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1. I n t r o d u c t i o n  

A toric variety is, roughly speaking, a complex algebraic variety which is the (partial) 

compactification of an algebraic torus T c = ( c * }  r. It admits (by definition) an action 

of T c such that,  for some point �9 EX, the orbit of * is an embedded copy of T c.  The 

most significant property of a toric variety is the fact that  it is characterized entirely by 

a combinatorial object, namely its fan, which is a collection of convex cones in R r. As a 

general reference for the theory of toric varieties we use [Odl], together with the recent 

lecture notes [Fu]. 

In this paper we shall study the space of rational curves on a compact toric variety X. 

We shall obtain a configuration space description of the space Hol(S 2, X) of all holomor- 

phic (equivalently, algebraic) maps from the Riemann sphere $2= C Uoc to X. Our main 

application of this concerns fixed components Hol~(S2,X) of Hol*(S 2, X), where the 

symbol D will be explained later, and where the asterisk indicates that  the maps are 

required to satisfy the condition f ( c c ) = . .  If Map~(S2,X)  denotes the corresponding 

space of continuous maps, we shall show that  the inclusion 

Hol~9 (S 2, X) ---* Map~ (S ~, X) 

induces isomorphisms of homotopy groups up to some dimension n(D), and we shall give 

a procedure for computing n(D).  

A theorem of this type was proved in the case X = C P  n by Segal ([Se]), and indeed 

that  theorem provided the motivation for the present work. Our main idea is that  the 

result of Segal may be interpreted as a result about confgurations of distinct points in C 

which have labels in a certain partial monoid. We shall show that  Hol~(S 2, X) may be 

identified with a space Q~(C)  of configurations of distinct points in C which have labels 
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in a partial monoid Mx, where Mx is derived from the fan of X. Then we shall extend 

Segal's method so that  it applies to this situation. 

A feature of the method is the idea that  the functor UH~riQx(U) resembles a 

homology theory. This functor has some similarities with the Lawson homology functor 

introduced in [La], in the sense that  both are generalizations of the Dold-Thom functor 

U~---~Tri Spd(U), where Spd(U) is the dth symmetric product  of U. This latter space can 

be considered as (a subspace of) the space of configurations of distinct points in U which 

have labels in the partial monoid {1, 2, ..., d}. (The label of a point, here, is simply its 

multiplicity.) The bo ld-Thorn  functor resembles the ordinary homology functor, in the 

sense that  7r~ Spd(U)~-~IiU, for i less than some dimension n(d, U) ([DT]). It is important  

to note that  the labelled configurations here are topologized so that  when two distinct 

points "collide", their labels are added; if the addition is not defined, then the collision 

is prohibited. 

A second aspect concerns a well known problem inspired by Morse theory. To explain 

this, we note that  the above theorem (with n(D) non-trivial!) is definitely not valid for 

arbitrary compact complex analytic spaces, or even complex manifolds. For example, 

there are no non-constant holomorphic maps from S 2 to the Hopf surface S i x  S 3, or 

indeed to any abelian variety. Nevertheless, there is reason to believe that  a theorem 

of the above type might hold for compact Ks manifolds, because in this case the 

holomorphic maps (in a fixed component of smooth maps) are precisely the absolute 

minima of the energy functional. A suitable extension of Morse theory would then 

explain such a result (although there would be no guarantee that n(D) would be non- 

zero; for example it is known that  there exist K~hler manifolds with very few rational 

curves). Our results confirm this Morse theory principle for smooth toric varieties, and 

they provide some evidence that  it extends even to certain singular varieties. 

This paper is arranged as follows. After a brief review of toric varieties in w we 

proceed to describe the correspondence between holomorphic maps and labelled config- 

urations in w in the case of a projective toric variety (singular or not). The proof of 

the main theorem in the case of a non-singular projective toric variety (Theorem 4.1) is 

given in w It falls into three parts. First, we show that  the homotopy groups of QX(c) 
"stabilize" as D--*co. This can be reduced to the corresponding fact for the symmetric 

product. The method we use here is based on [GKY], [Gull as the method used in [Se] 

for the case X=CP n does not seem to extend to the case of general X. Second, we 

show (using the homology-like properties of 7r~QX(C)) that  Q X ( c )  is actually homo- 

topy equivalent to a component of Map(S 2, X).  This idea, due originally to Gromov and 

Segal, has been used several times in the past, e.g. in [Mc], [Se], [Gul], [Gu2]. Third, 

we show that  this homotopy equivalence actually arises from the inclusion map of the 
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theorem. In w we discuss the considerably more difficult case of singular projective toric 

varieties. We are not able to give a general result here which covers all cases, but  we 

shall establish the result in a basic situation (Theorems 5.1 and 5.2) and then illustrate 

b y  examples how our method can in principle be applied to the remaining cases. We also 

sketch how the results may be generalized to non-projective toric varieties. For technical 

reasons we study only compact  toric varieties in this paper,  although it seems likely that  

a similar method also works in the non-compact  case (see [GKY] for an example). 

The author is indebted to A. Kozlowski and K. Yamaguchi for numerous helpful 

conversations concerning configuration spaces. He is also very grateful to D. Cox, M. Mc- 

Connell, T. Oda, M. Oka, B. Sturmfels and A. Vitter for their comments.  In addition, 

Professor Oda suggested a number of improvements to earlier versions of this paper,  and 

these were greatly appreciated. 

2. Tor ic  v a r i e t i e s  

We shall summarize some of the basic properties of toric varieties, from [Odl]. Let X 

be an irreducible normal algebraic variety. One says that  X is a toric var ie ty  if it has 

an algebraic action of an algebraic torus T C = ( c * )  r, such that  the orbit T c .  * of some 

point �9 E X is dense in X and isomorphic to T c .  

A toric variety is characterized up to isomorphism by its fan, which is a finite 

collection A of strongly convex rational polyhedral cones in R r such that  every face 

of an element of A belongs to A and the intersection of any two elements of A is a 

face of each. (A strongly convex rational polyhedral cone in R ~ is a subset of R r of the 

form {~-]~=1 ain~ l ai ~>0}, where {nl,  ..., us} C Z ~, which does not contain any line.) Given 

a fan A, an associated toric variety may be constructed abstract ly as a union of affine 

varieties Uo, c~EA. 

It  is possible to give a concrete description of project ive toric varieties, as follows. Let 

ml ,  ..., m N  E Z r, such that  the elements m~ - m j  generate Z r. Consider the action of (C*)~ 

on C P  N given by the formula u. [z0; ...; ZN] = [Z0; U T M  Zl;...; U'~NZN], where u =  (Ul, ..., u~), 

ml = ((mi)l ,  ..., (mi)r) ,  and u m~ =u~ m~)l ... u (m')~. Then the closure of the orbit of [1; ...; 1] 

is a toric variety. This gives rise to a second characterization of a toric variety embedded 

in projective space, namely that  it is defined by equations of the form "monomial in 

zo, ..., z g  = monomial in Zo, ..., ZN". A third explicit description will be mentioned at the 

end of w 

From the general construction, it follows that  there is a one-to-one correspondence 

between TC-orbits  of codimension i in X and cones of dimension i in A. The closure of 

the TC-orbi t  corresponding to a cone a is a toric subvariety; it is the union of the orbits 
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corresponding to those 7-6 A such that  (r is a face of 7. Not surprisingly, geometrical and 

topological properties of X are reflected in the fan A. For example, X is non-singular 

if and only if, for each aEA,  the generators n l , . . . , ns  can be extended to a generating 

set for Z ~ ([Odl, Theorem 1.10]). The variety X is compact if and only if U ~ A  a = R ~  

([Odl, Theorem 1.11]). From now on we shall assume that X is a compact toric variety. 

We shall be particularly concerned with the topology of X, and with line bundles 

over X. It is known that  the fundamental group of any toric variety X is isomorphic to 

the quotient of Z r by the subgroup generated by U~ez~ aMz~ ([Odl, Proposition 1.9]). 

From this and the compactness criterion, 7rlX=0. To get further information, we need 

to introduce some more notation. Let a l ,  ..., a~ be the one-dimensional cones in A. We 

have aiV)Z~=Zvi for some viEZL Let X1, ...,X~ be the closures of the corresponding 

(codimension one) TC-orbits in X. Equivariant line bundles on X correspond to invariant 

Cartier divisors on X. If X is compact, these correspond to "A-linear support functions", 

i.e. functions h: A ~ R  which are linear on each cone a and Z-valued on AV)Z ~ ([Odl, 

Proposition 2.4]). Let SF(A) denote the group of A-linear support functions. For hE 

SF(A), a divisor of the corresponding line bundle is given by E i ~ l  h(vi)Xz. Hence we 

obtain an inclusion SF(A)--*{~=I  Z~r~, h ~ -~E~ l  h(v~)a~. From now on, we shall identify 

SF(A) with a subgroup of @i~] Za~. It represents the subgroup consisting of invariant 
U Cartier divisors of the group (~=1  Zai of invariant Well divisors. The inclusion is an 

isomorphism if X is non-singular ([Odl, Proposition 2.1]). 

