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1. I n t r o d u c t i o n  

I n  t h i s  p a p e r  we a re  c o n c e r n e d  w i t h  s u m s  of  k t h  p o w e r s  for  k in  t h e  r a n g e  5~<k~<15. A s  

u s u a l ,  we le t  G(k) d e n o t e  t h e  s m a l l e s t  n u m b e r  s s u c h  t h a t  e v e r y  su f f i c i en t ly  l a r g e  n a t u r a l  

n u m b e r  is t h e  s u m  of, a t  m o s t ,  s k t h  p o w e r s  of  n a t u r a l  n u m b e r s .  T h e  l a s t  few y e a r s  h a v e  

s e e n  r e m a r k a b l e  p r o g r e s s  in  t h e  s t u b b o r n  p r o b l e m  of  r e d u c i n g  t h e  u p p e r  b o u n d  for  G ( k ) ;  
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DMS-8610730 (second author) .  
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Table 1.1 

k 5 6 7 8 9 10 11 12 13 14 15 

Vaughan [6],[7] 

Vaughan [8],[9] 

Brfidern [1] 

Vaughan and Wooley [10] 

WooLy [13] 

21 31 45 62 82 

19 29 41 57 75 93 109 125 141 156 171 

18 

18 28 92 108 124 139 153 168 

27 36 47 55 63 70 79 87 95 103 

in Table 1.1 we display the upper bounds for G(k) which have been obtained recently in 

the range considered here. 

By exploiting the flexibility of the new iterative methods in Waring's problem, we 

now achieve the following bounds. 

THEOREM 1.1. G(5)~<17, G(6)~<25, G(7)<33,  G(8)~<43, G(9)~<51. 

The calculations involved in the proofs are decidedly heavy, especially in the excep- 

tionally awkward case k=6,  and in general grow steadily with k. However, for larger k 

there is an increasingly common pattern.  Thus, whilst we have not exhaustively analysed 

for such k all possible variants of our methods, we have performed sufficient calculations 

to establish, in combination with results in [12] and [16], the upper bounds G(10)~59,  

G(11)<~67, G(12)<~76, G(13)<~84, G(14)<~92, G(15)~<100. 

There are many applications of the methods we develop, these depending on the 

underlying mean value theorems. For example, we are able to improve results on the 

distribution of fractional parts of sequences om k, and on the solubility of systems of 

simultaneous additive equations. We intend pursuing some of these applications in a 

future memoir. Furthermore, we have found some rather technical refinements which 

permit the above bounds for G(k) to be improved when k =6  and k=8.  Thus, in the 

sequel papers [11] and [12], we describe some delicate innovations which permit the 

mean values of this paper to be slightly bet ter  exploited, thereby establishing the bounds 

G(6)~24  and G(8)~42.  

As is usual in much of the modern work on Waring's problem, the method is depen- 

dent on upper bounds for the number of solutions of auxiliary equations of the type 

k k k Xkl T '"TXs ":Yl +"'+Ys, (1.1) 

with xi, y~E.A(P, R), where throughout  we write 

,4(P, R) -- {1 ~< n ~ P : p prime, pi n implies p ~ R}. 
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In Wooley [13] an improvement over the strategy of Vaughan [8], [9] is established which, 

through the use of more efficient differences, enables one to obtain bet ter  estimates than 

have been obtained hitherto for the number of solutions of (1.1) when k~>6. In that  

memoir, no a t tempt  was made to exploit the finer properties of the polynomials arising 

from the efficient differencing procedure. Furthermore, the underlying themes of this 

improved strategy permit a more flexible approach than was employed therein. In this 

paper we take advantage of this greater flexibility in a number of ways. This requires 

the exponential sums arising from the efficient differencing procedure to be examined in 

some detail with regard to their second and fourth moments, and their supremum on 

appropriate choices of minor arcs. This we do in w167 3 and 4, respectively. In this way we 

are able to obtain satisfactory bounds for the number of solutions of (1.1) for appropriate 

ranges of k and s. 

In order to set the overall pat tern we first of all treat fifth powers. In w167 5 and 6 we 

apply the results of w167 3 and 4, respectively. In the final iteration of the method, we are 

presented with the recurring problem that,  in our estimate for the number of solutions 

of equation (1.1), the dominant contribution arises from the "major arcs". We overcome 

this obstacle in w by modifying the arguments of Vaughan and Wooley [10]. Having 

illustrated the framework of our method with fifth powers, we apply the results of w to 

higher values of k in w167 8, 9, 10 and 11. It then remains to complete our arguments by 

applying the results of w Thus we consider sixth powers in w In w we consider some 

rather general arguments of use in the Hardy-Lit t lewood dissections used for larger k. 

Finally the values k=7,  8, 9 are treated in w167 14, 15 and 16, respectively. 

Before proceeding to the details, in w below we describe the strategies which underly 

our new analysis, and also introduce some notation. 

The authors thank the Institute for Advanced Study for its generous hospitality 

during the period in which this paper was written. 

2. P r e l i m i n a r y  l e m m a t a  

The methods we adopt lead to more complex iterative processes than have been used in 

Waring's problem hitherto. We take this opportunity to explain the underlying themes 

in a little detail for k an arbitrary integer exceeding 2. First we shall establish some 

notation, which we use in this section and in those following. 

Throughout,  s will denote a positive integer, and ~ and 77 will denote sufficiently 

small positive numbers. We take P to be a large positive real number depending at most 

on k, s, r and 77. We use << and >> to denote Vinogradov's well-known notation, implicit 

constants depending at most on k, s, E and 7. We make frequent use of vector notation 
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for brevity. For example, (cl , . . . ,c t)  is abbreviated to c. Also, we shall write e(c~) for 

e 2~m, and Ix] for the greatest integer not exceeding x. We use p to denote a prime 

number, and write pSlln when pSIn but  pS+l~n. Finally, Ilxll denotes minysz Ix-yl. 
In an effort to simplify our analysis, we adopt  the following convention concerning 

the numbers e and R. Whenever e or R appear  in a s tatement,  either implicitly or 

explicitly, we assert that  for each e>0 ,  there exists a positive number  yo(e,s, k) such 

that  the s ta tement  holds whenever R=P '1, with 0<~l<~0(e, s, k). Note that  the "value" 

of e, and ~o, may change from statement  to statement,  and hence also the dependency of 

implicit constants on e and ~. Thus, for example, if f<<P~R k and g<<P~R 2k, then we 

shall conclude tha t  fg<<P~ without comment.  Notice that  since our iterative methods 

will involve only a finite number  of s ta tements  (depending at most on k, s and e), there is 

no danger of losing control of implicit constants through the successive changes implicit 

in our arguments.  Finally, we use the symbol ~ to indicate that  constants and powers 

of R and pe  are to be ignored. 

For each s E N  we take r162 (i--1,  ..., k) to be real numbers, with 0 ~ r  to 

be chosen later. We then take 

Pj=2JP, Mj:-P Cj, Hj=PjMTk, Qj=Pj(Mt...Mj) -1 ( l ~ < j ~ k ) .  

For the sake of concision, we shall also adopt  the convention of writing 

J J 
~Ij= H H, and ~Ij= H MiR. 

i=1 i=1 

We define the modified forward difference operator ,  A] ,  by 

A~ (f (x) ;  h; m) = m-k(f(x+hm k) - f (x) ) ,  

and define A~ recursively by 

A ; +  l ( f ( x ) ;  h i , . . . ,  hi+l; rrtl,...,mj+l) = A ~ ( A ~ ( f ( x ) ;  h i , . . . ,  hj; ml,..., mj); hi+l; mj+l). 

We also adopt  the convention that  A~(f(x) ;  h; m)=f(x). 
For O<~j~k let 

�9 j = q2j (z; hi,  ..., hi;m1,..., mj) = A~ (f (z) ;  2hl, ..., 2hi;m1,..., mj), 

where f(z) = (z - hi m~ - . . . -  hjm~)k. 
Write 

fj(c~)= ~ e(cxxk). 
~eA(Qr 
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Also, write 

Fj(a)-- E e(aq2j(z; h; m)), 
z , h , m  

where the summation is over z, h, m with 

l<~z<.Pj, M~<m~<.M~R, m~cA(P,R), l<.h~<.2J-~H~ (l~<i~<j). (2.1) 

(Notice in particular the condition miEA(P, R). In Wooley [13] the variables mi were 

permitted to range over a complete interval, whereas the analyses of w167 2 and 3 of that 

paper in fact allow the restriction to the set ~4(P, R).) 

We let S~ k) (P, R) denote the number of solutions of the equation 

k 
: Y l  +"'+Y8, 

with xi,yiCA(P,R) (l~<i~<s). When no confusion is possible, we shall suppress the 

superscript k. Suppose that  the real numbers X8 and ~8 (l~<s<oo) have the property 

that  
S~k)(P,R)<<P ~"+~ and S(2k)(p,R)<<P "'+e. (2.2) 

Such numbers certainly exist, since we may trivially take X~ =2s  and #8 = 2s. 

We list below some useful lemmata. 

LEMMA 2.1. We have 

/0 ( /0' ) IFo(a)2fo(a)2S]da<<PeM21S-' PM~Q~'+ IFl(a)fl(a)2Slda. (2.3) 

Pro@ This follows from Lemma 2.3 of Wooley [13], and the argument of the proof 

of Lemma 3.1 of Wooley [13], on considering the underlying diophantine equations. 

We shall abbreviate an inequality of the form (2.3) symbolically by 

f02• 2s  
Jo > F l f ~  s" 

L E M M A  2 . 2 .  

where 

Whenever O<t<s and l <~j <~ k-1, we have 

~0 1 2s r At 1/2  ~ ~ 4s--2t--1T 1/2  IFj(a)fj(a) Ida<<P (Qj ) (HjMjM~+I j+l) , 

Tj+I--Tj+I(P;A;~)=PHjMj+I(~j+I +Jo IFj+l(a)fJ+l(a)4s-2tlda" 

(2.4) 

(2.5) 
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Proof. By Schwarz's inequality we have 

1 \1/2/  f l  F a 2f a 4s-2t dol) 1/2. 
fo ( I  , , , I 

The proof of the lemma now follows by the arguments of the proofs of Lemmata 2.3 and 

3.1 of Wooley [13], on considering the underlying diophantine equations. 

We abbreviate an inequality of the form (2.4) symbolically by 

Vjf 2" , Fj+lf~_l 2t 

f~t. 

There are two other ways of estimating the integral on the left hand side of equa- 

tion (2.4). 

(i) We may apply H51der's inequality in the form 

fo TaTbT'fCTr d [Fj(c~)fj(c~)~ I dc~ << *x *2vv ~,o, 

where 

and 

Im=follFy(a)12md~ ( m =  1,2) 

fO 
Uu= Ify(~)h2Ud~ (u=v,w), 

in which v and w are non-negative integers and a, b, c, d are non-negative real numbers 

with 

a+b+c+d=l, 2 a + 4 b = l ,  vc+wd=s. 

The second and fourth power mean values of Fj may be estimated in terms of the number 
,X~+e of solutions of certain diophantine equations. Also, we have U,<<Q~ "+~ and U,o<<Qj �9 

We abbreviate an inequality (H) of this form symbolically by 

fis 

There is, of course, the possibility of using higher moments of Fj (c~). However, estimates 

for such moments are too weak to he of value in the current state of knowledge. 

(ii) We may apply the Hardy-Littlewood method along the lines of w of Vaughan [8]. 

We then abbreviate the resulting inequality (M) symbolically in the form 

r f j .'- 
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By considering the underlying diophantine equations, we have 

/0 Ss+ 1 (P, R) << [Fo(a)2fo((~)281da, 

and hence we may use a sequence ~8 of connected inequalities (in the obvious sense) 

to bound Ss(Q, R) in terms of St(Q', R) ( t = l ,  2, ...). Such a sequence will be called an 

iterative procedure. A finite subsequence of a sequence ( 8)1 of iterative procedures will 

be called an iterative scheme. 
Thus far, we have merely indicated possible methods for estimating certain inte- 

grals, without indicating how such estimates may be used to obtain upper bounds of the 

form (2.2) for s~k)(P, R). We now outline a possible strategy. 

Suppose that  we have taken j + l  differences, and so are left to bound an expression 

of the form Tj+I, as defined by equation (2.5). By applying a process of the type (H) or 

(M), we may obtain a bound of the form 

~ ~ 2 s - - t  . Tj+I << PHjMi+IQj+ 1 +V(P, ),; ~b), (2.6) 

for some expression V(P; )~; ~b) depending explicitly only on P,  A and ~b=(r +1. We 

may then obtain a bound for Tj+I by minimising the expression on the right-hand side 

of (2.6). In our applications, a close approximation to the minimum occurs when a choice 

of ~b is taken so that  

PHjMj+lClj+I ~ V(P;ik; d~). 

This relation determines some equation, 

r  = 0, (2.7) 

connecting t he r (1 ~ i ~< j + 1) in an obvious manner. 

With the optimal choice of ~b given by (2.7), the bound (2.4) now becomes 

~o 1 (,~ r (,.~281 da E.~ p~ ( p ~ 2 / ~ 2  A//4s-2t g}~t ~;~2~-, ~1/2 Ifj  

This bound may now be used to bound an expression of the form Tj via Lemma 2.2, and 

we obtain an inequality of the form 

e ~ ~ A. ~ 2  ~ 2  4s--2t At A2.-t 1/2 Ti<<P (PHi-IMjQj +(PHjM~M'j+I QJ Qj+I ) )" 

Optimising the right-hand side gives rise to a further equation connecting the r say 

Aj(,k; ~b)=0. We may continue this process, next bounding an expression of the form 

j[ollFj_l(o~)fj_l(O!)2u[ da 
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in like manner, and so on. 

In this way, for each s we obtain j + 1 equations 

AIs)(A; ~b) = 0 (1 ~<i ~ j + l ) ,  

in j + l  variables r ( l ~ i ~ j + l ) .  These permit us to solve for ~b in terms of A, and 

provided that  a solution is found with 0~<r for each l~<i~<j+l,  then it follows 

that  

9follFo(a)2 fo(a)2sl da << PI+~M28Q~8, 

with r given by the solution ~b of the simultaneous equations 

It therefore follows that  

with 

S~+ I ( P, R) << P~:+'+~, 

)~s+l  = A s ( 1 - r 1 6 2  

By adopting this entire process for s=  1, 2, ..., we may define a new sequence of exponents, 

,k +, by taking 

A+ -- min{At~, A~} (s--  1, 2, ...). 

Further, we have the sequence of bounds 

S,(P, R) << P~++r 

In principle we may obtain the optimal A by solving the equations A=,k +. Indeed, for 

smaller values of s, and in particular when the At with t>s do not occur explicitly in 

the formulae involving As , this may be the easiest way to proceed. In practice, however, 

we proceed to calculate values for A as follows. Starting from a known sequence A we 

calculate A + as described above. Then we use the A + in place of the A8 in the equations 

A(~)(,k; ~b)=0. Thus, by applying this iterative scheme repeatedly, we obtain a sequence 

of sequences (A! ~)) with ,,s~'(r+l)"~.(-,8 ~(~) for each r and s. Since diagonal solutions provide us 

with the lower bound A! ~) >~s, the sequence must converge to some limit (A*). Moreover, 

A* has the property that  

Ss(P, R) << P~;+~. 

The method outlined above involves an iteration process in which each A~ *+1) (1 ~< 

s <co) depends on each A~ ~) (1 ~< s < oc). It will become plain that  certain economies may 
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be made in this procedure. Thus, for example, for s exceeding some so we have A* = 2 s -  k. 

Purther, for certain values of s the iterative procedure for As may be independent of At for 

t>s .  In this latter case it may then be possible to obtain A* independently of A~' ( t>s) .  

In the sections which follow we discuss what were found to be the optimal methods for 

bounding the A! ~). In many instances the method is appropriate only for a single value 

of k. Nonetheless, for the purpose of more clearly indicating the recurring themes, we 

shall analyse the method as it applies more generally. 

3. E s t i m a t e s  for  t h e  n u m b e r  o f  so lu t i ons  o f  auxiliary equations 

Our first step in facilitating the analysis outlined in the previous section will be to obtain 

estimates for the number of solutions of certain auxiliary equations, these enabling us to 

make use of the inequality 

2 a 4 b 2v c 2w d y j f i  s , (Yj) (F~) (f~ ) (fj ) 

We first need to set up some notation. 

Let us write ~i for h~mki . Then we have 

* . " - ' ,  . . . ,  ~j  = Aj ( f (z) ,  2hi, 2hi; ml ,  mj) ,  

with 

f ( z )  ~-- ( z - E 1 - - . . . - - ~ j ) k .  

Thus, in a manner similar to that  of w of Vaughan [8], we obtain 

Z 
0 1 = + 1  O i = + l  

= E . - .  E 
0~ =-i-1 0 j = : t : l  

: E E - . . E  
u ) O  v l  ) 0  v~ >>.0 

u+2vl +... + 2 v j  = k - j  

01 ,,. Oj(ml ... mj  ) -k  (z +01~l +... +Oj~j ) k 

E "'" E k!O1 ""OjzU~ 

~o>>.o ~j>>.o uo!ul!  . . . u j ! ( m 1 . . . m j )  k 
uo+Ul +...+uj =k 

k! 2Jhl hjz~21 vl 1:2.v~ . . . . . .  ~ 3  

u! (2v~ +1) !  ... (2~, +1 ) !  " 

In particular, we obtain 

k - 2  

kOk_2 = �89 ... hk-2 3z 2 (3.1) 
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with 

k - 4  k - 4  

�9 E 
i-~l l ~ i < j ~ k - 4  i = 1  

Let R~ s) (P; ~b) denote the number of solutions of the diophantine equation 

~ j ( z i ;  h(i); m (i)) = ~ ~j(w~; g(~); n(0), 
i = 1  i = 1  

(3.2) 

(3.3) 

,(i) (i) ~ 2J_tHt, (3.4) l<~zi,wi<.Pj, l ~ n t  ,gt 

Mt <rn~i),n~ i) <.MtR, m~i),nl i) E~4(P,R), (3.5) 

for l<~t<~j, l~i<~s. 
We shall be concerned only with estimates for R~ s) with s--1 or 2, the estimates 

obtainable by current methods being otherwise too weak to be of value. We begin by 
establishing a relation between R~ 2) , and R~ 1) and R ~  1. 

LEMMA 3.1. When l ~ j ~ k - 2 ,  we have 

Proof. On considering the underlying diophantine equation, by (3.3) we have 

/o 1 R~2)(P; d~) = IFj(a)I 4 da. (3.6) 

But by applying standard Weyl differencing, combined with Cauchy's inequality, we have 

iFj(~)12 -2 -2  << PH~ M~ + t-Ij~/ljlG(a)l , 

where 

G ( ( ~ I = Z  ~ Z e(~(~j(z+h;h;m)-kOj(z;h;m))), 
h , m  l ~ h ~ P  i l ~ z ~ P j - h  

and the summation over h and m is over the ranges given in (3.4) and (3.5). Then from 
(3.6) we have 

Then by applying Schwarz's inequality, and considering the underlying diophantine equa- 
tions, we have 

~ 2 ~ 2  (1) R~2)(P; ~b) << PHj Mj Rj (P; dp)+ ttj~/Ij(R~2) (P; dp).S) 1/2, 
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where S denotes the number of solutions of the equation 

A~ (kOj(z; h; m); h; 1) -- A~ (~j(w; g; n); g; 1), 

with the variables h, g, m, n, satisfying (3.4) and (3.5), and with 1 <. h, g <. Pj , 1 <<. z <~ Pj - h 
and 1 <~ w <. Pj - g. But we have 

- . . .  2 k 2kA~(~j ( z ;h;m);h;1)=A;+l ( (2z -2( l  - ~ j ) ; 4 h ,  2h;m,  1) 

= qlj+l(2z+h; 2h, h; m, 1), 

and hence the result follows on noting that  2z+h<2Pj=Pj+l.  

Next we provide an estimate for R~ 1) which is valid uniformly in k and j .  Later we 

shall refine this estimate for a fairly large set of k and j .  

LEMMA 3.2. When l <.j <. k -  2, we have 

Proof. We have 

R~I)(P;dP)=~n (~h R(n;h))2, 

where the second summation is over h satisfying (3.4), and where for a fixed h, R(n; h) 

denotes the number of solutions of the equation ~j(z; h; m)=n with z and m satisfying 

(3.4) and (3.5). But if z, h and m satisfy (3.4) and (3.5), then Vj(z; h; m) is divisible by 

hi ... hi, and further is non-zero. Therefore 

Zn( S R~ 1)(P;~b)~< Z " "  Z R(n ;h)  . 
ha ln  h j l n  

But R(0;h)=0,  so on combining standard estimates for the divisor function with 

Cauchy's inequality, we obtain 

R~I)(P; 4)) << P~ Z Z R(n; h) 2 . (3.7) 
h n 

~harther, by assigning values to the m, and solving directly for z, we have R(n; h)<<i~rj, 

and hence the desired conclusion follows from (3.7). 

Before we consider refinements of the above lemma, we require a definition. When 

k - j  is odd, or when k - j = 2  or 4, we put J= [ �89 We then define Kj(P; 4)) to be 

the number of solutions of the system of diophantine equations 

J 
Z , 2 r ,  2rk _2,.a, ,, (l~<r ~< J),  (3.8) n i [ m  i - - n  i ) = u 

i = l  
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with h, m and n satisfying (3.4) and (3.5). Notice, in particular, that  by counting 

diagonal solutions of (3.8), we have 

Kj(P; q~) >> HjMj. (3.9) 

We now establish a reduction formula relating R~ 1) with Kj. 

