On the order of prime powers dividing $\binom{2 n}{n}$

by
JÜRGEN W. SANDER(${ }^{1}$)
Universität Hannover
Hannover, Germany

Contents

1. Introduction 85
2. A heuristic consideration 88
3. An exponential sum estimate of Karacuba 90
4. Application of van der Corput's method 101
5. Application of Vaughan's identity 106
6. Vinogradov's Fourier series method 110
7. Proof of the theorem 114
References 117

1. Introduction

A number of conjectures originating from the 1970's and before is related to the prime decomposition of middle binomial coefficients, i.e. binomial coefficients of the form

$$
\binom{2 n}{n}
$$

Most of these problems were raised by Paul Erdős and some of his co-authors (see [3], [4], [5], and [6, Problems B31, B33]). Apart from being interesting in itself, the prime factorization of middle binomial coefficients has an important application in elementary number theory, namely the distribution of primes.

Chebyshev was the first mathematician who (around 1850) could prove that the prime counting function $\pi(x)$ satisfies

$$
\pi(x) \asymp \frac{x}{\log x}
$$

[^0]which means that $\pi(x)$ is bounded from above and below by the function on the right. This can be obtained by studying middle binomial coefficients which-for two reasonsare an appropriate tool: They have nice multiplicative properties, most of all many distinct prime factors, and a simple additive property, that is, their recursion formula.

With this in mind, Erdős and others investigated more closely the prime decomposition of middle binomial coefficients. Despite the fact that these are "almost" squarefree, i.e. they have only very few prime factors of order at least 2 , it was conjectured that for any integer a and sufficiently large $n>n_{0}(a)$, there is always a prime p such that

$$
\begin{equation*}
p^{a} \left\lvert\,\binom{ 2 n}{n}\right. \tag{1}
\end{equation*}
$$

This conjecture was settled for the case $a=2$ by Sárközy [13] in 1985. Recently, the general conjecture was confirmed by the author [11]. In fact, much more was shown:

- One can choose $p>p_{0}$ for any p_{0} in (1), if $n>n_{0}\left(a, p_{0}\right)$ [11].
- These results extend to binomial coefficients of the form

$$
\begin{equation*}
\binom{2 n \pm d}{n} \tag{2}
\end{equation*}
$$

if d is "not too large" compared with n [11].

- Let $s_{a}(n, d)$ denote the largest a th power dividing the binomial coefficient in (2). Then for small d, we have asymptotically

$$
\log s_{a}(n, d) \sim C(a) n^{1 / a}
$$

with an explicitly given constant $C(a)$ [12].
An open problem, which has not been dealt with so far, pertains to the function

$$
E(n):=\max \left\{J: p^{J} \left\lvert\,\binom{ 2 n}{n}\right. \text { for some prime } p\right\}=\max \left\{e\left(\binom{2 n}{n} ; p\right): p \in \mathbf{P}\right\}
$$

where

$$
\begin{equation*}
e(n ; p):=\max \left\{e: p^{e} \mid n\right\} \tag{5}
\end{equation*}
$$

i.e. $E(n)$ is the largest exponent in the prime factorization of $\binom{2 n}{n}$. Clearly, the conjecture mentioned above is equivalent to

$$
E(n) \rightarrow \infty, \quad n \rightarrow \infty
$$

which follows from the result in [11]. In this paper, we shall present a lower bound for the function $E(n)$, which gives the first answer to a question of Erdős (see [6, Problem B31]). It shows that $E(n)$ is at least of order $(\log n)^{\delta}$ for some positive constant δ. More precisely, we obtain the following

Theorem. For sufficiently large n, we have

$$
E(n) \gg\left(\frac{\log n}{(\log \log n)^{3}}\right)^{1 / 10}
$$

We like to mention that one can easily show

$$
\begin{equation*}
E(n) \ll \log n \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
E(n) \gg \log n \quad \text { for almost all } n \tag{5}
\end{equation*}
$$

Concerning the true size of $E(n)$, we make the
Conjecture. For $n \rightarrow \infty$, we have

$$
E(n) \asymp \log n .
$$

In $\S 2$, we shall prove the upper bound (4) of the conjecture, as well as (5). Moreover, some heuristic argument for the lower bound in our conjecture will be given. $\S \S 3-7$ will be devoted to the proof of the theorem. A major effort is made to keep all the results along the way explicit with respect to certain parameters. We did, however, disregard any constants that are not important for our final result.

The following notation will be used throughout the paper. As widely accepted, \mathbf{N}, \mathbf{Z}, and \mathbf{C} designate the sets of natural numbers $1,2,3, \ldots$, integers, and complex numbers, respectively. By \mathbf{P} we denote the set of primes $2,3,5,7,11, \ldots$, while the letter p with or without subscript will always be restricted to be an element of \mathbf{P}. For real x, we define $e(x)=\exp (2 \pi i x)$. All the explicit and implicit constants (as in $O(\cdot)$ or, equivalently, <<) are absolute and positive unless otherwise indicated. We adopt the convention that the constants c and C, which always are assumed to be absolute and positive, may change their values within inequalities. This enables us to write

$$
x^{1-c} \log x \ll x^{1-c},
$$

for instance. While c is supposed to denote small constants, C will be used for large ones.

Acknowledgement. This paper was written while the author enjoyed the pleasant and inspiring atmosphere of the Tata Institute of Fundamental Research at Bombay, India. I would like to express my gratitude to Professor S. Srinivasan for his kind hospitality. Special thanks are due to him as well as to Professor K. Ramachandra and Professor T. N. Shorey for helpful discussions.

2. A heuristic consideration

The upper bound (4) of our conjecture is simply proved by applying the familiar decomposition of factorials, namely

$$
\begin{aligned}
e\left(\binom{2 n}{n} ; p\right) & =\sum_{a>0}\left(\left[\frac{2 n}{p^{a}}\right]-2\left[\frac{n}{p^{a}}\right]\right)=\sum_{1 \leqslant a \leqslant \log 2 n / \log p}\left(\left[\frac{2 n}{p^{a}}\right]-2\left[\frac{n}{p^{a}}\right]\right) \\
& \leqslant \sum_{1 \leqslant a \leqslant \log 2 n / \log p} 1 \leqslant \frac{\log 2 n}{\log p} \leqslant \frac{\log 2 n}{\log 2} .
\end{aligned}
$$

No improvement over (4) is known (see [6, Problem B31]). In fact, it is quite easy to show that we have $\log n$ also as a lower bound, at least for almost all n, i.e. (5) holds.

In order to see this, we first recollect that for almost all $n<N$ the sum $S_{2}(n)$ of the digits of n in binary expansion satisfies $S_{2}(n) \approx \frac{1}{2} \log _{2} N$; this is obtainable by a straightforward counting argument. More precisely, for any $\varepsilon>0$,

$$
\begin{equation*}
\operatorname{card}\left\{n<N:\left(\frac{1}{2}-\varepsilon\right) \log _{2} N<S_{2}(n)<\left(\frac{1}{2}+\varepsilon\right) \log _{2} N\right\}=(1+o(1)) N \tag{6}
\end{equation*}
$$

Using this and Lemma 12, we obtain

$$
\operatorname{card}\left\{n<N: e\left(\binom{2 n}{n} ; 2\right) \leqslant \frac{1}{3} \log N\right\}=\operatorname{card}\left\{n<N: S_{2}(n) \leqslant \frac{1}{3} \log N\right\}=o(N)
$$

This means that for almost all $n<N$,

$$
E(n) \geqslant e\left(\binom{2 n}{n} ; 2\right)>\frac{1}{3} \log N \geqslant \frac{1}{3} \log n
$$

which proves (5).
In order to tackle our conjecture, one is tempted to make use of the bounds given in [12]. For this reason, let $s_{J}(n)$ be the largest J th power dividing $\binom{2 n}{n}$. The main result in [12] is that for any $\varepsilon>0$ and sufficiently large $n \geqslant n_{0}(J, \varepsilon)$,

$$
\begin{equation*}
\exp \left((C(J)-\varepsilon) n^{1 / J}\right) \leqslant s_{J}(n) \leqslant \exp \left((C(J)+\varepsilon) n^{1 / J}\right) \tag{7}
\end{equation*}
$$

where

$$
C(J)=2^{1 / J}\left(\frac{1}{2}\right)^{J-1} \sum_{k=1}^{\infty}\left(\left(\frac{1}{2 k-1}\right)^{1 / J}-\left(\frac{1}{2 k}\right)^{1 / J}\right)
$$

Now

$$
C(J) \leqslant\left(\frac{1}{2}\right)^{J-2} \sum_{k=1}^{\infty}\left(\frac{1}{2 k-1}-\frac{1}{2 k}\right)=\left(\frac{1}{2}\right)^{J-2} \log 2 \leqslant\left(\frac{1}{2}\right)^{J-2}
$$

We set

$$
\varepsilon:=\left(\frac{1}{2}\right)^{J-2}
$$

By (7), it follows for sufficiently large n that

$$
\begin{equation*}
s_{J}(n) \leqslant \exp \left(\left(\frac{1}{2}\right)^{J-1} n^{1 / J}\right) \tag{8}
\end{equation*}
$$

For

$$
\log n<\frac{1}{2}(\log 2) J^{2}
$$

we have

$$
\log n<J(J-1) \log 2+J \log \log 2
$$

which is equivalent to

$$
\exp \left(\left(\frac{1}{2}\right)^{J-1} n^{1 / J}\right)<2
$$

By (8), we get $s_{J}(n)<2$, i.e. $s_{J}(n)=1$. Therefore, we have shown that for sufficiently large n

$$
\begin{equation*}
s_{J}(n)>1 \Rightarrow \log n \geqslant \frac{1}{2}(\log 2) J^{2} \tag{9}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
C(J)>2^{1 / J}\left(\frac{1}{2}\right)^{J-1}\left(1-\left(\frac{1}{2}\right)^{1 / J}\right)=\left(\frac{1}{2}\right)^{J-1}\left(2^{1 / J}-1\right) \tag{10}
\end{equation*}
$$

We have for all $x \geqslant 0$

$$
f(x):=2^{x}-x \log 2-1 \geqslant 0
$$

since $f(0)=0$ and $f^{\prime}(x) \geqslant 0$ for $x \geqslant 0$. Hence (10) implies

$$
C(J)>\left(\frac{1}{2}\right)^{J-1} \frac{1}{J} \log 2>\left(\frac{1}{2}\right)^{2 J-1}
$$

With

$$
\varepsilon:=\left(\frac{1}{2}\right)^{2 J}
$$

we obtain by (7) for sufficiently large n

$$
\begin{equation*}
s_{J}(n) \geqslant \exp \left(\left(\frac{1}{2}\right)^{2 J} n^{1 / J}\right) \tag{11}
\end{equation*}
$$

The inequality

$$
\log n \geqslant 2(\log 2)^{2} J^{2}
$$

is equivalent to

$$
\exp \left(\left(\frac{1}{2}\right)^{2 J} n^{1 / J}\right) \geqslant 2
$$

With (11) we conclude that for sufficiently large n

$$
\begin{equation*}
\log n \geqslant 2(\log 2)^{2} J^{2} \Rightarrow s_{J}(n)>1 . \tag{12}
\end{equation*}
$$

By definition,

$$
E(n)=\max \left\{J: p^{J} \left\lvert\,\binom{ 2 n}{n}\right. \text { for some prime } p\right\}=\max \left\{J: s_{J}(n)>1\right\} .
$$

If (9) and (12) held for sufficiently small n, they would imply

$$
E(n) \asymp \sqrt{\log n},
$$

which, however, contradicts (5).
The reason why this argument apparently fails is that the exponential sums which are used in [12] can be bounded non-trivially only if the summation variable ranges over large intervals of primes. On the other hand, the above proof for the lower bound in (5) suggests that small primes are the ones to look at. In fact, (5) was shown by taking just the prime $p=2$ into account. Formulae similar to (6) do hold for any prime p. Assuming that the p-ary expansions of an integer with respect to different primes p are independent of each other, the conjecture seems to be reasonable.

3. An exponential sum estimate of Karacuba

We will make use of the following result due to Vinogradov.
Lemma 1 ([16] or [17]). For $n \geqslant 12$ and a positive integer l, let

$$
k_{l}=n l+\left[\frac{1}{4} n(n+1)+1\right]
$$

and

$$
D_{l}=(20 n)^{\frac{1}{2} n(n+1) l} .
$$

Then for positive integers $k \geqslant k_{l}$ and P, we have

$$
\int_{0}^{1} \ldots \int_{0}^{1}\left|\sum_{x=1}^{P} e\left(\alpha_{n} x^{n}+\ldots+\alpha_{1} x\right)\right|^{2 k} d \alpha_{1} \ldots d \alpha_{n}<D_{l} P^{2 k-\frac{1}{2} n(n+1)+\frac{1}{2} n(n+1)(1-1 / n)^{l}} .
$$

The next lemma which is crucial for our principal result is mainly due to Karacuba [8], but sharpens and simplifies it in a way which suits our purpose; it was also obtained in a slightly weaker form by G. J. Rieger. The proof follows Karacuba's ideas.