We have another natural inclusion 5: Z ~ --*SF(A), m~-* <m,. ), and the quotient group 

is isomorphic to the Picard group Pic(X)-~HI(X, O'x), if X is compact ([Odl, Corol- 

lary 2.5]). Moreover, in this case, it is known that  Hi(X, O x ) = 0  for i~>1 ([Odl, Corol- 

lary 2.8]), so we have H 2 X ~ H I ( X ,  O*x)~-Pic(X)~-SF(A)/ZL Since we consider maps 

S2--*X in this paper, we shall need a description of the group ~r2X. If H2X is torsion 

free, then H2X~(H2X)  *, and so we have 

7c2X ~- H2X ~ (H2X) * ~ (SF(A)/Z~) * ~ Zer  ~*, 

where 5*: SF(A)*--~(Z~) * is the dual of 5. If X is non-singular then H2X is torsion free, 

because the integral cohomology of X is torsion free, by a theorem of Jurkiewicz-Danilov 

([Odl, p. 134]). 

Example 2.1: Complex projective space, X = C P  n. Let El ,  . . . ,En be the standard 

orthonormal basis of R ~. Let 00, ..., ~,~ be the one-dimensional cones spanned by E0 =  

- ~i~=~ El, E~, ..., En (respectively). We obtain a fan in R n by taking the cones spanned 

by all proper subsets of {00, .-., P~} (together with the zero-dimensional cone given by 

the origin). The associated toric variety is isomorphic to C P  ~. In terms of the usual 

homogeneous coordinates for C P  '~, the algebraic torus T C =(C*)  ~ acts by the formula 
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(Vl,  . . . ,  Vn)" [Z0 ; . . - ;  Zn] ---- [Z0; Vl Zl ; . . . ;  Vn Zn]. Let * = [1; ...; 1]. The closures o f  t h e  c o d i m e n -  

sion one TO-orbits are the hyperplanes Po, ..., Pn, where P~ is defined by the condition 

Zi-=O. 

Example 2.2: The Hirzebruch surface X----Ek ([Odl, p. 9, Example (iii)]). Consider 

the fan in R 2 given by the four two-dimensional cones (and all their faces) spanned by 

the four vectors Vl--(1,0), v2=(0, 1), v3 = ( - 1 ,  k), v4--(0, -1) .  Thus, the one-dimensional 

cones in this fan are ai--R~>oV/for i--1, 2, 3, 4, and we have a i • Z 2 = Z v i  . The construc- 
4 tion produces a variety isomorphic to ~'k- The classes [al], [a2], [0"3], [(74] in (~i=1 Z(7i/z2 

satisfy the relations [al]--[(73], [a4] = [(72] + k[a3] (corresponding to the generators (1, 0), 

(0, 1) of Z2). Hence H2Ek-~ZOZ. To describe this variety directly, let us consider the 

embedding 

Ek -~ {([Xo; Xl; x2], [Yl; Y2])IxlY k ----- x2yk2} C_ C P  1 • C P  2. 

The algebraic torus TC=(C*)  2 acts on Ek as follows: 

(Vl,  V2)'([XO;Xl;X2], [Yl;Y2]) ~-- ( [VlX0;v2kxl ;X2] ,  [Yl;V2Y2])" 

Let �9 =([1; 1; 1], [1; 1]). The closures of the codimension one TC-orbits are the four em- 

bedded copies of C P  1 defined by X1--{x2=0, Yl =0}, X2--{Xl=0, x2 =0}, X3={Xl=0,  

y2=0}, X4={xo--0}. The natural projection Ek--*CP 1 exhibits Ek as P (O(0) |  

which is the bundle obtained from O ( - k )  by fibre-wise one point compactification. The 

0-section and co-section are given by X2 and X4, and the fibres over [0; 1], [1; 0] are given 

by X l , X  3. 

Example 2.3: The weighted projective spaces X--P(ao,. . . ,an) ([Fu, w The 

weighted projective space P(a0, ..., an) is defined to be the quotient of C P  n by the action 

of the finite group (Z/a0Z)•  ... • (Z/anZ) given by 

. . . ,  . . . ;  = [ ozo; . . . ;  

where wi is a primitive a~th root of unity. Without loss of generality we may assume 
n a0= l .  In this case, a suitable fan is generated by the vectors -~-~i---1 hiEs, El, ..., E~, 

and we have H 2P(ao,..., an) -~ Z. These varieties may have singularities. 

Example 2.4: Compact non-singular toric surfaces. These are classified in [Fu, w 

and [Odl, w167 1.6, 1.7]. They are obtained from C P  2 or Ek by blowing up a finite number 

of fixed points of the torus action. 

Example 2.5: The closure of an algebraic torus orbit in a (generalized) flag mani- 

fold. A Lie-theoretic description of the fan is given in [FH]; see also IDa] and [Od2], and 
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the references given in [Od2] to closely related work of the Gelfand school. It was pointed 

out in [Od2] that  the normality of these varieties remains to be verified. This omission has 

recently been rectified in [Da], in the case of generic orbits. These varieties may have sin- 

gularities. As a concrete example, we mention the famous "tetrahedral complex", which 

is a singular three-dimensional subvariety X of the Grassmannian Gr2 (C4). For historical 

remarks,(1) including a description of the role played by this variety in the early develop- 

ment of Lie theory, we refer to w of [GM]. In mundane terms, if Gr2(C 4) is realized as 

the subvariety of C P  5 given by the usual Pliicker equation z o z l -  z2z3 q-z4z5 ~-0, then X 

is given by the equations ZoZl =az2z3 =j3Z4Zh, where c~, ~ are fixed complex numbers such 

that  1 - a  -1 +~3-1--0 and a, ~ r  1, 0~. If, on the other hand, Gr2(C 4) is considered as 

a generalized flag manifold of the group SL4(C), and if (C*) 3 is considered in the usual 

way to be a maximal torus of SL4(C), which therefore acts naturally on Gr2(C4), then 

X occurs as the closure of a generic orbit. It follows that  the fan of X can be obtained 

from the results of w of [FH]. After some re-normalization, it is the fan in R 3 with six 

three-dimensional cones (and all their faces) spanned by the vectors (4-1, 5=1, + l ) .  The 

lattice is taken to be that  which is generated by ( i l ,  5=1, 5=1), however, rather than Z 3. 

One has H 2 X ~ Z .  

3. The configuration space for projective toric varieties 

As in w let hi,  ..., a~ be the one-dimensional cones in the fan A, and let X1, ..., X~ be 

the closures of the codimension one TO-orbits in X. Thus, X1 U...UX~ is the complement 

of the "big orbit" T c .  . .  We shall assume as usual that  H2X is torsion free, in order to 

make use of the description of ~r2X which was given in w 

If f is a holomorphic map such that  f(cx~)=*, then f ( S  2) is not contained in any 

of the subvarieties Xi, and so f ( S2 )nX i  must be a finite (possibly empty) set of points. 

We associate to f the finite set of distinct points {z e C[ f ( z ) ~ T  c .  * }, and to each such 

point z we associate--provisionally--a "label" Iz=((lz)l,...,(Iz)~), where (Iz)i is the 

non-negative integer given by the (suitably defined) intersection number of f and Xi 
at z. 

It turns out to be more natural to regard the label lz as an element of SF(A)*, 

i.e. Hom(SF(A),  Z). Therefore, the provisional definition of the labelled configuration 

associated to f will be replaced by the following construction. Let Q(C; SF(A)*) be the 

space of configurations of distinct points in C, where the points have labels in the group 

SF(A)*. An element of Q(C; SF(A)*) may be written in the form {(z, lz)}zeI, where I is 

a finite subset of C and {lz}zci C_SF(A)*. There is a natural topology on Q(C; SF(A)*) 

(1) See also T. Hawkins, The birth of Lie's theory of groups, Math. Intelligencer, 16 (1994), 6-17. 



T H E  T O P O L O G Y  O F  T H E  S P A C E  O F  R A T I O N A L  C U R V E S  O N  A T O R I C  V A R I E T Y  125 

which permits two distinct points in a configuration to "coalesce", whereupon their la- 

bels are added. Thus, Q(C; SF(A)*) consists of a collection of disconnected components 

QD(C; SF(A)*), indexed by elements D~-)-~z~ I lz of SF(A)*. Each component is con- 

tractible as all particles may be moved to the origin. 

Definition. To a holomorphic map fEHol*(S~,X) we associate a configuration in 

Q(C; SE(A)*) by means of the map 

ax: Hol*(S 2, X) ~ Q(C; SF(A)*), a x ( f )  = {(z, lz) [ f (z)  f~ T c.  * }, 

where, for any (Cartier) divisor ~-ESF(A), lz(T) is the multiplicity of z in the divisor 

f-l(~-). 

