x)), 
x=N 

S << P 1-~/n2 (log P) 4/ha , 

where the constant implied by <~ is absolute (in particular does not depend on the ci), 
and 

7-= Qcg ( l+l~  3c1~-2L)Co ] 

with / 1 
p = min [c3, cl - c2 n2 (n+ l ) ) "  \ 

Proof. Let 
P2 := [p�89 

By (14), we get immediately 
1 ~< P2 ~< v/ft. (18) 

By definition of S, we have for non-negative integers y and z 

S =  
N-yz+P' 

E e(f(a+yz)).  
a=N--yz 
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Thus, 
P2 t)2 N-yz+P'  

( P 2 + I ) 2 S = E E  E e(f(a+yz)) 
y=0  z : 0  a : N - y z  

N+P' 

= E E E e(f(o+yz)) 
a:N--P~ O<~y<.P2 0<. z<~P2 

N-a<~yz<~ N + P' --a 

N+P' 

= E E E e(f(aq-YZ))-kO1P~(P2q-1)2 
a=N O~<y~<P20<~z<~P= 

yz<~ N + P ' -a  

N+P' 

= F_, w('~)+e~P~(P~+l) ~, 
a=N 

where 0i are absolute constants with IOil<~i, i=1 ,  2, and 

P2 P2 
w(a) = ~ ~ e(f(a+yz)). 

y=0 z : 0  

By Taylor's formula, 

where for s=0,  1, ..., n 

.f(a+yz)= E bs(yz)S + R, 
8=0 

bs=~..f(S)(a), 

and for some ~ with N<~<~N+P'+P2<N+2P, 

IRI ~< ~II ("+I) (SI lP~ "+2- 

By (16) and the definition of/92, we get 

p--cl(n+l) lD2n+2 ~- 1D--1/n 2 

For real r le(r162 holds, hence 

W(a) = W1 (a) + 27r83 (P2 -k 1)2 p -1/n2 , 

where 1031 ~< 1, and 
/'2 /'2 

Wl(a) = E E e(b~ 
y=O z=O 

(19) 

(20) 
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For any non-negative numbers u~, v~, and a positive integer k, we have by HSlder's 

inequality 

%tuV~, (21) 
- -  \ t z ~ 0  / - -  t2~0 

Setting all u~ = 1, we get 

P2 P2 12k 
IW (a)l 2k ~< (P~+l)2k-1 E Ee(blyz+...+bn(yz) n) 

y=O ~z=O 

where 

/'2 
---- ( g 2 + 1 ) 2 k - 1 E  E 

y=0 )~1 ,...,)~,~ 

~ ( P 2 + l ) 2 k - 1  E 

~=(~ ...... an) 

Jk( ~l, ..., ,~n)e(bl,~ly"]-.*."}-bn)~nyn) 

P~ 
Jk(A) E e(bl,~ly"]-...'J,-bn,~nyn) , 

~y=0 

Jk()~)=card{(Zl,...,Z2k):Z~ a_-J z j z~k_=)~j,l<~j<<n } - - ' " - - ~ k - -  k + l  "'" 

1 1 P2 e(alZ+...+an zn) 2k 
- - - -L ' "L  ~_ e(-(~176176176 

Obviously, in (22) we have for ~, in ~ 

I),jl <. kPJ, l <.j <. n. 

Clearly, 

Jk ()~) = (P2-t- 1) 2k 

and 
~1 ell t"2 e(alZ+"'+an zn) 2k 

IJ (x)l <<. Jo ... Jo dal...dctn=Jk(O). 

For any positive integers l, n/> 12 and k = nI+ [�88 n(n + 1) + 1], Lemma 1 implies 

Jk(O) ~ r ~  n 2 k - - � 8 9  t 
<. ]Jl~- 2 

Raising (22) to the (2k)th power, applying (21), and then (24) and (25), we obtain 

(z IWl(a)i4k= ~< (P2+l)4k2-2k Jk()~)) 2k-1 E Jk(A) E e(blAlY+'"+bn~nyn) 
,~ ' y=0  

Pz 12k 
<~ (P2+ l)Sk=-4kJk(O) E E e(biAiy+...+b•A,y") 

.k ~y=0 ' 

= (P2+l)Sk2-akJk(O) E E Jk(l~)e(blXllZl+'"+bnXnltn)" 

(22) 

(23) 

(24) 

(25) 

(26) 
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For any positive integer U, we have (see for instance [10, p. 189]) 

U 

Z e(c~m)<~min(U, 2 ~  ), 
m = l  

where I1~11 =min-ez I~-al .  This implies 

I Wl(a)laa~ <~ (P2+l)sk:-akJk(O) ~_, Jk(l~) H min 2kP~+l,  - -  
/~ s : l  

~< (P2+l)Sk~-4kJ~(0)~T 

1) 
211b~ll (27) 

with 

and 

T:=fiT~ 
s = l  

( 1) 
Ts= ~ rain 2kP~ + l ,  211b,~,l~ I . 