Lemma 2. Let $N, 0 \leqslant P^{\prime}<P, n, t>0$ and $2 \leqslant s_{1}<\ldots<s_{t} \leqslant n$ be integers, let $c_{0}<1$ and $c_{3}<c_{2}<c_{1}<1$ be positive real numbers satisfying

$$
\begin{gather*}
P \geqslant 8^{1 / c_{3}} \tag{13}\\
n \geqslant \max \left(12, \frac{1}{\sqrt{1-c_{1}}}, \frac{1}{\sqrt[3]{c_{1}-c_{2}}}\right) \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{0} n \leqslant t<n . \tag{15}
\end{equation*}
$$

Furthermore, let $f(x)$ be a real function having a continuous $(n+1)$-st derivative in $N \leqslant$ $x \leqslant N+2 P$ such that for $N \leqslant x \leqslant N+2 P$

$$
\begin{equation*}
\left|\frac{1}{(n+1)!} f^{(n+1)}(x)\right| \leqslant P^{-c_{1}(n+1)} \tag{16}
\end{equation*}
$$

and for $j=1, \ldots, t$ and $N \leqslant x \leqslant N+P$

$$
\begin{equation*}
P^{-c_{2} s_{j}} \leqslant\left|\frac{1}{s_{j}!} f^{\left(s_{j}\right)}(x)\right| \leqslant P^{-c_{3} s_{j}} \tag{17}
\end{equation*}
$$

Then, for

$$
S=\sum_{x=N}^{N+P^{\prime}} e(f(x))
$$

we have

$$
S \ll P^{1-\gamma / n^{2}}(\log P)^{4 / n^{3}},
$$

where the constant implied by \ll is absolute (in particular does not depend on the c_{i}), and

$$
\gamma=\varrho c_{0}^{2}\left(1+\log \frac{3 c_{1}}{\varrho c_{0}}\right)^{-2}
$$

with

$$
\varrho=\min \left(c_{3}, c_{1}-c_{2}-\frac{1}{n^{2}(n+1)}\right)
$$

Proof. Let

$$
P_{2}:=\left[P^{\frac{1}{2}\left(c_{1}-1 / n^{2}(n+1)\right)}\right]
$$

By (14), we get immediately

$$
\begin{equation*}
1 \leqslant P_{2} \leqslant \sqrt{P} \tag{18}
\end{equation*}
$$

By definition of S, we have for non-negative integers y and z

$$
S=\sum_{a=N-y z}^{N-y z+P^{\prime}} e(f(a+y z))
$$

Thus,

$$
\begin{align*}
\left(P_{2}+1\right)^{2} S & =\sum_{y=0}^{P_{2}} \sum_{z=0}^{P_{2}} \sum_{a=N-y z}^{N-y z+P^{\prime}} e(f(a+y z)) \\
& =\sum_{a=N-P_{2}^{2}}^{N+P^{\prime}} \sum_{\substack{0 \leqslant y \leqslant P_{2} \\
N-a \leqslant y z \leqslant N}} \sum_{0 \leqslant z \leqslant P^{\prime}-a} e(f(a+y z)) \tag{19}\\
& =\sum_{a=N}^{N+P^{\prime}} \sum_{\substack{0 \leqslant y \leqslant P_{2}}} \sum_{\substack{0 \leqslant z \leqslant P_{2} \\
y z \leqslant N+P^{\prime}-a}} e(f(a+y z))+\theta_{1} P_{2}^{2}\left(P_{2}+1\right)^{2} \\
& =\sum_{a=N}^{N+P^{\prime}} W(a)+\theta_{2} P_{2}^{2}\left(P_{2}+1\right)^{2},
\end{align*}
$$

where θ_{i} are absolute constants with $\left|\theta_{i}\right| \leqslant i, i=1,2$, and

$$
W(a)=\sum_{y=0}^{P_{2}} \sum_{z=0}^{P_{2}} e(f(a+y z)) .
$$

By Taylor's formula,

$$
f(a+y z)=\sum_{s=0}^{n} b_{s}(y z)^{s}+R
$$

where for $s=0,1, \ldots, n$

$$
b_{s}=\frac{1}{s!} f^{(s)}(a)
$$

and for some ξ with $N \leqslant \xi \leqslant N+P^{\prime}+P_{2}^{2}<N+2 P$,

$$
|R| \leqslant \frac{1}{(n+1)!}\left|f^{(n+1)}(\xi)\right| P_{2}^{2 n+2}
$$

By (16) and the definition of P_{2}, we get

$$
|R| \leqslant P^{-c_{1}(n+1)} P_{2}^{2 n+2} \leqslant P^{-1 / n^{2}}
$$

For real $\phi,|e(\phi)-1| \leqslant 2 \pi \phi$ holds, hence

$$
\begin{equation*}
W(a)=W_{1}(a)+2 \pi \theta_{3}\left(P_{2}+1\right)^{2} P^{-1 / n^{2}} \tag{20}
\end{equation*}
$$

where $\left|\theta_{3}\right| \leqslant 1$, and

$$
W_{1}(a)=\sum_{y=0}^{P_{2}} \sum_{z=0}^{P_{2}} e\left(b_{0}+b_{1} y z+\ldots+b_{n}(y z)^{n}\right)
$$

For any non-negative numbers u_{ν}, v_{ν}, and a positive integer k, we have by Hölder's inequality

$$
\begin{equation*}
\left(\sum_{\nu=0}^{P} u_{\nu} v_{\nu}\right)^{k}=\left(\sum_{\nu=0}^{P} u_{\nu}^{(k-1) / k}\left(u_{\nu}^{1 / k} v_{\nu}\right)\right)^{k} \leqslant\left(\sum_{\nu=0}^{P} u_{\nu}\right)^{k-1} \sum_{\nu=0}^{P} u_{\nu} v_{\nu}^{k} \tag{21}
\end{equation*}
$$

Setting all $u_{\nu}=1$, we get

$$
\begin{align*}
\left|W_{1}(a)\right|^{2 k} & \leqslant\left(P_{2}+1\right)^{2 k-1} \sum_{y=0}^{P_{2}}\left|\sum_{z=0}^{P_{2}} e\left(b_{1} y z+\ldots+b_{n}(y z)^{n}\right)\right|^{2 k} \\
& =\left(P_{2}+1\right)^{2 k-1} \sum_{y=0}^{P_{2}} \sum_{\lambda_{1}, \ldots, \lambda_{n}} J_{k}\left(\lambda_{1}, \ldots, \lambda_{n}\right) e\left(b_{1} \lambda_{1} y+\ldots+b_{n} \lambda_{n} y^{n}\right) \tag{22}\\
& \leqslant\left(P_{2}+1\right)^{2 k-1} \sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)} J_{k}(\lambda)\left|\sum_{y=0}^{P_{2}} e\left(b_{1} \lambda_{1} y+\ldots+b_{n} \lambda_{n} y^{n}\right)\right|
\end{align*}
$$

where

$$
\begin{aligned}
J_{k}(\boldsymbol{\lambda}) & =\operatorname{card}\left\{\left(z_{1}, \ldots, z_{2 k}\right): z_{1}^{j}+\ldots+z_{k}^{j}-z_{k+1}^{j}-\ldots-z_{2 k}^{j}=\lambda_{j}, 1 \leqslant j \leqslant n\right\} \\
& =\int_{0}^{1} \ldots \int_{0}^{1}\left|\sum_{z=0}^{P_{2}} e\left(\alpha_{1} z+\ldots+\alpha_{n} z^{n}\right)\right|^{2 k} e\left(-\left(\alpha_{1} \lambda_{1}+\ldots+\alpha_{n} \lambda_{n}\right)\right) d \alpha_{1} \ldots d \alpha_{n}
\end{aligned}
$$

Obviously, in (22) we have for $\boldsymbol{\lambda}$ in $\sum_{\boldsymbol{\lambda}}$

$$
\begin{equation*}
\left|\lambda_{j}\right| \leqslant k P_{2}^{j}, \quad 1 \leqslant j \leqslant n \tag{23}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\sum_{\boldsymbol{\lambda}} J_{k}(\boldsymbol{\lambda})=\left(P_{2}+1\right)^{2 k} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|J_{k}(\boldsymbol{\lambda})\right| \leqslant \int_{0}^{1} \ldots \int_{0}^{1}\left|\sum_{z=0}^{P_{2}} e\left(\alpha_{1} z+\ldots+\alpha_{n} z^{n}\right)\right|^{2 k} d \alpha_{1} \ldots d \alpha_{n}=J_{k}(\mathbf{0}) \tag{25}
\end{equation*}
$$

For any positive integers $l, n \geqslant 12$ and $k=n l+\left[\frac{1}{4} n(n+1)+1\right]$, Lemma 1 implies

$$
\begin{equation*}
J_{k}(0)<D_{l} P_{2}^{2 k-\frac{1}{2} n(n+1)+\frac{1}{2} n(n+1)(1-1 / n)^{l}} \tag{26}
\end{equation*}
$$

Raising (22) to the (2k)th power, applying (21), and then (24) and (25), we obtain

$$
\begin{aligned}
\left|W_{1}(a)\right|^{4 k^{2}} & \leqslant\left(P_{2}+1\right)^{4 k^{2}-2 k}\left(\sum_{\boldsymbol{\lambda}} J_{k}(\boldsymbol{\lambda})\right)^{2 k-1} \sum_{\boldsymbol{\lambda}} J_{k}(\boldsymbol{\lambda})\left|\sum_{y=0}^{P_{2}} e\left(b_{1} \lambda_{1} y+\ldots+b_{n} \lambda_{n} y^{n}\right)\right|^{2 k} \\
& \leqslant\left(P_{2}+1\right)^{8 k^{2}-4 k} J_{k}(\mathbf{0}) \sum_{\boldsymbol{\lambda}}\left|\sum_{y=0}^{P_{2}} e\left(b_{1} \lambda_{1} y+\ldots+b_{n} \lambda_{n} y^{n}\right)\right|^{2 k} \\
& =\left(P_{2}+1\right)^{8 k^{2}-4 k} J_{k}(\mathbf{0}) \sum_{\boldsymbol{\lambda}} \sum_{\boldsymbol{\mu}} J_{k}(\boldsymbol{\mu}) e\left(b_{1} \lambda_{1} \mu_{1}+\ldots+b_{n} \lambda_{n} \mu_{n}\right) .
\end{aligned}
$$

For any positive integer U, we have (see for instance [10, p. 189])

$$
\sum_{m=1}^{U} e(\alpha m) \leqslant \min \left(U, \frac{1}{2\|\alpha\|}\right)
$$

where $\|\alpha\|=\min _{\alpha \in \mathbf{Z}}|\alpha-a|$. This implies

$$
\begin{align*}
\left|W_{1}(a)\right|^{4 k^{2}} & \leqslant\left(P_{2}+1\right)^{8 k^{2}-4 k} J_{k}(\mathbf{0}) \sum_{\boldsymbol{\mu}} J_{k}(\boldsymbol{\mu}) \prod_{s=1}^{n} \min \left(2 k P_{2}^{s}+1, \frac{1}{2\left\|b_{s} \mu_{s}\right\|}\right) \tag{27}\\
& \leqslant\left(P_{2}+1\right)^{8 k^{2}-4 k} J_{k}(\mathbf{0})^{2} T
\end{align*}
$$

with

$$
T:=\prod_{s=1}^{n} T_{s}
$$

and

$$
T_{s}=\sum_{\left|\mu_{s}\right| \leqslant k P_{2}^{s}} \min \left(2 k P_{2}^{s}+1, \frac{1}{2\left\|b_{s} \mu_{s}\right\|}\right)
$$

Since $P_{2} \geqslant 1$ by (18), trivially for $1 \leqslant s \leqslant n$,

$$
\begin{equation*}
T_{s} \leqslant\left(2 k P_{2}^{s}+1\right)^{2} \leqslant 5 k^{2} P_{2}^{2 s} \tag{28}
\end{equation*}
$$

For $s=s_{j}$, we have by definition of b_{s}

$$
b_{s}=\frac{1}{q_{s}}+\frac{\theta_{s}}{q_{s}^{2}}
$$

for some $\left|\theta_{s}\right| \leqslant 1$, where the integers $q_{s}=\left[b_{s}^{-1}\right]$ satisfy by (17) and (13)

$$
\begin{equation*}
1<\frac{1}{2} P^{c_{3} s} \leqslant P^{c_{3} s}-1<q_{s} \leqslant P^{c_{2} s} \leqslant P^{n} \tag{29}
\end{equation*}
$$