LEMMA 3.3. Suppose that l<<.j<<.k-2, and k - j  is odd, or k - j = 2  or 4. Then 

R~I)(P; r  << PI+~Kj(P; q~). 

Proof. In each of the cases under consideration, we may start by observing that  

hi ... hj divides q~j(z; h; m), and so as in the proof of Lemma 3.2 we have 

(1) P~R*(P; cp), Rj (P; ~b) << 

where now we write R*(P; ~b) for the number of solutions of the equation 

�9 j(z; h; m) = ~j(w; h; n), 

with z, w, h, m, n satisfying (3.4) and (3.5). 

We now divide into cases. 

(i) k - j=2 .  Then from (3.1), the equation (3.10) in this case becomes 

(3.10) 

k - 2  
3(Z2 W2)~_~- '~  . 2 ~  2k 2k n,~rn i -n~ ) = 0 .  (3.11) 

i=1 

From (3.8), the number of solutions with z=w is 

<< PKk-2(P; cp). (3.12) 

Now count solutions of (3.11) with z#w. We may assign h, m and n in O(Hk_2/~r~_2) 

ways. Fixing this choice, we may use standard estimates for the divisor function to 

deduce that  there are O(W) solutions of this type in z and w. Then the total number 

of solutions of this type is 

<< Pe ffIk_2~/]2 2 << Pl+e ffIk_2~/fk_ 2. (3.13) 

When k - j=2 ,  the result now follows on combining (3.9), (3.12) and (3.13). 

(ii) k - j=4 .  Then from (3.2), the equation (3.10) in this case becomes 

15(u2-v 2) = 10(E~-F2) + 2 ( - 2 - F 2 ) ,  (3.14) 
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in which 
k--4 k - 4  

--2 2k U=Z2+E1, ~1=2... him i , E 2 = E h 4 .  m 4k 
i : 1  i = 1  

and v, F1, F~ are defined similarly in terms of w, h and n. 

Consider first solutions of (3.14) counted by R*(P; q~) with uCv. We may assign h, m 

and n in O(Hk_42~_4) ways. Fixing this choice, we may then use standard estimates 

for the divisor function to deduce that  there are O(P ~) solutions of this type in u and v, 

and hence in z and w. Then the total number of solutions of this type is 

<< Pe&-4J~,~_4 ,,..< P l + e & _ 4 _ ~ k _  4 . (3.15) 

Now consider solutions of (3.14) counted by R*(P; r with u=v. Then we have 

k - 4  
2 2k 2k ( ) = o. (3 .16 /  

i = 1  

As in case (i), the number of solutions with z~=w is 

<< Pl+~lk-4Mk-4.  ( 3 . 1 7 )  

Otherwise z=w, and from (3.16) we have "-1=F1, and hence from (3.14), -~2=F~. Then 

from (3.8), the total number of solutions of this type is 

<< PKk-4(P; dp). (3.18) 

Then when k - j = 4 ,  the result follows by combining (3.9), (3.15), (3.17) and (3.18). 

(iii) k - j  odd. Write k - j = 2 J + l .  Then 

J 

\ r ~ O  ] 

(3.19) 

where C depends at most on k and j ,  and cr =cr(~) (0 ~ r ~< J) is a symmetric polynomial 

in ~ ,  ..., ~2 of degree J - r ,  with coefficients depending at most on k and j .  

On noting that  q / j ( z ;h ;m)  is divisible by z, hi, ..., hj, we find, as in the proof of 

Lemma 3.2, that  

R~I) (P; r << P~R+(P; d~), 

where now we write R+(P;  ~b) for the number of solutions of the equation 

�9 j(z; h; m) = q2j(z; h; n), (3.20) 
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with z, h, m, n satisfying (3.4) and (3.5). 

J 
E ( Cr( hl mkl' "'" h j m k )  - c r (  hlnkl' ""' hjnk))z2r = O. 
r ~ 0  

Consider first solutions of (3.21) with 

Cr(hlmk,  k k hjnk), ..., hjmj) ~ c~(hlnl,..., 

for some r. We may assign h, m and n in O(HjM}) ways. Fixing this choice, we have 

that  z is determined by a non-trivial polynomial. So there are O(1) such solutions in z, 

and hence the number of solutions of this type is 

<< << (3.22) 

Otherwise 

But on noting (3.19), equation (3.20) becomes 

(3.21) 

cr(hlm , k k k ..., hjmj ) = cr( hl nl , ... , hjnj ), 

for O~<r ~< J.  But then, by using elementary results on symmetric polynomials, we have 

J 

E - - 2 r l  2 r k  2 r k \  n i (rn, - n  i ) = 0  ( l~<r<~J) .  
i=l 

Then from (3.8), the number of solutions of this type is 

<< PKj(  P; dp). (3.23) 

When k - j  is odd, the result now follows on combining (3.9), (3.22) and (3.23), and 

this completes the proof of the lemma. 

We must now attend to the matter  of bounding Kj(P; dp). We might hope to achieve 

the essentially best possible bound Kj(P; dp)<<PEMjHj, dominated by diagonal solu- 

tions. In the light of our estimates for Ss(P, R), this may seem excessively optimistic, 

yet we very nearly achieve this goal. Unfortunately our methods are somewhat diverse, 

and will take a little time to explain. More precise estimates can be obtained by our 

methods, but  we choose simplicity of exposition. We start with a useful lemma, depend- 

ing for its effectiveness on estimates for the number of solutions of a homogeneous system 

of equations. 

We define Ss(Q, R; t, k) to be the number of solutions of the system of diophantine 

equations 
8 

V,(x2nk _y nk) z_, ,  * = 0  (l~<n~<t), 
i=1 

with x~,y~E.A(Q,R) (l~<i~<s). We note that  estimates for Ss(Q,R;t,k) are available 

from Wooley [14], [15]. 
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Then 

LEMMA 3.4. 
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Suppose that 2<.j<.k-2. Let l= [�89 and define 

Li,r(P) = H~-I S2~(MiR, R; J, k)+ (S~(MiR, R; J, k)) 2 

Lij(P), j even, 
L~j(P) 

(Lij(P)Li,t+I(P)) 1/2, j odd. 

J )1/j. 
Kj( P; 4))<< P~ ~Ij ( ~I min{ L*j( P), Sj( MiR, R; J, k ) } 

x i _ ~ l  

Proof. Write 

Then we have 

g~(~;H,Q,R)= ~ ~ e(ajh2Jx2Jk+...+alh:X2k) ~. 
l ~ h ~ H  x e A ( Q , R )  

161 

J r 

~b) << [ 1-I g2(c~; 2J-iHi, MiR, R) da, (3.24) Kj(P; 
Jw J i -~ l  

where here, and throughout, we write T for [0, 1]. 

As applications of HSlder's inequality, we have 

g2(a; H, Q, R) j << HJ-lg2j(a; H, Q, R), 

g2(a; H, Q, R) j << HJ-2 gj(a; H, Q, R) 2, 

g2(a; H, Q, R) j << HJ-2gj_l(a; H, Q, R)gj+l(a; H, Q, R). 

But by considering the underlying diophantine equations, we have 

wjg2j(a; H, Q, R) da  << R; J, k). (3.25) HSj(Q, 

Also, for each integer r we have that 

Tj g2r (C~; H, Q, R) 2 da 

is bounded above by the number of solutions of the system of diophantine equations 

h2n ff_..~(xiK -'~, 2nk --yi2nk\) :g2n ~-., (uix-~" 2nk_V2,~k) (1 ~< n ~< J), (3.26) 
i = l  i=-I 
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with 1 ~ h, g ~ H and xi, Yi, ui, vi Efl,(Q, R). The number of solutions counted in which 

the left hand side of (3.26) is zero is 

<< (HSr(Q, R; J, k)) 2. 

Meanwhile, if the left hand side is non-zero, using a by now familiar argument, we may 

bound the number of solutions of (3.26) by P~H 1+~ times the number of solutions of the 

system 

K"'~l 2nk_y2nk) ~"~l 2nk v2nk~ 2...,(x~ =]__.,(ui - i ) ( l~<n~<J),  
i = 1  i = 1  

with xi, Yi, ui, vi cA(Q,  R). Since this is <<S:r(Q, R; J, k), we have 

wjg2r(a;  2J-igi, MiR, R) 2 dc~ << p~H2Li,r(P). (3.27) 

Furthermore, by using Schwarz's inequality combined with the analysis above, we deduce 

that when u is an odd integer, we have 

IT J gu--l(Ot; Hi, MiR, R)gu+l (~; Hi, MiR, R) d~ 
(3.28) 

<< P~H~(Li,u-I(P)Li,u+I(P)) 1/~. 

Now applying H61der's inequality to (3.24), we may combine (3.25), (3.27) and (3.28) 

to complete the proof of the lemma. 

Before describing our final approach to bounding Kj, we shall require an elementary 

lemma on solutions of binary quadratic forms. 

LEMMA 3.5. The number of solutions, S(a, b, c; P), of the equation 

ax2+by2=c (abcr 

with l ~ x , y ~ P ,  is <<(abcP) ~. 

Proof. The conclusion of the lemma follows in an elementary manner from results 

of Chapter 11 of Huh [2]. We shall therefore merely sketch the required argument. 

We first note that  by changes of variable, combined with standard estimates for the 

divisor function, it suffices to show that when d is a non-zero square-free number, then 

the number of solutions of the equation 

X 2 - d y 2 = n  (n#O), (3.29) 

with ( X , Y ) = I  and I<~X,Y<.P, is O((ndP)~). By Theorem 4.1 of Huh [2], for each 

solution (X, Y) of (3.29), there exists a unique integer l, with 0 ~< 1 < 2n, satisfying 12-4d 
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(mod 4n). Since d is square-free, the number of solutions of this congruence is O(n~), 

and so it suffices to show that there are O((ndP) ~) solutions of (3.29) corresponding to 

each I. 

(i) Suppose that d<0.  By Theorem 4.3 of Hua [2], there are at most 4 solutions 

(X, Y) of (3.29) corresponding to each 1. 

(ii) Suppose that d>0.  Then it follows from Theorems 4.2 and 4.4 of Hua [2] that, 

if (X, Y) and (X',  Y') are any two solutions of (3.29) corresponding to the same l, then 

X + v/-dY = =t=(t + u v ~  )k ( X ' +  v/-d Y'),  (3.30) 

for some integer k, and choice of + or - .  Here (t, u) is the unique integer solution of the 

equation t 2 - d u 2 =  1 with t > 0, u > 0, and t + uv/-d least. But for each solution of (3.29) we 

have 1~< IX+v/'dY I < ( l + v ~ ) P ,  and hence the desired conclusion follows from (3.30) on 

noting that t+uv~ ~>l+v/d/>2. 

This completes the proof of the lemma. 

We now aim to exploit the differing sizes of the Hi via the previous lemma. We shall 

consider the number of solutions, Nj(P; dp), of the equation 

J 
2 2k 2k  hi(m, -n, )=0, (3.31) 

i=1  

with h, m and n satisfying (3.4) and (3.5). First, however, we shall consider the number 

of solutions, N]  (P; ~b), of the equation (3.31) subject to the additional condition m~ ~ni  

( l<i~<j) .  

We suppose in the following four lemmata that j ~> 1 and r162 i>... 7> C j, as is the 

case in our applications. 

LEMMA 3.6. We have 
_ J / ~ r  i 

N~(P;dP)<<P~HjMj( 1+ ~ H~-IHi)" 
j - - i  even 

Proof. We proceed by induction on j .  When j - -1  the estimate is trivial, and when 

j=2 the estimate follows almost trivially by use of divisor function estimates. Further, 

we have that N~(P; r  is the number of solutions of the equation 

--2~ 2k 2k 2 2k 2k - 2 ~  2k 2k -n3 )50, n l [ n  I - - m  I )+h2(n2 - - m  2 ) =  n3tm3 

with h , m , n  satisfying (3.4) and (3.5). Thus, by standard estimates for the divisor 

function, we have 
N~ ( P; d)) << p , ~ 2 ~ 2 .  

12-950233 Acta Mathematica 174. lmprim~ le 20 juin 1995 
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Therefore, recalling the condition on ~b, and applying the trivial inequality 

IZl ... znl <~ lZll'~ +... +lznl'L 

we obtain 

and so the result follows when j=3 .  

Suppose now that j>3 .  By applying Lemma 3.5, we deduce that the number of 

solutions of (3.31) counted by N2(P; dp) with 

j - 2  
2 2k 2k E hi (mi - n i  ) # 0 (3.32) 

i = l  

is 

Meanwhile, by the inductive hypothesis, the number of solutions of (3.31) counted by 

N](P; cp) with the left hand side of (3.32) zero is 

j - - 2  ~ f i  

j - ,  eve. (3.34) 

<<PeHjMj(I+ j-2 MIi 

j - - i  even 

The proof of the lemma is now completed on combining (3.33) and (3.34). 

LEMMA 3.7. We have 

NJ(P; dP) << P*HjMj (I +i~=3 H~-I H, )" 

Proof. Let t~>0 and iu ( l ~ u ~ t )  be integers with l<<.il<i2<...<it<~j. Now consider 

the number of solutions of (3.31) counted by Nj(P; dp) in which mi#ni whenever i= iu  

(l~<u~<t), and mi=ni  otherwise. On noting that when t=O there are only diagonal 

solutions, we deduce from Lemma 3.6, by a change of variables, that the number of such 

solutions is 

The lemma now follows on observing that Mi~/Hi~ <<Mi._,+i/Hi._~+l. 

There are a number of improvements which are of use in special circumstances. 
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LEMMA 3.8. We have 

Nj(P; r  << P~(HjMjNj_I(P; r + -~ j -  1M]- 1), 

and in particular 

N3(P; << P H3M3(I + 

165 

is 

and in particular 

LEMMA 3.9. When j ) 2  we have 

e ~ ~ 2  2 2 Nj(P; q~) <<P (Hj_IHjMj-IMjNj_2(P; dp)+Hj_2Mj_2(HjMj+Mj_IM ~ )), 

Proof. The number of solutions of (3.31) counted by Nj(P; d~) with 

h2 , 2k 2k 2 2k 2k 
j _ l ( m j _ l - • j _ l ) + h j ( m j  - n j  ) = 0  (3.35) 

<( PeHj-IHjMj-IMjNj_2(P; q~). 

Meanwhile, if the left hand side of (3.35) is non-zero, we may either apply standard 

divisor function estimates, or Lemma 3.5. Thus, the number of solutions in this case 

with mi#ni ( i=j-1 or i=j) is 

<< P~ ~Ij- 2M]_2( HjMj + Hj-I Mj-I 4-M~_ I M]). 

This completes the proof of the lemma. 

We now collect together the conclusions of this section in a simplified form, this 

being of use in our later applications. 

Proof. The number of solutions of (3.31) counted by Nj(P;qb) with mj=nj is 

<<HjMjRNj_I (P; ~b). Meanwhile, by using standard estimates for the divisor function, 

the number of solutions with mj~nj is <<P~Hj_I/~r2_ 1. 

The bound for N3(P; ~b) given by Lemma 3.8 is superior to that  of Lemma 3.7 
whenever/-/2 < M  2. 
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THEOREM 3.10. Suppose that l<.j<.k-2.  Let l= [�89 J= [ �89 and for r>~l 

write 5r=A (2Jk) - r .  Suppose that 5~ is increasing with r, and let e be 0 or 1 according 

as j is even or odd. 

(Ia) Unconditionally, / f j = l ,  or 

(Ib) if k - j  is odd, or k - j = 2  or 4, and any one of the following conditions hold, 

(i) l<~j~<J+l; 

(ii) 2+e<~j<~2J+2-e and (k+Sj+e)r <~ l; 

(iii) when j>~3, we have 

I 
~O~+k(,~_~+r <2 (3<I<j);  
i=1 

then 

fo 'IFj(~)I ~ << p l  +e ~/lj ~Ij. da 

If none of (i)-(iii) hold, we have 

(a) 

~0 11Fj  (or) 12 <~<~ P'+eMJ+~Hj,  ( b )  da 

Furthermore, if (k+62(z+l)-25z+l)01<~l ( f=0 ,  e), we may take a= where a=6j / j .  

(~ +~z+e)/j. 
(II) In any case, we have 

~0 1 l+e  ~ 2  IFj(a)[ 2 da << P M~ Hi. (c) 

Proof. Part (Ia) follows from Lemma 2.1 of Vaughan [9], and part (II) follows from 
Lemma 3.2, on considering the underlying diophantine equation. So suppose that k - j  

is odd, or k - j = 2  or 4. Then estimate (a) will follow from Lemma 3.3, on considering 

the underlying diophantine equation, providing we can show that 

Kj(  P; dp) << Pe HjMj.  (3.36) 

The number of solutions of the system of equations 
g 

Z.,~x~ =o (l~n<<.t), 
i = l  

with l<.xl,yi<.P ( l ~ i ~ s ) ,  is O(P*) when l<~s~t. This follows by an ehmination ar- 
gument, for example. Also, when s= t+ l ,  the number of solutions is O(Pt+I+~), by 
Theorem 1 of Wooley [14]. Then when (i) holds, we plainly have 

8~( M~R, n; ,1, k) << ( M, nF+% 
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and hence (3.36) follows, by Lemma 3.4. 

Now suppose that condition (ii) holds. Then we have l+e<~ J+ 1, so as above, 

Sr(MiR, R; J, k) << (MiR) ~+~, 

when r=l, l+e. 
follows. 

when r=l, 1 +e. Now, by discarding all but  one of the implicit equations, we deduce that 

for each u, 

S~(MiR, R; J, k) << S(2Jk)(MiR, R) << (M~R) ~(~2~k)+~. (3.37) 

Hence, by the definition of Hi, the condition on r and the (implicit) assumption r ~> r 

(i~>1), we have 

HT'S2~(MiR, R; J, k) << P~M~ ~, 

Then, in Lemma 3.4, we have L*I(P)<<PeM} and once again (3.36) 

Now suppose that condition (iii) holds. Then by Lemma 3.7, we have 

Nj(P; dp) << P~HjMj,  

whence, by discarding all but  one of the subsistent equations, (3.36) follows once again. 

Finally, if none of (i)-(iii) hold, we use (3.37) in Lemma 3.4 with u = l + f , j + f  

( f = 0 ,  e) to obtain estimate (b). 

This completes the proof of the theorem. 

THEOREM 3.11. Suppose that l <,.j<.k-3, and let J= [ � 8 9  Otherwise make 

the same hypotheses, and adopt the same notation, as in Theorem 3.10. 

(I) Suppose that 3~k- j<~5 or, when j = l  and k>~9, that k is odd. Then if j - - l ,  or 

any one of conditions (i)-(iii) of Theorem 3.10 hold, then 

fo llFj(c~)14 2+~ -3  - a  d~ << P M~ H~ . (a) 

If none of the conditions (i)-(iii) of Theorem 3.10 hold, then 

 o l l F j  4 2-t-e  3+a - -3  << P M j  . 

(II) In any case, we have 

~o 1 IFj (a)14 da << p2+%~f4~]. 

(b) 

(c) 
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Proof. When j = l ,  part (I) follows from equations (2.14) and (2.15) of Vaughan [9]. 

Next, note that  by Lemma 3.2, 

(1) 2+e ~ ~2 Rj+I(P;r162 HjM~, 

and hence part (II) follows from Lemmata 3.1 and 3.2. So suppose that  3<.k-j<.5. 
When one of conditions (i)-(iii) hold, estimate (a) will follow from Lemmata  3.1 and 3.3, 

on considering the underlying diophantine equation, providing we can show that  

Kj(P;(b)<<PeHjMj and Kj+l(P;r 

The first estimate follows as in the proof of Theorem 3.10. Also, on considering the 

implicit diophantine equations, we have 

Kj+I(P; ~b, 0) << PK~(P; ~b), 

where K](P; 4)) denotes the number of solutions of the system of equations (3.8), subject 

to our revised definition of J .  Hence the same analysis as in the proof of Theorem 3.10 

gives the desired conclusion. 

Finally, if none of (i)-(iii) hold, we use (3.37), as in Theorem 3.10, in the above 

analysis to obtain estimate (b). 

This completes the proof of the theorem. 

4. M a j o r  a n d  m i n o r  a rc  e s t i m a t e s  

We must now obtain estimates of use in a Hardy-Lit t lewood dissection. Broadly speak- 

ing, we follow the pattern established by w of Vaughan [8]. As a consequence of the 

more efficient differencing procedure of Wooley [13], however, we have more variables to 

average over. We use an argument based on the large sieve to make some savings on these 

extra variables. Also, we develop particularly precise estimates for certain exponential 

sums, these enabling us to obtain an essentially best possible result for a ( k - j + l ) t h  

power mean value estimate for Fj over the major arcs. 

Throughout  this section, we shall suppose that  l<~j<<.k-2. When C is a non-zero 

integer, and B=B(hj+I, ..., hk-2) is a subinterval of [0, Pj], we define 

DJ(~ E ... E E ... E E e(CO~hl...hk-2~2) 2, 
hl<~2J-lH1 hj<~Hj hj+x<~Pj hk-2<~PjtzEl3 

where we write ~ = 2z + hj+l +... + hk-2. We then define 

Dj(a; P, ~b) = sup sup Dj(a; P, ~b; B, C). (4.1) 
C ~  -1  B 
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LEMMA 4.1. Suppose that ( a , q ) = l  and [a-a/ql~q -2. Then 

Dj(ol;P,d~)((P*( Q~ +p-lO~Tq+Qk[o~q-a[). q+Q~[aq-a] 

Proof. This is only a slight elaboration on the proof of Lemma 3.1 of Vaughan [8]. 