1~81<<.kP~ 
Since P2)1  by (18), trivially for l<.s<~n, 

T~ ~< (2kP~ +1) 2 ~< 5k2p~L (28) 

For s=sj, we have by definition of b, 

1 08 
b~ = --+=-~ qs qs 

for some 10sl~<l, where the integers qs=[b; 1] satisfy by (17) and (13) 

!pc3s ~< pca~_ 1 < q~ ~< pc2~ ~< p~. 1< 2 -- (29) 

It is well-known that for U>O, q ) l  and a=a/q+O/q 2 with (a ,q)=l  and Io1~<1 

x=l  U 1 ~ - ~ m i n ( ,  21lax+ill, ) <<(U+qlogq)(P+l) 

holds (see [7, p. 23] or [10, p. 189]). Applying this for s=sj ,  we get with (29) 

k 8 Ts <<(kP~+qslogqs)( kP~ +1~ <<k2(p~+qs) 21~ 
k q~ / qs 

<<k2(p2~+q~) l~ <<k2n(l~ 1+ q-p-~). 
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By (18) and (28), we conclude that for some absolute constant C1 

( 1  + q~r '~. 
T<" Crk2nn'~(l~ I-[ ~ P~r ] 

j=l 

By (29), 

and 

1 - -  < 2p-~3s~ 
qs~ 

~2P2s~ < D2s~2 --\---~2 "] <~( �89  2"] <~ 4s~p(c~-Cl+l/n2(n+l))s~" 

Therefore, 
T < C ? k ~  ~(log P)~P:(~+I)4 ~ P-o ~'~. 

Together with (27) and (26), this implies 

IWl (a)l 4k2 ~ ( e2-.]- l )8k2-nk D? p 4k-n(n+l)+n(n+ l)(1-x/n)t 

• C~k2nnn4 n2 (log P)'~P~(~+I)P -e E 8J 

< 28k2D?C~k2nnnn n2 (log P)nP sk2+n(n+l)(1-1/n)' p -o  r st 

= Bl(p)pSk2+n(n+l)O-1/~)tp-o52 ~j 

say. 
Clearly, since k>~�88 

B2 (P) := B1 (P) 1/4k~ < 22(20n) 1/n2 Cll/nkl/knl/n(log P)4/n344/n~ < C2(log P) 4/n3 

with a constant C2 not depending on any of the parameters. Hence 

D [D'~r)2+n(n+l)(1--1/n)l/4k2n sj) /4k 2, 
IW~(a)l <~ ,-,2~r j~-~ ~--~ 

thus by (20), 

IW(a)l ~< B2(P)P2+n(n+l)(1-1/n)'/4k2P -e(~ s~)/4k2 +27rOl (P2+l )  2P2n+2P-c l (n+l ) .  

By (19), we get 

IS I <~ B2kt PxP.n(n+l)(1-1/n)Z 2 sj)/4k2 r p '  + l ) 

+ 27r01 p~n+2p-c, (n+l)(p,+ 1) + 02/922 

<~ B3(P)(pl-O/4k2)(o(~ 85)-�89 2 + pc~-l/n2(n+l)), 

95 

(30) 

(31) 
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where B3(P)=max(B2(P), 2~rO:, 02). 
Now choose l in such a way that 

( 1)l t ( 1)/--1. 
c:n(n+X) 1-  <O sj.<cln(n+l) 1-  

j=l 
This is possible since by assumption on the sj and (15), we have 

t 
E sj ~> 2+3+ . . .+ ( t+  1)= �89 ~> �89 1). 
j=l 

Together with (14) which ensures that 1 - 1 / n 2 ) c l ,  (31) and (32) give 

IsI ~< Ba(P)(P 1-~ sj)/sk2 + 2pl-:/n~) �9 

Inequalities (32) and (33)imply 

0c2o 0C2o O~sj  ( i~ t-' 
: <~ ~ <~ cln(n+l) <~ l - -n]  ' 

thus 
2Cl ( 1 )  -1 

l og~-~>( / -1 ) log  1 -  ) ( / - 1 )  1. 

Since n ) 1 2  by (14), this in turn yields 

2cl ( 2c1"~ ~ , 3Cl 
- -  ~ n l o g ~ : c 4 n ,  1 <~ 1 + n  log ~00 ~< n log e 1/12 +log 0c2 ] 0% 

say. Notice that c4 >/1. Thus by definition of k, 

k <~ nl+�88 <. c4n2+ �88 ~ (c4 + 1)n 2. 

Therefore, (33) gives 

OEsj ) oc2n(n+l) Ocg 1 
8k 2 16(c4+1)2n 4/> (c4+1)------7"n- 7. 

Now (34) finally implies 
ISI ~< 3B3( P) Pl-n'/n2, 

where 

9'= (C4+1) 2" 
With regard to (30), this proves Lemma 2. 

(32) 

(33) 

(34) 



O N  T H E  O R D E R  O F  P R I M E  P O W E R S  D I V I D I N G  (2n)  97 

In the sequel, let for r > 0  real numbers hi (l~<i~<r) and positive integers ji (l~<i~<r) 
be given such that  

h = ha ) 1, (35) 

and 

where 

is a real number. We define 

and 

H = max{Ihd : 1 ~< i ~ r} 

1 ~ < j = j l  < j2  <. . .  < j~  ~< J, (36) 

J > 8  (37) 

and 

LEMMA 3. 

f log  X ~2 
A(X, Y ) : =  \ ~ ]  

vi (j):= j - i  (log 2j) - ~. 

Let T'>2, T=T'h such that 

0 <~ P' < P < T 1/(j+l)+1/l~176 , 

P(log P)J > Jg(3  log T) J 

P > exp(CJ(log 2j)3),  

where C is a sufficiently large absolute constant. Then 

P + p '  

Z e ( T ' ( h l  +'"+h~ ) )  ~<pl--cvs(j)A(P,T). 