It is well-known that for $U>0, q \geqslant 1$ and $\alpha=a / q+\theta / q^{2}$ with $(a, q)=1$ and $|\theta| \leqslant 1$

$$
\sum_{x=1}^{P} \min \left(U, \frac{1}{2\|\alpha x+\beta\|}\right) \ll(U+q \log q)\left(\frac{P}{q}+1\right)
$$

holds (see [7, p. 23] or [10, p. 189]). Applying this for $s=s_{j}$, we get with (29)

$$
\begin{aligned}
T_{s} & \ll\left(k P_{2}^{s}+q_{s} \log q_{s}\right)\left(\frac{k P_{2}^{s}}{q_{s}}+1\right) \ll k^{2}\left(P_{2}^{s}+q_{s}\right)^{2} \frac{\log q_{s}}{q_{s}} \\
& \ll k^{2}\left(P_{2}^{2 s}+q_{s}^{2}\right) \frac{\log q_{s}}{q_{s}} \ll k^{2} n(\log P) P_{2}^{2 s}\left(\frac{1}{q_{s}}+\frac{q_{s}}{P_{2}^{2 s}}\right) .
\end{aligned}
$$

By (18) and (28), we conclude that for some absolute constant C_{1}

$$
T \leqslant C_{1}^{n} k^{2 n} n^{n}(\log P)^{n} P_{2}^{n(n+1)} \prod_{j=1}^{t}\left(\frac{1}{q_{s_{j}}}+\frac{q_{s_{j}}}{P_{2}^{2 s_{j}}}\right)
$$

By (29),

$$
\frac{1}{q_{s_{j}}}<2 P^{-c_{3} s_{j}}
$$

and

$$
\frac{q_{s_{j}}}{P_{2}^{2 s_{j}}} \leqslant \frac{P^{c_{2} s_{j}}}{P_{2}^{2 s_{j}}}=\left(\frac{P^{c_{2}}}{P_{2}^{2}}\right)^{s_{j}} \leqslant\left(\frac{P^{c_{2}}}{\left(\frac{1}{2}\left(P_{2}+1\right)\right)^{2}}\right)^{s_{j}} \leqslant 4^{s_{j}} P^{\left(c_{2}-c_{1}+1 / n^{2}(n+1)\right) s_{j}}
$$

Therefore,

$$
T \leqslant C_{1}^{n} k^{2 n} n^{n}(\log P)^{n} P_{2}^{n(n+1)} 4^{n^{2}} P^{-\varrho \sum s_{j}}
$$

Together with (27) and (26), this implies

$$
\begin{aligned}
\left|W_{1}(a)\right|^{4 k^{2}} \leqslant & \left(P_{2}+1\right)^{8 k^{2}-4 k} D_{l}^{2} P_{2}^{4 k-n(n+1)+n(n+1)(1-1 / n)^{l}} \\
& \times C_{1}^{n} k^{2 n} n^{n} 4^{n^{2}}(\log P)^{n} P_{2}^{n(n+1)} P^{-\varrho \sum s_{j}} \\
\leqslant & 28 k^{2} D_{l}^{2} C_{1}^{n} k^{2 n} n^{n} 4^{n^{2}}(\log P)^{n} P_{2}^{8 k^{2}+n(n+1)(1-1 / n)^{l}} P^{-\varrho \sum s_{j}} \\
= & B_{1}(P) P_{2}^{8 k^{2}+n(n+1)(1-1 / n)^{l}} P^{-\varrho \sum s_{j}}
\end{aligned}
$$

say.
Clearly, since $k \geqslant \frac{1}{4} n(n+1)$,

$$
\begin{equation*}
B_{2}(P):=B_{1}(P)^{1 / 4 k^{2}} \leqslant 2^{2}(20 n)^{1 / n^{2}} C_{1}^{1 / n} k^{1 / k} n^{1 / n}(\log P)^{4 / n^{3}} 4^{4 / n^{2}} \leqslant C_{2}(\log P)^{4 / n^{3}} \tag{30}
\end{equation*}
$$

with a constant C_{2} not depending on any of the parameters. Hence

$$
\left|W_{1}(a)\right| \leqslant B_{2}(P) P_{2}^{2+n(n+1)(1-1 / n)^{t} / 4 k^{2}} P^{-\varrho\left(\sum s_{j}\right) / 4 k^{2}}
$$

thus by (20),

$$
|W(a)| \leqslant B_{2}(P) P_{2}^{2+n(n+1)(1-1 / n)^{t} / 4 k^{2}} P^{-\varrho\left(\sum s_{j}\right) / 4 k^{2}}+2 \pi \theta_{1}\left(P_{2}+1\right)^{2} P_{2}^{2 n+2} P^{-c_{1}(n+1)}
$$

By (19), we get

$$
\begin{align*}
& |S| \leqslant \\
& \quad B_{2}(P) P_{2}^{n(n+1)(1-1 / n)^{l} / 4 k^{2}} P^{-\varrho\left(\sum s_{j}\right) / 4 k^{2}}\left(P^{\prime}+1\right) \tag{31}\\
& \quad \quad+2 \pi \theta_{1} P_{2}^{2 n+2} P^{-c_{1}(n+1)}\left(P^{\prime}+1\right)+\theta_{2} P_{2}^{2} \\
& \leqslant
\end{align*} B_{3}(P)\left(P^{1-\left(1 / 4 k^{2}\right)\left(\varrho\left(\sum s_{j}\right)-\frac{1}{2} c_{1} n(n+1)(1-1 / n)^{l}\right)}+P^{1-1 / n^{2}}+P^{c_{1}-1 / n^{2}(n+1)}\right),
$$

where $B_{3}(P)=\max \left(B_{2}(P), 2 \pi \theta_{1}, \theta_{2}\right)$.
Now choose l in such a way that

$$
\begin{equation*}
c_{1} n(n+1)\left(1-\frac{1}{n}\right)^{l}<\varrho \sum_{j=1}^{t} s_{j} \leqslant c_{1} n(n+1)\left(1-\frac{1}{n}\right)^{l-1} . \tag{32}
\end{equation*}
$$

This is possible since by assumption on the s_{j} and (15), we have

$$
\begin{equation*}
\sum_{j=1}^{t} s_{j} \geqslant 2+3+\ldots+(t+1)=\frac{1}{2} t(t+3) \geqslant \frac{1}{2} c_{0}^{2} n(n+1) \tag{33}
\end{equation*}
$$

Together with (14) which ensures that $1-1 / n^{2} \geqslant c_{1}$, (31) and (32) give

$$
\begin{equation*}
|S| \leqslant B_{3}(P)\left(P^{1-\varrho\left(\sum s_{j}\right) / 8 k^{2}}+2 P^{1-1 / n^{2}}\right) . \tag{34}
\end{equation*}
$$

Inequalities (32) and (33) imply

$$
\frac{\varrho c_{0}^{2}}{2} \leqslant \frac{\varrho c_{0}^{2}}{2 c_{1}} \leqslant \frac{\varrho \sum s_{j}}{c_{1} n(n+1)} \leqslant\left(1-\frac{1}{n}\right)^{l-1}
$$

thus

$$
\log \frac{2 c_{1}}{\varrho c_{0}^{2}} \geqslant(l-1) \log \left(1-\frac{1}{n}\right)^{-1} \geqslant(l-1) \frac{1}{n} .
$$

Since $n \geqslant 12$ by (14), this in turn yields

$$
l \leqslant 1+n \log \frac{2 c_{1}}{\varrho c_{0}^{2}} \leqslant n\left(\log e^{1 / 12}+\log \frac{2 c_{1}}{\varrho c_{0}^{2}}\right) \leqslant n \log \frac{3 c_{1}}{\varrho c_{0}^{2}}=c_{4} n
$$

say. Notice that $c_{4} \geqslant 1$. Thus by definition of k,

$$
k \leqslant n l+\frac{1}{4} n(n+1)+1 \leqslant c_{4} n^{2}+\frac{1}{4}\left(n^{2}+n+4\right) \leqslant\left(c_{4}+1\right) n^{2}
$$

Therefore, (33) gives

$$
\frac{\varrho \sum s_{j}}{8 k^{2}} \geqslant \frac{\varrho c_{0}^{2} n(n+1)}{16\left(c_{4}+1\right)^{2} n^{4}} \geqslant \frac{\varrho c_{0}^{2}}{\left(c_{4}+1\right)^{2}} \cdot \frac{1}{n^{2}} .
$$

Now (34) finally implies

$$
|S| \leqslant 3 B_{3}(P) P^{1-\gamma / n^{2}}
$$

where

$$
\gamma=\frac{\varrho c_{0}^{2}}{\left(c_{4}+1\right)^{2}}
$$

With regard to (30), this proves Lemma 2.

In the sequel, let for $r>0$ real numbers $h_{i}(1 \leqslant i \leqslant r)$ and positive integers $j_{i}(1 \leqslant i \leqslant r)$ be given such that

$$
\begin{gather*}
h=h_{1} \geqslant 1, \tag{35}\\
H=\max \left\{\left|h_{i}\right|: 1 \leqslant i \leqslant r\right\}
\end{gather*}
$$

and

$$
\begin{equation*}
1 \leqslant j=j_{1}<j_{2}<\ldots<j_{r} \leqslant J \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
J>8 \tag{37}
\end{equation*}
$$

is a real number. We define

$$
\Lambda(X, Y):=\left(\frac{\log X}{\log Y}\right)^{2}
$$

and

$$
v_{i}(j):=j^{-i}(\log 2 j)^{-2}
$$

Lemma 3. Let $T^{\prime}>2, T=T^{\prime} h$ such that

$$
\begin{gather*}
0 \leqslant P^{\prime}<P<T^{1 /(j+1)+1 / 100 j^{3}} \tag{38}\\
P(\log P)^{J}>J H(3 \log T)^{J} \tag{39}
\end{gather*}
$$

and

$$
\begin{equation*}
P>\exp \left(C J(\log 2 J)^{3}\right) \tag{40}
\end{equation*}
$$

where C is a sufficiently large absolute constant. Then

$$
\sum_{x=P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right) \ll P^{1-c v_{5}(j) \Lambda(P, T)}
$$

Proof. We intend to apply Lemma 2 and put $N:=P$,

$$
\begin{gathered}
f(x):=T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right), \\
n:=\left[12 j \frac{\log T}{\log P}\right], \\
c_{0}:=\frac{1}{12 j}, \quad c_{1}:=1-\frac{1}{6 j}, \quad c_{2}:=1-\frac{1}{5 j}, \quad c_{3}:=\frac{1}{3},
\end{gathered}
$$

and

$$
\begin{equation*}
\left\{s_{i}: 1 \leqslant i \leqslant t\right\}:=\left\{s \in \mathbf{N}: 2 \frac{\log T}{\log P} \leqslant s \leqslant 4 \frac{\log T}{\log P}\right\} \tag{41}
\end{equation*}
$$

[^1]By (38), we have

$$
\begin{equation*}
\frac{\log T}{\log P}>\left(\frac{1}{j+1}+\frac{1}{100 j^{3}}\right)^{-1}>j+1-\frac{1}{2 j} \tag{42}
\end{equation*}
$$

By (41), this yields

$$
\begin{align*}
t & \geqslant 2 \frac{\log T}{\log P}-1=\left(2-\frac{\log P}{\log T}\right) \frac{\log T}{\log P} \tag{43}\\
& \geqslant\left(2-\frac{1}{j+1}-\frac{1}{100 j^{3}}\right) \frac{\log T}{\log P} \geqslant \frac{\log T}{\log P} \geqslant c_{0} n .
\end{align*}
$$

By definition of n and (42), we have

$$
\begin{equation*}
n \geqslant\left[12 j\left(j+1-\frac{1}{2 j}\right)\right] \geqslant 12 j^{2}, \tag{44}
\end{equation*}
$$

hence

$$
\begin{gather*}
n \geqslant 12, \tag{45}\\
n \geqslant \sqrt{6 j}=\frac{1}{\sqrt{1-c_{1}}} \tag{46}
\end{gather*}
$$

and

$$
\begin{equation*}
n \geqslant \sqrt[3]{30 j}=\frac{1}{\sqrt[3]{c_{1}-c_{2}}} \tag{47}
\end{equation*}
$$

Summing up so far, we have chosen $n, t, c_{0}<1$ and $c_{3}<c_{2}<c_{1}<0$ satisfying conditions (13), (14) and (15) of Lemma 2 by virtue of (40), (45), (46), (47) and (43). It remains to check conditions (16) and (17).