We shall suppose throughout Lemmata 4.2 to 4.6 that  J, H, M are positive real 

numbers with j<<pk, M<<p1/k and H<<PM -k. As a notational convenience, we shall 

also write Qk for JH3M 2k. When C is a subset of ZN(M, MR], we define 

~.< ~-~ e(aJ h3m~k) 2~. Er(a; J, H, M; C) = ~ (4.2) 
j ~ J  h ~ H  rnEC 

LEMMA 4.2. Suppose that Mk~X ~QkM -k, and that (a,q)=l, q~X and [qa-a]~ 
X -1. Then uniformly in C, we have 

pe / (q+Qk---~-~-al)l/kJHM2 +JHM+P2H) El(a ;  J, H, M; C) << ~ 

Proof. We may apply the argument of the proof of Lemma 3.2 of Vaughan [8] to 

show that the sum in question is 

where 

<< E+ P~( JHM + H3M2k), 

E ~ pc (JHM+ JHM2 "~ 
\ (q+Qk--~--al)l/k ]" 

This completes the proof of the lemma. 

COROLLARY 4.2.1. Suppose that k-j>~4, 
[q(~-al~X -1. Then uniformly in C, we have 

sup 
c,.<c-1 

M~ <<. X_< nk a/r-k -r , ( a , q ) = l ,  qKX and 

E1 ((~; CPk-J-2H11~Ij, H1, M1;C) 

~ Pk-J-2+ClTIjM2((q+Q~laq-al) -i/k + M1-1). 

Proof. We merely note that  when k - j~4 ,  we have Pk-J-2fIj>>P2H1. 

When k-j<.3 the following lemma usually provides a bound superior to that  of 

Lemma 4.2. 
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LEMMA 4.3. Suppose that 

Y < min{M, JH -3, Q1/4, (QkM1-4k)l/6}, (4.3) 

that y k ~ X  ~QkY-k,  and that ( a , q ) = l ,  q~X  and Iqa-a l~X -1. Then uniformly in C, 
we have 

H M C" p c /  JHM2 +JHM2y-1)  EI(~;J, , ; )<< ~(q+Qk~--~q_al)l/k 

Proof. The exponential sum in question is at most 

Z man(J, II~(m2k--m21k)h3N-1 }. 
M < m l , m 2 ~ M R  h ~ H  

Since Y ~ M ,  the contribution from terms with ml=m2, combined with that  from any 

terms with 

IIc~(m~ k -m2k)h311-1 ~< 4gY -1, 

is <<P~HJM2y -1. Thus we need only consider 

y~ J(l  + JJJ.(mlk--m~k)h3Jl)-~, (4.4) 
rnl,rn2 h~H  

where the first summation is over ml  and m2 satisfying 

M < ml < rn2 <~ MR and tl~(m~ k-m2k)h311 < (4 j ) - IY .  (4.5) 

For given ml ,  m2, h, we may choose n so that  

II (m  II = - - n l .  

Let T~=(4JH3y-1) 1/2. Then for given ml,m2, by Dirichlet's theorem we may choose 

b, r with 

(b , r ) - -1 ,  r ~  and ]~(m2k-rn2k)--b/rl~(rn) -1. 

Notice that  if b=O then r=l. Hence, for any ml,m2,h included in the above sum we 

have 
( y H 3 ~  1/2 

Ibh3-nrl=lb/r-n/h3lrh3 < 2 \  4J ] ~<1, 

since by assumption, Y<~JH -a. Thus bh3=nr, and if n = 0  then b=O and r=l.  Hence 

in all cases rib 3. Put  r--rlr~r 3 where r3 is maximal and (rl ,  r2)=1.  Then rlr2r31h. Let 
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ho=h/(r,r2r3). Then the sum over h in (4.4) is 

J 

~- ~_~ l+Jhao(r,r2r3)ala(rn~k-~k)-blrl ho~H/(rlr2r3) 

JH(rlr2r3) -1 
<< (l+ JHa[a(m~k m~k)_b/rl)l/3 

JHr-1/3 
<< 

(1 + JH ~ fa(mg ~ - . ~ k )  - b / d ) ' / ~ "  

Thus 

E1 (c~) << P~(A+JHM2y-1) ,  

where 
JH 

A= (r+jH31a(m   m k)r_bl)l/3, 
trY1 ~m2 

and the summat ion  is over m l  and m2 satisfying (4.5). Plainly, we may also restrict the 

summation to be with 

r + J Ha[a(m~ k - rn~k)r-bl <. R - k y  3. (4.6) 

We put  

j=(ml ,m2) ,  n=rnl / j ,  I= (m2-ml ) / j ,  

so that  

j<.MR, I<.MR/j, M / j < n < n + l < . M R / j ,  (n ,n+l)=l .  

Now, of course, b and r will depend on j ,  l, n. Let S=((MR/j)2k-IHaJ) 1/2. Then  given 

j and l, by Dirichlet's theorem we may choose c, s with 

(c, s) = 1, s <~ S and  laj2kl-c/sl <<. ( ss ) - ' .  

Again we observe that  if c=0 ,  then s = l .  Let D=((n+l)2k--n2k)/l. Then 

fn+l 
D = ] x2k-ldx~ 

Jre 

and so 
2k(M/j) 2k-1 <. D <. 2k(MR/j) 2k-1. 

Thus condition (4.6) implies that  r<.R-kY 3, and 

aJ 2kl _ - ~  y3 
b ~ rDH3JR k" 
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Therefore 

[crD-bsl= sC-r~ srD < ~y3D -~ H3jR ~ 4kR-ky3(H3j)-I/2(MR/j)k-1/2 < I, 

since by assumption, 
y6 ~ QkM1-4k = H3jM1-2k. 

Thus crD=bs. Hence r[s. Let sl-=s/r. Then cD=slb. Hence c[b and sliD. Therefore, 

as (n, n+l)=l, we have (n(n+l), Hi)--1 and we may conclude that 

gJ(sl /s) l /3 (4.7) 
A<< ~ ~ )--~)-~ (l+H3J(M/j)2k_llaj2kl_c/s])l/3, 

j ~ M R  l ~ M R / j  Sl]S n 

where the final summation is over n satisfying 

n<.MR/j,  (n (n+ / ) ,81 ) - -1  and s~lD. (4.8) 

By a simple argument, as in the proof of Lemma 3.2 of Vaughan [8] (see pages 22, 23), 

there are O((sll) e) choices of n (mod sl)  satisfying (4.8). Thus the innermost sum in 

(4.7) is 
<< ( ~ I R + I )  P~(sl/s)l/3HJ (4.9) 

(l + g3 J(M/j)2k-l[aj2kl-c/s[)l/3 " 

The contribution to A from terms in (4.7) with MR<.jsl is therefore <<P~MHJ. Thus, 

from (4.7) and (4.9), we have 

A << P~(B+ JHM2y-1) ,  

where 
HJMj-1  (4.10) 

B= ~ ~ (s+H3J(M/j)2k_llaj2kls_cl)l/3. 
j ~ M R  I ~ M R / j  

Plainly, we may restrict the second summation in (4.10) to those 1 satisfying 

s+ H3j(M/j)  2k-1 [aj2kls--c[ < R-2(y/ j )  3. 

Let T=(M/j)k(H3j)  1/2. Then given j ,  by Dirichlet's theorem we may choose d 

and t with 
( d , t ) = l ,  t<.T and laj2k-d/t[<.(tT) -1. 

Once again, if d=O then t=l.  Then for j and l included in the summation in (4.10), we 

have 
-~s d 2R-I(y / j )  a c _ lst<. (g3j)l/2(M/j)k_l < 1, 
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since, by assumption, Y~<.QkM1-4k~H3J. Thus ct=dsl, and so sit. Let tl=t/s. Then 

ctl=dl. Thus till. Let ll=l/tl. Then c=dll. Therefore 

H J M j  -1 
B < E E (tIlt)l~3 E (l+H3j(M/j)2k-llltllaj2k_d/tl)W3" 

j ~ M R  ti l t  l l ~ M R / j t l  

By Lemma 7.1 of Vaughan and Wooley [10], the innermost sum is 

<< H JM2 Rj -2 t l  1 
(1 + H3J(M/j)2k [aj2k _ d/tl)l/3 " 

Thus 

where 

B << Pe(C + JHM2y-1),  

HJM2j -2 
C= E (t+H3J(M/j)2klaj2kt_dl)l/3' 

j ~ M R  

and we may restrict the summation to those j satisfying 

1 - 3  t+ H3J( M/j)  2k ]aj2kt- d[ < 5 (Y/3) �9 

Let U=Q k/2. Then by Dirichlet's theorem we may choose e, u with 

( e , u ) = l ,  u<.U and [au-e[<.U -1. 

(4.11) 

On noting that  t is non-zero, we find that  for any j satisfying (4.11), we have j<.Y. Then 

when j satisfies (4.11), we have 

e /j2k ) y2k y2k U d .2k � 8 9  U 
- ~ - ~  2 tu< H3j(M/j)2k ~ - ~  2H3jM2 k 41, 

since by assumption, y2k<Qk/2. Thus ej2kt=du. Hence tlu. Let uo=u/t. Then ej2k= 
2k where u2k is maximal and Ul, ..., U2k-1 are square- duo. Hence uolj 2k. Let Uo=UlU~ ... u2k 

free and coprime in pairs. Then Ul ... u2klj, whence 

HJM2(wulu2 ... U 2 k ) - 2 t - 1 / 3  

C << Z E (1 + U3Ji2klo~-e/u])i/3 
W t~ttl~...,U2k 

where the second summation is over t, ul, ...,u2k satisfying tulu 2 ... u2 k2k__u. Thus 

p~ H J M  2 
C ~  

(u+Qkl u- l)l/k" 
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When u+Qk]om-e[~�89 k we are done, so we may suppose that u+Qk[au-e[<�89 k. 
Thus 

e a uq YkX yk 
u - q  < 2 - ~ - + 2 - X  ~<1' 

since by assumption, Yk<~X<~QkY-k. Hence eq=au, so that u--q, e--a, and the bound 

for El(a) follows at once. 

This completes the proof of the lemma. 

In the next two lemmata we prepare a large sieve argument which yields a further 

useful bound on Es(a). In Lemmata 4.4 to 4.6, the variable N denotes a large positive 

integer with M2k<<N<<P k. Then in particular, JHN>>Q k. 

LEMMA 4.4. Let c(n) (nEN) be arbitrary complex numbers, and define 

J , g  12 
S03) = E E c(n)eO3jn) �9 

j = l  ' n = l  

Suppose that (a ,q )= l  and [/3-a/q[<.q -2. Then 

N 

S(~) <<P~ ( q+J-N---~]~q-a]JN +j+N+q+JN,~3q_aOE,c(n) ,2"  

Proof. On squaring out, interchanging the order of summation, and performing the 

summation over j ,  we find that 

N 

<< g Ic(n)12+ le(n,)c(n2)l min{J, (4.12) 
n=l  l~n l  <n2~N 

Thus it suffices to treat the second term on the right hand side of (4.12), which by the 

arithmetic-geometric mean inequality is 

<< E (Ic(nl)[2+lc(n2)[ 2) min{ J, [[•(n2 -nl)[1-1 } 
l ~ n l  < n 2 ~ N  

N N 

<< E Ic(n)[2 E min{J, ][j3h[I-1 }. 
n=l  h=l  

When q~ NJ the lemma follows trivially by Cauchy's inequality. Then we may suppose 

that q<NJ, and so by Lemma 2.2 of Vaughan [5] we have 

N 

S(~) << P~(NJq -1 + J + N +q) E Ic(n)?. (4.13) 
n = l  
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If NJi~q-a I <~q then we are done. We therefore suppose that  NJl~q-at>q, and that  a 

and q satisfy the hypotheses of the lemma. 

By Dirichlet's theorem we may choose b and r with 

( b , r ) = l ,  r<.2l~q-a1-1 and lt3r-bl<<. �89 

It follows that  b/rT~a/q and I~r-bl ~<(2q) -1. Thus 

(qr) -1 ~ I~-a/qi+l~-b/rl <~ I/3-a/ql+(2qr) -1, 

whence (2l~q-al)-l~r. Therefore, by (4.13) with q replaced by r, we have 

N 

S(~) << P~(NJr -1 +J+N+r) ~ Ic(n)l 2 
n = l  

N 

<< P~( Jg]~q-al+ J + N +lZq-al-1) E ]c(n)12' 
n = l  

and the desired conclusion follows. 

LEMMA 4.5. Let c(n) ( hEN)  be arbitrary complex numbers, and define 

Suppose that 

N 2 

E E E c(n)e(.h3jn) 
j ~ J  h ~ H  ' n = l  

Y ~< min{N, J, (JNH-3)U2}, 

that y3 <<. X <<. QkY-3, and that (a, q)--1, q<~ X and lqc~-al <<. X -1. Then 

T(a)<<p~ ( JHN ) N 
\(q+Qk~-~q_a])l/3 ~-JHNY-1 E Ic(n)]2" 

n = l  

Proof. Let S=NJY -1. Then given h, by Dirichlet's theorem we may choose c and s 

with 

(c, s) ---= 1, 

Thus, by Lemma 4.4 we have 

s~< S and I(~h3s-cl <.S -1. (4.14) 

N 
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But by (4.14), we have 

s+ JNlah3 s-cl  << Y + N J Y  -1, 

so in view of the hypotheses on the size of Y, we have 

T(oz)<~ge( E ,IN .~HJNY_ 1) N 
-h<.H s+JNlah3s-cl ~ I (n)l =. 

n = l  

Thus it remains to estimate 

(s+ JNlah3 s-c]) -1, (4.15) 
h~H 

where, plainly, we may restrict the summation to those h with 

s+ JNlah3 s-c] < �89 (4.16) 

Let T=(H3JN) 1/2. Then by Dirichlet's theorem we may choose d and t with 

( d , t ) = l ,  t<.T and la -d / t l~( tT)  -1. 

Then for each h satisfying (4.16), we have 

- < - ~ - + 2 - ~ < . Y \ j N ]  <~1, 

since by assumption, Y2<.JNH-3. Thus dh3s=ct, and so sit. Let to=t/s. Then dh3= 
cto. Therefore, tolh 3, so by puting to=ht2t 3 with t3 maximal  and h,t2 squarefree, we 

have ht2t31h. Hence the sum (4.15) is 

<<E E (to~t) 
tolt j<~H/(tlt~t3) l + JN(jht2t3)31a-d/tl 

< < E  (to/t)g 
tolt (ht2t3)(l+JgH31a-d/tl)l/3 

Ht ~ << 
(t+Qklat-dl)l/3" 

If t + Qk lat - d I >~ �89 y 3, then we are done. Thus we may suppose that  t + Qk lat-  d I < �89 y 3. 
Therefore 

d a y3 y3 X 
Idq-atl= - q  tq < ~ - ~ +  2--~- ~< 1, 

since by assumption, y3~X<.QkY-3. Hence at=dq, so that  q=t and a=d, and the 

bound for T(a) follows at once. 

This completes the proof of the lemma. 
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LEMMA 4.6. Suppose that 

Y ~< min{M 2k, J, (JM2kH-3)I/2}, (4.17) 

that Y3 <<. X <<. QkY- 3, and that (a, q)=l, q<<. X and [qa-al <<. X -1. Then uniformly in C 

satisfying CC_A(MR, R)N(M, MR], we have 

Es(a; J, H, M; C) << P~JHM'~+2k(Y -1 + (q+Qklaq-a[)-l/3). 

Proof. For nEN,  define c(n) to be the number of solutions of the diophantine equa- 

tion x~k+...+x~k=n, with xiCC (l~<i~<s). Also, let N=(MR) 2k. Then by (4.2), it 

follows that Es(a; J, H, M;C) is an exponential sum of the form T(a)  of Lemma 4.5. 

The lemma then follows on noting that M2k<<N<<pk, and 

N 

Ic(n)l 2 << s~2k)(MR, R) << P~M ~" . 
n = l  

We now attend to the matter of obtaining suitable major arc estimates for the 

exponential sums Fj(a). 

LEMMA 4.7. Suppose that (a,q)=l, ~=a-a /q  and qp-1Q~Rk(k-J)l~l<<.l. Then 

~m ~h Pq-lTJ(q'a'h'm) ~_~ij~ljq(k-j-1)/(k-j)+~, 
Fj(a) << ( l+l f l lh i  ... hjPk_j)U(k_j ) 

where the summation is over h and m satisfying (2.1), and 

Tj(q,a,h,m)= e -~y ( r ,  h, m) (4.18) 

Proof. The proof we give is a simple modification of the proof of Lemma 3.5 of 

Vaughan [8]. We have 

Fj(a) = ~ ~ S(a; h; m), (4.19) 
h m 

where 

S(a; h; m) = E e(atPj(z; h; m)). 
l<<z<<Pj 

Hence, on writing a=a/q+~, a standard argument gives 

S(a;h 'm)=q-1  Z a(q,a,b,h,m)T(j3, b,h,m), 
--~q<b<~�89 

(4.2o) 
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where 

and 

a ( q , a , b , h , m ) = E e  kOj(r, h, m ) +  r 

T(fl, b,h,m)=~<~z<~p~E e(  ~q2j(z'h'm)-b . 

Each coefficient of ~j  is divisible by hi ... hj, and so if d is the greatest common divi- 

sor of the coefficients of a~j(r, h, m)+br  and q, then d<<(q, hi ... hi, b). Therefore by 

Theorem 7.1 of Vaughan [5], we have 

a(q, a, b, h, m) << q(k-j-1)/(k-j)+e (q, hi... hi, b) x/(k-j). (4.21) 

Let 

Then 

where 

b 
r =/3~j (7, h, m ) -  -7.  (4.22) 

q 

b k~ 
q +r -- (k_j_l)!J3(ml ... mj)-kl, 

fT+hlm~ fr fr k-j-1 
. . . .  ~j d~)j d~j-1 ... d~)l. I J~-h,m~ Jr JCj_l-hjm~ 

Thus, when 171<<.2JP, we have 

~ k! 1 
+r ~< 2J ( k - j - I ) !  I~lh, . . .  hj(2JP+h,mkl+...+hjmk) k-j-1 < 4q" 

When 1 1 -~q<b<<.~q and 17]<<.2JP, we therefore have ]r 3. Further, when b~0 we 

have 

1r > 

Therefore, by Lemma 4.2 of Vaughan [5], we have 

1 
T(~,b,h,m)= E 

u=--I 
I(/3, b,h,m,u)+O(1), 

where 
r2JP 

I(•, b, h, m, u) = Jo e(r dT. 

By integrating by parts we deduce that 

(4.23) 

I(f~,b, h ,m,  • << 1, 
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and further, when b#0,  

Therefore 

and, when bT(:0, 

q 
I(j3, b, h, m, 0) << ~-~. 

T(/3, 0, h, m) = 1(/3, 0, h, m, 0) +O(1)  

q 
T(~, b, h, m)  << 777. 

IOl 

Hence, by (4.20) and (4.21), we have 

S(~,h,m)-q-la(q,a,O,h,m)I(13,0, h,m,O) << 
l<~b<~q 

b-l q(k-J-1)/(k-J)+e(q, b)l/(k-J) 

<< q(k-j-1)/(k-j)+e. 

The lemma now follows from (4.19) on observing that by (4.22), (4.23) and Theorem 7.3 

of Vaughan [5], we have 

1(/3, 0, h, m, 0) << P(1 + l~lhl ... hj pk- j ) - l / (~- j )  

In the following lemma we provide an estimate for an exponential sum which we will 

use ultimately to estimate rj(q, a, h, m) when j<~k-3. 

LEMMA 4.8. Suppose that n>~2. When qEN and al,...,anCZ, define f(x;a)= 
n j ~-~j=l ajx and 

Let d=(q, ax,...,an) and r=q/d. Define r i ( l~ j<~n)  by 

r j = l - I  pj ( l ~ < j < n ) a n d  rn= H pi" 
pJllr Pillr, i)n 

Then 
n 

e 1/2 V [  1 - -1 / j  S(q,a)<<q dr 1 .~,'J . 
j=2 

Proof. Let r=q/d and bj=aj/d ( l~ j~<n) .  Then we have S(q,a)=dS(r,b), with 

(r, bl, ..., bn)= 1. In view of the multiplicative property of S(q, b) (see the proof of Theo- 

rem 7.1 of Vaughan [5]), it suffices to treat the case in which r is a prime power, say p~. 

13-950233 Acta Mathematica 174. lmprim~ le 20 join 1995 
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Suppose that (p, cl, ..., c,~)=l. Then by Corollary 2F of Chapter  II of Schmidt [3], we 

h ave 
S(p, e) <<pl/2, 

and by Theorem 7.1 of Vaughan [5], for each t>~n we have 

S(p t, c) << pt- t /n .  

Thus we may assume that  2<~t<~n-1. 
By making t he transformation x H u + vp t -  1 wit h 1 ~< u ~<pt- 1, 1 ~< v ~< p, we have 

e = p e  , 

u = l  v = l  P u = l  ~ 

where the final summation includes only those u with plfr(u; e). But since 

(p, Cl, 2c2, ..., ncn ) <~ n(p, Cl , ..., c,~ ) = n, 

the congruence if(u; c ) = 0  (mod p) has at most n ( n -  1) solutions (mod p), say ~1, ..., ~N. 

Thus 
N 

p,-2 ~'~ pe ( f((j +wp; c) 
S ( p t ' c )  = w=lE ~=1 ~k P' / <<n(n -1 )p t - l '  

and this completes the proof of the lemma. 

We are now able to establish a suitable estimate for a moment of Fj(a) of use on 

the major arcs. 

Definition 4.9. (i) Let rnj denote the set of points in [0, 1] with the property that  

whenever there are aE Z and qEN  with (a, q)= 1 and 

qp-1Q~Rk(k -J ) [a -a /q l  <~ 1, (4.24) 

then q>P.  Further, let ~Olj=[O, 1]\mj. 