Proof. We intend to apply Lemma 2 and put  N : - -P ,  

C 0 : ~  

k x3 x3~ ] '  
f, ,,. log T]  

1 1 1 1 
12j '  C l : = l - 6 j ,  c2 :=1-~-~ ,  e 3 : = g ,  

. log T / ~ log T ] 
{s i : l<< . i< . t} :=  s E N : z ~  <. s< a ~  f .  

and 

(38) 

(39) 

(40) 

(41) 

7-945205 Acta Mathematica 174. Imprim6 le 20 janvier 1995 
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By (38), we have 

log____TT ( 1 + 1 ) -1 1 
logP > ~ ~ >J+1-2-- 7" 

By (41), this yields 

t " .  log T { log P \ log T 
~ z ~ - l =  ~ 2 -  lo--~fl log p 

1)log  logT 
j + l  100j 3 ~ ) ~ )Con" 

By definition of n and (42), we have 

�9 1 1 [12,(,+  >12,2 
hence 

(42) 

(4a) 

(44) 

n/> 12, (45) 
1 ( 4 6 )  

and 
n ~> a3x/~- 1 (47) 

~ f ~ - - C  2 

Summing up so far, we have chosen n, t, Co< 1 and c3<c24cl <0 satisfying conditions 
(13), (14) and (15) of Lemma 2 by virtue of (40), (45), (46), (47) and (43). It remains 
to check conditions (16) and (17). 

For x>0 and mEN, we have 

_.~.f(,~)(x)= (_l)m ~. ~ j i ( j i+ l) ... (ji+m-1)hixj, + m  

i~1 
(48) 

Now (39) and (38) give P > H .  By (35), we thus get 

h ~ (49) p---7 >~ , l <. i <~ r, 

which implies for P=N<~x<~N+2P=3P by (48) 

J'~+lT'(\pjl+,~+l]hll Ih~l ) J'~+lT' hp,~+__.__ur_p -~ f(n+')(x) <~ e...+ pj~+~+------~ <~ 

j,~+2 T ~ : p(n+2)log J/ log P+log T/log P-(j+n+l) : p - c '  l (n+l)  
p j+n+l 
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where 
c~ = 1-t J (n+2) log J logT 

n + l  ( n + l ) l o g P  ( n + l ) l o g P "  

By (40), we may assume that p > j 2 4 j .  This implies by the definition of n 

, (n+2)log J logT 1 
c1>1 ( n + l ) l o g P  (n+l)logp > l -2]~ =c1' 

which proves (16). 
In the same way, we get for P~x<2P and sE{si} 

where 

~. JS+lT , 
f(S)(x) <. ~ -P-C3*, 

c~__l+ j ( s+ l )  log J logT 
s s log P s log P" 

Using again p > j 2 4 j ,  the definition of the si gives 

, t . log J log_____TT 1 1 1 
C 3 > l - Z l ~ g P  s l o g P  >1  12j 2>3 --c3" 

This proves the upper bound in (17). 
By (48), we have for P<~x<<.2P and sE{si} using (35) 

~.f(S)(x) >~T'(x-~-(r-1)(J-:+S) x j ~  ) . 

We apply a weak form of Stirling's formula, namely 

(n+ �89 n - n +  3 ( l - l o g  3) ~< logn! ~< (n+�89 n - n +  1. 

For J - 1  <s, this implies together with (37) 

For J-l>>.s, we have trivially 

(J-~+s) < 4J-1. 

By (50), (51), (52), (35) and (36), we get for so=max(s, 4) 

r, (h JsX-1/   
>/(2p)j+--------- ~ ~ ] 

T___.__.~P (h JSp 1H ) 
/> (2p)j+s 

(50) 

(51) 

(52) 

(53) 
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By (39), (42) and (41), 

Therefore, (53) yields 

where 

We have 

P > 2JJoH. 

T'h , 
�9 f(S)(x) >7 2(2p)j+s - p-czs, (54) 

( ! ) (  log2~ log2 logT 
c~= 1+ 1 + ~ ) - ~  slogP slogP" 

log 2 , 1G, 
c 2=1-4 logP s 

with 
G - l ~  j ( j+ l )  log2 

log P log P 

By (40), P>22(j+U. With (42), we get 

1 1 
G > j + I - ~ - ~ - j - - ~  )O.  

Hence, by (41) and (42), we get for P>22~176 which follows from (40), 

c~ ~< 1 ~ log 2 log______P_P G 
log P 4 log T 
1 i'. . log P'~ log 2 (j + 1) log 2 

=1-~,t-3~) + ~  41ogT 
1 (  . (  1 l@0j3)) 21og2 ~<1-~ 1-3 - - +  -t j + l  logP 
1 ( 1  1 )  1 1 1 

~<1-~ j~-I 100j 2 + 1 - - 0 ~ < 1 - ~ + 5 ~  ~<c2" 

Hence, by (54) the lower bound in (17) also holds. 
Thus we have checked all the conditions of Lemma 2. Its application provides the 

estimate 
p +  p~ 

E (h' +. .+ << (55) 

where by definition of 7 and O in Lemma 2 

7 pc2 [-" 2" log T] -2 0%2 A(P, T) (56) 
n--7 = (l+log(3cl/OCo))2 L ~ 3 ~ ]  >1 144j2(l+fog(3cl/gCo))~ 

and 

8 = r a i n / c 3 ,  c 1 - c 2 
1 ) ( 1 1 1 ) 1  

n2(n+l ) >min 3' 30j 10{~0j 6 > 317" 
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1-~log 

Then (56) implies 
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3 = log 3 e  <log(3e.31j. 12j) < log(56j) 2 ~ 12log 2j. 
•c0 ~c0 

e (57) n2 >1 jh(log 2j)~ A(P, T) = c.vh(j) A(P, T). 