Our main observation will be that  the map ~ x  is a homeomorphism to its image, and 

that  the image has a simple characterization. To obtain this characterization, we obselve 

that  the configuration obtained from a map f must satisfy two kinds of properties. 

First, geometry forces the following conditions on the label lz of a point z: 

(X) If ~-/>0, then Iz(T)~O. If T i l n . . . n % = o ,  then lz('ri,)...l~(~i~)--O (i.e. l~(7i~), 
..., l~ (Ti~) cannot all be non-zero). 

If X is non-singular, so that  SF(A)* "~ =~i=1 Zai, then condition (X) says that  at least 

one of the (non-negative) integers l~ (r ..., lz(ai~) must be zero whenever ail,..., aij do 

not lie in a single cone. 

Second, we may interpret topologically the integer ~ z  lz (T) as the class f* [~-] E H~S 2. 
Since the image of the inclusion ~: Zr--*SF(A) is zero in SF(A)/Zr-~HaX, we have: 

(D) The vector D=~-:~ z lzeSF(A)* is in the kernel of the map ~*: SF(A)*--~(Z~) *. 

It follows from the identification rr2X-~KerL * (when H2X is torsion free; see w 

that  we may regard D as the homotopy class of f .  We shall write MapD(S 2, X) for this 

component of the space of continuous maps, and HOlD(S 2, X) for its subset consisting 

of holomorphic maps. 

Condition (X) is a local condition, in the sense that  it is purely "label-theoretic". 

It depends only on the toric variety X. Condition (D), on the other hand, is a global 

condition, which depends on f .  We shall show that  (X) and (D) are the only conditions 

on the configuration associated to f .  

Definition. Q x ( c )  denotes the space of configurations of distinct points in C with 

labels in SF(A)* such that  conditions (X) and (D) are satisfied (for a fixed DESF(A)*). 

It should be noted that  QDX(C) is in general a topologically non-trivial subspace of 

the contractible space QD(C; SF(A)*), because condition (X) prevents certain types of 

collisions. 
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PROPOSITION 3.1. Let X be a projective toric variety, such that H 2 X  is torsion 

free. Then the map aX : no l~ (S  2, X)---~Qx(C) is a homeomorphism. 

Proof. Let 0: X - - * C P  ~r be an equivariant embedding with 8(.)--[1; ...; 1]. The fact 

that  0 is equivariant means that  it is induced by a map of fans r  CPN ([Odl, 

w i.e. a Z-linear homomorphism r Z ~--*z g whose R-linear extension carries each 

cone of A x into some cone of A cPN . Here, A X is the fan of X, and A CPN is the fan 

of C P  g.  Let el, ..., er and El ,  ..., EN be the standard orthonormal bases of R ~ and R N, 

respectively. We denote the one-dimensional cones of A x by al ,  ...,a~, and those of 

A CP~r by Q0, ..., ON, as usual. 

We have an inclusion map 0': Hol~)(S ~, X)---Hol~(S 2, c P N ) ,  where nol~(S 2, C P  N) 

denotes the space of holomorphic maps f of some degree d (depending on D) such that  

f(r  " 1]. We also have a map 0": x __, c p  N �9 ", QD(C) Qd (C), induced by T*:SF(AX)*-+ 

SF(ACpN) *, where T: SF(ACPN)-*SF(AX) is given by composition with r The follow- 

ing diagram is commutative: 

Hol~(S 2, X) 0' > Hol~(S 2, c p g )  

c~X l ~cpN l 
Q(C; SF(AX) *) ~ Q(C; SF(ACpN)*). 

Note that  the m a p  ol c P N  gives the well known homeomorphism between Hol~(S 2, C P  N) 

and the space of ( N +  1)-tuples of coprime monic polynomials of degree d. 

Next we claim that  8"(QX (C)) c_ Qd cPN(c).  If { (z~, l~  ) }~ �9 Qx D (C), then we must 

check that  the configuration {(za, T*(lz . ) )}a  satisfies the two conditions " ( c p N )  '' and 

"(d)". The first of these is clear from geometrical considerations. The second amounts 

to the condition that  ~ T* (lz~) belongs to the kernel of the map SF(ACPN)*-+ (ZN) *. 

That  this is true follows from the fact that  ~ l~  belongs to the kernel of the map 

SF(ZXx)*-~ (Zr) * . 

Since 0' and a cPN are injective, it follows from the above diagram that  a X is injec- 

tive. To show that  a X maps surjectively onto Qx (C), we must show that  a holomorphic 

map f :  S2---)CP N, which has been constructed from a configuration in the image of 0", 

actually factors through the embedding 8: X---*CP N. To do this, we shall need to de- 

scribe the maps 0', 0" more explicitly. We begin with 0'. The embedding 0: X - ~ C P  N 

(and hence the map 0') is determined by the restriction (C*)r---(C*) N of 0 to the corre- 

sponding tori ([Odl, Theorem 1.13]). This is given by (Zx .... , zr) ~-~ (zml, ..., z raN), where 
N r  x}Ei, and where z m~ means z~m')'.., z (m')~ Thus, X may be described 

explicitly as the closure in C P  y of the set of elements of the form [1; zm~;...;zmN], 
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ze(C*) ~. Now we turn to 0". Let {(z~,lz,)}~ be an element of QDX(C); its image un- 

der 0" is {(z~, T*(lz.))}~. By the remarks above, this configuration lies in QcPNtc~ d k ] ,  SO 

it corresponds to an ( N +  1)-tuple (P0, ...,PN) of coprime monic polynomials of degree d. 

The exponent of z -  z~ in Pi (z) is T* (Iz~) (Qi) = lz~ (T(Qi)). To find the explicit form of Pi, 

T we have to compute T(~i). By definition we have (e~)=-~j=~(e~,r Now, one 
N may verify by direct calculation that  (Pi-~o,  ~k=l XkEk)=Xi, SO we obtain 

u u 

T( o) : : 

j = l  j = l  

Hence the exponent of z - z ~  in pi(z)po(z) -1 is lz.(Z~.=l ~ 
where a~----Iz.(~_l(Vj)kaj). Observe that  y~j~=l(Vj)kaj belongs to SF(A), since its 

value on vi is just (Vi)k. Hence a~' is an integer, and we have 

pi(z)po(z)-a = I-I(z_z~)~=~(mjka~ = ql(z)(mJ~.., q~(z)(m,)~ = qm,, 
OL 

where qk(z) denotes the rational function YL (z-z~)  ~ .  This completes our explicit de- 

termination of the map 0 H. It follows immediately from this and the earlier description 

of 0' that  the map represented by (P0, ...,PN) factors through X. Hence a x maps sur- 

jectively onto Q x ( c ) ,  as required. We have now shown that  c~ X is bijective. It is a 

homeomorphism because it is a restriction of a cPN, which is a homeomorphism. [] 

Example 3.2: Complex projective space CP ~. With the notation of Example 2.1, we 

have SF(A)-~(~)~= 0 ZQi--~SF(A) *. The map ~* is given by 

n 

(xl-x0,...,xn-x0). 
i=O 

D n For = ~ = o  dQ~ E Ker F,  QDx(C) consists of all configurations such that  the labels l~ = 
n X ~ i=0  i Pi satisfy the conditions 

(X) x0, ...,xn~>0 and xo ...x,~=O, 

(D) E z  x0 . . . . .  )-~ x~ (=d) .  

(Explanation: A map f C Hol~(S 2, C P  ~) may be identified explicitly with an (n +  1)- 

tuple (P0, ...,Pn) of monic polynomials of degree d with no common factor. The divisor 

f - l (p i )  is given by the roots of Pi. Thus, the labelled configuration associated to f is 

1 the set of distinct roots z of P0 ...P~, where the label ~=Y~i=o xiyi of z indicates that  z 

is a root of Pi of multiplicity xi.) 
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Example 3.3: The Hirzebruch surface Ek. From Example 2.2, 

and the map t* is given by 

4 

SF(Z ) = ~ G Z o ,  = ~ 
i----1 

4 

t*: E XiO'i ~ (X 1 -x3,x2q-kx3-x4). 
i : l  

Conditions (X) and (D) are: 

(X) xl,...,Xa~>0 and xlx3=O, X2xa=O, 

(Explanation: From the embedding EkC_Cp1 x C P  2 of Example 2.2, we see that  a 

map fEHol*(S 2, E~) may be identified explicitly with a 5-tuple of monic polynomials 
((P4, k k P2Pz, P2Pl ), (Pl, P3)), such that  Pl, P3 are coprime and P2, P4 are coprime. The divi- 

sor f - l ( X i )  is given by the roots of Pi- Thus, the labelled configuration associated to f 
4 is the set of distinct roots z of PlP2P3P4, where the label l z = ~ = l  xiai of z indicates 

that  z is a root of p / o f  multiplicity x~.) 