(ii) When ( a , q ) = l ,  let 92tj(q,a) be the set of a in [0, 1] for which (4.24) holds. (Note 

that the 932j(q, a) with O<~a<~q<~P are disjoint.) 

(iii) Define Fj* (a) to be the function of a taking the value zero whenever a E mj, and 

by 
P q - l v j ( q , a , h , m )  

h 

whenever aEff2j(q,a)  and O<.a<~q<~P. Here Tj is defined as in (4.18), and we have 

written ~ for a - a / q .  
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L E M M A  4 . 1 0 .  Suppose that l~j<~k-3 and t>~k-j+l. Then 

~0 l[F;(a)[ t << Pe(PHjMj)tQ; k. da 

Proof. The integral to be estimated is 

Z E  
q ~ P  a = l  

(~,q)=l 

Pq-lrj(q,a,h,m) ~tda 
~j(q,a)(~m ~h (i+)a_a/qlhl...hjpk-j)l/(k-j) ] " 

Let h=hl ... hi, and for a typical q from the summation, put r=q/(q,h). Write r =  

1-I~-~ ri, where the ri (l<~i<.k-j) are defined as in the statement of Lemma 4.8. On 

recalling the definition of ~ j ,  and applying Lemma 4.8 to (4.18), we obtain 

k- j  
7 j ( q , a , h , m )  << qZ(q,h)r~/2 H 1--1/i " i  

i=2  

Hence 

where 

Pq--lrj(q, a, h, m) 
~ E  (l+la_a/qlhl hjpa-j)l/(k-j) 

h "'" 

<< PI+~I ~, Hi), (4.25) 

r-~l/2 k-j H,=2 r~ 1/~ 
J(q, H) = E (l+la_a/qlhpk-j)l/(k-j)" 

h ~ H  

Here, of course, the ri depend implicitly on both q and h. We may classify the values 

of h in the last summation according to the size of d--(q, h). Thus we deduce that 

k - j  Hd_ 1 
J(q, H) << E r;1/2 H r;1/i (l+la_a/qlHPk-j)l/(k-j)' 

d r = q  i=2  

(4.26) 

k-j 
where r=Hi=l ri, as in the statement of Lemma 4.8. Therefore, by (4.25), (4.26) and 

Hhlder's inequality, we obtain 

q ~ P  a = l  (a,q)=l 
(4.27) 

where 

f l  I d~ J = (l+ZQk)t/(k_j) 
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and 

We have 

Also, on noting that  

k j 

( 7 ( q ) =  E q E ( d-lrll/2 H r:l/i " 
q~P dr=q i----2 

j << Q~k. 

k_, }, 
G(q) ~ E dl-t E r(  r;1/2 H r ~ l / i  

d~P r~P " i=2 
k--j oc 

<<n(l+.,,,+z.+ z 
p~P i=2 i=k-j+l 

we deduce that for some fixed x,  we have 

a(q)<< H (l+xp-1) <<P,. 
P~P 

The lemma now follows on combining (4.27), (4.28) and (4.29). 

(4.28) 

(4.29) 

5. T h e  i t e r a t i v e  s c h e m e  for  f i f th  p o w er s ,  I 

The iterative scheme for s > 6  is rather more complicated than that  for s~6 .  We defer 

the treatment of the former cases to w For s = l  and 2 we have the classical bounds 

s,(P, R) << P'+~, 

and for s=3 and 4 we use the results of Theorem 1.4 of Vaughan [9]. These give 

4+20 
A ~ = 3 + 2 0  and A~= 1 - 0 '  

where 0 is the smallest non-negative root of the polynomial 3 - 4 2 0 - 2 7 0 2 - 4 2 0 3 .  Thus 

we obtain A~ ~<3.136258 and A~ ~<4.438657. We display below the iterative procedures we 

adopt for s=5 and 6. 

8=5. 
2 8 Fd f~ l > F~Y~ - - - ->  ( F ~ ? / ' ( f ~ )  '/4 

l 
f i~  
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8 = 6 .  

F02r 10 , 
*/0 ' > " 1 3 1 0  

15".r  �9 F 2 f  8 ~ (F4) l / 4 ( f lO) l /2 ( f12 )  1/4 

1 
fl . 

In what follows, we let (As) be an iterate of the sequence converging to (A~), and 

we write 8 for Cz and r for r Note that to obtain a reasonable initial iterate (A~), we 

may use the values given by Lemma 3.2 of Wooley [13]. 

(i) s=5. By Theorem 3.11 (I), case (i), we have 

f f  IF2(, )I' doL << P2+~H'3/'~r3. (5.1) 

Then proceeding as described in w using the iterative sequence for s=5  given above, 

the equations for As, 0 and r are determined by 

P H ,  M1M2Q; ] ~ (P2 (H1/-/2 Ul/1//2 )3) 1/4 (Q;;)3/4, 
t - l t lV l lZ l l )  .CV-12~,r L,,61 ) 

p'~, ~ PMtQXl: . 

(5.2) 
(5.3) 
(5.4) 

On writing 

equation (5.2) leads to the equation 

31" 1 "  
t~ = ~ "~4 - -  "a3,  (5.5) 

5 ( 1 - 8 -  r + 8 - 4 r  = 0, 

and hence 
r = 8 + 5 ( 1 - 8 )  

4+5 

Meanwhile, equation (5.3) leads to the equation 

(5.6) 

2(1 +8+)~,] (1-8) )  = .),5(1- 8)+)~; ( 1 - 8 - r 1 6 2  

On writing E = $ s -  2,~ +)~,  we obtain 

E ( 1 - 8 ) + 1 - 1 0 8  = (A;-6)r  (5.7) 

Write 
~ - 6  
4+6 ' 

(5.s) 
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1+$-a5 
0= 

1 0 + $ + a ( 1 - 5 ) "  

By (5.4), the next iterate for A5 is therefore given by 

A~ = A~(1-0)+ 1+80. 

The above iteration process converges to A;, with 

A t = A~(1-05)+1+805, 

where 05 is a root of the equation given by substituting the expression (5.9) into 

(10+$* +a(1-5))05 ---- 1+$* -aS ,  

with s We find that 

$* -- Ai + 1+805-  A~(1 +05), 

and so 

(5.9) 

and hence 

5 ' ( 1 - 0 - r 1 6 2  = 0, 

0+6 ' (1 -0 )  r 
4+5' 

Meanwhile, equation (5.12) leads to the equation 

2(1 +0+A~(1-0))  = A 6 ( 1 - 0 ) + A ~ ( 1 - 0 - r 1 6 2  

(5.14) 

�9 2 (8 -  A4)0s +(3+A~ + a ( 1 - 5 ) ) 0 5 -  (2+A~- A~-a5 ) =0,  (5.10) 

with 5 and a given by (5.5) and (5.8), respectively. It transpires that 05 is the positive 

root of equation (5.10), whence A~5.925080. 

(ii) s=6. We observe that the estimate (5.1) holds once again. Then proceeding as 

described in w using the iterative sequence for s=6  given above, the equations for A6, 

0 and r are determined by 

PHIMIM2QA2~ 2 3 1/4 A~ 1/2 ,,~(P(H1H2MiM2) ) (Q2) (Q~)l/a, (5.11) 

PM1Q~; 2 s ),;, ,-~ (P(MiH1) M2Q 2 Q~)1/2, (5.12) 

~ "  "10 Z~)~; (5.13) P~ "~ 1- '1Vl l  ~,~1 �9 

On writing A ' - i~*  1 , " - 2"'5 + ~A6- A 4, equation (5.11) leads to the equation 
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On writing g'=A6-2%; +%~,, we obtain 

g1 (1 -0 )+1 -100=  (%~-8)r 

Write 

Then (5.14) and (5.15) yield 

a ' -  %~-8 
4+6t" 

(5.15) 

l + g ' - o / 5 '  
O= 

1 0 + g ' + a ' ( 1 - 5 ' ) "  

By (5.13), the next iterate for A6 is therefore given by 

%~ = %;(1-0)+1+100. 

The above iteration process converges to A;, with 

A; = A;(1-06)+1+1006, (5.16) 

where 06 is a root of the equation 

(10+g* +c~*(1-5"))06 = l + g * - ~ ' 5 " ,  

in which 

=~"5"4" '6  "'4, 4 + 6 *  ' 

and in 5", g* and ct* we substitute for %~ from (5.16). 

The root of the resulting cubic polynomial can be found directly. Alternatively, one 

may continue the iteration process to obtain a good approximation to the root. Thus, 

by (5.16) we obtain A; ~< 7.541755. 

6. T h e  i t e r a t i v e  s c h e m e  for fifth p o w e r s ,  II  

We display below the iterative procedures we adopt for s--7 and 8. 

8 = 7 .  

8 = 8 .  

Fo2 ~'121 > E l f  12 J0 , F ~  2 ~ ( F ~ ) ( ~  ~) 

f l  ~. 

~ 4 ,  , F ~  4 , F ~  2 ;. ( F ~ ) ( ~ )  

The iterative procedures for %7 and %8 must be taken together. Before we go on to 

explain the iterative procedures themselves, we shall require a lemma. 
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LEMMA 6.1. Let t be an integer with t~3. Suppose that ~)1>/1, r162 

U < min{M2, PH1H2 3 , Q~/4, ~2~ ""2az- 19/6 xJ, (6.1) 

and 

Then 

Z = pUI-1/t(p1/3M T M  )l/t. 

fo da PI+E.~/I2PI~(Z-1/4Q~; +Q~3/a)~s-5/4). IF2(a)fz(a)121 << 

(6.2) 

Proof. On using standard Weyl differencing, we have 

[F2(a)[ 2 << P(M2~I2)2+~/Iu~I2IG(a)I, (6.3) 

where 

and 

c(.): E E J(-), 
h h<~P2 

J ( a ) =  Z Y~ e(~2aq23(2z+h;2h, h;m, 1)). 
m O<z<~P2--h 

Here the summations are over m and h satisfying (2.1). But by (3.1), 

IJ(~)l = K(a; h, h)Ll((~; h, h)L2(a; h, h), 

where 

and for i=1,2, 

K(a;h,h)= Z e(6Oahhlh2(2z+h)2)' 
O<z<~ P 2 - h  

Li(a; h, h) = ~ e(80(~hhlh2h2m~ ~ . 

Write C(M) for A(MR, R)N(M, MR]. Recalling (4.1) and (4.2), we find that by H61der's 
inequality, we have 

G(ol) << D(o~)I/2 E 1 (OL)I/2t E2(oL)I/2-U2t , (6.4) 

where 

n(a) = Z K(a; h, h) 2 << n2(a; P, ~b), 
h,h 

EI(O~) = Z Ll(a; h, h) 2t << FeEt(a; 80H2P2,2H1, M1;C(M1)), 
h,h 

E2(a) = Z n2((~; h, h) 2+2/(t-1) << PE(M2R)2/(t-1)EI(a; 160H1P2, H2, M2; C(M2)). 
h,h 
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We now recall Definition 4.9. Suppose that  olEm2. By Dirichlet's theorem there 

exist bEZ and r E N  with 

_< p - l r ) 5  and lar-bl <<. pQ~5. (6.5) ( b , r ) = l ,  r ~  "~2 

On noting that  our assumptions on ~b imply that  p<p-1Q5, we deduce from Lemma 

4.1 that  
Q~ 

D(~) << P~ (r  +Q~-~ar_bl t-P-1Q~) �9 

But c~Em2, so either r>P or Q5[~r-bI>>PR-15, and hence 

D(o~) ~ p~-lQ5 ~ p 2 + ~ 2 "  

Next we observe that  our hypotheses on ~b imply that  

P2H2M~OH~3 >~ p-1(M5M21)5 >~ p2/3 and Mll ~ >~ p1/3. 

Then we may apply Lemma 4.6, with y=p1/3 and X=p-1Q 5, to deduce that  

E l ( a )  << Pl+~I2M~+l~ 
<< p2 /3+~ FI2 M ~, +1o. 

Finally, since U ~< M2, we have u h ~  P,  and hence 

U 5 .( p - 1 ~ 5  .~ rT-5~5 
"~ "~r "~ v ~ 2 "  

Then by Lemma 4.3, we have 

E2 (a) 4.< pl+E H2 M2+2/(t-1)((r + Q5 la r_ bl)-i/5 + U- 1) 

<< pI+~ FI2M~+~/(t-1)U-1. 

Thus, by (6.3), (6.4), (6.6), (6.7) and (6.8), we have 

sup IF2(o~)l << P1+~I2~I2Z-1/4. 
o~Em2 

Now suppose that hE g J t2. 

(a, q ) = l  and satisfying (4.24). 

Thus, by Lemma 4.7 we have 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

By Dirichlet's theorem there exist a E Z  and q E N  with 

Then since a~m2,  such a and q exist with O<~a<.q<.P. 

F~(o~) << F; (~) + e~/~+~.ff2.,~, (6.10) 
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where F~(a) is defined as in Definition 4.9 (iii). Our hypotheses on t and ~b imply that  

Z1/4 ~ (pl+1/3tM2)l/4 ~ p1/3, 

and so by (6.9) and (6.10) we deduce that  

~0 1 D l q - r  ~" ~ ~,--1/4/-~A~ 
[F2(a)f2(a)121da<<-- ~ ,2 ~2 ~  w2 + I ,  (6.11) 

where 

I = J~l[F~(a)f2(a)12[ da. 

But by HSlder's inequality, 

I ~< J31/4J~/4, (6.12) 

where 

/o J 1  - -  [f2(a)[ 16 da and J2 = [F~(a)[ 4 da. 
2 

We have JI<<Q~ s+~, and by Lemma 4.10 we have J2<<P~(Ptt2~I2)4Q~ 5. The lemma 

now follows by (6.11) and (6.12). 

We are now in a position to describe the iterative processes when s=7 and 8. As in 

A* w we let (As) be an iterate of the sequence converging to ( s ) ,  and we write 0 for r 

and r for r 

(i) s=7 .  By Lemma 6.1 we have 

L 11F2(a)f2(a)121 << P~(U, 4-/-/2), (6.13) da 

where 

-- 1 /4  r'~A; UI = PM2H2Z- ~2 , (6.14) 

U2 = PM2~I2Q~ 3/4)'18-5/4, (6.15) 

and we must take t>~3, r 1 and r 1 6 2 1 8 9  Here we take Z to be as large as is 

consistent with the conditions of Lemma 6.1. Suitable values of pc may be obtained by 

means of Lemma 3.2 of Wooley [13]. Using these values, it transpires that  a good choice 

for t is 22, and we may take #22=34.228489. 

For the moment, suppose that  our ultimate choices for 0 and r imply that U1 is 

the dominating contribution. Then proceeding as described in w using the iterative 

sequence for s : 7  given above, the equations for A7, O and r are determined by 

PHIMIM2Q~2; 1/4 ~x; PM1M2H1H2Z- " Q2 , (6.16) 

PMIQ~; 2 12 )~; ~ (P(MIH1) M~ Q2 Q1 )1/2, (6.17) 

P)~ ~ i"i~li wi �9 (6.18) 
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Write A = A ~ - 7  and 5--#2~-34. 

imply that  (6.1) holds when 

Suppose now that  our ultimate choices for 0 and r 

- r)5/6 a z - 1 9 / 6  (6 .19)  
U - -  '~2  "'~2 

The equations (6.2), (6.16) and (6.17) then yield 

4 - 2 0 r 1 6 2  1-350 
132 + 6---~ 

100 -- 1 + ( 5 -  A)r 

Therefore 

and hence 

289+ 1050+650 
2136 

3581-289A 
0 = 20835+ 105A-6~i (5-A)"  (6.20) 

Calculating 0 and r we find that  0<~0.163961 and r A simple calculation 

now shows that  our choices for U and Z were indeed justified. 

We must now check that  U1 is indeed the dominating contribution. This will follow 

from (6.14) and (6.15) provided that  

Z-1/4Q~ ~ >>Q2(3~-5)/4. 

This inequality holds provided that  

2 1 ( 5 - 2 4 r  1-3~0 (6.21) 
( 4 A ; + 5 - 3 A s ) ( 1 - 0 - r  > 1-~ 132 ~- 6-----6- 

In order to check that  the condition (6.21) is satisfied, we shall plainly require a suitable 

estimate for As. We can, however, make do with a relatively poor estimate, and to this 

end we will make use of inequality (k -2 )  of w of Vaughan [8]. Thus it suffices to use 

the iterates 
/~7 : 34 ) , * _ a _ @ ,  )~8 34 139 

41 / ' 6  ~ ---- ~"~7-~ 41 ' 

whence we deduce that A8~<11.10486. In view of our choices for 0 and r this is enough 

to show that  UI is indeed the dominating contribution. 

Since the value of 0 given by (6.20) is independent of As with s>6,  we deduce from 

(6.18) that 

A; = A~(I--0)+1+120. 

Thus we obtain A~ ~<9.272729. 

(ii) s--8. Initially, we may proceed precisely as in case (i), using the estimate 

(6.13). For the moment, suppose that  our ultimate choices for 0 and r imply that  U1 
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is the dominating contribution. Then proceeding as described in w using the iterative 

sequence for s = 8  given above, the equations for As, 8 and r are determined by 

PH1MIM2Q~; - 1/4,~:~ PMIM2HIH2Z-  w2 , 
[D(aAr ~ ~ 2 ~ A r 1 2 , O X ~ ) ~ 8 ~ l / 2  PMIQ~;,-~ I , l ~ , l v 1 1 1 1 1 )  i v ,  2 ~d2 W l  } , 

p~s ~ pM14Q~1;" 

(6.22) 

(6.23) 

(6.24) 

Write g=As-2A~+A~.  Also, as in case (i), write A = A ~ - 7  and 5=#22-34.  Suppose 

that our ultimate choices for 8 and r imply that  (6.1) holds when U satisfies (6.19). The 

equations (6.2), (6.22) and (6.23) then yield 

4 - 2 0 r  1+ 21 (5 -24 r  + 0 5 1 -  3_____2_ 
132 66 

108 = 1 + $ ( 1 - 8 ) + ( 5 -  A)r 

Therefore 

and hence 

289+ 1058+650 
r = 2136 ' (6.25) 

3581 + 2136•- 289A 
8 : 20835+2136s  " (6.26) 

Given an iterate for As, we therefore obtain the next iterate as follows. We compute 8 

and r from (6.25) and (6.26). We then check that  the choice of U given by (6.19) is 

indeed permissible, and check that  U1 is the dominating contribution. The latter follows 

provided that  (6.21) holds. The next iterate for As is then given by (6.18), that  is, by 

! �9 
As = A7(1-0)+1+140.  (6.27) 

To succeed with this iteration process, we need to start with an initial iterate for As 

reasonably close to A~. For this purpose we can use inequality ( k - 2 )  of w of Vaughan [8] 

once again. We therefore take 

A8 34 ~,* , 139 
= ~ + '7- I  41 " 

A computation now shows that  ~ ~< 11.077363. We note that  )~ can be calculated directly 

as the larger root of the quadratic equation obtained by eliminating 8 between (6.26) and 

(6.27), equating A~ and As and recalling that  )~s occurs linearly in g. 

We summarise in the Appendix the converged values of X* as computed to 15 sig- 

nificant figures and rounded up in the last figure displayed. 
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7. T h e  p r o o f  o f  T h e o r e m  1.1 for  f i f th  p o w e r s  

We shall prove Theorem 1.1 for fifth powers by using a variant of the Hardy-Lit t lewood 

method. In this section our notational demands are somewhat different. We suppose 

that  s, ~7 and T are sufficiently small positive numbers, with r /and T depending at most 

on ~, and ~ and 77, respectively. In addition, we suppose that  n is sufficiently large in 

terms of s, 77 and T. We adopt the convention that  whenever 5 appears in a statement, 

then the statement holds for some positive number 6 independent of n. Write 

P = n  U5, R = p ' 7 ,  cr=~6 and 0 = 7 .  

We let M1,..., Ms be real numbers satisfying 

and for convenience write 

pO <~ Me <~ pO+~, (7.1) 

Qs = P M ~  1 and H e = P M 8  -5. 

Consider the number r(n; M ) = r ( n ;  MI, ..., Ms) of solutions of the equation 

5 5 5 5 5 5 x + y  + x  I +.. .  +xT+ply I +...+phy5 = n, 

with the Pe primes satisfying 

and with 

l <.x,y<. P, 

We shall show that 

p e - - 1  (mod5) ,  M~<ps<.2M~, 

x j e A ( P , R )  (l~<j~<7), y~E.A(Q~,R) ( l ~ s < ~ 8 ) .  

E . . .  E r(n; M) >> n 12/5, 
Mz Ms 

where the multiple sum is over all choices of Ms of the form 

(7.2) 

(7.3) 

(7.4) 

and satisfying (7.1). Since ps >R,  each solution of (7.2) gives rise to a unique representa- 

tion of n as the sum of 17 fifth powers of positive integers in the sense that  the ordered 

17-tuple x, y, xl, ..., xT,plYl, ...,PsYs is unique. Hence the verification of (7.4) is sufficient 

to establish Theorem 1.1 when k=5.  

Ms = 2"P ~ (7.5) 
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We henceforth assume that  the Ms are of the form (7.5). Let 

r(.)_- E e(.xS), g.(.): E e(.xS), 
l ~x<~ P xE A(  Qs ,R ) 

f ( a ) =  E e(axS)' hs(a)=Eg~(ap5),  
x C A ( P , R )  p~ 

where the p~ satisfy (7.3). Then 

r(n; M) = a)gv2 (a)e(-an) d,, 

where 

(7.6) 

71(~) = F ( ~ ) I ( . )  7, (7.7) 
8 

.T'2 (c 0 = F ( a ) 1 - I  hs(c~). (7.8) 

Let C=25.325, M=P e+r and Q=PM -1. Write 

I =  (C-1pI-'~Q -5, l +C-1Pl-aQ-5]. 