For a given positive constant 5 and P=exp(CJ( log2J)3) ,  where C--C(5) is suffi- 
ciently large, we have 

log P -- CJ(log 2J) 3 < (2J) C~ -- (exp(CJ(log 2j)3)) ~v' (j) = p~vl (j). 

Hence, by (40) we get for any absolute constant 

log P ~ pe,1 (j). (58) 

By (42), the definition of n, and (57), 

logT ( l~ 1 7n3  l j l ~ g P ]  c ' - ~  v l ( j )  < v 2 ( j ) ~  <. vh( j )A(P,T)  <. =  7n. 

With 5:~-~c in (58), we thus obtain 

log P <. pT,~/s 

o r  

(log P) 4~ha ~ P 7/2n2. 

By (55) and (57), we therefore have 

p§ 

x=P \ \ XJ1 X3r ]'] 

4. Appl i ca t ion  of  van der Corput 's  m e t h o d  

The next two lemmas may be found in [14]. Lemma 5 is obtained by following the proof 
there and keeping track of the constants. 

LEMMA 4 ([14, Lemma 4.2]). Let f ( x )  be a real differentiable function with mono- 

tonic f ' ( x )  and f'(x)>~m>O or f ' ( x ) < . - m < O  on the interval [a,b]. Then 

~ b dx 2 e( f (x) )  < - - .  
~rm 
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LEMMA 5 ([14, Lemma 4.8]). Let f (x)  be a real differentiable function with mono- 
tonic f ' (x)  and [f'(x)l~<0<l on the interval [a, b]. Then 

L b dx 8 1 4 
E e ( f (n ) ) -  e(f(x)) ~< . . . .  7r 1 -0  b51r+1" 

a<n<~b 

LEMMA 6. Let T'>2, T=T'h  and O<~P' <P such that 

P >/T1/(j+l)+l/l~176 s , 

P > 2j3H 

(59) 
(60) 

and 

Then 

P > (2J) 2~176 (61) 

P+P'e(T , [  hi hr ~ 

Proof. We use van der Corput's well-known method. Again let 

\ x: x:. ] 

Since by (35), (36) and (60) for g<.x<~2P, 

f"(x)  =-T'(Jl(Jl+l)hl\x--f---~+2 § ... +jr(j~+l)h~_~_~_~+7 ) 

T I 
x~2+2 (j(j  + 1)hxJ2 -y - ( r -  1) J ( J +  1)H) 

T I 
>/ (2p)j2+ff(2hP-J3H) > O, 

if(x) obviously is an increasing function. Because of (49), we get for P<<.x<<.P+P' by 
(59) and (61) 

If'(x)l = T '  xj----~-~+...+~jlhl j~h~ I 

TtJ [ hi hr "~ TIJ h j2T  
<" < p,+---w 

< j2p-1/lOOj < j2(2j)-2J/ j  <~ �88 
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Thus Lemma 5 implies 

P+P' t hi hr fP+P' X~ e.(T Q-~-~-t-...-i---~r))-jp] e(T ,/hl hr"~ dx 
32 47r 

The function f ' (x)  is increasing in [P,P+P'] and, by (36) and (60), we have in this 

interval 

i jh JH 
-f'(x) ) T (x-~Y-(r-l) x~2+l ) ~ - -  

1 TIh 1 T 
2"(2P)J +---------~ ~> 2 (2P)J +1" 

Hence Lemma 4 gives 

s;+P'e(T , /hl  h r ' ' dx  

T' ( J2 H 
(2p)j+ i \jh pj=_j ) 

2J+3 pj+l pj+l  
- -  ~ 2 j+2 

r T T 

By (62) and (59), the desired result follows. 

LEMMA 7. Let T'>2,  O<.P'<P, 

P > JH(3 log T'H) J (63) 

and 

Then 
P > e x p ( C J ( l o g  2 j ) 3 ) .  

P f '  e (T' ( ~ T'" + ~-~J~ ) ) <~ CJ ( pI-cvs(j)A( P'T' H) T--T-7-- ) pj+ l . 

(64) 

Proof. For P>~T', the lemma obviously holds. In case P<T', (63) implies (39) 

and (60). By (64), the conditions (40) and (61) are also satisfied. Hence the proof is 

completed by Lemma 3 and Lemma 6. 

LEMMA 8. Let x>2, O<~M'<~M and 

M > exp(CJ(log 2j)3). (65) 

Then 

E e(x [ hi hr ~ 

<~ CJ (Ml-Cvs(a)h(M,xH) _[_ MJ+l x-1 +H2(log xg)2a). 
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Proof. For M<~J2H2(31ogxH) 2J, the lemma is obvious. Thus we assume 

M > J2H2(3 log xH) 2J. 