For $x>0$ and $m \in \mathbf{N}$, we have

$$
\begin{equation*}
\frac{1}{m!} f^{(m)}(x)=(-1)^{m} \frac{T^{\prime}}{m!} \sum_{i=1}^{r} \frac{j_{i}\left(j_{i}+1\right) \ldots\left(j_{i}+m-1\right) h_{i}}{x^{j_{i}+m}} \tag{48}
\end{equation*}
$$

Now (39) and (38) give $P>H$. By (35), we thus get

$$
\begin{equation*}
\frac{h}{P^{j}} \geqslant \frac{\left|h_{i}\right|}{P^{j_{i}}}, \quad 1 \leqslant i \leqslant r \tag{49}
\end{equation*}
$$

which implies for $P=N \leqslant x \leqslant N+2 P=3 P$ by (48)

$$
\begin{aligned}
\left|\frac{1}{(n+1)!} f^{(n+1)}(x)\right| & \leqslant J^{n+1} T^{\prime}\left(\frac{\left|h_{1}\right|}{P^{j_{1}+n+1}}+\ldots+\frac{\left|h_{r}\right|}{P^{j_{r}+n+1}}\right) \leqslant \frac{J^{n+1} T^{\prime}}{P^{n+1}} r \frac{h}{P^{j}} \\
& \leqslant \frac{J^{n+2} T}{P^{j+n+1}}=P^{(n+2) \log J / \log P+\log T / \log P-(j+n+1)}=P^{-c_{1}^{\prime}(n+1)}
\end{aligned}
$$

where

$$
c_{1}^{\prime}=1+\frac{j}{n+1}-\frac{(n+2) \log J}{(n+1) \log P}-\frac{\log T}{(n+1) \log P}
$$

By (40), we may assume that $P>J^{24 j}$. This implies by the definition of n

$$
c_{1}^{\prime}>1-\frac{(n+2) \log J}{(n+1) \log P}-\frac{\log T}{(n+1) \log P}>1-2 \frac{1}{12 j}=c_{1}
$$

which proves (16).
In the same way, we get for $P \leqslant x<2 P$ and $s \in\left\{s_{i}\right\}$

$$
\left|\frac{1}{s!} f^{(s)}(x)\right| \leqslant \frac{J^{s+1} T}{P^{j+s}}=P^{-c_{3}^{\prime} s}
$$

where

$$
c_{3}^{\prime}=1+\frac{j}{s}-\frac{(s+1) \log J}{s \log P}-\frac{\log T}{s \log P}
$$

Using again $P>J^{24 j}$, the definition of the s_{i} gives

$$
c_{3}^{\prime}>1-2 \frac{\log J}{\log P}-\frac{\log T}{s \log P}>1-\frac{1}{12 j}-\frac{1}{2}>\frac{1}{3}=c_{3}
$$

This proves the upper bound in (17).
By (48), we have for $P \leqslant x \leqslant 2 P$ and $s \in\left\{s_{i}\right\}$ using (35)

$$
\begin{equation*}
\left|\frac{1}{s!} f^{(s)}(x)\right| \geqslant T^{\prime}\left(\frac{h}{x^{j+s}}-(r-1)\binom{J-1+s}{s} \frac{H}{x^{j_{2}+s}}\right) \tag{50}
\end{equation*}
$$

We apply a weak form of Stirling's formula, namely

$$
\left(n+\frac{1}{2}\right) \log n-n+\frac{3}{2}\left(1-\log \frac{3}{2}\right) \leqslant \log n!\leqslant\left(n+\frac{1}{2}\right) \log n-n+1
$$

For $J-1<s$, this implies together with (37)

$$
\begin{equation*}
\binom{J-1+s}{s}<s^{J-1} \tag{51}
\end{equation*}
$$

For $J-1 \geqslant s$, we have trivially

$$
\begin{equation*}
\binom{J-1+s}{s}<4^{J-1} \tag{52}
\end{equation*}
$$

By (50), (51), (52), (35) and (36), we get for $s_{0}=\max (s, 4)$

$$
\begin{align*}
\left|\frac{1}{s!} f^{(s)}(x)\right| & \geqslant \frac{T^{\prime}}{x^{j+s}}\left(h-\frac{J s_{0}^{J-1} H}{x^{j_{2}-j}}\right) \\
& \geqslant \frac{T^{\prime}}{(2 P)^{j+s}}\left(h-\frac{J s_{0}^{J-1} H}{P^{j_{2}-j}}\right) \tag{53}\\
& \geqslant \frac{T^{\prime}}{(2 P)^{j+s}}\left(h-\frac{J s_{0}^{J-1} H}{P}\right)
\end{align*}
$$

By (39), (42) and (41),

$$
P>2 J s_{0}^{J} H
$$

Therefore, (53) yields

$$
\begin{equation*}
\left|\frac{1}{s!} f^{(s)}(x)\right| \geqslant \frac{T^{\prime} h}{2(2 P)^{j+s}}=P^{-c_{2}^{\prime} s} \tag{54}
\end{equation*}
$$

where

$$
c_{2}^{\prime}=\left(1+\frac{j}{s}\right)\left(1+\frac{\log 2}{\log P}\right)+\frac{\log 2}{s \log P}-\frac{\log T}{s \log P}
$$

We have

$$
c_{2}^{\prime}=1+\frac{\log 2}{\log P}-\frac{1}{s} G
$$

with

$$
G=\frac{\log T}{\log P}-j-\frac{(j+1) \log 2}{\log P}
$$

By (40), $P>2^{2(j+1)}$. With (42), we get

$$
G>j+1-\frac{1}{2 j}-j-\frac{1}{2} \geqslant 0 .
$$

Hence, by (41) and (42), we get for $P>2^{200 j}$, which follows from (40),

$$
\begin{aligned}
c_{2}^{\prime} & \leqslant 1+\frac{\log 2}{\log P}-\frac{\log P}{4 \log T} G \\
& =1-\frac{1}{4}\left(1-j \frac{\log P}{\log T}\right)+\frac{\log 2}{\log P}+\frac{(j+1) \log 2}{4 \log T} \\
& \leqslant 1-\frac{1}{4}\left(1-j\left(\frac{1}{j+1}+\frac{1}{100 j^{3}}\right)\right)+\frac{2 \log 2}{\log P} \\
& \leqslant 1-\frac{1}{4}\left(\frac{1}{j+1}-\frac{1}{100 j^{2}}\right)+\frac{1}{100 j} \leqslant 1-\frac{1}{4 j}+\frac{1}{50 j} \leqslant c_{2} .
\end{aligned}
$$

Hence, by (54) the lower bound in (17) also holds.
Thus we have checked all the conditions of Lemma 2. Its application provides the estimate

$$
\begin{equation*}
\sum_{x=P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right) \ll P^{1-\gamma / n^{2}}(\log P)^{4 / n^{3}} \tag{55}
\end{equation*}
$$

where by definition of γ and ϱ in Lemma 2

$$
\begin{equation*}
\frac{\gamma}{n^{2}}=\frac{\varrho c_{0}^{2}}{\left(1+\log \left(3 c_{1} / \varrho c_{0}\right)\right)^{2}}\left[12 j \frac{\log T}{\log P}\right]^{-2} \geqslant \frac{\varrho c_{0}^{2}}{144 j^{2}\left(1+\log \left(3 c_{1} / \varrho c_{0}\right)\right)^{2}} \Lambda(P, T) \tag{56}
\end{equation*}
$$

and

$$
\varrho=\min \left(c_{3}, c_{1}-c_{2}-\frac{1}{n^{2}(n+1)}\right)>\min \left(\frac{1}{3}, \frac{1}{30 j}-\frac{1}{1000 j^{6}}\right)>\frac{1}{31 j}
$$

Therefore

$$
1+\log \frac{3}{\varrho c_{0}}=\log \frac{3 e}{\varrho c_{0}}<\log (3 e \cdot 31 j \cdot 12 j)<\log (56 j)^{2} \leqslant 12 \log 2 j
$$

Then (56) implies

$$
\begin{equation*}
\frac{\gamma}{n^{2}} \geqslant \frac{c}{j^{5}(\log 2 j)^{2}} \Lambda(P, T)=c \cdot v_{5}(j) \Lambda(P, T) . \tag{57}
\end{equation*}
$$

For a given positive constant \tilde{c} and $P=\exp \left(C J(\log 2 J)^{3}\right)$, where $C=C(\tilde{c})$ is sufficiently large, we have

$$
\log P=C J(\log 2 J)^{3} \leqslant(2 J)^{C \tilde{c}}=\left(\exp \left(C J(\log 2 J)^{3}\right)\right)^{\tilde{c} v_{1}(j)}=P^{\tilde{c} v_{1}(j)}
$$

Hence, by (40) we get for any absolute constant \tilde{c}

$$
\begin{equation*}
\log P \leqslant P^{\tilde{c} v_{1}(j)} \tag{58}
\end{equation*}
$$

By (42), the definition of n, and (57),

$$
v_{1}(j) \leqslant v_{2}(j) \frac{\log T}{\log P} \leqslant v_{5}(j) \Lambda(P, T)\left(j \frac{\log T}{\log P}\right)^{3} \leqslant \frac{1}{c} \cdot \frac{\gamma}{n^{2}} n^{3}=\frac{1}{c} \gamma n
$$

With $\tilde{c}:=\frac{1}{8} c$ in (58), we thus obtain

$$
\log P \leqslant P^{\gamma n / 8}
$$

or

$$
(\log P)^{4 / n^{3}} \leqslant P^{\gamma / 2 n^{2}}
$$

By (55) and (57), we therefore have

$$
\sum_{x=P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right) \ll P^{1-\gamma / 2 n^{2}} \leqslant P^{1-\operatorname{cv}(j) \Lambda(P, T)}
$$

4. Application of van der Corput's method

The next two lemmas may be found in [14]. Lemma 5 is obtained by following the proof there and keeping track of the constants.

Lemma 4 ([14, Lemma 4.2]). Let $f(x)$ be a real differentiable function with monotonic $f^{\prime}(x)$ and $f^{\prime}(x) \geqslant m>0$ or $f^{\prime}(x) \leqslant-m<0$ on the interval $[a, b]$. Then

$$
\left|\int_{a}^{b} e(f(x)) d x\right| \leqslant \frac{2}{\pi m}
$$

Lemma 5 ([14, Lemma 4.8]). Let $f(x)$ be a real differentiable function with monotonic $f^{\prime}(x)$ and $\left|f^{\prime}(x)\right| \leqslant \theta<1$ on the interval $[a, b]$. Then

$$
\left|\sum_{a<n \leqslant b} e(f(n))-\int_{a}^{b} e(f(x)) d x\right| \leqslant \frac{8}{\pi} \cdot \frac{1}{1-\theta}+\frac{4}{3} \pi+1 .
$$

Lemma 6. Let $T^{\prime}>2, T=T^{\prime} h$ and $0 \leqslant P^{\prime}<P$ such that

$$
\begin{align*}
& P \geqslant T^{1 /(j+1)+1 / 100 j^{3}}, \tag{59}\\
& P>2 J^{3} H \tag{60}
\end{align*}
$$

and

$$
\begin{equation*}
P>(2 J)^{200 J} \tag{61}
\end{equation*}
$$

Then

$$
\left|\sum_{x=P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right)\right| \leqslant 2^{5 j} \frac{P^{j+1}}{T}
$$

Proof. We use van der Corput's well-known method. Again let

$$
f(x)=T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right) .
$$

Since by (35), (36) and (60) for $P \leqslant x \leqslant 2 P$,

$$
\begin{aligned}
f^{\prime \prime}(x) & =-T^{\prime}\left(\frac{j_{1}\left(j_{1}+1\right) h_{1}}{x^{j_{1}+2}}+\ldots+\frac{j_{r}\left(j_{r}+1\right) h_{r}}{x^{j_{r}+2}}\right) \\
& \geqslant \frac{T^{\prime}}{x^{j_{2}+2}}\left(j(j+1) h x^{j_{2}-j}-(r-1) J(J+1) H\right) \\
& \geqslant \frac{T^{\prime}}{(2 P)^{j_{2}+2}}\left(2 h P-J^{3} H\right)>0
\end{aligned}
$$

$f^{\prime}(x)$ obviously is an increasing function. Because of (49), we get for $P \leqslant x \leqslant P+P^{\prime}$ by (59) and (61)

$$
\begin{aligned}
\left|f^{\prime}(x)\right| & =T^{\prime}\left|\frac{j_{1} h_{1}}{x^{j_{1}+1}}+\ldots+\frac{j_{r} h_{r}}{x^{j_{r}+1}}\right| \\
& \leqslant \frac{T^{\prime} J}{P}\left(\frac{h_{1}}{P^{j_{1}}}+\ldots+\frac{h_{r}}{P^{j_{r}}}\right) \leqslant \frac{T^{\prime} J}{P} r \frac{h}{P^{j}} \leqslant \frac{J^{2} T}{P^{j+1}} \\
& <J^{2} P^{-1 / 100 j}<J^{2}(2 J)^{-2 J / j} \leqslant \frac{1}{4} .
\end{aligned}
$$