Example 3.4: The "quadric cone" z22=ZlZ3 in C P  3. (The space of rational curves 

on this variety was considered in detail in [Gul].) Consider the fan in R 2 given by the 

three two-dimensional cones (and all their faces) spanned by the vectors vl =(1, 0), v2 = 

( - 1 , 2 ) , v 3 = ( 0 , - 1 ) .  It can be shown that  this fan arises from the quadric cone X in 

C P  z which is defined by the equation z~ =ZlZ z. Indeed, this is an example of a weighted 

projective space (see Example 2.3), namely P(1, 1, 2). The torus ((3*) 2 acts on X by 

(u, v)-[zo; zl ; z2; z3] ---- [Zo; UVZl ; uz2; uv-1 z3]. We have 

SF(A) - {hi al + h2a2 + haa3 I hi,  h2, h3 e Z, hi + h2 �9 2Z}, 

SF(A)* ~ {XlO" 1 -~x20" 2 q-x30" 3 I Xl, x2 �9 l z ,  x3, Xl -q-x2 �9 Z} ,  

where we have identified SF(A)* in an obvious way with a lattice in Ral@Ra2(~Ra3.  

The map 5" is given by 

~*: Xl al + X2a2 + x3a3 ~ ( xl  - x2, 2 x 2 -  x3 ). 

Thus, for D ~-dal + da2 + 2da3, we see that  QD x (C) consists of all configurations such that  

the labels l~ =Xlal  q-X2a2-4-X30"3 satisfy the conditions 

(X) Xl,X2,x3~O and XlX2X3--O, 

(D) 2E Xl=2E x =E x3 (=2d). 
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Example 3.5: The weighted projective space P(1, 2, 3) (see Example 2.3). This is a 

del Pezzo surface. A suitable fan is the one generated by the vectors v l=(1 ,0) ,v2= 

(0, 1), v a = ( - 2 , - 3 ) .  It can be shown (see Appendix 2) that 

SF(A) ~ {hi c rl + h=a2 +h3cr3 ] hi, h~, h3 E Z, h2 + ha E 2Z, hi + 2ha, 2hl + h3 E 3Z}, 

rv 1 z 1 l z ,  SF(A)*--- {Xlr a I Xl E 3 , x2 E sZ, x3 E 

Xl + 4x3: 2Xl + 2x3, x2 + 3x3, Xl + X2 +X3 E Z }, 

and that the map L* is given by 

g*: 2710" 1 "~ a72 O" 2 q- xaa3 ~ (z l  - 2xa, x2 - 3xa). 

For D =  2dal +3da2 +da3, we see that QD X (C) consists of all configurations such that the 

labels lz =Xla l  -bx2o'2 -4-X30"3 satisfy the conditions 

(X) xl,x2,xa>~O and XlX2X3=0, 

(D) Z ,  xl =2d, ~-~ x2 =3d, E~ x3=d.  

Example 3.6: The tetrahedral complex (see Example 2.5). We shall use the following 

notation: 

V12 : (1, 1 , - 1 ) ,  v13 = ( 1 , - 1 ,  1), v~a ----- ( - 1 ,  1, 1), va2a = (1, 1, 1), 

'/212t : ( - 1 ,  - 1 ,  1), v13/~-- ( - 1 ,  1 , - 1 ) ,  v~3 : ( 1 , - 1 , - 1 ) ,  v123' = ( - 1 , - 1 , - 1 ) ,  

and we shall write a.  =R~>oV., ' -- ' a.-R>~ov.,  where �9 ranges over the subscripts 12, 13, 23, 

123. One obtains the identification 

where (H) denotes the system of equations 

h ! 12 +hla = h123 q- h23, 

h 12 -~" h23  = h123  -4- h i 3  , 

h 1 3 q - h 2 3  t = h123+h12 , 

I ! l 
h12-4 -h13  = h123q-h23, 

l t / 
h i 2  q- h23 = hi23 q- h i 3  , 

! ! i 
h13 + h23 = h123 + h12. 

To identify the dual group SF(A)*, let us denote by V the subspace of W = ( ~ R a . ) @  

((~ Rcr') defined by the equations (H). Then SF(A)* may be identified with a lattice in 

the vector space W * / V  ~ (where V~ {f  E W ' I f ( V ) = 0 } ) ,  namely the lattice of functionals 

which take integer values on SF(A). Since V ~ is generated by the six elements cr12+ 

cqz-aa23-cry3 etc., one may represent any element of W * / V  ~ by a unique element x =  

9-945205 Acta Mathematica 174. hnprimd le 20 janvier 1995 
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x ,a .  6W.  This defines an element of SF(A)* if and only if it takes integer values on 

SF(A). It is easy to check that this is so if and only if x. EZ for all .. Thus we arrive at 

the identification 

SF(n)* zo.- 

Conditions (X) and (D) are as follows: 

(X) The integers X12 , X13, X23, X12+X13+X123, X12+X23+X123, X13+X23+X123 are 

non-negative, but not simultaneously positive, 

(D) ~ z  x12 = ~ z  X13 = ~ z  X23 = -  ~ z  X123 =d, where D=dal2 +dal3 +do'23 +dcr123. 

4. The theorem for non-singular projective toric varieties 

If X is a non-singular toric variety, then we have SF(A) *~ =(~i=l Zai, and so the ho- 

d motopy class of a map S2-~X is given by an element D = ~ i _  1 ~ai of the kernel of 

the homomorphism C: ( ~ 1  Zai --*z~, ai~-*vi, where each di is a non-negative integer. 

(Recall from w that, in the non-singular case, 7r2X may be identified with Ker ~* .) From 

the identification nol~(S 2, X)~-QDX(C) of Proposition 3.1, we have the following conse- 

quences: 

(i) Hol~(S 2, X) is connected, 

(ii) the fundamental group of Hol~(S 2, X) is free abelian of finite rank. 

The first of these follows from the fact that the space Qx (C) may be obtained from 

the affine space of u-tuples of monic polynomials of degrees dl, ..., d~, by removing a finite 

collection of complex hypersurfaces. The second is proved in the Appendix of [GKY]. 

THEOREM 4.1. Let X be a non-singular projective toric variety. Then the inclusion 

Hol~ (S 2, X) --* Map~ (S 2, X) 

is a homotopy equivalence up to dimension d, where d=min{ dl, ..., d~} (i.e. this map in- 

duces isomorphisms on homotopy groups in dimensions less than d, and an epimorphism 

in dimension d). 

There are two approaches to proving this theorem, depending on how one views the 

space QX(c). The first way, which was the original motivation for this paper, is to view 

QX (C) as a subspace of QCpN(c) via the inclusion map 0" (see the proof of Proposi- 

tion 3.1). It is the subspace consisting of configurations of points whose labels satisfy the 

additional condition that they belong to the image of the linear transformation T*. This 

condition arises because of the fact (mentioned earlier) that an embedding of X in CP g 

may be chosen such that the equations of X are all of the form "monomial -= monomial". 
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It suggests that the theorem might be proved by interpreting Segal's proof for C P  N in 

terms of labelled configurations, and then imposing the additional linear condition on the 

labels. While this is essentially valid, there are some technical difficulties, and it is more 

convenient (and perhaps more natural) to work with the space Q x ( c )  directly, without 

using a particular projective embedding of X. This is what we shall do. 
Let x Qdl,...,d~ (U) be the space of configurations of distinct points z in U(_CC) with 

labels lzcSF(A)* which satisfy condition (X), with ~ z  lz(ai)=di  for all i (where di>~O 

for all i). Let V be an open subset of C with U c V .  One may define a natural inclusion 
�9 X 3: Qdl ..... d~ ..... d~ (U)--*Q~ ..... d~+l ..... d~ (V) by adjoining to each configuration a fixed point 

in V - U  with the label hi. 

�9 x __~ x V PROPOSITION 4.2. The inclusion 3:Qd~ ..... d l , . . . , du (U)  Qdl ..... diq-1 . . . . .  du ( ) is a ho- 
motopy equivalence up to dimension di. 

Proof. This result is proved in [GKY]. The idea of the proof is to reduce it to the well 

known fact that  the inclusion Spd(U)-~Sp d+l (V) of symmetric products is a homotopy 

equivalence up to dimension d. [] 

The space QDx(C) of the previous section is of this form. Let D=(dl , . . . ,  d~) and D ' =  

(d~, ..., d~) be multi-degrees with di<~d~ for all i (we write D<D') .  By adjoining a fixed 

labelled configuration in V - U  we obtain an inclusion j: QX (U)--* QD x, (V). Evidently we 

have: 

COROLLARY 4.3. The inclusion j: Qx(u)--~QXD,(V ) is a homotopy equivalence up 

to dimension d=min{dl ,  ..., d~}. [] 

We shall introduce a stabilized space using the idea of [Se]. Let ~ = { (zi, li)li = 1, 2,... } 
be a sequence of points of QX(c)  with zi-~oc. 