Let m denote the set of real numbers a in 2" with the property that  whenever 

a 6 Z ,  qGN,  ( a , q ) = l  and laq-ai<~C-1pl-"Q -5, 

then one has q>Pl-~M5. Let 9~l denote the major arcs 2"\m; that  is, the union of the 

intervals 

ffJt(q, a) = {(~: laq-al <<. C-1PI-" Q-5 }, 

with l<<.a<<.q<<.Pl-~M 5 and ( a ,q )= l .  

We first consider the minor arcs m. 

LEMMA 7.1. We have 

Proof. By Schwarz's inequality we have 

\1/2 / r \1/2 
Sm .~'1 ((1).~'2 (~)e (-  (~n)d(l' ~ ( L  1 ,..~"1 (~), 2 dcf ) t T m  I..~'2 (~) ,2 d~) . (7.9) 
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The first integral on the right-hand side is 

f0 11F((x)2 f((~)141 << (7.10) da p~+~, 

by using the conclusions of w (see, for example, the note at the end of w of Wooley [13]). 

Also, by the argument of Lemma 3.2 of Vaughan and Wooley [10], we have 

fO1 ( p~s )16 Ig(ap5~)l da<<M~P ~'++5~+~, 

where 

A + = A7(1-0)+1+140. (7.11) 

Note in particular that A + ~< 11.079825. Using this estimate, we may follow through the 

argument of w of Vaughan and Wooley [10] to obtain 

8 
fm 15 1/8 if2(~)l ~ d~<< I I (M;  z~+J~) , 

where 

and 

2--2aq-2e X++5r+e J~<<Q~ M~P s 

I s / I  (PM •  ~l-2a+eH "~r~s+~ ~-'~ \ sTk s ]  s ] " g s  �9 

A little computation reveals that 

m 1~:2(a)12 d~ << p ,3- ,1 ,  

with 51 >0.082. The lemma now follows on combining (7.7)-(7.10) and (7.12). 

We now consider the major arcs ff~. Let 

v(~)= ~ ~x-4/%(~x) 
l ~ x ~ n  

and 

Define V(a) on 9~ by taking 

q 
S(q, a) = E e(arS/q)" 

r=l 

(7.12) 

v (~) = q-' S(q, a)v(a-  a/q), 

whenever aEO:i~(q,a). Since the 9)~(q,a) with l<<.a<<.q<~px-~M 5 are disjoint, it follows 

that V(a) is well-defined. 
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LEMMA 7.2. We have 
8 

Er(n;M) = M  f~v(a)2f(~)7 (~HI_ ~M hS(a)) e(-an) dc~+O(Pl2-6)" 

Proof. Write A ( c 0 = F ( a ) - V ( a  ). Then by Theorem 2 of Vaughan [4], we have 

A(a) << q~ (q+ PSIo~q-aI)l/2 (c~ �9 ffJ~(q, a) ). (7.13) 

Hence, for (~�9 we have A(cO<<P2~(pI-~MS)I/2. Then by Schwarz's inequality, 

f lA(a)2f(o~)Ths(o~) 81 do~ << Pl-a+4eM5j~/2J~/2, (7.14) 

where 

/o /o 1 J1 : If(o~)114 d a  and  ,]2 -- Ihs(o~)116 da.  

By the conclusions of the previous section, 

J1 << p~,+e. (7.15) 

Also, it follows by the argument of Lemma 3.1 of Vaughan and Wooley [10] that 

J2 <(< p~++5~+~, (7.16) 

where ~+ is given by (7.11). Then the right hand side of (7.14) is 

<< pl-e,+4EMs(p)w+Ep),++5r+E)l/2 << p12-6 .  

Next, by appealing to Lemma 4.6 of Vaughan [5], we obtain 

Y(cO<<P(q+P~lv~q-al) -1/~ (c~�9 

and hence, by (7.13), 

Y(o~)A(oL) << P1+2~(P1-e'MS)3/1~ (o~ �9 ffJI(q, a)). 

Therefore, as above, we obtain 

fg~ 8 1-F2g 1 ~ 5 3/10 1/2 1/2 lY(~)A(c~)f(a)Th~(v~) Ido~<<P ( P -  M )  J1 J2 <<p12-~, (7.17) 

by (7.15) and (7.16). Collecting together (7.6)-(7.8), (7.14), (7.17) and Lemma 7.1, the 

proof of the lemma is completed. 

Before proceeding to estimate the contribution of the major arcs, we establish an 

auxiliary lemma. Let 

f01 (s) 1 18 K I =  If(a)l l sda  and K 2 = f  E h ~ ( a )  da. (7.18) 
J0 IM~ 
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LEMMA 7.3. We have 

K1 << p13 and K~ ~) << p13 (1 ~< s ~< 8). 

Proof. Write fz(a) for f (a) ,  and f2(a) for EMhs(a). Let 

Fs(c~)= ~ e(ax 5) ( i=1 ,2) ,  

with Ps =2S-lP. Also, for the sake of convenience, write K2 for K~ 8). Then by considering 

the underlying diophantine equations, we have for i= 1, 2, 

Ks <<. [Fs(a)2 fs(a)16 1 da. 

We apply the Hardy-Littlewood method. Define 

1 p - 4  / 9~II(q,a)={~:lq~-al<<- ~ s j, 

for l~a<~q<~P and (a,q)=l, and define ~ to be the union of these arcs, and to= 

( ~ p ( 4 ,  l + ~ p ~ 4 ]  \ ~ .  Then by Weyl's inequality, we have sup~ero IFs(~)I<<PI-~+% 
Hence 

g i  <~< p 2 - 2 a + 2 r  p:~+ +e + /~lliFi(~)2 fi(c~)161 d~, (7.19) 

where A + (which satisfies As + >As) is given by (7.11). By using Lemma 5.1 of Vaughan [8] 

combined with H61der's inequality, we deduce that 

\s/o 
S~Li3 'Fi(oL)2fi(~)161 ~ ~< ( S ~  IFi(~ 1,9 (L 11fs(~)l.8 d~) <~ p1319K?19. 

Then by (7.19), 
13-6 4- 1913/9 R'8/9 Ks <<P - - -  --i , 

and hence Ki<<P 13, which completes the proof of the lemma. 

We now attend to the matter of pruning the major arcs. Let W denote a parameter 

to be chosen later, and let 91 denote the union of the intervals 

91(q, a) = {~: I~q-al < Wp-5},  

with (a,q)=l and l<.a<.q<.W. We assume that I<.W<~P 1/2, so that 91Cff)l. Let ~ =  

 \91. 

14-950233 Acta Mathematica 174. Imprim~ 1r 20 juin 1995 
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By H61der's inequality combined with the methods of w of Vaughan [5] (cf. Lem- 

ma 5.1 of Vaughan [8]), we obtain, on recalling (7.18), 

have 

where 

8 8 

<< ( p13)5/6( p7w-6 '5)1 /6  << p12W-'5 .  

By the methods of w of Vaughan [8], when W~<logP, q ~ l o g P  and ( a , q ) = l ,  we 

g~(apb)= q-1 S(q, a)u~(a-a/q)+O ( ~ (q+ pb]aq-al)), 
Ps 

._ -4/5 log(xl/5/Ms) min{l~176 4 log Ms 5 l x O( ~ )e(~x), 
x~<(2p)5 

and p(x) is Dickman's function, defined for real x by 

Q(x) = 0 when x ~< 0, 

Q(x )= l  w h e n 0 < x ~ l ,  

is continuous for x > 0, 

is differentiable for x > 1, 

xp'(x) = - p ( x -  1) for x > 1. 

Also, by Lemma 5.4 of Vaughan [8], we have 

and 

where 

f(a) =q-X S(q,a)w(a-a/q)+O ( lo-~(q+ pblaq-al)) 

w(/~) << P(I + p5]]BH) -1/5, 

Rb<m<~ n \ o log ~ ]  

Then as in w of Vaughan and Wooley [10], we deduce that  when r is sufficiently 

small, and W=( log  p)O, then we have 
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where G(n) is the usual singular series in Waring's problem, 

and 

q 

~5(n)= Z ~ (q-1S(q,a))17e(-an/q) 
q = l  a = l  (a,q)=l 

8 

d(n)=~olV(fl)2w(fl)7(sH_lus(fl))e(-fln)dfl. 

Now by Theorem 4.6 of Vaughan [5], we have 1<<| 1, and a simple counting argument 

shows that  J(n)>>n12/5(logn) -s. Thus 

8 

~-~ r (n ;M)  = M~ ~V(a)2f(a) 7 (~-1 hs(a))e(-an)da40(p12(l~ n12/5' 
M 

and this completes the proof of Theorem 1.1 for fifth powers. 

8. T h e  i t e r a t i v e  s c h e m e s  for  k/>6:  s e c o n d  d i f f e r e n c e s  

In the remainder of this paper we shall restrict attention to those k with 6~k~<9. As 

usual, for s =  1 and 2 we have the classical bounds 

Ss( P,R) << P ~+~, 

and for s=3 and 4 we use the results of Theorem 1.4 of Vaughan [9]. These give 

, , 4 4 ( k - 3 ) 0  
A 3 = 3420  and ~ 4  - -  1 - 0  ' 

where 0 is the smallest non-negative root of the polynomial 

3 -  (3k 2 - (e+ ll)k+e+22)O- (k(e415) - 3 e -  48)02 - (2k4  2e 432)03 

and 
f 0  when k = 6, 7, 9, 

e 
1 when k -- 8. 

The values of A~ and A~ obtained in this way are listed in the Appendix. 

A* In what follows, we let (As) be an iterate of the sequence converging to ( s ) ,  and 

we write 0=r and r162  Note that  to obtain a reasonable initial i terate (As), we may 
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use the values given by Lemma 3.2 of Wooley [13]. Our argument divides into cases 

according to the values of s and k. 

(i) s=5 and k : 6 ,  7,8. In these cases we adopt the iterative procedure displayed 

b e l o w .  
2 8 Fd f~ ', > FlfSl 

Let 

�9 F 2 f  6 )-(F2)3/lO(F4)l / lO(f lO)3/5 

1 
0 when k = 8, 

e / 1 w h e n k = 6 , 7 .  

Then by Theorem 3.10 (Ib), case (i), when k=6, 7, and Theorem 3.10 (II) when k=8, we 

have 

~0 1 D I + E  ~r ~'~2-- e IF2(a)l 2da<<l-  -21w 2 . (8.1) 

Also, by Theorem 3.11 (I), case (i), when k=6, 7, and Theorem 3.11 (II) when k=8, we 

have 

f lif2(.)l 4 d. << (8.2) 
Then proceeding as described in w using the iterative sequence for s=5 given above, 

the equations for As, 0 and r are determined by 

PH1 M1M2Q~2; ~-, pl/2 (H1//2)3/5 (M1 M2 )1 - 2e/5 (Q2A5)3/5, (8.3) 

" 2 6 x~ ~5 I/2 PM1Q~'~ (P(MIH1) M~Q 2 Q1 ) , (8.4) 

p~5 ~., PM~Q~:. (8.5) 

On writing 6--6A5-IOA~, equation (8.3) leads to the equation 

6 ( 1 - 0 - d p ) + 4 ( k - e ) 0 - 3 -  (6k+4e)r = 0, 

and hence 
dp= 4(k-e)O+6(1-0)-  3 

6k+4e+6 (8.6) 

Meanwhile, equation (8.4) leads to the equation 

2(1 +0+A1(1-0) )  = As(1-O)+ A; (1 -0 - r  3-(2k-2)O+6r 

On writing C=Ah-2A~+A~, we obtain 

C(1-0)+1-2k0 = (A~-6)0. (8.7) 
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Write 

Then (8.6) and (8.7) yield 

)~ - 6  
6k+4e+6"  

0 = 1 + s  
2 k + E + a ( 4 ( k - e ) - 6 ) "  

From (8.5), the next iterate for A5 is therefore given by 

A~ = A~(1-0)+1+80.  

The above iteration process converges to A~, with 

* * 1  A 5 =A4( -05)+1+805,  (8.8) 

where 05 is a root of the cubic equation obtained by substituting the expression (8.8) 

into 

(2k +E* + a  * ( 4 ( k - e ) - 6 * )  )O5 = I+E* + a * ( 3 - 6 " ) ,  

with 

6* * * s . . . . .  = 6As-10A3, : A5-2A4+A3, o~ - 
6k+4e+6* 

The values of A~ obtained in this way are listed in the Appendix. 

(ii) s=6 and k=6, 7,8. In these cases we adopt the iterative procedure displayed 

below. 
F02r h [ 4 " ~ l / 4 (  , e l O ' ~ l / 2 (  ,e12"~l/4 so ' " Fl f~ ~ " F21~ : ' \F~,  w2 ; w2 J 

1 
We observe that  the estimates (8.1) and (8.2) hold once again. Then proceeding as 

described in w using the iterative sequence for s=6  given above, the equations for A6, 

0 and r are determined by 

PHxMIM2Q~*" "~ D 1 / 2 /  U u "~3/4/ lAr hat "~l--e/4 [rlA~ ~1/2 ~ ~11~2! (~vlllv~2) U42] (Q2~') 1/4, (8.9) 

pM1Q~I; 2 s )~; A• 1/2 (P(M1HI)  M~Q 2 Q1 ) , (8.10) 

p~6 n .  - l O ~ ;  (8.11) "~ l-"lV11 ~d l �9 

On writing 6=2A~+As-4A~, equation (8.9) leads to the equation 

6(1 - 0 -  ~) + ( k -  e)0 - (3k + e)r = 0, 
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and hence 

r 
3k+e+5 

Meanwhile, equation (8.10) leads to the equation 

(8.12) 

2(1+0+A; (1 -0 ) )  = A6(1-O)+A~(1-O-r162 

On writing C-- A6 - 2A~ + A~, we obtain 

C ( 1 - 0 ) + 1 - 2 k O  = (A~-8)r (8.13) 

Write 

Then (8.12) and (8.13) yield 

~ - 8  

3 k + e + 5  

= 1 + $ - a 5  
2k+C+a(k -e -5 ) "  

From (8.11), the next iterate for "~6 is therefore given by 

A~ = A; (1 -0 )+1+100 .  

The above iteration process converges to At, with 

A~=A; (1 -06 )+ l+ lO06 ,  (8.14) 

where 06 is a root of the cubic equation obtained by substituting the expression (8.14) 

into 

(2k+C* +a*(k-e-5*))06 = 1 +g* -a*5*, 

with 

3k+e+5* " 

The values of A t obtained in this way are listed in the Appendix. 

(iii) s=5,  6 and k=9. In these cases we use the iterative procedures displayed below. 

8=5. 
2 8 F6f~l �9 Flf~ 
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8----6. 

F2f~~ , El f  16 ~" f2f~ ~" (F2)l/6(F~)l/6(f12) 2/3 

j'~l 2. 
The iterative procedure is now more complicated since both schemes depend on both As 

and X6. 

By Theorem 3.10(Ib), case (i), we have estimate (8.1) with e = l .  Also, by Theo- 

rem 3.11 (II), we have estimate (8.2) with e=0.  Thus we find that  the initial arguments 

of parts (i) and (ii) of this section hold, but with (8.3) replaced by 

P H1Ma M2Q~ ; ,~ P1/2 ( HI H2 MI M2 )1/2 (Q2~) 1/2, 

and (8.9) replaced by 

PH1M1M2Q~2~ 1/2 2/3 5/6 ~ 2/3 ,~P (HxH2) (M1M2) (Q2)  �9 

Writing 0s, Cs for r r for each s, we find that  the next iterates for (As, 9s, Cs) (s=5, 6) 

are given by 
! * 

s = A4(1-05)+ 1+805, 

with 

and 

with 

(k-1)05+65(1-05)-1 
r -- k+1+65 

I+E5-~5(I-65)  
0 5 - -  

2k + C5-as( k -  l -6 s  ) ' 
s = A~ - 2A'4 + ~, 

65 = A6 - 2A~, 

6-~ 
a h -  k + 1 + 6 5 '  

)~ = )~5(1- 06) + 1 + 1006, 

( 2 k -  1)06+66(1-06) - 1 
r  ~- 

4k+1+66 
1+E6-~6(1-66) 

96 = 2k+C6-c~6(2k- 1-66) ' 

E6 = A6 - 2A5 + A~, 

66 : 4A6 - -  6A~, 

8 - ~  
a 6 - - 4 k + 1 + 6 6 .  

The converged values for A~ and A~ obtained in this way are listed in the Appendix. 
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9. The  i terative process  for k/>6: third differences 

When k ~>6 we need to make use of differences higher than the second. As usual we 

let (A~) be an iterate of the sequence converging to (A~), and to simplify formulae we 

write 9=r  r162  and r 1 6 2  Note also that we may use the A~" already established 

for smaller t, and Lemma 3.2 of Wooley [13] to provide initial values for the At under 

consideration. 

Let 
= ~ 0  w h e n k = 9 ,  

e 

t 1 when k = 6, 7, 8. 

By Theorem 3.10 (Ib), case (i), when k--7, 8, and Theorem 3.10 (II) when k--9, we have 

fo il ~ 1 + ~  ~'12-~ F3(a)[ 2 da < < ,  "'3'~'3 �9 (9.1) 

Also, by Theorem 3.10 (Ib), case (iii), estimate (9.1) also holds when k=6 provided that  

0 + ( k + 1 ) ( r 1 6 2  ~< 2. (9.2) 

Fhrther, by Theorem 3.11 (I), case (i), when k=8,  and Theorem 3.11 (II) when k=9,  we 

have 

f0 ~ J F 3 ( a ) < <  (9.3) dc~ 

Also, by Theorem 3.11 (I), case (iii), estimate (9.3) also holds when k=6 and 7 provided 

that inequality (9.2) is satisfied. 

We divide into cases according to the values of s and k. 

(i) s=7 and k=6,  7. In these cases we adopt the iterative procedure displayed below. 

F o • t  , F l f ~  ~ ,tO 
[ 2 ~ I / 6 [  4"~I/6[r - F~f~ ~ , F3/~ ;-~F~ j ~F~ j ~3  

1 1 
f114 f~2. 

As one discovers on performing the iteration described below, the values of 0, r r arising 

when k=6 and 7 satisfy inequality (9.2). Then proceeding as described in w using the 

iterative sequence above, the equations for AT, 0, r and r are determined by 

D1/2 /~  ~ ~2/3r~2~;/3 (9.4) 

PH1MIM2Q~2; tP'ffI M ~2"s 'q;q 'q)q~l/2 (9.5) ~ l  k 2 2} lv~t3~d 2 ~d3 } , 

PM1Q); ~ (P(H1M1)2M~~ (9.6) 

p~7 ~ pM~ ~1 �9 (9.7) 
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On writing ~f=4A~-6A~, equation (9.4) leads to the equation 

~(1-O-r162162247162 

and hence 

Similarly, on writing 

_ 
( 2 k - 2 - ~ ) ( ~ § 1 6 2 2 4 7  

4 k + 2 + 5  

E2 

(9.8) 

(9.9) 

equation (9.5) leads to the equation 

s 1 6 2 1 6 2  (A~- 8)r (9.10) 

Write 

Then (9.8) and (9.10) yield 

, ~ .  - 8  
c~2 -- 4 k + 2 + ~  " 

1 +~:2(1-6) +c~2(3- ~ -  ( 2 k -  2 -5)~)  
r  2k+s +c ~2 (2k -2 -~ )  

(9.11) 

On writing 

E1 = AT- 2A~ + A;, (9.12) 

equation (9.6) leads to the equation 

C1 (1 - 8) + 1 - 2kO = (~; - 10)r (9.13) 

Write 

Then (9.11) and (9.13) yield 

,k~- 10 
2 k + s 2 4 7  " 

8 =  1 § - c~1 (1 §163 +a2(3-(~))  
2k+E1 - c~1 (s +c~2(2k- 2 - 5 ) )  " 

From (9.7), the next iterate for A7 is therefore given by 

A~ = A~(1 -0 )+1+120 .  (9.14) 

The values of A~ obtained through the use of this iterative procedure are displayed in 

the Appendix. 
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(ii) s = 7  and k=8,  9. In these cases we adopt the iterative procedure displayed below. 

2 12 F~ fd ' " Flf112 �9 g 2 f  10 > g 3 f  8 ~ .  \g~ / 2h5/14{/ I,F~4"~1/14{~14"~4/7: \J3 / 

f14 f~2. 

The argument of part (i) of this section holds, but with (9.4) replaced by 

* p l / 2  ~ - 4 / 7  ~-//-1-- 3e/7/,-)4A7 / 7 
PH2M2M3Q~3 4 ~ ~3 "~3 "~3 " 

On writing 6=8AT-14A~, this modified relation leads to the equation 

6(1 - O - r 1 6 2 1 6 2  - (8k+ 6e)r - 11 = O, 

and hence 

Write 

r = ( 6 k - 6 e - 5 ) ( O + ~ p ) - l l + 5  

8 k + 6 e + 6  

A i - 8  
c~2 8k+6e+~  

Then proceeding as in case (i), we find that 

r l + $ 2 ( 1 - O ) + c ~ = ( l l - 5 - ( 6 k - 6 e - 6 ) 8 )  

2 k + s  

where s satisfies (9.9). Next, on writing 

 ;-io 
al = 2k + s + a2( 6 k - 6 e - 5 )  ' 

we find that 
1 + &  - a1(1 +$2 + a 2 ( n - 6 ) )  

O= 
2k+$1 - a l ( E 2 + a 2 ( 6 k - 6 e - 6 ) )  ' 

where $1 satisfies (9.12). With these definitions, the next iterate A~ can be calculated 

via (9.14) once again. The converged values of A~ are given in the Appendix. 