Thus Lemma 5 implies

$$
\begin{align*}
\left\lvert\, \sum_{x=P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right)\right. & \left.-\int_{P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right) d x \right\rvert\, \tag{62}\\
& \leqslant \frac{32}{3 \pi}+\frac{4 \pi}{3}+1 \leqslant 9
\end{align*}
$$

The function $f^{\prime}(x)$ is increasing in $\left[P, P+P^{\prime}\right]$ and, by (36) and (60), we have in this interval

$$
\begin{aligned}
-f^{\prime}(x) & \geqslant T^{\prime}\left(\frac{j h}{x^{j+1}}-(r-1) \frac{J H}{x^{j_{2}+1}}\right) \geqslant \frac{T^{\prime}}{(2 P)^{j+1}}\left(j h-\frac{J^{2} H}{P^{j_{2}-j}}\right) \\
& \geqslant \frac{1}{2} \cdot \frac{T^{\prime} h}{(2 P)^{j+1}} \geqslant \frac{1}{2} \cdot \frac{T}{(2 P)^{j+1}} .
\end{aligned}
$$

Hence Lemma 4 gives

$$
\left|\int_{P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right) d x\right| \leqslant \frac{2^{j+3}}{\pi} \cdot \frac{P^{j+1}}{T} \leqslant 2^{j+2} \frac{P^{j+1}}{T}
$$

By (62) and (59), the desired result follows.
Lemma 7. Let $T^{\prime}>2,0 \leqslant P^{\prime}<P$,

$$
\begin{equation*}
P>J H\left(3 \log T^{\prime} H\right)^{J} \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
P>\exp \left(C J(\log 2 J)^{3}\right) \tag{64}
\end{equation*}
$$

Then

$$
\left|\sum_{x=P}^{P+P^{\prime}} e\left(T^{\prime}\left(\frac{h_{1}}{x^{j_{1}}}+\ldots+\frac{h_{r}}{x^{j_{r}}}\right)\right)\right| \leqslant C^{j}\left(P^{1-c v_{5}(j) \Lambda\left(P, T^{\prime} H\right)}+\frac{P^{j+1}}{T^{\prime}}\right)
$$

Proof. For $P \geqslant T^{\prime}$, the lemma obviously holds. In case $P<T^{\prime}$, (63) implies (39) and (60). By (64), the conditions (40) and (61) are also satisfied. Hence the proof is completed by Lemma 3 and Lemma 6.

Lemma 8. Let $x>2,0 \leqslant M^{\prime} \leqslant M$ and

$$
\begin{equation*}
M>\exp \left(C J(\log 2 J)^{3}\right) \tag{65}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\lvert\, \sum_{M^{\prime}<m \leqslant M} e\left(x\left(\frac{h_{1}}{m^{j_{1}}}+\ldots+\frac{h_{r}}{m^{j_{r}}}\right)\right)\right. & \mid \\
& \leqslant C^{j}\left(M^{1-c v_{5}(J) \Lambda(M, x H)}+M^{j+1} x^{-1}+H^{2}(\log x H)^{2 J}\right)
\end{aligned}
$$

Proof. For $M \leqslant J^{2} H^{2}(3 \log x H)^{2 J}$, the lemma is obvious. Thus we assume

$$
\begin{equation*}
M>J^{2} H^{2}(3 \log x H)^{2 J} \tag{66}
\end{equation*}
$$

Let $\frac{1}{2} \leqslant \varkappa<1$. Then

$$
\begin{aligned}
\left|\sum_{M^{\prime}<m \leqslant M} e\left(x\left(\frac{h_{1}}{m^{j_{1}}}+\ldots+\frac{h_{r}}{m^{j_{r}}}\right)\right)\right| & \leqslant\left.\right|_{M^{\prime}<m \leqslant M^{\star}}\left|+\sum_{\substack{\nu \geqslant 0 \\
M^{\varkappa} 2^{\nu} \leqslant M}}\right| \sum_{\substack{M^{\varkappa} 2^{\nu}<m \leqslant M^{\varkappa} 2^{\nu+1} \\
M^{\prime}<m \leqslant M}} \mid \\
& \leqslant M^{\varkappa}+\sum_{\nu} R_{\nu},
\end{aligned}
$$

where

$$
R_{\nu}=\left|\sum_{\substack{M^{\varkappa} 2^{\nu}<m \leqslant M^{\varkappa}{ }^{2} \nu^{\nu+1} \\ M^{\prime}<m \leqslant M}} e\left(x\left(\frac{h_{1}}{m^{j_{1}}}+\ldots+\frac{h_{r}}{m^{j_{r}}}\right)\right)\right| .
$$

Since $\varkappa \geqslant \frac{1}{2}$, (66) implies (63). Moreover, (65) yields (64). Therefore, we get from Lemma 7

$$
\begin{aligned}
R_{\nu} & \leqslant C^{J}\left(\left(M^{\varkappa} 2^{\nu}\right)^{1-c v_{5}(j) \Lambda\left(M^{\kappa} 2^{\nu}, x H\right)}+\left(M^{\varkappa} 2^{\nu}\right)^{j+1} x^{-1}\right) \\
& \leqslant C^{J}\left(2^{\nu} M^{\varkappa-c v_{5}(j) \varkappa^{3} \Lambda(M, x H)}+2^{(j+1) \nu} M^{(j+1) \varkappa} x^{-1}\right)
\end{aligned}
$$

In $\sum R_{\nu}$, the variable ν runs through the interval $0 \leqslant \nu \leqslant(1-\varkappa) \log M / \log 2$, hence

$$
\sum_{\nu} 2^{\nu} \leqslant 2 M^{1-\varkappa}
$$

and

$$
\sum_{\nu} 2^{(j+1) \nu} \leqslant 2^{j+1} M^{(j+1)(1-\varkappa)}
$$

For sufficiently large $\varkappa<1$, the lemma follows.
Lemma 9. Let $2 \leqslant M \leqslant M^{\prime} \leqslant \min (2 M, N) \leqslant N \leqslant x, B \geqslant 2$ and

$$
\begin{equation*}
M>\exp \left(C J(\log 2 J)^{3}\right) \tag{67}
\end{equation*}
$$

For

$$
T:=\sum_{M<m \leqslant M^{\prime}}\left|\sum_{B<n \leqslant N / m} \Lambda(n) e\left(x\left(\frac{h_{1}}{(m n)^{j_{1}}}+\ldots+\frac{h_{r}}{(m n)^{j_{r}}}\right)\right)\right|^{2}
$$

we then have

$$
T \leqslant C^{J}\left(N^{2} M^{-1-c v_{5}(J) \Lambda(M, x H)}+N^{j+2}(M x)^{-1}+N+N^{2} M^{-2} H\right)(\log x H)^{J+2}
$$

where $\Lambda(n)$ denotes von Mangoldt's function.
Proof. For $M \leqslant J H(3 \log x H)^{J}$, we obviously have

$$
\begin{aligned}
T & \leqslant J H(3 \log x H)^{J}\left(\frac{N}{M} \log N\right)^{2} \\
& \leqslant C^{J} H(\log x H)^{J}\left(\frac{N}{M}\right)^{2}(\log x)^{2} \\
& \leqslant C^{J} N^{2} M^{-2} H(\log x H)^{J+2},
\end{aligned}
$$

which proves the lemma in this case. Hence, let

$$
\begin{equation*}
M>J H(3 \log x H)^{J} . \tag{68}
\end{equation*}
$$

Clearly

$$
\begin{aligned}
T & =\sum_{M<m \leqslant M^{\prime}} \sum_{B<n_{1} \leqslant N / m} \sum_{B<n_{2} \leqslant N / m} \Lambda\left(n_{1}\right) \Lambda\left(n_{2}\right) e\left(x \sum_{i=1}^{r}\left(\frac{h_{i}}{\left(m n_{1}\right)^{j_{i}}}-\frac{h_{i}}{\left(m n_{2}\right)^{j_{i}}}\right)\right) \\
& =\sum_{B<n_{1} \leqslant N / M} \sum_{B<n_{2} \leqslant N / M} \Lambda\left(n_{1}\right) \Lambda\left(n_{2}\right) \sum_{\substack{M<m \leqslant M^{\prime} \\
m \leqslant N / n_{1}, m \leqslant N / n_{2}}} e\left(x\left(\frac{h_{1} \Delta_{1}}{m^{j_{1}}}+\ldots+\frac{h_{r} \Delta_{r}}{m^{j_{r}}}\right)\right)
\end{aligned}
$$

with

$$
\Delta_{i}=\left(\frac{1}{n_{1}^{j_{i}}}-\frac{1}{n_{2}^{j_{i}}}\right), \quad 1 \leqslant i \leqslant r
$$

Thus

$$
\begin{align*}
T & \leqslant(\log N)^{2} \sum_{n_{1} \leqslant N / M} \sum_{n_{2} \leqslant N / M}\left|\sum_{\substack{M<m \leqslant M^{\prime} \\
m \leqslant N / n_{1}, m \leqslant N / n_{2}}} e\left(x\left(\frac{h_{1} \Delta_{1}}{m^{j_{1}}}+\ldots+\frac{h_{r} \Delta_{r}}{m^{j_{r}}}\right)\right)\right| \\
& \leqslant(\log N)^{2}\left(N+2 \sum_{0<n_{1}<n_{2} \leqslant N / M^{2}}\left|\sum_{M<m \leqslant M^{\prime}} e\left(x\left(\frac{h_{1} \Delta_{1}}{m^{j_{1}}}+\ldots+\frac{h_{r} \Delta_{r}}{m^{j_{r}}}\right)\right)\right|\right) \tag{69}\\
& =(\log N)^{2}\left(N+2 T_{1}\right),
\end{align*}
$$

say.
By the mean value theorem, we have for fixed $1<n_{1}<n_{2} \leqslant N / M$

$$
0<\Delta_{r}<\ldots<\Delta_{1} \leqslant 1 .
$$

By this and (68), Lemma 7 implies

$$
\begin{align*}
T_{1} & =\sum_{0<n_{1}<n_{2} \leqslant N / M}\left|\sum_{M<m \leqslant M^{\prime}} e\left(x \Delta_{1}\left(\frac{h_{1}}{m^{j_{1}}}+\frac{h_{2} \Delta_{2} / \Delta_{1}}{m^{j_{2}}}+\ldots+\frac{h_{r} \Delta_{r} / \Delta_{1}}{m^{j_{r}}}\right)\right)\right| \\
& \leqslant C^{J} \sum_{0<n_{1}<n_{2} \leqslant N / M}\left(M^{1-c v_{5}(J) \Lambda(M, x H)}+M^{j+1}\left(x \Delta_{1}\right)^{-1}\right) \tag{70}\\
& \leqslant C^{J}\left(N^{2} M^{-1-c v_{5}(J) \Lambda(M, x H)}+M^{j+1} x^{-1} \sum_{0<n_{1}<n_{2} \leqslant N / M} \frac{1}{\Delta_{1}}\right) .
\end{align*}
$$

We set $\Delta_{0}=n_{2}-n_{1}$. For $1<n_{1}<n_{2}$ and $1 \leqslant i \leqslant r$, we get

$$
\Delta_{i}=\frac{n_{2}^{j_{i}}-n_{1}^{j_{i}}}{\left(n_{1} n_{2}\right)^{j_{i}}}=\Delta_{0} \frac{n_{2}^{j_{i}-1}+n_{2}^{j_{i}-2} n_{1}+\ldots+n_{2} n_{1}^{j_{i}-2}+n_{1}^{j_{i}-1}}{\left(n_{1} n_{2}\right)^{j_{i}}} \geqslant \frac{\Delta_{0} j_{i}}{n_{2}^{j_{i}+1}}
$$

Therefore,

$$
\begin{aligned}
\sum_{0<n_{1}<n_{2} \leqslant N / M} \sum_{\Delta_{1}} \frac{1}{\Delta_{1}} & =\sum_{\substack{0<\Delta_{0}<N / M}} \sum_{\substack{0<n_{1}<n_{2} \leqslant N / M \\
n_{2}-n_{1}=\Delta_{0}}} \frac{1}{\Delta_{1}} \\
& \leqslant \frac{1}{j_{1}} \sum_{0<\Delta_{0}<N / M} \frac{1}{\Delta_{0}} \sum_{0<n_{2} \leqslant N / M} n_{2}^{j+1} \leqslant 2\left(\frac{N}{M}\right)^{j+2} \log N .
\end{aligned}
$$

By (70),

$$
T_{1} \leqslant C^{J}\left(N^{2} M^{-1-c v_{5}(J) \Lambda(M, x H)}+N^{j+2}(M x)^{-1} \log N\right)
$$

This and (69) yield the desired result.