Let �89 Then 

M' < m ~ m  \ mS~ m~r ] ]  
MJ'2U ~M Ml <m~M 

~< M ~ + E  R~, 
V 

where 

M' <m~M 

Since x~> 1, (66) implies (63). 
Lemma 7 

(66) 

Moreover, (65) yields (64). Therefore, we get from 

R~, ~ CJ ( ( MX2~') 1-c'5 (J)A(M"2~"xH) -f- ( MX2u)J+ lx  -1 ) 

CJ ( 2U M g-cvS(j)~:s h( M'xH) + 2(J+ l )U M(J+ l )g x-1).  

In ~ R~, the variable v runs through the interval 0 ~ v~ ( 1 - x ) l o g  M/log 2, hence 

E 2~ ~< 2M1-"  
V 

and 

E 2 j+ l )v  ~ 2J+IM (j+l)(1-~). 

For sufficiently large ~ <  1, the lemma follows. 

LEMMA 9. Let 2<M<~M~<~min(2M, N)<.N<.x, B>~2 and 

M > exp(CJ(log 2j)3). (67) 

For 

T : =  

we then have 

M<m<~M' 

E A ( n ) e ( x (  hi { _ . . . + ~ ) ) 2 ,  
B<n<N/m (mn)Jl 

J 2 1 cVs(J)A(M xH) j+2 1 2 2 J+2 T < C  (g M- - ' + g  (Mx)-  + N + N  M -  H)(logxH) , 
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where A(n) denotes yon Mangoldt's function. 

Proof. For M <~ JH(3 log xH)J, we obviously have 

T <.JH(31ogxH)J(NlogN) 2 

N 2 
~ CJ H (log xH)J (-~ ) (log x) 2 

CJN2M-2H(log xH) J+2, 

which proves the lemma in this case. Hence, let 

M > JH(3 log xH) J. 

Clearly 

T =  

with 

Thus 

say. 

( ,, ,, )) E E E A(ni)A(n2)e x 
M<m<<.M' B<nl<~g/m B<n2<~g/m _ (m-~l)J ~ (mn2)J' 

: E E i(nl)A(n2) E 
B<nl <~N/M B<n2<.N/M M<m<.M' 

m~N/nl  ,m~N/n2 

.<~ e(x(hlA1-- +hrAr~  
T < (logN) 2 E E \ \ mJl +"" 

nl<N/M n~.~g/M M<m<M' ~ ]']] 
m<N/nx,m<N/n2 

~< (logN)2 ( N +  2 v--, ~---, J ~ [ / h l A 1  h~A~'~  
\ 

O<nl<n2~N/M M<m~M ~ 

= (log N) 2 (N+ 2T1), 

By the mean value theorem, we have for fixed l < n l  <n2<~N/M 

O<Ar  < . . . < A 1  ~ 1. 

By this and (68), Lemma 7 implies 

O<nl<n2~N/M M<rn~M ~ m32 
<~C g ~_,~_, (MI-~(J)A(M'~H)+MJ+'(xA1) -') 

0<nl <n2~N/M 

<CJ( N2M-I-cvS(J)A(M'xH)+Mj+lx-1 E E  
O<:nl <n2~N/M 

105 

(68) 

(69) 

(70) 
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We set Ao=n2-nl .  For l<n l<n2  and l~i<~r, we get 

A i = - -  
nJi_.,j, , rt~,- 1 +n~, -2nl  + ... q_n2n{,-2 _F n{,-  1 Aoji 

2 '~1 __ t-aO ~ _ _  
( n l n 2 ) J '  ( n l n 2 )  j '  n~  i + 1 "  

Therefore, 

E E  
O<nl <n2 <~ N / M  

1 1 
Z Z E  

O<Ao<N/M 0 < n l  <n2<.N/M 
n 2 - - ~ l = A o  

~< 3"~" E A-"0 E <~2 ~ logN. 
O<Ao<N/M O<n2<~N/M 

By (70), 
T1 ~ CJ (N2 M-I-cvs(J)A(M'xH) + NJ+2( Mx) -1 log N). 

This and (69) yield the desired result. 

5. A p p l i c a t i o n  o f  Vaughan's  ident i ty  

As a corollary to Vaughan's identity (see for instance [15] or [2, p. 138-140 D, we have 

LEMMA 10. Let U>~2, V>~2, UV <.N, and let f(x) be a complex-valued function 

satisfying If(x)l=l for real x. Then 

E A(n)f(n) << V+ (log N)SI +$2, 
n ~ N  

where A(n) denotes yon Mangoldt's function, and 

S1 = ~ max ~-~ f ( s t ) ,  
w>0 I 

t<.UV 'w<.s<.N/t 

s2= E E E.(d)A(n)f(mn). 
U < m < N / V  V < n ~ N / m  d~U 

dim 

The constant implied by << is absolute. 

LEMMA 11. Let x>0 and 

exp(Cg(log 2J) 3) ~ N ~ x 1/j. (71) 
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Then 

n~N \ " 
CJ (N 1-cvs(J)A(N,ztt) + N(J+2)/2x -1/2 + NS/6H2)(log x/-/) 4J. 

Proof. We apply Lemma 10 with U = V = N  1/3 and 

hi hr 

First consider $2. By splitting up ~ m  into intervals M<.m<2M, we get 

IS2[ ~< 3(log N) max ~v:,<m<M,(V<n<.N/mA(n)f(mn))(dE<.UI.Z(d)) U<M<M'~min(2M,N/V) .. ~ E 
dlrn 

Cauchy's inequality implies 

M~m<M ' <~(~mV<r~N/m 2\1/2 / ( / E  #(d))\2\112) 

dim 

say. The definition of U and (71) guarantee that  

U >~ (2J)CJ(log 2J) 2. 