(iii) s=8  and k=6,  7, 8, 9. In these cases we use the following iterative procedure. 

Fo2# 14 
J0 ' �9 FI/  4 �9 F2f~ 2 ~ F3f~ ~ "'~3:" :~4~i/4:r12~i/4:r14~i/2w3: w3 : 

,L 1 
f16 f14. 
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As one discovers on performing the iteration described below, the values of 0, r r arising 

when k=6 and 7 satisfy inequality (9.2). Then proceeding as described in w using the 

iterative sequence above, the equations for As, 0, r and r are determined by 

Let 

P H2 M2 M3 Q~; ~ p 1 / 2  yI3 / 4 ~/ I I -e  / 4 ()A; / 4 t~A; /2 
3 3 "~g3 "~3 , 

P H ,  M1M2Q~2G / D / ~  ~ ~2 a a r l 0 f ~ A ; f ' ~ A ~ l / 2  ,~' ~I~ 2"tvx2) Iv13 %d2 "43 } , 

* [ P / H  az- "~2~#-12gDAsg~A~I/2 

= 2A7+A 6 - 4 A  5, 

A~-IO 
a 2 -  3 k + e + ~ '  

~'2 = A7-2A6 +A5, 
A -12 

al  = 2k + C 2 + a 2 ( k - e - 6 )  ' 

E1 = As-2A;+A~. 

Then, arguing as in previous cases we obtain 

r 

O= 

( k - e - ~ ) ( O + r  

3 k + e + ~  

1+E2(1-O)+o~2(1- tS- (k-e-~)O)  

2k +C2+c~2(k -e -3 )  

1+~" 1 -- oq (1 + ~'2 + ot2(1 --5)) 
2k +gl - a l  ( g2 +a2( k - e - ~ )  ) " 

The next iterate for As is given by 

A~ = A~(1-0)+1+140.  

The converged values of A~ are given in the Appendix. 

(iv) s=9  and k=8.  In this case we use the following scheme. 

Fo2r 6 i aO ' �9 F l f  16 

fl18 f16  
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The equations for A9, 0, r and r are now determined by 

~,~ r 11131v.t3 ) ~d3 , 

PHI MI MsQ~; ~ ( P ( t-Is ~42 ) 2 M~S Q~; Q~3; )1/2 , 

PMIQ~: [PrH M ~ 2 M 1 4 ~ ; ~ 1 / 2  ~-~ l ~, 1 1 )  2 " ~ 1  ~'~ 2 ] , 

p~. ~ pMI~Q~;. 

Let 
6=3A~-4A~, 

A~-12 
a2 -- 3k+ 1 + - - - - - ~  ' 

E~ = ~ ; - 2 A ; + ~ ; ,  

A~-14 
O~ 1 = 

Then, arguing as in previous cases 

2k+E2 +a2 ( k -  1 - 6)' 

s = )~9- 2)~; +),; .  

we obtain 

r 

0= 

( k -  1-6)(0-t-r 1 +6 
3k+1+6 ' 

1 + E : ( 1 - e ) + a ~ ( 1 - 6 -  ( k -  1-6)0) 

2k+g2 + a 2 ( k -  1-5) 

I+C, -- ~1 (I q- C2 + a2 (i --5)) 
2k+C1 - a l ( E 2 + a s ( k -  1-6)) " 

The next iterate for )~9 is given by 

~x; =.x;(1-e)+1+16e. 

The converged value of A~ is given in the Appendix. 

10. The  i terat ive process  for k ~ 7 :  fourth  differences 

In the analysis of the iterative procedures involving fourth differences, we follow the 

pattern established in previous sections. In our applications of Theorems 3.10 and 3.11, 

we require bounds on certain A~2gk). By using Theorem 1.4 of Vaughan [9], in the same 

manner as at the start of w we find that 

A O4) ~< 4.10200120, A~ 16) ~< 4.08542333, A(32) ~< 4.03655147, A~36) ~< 4.03192910. 
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Then by Theorem 3.10 (Ib), case (ii), and Theorem 3.11 (I), case (ii), we have the bounds 

~01 ~01 p2+e  ~-3 ~'~3 IF4(cQI2dc~<<PI+~-VI4M4, ]Fa(a)14 d(~ << - -,-,4,,-,4, 

whenever (~1 ~< O(k ) ,  where 

0(7)=0.140805,  0(8)=0.124431,  0(9)=0.110718.  

It transpires that  for k=7, 8, 9 the condition r ~<O(k) is always met in the cases consid- 

ered here. 

(i) s = 9  and k=7.  In this case we adopt the following iterative scheme. 

F02•16 .10 �9 Fir 16 > F,f~ ~ �9 F3f~' , F ~ f i ~  (F:)~/~(F2) i / s ( f i~)~/s  

f~8 f~6 f~4. 

Thus A9 and r ..., r are determined by the equations 

p 1 / 2 t ~  I ~ ~5/8f~5A;/8 PH3/~f3M4Q4 A; ~ ~ 4 4J ~4 , 

PlYt2~2M3Q~3 ~ CpI~ ~2Ml~  "~ l, t, 3 3) 4 ~'~3 (~4 ) , 

P H1M1M2Q~2; ,~ ( P( ~I2 M2 )2 M12 Q~; Q~; ) 1/~, 
2 14 A~ )~, PM, Q~;,~ (P(HIM,) M~ Q~ Q~ )'/~, 

p~o ~ PM'I~Q~ ;. 

On writing ~=5A; -8A; ,  we obtain 

( 3 k -  3 -~ ) ( r  +r  + r  
r  = 

5 k + 3 + 6  

Next, on writing 

we have 

r = 

Then, on writing 

A ; - 1 0  
c~3 5 k + 3 + 5 '  

1 -'~- ~3 (1 -- (~1 -- (~2) "~- 0~3(8 -- ~ -- (3k  -- 3 -- ~) ((~1 -~- (~2)) 

2k+E3 +c~3(3k -3 -~ )  

E~ = .x ; -  2.x; +,x3, 
A~-12 

c~2 = 2k+g '3+a3 (3k -3 - (~ )  ' 

(lO.1) 

(10.2) 

(10.3) 
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we find that  

r = l+(g2-a2E3)(1-r162 
2k+g2 -a2(g'3 + a 3 ( 3 k -  3 -5 ) )  

Finally, on writing 

gl = ),9- 2)`~ +)`~, 
)`~-14 

= 2k+E2- 2(E3+ 3(3k-3-6)) ' 

(10.4) 

we deduce that  
1 + ~ 1 -  al  (1 +82 -a2(l+C3+a3(S-5))) 

r = 2k + gl - a l  (C2 - a2 (g3 + a3 ( 3 k -  3 -  5))) " 

The next iterate for )`9 is given by 

)`; = ) `~ (1- r  + 16r (10.5) 

The converged value of )`~ is given in the Appendix. 

(ii) s=9 and k=9. In this case we adopt the following iterative scheme. 

JO 
, F 2 f ~ 4  , F 3 f 1 2  , p.r 

"'~J4 " k ~ 4 1  k ~ 4 )  kJ4 ] 

f118 f16 114. 

Thus, on replacing (10.1) by the equation 

P~IaM3M4Q~4; ,.~ pZ/2(~I4M4)~/QQ~/~ , 

and leaving the remaining defining equations unchanged, we may apply an analogous 

analysis to that  used in part (i) of this section. Thus we obtain 

(8k- 8 -  5) (r 4r162 
r = 10k+8+5 

where 5= 10)`9-18)`;. Next we obtain 

1 +E3(1- Ct- r 5-  (8k- 8 -  5)(r +r 
~b3 = 2k + g 3  + Or3 ( 8 k  --  8 --  5 )  ' 

where g3 satisfies (10.2), and 
) ` ; -10  

O r 3 -  10k+8+5"  
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Then we find that 

r = l + ( $ 2 - a 2 E 3 ) ( 1 - r  
2k+E2-.2(E~+.~(Sk-S-5)) 

where $2 satisfies (10.3), and 

a2 = 2k+$3 + a a ( 8 k - 8 - 6 )  " 

Finally, we deduce that 

r 1TEl - a l  (1+C2 - a2 (1+83 + a3 (23 -  5))) 
2 k  -'1" ~ 1  - -  0:1 ( ~ 2  - -  Oz2 ( ~ 3  -]- O~3 ( 8 k  - -  8 - -  6 ) ) )  ' 

where E1 satisfies (10.4), and 

~ - 1 4  
al = 2k+C2-a2(S3+a3(8k-8-5))  " 

The next iterate for A9 is then given by (10.5), and thus we obtain the converged value 

of A~ given in the Appendix. 

(iii) s=lO and k=7, 8, 9. In these cases we use the iterative scheme displayed below. 

Fo2 r �9 Flf~ 8 g 0  
~. F2f~ 6 ) F 3 f  14 �9 F 4 f  12 ~ ( F 4 ) 1 / 4 ( f 1 6 )  3/4 

S~O Sis f~6. 

Thus Alo and r . . . ,  r are determined by the equations 

pffI3ff/i3M4Q~; ~ o l / 2 t ~  /'~ ~3/4/-~3A~/4 ~ k 114~v14 ] ~'~4 ' 

P H2 ~I2 M3Q~3; ,~ ( p(  fiI3ff43 )2 M~2 Q~a; O~; )1/2 , 

PH1 M1M2Q~; ~ (P(H22~r2)2 M14 Q~; Q3~; )1/2, 

PM1Q~; ~ ( P(H~ M1 )2 M~6 Q~O Qfi  )1/2, 

p~o ~ pM~SQ~; 

Hence we obtain 
( k -  1 -5) ( r  + r 1 6 2  

r = 3 k + 1 + 5  ' 

where 5=3A~-4A~. Next we find that 

1+E3(1-r162 1-~)(r162 
r = 2k+$3 + a 3 ( k -  1 - 5 )  

(10.6) 

(10.7) 
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where E3--A~-2A~+A~ and 

Then 

Ol 3 - -  _ _  
A ; - 1 2  

3 k + I + 5 "  

r  l + ( $ 2 - a 2 g ' 3 ) ( 1 - r  1 -5) r  

where ~2:A~-2A~+A~ and 

2k+s - 012 (~r +~3 (k - 1 - 5 ) )  

A ; - 1 4  
a2 = 2k + C 3 + a 3 ( k - 1 - 5 )  " 

Finally, we deduce that  

, (10.8) 

where CI=Alo-2A~q-A~ and 

A ; - 1 6  
Oil = 2k +C2-a2(E3+a3(k -  l - 5 )  ) " 

The next iterate for ~10 is then given by 

A~O : / ~ ; ( 1 - - r 1 6 2  

and thus we obtain the converged values of ~ 0  given in the Appendix. 

(iv) s = l l  and k=7, 8, 9. In these cases we use the iterative scheme displayed below. 

F o 2 . 2 o l  , F lY?  ~ ,tO �9 t2 f~  s �9 F 3 f  16 , F 4 f  14 > ( F 4 ) l / 4 ( f 1 8 ) l / 2 ( f 2 4 0 ) l / 4  

f22 .[:22O fl8. 

T h u s  )~11 and r ..., Ca are determined by the equations 

Ptt3~I3M4Q~4; ,.~ p ' /2 (  ~I4~14)3/4Q~;/2+ ~o/4, 

~ ( t ' t n 3  3j ~ 4  w3  w4  )1/2, 

[ p / ~  ~ ~2M16f~X~o~;~l/2 P H 1 M 1 M ~ Q f i ~ t  ~ 2j 3 w2 w3 ) , 

JVII(~ 1 ~ I I, 1 1) 2 I'~1 t~2 ) , 

p ~  ~ P i ~ ~  ~~ . 

I+E1 - cq (1 +C2 - a2 (1 + E3 + a3 ( 2 -  5)))  (10.9) 
(~1= 2 k . . ~ l _ O ~ l ( ~ 2 _ o / 2 ( ~ 3 . . ~ o ~ 3 ( k _ l _ 5 ) ) )  , 



F U R T H E R  I M P R O V E M E N T S  IN W A R I N G ' S  P R O B L E M  2 1 1  

Hence we obtain @4 as in (10.6), but with ~=~o+2A~-4A~,.  Next we find that  r is as 

in (10.7), but with g3=A~-2A~+A~ and 

A ; - 1 4  
O~3 = 3 k + l + $ "  

Then r is as in (10.8), but with s  s and 

A ; - 1 6  
a2 = 2 k + ~ 3 + a 3 ( k -  I - 6 ) "  

Finally, we deduce that  r is as in (10.9), but with ~ 1 ~ 1 1 - - 2 ~ 0 " J r ) t ~  and 

~;-18 
Oil ----- 2k+~2 - a2(C3 d- 0~3 (k - -  1 -/5)) " 

The next iterate for All is then given by 

I * 
'~11 : "  ALO(1--r162 

and thus we obtain the converged values of )~1 given in the Appendix. 

(v) s=12  and k=7.  In this case we use the following iterative scheme. 

t o  r  i JO ' " F l f  22 , F~f~ o , F ~ f ~  , F d 2  ".. (F2 ) i / * (Y~~  ~/~ 

S~ ~ S~ ~ S~ 0 

Thus AI~ and r . . , r  are determined by the equations 

pff I3~I3M4Q x; ,~ ~l/2Da/4 h'k3/4c~;o/a+~h/2 
* ~ 4  " * 4  ~ 4  

p~I2~.I2M3Q~; - -  2 16 ~o ~'- (P(HzM3) U~ 03 C24 )1/~, 
P H 1 M I M 2 Q ~ O  - -  2 18 ~h ~" (P(H2M2) M] Q2 Q3 )1/2, 

P MI  QXl h ~ ( P (  HI M1)2 M22~ Q~12 Q~'~~ )l /2 , 

p~12 n . . 2 2 , ~ h  
, ~  F ' I V I  1 I ,~1 �9 

Hence we obtain r as in (10.6), but with 5=A~o+2A~1-4A~. Next we find that  r is as 

in (10.7), but with ~ 3 - - ) ~ 1 0 - - 2 ) ~ 9 d - ~ 8  and 

O ~ 3 -  3 k + 1 + 6  

15-950233 Acta Mathematica 174. Imprim~ le 20 juin 1995 
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Then r is as in (10.8), but  with E2=A~a-2A~0+A; and 

A;-18 
c~2 = 2k+C3+a3(k - l -6 ) "  

Finally, we deduce that ~1 i8 as in (10.9), but  with s  and 

) ~ o - 2 0  
= 

The next iterate for A12 is then given by 

A~2 = )~1( 1 - r 1 6 2  

and thus we obtain the converged value of A~2 listed in the Appendix. 

11. The iterative process for k/>8: fifth and s ixth differences 

In the following analyses we once again follow the pattern established in previous sections. 

hi our applications of Theorem 3.10 and 3.11, we require bounds on certain A~ 2Jk). By 

using Theorem 1.4 of Vaughan [9] and Lemma 3.2 of Wooley [13], we find that 

/~(316) ~. 3.0099996,  )~(3 is) ~< 3.0076932, )~(16) ~< 5.2248045, 

A (16) ~< 6.4002032, )~(ls) ~< 6.3497957. 

(a) When k=8,  by Theorem 3.11 (I), whenever 

r ~ 0.119329 (11.1) 

we have the estimate 

where 

~0 1 iF5(ol)14 dol 2+~ --3 - 3 + r  4< P H 5 M5 , (11.2) 

r 40.107131 (11.4) 

1 (16) (16) r=g()~2 +)~3 )-1<~ 0.002000. 

(b) When k=9, by Theorem 3.11 (I), case (iii), the estimate (11.2) holds with r = 0  

provided that 
1 

Z r + k ( r 1 6 2  ~< 2, (11.3) 
i : 1  

when I--3, 4, 5. Also, by Theorem 3.11 (I), whenever 
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we have the estimate 

where 

ff IF ( )l da ~ P2+~H3A~3+~, (11.5) 

T = 1~(lS)--1 ~< 0.002565. 
3~,3 

Further, by Theorem 3.11(I), case (iii), the estimate (11.5) holds with T=O provided 

that  (11.3) holds when I=3,  4, 5, 6. Under the same condition, by Theorem 3.10 (Ib), 

case (iii), we have 

f0 ~lF~(a)l 2 << (11.6) p l + ~ g 6 / ~  6 . da 

Naturally, we may use the weaker estimates contained in Theorems 3.10 and 3.11 in 

order to obtain a good approximation to the converged solution. In the cases under 

consideration, this amounts merely to using a slightly inflated value of T. 

(i) k=8 and s=12, 13, 14, 15, and k=9 and s=12, 13. In each of these cases we use 

the scheme 

go2r �9 17, . e 2 8 - 2  
JO ~ ' l J 1  

where 

L'~ . e2s - -4  ~ . e2s - -6  
�9 ~ 2 J 2  �9 r 3 J 3  

f2~ f~-2 
�9 t 4 f 2 s - 8  �9 z'5J5L-~ g 2 s - l O  

A 2 S - 4  S42S-6 

�9 [ p 4 ~ l / 4 [ r  [ r  
~,~ 5 )  \ 3 5  / k J 5  ] 

t = [ � 8 9  a8=30 ,  b 8 = 3 ( 1 - 0 ) ,  O = t - � 8 9  

It transpires that  in the execution of the iterative process described below, the values 

of ~b which arise ultimately satisfy condition (11.1) when k=8,  and condition (11.3) when 

k=9.  Thus (11.2) holds with 

f 0.002000 when k = 8 ,  
T / 0 when k = 9. 

Then )% and ~b are determined by the equations 

PH4M5Q~5 :-5 " ~  p1/2ffI3/4~/I(3+'r)/ng)(3/4)OA;-l+(3/n)(1-O)̀k;5 5 ~5 , (11.7) 

p -  - `k:_j  {pl~l..~..2M2(s_j_l)n`k:_j+ 1 _.x: j 1)1/2 H j _ I M j Q j  "~ ~ - - ~ ' ~ 3 J  j+l '~j Qj~--1 - (j = 4,3, 2), (11.8) 

2 2s - -4  ,ks PMIQ~ '-1 ~ (P(H1M1) M~ Q1 Q~2S-2) 1/2, (11.9) 

2s- -2  A~_ 1 P`k~ ~ PMI  Q1 �9 (11.10) 
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Let 

Write 

6 -- 30At_ 1 -t- ( 3 -  30)A t - 4A~_5, 

s -- )~ - 2)%-1 +)%-2 ,  

gj = A;_j+~- 2A;_~ § (j =2,3,4). 

~j = 2 ( s - j ) - ) , : _ j  (2 ~<j < 5). 

Define 

as = (3k+1+6--T)  -1, j3~ = - k + l + / f - r ,  

and for j = 4 ,  3, 2, 1, define a j ,  ~j and ~j successively by 

~j = I + ~ j +  Xj+IOLj+I"}'j+I, 

~j = gj -[- Xj+ l Olj+ l/~j+ l, 

O/j = (2k-[-~j)  -1 .  

Then we find that  ~b and A~ satisfy 

Cj = a j ( T j - ~ j  (r + . . . + r  

and 

A'~ = A:_I(1 - r  1 + (2s -2 ) r  

The values of A; obtained in this way are displayed in the Appendix. 

(ii) k = 9  and s=14. In this case we use the following scheme. 

. t~:~ ~ . F~S~ ~ , F~:~ ~ ,Fd2 o 

s~ s s~ o f P  

% = 6-3, 

Fo r 
Jo 

1 1 
f22 f20. 

) k f  ~ [  2~1/22(] ~,r~:4~5/22/'c22~S/llkj6 ! 

(11.11) 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

(11.18) 

P~IsM6Q~6; ~. pW2(~I6M~)S/l lQ~S/n)~h , 

It transpires that ip the execution of the iterative process described below, the values 

of 4) which arise ultimately satisfy condition (11.3) for I=3 ,  4, 5, 6. Consequently, A14 

and 4) are determined by the equation 
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together with (11.8) (for s : 1 4  and 2~<j~5), and (11.9) and (11.10) (with s :14) .  Let 

---- 16Al1" --22~ 8,* c~6 = (16k+6+~) -1, /76 : - 6 k + 6 + 5 ,  ~/6 : 5-25.  

Then with s=14 and k=9, we find that ~b and ~14 satisfy (11.17) (l~<j~<6) and (11.18), 
with (11.13) (1~ j~5) ,  and for j=5 ,  ..., 1, (11.14), (11.15), (11.16). 

The value of A~4 obtained in this way is given in the Appendix. 

(iii) k=9  and s=15, 16, 17, 18. In these cases we use the scheme 

Fo  r  ) F1121 s - 2  ) F, .e2s-4 ~. ~ r  
Jo  2J2 - ~ 3 3 3  ~ "" 

f~s f22s-2 

1 
(F4)1/4(f2t-2)ao (f2t)bo 

where 

t = [ ~ ( 4 s - 2 1 ) ] ,  a,=30, b , = � 8 8  e=t-1(4s-24). 

It transpires that in the execution of the iterative process described below, the values 

of ~b which arise ultimately satisfy condition (11.4). Thus, on taking T=0.002565, we 
find that A, and ~b are determined by the equation 

p . ~ 5 . ~ 6  Q6 ~ : - e  ,.,., Dl l2r_r3i4  . . . .  ~/ lr(3+r)/4f~(3/4)OAt-l+(3/4)(1-O)At 
'~ ~ ~ 6  ~'~6 ~ 6  

together with (11.8) (with j --5,4,3,2) ,  (11.9) and (11.10). Let 

= 30A;_ I + (3 -  30)A; - 4A*_6, 

and define Ej as in (11.11) and (11.12) (2~<j~<5). Also, let 

a s = ( 3 k + l + ~ f - r )  -1, ~ s = - k + l + ~ f - r ,  ~/6=6-4.  