Definition. Q~k~ ..... k~(C) is the set of sequences { (w , ,m i ) l i= l ,2 , . . . }  of points of 

Q x ( c ) ,  which agree with ~ except possibly for a finite number of terms, such that  

~-~.i(li-rai)j=kj for j = l ,  ...,u. We shall write Q~0(C)for ^( Q0 ..... 0(C) �9 

Let D1 <D2 <D3 <... be a sequence of multi-degrees. We may choose open discs 

UICU2cU3c . . .  in C and labelled configurations in each Ui-Ui -1  so as to obtain a 

sequence of inclusions 

QxI(u1 ) x u --, x -~QD2( 2) Qo3(U3)-* . . . .  

The choice of labelled configurations defines a sequence ~ such that  ~)0 ~ is U,~>l QD x, (Ui). 

(Since Q X  (Ui) is homeomorphic to Q x  (C) and hence to Hol~9~ (S 2, X), this construction 

may be taken as the definition of the limit " l i mD- ~  Hol~)(S 2, X)" of w 



132 M.A. GUEST 

Let A be any subspace of S 2 =CU co ,  and let B be a closed subspace of A. Let 

Qx (A, B) denote Qx (A)/,~,, where QX (A) is the space of configurations of distinct points 

in A with labels in SF(A)* satisfying condition (X), and where two labelled configurations 

are defined to be equivalent if they agree on the complement of B in A. (This is a 

connected space, if A is connected.) If ~ is a labelled configuration, then ~MBz defines 

an element of QX(Bz,OB=), where Bz is the closed unit disc with centre z. We may 

identify QX(B~, OBz) canonically with QX(s2, oc) and so we obtain a map 

C x Q X ( C )  ~ (QX(B~,OBz)--,) QX(s2,oo), ( z , E ) ~ E M B z .  

This extends to a continuous map S 2 x QX(C)---+QX(S 2, co) with (co, ~)~-.O. The ad- 

joint map 

so: Q (c)  2QX(S2, co) 

will be called the scanning map. This is a generalization of a construction introduced 

in [Se] for the case X--CP n. As in [Se] we obtain a stabilized map 

(c) a QX(S co), 

where ~20 denotes the component of ~2 which contains the constant maps. 

PROPOSITION 4.4. S is a homotopy equivalence. 

Proof. This is entirely analogous to the proof in w of [Se] for the case C P  '~. Another 

treatment of the same argument was given in [Gul] (in the case of the quadric cone) and 

in [Gu2] (in the case of CPn) .  [] 

Next we shall examine the relation between So and the inclusion map 

Iv: Hol~ (S 2, X)  ---* Map~ (S 2, X).  

PROPOSITION 4.5. The maps SD, ID may be identified with each other, up to ho- 
motopy. 

Proof. Let FX={f: U-*X] f=giu, gESol (S  2, X)}, where U is the open unit disc 

in C. The evaluation map e:Fx-*x,  f~-~f(O) is a homotopy equivalence. Let ~ x =  

{fEFXif(U)M(TC.*)~O}. Then ~ x  is obtained from F X by removing those maps 

with image in the complement of T ~  * (a subspace of F X of infinite codimension), and 

so the evaluation map e: ~ x - - ~ X  is also a homotopy equivalence. 

The action of T c on ~ x  is (by construction) free, in contrast to the action of T c 

on X. (Thus, FX/TC is the homotopy quotient X//TC.) Let p: ~x  __~X/TO be the 

natural map. There is a map u: FX/TC--*Qx(U, OU), defined by sending the labelled 
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configuration E which represents an element [f]EFX/T c to the labelled configuration 

ENU. It may be shown by an elementary argument as in [Se, Proposition 4.8] that  u is 

a homotopy equivalence. 

The discussion so far may be summarized in the following diagram: 

/~X e > X 

,l 
c > OX(u,  og).  

Consider next the diagram below 

Q x ( c  ) 8D , M a p ( C , ~ x )  

=I l 
Qg(C) - Map(C, 

> Map(C, X) 

' > Map(C, QX(~, OU)), 

where SD(f)(z) is the map w~-~f(w+z) in ~ x ,  for feHol~)(S 2, X)--QX(C).  (The right 

hand side of the diagram is induced from the previous diagram, and so  is the map 

induced by sv.) 
Observe that  Map(C, .  ) can be replaced by Map*(S2, �9 ), i.e. all the relevant maps 

extend from C to CUoc=S ~ (as based maps). Thus we obtain the following commutative 

diagram, where the suffix D denotes the appropriate component: 

a2e > Map})(S 2, X) 

a:~'> Map})(S :, QX(u, OU)). 

Q X ( c  ) 8D > M a p ~ ( S 2 , ~ x )  

QX(C ) S~>MapS(S2,~X/TC) 

The top row is the inclusion map ID, and the bottom row is the scanning map So. The 

proof of the proposition is completed by noting that  f~2e, ~eu are homotopy equivalences 

(because e, u are), and that  ~2p is a homotopy equivalence because p is a fibration with 

fibre (C*)". [] 

Corollary 4.3, Proposition 4.4 and Proposition 4.5 constitute a proof of Theorem 4.1. 

5. S k e t c h  o f  t h e  t h e o r e m  in  t h e  g e n e r a l  c a s e  

In this section we shall sketch how Theorem 4.1 may be extended to arbitrary compact 

toric varieties. As it seems hard to give a single general statement, we shall first obtain 
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a result under certain special assumptions, and then explain very briefly how to proceed 

when the assumptions are not satisfied. There are two independent parts to the result. 

First, we must show: 

(I) The inclusion Hol~(S 2, X)--+Map~(S 2, X) induces a homotopy equivalence in 

the limit D ~ c c .  

Then we must find an integer n(D) such that: 

(II) The inclusion HOl*D(S2,X)-~HOI*D,(S2,X) is a homotopy equivalence up to 

dimension n( D ). 

Part (I) can be carried out by making technical modifications to the argument of w 

as we shall show in Theorem 5.1. On the other hand, part (II) needs a new idea, which 

we give in Theorem 5.2. 

To carry out (I), we need to define an appropriate stabilization procedure. Let 

SF(A)~ o denote the non-negative elements of SF(A)*, i.e. those which take non-negative 

values on positive divisors. Let D1, D2, D3, ... be a sequence in SF(A)~0, such that  each 

Di-Di - l= l~  is a valid label; we write D1 < D 2 < D 3  . . . .  As in the non-singular case, we 

may choose open discs UICU2CU3C... in C and a sequence ~={(zi , l i ) l i=l ,2, . . .}  of 

labelled points (with zi E U i -  Ui-1) so as to obtain a sequence of inclusions 

(vl)  -+ QX (us) -+ QX 3 (u3) . . . .  

^~ C x We obtain a stabilized space Qo( )=[.Ji~oQD,(U{) in the usual way. The inclusion 

QX~(ui)--+QX+I(U~+I) may be regarded (up to homotopy) as a map Hol~9~(S 2, X)--+ 

Hol~+,  (S 2, X), when Di, Di+l CKer t*. We then have: 

THEOREM 5.1. Let X be a projective toric variety, such that H2X is torsion free, 
and such that the configuration spaces QDx(C) are (non-empty and) connected for all 
DESF(A)~ o. Then the inclusion 

lim Hol})(S2, X) --+ lim Map*D(S2,X)~-Map~(S2,X) 
D--+or D ~ c ~  

is a homotopy equivalence. 

Proof. This is similar to the proof of Propositions 4.4 and 4.5, so we shall just point 

out the new features. For the proof of Proposition 4.4 one needs to know 

(a) QDx(C)is (non-empty and) connected for all DeSF(A)~0,  

(b) the components of Map* (S 2, QX(s2, cr are indexed by SF(A)*, i.e. 

and 

~2Qx ( S 2, co) ~- SF(A)*, 

(c) 7rlQX(C) is abelian for D sufficiently large 
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(see the proof of Lemma 3.4 of [Se]). These three points are easy to establish when 

X is smooth, but  are not immediately obvious when X is singular. We have included 

part (a) as a hypothesis; in Appendix 1 to this paper we give a method to determine 

when this hypothesis is satisfied. Part  (b) follows from the existence of an isomorphism 

SF(A)---*H 2 (X//TC), which is given by assigning to a TC-equivaxiant line bundle on X 

the first Chern class of the associated line bundle on X/ /T  c. The t ru th  of part  (c) is 

explained in Appendix 1. Finally, Proposition 4.5 is proved in exactly the same way, 

when X is singular. [] 

Our method for (II) depends on the fact that  it is possible to choose a toric resolution 

0: .~ -~X.  We shall recall briefly this procedure (see [Fu, w and [Odl, w First, 
k assume that  the fan A of X is simplicial, i.e. for any cone cr----{)--~i= 1 a~v~ l a~>0} in A, 

where a n Z  ~--zvi ,  the vectors vl, ..., vk E Z ~ are linearly independent. Let a be a maximal 
k Z r" cone in A. The multiplicity of a is defined to be the index of {~)i=1 Zvi in By the 

criterion for singularity, X is singular if and only if there is a maximal cone a in A of 
k r multiplicity greater than one. In such a case, there is some v=~-~i= lcivi Ea~Z such that  

0 ~ c i < l  for all i. Let/X be the fan obtained by sub-dividing A in the obvious way, i.e. by 

replacing a by the joins of R~>0v with all the faces of a. This is a fan corresponding to 

a toric variety _~ which is "less singular" than X. This process of "inserting a ray" may 

be repeated finitely many times, to obtain a non-singular variety ) (  and an equivariant 

map 0: ~'--~X which is a resolution of X. Finally, if the fan A is not simplicial, it is easy 

to see that  A may be made simplicial by inserting suitable rays. 