Thus we may use Lemma 9 and obtain 

1Tll ~ CJ ( N2 M -1-cvS(J)A(M,zH) + NJ+2(Mx) -1 + N + N2M-2 H)(log xH) J+2. 

Moreover, 

tT~I < 
M ~m<M' dl ~U d2 ~U M ~m<M' 

d[m m--O (mod dl),m--0 (mod d2) 

(dl, d2) 
<~2M E E dl-d-2 < ~ 2 M E b  E E 

dl~Ud2~U b~U d1~U d2~U 
dl~O (rood b) d~=O (rood b) 

z (r.1) 2= z r. r. 1 

1 

did2 
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Together, we get 

IS~l < 3(log N) max (TIT2) 1/2 
U<M<.N/V 

<. CJ(logxH) (J+7)/2 max (NM -c€ +N(J+2)/2x-1/2 
U<M<~N/V 

+ (NM) 112 +NM-11ZH'12) (72) 

CJ ( NU-CVs( J)A(U'xH) q- N(J+ 2) I2 x-1/2 q- N V  -112 

+ NU-1/2 H1/2)(log xH) 4J 

CJ (N -cvs(d)A(N'zg) _t_N(J+2)t2x-l12 + NS/~ H1/2)(log xg)  4J. 

It remains to bound S1. For t in $1, we have by the choice of U and V and (71) 

that  

N >1 N1/3 >1 exp(CJ(log 25)3). 
t 

For l<<.w<~NIt, we have by Lemma 8 

Thus 

hi hr 

I e( ' (  hi h2tJl-J2 hrtJl-Jr)) 
= Z N 7 ;  + ~ ~ +  s,--m--. 

w<~ s<<. N /t 

~CJ((N)I-cvs(J)A(N/t'xI-I) _(N)J+I(_~j)-I_~_H2(IogxH)2J) 
=Cj((f)'-cv'(J)A(N/t'xtt) _NJ+l(xt)_l ~_H2(IogxH)2J). 

Therefore, 

[Sl[~CJ/tt<~UvttT / N\I-cvS(J)A(N/t'xH) ~_gj+l(xt)_lJr.H2(logxH)2gO ) 
CJ (NI-cv~(J)A(N/UV'xH) E t-l+cvs(J)A(N/UV'xH) 

t<~ uv 

m ~  ~ ~ ~\(~t)J + 

j / / N  ~l-cvs(J)A(N/t,xH) + N j+l (xt)-I + H  2 (log xH) 2J) 
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+NJ+lx-1 E l+uvH2(logxH)2J I 
t<~ uv 

N -1 
~ CJ (NI-cvs(J)A(N/UV,xH)cvh(J)A(-u-~,xH) (UV)cA(N/UV,xH) 

+ NY+lx -1 log UV +UVH~(log xH) 2J) 

< C J (Nl-Cv5 (J)A(N,~H) (log xH) 2 + NJ+lx - 1 log N+ N2/3H 2 (log xH) 2J). 

For N<~x 1/j, this together with (72) implies according to Lemma 10 

~-~ A(n)e(x( hl +...+ h'; ~ I 
n<N \ \n'11 " ~  ]'] 

CJ ( N 1-cvh( J)A( g,xH) + y(j+ 2)/2 x-1/2 + Nh/6 H2)(log xH) 4J. 

This is the desired bound. 

PROPOSITION 1. Let 

Then 

exp(CJ(log 2J) 3) <~ N <~ x 1/j . 

CJ ( N ':cvh(g)h(g'xH) + g(j+2)/2x-1/2 + Nh/6H2)(log xg)  4J. 

(73) 

Proof. By Chebyshev's theorem ([2, p. 55]), 

I E A ( n ) e ( x (  hi hr ~ hi hr 
inky \ 

=   logpe(x [ h, hr 
p a~2 " tP----~l "gff"''~-P-~r))[ 
pa~N 

~< ~r (v/-N)log N ~< 4v/-N. 

Put 

(74) 

g( N) = ( NI-cv~( J)A( N'zH) + N(J+ 2)/2 x-1/2 + Nh/6 H2)(log xH) 4J. 

By partial summation, Lemma 11 with (73) and (74) gives, using ~-~-~<N A(n)~<2N on 
the way, 
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hi hr 

Z,og~(~(~ ~ 1 ~< 
p< N "'" -~-; ] ] l l~ N 

�9 IZ~ ~o~(~(~ . . .~) )  ~ 
1 ; ((~1 ~ 4 ~  

logN n31 n~ ]]  logN A(n)e x ---~+...+ 

4 dt 
+/2 N n~<tA(n)e(x(~h--~-11 +.-.+n~-~-)) ~ dt+/2Nv~(logt)2 

~< Ca lo-----g-~ + lo--'~ + 2 g ( N )  20v/-N _ j~2 exp(Cg(l~ 2J)a) (1ogt) 2dt  

+ CJ t(log t) ------~ dt 
x p ( C J ( l o g  2J )  3) 

CJ g(N)+CJ(logxH) 4J t -cvs(J)A(t'xH) dt 

+x-1/2 /2NtJ/2 dt+H2 ~Nt-1/6 dt) 

C Jg(N) +C J (log xH) 4J (v/N-~ .f~ t -cvs(J)A(t'xH) dt <<. 