5. Application of Vaughan's identity

As a corollary to Vaughan's identity (see for instance [15] or [2, p. 138-140]), we have
Lemma 10. Let $U \geqslant 2, V \geqslant 2, U V \leqslant N$, and let $f(x)$ be a complex-valued function satisfying $|f(x)|=1$ for real x. Then

$$
\sum_{n \leqslant N} \Lambda(n) f(n) \ll V+(\log N) S_{1}+S_{2}
$$

where $\Lambda(n)$ denotes von Mangoldt's function, and

$$
\begin{aligned}
& S_{1}=\sum_{t \leqslant U V} \max _{w>0}\left|\sum_{w \leqslant s \leqslant N / t} f(s t)\right| \\
& S_{2}=\sum_{U<m<N / V} \sum_{V<n \leqslant N / m} \sum_{\substack{d \leqslant U \\
d \mid m}} \mu(d) \Lambda(n) f(m n)
\end{aligned}
$$

The constant implied by \ll is absolute.
Lemma 11. Let $x>0$ and

$$
\begin{equation*}
\exp \left(C J(\log 2 J)^{3}\right) \leqslant N \leqslant x^{1 / j} \tag{71}
\end{equation*}
$$

Then

$$
\begin{aligned}
&\left|\sum_{n \leqslant N} \Lambda(n) e\left(x\left(\frac{h_{1}}{n^{j_{1}}}+\ldots+\frac{h_{r}}{n^{j_{r}}}\right)\right)\right| \\
& \leqslant C^{J}\left(N^{1-c v_{5}(J) \Lambda(N, x H)}+N^{(j+2) / 2} x^{-1 / 2}+N^{5 / 6} H^{2}\right)(\log x H)^{4 J}
\end{aligned}
$$

Proof. We apply Lemma 10 with $U=V=N^{1 / 3}$ and

$$
f(n)=e\left(x\left(\frac{h_{1}}{n^{j_{1}}}+\ldots+\frac{h_{r}}{n^{j_{r}}}\right)\right)
$$

First consider S_{2}. By splitting up \sum_{m} into intervals $M \leqslant m<2 M$, we get

$$
\left|S_{2}\right| \leqslant 3(\log N) \max _{U<M<M^{\prime} \leqslant \min (2 M, N / V)}\left|\sum_{M \leqslant m<M^{\prime}}\left(\sum_{V<n \leqslant N / m} \Lambda(n) f(m n)\right)\left(\sum_{\substack{d \leqslant U \\ d \mid m}} \mu(d)\right)\right|
$$

Cauchy's inequality implies

$$
\left|\sum_{M \leqslant m<M^{*}}\right| \leqslant\left(\left.\left.\sum_{m}\right|_{V<n \leqslant N / m} \sum_{V} \Lambda(n) f(m n)\right|^{2}\right)^{1 / 2}\left(\sum_{m}\left(\sum_{\substack{d \leqslant U \\ d \mid m}} \mu(d)\right)^{2}\right)^{1 / 2}=T_{1}^{1 / 2} T_{2}^{1 / 2}
$$

say. The definition of U and (71) guarantee that

$$
U \geqslant(2 J)^{C} J(\log 2 J)^{2}
$$

Thus we may use Lemma 9 and obtain

$$
\left|T_{1}\right| \leqslant C^{J}\left(N^{2} M^{-1-c v_{5}(J) \Lambda(M, x H)}+N^{j+2}(M x)^{-1}+N+N^{2} M^{-2} H\right)(\log x H)^{J+2} .
$$

Moreover,

$$
\begin{aligned}
&\left|T_{2}\right| \leqslant \sum_{M \leqslant m<M^{\prime}}\left(\sum_{\substack{d \leqslant U \\
d \mid m}} 1\right)^{2}=\sum_{d_{1} \leqslant U} \sum_{\substack{M \leqslant m<M^{\prime} \\
d_{2} \leqslant U}} 1 \\
& \leqslant 2 M \sum_{\substack{m \equiv 0\left(\bmod d_{1}\right), m \equiv 0\left(\bmod d_{2}\right)}} \sum_{d_{1} \leqslant U} \frac{\left(d_{1}, d_{2}\right)}{d_{1} d_{2}} \leqslant 2 M \sum_{b \leqslant U} b \sum_{\substack{d_{2} \leqslant U \\
d_{1} \equiv 0(\bmod b)}} \frac{1}{d_{2} \leqslant U} d_{2} \equiv 0(\bmod b) \\
& d_{1} d_{2} \\
& \leqslant 2 M\left(\sum_{u \leqslant U} \frac{1}{u}\right)^{3} \leqslant M(\log N)^{3} .
\end{aligned}
$$

Together, we get

$$
\begin{align*}
\left|S_{2}\right| \leqslant & 3(\log N) \max _{U<M \leqslant N / V}\left(T_{1} T_{2}\right)^{1 / 2} \\
\leqslant & C^{J}(\log x H)^{(J+7) / 2} \max _{U<M \leqslant N / V}\left(N M^{-c v_{5}(J) \Lambda(M, x H)}+N^{(j+2) / 2} x^{-1 / 2}\right. \\
& \left.\quad+(N M)^{1 / 2}+N M^{-1 / 2} H^{1 / 2}\right) \tag{72}\\
\leqslant & C^{J}\left(N U^{-c v_{5}(J) \Lambda(U, x H)}+N^{(j+2) / 2} x^{-1 / 2}+N V^{-1 / 2}\right. \\
& \left.\quad+N U^{-1 / 2} H^{1 / 2}\right)(\log x H)^{4 J} \\
\leqslant & C^{J}\left(N^{-c v_{5}(J) \Lambda(N, x H)}+N^{(j+2) / 2} x^{-1 / 2}+N^{5 / 6} H^{1 / 2}\right)(\log x H)^{4 J}
\end{align*}
$$

It remains to bound S_{1}. For t in S_{1}, we have by the choice of U and V and (71) that

$$
\frac{N}{t} \geqslant N^{1 / 3} \geqslant \exp \left(C J(\log 2 J)^{3}\right)
$$

For $1 \leqslant w \leqslant N / t$, we have by Lemma 8

$$
\begin{array}{rl}
\mid \sum_{w \leqslant s \leqslant N / t} e & \left.e\left(x\left(\frac{h_{1}}{(s t)^{j_{1}}}+\ldots+\frac{h_{r}}{(s t)^{j_{r}}}\right)\right) \right\rvert\, \\
& =\left|\sum_{w \leqslant s \leqslant N / t} e\left(\frac{x}{t^{j_{1}}}\left(\frac{h_{1}}{s^{j_{1}}}+\frac{h_{2} t^{j_{1}-j_{2}}}{s^{j_{2}}}+\ldots+\frac{h_{r} t^{j_{1}-j_{r}}}{s^{j_{r}}}\right)\right)\right| \\
& \leqslant C^{J}\left(\left(\frac{N}{t}\right)^{1-c v_{5}(J) \Lambda(N / t, x H)}+\left(\frac{N}{t}\right)^{j+1}\left(\frac{x}{t^{j}}\right)^{-1}+H^{2}(\log x H)^{2 J}\right) \\
\quad=C^{J}\left(\left(\frac{N}{t}\right)^{1-c v_{5}(J) \Lambda(N / t, x H)}+N^{j+1}(x t)^{-1}+H^{2}(\log x H)^{2 J}\right) .
\end{array}
$$

Thus

$$
\begin{aligned}
\max _{w>0}\left|\sum_{w \leqslant s \leqslant N / t} e\left(x\left(\frac{h_{1}}{(s t)^{j_{1}}}+\ldots+\frac{h_{r}}{(s t)^{j_{r}}}\right)\right)\right| \\
\leqslant C^{J}\left(\left(\frac{N}{t}\right)^{1-c v_{5}(J) \Lambda(N / t, x H)}+N^{j+1}(x t)^{-1}+H^{2}(\log x H)^{2 J}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|S_{1}\right| & \leqslant C^{J}\left(\sum_{t \leqslant U V}\left(\left(\frac{N}{t}\right)^{1-c v_{5}(J) \Lambda(N / t, x H)}+N^{j+1}(x t)^{-1}+H^{2}(\log x H)^{2 J}\right)\right) \\
& \leqslant C^{J}\left(N^{1-c v_{5}(J) \Lambda(N / U V, x H)} \sum_{t \leqslant U V} t^{-1+c v_{5}(J) \Lambda(N / U V, x H)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+N^{j+1} x^{-1} \sum_{t \leqslant U V} \frac{1}{t}+U V H^{2}(\log x H)^{2 J}\right) \\
\leqslant & C^{J}\left(N^{1-c v_{5}(J) \Lambda(N / U V, x H)} c v_{5}(J) \Lambda\left(\frac{N}{U V}, x H\right)^{-1}(U V)^{c \Lambda(N / U V, x H)}\right. \\
& \left.+N^{j+1} x^{-1} \log U V+U V H^{2}(\log x H)^{2 J}\right) \\
\leqslant & C^{J}\left(N^{1-c v_{5}(J) \Lambda(N, x H)}(\log x H)^{2}+N^{j+1} x^{-1} \log N+N^{2 / 3} H^{2}(\log x H)^{2 J}\right) .
\end{aligned}
$$

For $N \leqslant x^{1 / j}$, this together with (72) implies according to Lemma 10

$$
\begin{aligned}
&\left|\sum_{n \leqslant N} \Lambda(n) e\left(x\left(\frac{h_{1}}{n^{j_{1}}}+\ldots+\frac{h_{r}}{n^{j_{r}}}\right)\right)\right| \\
& \leqslant C^{J}\left(N^{1-c v_{5}(J) \Lambda(N, x H)}+N^{(j+2) / 2} x^{-1 / 2}+N^{5 / 6} H^{2}\right)(\log x H)^{4 J}
\end{aligned}
$$

This is the desired bound.
Proposition 1. Let

$$
\begin{equation*}
\exp \left(C J(\log 2 J)^{3}\right) \leqslant N \leqslant x^{1 / j} \tag{73}
\end{equation*}
$$

Then

$$
\begin{aligned}
&\left|\sum_{p \leqslant N} e\left(x\left(\frac{h_{1}}{p^{j_{1}}}+\ldots+\frac{h_{r}}{p^{j_{r}}}\right)\right)\right| \\
& \leqslant C^{J}\left(N^{1-c v_{5}(J) \Lambda(N, x H)}+N^{(j+2) / 2} x^{-1 / 2}+N^{5 / 6} H^{2}\right)(\log x H)^{4 J}
\end{aligned}
$$

Proof. By Chebyshev's theorem ([2, p. 55]),

$$
\begin{align*}
& \left|\sum_{n \leqslant N} \Lambda(n) e\left(x\left(\frac{h_{1}}{n^{j_{1}}}+\ldots+\frac{h_{r}}{n^{j_{r}}}\right)\right)-\sum_{p \leqslant N} \log p e\left(x\left(\frac{h_{1}}{p^{j_{1}}}+\ldots+\frac{h_{r}}{p^{j_{r}}}\right)\right)\right| \\
& \quad=\left|\sum_{\substack{p \\
p^{a} \leqslant N}} \sum_{a \geqslant 2} \log p e\left(x\left(\frac{h_{1}}{p^{a j_{1}}}+\ldots+\frac{h_{r}}{p^{a j_{r}}}\right)\right)\right| \tag{74}\\
& \quad \leqslant \pi(\sqrt{N}) \log N \leqslant 4 \sqrt{N} .
\end{align*}
$$

Put

$$
g(N)=\left(N^{1-c v_{5}(J) A(N, x H)}+N^{(j+2) / 2} x^{-1 / 2}+N^{5 / 6} H^{2}\right)(\log x H)^{4 J}
$$