The configuration space for X is related to the configuration space for ) (  by the (set 

theoretic) formula 

Q x ( C ) - -  [.J Q~(C) ,  
s 

where 0.: zr2X--*zr2X is the homomorphism induced by 0: X - + X .  The right hand side 

of this formula inherits the topology of the left hand side; in Appendix 2 we shall give 

a more concrete description of this topology. The idea of our method is to use the 

fact that  a result of the required type is known for the spaces Q ~ ( C )  (Proposition 4.2, 

Corollary 4.3). 

We shall begin by considering the special case where A, A are simplicial and /X 

, k (with 0~<ci<k) into a k- is obtained from A by inserting a single vector v --~i=1 civi 
dimensional cone a spanned by vectors Vl,..., vk. Let vk+l, ..., vu be the generating vectors 

of the remaining one-dimensional cones of A. We have S F ( h ) * ~ Z a ' @ ( ( ~ ) ~ I  Zai) and 

we may identify SF(A)* with a subspace of (~)i~1 Rai. The map T*: SF(/~)* --*SF(A)* 
T* ' u k u u is given by (xa +~-~i=1 xiai)----~=l(xi+cix)a~+~i=k+lX~ai" Let D=~-~i= 1 eiaie 
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Ker ~*. From the form of T*, we see that  

O,l( D)= tda '  + E eiai E Ker F O <. d <~ min{ei/ci l ci r O} @ 

i=1  i = k + l  

The possible values of d here are of the form do, do+l,...,do+bl,...,do+ml, for some 

non-negative integers do, m. We denote by  Db the element of 021(D) corresponding to 

d=do+bl. 
From now on we shall denote simply by QD x the spaces QDX(C) or Qx(U). For D, D ' e  

D '  D ' v-.k acilai+~-]~iU=k+laicrieKert* , where a, ak+l,...,au Kerr ,  we write D'>>.D if = ~-Li=l 
are non-negative. We then have a stabilization map s: QD x __+QX,. 

THEOREM 5.2. Let X be a projective toric variety which admits a resolution X--+X 
[')  X _+  I ')  X of the above form. Let D = y ~ _  1 eiai and D' >/D. Then the stabilization map s: ~gD "~D' 

is a homotopy equivalence up to dimension n( D ) = min { e, ek + l , ..., eu } , where 

e = max{min{do+jl, el -cl(do+jl) ,  ..., ek--ck(do+jl)}l j = O, 1, ..., m}. 

Moreover, limD--.er n ( D ) = c o .  

Later  we shall give an example to show that  the hypothesis on the resolution is not 

a serious restriction (Example 5.4). 

,qx __,r)x induces a stabiliza- Proof. Let QX.j=Ub_j Q~ . The stabilization map s: "gD '~r 
D b 

X X tion map sj: QD;j--+QD,;j+a for each j .  We claim that  

(*) the stabilization map sj is a homology equivalence up to dimension n(D; j )= 

min{do+jl, ek+l,..., eu}, and 

(**) the inclusion x x _ x QD;j--+QD;o--QD is a homology equivalence up to dimension 

re(D; j )  = min{el - Cl (do + j l ) ,  ..., ek - Ck (do +jl) }. 

These s tatements  imply tha t  s is a homology equivalence up to dimension 

min{m(D;  j), m( D', j + a), n( D; j )}  = min{m(D;  j), n( D; j )}.  

By choosing j so as to maximize this number, we obtain the stated value of n(D), and it 

is easy to verify that  limD--+oo n(D)=oc. To prove the theorem, therefore, we must prove 

(*) and (**), and then show that  "homology" can be replaced by "homotopy".  

Statements ( . )  and (**) are analogous to s tatements  (3) and (4) in the proof of 

Proposit ion 3.2 of [Gul], so we shall just  summarize their proofs. 

Proof of (*). We have 

0~_1 (D,) ^,  A, A, 
= {Do, D1, ..., Dm+a}, 
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and (for b=0, 1, ..., m) 

b' +a = + 
i = k + l  

For each b=j, ..., m, we have a stabilization map 8b: Q~Db ~ Qb~b+a , X  defined by adding a 

x x point of U ' - U  with label/9~+~- Db. The stabilization map sj: QD;j--+QD';j+a is  defined 

by adding the same point with label D ' - D = ~ - ~  j * ^ '  = T (Db+ a - D b ) .  T h e s e  a r e  c o m p a t i b l e ,  

in the sense that the following diagram is commutative: 

~- m Q x j  " Ub=j Q2 
Db 

x = m ~ QD,;j+~ "Ub=j O~;+o 
By Corollary 4.3, each map Sb is a homology equivalence up to dimension min{do+bl, 

ek+l, ..., eu}. By the Mayer-Vietoris argument used in [GKY, Theorem 2.5], it follows 

that [.Jb~_j gb (and hence sj) is a homology equivalence up to dimension min{do+jl, 

e k + l ,  ..., eu} .  

o x  _.+f)x is a homology Proof of (**). It suffices to prove that the inclusion ~D;j WD;j-1 
equivalence up to dimension m(D; j). To prove this, we shall use an identification 

x ,.~r)x t i p 2  
Q D ; j - 1  --  "g D;j k.) ~} , 

f ~ j - 1  

where P~  denotes the configuration space defined in exactly the same way as 
Dj-I 

Q~ except that condition (X) is relaxed: for any point z with ]abe] l, the integers 
Dj_ i 

{l(ai) Ici#0} are allowed to be simultaneously zero. We define p~;1 to be the closed 
Dj-I 

subspace of P~ consisting of configurations for which the label of at least one point 
Dj-I 

satisfies the condition/((r{)>~l, for all i such that c{#0. (It follows then that l(cr~)>~Ic{.) 
We have Q~ =P~.  1--PX';ll' and the attaching map f is the natural map 

j 3 -  ~ -  

f :p~;1  ~ Q X j .  Dj _ 1 

Hence, the lemma is equivalent to the assertion that the inclusion 

)7;1 --+ p2;O = p ~  
P j - I :  PDi_I D j _  1 Dj-I 

is a homology equivalence up to dimension m(D; j). To prove this assertion, we use the 
n~;0 ,-,~';1 stabilization map s: r E --~rE+F, where E6SF(/~)* and F=~-~ikl cilai. Consider the 

composition 

pD~;O s > p ~ ; 1  p~-~, p ) ~ ; o  
j - I - - F  D j -1  D j - I "  
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This is homotopic to a stabilization map of the type of Proposition 4.2, hence is a 

homology equivalence up to dimension 

m i n { e l - c l ( d 0 + ( j - 1 ) l ) - c l l ,  ..., ek-c~( do + ( j -1) l ) -c f l } .  

From this we conclude that  the map Pj-1 induces surjections in homology up to dimension 

m(D; j). Next consider the composition 

p~;1 pC-�89 p~;0 s > pR;1 
Dj_I Dj-I .Dj-I+F" 

p2;1 ~;1 This is homotopic to the stabilization map 9~_1 ~ P g j _ I + F "  By the method of [Gul, 

Proposition 3.2], it may be deduced from Proposition 4.2 that  this is a homology equiv- 

alence u p  t o  d i m e n s i o n  rain{el - Cl ( do  + ( j  - 1 ) / )  - C l ~ , . . . , e k  - -  Ck (do + (j  - 1 ) / )  - Ck/). F r o m  

this we conclude that  the map Pj-1 induces injections in homology up to dimension 

re(D; j ) -  1. Thus, Pj-1 is a homology equivalence up to dimension re(D; j), as required. 

This completes the proof of (**). 

To pass from homology to homotopy, we make use of the fact (see [HH]) that  a map 

induces isomorphisms of homotopy groups if and only if it induces (a) isomorphisms of 

homology groups with arbitrary local coefficients, and (b) an isomorphism of fundamental 

groups. The stabilization map x x QD--*QD' satisfies (a), because the above argument for 

homology with integer coefficients extends word for word to the case of arbitrary local 

coefficients: the basic ingredients were the Mayer-Vietoris exact sequence and the exact 

sequence of a pair, together with Proposition 4.2. For (b), we combine the homology 

statement with the fact that  7rlQ x is abelian (see Appendix 1). [] 

Example 5.3: The "quadric cone" z 2 =ZlZ3 in C P  3 (see Example 3.4). Here, 7r2X=Z. 