.~ N(J+2)/2 x -  1/2 .~_ N5/6 H2 I 
# 

J J 4J cvs(J)A(v/-N xH) N <.C g(g)+c  (logxg) (v/N+Y - ' ) 

<~ cgg(N). 

This completes the proof of Proposition 1. 

6. Vinogradov's  Fourier series method 

The following method may be found in [16, p. 32] or [1, Lemma 2.1]. 
Let 0<A<�88 For JcN and real numbers Aj and Bj (l~j<~J) with O<~Bj-Aj<~ 

1-2A, there are 1-periodic functions Cj(z), satisfying 

1 for Aj <. z <. Bj, 
Cj(z)= 0 forBj+A<.z<. l+Aj-A ,  
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and 0~r  for all z such that 
O0 

Cj(z )=Bj-Aj§  E am,je(mz), 
m # O  

where am,j~C and, for Iml>0 and l<~j<~J, 
1 

lam,jl <~ mZ A 

PROPOSITION 2. Let (r=(al, ...,(T J) with 0 < a j ~ l  for l <~j<~ J, 

exp(CJ(log 2J) 3) < P <~ x 1/d 

and 
D(a):=D(~;P,x):=card(p<.P:{~}<aj,  l<~j<.J}. 

Then we have for arbitrary r 0<r 1 ,  

ID(er)-al.....aj~r(P)l <. cg(Pl-C~v6(g)h(P'x)+P(J+2)/2+~x-U2)(logx)4J. 

Proof. 

Then 

For A={A1, ..., A j} ,  B = { B 1 ,  ..., B j} ,  let 

T(A,B)=caxd{p<~ P:Aj <~ { ~  } <. Bj, i <~j <. J}. 

J 

where A=(A, ..., A). 
By (75), 

J J 

"= j = l  

= ~ I I ( B ~ - A j + a )  am,s  �9 
z # r c { 1 , . . . , g } j ~ r  j e t  m = - ~  

m # 0  

By (76), 

mx mx mx 

m-- 0 < ] m l < a - 2  Iml~>A-2 
m # 0  

E ~< ~<2A. 
Iml~>A -2 

(75) 

(76) 

(77) 

(78) 

(79) 

(8o) 
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Define L to be the right hand side of (79). The preceding inequality yields for some 

1 1< 2 
J l [ I (  f / n i X ' '  L=E E E 

r=l  l~jl<...<jv<.J i=1 0<lmil<A -2 

hence 

We get by (76), (79) and Proposition 1 

J x J 

Z C g max E "'" E am, j ,  ... am,.d,. 
l<'Jl<'"<Jr<~J 0<lm, l<A_2 0<lmrl<A -2 

ml  mr  

p<~ P 
<~ Cg ((pl-cvs(J) A(P,xA-2) + p(J+2)/2x-1/2 _}_ p5/6 A - 4  ) 

x (log x A - 2 ) 4 J A  - J  + p A ) .  

(81) 

Choose 
A = p-~A(P,x), 

where 

~/:= "y(J) :-- cv6(J)e, 

and here c is the constant occurring in (81). Then by (77), 

x A  -2 = xp2q'A(P, x) ~ X l+(2"//J)h(P'x) ~ X 2, 

thus 
(log xs 4J ~< CJ(log x) 4J 

and 
pl--cvs(J)A(P, xA -2) ~ p 1 -  �88 

Since c~< 1 TS, we get 

pl-cvs(.)')A(P, xA-2) i -  J ~ p1- �88 J~A(P,x) 

pl-vs(J)h(P,x)(c/4-c/12) ~ pl-~cvs(J)h(P,x). 



ON THE ORDER OF PRIME POWERS DIVIDING (2nn) 113 

Clearly, 

and 

Finally, 

p(J+2)/2A-J ~ p ( J + 2 ) / 2 + e  

p S / 6 A - ( J + 4  ) ~ p5/6+~ ~ p l l / 1 2  ~ pl-cs(a)A(P,x). 

PA <. pl-cev6(J)A(P,x). 

Applying all these estimates in (81), we obtain 

J J 

CJ ( pl-cev,(  J)A( P,x)..~ p(  J + 2) /2 +e x-1/2)(log z) 4J. 

Let R denote the right hand side of the last inequality. Then, by (78), 

J 

T(A, B) ~< re(P) H ( B j - A  t +A)+R (82) 
j = l  

and 
J 

T(A-  ~ ,  B+A)  >I ~r(P) 1-I (Bj -Aj  +A) -R.  
j • l  

Replacing A., B by A - A ,  A and B, B + ~ ,  respectively, (82) implies 

(83) 

T ( A - ~ ,  A) ~< (2A)J1r(P)+R 

and 

respectively. Thus, by (83), 

T(B, B+A)  ~< (2A)J~-(p)+R, 

T(A, B) = T(A-  A, B + ~) - T(A - ~,  A) - T(B, B + ~) 

J 

>i lr(P) H ( B j - A j  +A)-3R-2(2A)J1r(p) 
.j=l 

J 

>>. ~(p) 1-I (Bj -At)-6R. 
j=l 

Similarly, we get by (82) 

J 

T(A, B) < ~(e) H(Bj -Aj)+6R. 
j = l  

8-945205 Acta Mathematica 174. Imprim6 le 20janvier 1995 
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Together, we have 

T(A, B)-~r(P)  I : I (Bj  - A j )  ~< 6R. 
j=l 

Setting Aj=0,  Bj=crj (l~<j~<J), the desired result follows by observing that 

D ( o ' ; P , x ) = T ( A , B ) .  