By partial summation, Lemma 11 with (73) and (74) gives, using $\sum_{n \leqslant N} \Lambda(n) \leqslant 2 N$ on the way,

$$
\begin{aligned}
&\left|\sum_{p \leqslant N} e\left(x\left(\frac{h_{1}}{p^{j_{1}}}+\ldots+\frac{h_{r}}{p^{j_{r}}}\right)\right)\right| \\
& \leqslant\left|\sum_{p \leqslant N} \log p e\left(x\left(\frac{h_{1}}{p^{j_{1}}}+\ldots+\frac{h_{r}}{p^{j_{r}}}\right)\right)\right| \frac{1}{\log N} \\
&+\left|\int_{2}^{N} \sum_{p \leqslant t} \log p e\left(x\left(\frac{h_{1}}{p^{j_{1}}}+\ldots+\frac{h_{r}}{p^{j_{r}}}\right)\right) \frac{d t}{t(\log t)^{2}}\right| \\
& \leqslant \frac{1}{\log N}\left|\sum_{n \leqslant N} \Lambda(n) e\left(x\left(\frac{h_{1}}{n^{j_{1}}}+\ldots+\frac{h_{r}}{n^{j_{r}}}\right)\right)\right|+\frac{4 \sqrt{N}}{\log N} \\
& \quad+\int_{2}^{N}\left|\sum_{n \leqslant t} \Lambda(n) e\left(x\left(\frac{h_{1}}{n^{j_{1}}}+\ldots+\frac{h_{r}}{n^{j_{r}}}\right)\right) \frac{1}{t(\log t)^{2}}\right| d t+\int_{2}^{N} \frac{4 d t}{\sqrt{t}(\log t)^{2}} \\
& \leqslant C^{J} \frac{g(N)}{\log N}+\frac{20 \sqrt{N}}{\log N}+2 \int_{2}^{\exp \left(C J(\log 2 J)^{3}\right)} \frac{d t}{(\log t)^{2}} \\
&+C^{J} \int_{\exp \left(C J(\log 2 J)^{3}\right)}^{N} \frac{g(t)}{t(\log t)^{2}} d t \\
& \leqslant C^{J} g(N)+C^{J}(\log x H)^{4 J}\left(\int_{2}^{N} t^{-c v_{5}(J) \Lambda(t, x H)} d t\right. \\
&\left.\quad+x^{-1 / 2} \int_{2}^{N} t^{j / 2} d t+H^{2} \int_{2}^{N} t^{-1 / 6} d t\right) \\
& \leqslant C^{J} g(N)+C^{J}(\log x H)^{4 J}\left(\sqrt{N}+\int_{\sqrt{N}}^{N} t^{-c v_{5}(J) \Lambda(t, x H)} d t\right.
\end{aligned}
$$

This completes the proof of Proposition 1.

6. Vinogradov's Fourier series method

The following method may be found in [16, p. 32] or [1, Lemma 2.1].
Let $0<\Delta<\frac{1}{4}$. For $J \in \mathbf{N}$ and real numbers A_{j} and $B_{j}(1 \leqslant j \leqslant J)$ with $0 \leqslant B_{j}-A_{j} \leqslant$ $1-2 \Delta$, there are 1-periodic functions $\psi_{j}(z)$, satisfying

$$
\psi_{j}(z)= \begin{cases}1 & \text { for } A_{j} \leqslant z \leqslant B_{j} \\ 0 & \text { for } B_{j}+\Delta \leqslant z \leqslant 1+A_{j}-\Delta\end{cases}
$$

and $0 \leqslant \psi_{j}(z) \leqslant 1$ for all z such that

$$
\begin{equation*}
\psi_{j}(z)=B_{j}-A_{j}+\Delta+\sum_{\substack{m=-\infty \\ m \neq 0}}^{\infty} a_{m, j} e(m z) \tag{75}
\end{equation*}
$$

where $a_{m, j} \in \mathbf{C}$ and, for $|m|>0$ and $1 \leqslant j \leqslant J$,

$$
\begin{equation*}
\left|a_{m, j}\right| \leqslant \frac{1}{m^{2} \Delta} \tag{76}
\end{equation*}
$$

Proposition 2. Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{J}\right)$ with $0<\sigma_{j} \leqslant 1$ for $1 \leqslant j \leqslant J$,

$$
\begin{equation*}
\exp \left(C J(\log 2 J)^{3}\right) \leqslant P \leqslant x^{1 / J} \tag{77}
\end{equation*}
$$

and

$$
D(\boldsymbol{\sigma}):=D(\boldsymbol{\sigma} ; P, x):=\operatorname{card}\left\{p \leqslant P:\left\{\frac{x}{p^{j}}\right\}<\sigma_{j}, 1 \leqslant j \leqslant J\right\} .
$$

Then we have for arbitrary $\varepsilon, 0<\varepsilon \leqslant \frac{1}{12}$,

$$
\left|D(\boldsymbol{\sigma})-\sigma_{1} \cdot \ldots \cdot \sigma_{J} \pi(P)\right| \leqslant C^{J}\left(P^{1-c \varepsilon v_{6}(J) \Lambda(P, x)}+P^{(J+2) / 2+\varepsilon} x^{-1 / 2}\right)(\log x)^{4 J} .
$$

Proof. For $\mathbf{A}=\left\{A_{1}, \ldots, A_{J}\right\}, \mathbf{B}=\left\{B_{1}, \ldots, B_{J}\right\}$, let

$$
T(\mathbf{A}, \mathbf{B})=\operatorname{card}\left\{p \leqslant P: A_{j} \leqslant\left\{\frac{x}{p^{j}}\right\} \leqslant B_{j}, 1 \leqslant j \leqslant J\right\} .
$$

Then

$$
\begin{equation*}
T(\mathbf{A}, \mathbf{B}) \leqslant \sum_{p \leqslant P}\left(\prod_{j=1}^{J} \psi_{j}\left(\frac{x}{p^{j}}\right)\right) \leqslant T(\mathbf{A}-\boldsymbol{\Delta}, \mathbf{B}+\boldsymbol{\Delta}), \tag{78}
\end{equation*}
$$

where $\boldsymbol{\Delta}=(\Delta, \ldots, \Delta)$.
By (75),

$$
\begin{align*}
\prod_{j=1}^{J} \psi_{j}\left(\frac{x}{p^{j}}\right) & -\prod_{j=1}^{J}\left(B_{j}-A_{j}+\Delta\right) \\
& =\sum_{\varnothing \neq \Gamma \subseteq\{1, \ldots, j\}} \prod_{j \notin \Gamma}\left(B_{j}-A_{j}+\Delta\right) \prod_{\substack{ } \Gamma}\left(\sum_{\substack{m=-\infty \\
m \neq 0}}^{\infty} a_{m, j} e\left(\frac{m x}{p^{j}}\right)\right) \tag{79}
\end{align*}
$$

By (76),

$$
\begin{align*}
\left|\sum_{\substack{m=-\infty \\
m \neq 0}}^{\infty} a_{m, j} e\left(\frac{m x}{p^{j}}\right)-\sum_{0<|m|<\Delta^{-2}} a_{m, j} e\left(\frac{m x}{p^{j}}\right)\right| & \leqslant\left|\sum_{|m| \geqslant \Delta^{-2}} a_{m, j} e\left(\frac{m x}{p^{j}}\right)\right| \tag{80}\\
& \leqslant\left|\sum_{|m| \geqslant \Delta^{-2}} \frac{1}{m^{2} \Delta}\right| \leqslant 2 \Delta .
\end{align*}
$$

Define L to be the right hand side of (79). The preceding inequality yields for some $|\tilde{c}| \leqslant 2$

$$
L=\sum_{r=1}^{J} \sum_{1 \leqslant j_{1}<\ldots<j_{r} \leqslant J} \prod_{i=1}^{r}\left(\tilde{c} \Delta+\sum_{0<\left|m_{i}\right|<\Delta-2} a_{m_{i}, j_{i}} e\left(\frac{m_{i} x}{p^{j_{i}}}\right)\right),
$$

hence

$$
\left|L-\sum_{r=1}^{J} \sum_{1 \leqslant j_{1}<\ldots<j_{r} \leqslant J} \prod_{i=1}^{r}\left(\sum_{0<\left|m_{i}\right|<\Delta \Delta^{-2}} a_{m_{i}, j_{i}} e\left(\frac{m_{i} x}{p^{j_{i}}}\right)\right)\right| \leqslant C^{J} \Delta .
$$

We get by (76), (79) and Proposition 1

$$
\begin{align*}
& \left|\sum_{p \leqslant P}\left(\prod_{j=1}^{J} \psi_{j}\left(\frac{x}{p^{j}}\right)\right)-\sum_{p \leqslant P}\left(\prod_{j=1}^{J}\left(B_{j}-A_{j}+\Delta\right)\right)\right| \\
& \leqslant\left. C^{J} \max _{1 \leqslant j_{1}<\ldots<j_{r} \leqslant J}\right|_{0<\left|m_{1}\right|<\Delta^{-2}} \ldots \sum_{0<\left|m_{r}\right|<\Delta^{-2}} a_{m_{1}, j_{1}} \ldots a_{m_{r}, j_{r}} \tag{81}\\
& \left.\quad \times \sum_{p \leqslant P} e\left(x\left(\frac{m_{1}}{p^{j_{1}}}+\ldots+\frac{m_{r}}{p^{j_{r}}}\right)\right) \right\rvert\,+C^{J} P \Delta \\
& \leqslant C^{J}\left(\left(P^{1-c v_{5}(J) \Lambda\left(P, x \Delta^{-2}\right)}+P^{(J+2) / 2} x^{-1 / 2}+P^{5 / 6} \Delta^{-4}\right)\right. \\
& \left.\quad \times\left(\log x \Delta^{-2}\right)^{4 J} \Delta^{-J}+P \Delta\right)
\end{align*}
$$

Choose

$$
\Delta=P^{-\gamma \Lambda(P, x)}
$$

where

$$
\gamma:=\gamma(J):=c v_{6}(J) \varepsilon
$$

and here c is the constant occurring in (81). Then by (77),

$$
x \Delta^{-2}=x P^{2 \gamma \Lambda(P, x)} \leqslant x^{1+(2 \gamma / J) \Lambda(P, x)} \leqslant x^{2},
$$

thus

$$
\left(\log x \Delta^{-2}\right)^{4 J} \leqslant C^{J}(\log x)^{4 J}
$$

and

$$
P^{1-c v_{5}(J) \Lambda\left(P, x \Delta^{-2}\right)} \leqslant P^{1-\frac{1}{4} c v_{5}(J) \Lambda(P, x)}
$$

Since $\varepsilon \leqslant \frac{1}{12}$, we get

$$
\begin{aligned}
P^{1-c v_{5}(J) \Lambda\left(P, x \Delta^{-2}\right)} \Delta^{-J} & \leqslant P^{1-\frac{1}{4} c v_{5}(J) \Lambda(P, x)+J \gamma \Lambda(P, x)} \\
& \leqslant P^{1-v_{5}(J) \Lambda(P, x)(c / 4-c / 12)} \leqslant P^{1-\frac{1}{6} c_{5}(J) \Lambda(P, x)}
\end{aligned}
$$

Clearly,

$$
P^{(J+2) / 2} \Delta^{-J} \leqslant P^{(J+2) / 2+\varepsilon}
$$

and

$$
P^{5 / 6} \Delta^{-(J+4)} \leqslant P^{5 / 6+\varepsilon} \leqslant P^{11 / 12} \leqslant P^{1-c_{5}(J) \Lambda(P, x)}
$$

Finally,

$$
P \Delta \leqslant P^{1-c \varepsilon v_{6}(J) \Lambda(P, x)}
$$

Applying all these estimates in (81), we obtain

$$
\begin{aligned}
&\left|\sum_{p \leqslant P}\left(\prod_{j=1}^{J} \psi_{j}\left(\frac{x}{p^{j}}\right)\right)-\left(\prod_{j=1}^{J}\left(B_{j}-A_{j}+\Delta\right)\right) \pi(P)\right| \\
& \leqslant C^{J}\left(P^{1-c \varepsilon v_{6}(J) \Lambda(P, x)}+P^{(J+2) / 2+\varepsilon} x^{-1 / 2}\right)(\log x)^{4 J}
\end{aligned}
$$

Let R denote the right hand side of the last inequality. Then, by (78),

$$
\begin{equation*}
T(\mathbf{A}, \mathbf{B}) \leqslant \pi(P) \prod_{j=1}^{J}\left(B_{j}-A_{j}+\Delta\right)+R \tag{82}
\end{equation*}
$$

and

$$
\begin{equation*}
T(\mathbf{A}-\boldsymbol{\Delta}, \mathbf{B}+\mathbf{\Delta}) \geqslant \pi(P) \prod_{j=1}^{J}\left(B_{j}-A_{j}+\Delta\right)-R \tag{83}
\end{equation*}
$$