The variety has one singular point, [1; 0; 0; 0], which corresponds to the cone cr spanned 

by vl, v2. The multiplicity of cr is 2. A toric resolution may be obtained by "inserting" 

the vector v'= ~vl+-~v21 1 =(0, 1). The corresponding variety )~ is the Hirzebruch surface 

E2 (cf. Example 2.2). 
1 Let D=gal+ga2+2gauEKert*, with gE~Z.  For simplicity, let us assume that  

g e Z  (the case where g -  �89 e Z  is similar). Then O,l(D)={Do,/91,-.., Dg), where 5 5 =  

(g-b)al+2bcr'+(g-b)a~+2ga3. Here we have c1=c2=�89 1=2, do=O, m=g. We have 
ox__,~x is a homo- D'=D+aal+aa2+2aa3. By Theorem 5.2, the stabilization map ~D ~D' 

topy equivalence up to dimension min{e, 2g}, where 

e = max{min{2j, g - j }  I J = 0, 1, ..., g} -- [2g]. 

We conclude that  n(D)=[2g] in this case. 
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For any projective toric variety X, the method of Theorem 5.2 may be used after 

factoring a resolution .~--+X into maps of the above form. Rather than attempt to give 

a general formula for n(D), however, we shall just illustrate the method in the following 

particular but non-trivial case. 

Example 5.4: The weighted projective space P(1, 2, 3) (see Examples 2.3, 3.5). Here, 

rt2X~Z. The cone spanned by v2, v3 has multiplicity 2, and the cone spanned by vl, v3 
I 1 1 1 has multiplicity 3. By inserting v =~v2+~v3=( -  , -1 )  we can resolve the singular 

v"-- 2v " 1~ - (0 ,  -1),  replace the point represented by the first cone. By inserting - 5  1T~'3-- we 

second cone by two maximal cones, one of which represents a singular point, namely that 

spanned by v", v3. It has multiplicity 2 (<3). We resolve this singularity by inserting 

v '''-l-~v "-1~-~3 =( -1 , -2 ) .  
To use the method of Theorem 5.2, we need to factor our resolution )(--+X into a 

sequence of three simple resolutions. Let us re-number the vectors defining the fan A 

of the resolution )( as follows: v1=(1,0), v2=(0,1), v3=( -1 , -1 ) ,  v4=( -2 , -3 ) ,  vs= 

( - 1 , - 2 ) ,  v6=(0,-1).  We shall use the sequence of resolutions 

)( = Xa~s -+ Xa~ --+ Xa --+ X, 

where X3 denotes the toric variety whose fan is obtained from the fan of X by inserting v3, 

and so on. 

First step: X356-+X36. We shall (temporarily) write )(=X356, X=X36. Let D= 

~i#5 ei(riESF(A)*. Here e4, e66 �89 and el, e2, e3, e4+e66Z. The map T*: SF(fi~)*--+ 

SF(A)* is given by 

6 

6 We have 0,1(D)={Do,/91,...,/Pm}, where Db=Y~.i=ldiai, and ez=dl, e2=d2, e3=d3, 
e 1 1 4=d4+ ~dh, e6=d6+ Let assume e4, ~dh. us that e66Z. Then we may write dh=2b, 

hence Db=elal+e2a2+e3a3+(e4-b)a4+2bah+(e6-b)a6 for b--0, 1, ..., m. We have c4= 

c6--�89 d0=0, m=min{e4, e6}. This is very similar to the situation of Example 5.3. 
I'I X _..+ I') X By Theorem 5.2, the stabilization map ,O~D ~D' is a homotopy equivalence up to di- 

2 mension min{ [~e4], [~e6],el,e2, e3}. 

Second step: X36---+X3. We w r i t e  . X = X 3 6  , X : X  3. Let D=~4=leiai6SF(/k) *. 

Here el, e4C �89 and e2, e3, e1+e46Z. The map T*: SF(/~)*-+SF(A)* is given by 

\ i ~ 5  
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A A 

Let us assume that e l ,e4CZ.  Then we have O,I(D)={Do, D1,...,Dm}, where /gb = 

(el-2b)al+e2a2+e3aa+(ea-b)cr4+3ba6. In this situation, c1= 2, e4= 1, /=3,  d0=0, 

m = m i n {  [�89 ,e4 }. We may now apply (the method of) Theorem 5.2. A slight strength- 

ening of the result of the first step is needed here, namely that the "individual" stabiliza- 

r))7___~ r))7 is a homotopy equivalence up to dimension ei for i =  1, 2, 3, and tion map si : "r D ~ D+tr i  

up to dimension []e,] for i=4 ,  6. (We omit the proof of this result.) We find that the 

r)x___,r)x is a homotopy equivalence up to dimension min{e, e2, e3}, stabilization map '~D '~D' 

where 

e = max{min{ 2 3" -~( ?) ,el-2j ,[2(e4-J)]I lJ=O,l , . . . ,m}=min{[�89 [�89 

Third step: X3---*X. We write ) f = X 3 .  Let D=elal+e2a2+e4a4ESF(A)*. The 

conditions on el, e2, e4 were given earlier. The map T*: SF(/X)*--*SF(A)* is given by 

4 

T* 
" i = 1  

Let us assume that e2, e4 �9 Z. Then we have 0,1 ( D ) =  {50,/91,. . . ,  Dm }, where/)b = e l a l  + 

(e2-b)a2+2ba3+(e4-b)cr4. This time we have c2=c4=�89 /=2,  do=0, m=min{e2,e4}. 
r is a homotopy equiv- By the above method we find that the stabilization map WD "gD' 

alence up to dimension min{ e, [�89 eli }, where 

e = max{min{ 2j, e2-j ,  [ �89 } I j =0 ,  1, ..., m} = min{ [2e2], [~e4] }. 

In conclusion, we have shown that for X = P ( 1 , 2 , 3 )  the inclusion Hol~(S2 ,X) -~  

Map~(S  2, X)  is a homotopy equivalence up to dimension 

n(D) = min{ [�89 [2e2], [52-e4] }, where D =elal-+-e2ff2-4-e4o'4 �9 

Thus, if D=2dal +3da2+da4, then n ( D ) =  [~d]. 

Finally, we shall indicate how to proceed in the case of a (compact) toric variety 

which is not covered by our methods up to this point. There are two problems to deal 

with, namely (i) the description of the connected components of Hol(S 2, X)  when H2X 
has torsion, and (ii) the extension of all our previous results to the case of a non-projective 

toric variety. 

Regarding problem (i), let us consider a (singular, projective, compact) toric variety 

X, and let us choose DEKer  t*. There is a surjection 6: H2X(~Tr~X)---*Ker ~*(~(H2X)*),  

whose kernel is the torsion subgroup of H2X. We define 

Hol~9 (S 2, X)  = {f  e Hol* (S 2, X)  I 6[f] : D), 
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where [f]Er2X is the homotopy class of f .  The space QX(c)  is defined in the usual 

way, and we have Hol~(S 2, X)~-QDX(C). The problem now is to describe the connected 

components of QDX(C). Although this may be done in any particular case by the method 

of Appendix 1, we are unable to give a general statement. Therefore, we shall content 

ourselves by giving the following example. 

Example 5.5: The tetrahedral complex (see Examples 2.5, 3.6). In this case, the 

group H2X has been computed by M. McConnell (in a private communication) to be 

ZO(Z/2)  11. For D=da12+dala+da23+da123EKer~*, the method described in Appen- 

dix 1 shows that QX has eight components, if d~>3. Four of the components correspond 

to holomorphic maps whose image lies in one of four copies of C P  1, each of which is 

given by conditions of the form zi=zj=zk with iE{0, 1}, jE{2, 3}, k~{4, 5}. The other 

four components consist of "full" holomorphic maps. 

In the terminology of Appendix 1, the "simple" labels here are: 

112-----(1,1,0,-1), 113----(1,0,1,-1), 123----(0,1,1,-1), 112a=(1,1,1,-2),  

li2 = (0 ,0 ,1 ,0 ) ,  lla = (0 ,1 ,0 ,0 ) ,  l~a = (1 ,0 ,0 ,0 ) ,  li2a = (0 ,0 ,0 ,1 ) .  

To define a stabilization procedure, let us consider the sequence of labels ll, 12,13, ..., where 

ll, ..., ls are the above simple labels and li--li-s for i > 8. Let Zl, z2, z3, ... be a sequence of 

points such that ziEUi-U~-l, as above. With Di=lt+...+li, we define Q x  (Ui) to be the 

component of QX(ui) which contains the configuration {(zj, lj) I j = 1, ..., i}. Then for i=  

8j, the space Q x  (U~) may be identified up to homotopy with a distinguished component 
* 2 Holaj(S , X) of Hol~j (S 2, X). Let Map~j (S 2, X) denote the component of Map*(S 2, X) 

containing the image of Hol]j(S2,X).  The method of the proof of Theorem 5.1 then 
* 2 gives a homotopy equivalence limj._+~ Hol~j(S 2, X)--*limj~o~ MaPaj(S ,X). Thus, we 

obtain a modified version of our main theorem in this case. 