7. P r o o f  o f  t h e  t h e o r e m  

Let m and n be positive integers, and p a prime. We define Up(m, n) to be the number 

of "carries" which occur when adding m and n in p-ary notation. Let e(n;p) be defined 

as in (3). An old result of Kummer is the following 

LEMMA 12 ([9, p. 116]). 

((re+n)) 
e ;V = Up(re ,  n ) .  

m 

PROPOSITION 3. Let J>Co and 

No = C Jl~176 j )a ,  (84) 

where Co and C are some absolute constants. For all n ~  No, there is a prime p such that 

Proof. We apply Proposition 2 with x:=n~No,  c:= 1 ,  P:=n 1/(g+l), and obtain for 

n/> exp(CJ2(log 2j)3), 

which is guaranteed by (84), that 

Ka(n) := card p < n 1/(J+l) : ~ < , 1 <. j <~ J 

satisfies 

IK.,(n)- I 
CJ (n ll(a+l)-cevT(J)A(nli(J+l),n) +n(a+2+2~)12(X+l)n-ll2)(log n) 4J 

(85) 
<< CJ(nl/(J+l)-cvg(J) +nT/12(J+1)) (log n) 4J 

<<. CJn 1/(J+l)-cvg(J) (log n) 4J. 
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By Chebyshev's theorem (see [2, p. 54]), 

1 " nl l (J+l)  
zr(n l/(J+l))/> ~(J+l)  1Tgn " 

Together with (85),we have 

nl/(J+l) 
g j ( n )  >1 c g Cgnl/(g+l)-cv~ n) 4J. (86) 

log n 

We wish to show that K j ( n )  is positive for sufficiently large n. Obviously, it suffices 

to prove that 

C log n < n ~vl~ = n 2~, (87) 

where 
1 

# := ~Vlo{J) < - ,  (88) 
e 

without loss of generality. For n > C  1/~, which is guaranteed by (84), we clearly have 

C < n". (89) 

Assume that for some y>e, there is a 3' such that 

log log y 
log y -  1 
- -  ~< 7 < 1. ( 9 0 )  

Then 

log (1 + 3') + log log y ~ 3' + log log y < 3' log y, 

hence 

By (88), y : = l l #  and 

satisfy (90). Thus 

in other words, for 

we have 

yl+-r ~ exp(y-~). 

3, := 3,(#) := log log 1/# 
log 1 / # -  1 

(~)l+-ff~) [ { 1  \'~(") \ 
-  ex, t t ; )  )' 

N1 :-=- exp ( # I A ( , ) )  , 

log N1 -- < exp -- N1 ~. 
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Hence the function 
X ~ 

f(x) = log x 

satisfies f(N1)~>l. Moreover, f'(x)>~O for x~>exp(1/p), thus f(x) is increasing in this 
range. Since N1 ~>exp(1/#), we conclude that for n>~N1 

log n ~< n ". 

Then (89) and (88) imply that (87) holds for 

C1//zl+-ro,) n >  . (91) 

If (91) holds, we then have by (86) that Kj(n)>O, which means that there is a prime 
p satisfying 

p J+l < n 

and 

{ ~ . }  >3'2 l<~j<~J. (92) 

In order to make sure that the last conclusion holds without additional assumptions, 
it suffices to show that (91) is satisfied. For this reason let ~ and C be arbitrary positive 
constants. For a sufficiently large constant C only depending on ~ and C, we have 

l~176176176 l~l~176176 jlO ~/log (2Jl~ log C)  

>~ (1 +~/(#)) log (~  Jl~ 2J)2 log 0 )  �9 

This means 
cJlO(log j)3/> ~((2/~)gaO(log 2j)2)l+~ct,) ~_. ~(1/~t)l+-rct~). 

Hence, (84) yields (91). 
Now write n in p-ary notation, namely 

n=njpJ +n.i_lpJ-1T...--knlp+no, O<~ nj <p. 

For 1 ~ j  ~< J, we have by (92) 

thus 

oj 1+ +o0  

nj_..._...~l > 3 - ( p - l )  -4-...+ > - - - .  
p 3 p 
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This implies for p/> 7 

i.e. 

1 nj -1  > ~p, 

1 (93)  nj>~p,  O<~j<~J-1. 

It follows from this that  we get at least J carries when adding n+n in p-cry notation. 

Hence, by Lemma 12, 

which means that  there is a p satisfying PJI (2nn)" This completes the proof of Proposi- 

tion 3. 

Proof of the theorem. For C and Co being the constants of Proposition 3, let n be 

large enough such that  for some a > Co 

C al~176 a)3 ~< n < C (a+l)l~176 (94) 

Then we obtain by Proposition 3 

E ( n ) = m a x { J : p  J ( 2 : ) f o r s o m e p r i m e p }  ) a .  (95) 

By (94), 

and 

Thus (95) yields 

which proves the theorem. 

a>> ( logn )1/10 
(log a) 3 

log a << log log n. 

l o g n  )1/10, 

E(n) >> (loglogn) 3 
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