Replacing \mathbf{A}, \mathbf{B} by $\mathbf{A}-\boldsymbol{\Delta}, \mathbf{A}$ and $\mathbf{B}, \mathbf{B}+\boldsymbol{\Delta}$, respectively, (82) implies

$$
T(\mathbf{A}-\mathbf{\Delta}, \mathbf{A}) \leqslant(2 \Delta)^{J} \pi(P)+R
$$

and

$$
T(\mathbf{B}, \mathbf{B}+\boldsymbol{\Delta}) \leqslant(2 \Delta)^{J} \pi(P)+R
$$

respectively. Thus, by (83),

$$
\begin{aligned}
T(\mathbf{A}, \mathbf{B}) & =T(\mathbf{A}-\mathbf{\Delta}, \mathbf{B}+\mathbf{\Delta})-T(\mathbf{A}-\mathbf{\Delta}, \mathbf{A})-T(\mathbf{B}, \mathbf{B}+\mathbf{\Delta}) \\
& \geqslant \pi(P) \prod_{j=1}^{J}\left(B_{j}-A_{j}+\Delta\right)-3 R-2(2 \Delta)^{J} \pi(P) \\
& \geqslant \pi(P) \prod_{j=1}^{J}\left(B_{j}-A_{j}\right)-6 R .
\end{aligned}
$$

Similarly, we get by (82)

$$
T(\mathbf{A}, \mathbf{B}) \leqslant \pi(P) \prod_{j=1}^{J}\left(B_{j}-A_{j}\right)+6 R
$$

Together, we have

$$
\left|T(\mathbf{A}, \mathbf{B})-\pi(P) \prod_{j=1}^{J}\left(B_{j}-A_{j}\right)\right| \leqslant 6 R
$$

Setting $A_{j}=0, B_{j}=\sigma_{j}(1 \leqslant j \leqslant J)$, the desired result follows by observing that

$$
D(\boldsymbol{\sigma} ; P, x)=T(\mathbf{A}, \mathbf{B})
$$

7. Proof of the theorem

Let m and n be positive integers, and p a prime. We define $U_{p}(m, n)$ to be the number of "carries" which occur when adding m and n in p-ary notation. Let $e(n ; p)$ be defined as in (3). An old result of Kummer is the following

Lemma 12 ($[9$, p. 116]).

$$
e\left(\binom{m+n}{m} ; p\right)=U_{p}(m, n)
$$

Proposition 3. Let $J>C_{0}$ and

$$
\begin{equation*}
N_{0}=C^{J^{10}(\log J)^{3}} \tag{84}
\end{equation*}
$$

where C_{0} and C are some absolute constants. For all $n \geqslant N_{0}$, there is a prime p such that

$$
p^{J} \left\lvert\,\binom{ 2 n}{n}\right.
$$

Proof. We apply Proposition 2 with $x:=n \geqslant N_{0}, \varepsilon:=\frac{1}{12}, P:=n^{1 /(J+1)}$, and obtain for

$$
n \geqslant \exp \left(C J^{2}(\log 2 J)^{3}\right)
$$

which is guaranteed by (84), that

$$
K_{J}(n):=\operatorname{card}\left\{p<n^{1 /(J+1)}: \frac{2}{3}<\left\{\frac{n}{p^{j}}\right\}, 1 \leqslant j \leqslant J\right\}
$$

satisfies

$$
\begin{align*}
\mid K_{J}(n) & \left.-\left(\frac{1}{3}\right)^{J} \pi\left(n^{1 /(J+1)}\right) \right\rvert\, \\
& \leqslant C^{J}\left(n^{1 /(J+1)-c \varepsilon v_{7}(J) \Lambda\left(n^{1 /(J+1)}, n\right)}+n^{(J+2+2 \varepsilon) / 2(J+1)} n^{-1 / 2}\right)(\log n)^{4 J} \tag{85}\\
& \leqslant C^{J}\left(n^{1 /(J+1)-c v_{9}(J)}+n^{7 / 12(J+1)}\right)(\log n)^{4 J} \\
& \leqslant C^{J} n^{1 /(J+1)-c v_{9}(J)}(\log n)^{4 J} .
\end{align*}
$$

By Chebyshev's theorem (see [2, p. 54]),

$$
\pi\left(n^{1 /(J+1)}\right) \geqslant \frac{1}{2}(J+1) \frac{n^{1 /(J+1)}}{\log n} .
$$

Together with (85), we have

$$
\begin{equation*}
K_{J}(n) \geqslant c^{J} \frac{n^{1 /(J+1)}}{\log n}-C^{J} n^{1 /(J+1)-c v_{9}(J)}(\log n)^{4 J} . \tag{86}
\end{equation*}
$$

We wish to show that $K_{J}(n)$ is positive for sufficiently large n. Obviously, it suffices to prove that

$$
\begin{equation*}
C \log n<n^{\bar{c} v_{10}(J)}=n^{2 \mu}, \tag{87}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu:=\frac{1}{2} \tilde{c} v_{10}(J)<\frac{1}{e}, \tag{88}
\end{equation*}
$$

without loss of generality. For $n>C^{1 / \mu}$, which is guaranteed by (84), we clearly have

$$
\begin{equation*}
C<n^{\mu} . \tag{89}
\end{equation*}
$$

Assume that for some $y>e$, there is a γ such that

$$
\begin{equation*}
\frac{\log \log y}{\log y-1} \leqslant \gamma<1 . \tag{90}
\end{equation*}
$$

Then

$$
\log (1+\gamma)+\log \log y \leqslant \gamma+\log \log y<\gamma \log y,
$$

hence

$$
y^{1+\gamma} \leqslant \exp \left(y^{\gamma}\right) .
$$

By (88), $y:=1 / \mu$ and

$$
\gamma:=\gamma(\mu):=\frac{\log \log 1 / \mu}{\log 1 / \mu-1}
$$

satisfy (90). Thus

$$
\left(\frac{1}{\mu}\right)^{1+\gamma(\mu)} \leqslant \exp \left(\left(\frac{1}{\mu}\right)^{\gamma(\mu)}\right)
$$

in other words, for

$$
N_{1}:=\exp \left(\frac{1}{\mu^{1+\gamma(\mu)}}\right),
$$

we have

$$
\log N_{1}=\left(\frac{1}{\mu}\right)^{1+\gamma(\mu)} \leqslant \exp \left(\frac{1}{\mu^{\gamma}(\mu)}\right)=N_{1}^{\mu} .
$$

Hence the function

$$
f(x)=\frac{x^{\mu}}{\log x}
$$

satisfies $f\left(N_{1}\right) \geqslant 1$. Moreover, $f^{\prime}(x) \geqslant 0$ for $x \geqslant \exp (1 / \mu)$, thus $f(x)$ is increasing in this range. Since $N_{1} \geqslant \exp (1 / \mu)$, we conclude that for $n \geqslant N_{1}$

$$
\log n \leqslant n^{\mu}
$$

Then (89) and (88) imply that (87) holds for

$$
\begin{equation*}
n>C^{1 / \mu^{1+\gamma(\mu)}} \tag{91}
\end{equation*}
$$

If (91) holds, we then have by (86) that $K_{J}(n)>0$, which means that there is a prime p satisfying

$$
p^{J+1}<n
$$

and

$$
\begin{equation*}
\left\{\frac{n}{p^{j}}\right\}>\frac{2}{3}, \quad 1 \leqslant j \leqslant J \tag{92}
\end{equation*}
$$

In order to make sure that the last conclusion holds without additional assumptions, it suffices to show that (91) is satisfied. For this reason let \tilde{c} and \widetilde{C} be arbitrary positive constants. For a sufficiently large constant C only depending on \tilde{c} and \widetilde{C}, we have

$$
\begin{aligned}
\log \left(J^{10}(\log J)^{3} \log C\right) & \geqslant\left(1+\frac{\log \log J^{10}}{\log J^{10}}\right) \log \left(\frac{2}{\tilde{c}} J^{10}(\log 2 J)^{2} \log \tilde{C}\right) \\
& \geqslant(1+\gamma(\mu)) \log \left(\frac{2}{\tilde{c}} J^{10}(\log 2 J)^{2} \log \widetilde{C}\right)
\end{aligned}
$$

This means

$$
C^{J^{10}(\log J)^{3}} \geqslant \widetilde{C}^{\left((2 / \tilde{c}) J^{10}(\log 2 J)^{2}\right)^{1+\gamma(\mu)}}=\widetilde{C}^{(1 / \mu)^{1+\gamma(\mu)}}
$$

Hence, (84) yields (91).
Now write n in p-ary notation, namely

$$
n=n_{J} p^{J}+n_{J-1} p^{J-1}+\ldots+n_{1} p+n_{0}, \quad 0 \leqslant n_{j}<p
$$

For $1 \leqslant j \leqslant J$, we have by (92)

$$
\frac{2}{3}<\left\{\frac{n}{p^{j}}\right\}=\frac{n_{j-1} p^{j-1}+\ldots+n_{0}}{p^{j}}
$$

thus

$$
\frac{n_{j-1}}{p}>\frac{2}{3}-(p-1)\left(\frac{1}{p^{2}}+\ldots+\frac{1}{p^{j}}\right)>\frac{2}{3}-\frac{1}{p} .
$$

This implies for $p \geqslant 7$

$$
n_{j-1}>\frac{1}{2} p
$$

i.e.

$$
\begin{equation*}
n_{j}>\frac{1}{2} p, \quad 0 \leqslant j \leqslant J-1 \tag{93}
\end{equation*}
$$

It follows from this that we get at least J carries when adding $n+n$ in p-ary notation. Hence, by Lemma 12,

$$
e\left(\binom{2 n}{n} ; p\right) \geqslant J
$$

which means that there is a p satisfying $p^{J} \left\lvert\,\binom{ 2 n}{n}\right.$. This completes the proof of Proposition 3.

Proof of the theorem. For C and C_{0} being the constants of Proposition 3, let n be large enough such that for some $a>C_{0}$

$$
\begin{equation*}
C^{a^{10}(\log a)^{3}} \leqslant n<C^{(a+1)^{10}(\log (a+1))^{3}} \tag{94}
\end{equation*}
$$

Then we obtain by Proposition 3

$$
\begin{equation*}
E(n)=\max \left\{J: p^{J} \left\lvert\,\binom{ 2 n}{n}\right. \text { for some prime } p\right\} \geqslant a \tag{95}
\end{equation*}
$$

By (94),

$$
a \gg\left(\frac{\log n}{(\log a)^{3}}\right)^{1 / 10}
$$

and

$$
\log a \ll \log \log n
$$

Thus (95) yields

$$
E(n) \gg\left(\frac{\log n}{(\log \log n)^{3}}\right)^{1 / 10}
$$

which proves the theorem.

References

[1] Baker, R. C., Diophantine Inequalities. Clarendon Press, Oxford, 1986.
[2] Davenport, H., Multiplicative Number Theory, 2nd edition (revised by Hugh L. Montgomery). Springer-Verlag, New York-Berlin, 1980.
[3] Erdös, P., Problems and results on number theoretic properties of consecutive integers and related questions, in Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), pp. 25-44. Congressus Numerantium, No. XVI, Utilitas Math., Winnipeg, Man., 1976.
[4] Erdős, P. \& Graham, R. L., On the prime factors of $\binom{n}{k}$. Fibonacci Quart., 14 (1976), 348-352.
[5] - Old and New Problems and Results in Combinatorial Number Theory. Monograph. Enseign. Math., 28. Enseignement Math., Geneva, 1980.
[6] Guy, R. K., Unsolved Problems in Number Theory. Springer-Verlag, New York-Berlin, 1981.
[7] Hua, L. K., Additive Theory of Prime Numbers. Amer. Math. Soc., Providence, R.I., 1965.
[8] Karacuba, A. A., Estimates for trigonometric sums by Vinogradov's method, and some applications. Proc. Steklov Inst. Math., 112 (1971), 251-265.
[9] Kummer, E.E., Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math., 44 (1852), 93-146.
[10] Prachar, K., Primzahlverteilung. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
[11] Sander, J. W., Prime power divisors of binomial coefficients. J. Reine Angew. Math., 430 (1992), 1-20.
[12] - An asymptotic formula for a-th powers dividing binomial coefficients. Mathematika, 39 (1992), 25-36.
[13] SÁRKÖzY, A., On divisors of binomial coefficients, I. J. Number Theory, 20 (1985), 70-80.
[14] Titchmarsh, E. C., The Theory of the Riemann Zeta-function, 2nd edition (revised by D. R. Heath-Brown). Clarendon Press, Oxford, 1986.
[15] Vaughan, R.C., Sommes trigonométriques sur les nombres premiers. C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), 981-983.
[16] Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers. Interscience Publishers, London-New York, 1954.
[17] - Selected works. Izdat. Akad. Nauk SSSR, Moscow, 1952 (Russian).
Jürgen W. Sander
Institut für Mathematik
Universität Hannover
Welfengarten 1
D-30167 Hannover
Germany
sander@math.uni-hannover.de
Received September 9, 1992

[^0]: (${ }^{1}$) Supported by the Tata Institute of Fundamental Research (Bombay) and the Hannoversche Hochschulgemeinschaft.

[^1]: 7-945205 Acta Mathematica 174. Imprimé le 20 janvier 1995