Regarding problem (ii), the main question is whether Proposition 3.1 can be proved 

in the case of a non-projective toric variety. It suffices to consider the non-singular case, 

because singular varieties may be dealt with by using a resolution. A proof may be 

obtained from the following construction of a toric variety X from its fan A, described 

in [Col], [Au]. Let 

Z= x i a i � 9  1-I xi=Of~149 , 
i = 1  iEI~ 

where I~ ={ilai Ca} and I~ is the complement of I~ in {1, ..., u}. Let G be the kernel of 

the map 

( c * ) ~  ~ : Cai Zai -* 
i = 1  i = l  
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induced by ~| This is an algebraic group, which acts naturally on ~)~1  Cai.  

THEOREM 5.6 ([Col], [Au]). Let X be a simplicial toric variety. The action of G 

preserves ~)i~=1 C a i - Z ,  and the quotient space is isomorphic to X .  If X is non-singular 

(hence, in particular, simplicial), the action of G is free. [] 

This is analogous to the usual description of C P "  as the quotient 

(c 

which is a special case. 

We may now give an alternative proof of Proposition 3.1, in the non-singular case. 

The idea of the proof is that,  just as a (based) holomomorphic map S2--~CP ~ may be 

represented by an (n+l) - tuple  of monic polynomials which have no common factor, a 

(based) holomorphic map S2-~X may be represented by a u-tuple of monic polynomi- 

als (pl,.. . ,p~) such that  (pl(z), . . . ,pu(z))~Z for all z e C .  Let Iz={ilpi(z)=O }. Now, 

(pl(z), ... ,pu(z))~Z if and only if there is a cone a e A  such that  Izn(I~)C=~, i.e. IzC_L,. 

So the condition on Pl, ...,Pu is that,  if Pil, ..-,P~ have a common factor, then ai~, ..., hie 

belong to a single cone of the fan. This is precisely condition (X) of w A complete 

proof, in a more general context, has been given recently by Cox in [Co2]. 

A p p e n d i x  1: lroQ x a n d  l h Q  x 

For a toric variety X we have given a correspondence between (based) holomorphic 

maps S2-~X and configurations of points with labels in SF(A)*. These labels satisfy 

condition (X) of w The set of all such labels, being a subset of the monoid SF(A)~o, 

has the structure of a partial monoid, which we shall denote by Mx.  In this appendix 

we shall indicate briefly how the algebraic structure of Mx determines 7ri Hol~(S 2, X) 

(i.e. TriQDX(C)) for i=O, 1. 

Let 11,..., In be the simple elements of M x  (an element is said to be simple if it cannot 

be written in the form m l + m 2 ,  with ml and m2 both non-zero). To investigate whether 

Qx is connected, we note first that  any element of Q~ may be moved continuously to a 

configuration of points whose labels are all simple. If that  configuration contains certain 

points zl,..., Zq with labels lil,..., liq, such that  the sum lil +.. .+liq is defined (in Mx),  

then it may be moved continuously to a configuration in which zl, ..., Zq are replaced by 

a single point z (with label lil +.. .+li~).  Our aim now is to repeat this reduction process 

until we arrive at a canonical configuration; if this is possible, then we will have shown 

that  QX is path-connected. 
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Let us suppose that  there exist linearly independent labels ml ,  ..., rn~ E Mx,  such that  

the above reduction process eventually leads to a configuration of the form {(zi, k~mi)l 
i--1, . . . ,r}, where kl, ..., kr are non-negative integers. Since D=~-~ kimi (and m l ,  . . . ,  m r  

are linearly independent), the integers kl, ..., k~ are determined by D. Therefore, we have 

succeeded in moving to a canonical configuration, and so QD X is connected. 

In the examples occurring in this paper it is straightforward to determine whether 

ml,...,rn~ exist. For example, in the case of the quadric cone (Examples 3.4, 5.3), 
1 the simple labels are c~1, 7(~1+a2),  a2, a3. If D=dlal+d2a2+d3a3, a suitable choice of 

1 (if dl~>d2), or 1 ml ,  ..., m~ would be O"1, ~(0-1 ~-0-2), 0"3 ~(0"1-]-0"2), 0"2, 0"3 (if d 1 <d2). 

The simple labels are also the main ingredient in the computation of the fundamental 

group of QD X. By a slight generalization of the argument used in the Appendix of [GKY], 

it follows that  the fundamental group is abelian. Moreover, there is one generator for 

each pair of simple labels li, lj such that  the sum li+lj is not defined (in Mx).  The order 

of such a generator is the least positive integer n such that  n(li +l j )EMx.  

Appendix 2: Representation of holomorphic maps by polynomials 

In the case of a non-singular toric variety X,  Proposition 3.1 (and Theorem 5.6) gives a 

description of any f e Hol~9 (S 2, X) as a sequence (Pl, ..., P~) of monic polynomials, where 

(X) Pii, ...,pij are coprime if Xil A...nXij =0,  
(D) degpi=di, where D=~-~i~=l diai. 

The roots of the polynomial p~ represent the divisor f - l (a i ) .  This description is 

canonical; it does not depend on any embedding in projective space. Such an embedding 

merely converts the above polynomial description into a more complicated one, as we 

have seen in Example 3.3. 

In the case of a singular variety X,  the divisors a l ,  ..., au are not necessarily Cartier 

divisors, so we cannot expect the same procedure to work. Instead, let us choose a gen- 

erating set ~-1 ..., 7v for the positive divisors in SF(A), and then define monic polynomials 

ql, ..., qv by taking the roots of qi to represent the divisor f-l(Ti).  This is the same as 

]-l(T('ci)), where T: SF(A)--+SF(s is the map induced by a toric resolution )(---~X, 

T and where ]:  S2--~X corresponds to f :  S 2--~X. If (Ti)=~-~j=l bijfj, then we obtain 

( q l , ' " ,  qv) = (Pl  bll _bl~ by1 bv~ ""P~ , "", Pl ""Pa ) = ( p b l , . . . , p b , , ) .  

The proof of Proposition 3.1 shows that  elements of Hol~9(S 2, X)  may be identified with 

v-tuples (pbl,..., pbv), where the polynomials Pl, ..., Pa satisfy 

(x) are coprime if = o ,  

(D) degpb'=D(Ti), i = l , . . . , v .  
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This illustrates how Hol~(S 2, X) is topologized as the union of those HOlD(S2, X) 

for which 0 . (D)=D:  each HOlD(S2,.~ ) has its usual topology, but a collection of roots 

of polynomials PiI,..., Pij may coalesce to give a root of another polynomial Pi~, where 

Pik is associated with a ray which sub-divides the cone associated to Pil, ...,pi~. 

This kind of polynomial description of elements of Hol~(S2,X) also arises if we 

consider a suitable embedding of X in projective space. 

Example A2.1: The quadric cone (see Examples 3.4, 5.3). Let us choose the gener- 

ators a4, 2al, (71+a3, 2cr3 of SF(A). We have T((74):(74, T(2(71)=2al+(72, T((71 +(73)-- 

al+a2+a3,  T(2(73)=2(73+(72, so fEHol~(S  2, X) is represented by a 4-tuple of polyno- 

mials 

(ql, q2, q3, q4) = (p4, plop2, plp2p3, p2p]),  

where 

(X) Pl,P3 are coprime, P2,P4 are coprime, 

(D) deg pa =deg p~ p2 =deg p~p2P3 =deg p2p2 = 2g. 

This is in fact the polynomial representation which arises from the given embedding 

in C P  3. In other words, as one readily verifies, a 4-tuple (ql, q2, q3, q4) of coprime monic 

polynomials of degree 2g satisfies the equation q2=q~q 4 if and only if it is of the above 

form. 

Example A2.2: The weighted projective space P(1, 2, 3) (see Examples 3.5, 5.4). Let 

us choose the generators 6(74, Crl +4(74, 2(71 +2a4, 3al, a2 +3a4, 2(72, Crl +(72-t-0"4 of SF(A). 

(The reason for this choice will become clear in a moment.) Applying the map T, we 

find that any fEHol~(S  2, X) is represented by a 7-tuple of polynomials 

(ql,q2, q3,q4,qh,q6,qT) 

of the form 

3 6 4 2  2 2 2 2  3 2 2 3 2  2 (P3P4PbP6, 2 4 3 2 PlP3P4PbP6, PlP3P4PbP6, PlPbP6, P2P3P4PbP6, P2P3, PlP2P3P4PbP6), 

where Pl, P2, P3, P4, Pb, P6 satisfy the conditions 

(X) Pi, Pj are coprime except possibly when l i - j l  = 1 or {i, j }-- { 1,6}, 

(D) degqi=6g, i=1,.. . ,7. 

In [Ha, Example 10.27], it is shown that P(1, 2, 3) may be embedded in C P  6 via the 

equations ZoZ2 = Z 2, Z2Zb = Z 2, zl z3= z 2, Zl Zb = Z4 Z 6. Our polynomial representation was 

chosen to be compatible with this embedding. 
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