Then with k=9, we find that the ~b satisfy (11.17) (l~j~<6) and (11.18), with (11.13) 
(l~<j~<5), and for l~<j~<5, (11.14), (11.15), (11.16). 

The values of A* obtained in this way are given in the Appendix. 
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12. The  i te ra t ive  scheme for s ixth powers:  s~>9 

For s/>9, our treatment of sixth powers requires a Hardy-Littlewod dissection. ~hlrther, 

since our conclusion entails the use of all available savings, the treatment requires con- 

siderable attention to detail. The next iterates for X9, ),1o, )m and >,12 are mutually 

dependent, and so we are forced to iterate these values collectively. Our exposition will 

be facilitated by first recording some preliminary lemmata. 

LEMMA 12.1. Let t, u and v be positive integers exceeding 3, and let 

1 ( 1  1) 
+ - i  " 

Suppose t h a t  r ~ r  > 4 ,  

U ~ min{M3, PHIH2H3 3, ~3/')1/4' ~31vz3f~ ~Ar--23/6~j (12.1) 

and 

Then 

Z : P T T I - t w [ p l / 3  ~l/ f2t -12-#t  " lw[pl /3  ~ / f 2 u - 1 2 - t t "  "~1/u[~1/3 A/f2v- 12-try "~l/v 
~ ' ~  \ ~  ~*~3 J k ~  "~ ~t 2 / t ,~  z~* 3 ] �9 

where 

Proo]. 

f0 1 D l + e ~  ~ [ ,7--1/4~A~ .XIo/4+AII /2-3/2  IFs(o~)f3(a)161 da < < .  ,v .3 . .3~ w3 +Q3 )' 

By standard Weyl differencing we have 

[F3(a)l 2 << P(M3~r3)2 +/I~3H3IG(a)I, (12.2) 

where 
D(a) = D3(a; P, ~b), 

El(a)  = E1 (a; 7680H1H2P3, H3, M3; C(M3)), 

E2(a) -- Et(a; 7680H1H2P3, H3, M3; C(M3)), 

E3(a) = E~(a; 3840H1H3P3, 2H2, M2; C(M2)), 

Ea(a) = Ev(a; 1920H2H3P3, 4H1, M1; C(M1)). 

G(a) = E E E E e(a2-6k~ 
h m h<~P30<z<~P3-h 

and the summations are over m and h satisfying (2.1). Write 

C,( M) = .A( MR, R) N ( M, MR]. (12.3) 

Recalling (3.1), (4.1) and (4.2), we may follow the analysis of the proof of Lemma 6.1 to 

deduce that 
G(a) 2 << P~D(a)E1 (a)l-t'E2(a)"JE3(a)I/UE4(a)l/v, (12.4) 
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We now recall Definition 4.9. Suppose that  o~Em3. By Dirichlet's theorem there 

exist bEZ and r E N  with 

<::]:)--lflt6 and Iar-bl <. PQ3 6. (b ,r)=l ,  r .~--  w3 

On noting that  our assumptions on ~b imply that  P ~< p-1Q~, we deduce from Lemma 4.1 

that  
Q~ 

D(a) << P~ (r  +Q~-~r_bl + P-1Q63 ) �9 

But c~Em3, so either r > P  or Q61ar-bl>>pR-lS , and hence 

D(a) << P~-IQ6 3 << P2+~H3. 

Next, since U<<.M3, we have U6<~P, and hence 

U 6 .< D - 1 / ~  6 _<: T / -6g - )  6 
"-~ ~ "g3 "-~ v ~ 3 "  

Then by Lemma 4.3, we have 

E1 (a) << PI+~tI3M2((r+Q6 Iar- b])-1/6 + U - l )  

D I + e u  ~Ar2TT--1 
<< I I J 3 ~ v ~  3 t J  . 

We now observe that  our hypotheses on ~b imply that  

8 D H ~ ~ 1 2 L t - - 3  30 r 3  lt121v13 1~3 >/MS (M1M2)-6 >/p2/3 and M12 >1 p1/3. 

Then we may apply Lemma 4.6, with y=p1/3 and _ -1 6 X - P  Q3, to deduce that  

E2(c~) << Pl+e~I3M~'+12((r+Q6 I<~r-bl) -1/3 + p - 1 / 3 )  

D 2 / 3 + s  ~r ~ Arttt +12  
<< ~ t  Jr131vl 3 . 

Similarly, we have 
E 3 ( o t )  << t o 2 / 3 + e  H s M ~ t = + 1 2  

and 
E4(ct) << P2/S+eH3MF"+12. 

Thus, by(12.2), (12.4) and (12.5)-(12.9),we have 

(12.5) 

(12.6) 

(12.7) 

(12.s) 

(12.9) 

sup IFs(~)I << PI+eY[3f/I3Z-U4. (12.10) 
oLEm3 
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Now suppose that aEff)~3. By Dirichlet's theorem there exist aEZ and qEN with 

(a, q)=l and satisfying (4.24). Then since a~m3, such an a and q exist with O<~a<~q<~P. 
Thus, by Lemma 4.7 we have 

F3(a) << F~(a)+P2/3+~I3~Is, (12.11) 

where F~(a) is defined as in Definition 4.9 (iii). Our hypotheses on t, u, v and ~b imply 

that 
Z1/4 ~ (pul-twpt,~/3)l/4 ~ p1/3, 

and so by (12.10) and (12.11) we deduce that 

~01 If3 (~)f3  (~)16[ << -hi ,  (12.12) pI +~ ~I3Ma Z-1/ 4 Q~; da 

where 

But by HSlder's inequality, 

where 

I - - /~ s [F ;  (a)f3 (a)16[ da. 

I ~1 11/411/211/4 (12.13) ~"~ '~1 ~2 '13 

/o 1 /o 1 J1 = [f3(a)l~~ a, J2-- Ifa(a)122da and J3= IF~(a)14da. 
3 

T / /~11+e Further, by Lemma 4.10 we have We have JI<<Q3 ~1~ and J2"-'-~3 �9 

J3 << PE(PtI3~Ia)4Q36. 

The lemma now follows by (12.12) and (12.13). 

Our analysis will be simplified by the use of the following lemma. We write 

e( xk). 
zEA(Q,R) 

LEMMA 12.2. Suppose that A12-18<~. Then 

~0 1 [f(O/; Q)125 << da Q19+e. 

Proof. Write A=)n2-18 .  

Theorem 1.8 of Vaughan [8], 

Then, by an argument mirroring precisely the proof of 

we may draw the following conclusion. Suppose that 
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0<~i<~2. Let m denote the set of real numbers a with the property that whenever 
aEZ, qEN, (a,q)=l and Ic~-a/ql<.q-lQ 1/2+66-6, then one has q>Q1/2+06, and let 

t~= ~s (1-A) .  Then 

sup If(a; Q)I << QI+E(Q-6+Q-Q). 
~Em 

We take ~= ~4" Then by hypothesis we have t~> ~4, and hence 

/mlf( ~; Q)[25 dc~ << Q63/64+e~o 1 If(or; Q)[24 da << Q19+e. (12.14) 

Now suppose that agtm. Then by Dirichlet's theorem we may choose a and q with 

( a , q )= l ,  [qa-a[<~Q 1/2+6~-6 and q<~Q1/2+6~. (12.15) 

We write ~(q,a) for the set of such c~ satisfying (12.15), and ffYt for the union of the 
YYl(q,a) with (a,q)--1 and l~a<~q4Q 1/2+66. Then if aeg~(q,a), by Lemma 7.2 of 
Vaughan and Wooley [10] we have 

f(cx; Q) << Q1+e((q-{-Q61o~q-al)-1/12+Q-1/64). (12.16) 

Define V*(a) to be the function of a taking the value zero whenever c~Em, and by 

V* (c~) = Ql+e (q_F Q6 [c~q- al)-1/12, 

whenever aEg~(q,a) with ( a , q ) : l  and O<~a<~q<~P. Then from (12.14) and (12.16) it 
follows that 

/0' /0 I/(~; Q)125 d~ << Y*(~)lf(~; Q)I ~4 a a + o  19+~. 

But by HSlder's inequality, the latter integral is 

/ 1,1 \ 1 / 2 5 /  i , I  ~24/25 

<< ~]0 V*(a)25 do)  ~]o [/(a;Q)12s da) . 

Thus 

~0 1lf(a; Q)125 da << Q19+e +~01V*(0~)25 da << Q19+r 

which completes the proof of the lemma. 
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LEMMA 12.3. Let t and u be positive integers exceeding 3, and r Let v 
be either 9 or 10, and define K(9)--3AH 1)~ 6 +~ 12-~, and 

2 A 2 A 6 
K(10)= g 12-~-~ 13--~ 

14 

Suppose that r ~>r >/~s, and 

Then 

1 when )112--18 >~ ~ ,  
1 when A12-18 < ~ .  

Z - -  p M ~ I - t w { ~ P  1/3 M12t-12-#t-~w{pl/3] k . . . .  71A-2u-12-pu'~l/u2 ) �9 

0 ljFS(a)fS(a)2vPda p~+~sfils(Z_~/SQ~v+QK(~)). 

By standard Weyl differencing we have 

[F2(a)[ 4 ~ p3(M2YI2)4+p(M2~t2)3[G(a)], 

where 

Proof. 

(12.17) 

G ( a ) = E E  E E E e(2-6a~4(2z+l'+12;2h'll '12;m'l'l))' 
h m l l ~ P 2  l s ~ P 2 0 < z ~ P s - l l - I 2  

and the summations are over m and h satisfying (2.1). Recalling (12.3), (3.1), (4.1) and 

(4.2), we may follow the analysis of the proof of Lemma 6.1 to deduce that 

G(a) 2 << P~D(a)E1 (a)'-t~E2(a)'~E3(a) '/u, 

where 

(12.18) 

D(a) = D2(a; P, q~), 

E1 (ol) ---- E1 (oG 480HsP 2, 2H1,  M1 ;C(M1)), 

E2(a) = Et(a; 480H2P~, 2H1, M1; C(M1)), 

E3(c~) = Eu(a; 960HIP 2,//2, M2; C(Ms)). 

We now recall Definition 4.9. Suppose that aEms. By Dirichlet's theorem, there 

exist bEZ and r E N  with 

(b,r)=l,  r<<.P-1Q 6 and [ar-bl<<.PQ~ 6. 

Therefore, by Lemma 4.1, we have 

D(a) << P ~r+Q6~ar_b i ) 
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But (~Em2, so either r>P or Q~lar-bl>>PR -24, and hence 

Next, on noting that  

D(a) << p~-lQ~ << p 3 + ~ 2 "  

221 

(12.19) 

M6 ~ p-1Q6 ~ M~6Q6, 

we may apply Corollary 4.2.1 with X=P-1Q62 to deduce that  

EI(~) << P2+%Ft2M~( (r +Q~ I~r-bl) -lIe + M~ 1) 
(12.20) 

<< P2+~ HI H2 M1. 

We now observe that our hypotheses on ~b imply that  

2P~HIM~2H23 >/M30M16 >1 p2/3 and M~ 2 ~> p1/3. 

Then we may apply Lemma 4.6, with y=p1/3 and X=p-1Q 6, to deduce that  

2A-r ~ ttt A-12 6 - -1 /3  - -1 /3  E3(a) << P H2M~ ( ( r + Q  2 lar-b[) +P ) 
4< ph/3+~ ft2M~,+12. (12.21) 

Similarly, we have 

E2( ) << P /3+  2M1 (12.22) 

Thus, by (12.17)-(12.22), we have 

sup [F2( )I << Pl+~I2~42z-WS. (12.23) 
o~Cm2 

Now suppose that aEff)I2. By Dirichlet's theorem there exist a c Z  and qEN with 

(a, q)=l and satisfying (4.24). Then since a~m2,  such an a and q exist with O<~a<~q<~P. 
Thus, by Lemma 4.7 we have 

F2(a) << F;(oL)Wp3/4+EffI2ff/12, (12.24) 

where F~(a) is as in Definition 4.9 (iii). Our hypotheses on r imply that  

Z <~ P~/3M1 ~ p2, 

and so by (12.23) and (12.24) we deduce that  

~ollF2(c~)f2(c~)2~ I << + I ,  pI+~ ~t2~I2Z-1/SQ~ doL (12.25) 
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where 

But by HSlder's inequality, 

t 
I = da. 

T4/511/5  
I << q l  ~'2 , 

where /01 J1 ---- ]f2(o~)l 5v/2 da and J2  = IF~(a)l 5 d a .  
2 

By Lemma 4.10 we have 
J2 << Pe(P~I2~I2)SQ-~6. 

Also, by H61der's inequality, when v=9 we have 

J1 ~<~ (Q~,,+~)a/4(Q~,~+~)I/4, 

and when v=10 we have 

(12.26) 

(12.27) 

(12.28) 

~01 doz Pl§176  _~_/-)K(10) ~ << 

where K(10) /s defined in the statement of Lemma 12.3. 

Proof. By standard Weyl differencing we have 

[HB(a)I 4 ~< p3(t-I2~/f2)4d-P(H2~/I2)31G(a)l , 

Then 

J1 << (Q~,2+e)l/~(Q~S+e)l/2. (12.29) 

Further, when ~12-18< 1 ,  we apply Lemma 12.2 and obtain 

01 If2 (OL)[ 25 do: << Q~9+e. (12.30) 

The lemma now follows on combining (12.25)-(12.30). 

We shall find, in future analyses, that it is convenient to have a modified form of 
Lemma 12.3. 

LEMMA 12.4. Let t be a positive integer exceeding 3, and BC_(1, P]. Define 

HB((~) -- Z Z Z Z e((~2(z '  h'  m)) '  
h MI<:ml~MIR M 2 < m ~ M a R  z 

mlEB maEA(P,R) 

where the summation is with h satisfying (2.1). Suppose that r >tr ~ and 

Z=  P u : - l #  ( p1/3 M2t-12-m ) l/t. 
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with G(a) defined as in the proof of Lemma 12.3 save with the variable ml  ranging over 

ml  E B. Write 

Cl={mEB:MI<m<~M1R}  and C2--{mE.A(P,R):M2<m~M2R}.  

Then recalling (3.1), (4.1) and (4.2), we may follow the proof of Lemma 6.1 to deduce 

that  
G(a) 2 ~<: P~D(a)E~ (a)l-lltE~ (a)lltM~/t, 

where 
D(a) = D2(a; P, ~b), 

E~(a) = El(a; 480H2P 2, 2Ht, M1; C1), 

E~(a) = E~(a; 960H1P22, H2, M2; C2). 

The proof now continues in precisely the same manner as that  of Lemma 12.3. 

We now divide into cases according to the value of s. As usual we let (As) be an 

iterate of the sequence converging to (A*), and to simplify formulae we write 0=r 
r162  and r162  We require suitable values for #8 for various values of s. These may 

be obtained through the use of Lemma 3.2 of Wooley [13]. We record here for future 

reference the permissible values 

•26 = 4 0 - 3 1 5 3 8 9 4 ,  #27 =42.2641797 and #2s =44.2211063. 

(i) s=9.  In this case we use the following scheme. 

F02r 6 iO " El f  16 �9 , " - ( F z ) ( j T )  

In executing the iterative process described below, it transpires that  ~b satisfies the con- 

ditions of Lemma 12.1, and moreover good choices for t, u and v are t=26 and u=v=27. 
Therefore, by Lemma 12.1 we have 

where 

and 

~o 1 [Fa ( a ) h  (~)16 [ d~ ~ PC (/,/1 + H2), 

- -  - 1 / 4  ~; Hi = PH3M3Z Q3 

D ~ r  ~'~ [~"XlO/4+~Ii/2--3/2 
~2  ~- -r l-t 31v-t3~t~3 
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We take Z to be as large as is consistent with the conditions of Lemma 12.1. Write 
1 1 * 3 .  5=~A10+SA11-A s -  Then proceeding as described in w using the iterative scheme 

above, the equations for A9, 0, r and ~ are determined by 

p;~o ~ pM16Q~;, 
/D~ ~ H ~2 7 1 / r l 6 f ~ A ~ / ' I A ~ I / 2  PM1Q~;~ [ l I . t v 1 1  1] Iv1 2 ~'41 W 2  } , 

/D/~% ~ ~2 ~r16r~; ,~ ;~l /2  PM1M2HIQ~2;~ (r~v~2 2} ~v~3 ~42 '43 ) , 

P M2 M3[t2Q~; ,~ P-~43['I3Q~3; ( Z -1/a +Q~3). 

(12.31) 

(12.32) 

(12.33) 

(12.34) 

In our iterative process, we solve the equations (12.32)-(12.34) for ~b subject to the 

constraint (12.1), and taking care to consider the contributions of both Ul and Us. The 

core of the method will be apparent from the explanation below, where we pay at tention 

to the situation towards the end of the iteration process. We write A = A~- 10. 

For the moment, suppose that  our ultimate choices for 0, r and r imply that  L/1 

is the dominating contribution. Write 51=#26-40  and 52=#27-42 .  Suppose, as is 

ultimately the case in our iteration, that  

< V < 6 

It follows that (12.1) holds with U=M3. Then the equations (12.32)-(12.34) yield 

623 2(1-351r  1-3520 1-352r  
4 - 2 4 r  = 1 + ~--~ r 2 4 7  2025 t 81 + 81 

12 r  1 + ( 6 - A ) r  

120 = 1+ ( 6 - A ) r  

(12.35) 

(12.36) 

Therefore 

and hence 

and 

6023+7552(0+r ~b-- 
50469-  651 

r  8 6 6 0 7 - 6 5 1 - 6 0 2 3 A + 7 5 ( 6 - A ) 5 2 0  

605628- 725, - 75 (6 -  A)52 

0 = 1125270-10851 - 122745A+6023A2+651A-75(6 -A)52  

7267536 - 86451 - 75(6 - A ) ( 1 8 -  A)52 

On the other hand, if //2 is the dominating contribution, then equations (12.32)- 

(12.34) yield (12.35), (12.36) and 

1 - 6 r 1 6 2 1 6 2  
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Then, on writing 

we obtain 

and 

1+5 5 
a = 6 + 5 ,  / 3 = 6 + 5  and 7 = 6 - A ,  

O= 12+~/ (1+3+7a)  
144+~'/3(12+7) 

(12.37) 

1+7(a-~30) r  
12+e3 

It transpires that  /42 is the dominating contribution. By (12.31), the next iterate 

for >,9 is given by 

A~---- s  

where 0 satisfies (12.37). 

(ii) s--10 and 11. In each of these cases we use the following scheme. 

Fo2•e2s-2 g ,  r  
J 0  > ~ l J 1  . : ~ - :  �9 ( F : ) ( f ~ - : )  ) l ' 2 j  2 .- 

f 2 s - 2  
1 

In executing the iterative process described below, it transpires that  ~b satisfies the con- 

ditions of Lemma 12.3, and moreover good choices for t and u are t = u = 2 8 .  We divide 

into cases. 

(a) s=10. By Lemma 12.3 we have 

~o ~ IF2(oOA(oO'Slda << Pe (/41 +/42), 

where 

/41 = P~I:~I2Z-1/SQ~ 9 

and 
U2 p ~  ~ ~3~11/5+~1~/5-6/5 

= 2 2~d2 

Write 5 = 3 I 6 ga l l  + gA12- A9-g.  Then, proceeding as described in w with the above itera- 

tive sequence for s--10, the equations for A10, 0 and r are determined by 

p~o  ~ p M l S Q ~ ,  

[ D { / J  ~Ar ~2 71//-18f~.-X9T~A9~1/2 
PMxQ~I  ~ ,-~a~,a11.~v.q) ~v~ 2 ~'~1 ~ 2  } , 

PH~M~Q~ ~ ~ PH~M~Q~~ 

(12.38) 

(12.39) 

(12.40) 
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We write A=A9-12.  

For the time being, suppose that our ultimate choices for 0 and ~b imply that ~'/1 is 

the dominating contribution. Write (5 '=#58-44.  Then the equations (12.39) and (12.40) 

yield 

26 1 -  3(5'0 1-35 ' r  
8 - 4 8 r  1 + ~ o - ~  - -  + 

2268 84 
120 = 1 + ( 6 - A ) r  (12.41) 

Therefore 

and hence 

15848 - (2184- 3(5')0, r 
108864-81(51 

203952-15848A-81(5 I 
0 = 1319472_990(5,_2184A+3(SIA. (12.42) 

On the other hand, if H~ is the dominating contribution, then equations (12.39) and 

(12.40) yield (12.41) and 

1 - 6 r 1 6 2  = 0. 

Write 

Then 

and 

6 - A  
a = 6+---5" 

1+(5(1-0) r 
6+(5 

0 -  1+a(1+5)  (12.43) 
12+~5 

As the iteration process converges, it transpires that L/1 provides the dominating 

contribution. Then by (12.38), the next iterate for A10 is given by 

A~o = Ao(1 - O) + 1+ 180, 

with 0 given by (12.42). 

(b) s = l l .  By Lemma 12.3 we have 

fo I IF2 (c~)f2 (a)2~ Ida << P~ (~.ar 1 --{-/~2), 

where 
~ - -1 /8  Alo lgl = P H 2 M 2 Z  Q2 , 

u2 = (1~ 
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and K(10) is defined as in the statement of Lemma 12.3. Write ~f=K(10)-A10. Then, 

proceeding as described in w with the above iterative sequence for s= 11, the equations 

for All, 0 and r are determined by 

pA~ ,,, ~ A.4"2Og'}AIo 
"L "r~l ~I ' 

- -  ~ A i o  - -  - -  A1o - 1 / 8  8 PHIMIM2td2 ~PH2M2Q2 (Z +Q2). 

(12.44) 

(12.45) 

(12.46) 

For the time being, suppose that our ultimate choices for 0 and r imply that /41 is 

the dominating contribution. Then following the pattern set in the case s= 10, we obtain 

O= 
203952-15848A-81~ I 

1319472--990F--2184A+3FA' 

where 6~=#2s-44 and A---A10-14. 

On the other hand, if/ /2 is the dominating contribution, then the equations (12.45) 

and (12.46) yield (12.41) and 

= 0 .  

Thus, with the notation used for s = l l ,  we find that 0 is given by (12.43). In order to 

make use of these equations, we require a suitable upper bound for A13. It suffices to use 

inequality (k -2 )  of w of Vaughan [8], which gives 

A13 ~ max(A12 (1 -  ~7) + 1%24(~) ,  20}. 

As the iteration process converges, it transpires that /42 provides the dominating 

contribution, and further that K(10)= 14 is permissible. Under such circumstances, by 

(12.44) the next iterate for All is given by 

)~11 ---- ) ~ I 0 ( I  - O) + i q- 200, 

where 0 satisfies 
2 - A  

0 ~  
12-A" 

(iii) s=12. In this case we use the following scheme. 

Fo2 22 , Flf  2 JO 
,. F2f  o .., 

f 4. 

16-950233 Acta Mathematica 174. Impdm~ le 20join 1995 
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In executing the iterative process described below, it transpires that  ~b satisfies the con- 

ditions of Lemma 12.4, and moreover a good choice for t is t=28.  By Lemma 12.4 we 

have 

1 fo 1 f lF2(c~)f2(a)2~ = IHA(P,n)(a)f2(a)2Oldol<<Pe(Ul+~(2), 

where 

and 

D ~ r  ~ , ' 7 - - 1 / 8 f ' j A l o  
~A(I = r 1 1 2 1 w 2 z J  ~'~2 

H2 = P~I2M2Q K(l~ 

Write 5=K(10) -AlO.  We now proceed as for the case s=11.  The equations for A12, 0 

and r are given by 

p~12 ~ p RAr22/~All 

PMIQ~11 ~ [ D [ M  U ~2 ~Ar20~AI2 / - ' ,AIo '~ I /2  
[ l - ~  11~1)  ~v~2 t:dl  "~2 ) , 

P H i M i M 2 Q ~ 2 1 o  ~ - Alo - 1 / 8  PH2MeQ2 (Z +Q2).  

(12.47) 

(12.48) 

(12.49) 

For each s, define A., by 

A, = 2 s - 6 + A , .  

Let 

s = A12-2An+A1o. 

Then equations (12.48) and (12.49) yield 

__27 0 + 1 - 35r 
8 - 4 8 r  1+28  84 ' 

128 = 1 + $ ( 1 - 0 ) + ( 6 -  A10)r 

(12.50) 

(12.51) 

Therefore 

and hence 

587-810 
r  4 0 3 2 - 3 5 '  

7554 - 35 - 587 A lo + $ (4032 - 35) 
0 =  

48870-  81 AlO - 365+C(4032-  35)" 

On the other hand, when H2 is the dominating contribution, the equations (12.48) 

and (12.49) yield (12.51) and 

1 - 6 r 1 6 2  =0 ,  (12.52) 

Then, on writing 
6 - - A L O  

6+5 
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we find that 
_- l + E + a ( 1 + 5 )  (12.53) 

12+$+a5  

As the iteration process converges we find that /~2 is the dominating contribution. In 

such circumstances, by (12.47) the next iterate for A12 is given by 

(12.54) 

where 8 is given by (12.53). Moreover, as the iteration process converges, we find that 

K(10)=14 is permissible. Thus 5=-A10, a = l ,  and so by (12.52) and (12.53), we have 

r  l--A1~ 

6--A10 

a n d  

_ 2 + $ - A l o  
1 2 + $ - A l o  

But by (12.50), we have g=A12-2An+A1o ,  and hence 

2+A12 -2A11 
8 -  12+A12_2An.  (12.55) 

But by ( 1 2 . 5 4 ) ,  

8= A~2-An-1  - I + A ~ 2 - A u  (12.56) 
22-Au  6 - A n  ' 

by using the natural induced notation. Therefore, by equating (12.55) and (12.56), we 

deduce that the limit of the iteration process for An and A12 satisfies 

I+A~2-A~I 2+A~2-2A~l 
6-A~1 12+A12-2A n 

On simplifying this expression, we obtain the equation 

A~2(A~2-2A~l +7) = 0. 

Then since A12 must be non-negative, it follows that A12--0 , and hence /~2=18. 

We summarise the values of As arising from our method in the Appendix. 

We now complete the proof of Theorem 1.1 for k=6.  S i n c e / ~ 2 + 1 - 1  (25, we may 

conclude by the methods of w of Vaughan [8] that G(6)~<25. Moreover, as is evident, 

we fail to obtain G(6)~<24 by "s This is a problem to which we return in Vaughan and 

Wooley [11]. 
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13. The Hardy-Lit t lewood dissection for larger  k 

We now return to the pattern established in the sections preceding w Before consider- 

ing the iterative procedures themselves, we record a lemma. We shall merely sketch the 

proof of this lemma, the details closely resembling those of the proof of Lemma 6.1. We 

shall find it convenient here, and in future sections, to define the quantity As by 

As = 2s -k+As .  

LEMMA 13.1. Suppose that j<.k-4.  Let u be a positive integer, and define 

T:21+J--k' t :  [ ( k ~ l ) u + l ]  ' O:t-(k-J-J-l~ k - j  )u 

and 

Then 

k - j  (OAt_l+(l_O)At). ~U-k_j+--- ~ 

~0 1 l + e - -  - -  2 u - k  - r  A u  IFj(a)fj(a)2=lda<<P HjMjQj ((PM1) Qj +Q~). 

Proof. On recalling Definition 4.9, we may imitate the analysis of the proof of 

Lemma 6.1 to deduce that 

f f  IFy(a)fj(~)2~ Ida << 11 +/2, (13.1) 

where 

II = fo 11F] (a)fj (a) 2~' ]da 

and 

//01 I2 = ( p ( k - j - x ) / ( k - j ) + e ~ j ~ j +  sup IFj(a)l Ifj(a)l 2u da. 
o~Emj 

By H61der's inequality, 

(13.2) 

(/o 1 rk-j+ l A,~ T(k-j)O ~C k-j)(1-O) ", << IF;(a)} k-j+1 -~) - t -1  st , 

where 

Then by Lemma 4.10, 

~o 1 I s=  Ifj(a)12S da ( s = t - l , t ) .  

l+e-- -- 2u-kWvu I, << P HjMjQj . (13.3) 
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Also, using a Weyl differencing argument, we may follow the pattern established in 

Lemmata 6.1 and 12.1 to deduce, from Lemma 4.1 and Corollary 4.2.1, that 

sup IFj(~)I << PI+6[Ij~Ij(PM1) -~'. 
a E m j  

(13.4) 

The proof of the lemma is completed on combining (13.1)-(13.4). 

Our iterative procedures will be based on schemes of the following form. 

F025 s - 2  ... j J j  ,, ( f j ) ( f  2 ). Jo , f l f 2 S _ 2  > f 2 f 2 s - 2  )- > F . ~ e 2 s - 2  , s - 2  

1 1 
sF 

In order to set the scene, we start by investigating the consequences of the assumption 

(As-1 --vs-~)(1--r - . . . -  Cj)/> T(1--[-r (13.5) 

where Vs_  1 is defined as in the statement of Lemma 13.1. Since 0~<r (l~<i~<j), it 

follows that (13.5) holds whenever 

A~-I -vs-1  i> 2 l+j-k k + l  (13.6) 
k - j  

By Lemma 13.1, whenever (13.5) holds, As and ~b are determined by the equations 

PHj-IMj~j ~PHjMjQj ( M 1 )  -r, 
( p( D Kr ~2 h A r 2 s - - 2 O A , - l ( ' ) , ~ , - 1  "11/2 

p;~, ~ r ~ ' n 2 s - 2 1 " ~  A ' - I  
- t "  lV11 I,,$1 �9 

(1 ~<i<j) ,  

(13.7) 
(13.8) 
(13.9) 

Write A=As_l .  Then equations (13.7) and (13.8) lead to the equations 

kCj = 1--T(I+r (13.10) 

2kr = l + ( k - A ) r  (1 <~i < j ) .  (13.11) 

The recurrence relations (13.11) may be solved, as in Lemma 3.2 of Wooley [13], to give 

r + CJ k+A \ 2k ] 

Write 
k - A  

2k 
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Then by (13.10), we have 

r = 1 + (T/k)aJ-i (13.13) 

By (13.9), we find that A* is then given by 

A* = A * _ 1 ( 1 - r 1 6 2  1. (13.14) 

In order to check that (13.5) holds, we need to estimate V~-l. By inequality ( k - 2 )  

of w of Vaughan [8] (which, incidentally, is case j = l  of (13.13)), it follows that we may 

assume that for each t, 

At+l <~max{ (k-l+23-k)At-(k+1)22-kk+22_k , 0},  (13.15) 

whence a suitable estimate for v~-i follows. Alternatively, we may apply Lemma 3.2 of 

Wooley [13], obtaining 

A t +  1 ~ At(1-O)+kO-1, (13.16) 

where 
1 (1 1 ) (k-At~  k-1 

\--SE-/ 

14. T h e  p r o o f  of  T h e o r e m  1.1 for  s e v e n t h  p o w e r s  

We divide into cases according to the value of s. 

(a) s=13. We use Lemma 13.1 with j=3. By reference to the Appendix with s=12, 
we obtain by successive application of (13.15) the bound 

4 A A12-vi2=Ai~-g 15 >0.2169, 

and hence condition (13.6) is met. Then ~bl is given by (13.13) with A----A12, and we 

obtain the value of A~3 given in the Appendix by using (13.14). 

(b) s=14.  We use Lemma 13.1 with j - -2 .  By successive application of (13.15) we 

obtain 

1 1A16 > 0.1506, A13--//13 ~-- AI3-- ~AI5- 

and hence condition (13.6) is met. Then 0i is given by (13.13) with A--A13, and we 

obtain the value of A~4 given in the Appendix by using (13.14). 

(c) s--15. We use Lemma 13.1 with j=2. By successive application of (13.15) we 

obtain 

A I 4 - - / / 1 4  ---- n 1 4  i 2 --  ~ A 1 6  --  w  > 0.1130, 
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and hence condition (13.6) is met. Then r  is given by (13.13) with A = A 1 4  , and we 

obtain the value of A~5 given in the Appendix by using (13.14). 

(d) 8=16. In this case we are forced to modify our argument by using the following 

scheme. 
Fgf3~ >Fl f  30 ) F2f 2a ~ (F2)(f 2a) 

j,~2. 

We may apply Lemma 13.1 to estimate the final integral implicit in this scheme. Thus, as 

in the case s=15 we find that (13.6) is satisfied, and hence ,X16, r and r are determined 

by the equations (13.7) with s=15 and j=2, 
pM1Q~[5 (D/~a" ~ ~2M,28y-IA~4/-})~16~l/2 

~--~ ~ - I ,  l W l ~ l )  2 ~ 2  ~ 1  ] ' 

and (13.9) with s--16. Write A=A14 and $=)~I~-2A~5+A~a. Then the equations for 

A16, r and 02 are determined by the equations (13.10) and 

2kr ---- l + $ ( 1 - r 1 6 2  

Thus 
217+1125-15A 

r 1575+1125-A ' 
By (13.9), we find that the next iterate for )~16 is given by 

A~6 = A~5(1- r + 1+30r 

The converged value of ~6 is given in the Appendix. 

Let X--P  k/(2k-1) and Z = P X  -1. Define the generating function h(c~) by 

h(a) = E e(axk), (14.1) 
xCC 

where 

c= {x:x=pz, 

Let s be an even integer, and write s=2r. Define m to be the set of real numbers a in 

((2k)- lP l-k, lh-(2k)-lP l-k] with the property that whenever aEZ, qEN, (a, q)=l  and 

la-a/q[ <<.q-lSX-k(rZ~)-x, then one has q>X. Then the argument of w of Vaughan [8] 

gives 

sup Ih(a)l << pl-~+~, (14.2) 
c~Ern 

where 
k - ( k - 1 ) A s  

o - (14 .3 )  
2 (2k-1) 

By (14.2) with s=12, and using the value of A12 given in the Appendix, we have a >  

0.01679703. Moreover, A~6 + 1 -  a < 26. Then by Theorem 4 of Vaughan and Wooley [10], 

we may finally conclude that G(7)<~33. 
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15. The  proof  of  Theorem 1.1 for eighth powers 

We divide into cases according to the value of s. 

(a) s = 16. We use Lemma 13.1 with j =3. By reference to the Appendix with s =  15, 

we obtain by successive application of (13.15) the bound 

5 A A15--v15=A15--~ IS>0.1563, 

and hence condition (13.6) is met. Then r is given by (13.13) with A=A15, and we 

obtain the value of A~6 given in the Appendix using (13.14). 

(b) s =  17. We use Lemma 13.1 with j = 3 .  By reference to the Appendix with s =  16, 

we obtain by successive application of (13.15) the bound 

A16 --/216 ~--- A 1 6 -  2/~19 -- 1A2O > 0.1288, 

and hence condition (13.6) is met. Then r is given by (13.13) with A=A16, and we 

obtain the value of ~ 7  given in the Appendix using (13.14). 

(c) s=18.  We use Lemma 13.1 with j = 2 .  By reference to the Appendix with s=17 ,  

we obtain by successive application of (13.15) the bound 

A17-v17 = A17-  1 A 1 9 -  5A20 > 0.0937, 

and hence condition (13.6) is met. Then r is given by (13.13) with A=AI~, and we 

obtain the value of A~s given in the Appendix using (13.14). 

We now complete the proof of Theorem 1.1 for k=8 as in w Applying (14.3) with 

s=16, we obtain a>0.01381643. Moreover, ~ s + 7 ( 1 - a ) < 3 5 .  Then by Theorem 4 of 

Vaughan and Wooley [10], we may finally conclude that G(8)~<43. 

16. The proof  of  Theorem 1.1 for ninth powers 

We divide into cases according to the value of s. 

(a) s--19.  We use Lemma 13.1 with j = 4 .  By reference to the Appendix with s=18, 

we obtain by successive application of (13.16) the bound 

Als -Vls  = A l s -  �89 - 1 A 5 22 >0.1659, 

and hence condition (13.6) is met. Then r is given by (13.13) with A=Als ,  and we 

may obtain the value of A~9 given in the Appendix using (13.14). 
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(b) s : 20 .  We use Lemma 13.1 with j=4. By reference to the Appendix with s=19, 

we obtain by successive application of (13.16) the bound 

1 A  2 A A19--/119 = A 1 9 - -  ~ 2 2 - - ~  2 3 > 0 . 1 3 0 7 ,  

and hence condition (13.6) is met. Then r is given by (13.13) with A=Alv,  and we 

may obtain the value of A~0 given in the Appendix using (13.14). 

(c) s=21. We use Lemma 13.1 with j=3. By reference to the Appendix with s=20, 
we obtain by successive application of (13.16) the bound 

4A - -2A24  > 0.0912, i 2 0  -- 1120 ~ i 2 0  -- ~ 23 

and hence condition (13.6) is met. Then r is given by (13.13) with i : i 2 0  , and we 

may obtain the value of A~I given in the Appendix using (13.14). 

(d) s=22. We use Lemma 13.1 with j--3. By reference to the Appendix with s=21, 

we obtain by successive application of (13.16) the bound 

A21 -/221 -~_ A21 -- 3A24- -  3A 25 > 0.0703, 

and hence condition (13.6) is met. Then r is given by (13.13) with A=A21, and we 

may obtain the value of A[2 given in the Appendix using (13.14). 

(e) s=23. We use Lemma 13.1 with j=3. By reference to the Appendix with s=22, 

we obtain by successive application of (13.16) the bound 

2A ~&26 > 0.0527, A22-//22~---A22-~ 25- 

and hence condition (13.6) is met. Then r is given by (13.13) with A=A22, and we 

may obtain the value of A~3 given in the Appendix using (13.14). 

We now complete the proof of Theorem 1.1 for k=9 as in w Applying (14.3) with 

s=20, we obtain a>0.01150790. Moreover, A~3+5(1-a)<42.  Then by Theorem 4 of 

Vaughan and Wooley [10], we may finally conclude that G(9)<~51. 
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Appendix .  Numerical  values for parameters  

In this appendix we display in tabular form the numerical values of the parameters arising 

in our iterative processes. The displayed figures are the converged values, calculated to 

15 significant figures on a computer, and rounded up in the last digit displayed. We also 

give the numerical values of the a(k) arising from (14.3), rounded down in the last digit 

displayed. 

k=5.  

s As r r 

3 3.1362571 0.06812854 

4 4.4386563 0.10559577 

5 5.9250797 0.13658426 0.07226662 

6 7.5417546 0.15133422 0.11310401 

7 9.2727289 0.16396009 0.14346470 

8 11.0773627 0.17021105 0.14377599 

We note also that  

S9(P, R) << p13. 

Further, although worse than the corresponding estimate arising from Weyl's inequality, 

we have 

a(5) i> 0.03257326. 

k=6.  

s ~s r r 05 

3 3.0909091 0.04545455 

4 4.3333334 0.08333334 

5 5.7246965 0.10673541 0.05080042 

6 7.2315633 0.11855692 0.08751084 

7 8.8505716 0.12981369 0.10763684 0.05551767 

8 10.5604127 0.13784851 0.12076716 0.08562337 

9 12.3536709 0.14583058 0.13787203 0.12031506 

10 14.2030055 0.15042244 0.14258278 

11 16.0860412 0.15232648 0.14281844 

12 18.0000000 0.15454265 0.14289604 

We note also that  $12(P, R)<<P ls+~, and although worse than Weyl's inequality, 

a(6) ~>0.02301567. 
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k=7.  

8 ~s r r r r 

3 3.0639191 0.03195955 

4 4.2641175 0.06818559 

5 5.5891167 0.08699398 0.03541170 

6 7.0143820 0.09641272 0.06937556 

7 8.5410894 0.10564538 0.08803450 0.04058919 

8 10.1526323 0.11202654 0.09889245 0.06902202 

9 11.8469485 0.11873997 0.10797294 0.08946112 0.04150797 

10 13.6055676 0.12329153 0.11453127 0.09898491 0.06609542 

11 15.4242973 0.12803790 0.12028445 0.10870656 0.08585428 

12 17.2932208 0.13214156 0.12611292 0.11717668 0.10266360 

13 19.1987053 0.13501034 0.13272313 

14 21.1230182 0.13590250 0.13271516 

15 23.0625298 0.13661685 0.13270878 

16 25.0164264 0.13749920 0.13270091 

We have a(7)/> 0.01679703, which is superior to Weyl's inequality. 

237 
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k ~ 8 .  

8 A s r r r r r 

3 3.0496111 0.02480553 

4 4.2289285 0.06077755 

5 5.5116307 0.07496603 0.03518923 

6 6.8806000 0.08220565 0.06261215 

7 8.3284883 0.08748844 0.07303331 0.02548707 

8 9.8579814 0.09336014 0.08199712 0.05500300 

9 11.4648635 0.09880825 0.09013287 0.07343430 

I0 13.1382531 0.10304140 0.09589809 0.08328930 0.05353266 

11 14.8742074 0.10725466 0.10102623 0.09178812 0.07307451 

12 16.6623509 0.11060434 0.10540355 0.09753530 0.08383402 0.05196286 

13 18.4948992 0.11346253 0.10890495 0.10229102 0.09095506 0.06779771 

14 20.3659701 0.11606386 0.11215719 0.10668910 0.09798016 0.08143693 

15 22.2689476 0.11828320 0.11517483 0.11083494 0.10444347 0.09360961 

16 24.1954446 0.11984099 0.11867153 0.11625125 

17 26.1370265 0.12064517 0.11920252 0.11624496 

18 28.0945483 0.12177604 0.12061807 

We have a(8)~>0.01381643, which is superior to Weyl's inequality. 
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k~9.  

s A8 r r 

3 3.0358052 0.0179026 

4 4.1822894 0.0494179 

5 5.4201075 0.0622934 0.0120224 

6 6.7434120 0.0705922 0.0500843 

r r r r 

7 8.1447208 0.0763440 0.0659715 0.0299044 

8 9.6154494 0.0803939 0.0729087 0,0537809 

9 11.1526889 0.0841468 0.0774905 0.0640395 0.0201554 

10 12.7545442 0,0878966 0.0819482 0.0717050 0.0452838 

11 14.4174241 0.0914891 0.0863641 0.0785379 0.0622043 

12 16.1349528 0.0946287 0.0902411 0.0839157 0.0725554 0.0447782 

13 17.9006237 0.0973520 0.0934860 0.0881279 0.0791991 0.0601626 

14 19.7094207 0.0998592 0.0964579 0.0919939 0.0851563 0.0722296 0.0413991 

15 21.5537941 0.1018474 0.0989335 0.0948926 0.0889089 0.0782184 0.0547876 

16 23.4293887 0.1036673 0.1010817 0.0976837 0.0925898 0.0840732 0.0669177 

17 25.3311019 0.1052100 0.1030531 0.1001422 0.0960512 0.0894131 0.0771596 

18 27.2542905 0.1064944 0.1047428 0.1023855 0,0990896 0.0941699 0.0856692 

19 29.1946817 0,1075260 0.1069631 0.1058045 0.1034200 

20 31.1468279 0.1081331 0.1074800 0.1061450 0.1034158 

21 33.1102975 0.1088277 0.1083112 0.1072611 

22 35.0806499 0.1091547 0.1085283 0.1072599 

23 37.0566117 0.1094208 0.1087045 0.1072590 

We have a(9)/>0.01150790, which is superior to Weyl's inequality. 
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